vxge: Fixed crash in PAE system due to wrong typecasting.
[linux-2.6.git] / drivers / net / vxge / vxge-traffic.c
1 /******************************************************************************
2  * This software may be used and distributed according to the terms of
3  * the GNU General Public License (GPL), incorporated herein by reference.
4  * Drivers based on or derived from this code fall under the GPL and must
5  * retain the authorship, copyright and license notice.  This file is not
6  * a complete program and may only be used when the entire operating
7  * system is licensed under the GPL.
8  * See the file COPYING in this distribution for more information.
9  *
10  * vxge-traffic.c: Driver for Neterion Inc's X3100 Series 10GbE PCIe I/O
11  *                 Virtualized Server Adapter.
12  * Copyright(c) 2002-2009 Neterion Inc.
13  ******************************************************************************/
14 #include <linux/etherdevice.h>
15
16 #include "vxge-traffic.h"
17 #include "vxge-config.h"
18 #include "vxge-main.h"
19
20 /*
21  * vxge_hw_vpath_intr_enable - Enable vpath interrupts.
22  * @vp: Virtual Path handle.
23  *
24  * Enable vpath interrupts. The function is to be executed the last in
25  * vpath initialization sequence.
26  *
27  * See also: vxge_hw_vpath_intr_disable()
28  */
29 enum vxge_hw_status vxge_hw_vpath_intr_enable(struct __vxge_hw_vpath_handle *vp)
30 {
31         u64 val64;
32
33         struct __vxge_hw_virtualpath *vpath;
34         struct vxge_hw_vpath_reg __iomem *vp_reg;
35         enum vxge_hw_status status = VXGE_HW_OK;
36         if (vp == NULL) {
37                 status = VXGE_HW_ERR_INVALID_HANDLE;
38                 goto exit;
39         }
40
41         vpath = vp->vpath;
42
43         if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
44                 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
45                 goto exit;
46         }
47
48         vp_reg = vpath->vp_reg;
49
50         writeq(VXGE_HW_INTR_MASK_ALL, &vp_reg->kdfcctl_errors_reg);
51
52         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
53                         &vp_reg->general_errors_reg);
54
55         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
56                         &vp_reg->pci_config_errors_reg);
57
58         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
59                         &vp_reg->mrpcim_to_vpath_alarm_reg);
60
61         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
62                         &vp_reg->srpcim_to_vpath_alarm_reg);
63
64         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
65                         &vp_reg->vpath_ppif_int_status);
66
67         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
68                         &vp_reg->srpcim_msg_to_vpath_reg);
69
70         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
71                         &vp_reg->vpath_pcipif_int_status);
72
73         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
74                         &vp_reg->prc_alarm_reg);
75
76         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
77                         &vp_reg->wrdma_alarm_status);
78
79         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
80                         &vp_reg->asic_ntwk_vp_err_reg);
81
82         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
83                         &vp_reg->xgmac_vp_int_status);
84
85         val64 = readq(&vp_reg->vpath_general_int_status);
86
87         /* Mask unwanted interrupts */
88
89         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
90                         &vp_reg->vpath_pcipif_int_mask);
91
92         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
93                         &vp_reg->srpcim_msg_to_vpath_mask);
94
95         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
96                         &vp_reg->srpcim_to_vpath_alarm_mask);
97
98         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
99                         &vp_reg->mrpcim_to_vpath_alarm_mask);
100
101         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
102                         &vp_reg->pci_config_errors_mask);
103
104         /* Unmask the individual interrupts */
105
106         writeq((u32)vxge_bVALn((VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO1_OVRFLOW|
107                 VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO2_OVRFLOW|
108                 VXGE_HW_GENERAL_ERRORS_REG_STATSB_DROP_TIMEOUT_REQ|
109                 VXGE_HW_GENERAL_ERRORS_REG_STATSB_PIF_CHAIN_ERR), 0, 32),
110                 &vp_reg->general_errors_mask);
111
112         __vxge_hw_pio_mem_write32_upper(
113                 (u32)vxge_bVALn((VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_OVRWR|
114                 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_OVRWR|
115                 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_POISON|
116                 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_POISON|
117                 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_DMA_ERR|
118                 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_DMA_ERR), 0, 32),
119                 &vp_reg->kdfcctl_errors_mask);
120
121         __vxge_hw_pio_mem_write32_upper(0, &vp_reg->vpath_ppif_int_mask);
122
123         __vxge_hw_pio_mem_write32_upper(
124                 (u32)vxge_bVALn(VXGE_HW_PRC_ALARM_REG_PRC_RING_BUMP, 0, 32),
125                 &vp_reg->prc_alarm_mask);
126
127         __vxge_hw_pio_mem_write32_upper(0, &vp_reg->wrdma_alarm_mask);
128         __vxge_hw_pio_mem_write32_upper(0, &vp_reg->xgmac_vp_int_mask);
129
130         if (vpath->hldev->first_vp_id != vpath->vp_id)
131                 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
132                         &vp_reg->asic_ntwk_vp_err_mask);
133         else
134                 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn((
135                 VXGE_HW_ASIC_NTWK_VP_ERR_REG_XMACJ_NTWK_REAFFIRMED_FAULT |
136                 VXGE_HW_ASIC_NTWK_VP_ERR_REG_XMACJ_NTWK_REAFFIRMED_OK), 0, 32),
137                 &vp_reg->asic_ntwk_vp_err_mask);
138
139         __vxge_hw_pio_mem_write32_upper(0,
140                 &vp_reg->vpath_general_int_mask);
141 exit:
142         return status;
143
144 }
145
146 /*
147  * vxge_hw_vpath_intr_disable - Disable vpath interrupts.
148  * @vp: Virtual Path handle.
149  *
150  * Disable vpath interrupts. The function is to be executed the last in
151  * vpath initialization sequence.
152  *
153  * See also: vxge_hw_vpath_intr_enable()
154  */
155 enum vxge_hw_status vxge_hw_vpath_intr_disable(
156                         struct __vxge_hw_vpath_handle *vp)
157 {
158         u64 val64;
159
160         struct __vxge_hw_virtualpath *vpath;
161         enum vxge_hw_status status = VXGE_HW_OK;
162         struct vxge_hw_vpath_reg __iomem *vp_reg;
163         if (vp == NULL) {
164                 status = VXGE_HW_ERR_INVALID_HANDLE;
165                 goto exit;
166         }
167
168         vpath = vp->vpath;
169
170         if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
171                 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
172                 goto exit;
173         }
174         vp_reg = vpath->vp_reg;
175
176         __vxge_hw_pio_mem_write32_upper(
177                 (u32)VXGE_HW_INTR_MASK_ALL,
178                 &vp_reg->vpath_general_int_mask);
179
180         val64 = VXGE_HW_TIM_CLR_INT_EN_VP(1 << (16 - vpath->vp_id));
181
182         writeq(VXGE_HW_INTR_MASK_ALL, &vp_reg->kdfcctl_errors_mask);
183
184         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
185                         &vp_reg->general_errors_mask);
186
187         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
188                         &vp_reg->pci_config_errors_mask);
189
190         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
191                         &vp_reg->mrpcim_to_vpath_alarm_mask);
192
193         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
194                         &vp_reg->srpcim_to_vpath_alarm_mask);
195
196         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
197                         &vp_reg->vpath_ppif_int_mask);
198
199         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
200                         &vp_reg->srpcim_msg_to_vpath_mask);
201
202         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
203                         &vp_reg->vpath_pcipif_int_mask);
204
205         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
206                         &vp_reg->wrdma_alarm_mask);
207
208         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
209                         &vp_reg->prc_alarm_mask);
210
211         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
212                         &vp_reg->xgmac_vp_int_mask);
213
214         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
215                         &vp_reg->asic_ntwk_vp_err_mask);
216
217 exit:
218         return status;
219 }
220
221 /**
222  * vxge_hw_channel_msix_mask - Mask MSIX Vector.
223  * @channeh: Channel for rx or tx handle
224  * @msix_id:  MSIX ID
225  *
226  * The function masks the msix interrupt for the given msix_id
227  *
228  * Returns: 0
229  */
230 void vxge_hw_channel_msix_mask(struct __vxge_hw_channel *channel, int msix_id)
231 {
232
233         __vxge_hw_pio_mem_write32_upper(
234                 (u32)vxge_bVALn(vxge_mBIT(channel->first_vp_id+(msix_id/4)),
235                         0, 32),
236                 &channel->common_reg->set_msix_mask_vect[msix_id%4]);
237
238         return;
239 }
240
241 /**
242  * vxge_hw_channel_msix_unmask - Unmask the MSIX Vector.
243  * @channeh: Channel for rx or tx handle
244  * @msix_id:  MSI ID
245  *
246  * The function unmasks the msix interrupt for the given msix_id
247  *
248  * Returns: 0
249  */
250 void
251 vxge_hw_channel_msix_unmask(struct __vxge_hw_channel *channel, int msix_id)
252 {
253
254         __vxge_hw_pio_mem_write32_upper(
255                 (u32)vxge_bVALn(vxge_mBIT(channel->first_vp_id+(msix_id/4)),
256                         0, 32),
257                 &channel->common_reg->clear_msix_mask_vect[msix_id%4]);
258
259         return;
260 }
261
262 /**
263  * vxge_hw_device_set_intr_type - Updates the configuration
264  *              with new interrupt type.
265  * @hldev: HW device handle.
266  * @intr_mode: New interrupt type
267  */
268 u32 vxge_hw_device_set_intr_type(struct __vxge_hw_device *hldev, u32 intr_mode)
269 {
270
271         if ((intr_mode != VXGE_HW_INTR_MODE_IRQLINE) &&
272            (intr_mode != VXGE_HW_INTR_MODE_MSIX) &&
273            (intr_mode != VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) &&
274            (intr_mode != VXGE_HW_INTR_MODE_DEF))
275                 intr_mode = VXGE_HW_INTR_MODE_IRQLINE;
276
277         hldev->config.intr_mode = intr_mode;
278         return intr_mode;
279 }
280
281 /**
282  * vxge_hw_device_intr_enable - Enable interrupts.
283  * @hldev: HW device handle.
284  * @op: One of the enum vxge_hw_device_intr enumerated values specifying
285  *      the type(s) of interrupts to enable.
286  *
287  * Enable Titan interrupts. The function is to be executed the last in
288  * Titan initialization sequence.
289  *
290  * See also: vxge_hw_device_intr_disable()
291  */
292 void vxge_hw_device_intr_enable(struct __vxge_hw_device *hldev)
293 {
294         u32 i;
295         u64 val64;
296         u32 val32;
297
298         for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
299
300                 if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
301                         continue;
302
303                 vxge_hw_vpath_intr_enable(
304                         VXGE_HW_VIRTUAL_PATH_HANDLE(&hldev->virtual_paths[i]));
305         }
306
307         if (hldev->config.intr_mode == VXGE_HW_INTR_MODE_IRQLINE) {
308                 val64 = hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
309                         hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX];
310
311                 if (val64 != 0) {
312                         writeq(val64, &hldev->common_reg->tim_int_status0);
313
314                         writeq(~val64, &hldev->common_reg->tim_int_mask0);
315                 }
316
317                 val32 = hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
318                         hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX];
319
320                 if (val32 != 0) {
321                         __vxge_hw_pio_mem_write32_upper(val32,
322                                         &hldev->common_reg->tim_int_status1);
323
324                         __vxge_hw_pio_mem_write32_upper(~val32,
325                                         &hldev->common_reg->tim_int_mask1);
326                 }
327         }
328
329         val64 = readq(&hldev->common_reg->titan_general_int_status);
330
331         vxge_hw_device_unmask_all(hldev);
332
333         return;
334 }
335
336 /**
337  * vxge_hw_device_intr_disable - Disable Titan interrupts.
338  * @hldev: HW device handle.
339  * @op: One of the enum vxge_hw_device_intr enumerated values specifying
340  *      the type(s) of interrupts to disable.
341  *
342  * Disable Titan interrupts.
343  *
344  * See also: vxge_hw_device_intr_enable()
345  */
346 void vxge_hw_device_intr_disable(struct __vxge_hw_device *hldev)
347 {
348         u32 i;
349
350         vxge_hw_device_mask_all(hldev);
351
352         /* mask all the tim interrupts */
353         writeq(VXGE_HW_INTR_MASK_ALL, &hldev->common_reg->tim_int_mask0);
354         __vxge_hw_pio_mem_write32_upper(VXGE_HW_DEFAULT_32,
355                 &hldev->common_reg->tim_int_mask1);
356
357         for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
358
359                 if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
360                         continue;
361
362                 vxge_hw_vpath_intr_disable(
363                         VXGE_HW_VIRTUAL_PATH_HANDLE(&hldev->virtual_paths[i]));
364         }
365
366         return;
367 }
368
369 /**
370  * vxge_hw_device_mask_all - Mask all device interrupts.
371  * @hldev: HW device handle.
372  *
373  * Mask all device interrupts.
374  *
375  * See also: vxge_hw_device_unmask_all()
376  */
377 void vxge_hw_device_mask_all(struct __vxge_hw_device *hldev)
378 {
379         u64 val64;
380
381         val64 = VXGE_HW_TITAN_MASK_ALL_INT_ALARM |
382                 VXGE_HW_TITAN_MASK_ALL_INT_TRAFFIC;
383
384         __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
385                                 &hldev->common_reg->titan_mask_all_int);
386
387         return;
388 }
389
390 /**
391  * vxge_hw_device_unmask_all - Unmask all device interrupts.
392  * @hldev: HW device handle.
393  *
394  * Unmask all device interrupts.
395  *
396  * See also: vxge_hw_device_mask_all()
397  */
398 void vxge_hw_device_unmask_all(struct __vxge_hw_device *hldev)
399 {
400         u64 val64 = 0;
401
402         if (hldev->config.intr_mode == VXGE_HW_INTR_MODE_IRQLINE)
403                 val64 =  VXGE_HW_TITAN_MASK_ALL_INT_TRAFFIC;
404
405         __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
406                         &hldev->common_reg->titan_mask_all_int);
407
408         return;
409 }
410
411 /**
412  * vxge_hw_device_flush_io - Flush io writes.
413  * @hldev: HW device handle.
414  *
415  * The function performs a read operation to flush io writes.
416  *
417  * Returns: void
418  */
419 void vxge_hw_device_flush_io(struct __vxge_hw_device *hldev)
420 {
421         u32 val32;
422
423         val32 = readl(&hldev->common_reg->titan_general_int_status);
424 }
425
426 /**
427  * vxge_hw_device_begin_irq - Begin IRQ processing.
428  * @hldev: HW device handle.
429  * @skip_alarms: Do not clear the alarms
430  * @reason: "Reason" for the interrupt, the value of Titan's
431  *      general_int_status register.
432  *
433  * The function performs two actions, It first checks whether (shared IRQ) the
434  * interrupt was raised by the device. Next, it masks the device interrupts.
435  *
436  * Note:
437  * vxge_hw_device_begin_irq() does not flush MMIO writes through the
438  * bridge. Therefore, two back-to-back interrupts are potentially possible.
439  *
440  * Returns: 0, if the interrupt is not "ours" (note that in this case the
441  * device remain enabled).
442  * Otherwise, vxge_hw_device_begin_irq() returns 64bit general adapter
443  * status.
444  */
445 enum vxge_hw_status vxge_hw_device_begin_irq(struct __vxge_hw_device *hldev,
446                                              u32 skip_alarms, u64 *reason)
447 {
448         u32 i;
449         u64 val64;
450         u64 adapter_status;
451         u64 vpath_mask;
452         enum vxge_hw_status ret = VXGE_HW_OK;
453
454         val64 = readq(&hldev->common_reg->titan_general_int_status);
455
456         if (unlikely(!val64)) {
457                 /* not Titan interrupt  */
458                 *reason = 0;
459                 ret = VXGE_HW_ERR_WRONG_IRQ;
460                 goto exit;
461         }
462
463         if (unlikely(val64 == VXGE_HW_ALL_FOXES)) {
464
465                 adapter_status = readq(&hldev->common_reg->adapter_status);
466
467                 if (adapter_status == VXGE_HW_ALL_FOXES) {
468
469                         __vxge_hw_device_handle_error(hldev,
470                                 NULL_VPID, VXGE_HW_EVENT_SLOT_FREEZE);
471                         *reason = 0;
472                         ret = VXGE_HW_ERR_SLOT_FREEZE;
473                         goto exit;
474                 }
475         }
476
477         hldev->stats.sw_dev_info_stats.total_intr_cnt++;
478
479         *reason = val64;
480
481         vpath_mask = hldev->vpaths_deployed >>
482                                 (64 - VXGE_HW_MAX_VIRTUAL_PATHS);
483
484         if (val64 &
485             VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_TRAFFIC_INT(vpath_mask)) {
486                 hldev->stats.sw_dev_info_stats.traffic_intr_cnt++;
487
488                 return VXGE_HW_OK;
489         }
490
491         hldev->stats.sw_dev_info_stats.not_traffic_intr_cnt++;
492
493         if (unlikely(val64 &
494                         VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_ALARM_INT)) {
495
496                 enum vxge_hw_status error_level = VXGE_HW_OK;
497
498                 hldev->stats.sw_dev_err_stats.vpath_alarms++;
499
500                 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
501
502                         if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
503                                 continue;
504
505                         ret = __vxge_hw_vpath_alarm_process(
506                                 &hldev->virtual_paths[i], skip_alarms);
507
508                         error_level = VXGE_HW_SET_LEVEL(ret, error_level);
509
510                         if (unlikely((ret == VXGE_HW_ERR_CRITICAL) ||
511                                 (ret == VXGE_HW_ERR_SLOT_FREEZE)))
512                                 break;
513                 }
514
515                 ret = error_level;
516         }
517 exit:
518         return ret;
519 }
520
521 /*
522  * __vxge_hw_device_handle_link_up_ind
523  * @hldev: HW device handle.
524  *
525  * Link up indication handler. The function is invoked by HW when
526  * Titan indicates that the link is up for programmable amount of time.
527  */
528 enum vxge_hw_status
529 __vxge_hw_device_handle_link_up_ind(struct __vxge_hw_device *hldev)
530 {
531         /*
532          * If the previous link state is not down, return.
533          */
534         if (hldev->link_state == VXGE_HW_LINK_UP)
535                 goto exit;
536
537         hldev->link_state = VXGE_HW_LINK_UP;
538
539         /* notify driver */
540         if (hldev->uld_callbacks.link_up)
541                 hldev->uld_callbacks.link_up(hldev);
542 exit:
543         return VXGE_HW_OK;
544 }
545
546 /*
547  * __vxge_hw_device_handle_link_down_ind
548  * @hldev: HW device handle.
549  *
550  * Link down indication handler. The function is invoked by HW when
551  * Titan indicates that the link is down.
552  */
553 enum vxge_hw_status
554 __vxge_hw_device_handle_link_down_ind(struct __vxge_hw_device *hldev)
555 {
556         /*
557          * If the previous link state is not down, return.
558          */
559         if (hldev->link_state == VXGE_HW_LINK_DOWN)
560                 goto exit;
561
562         hldev->link_state = VXGE_HW_LINK_DOWN;
563
564         /* notify driver */
565         if (hldev->uld_callbacks.link_down)
566                 hldev->uld_callbacks.link_down(hldev);
567 exit:
568         return VXGE_HW_OK;
569 }
570
571 /**
572  * __vxge_hw_device_handle_error - Handle error
573  * @hldev: HW device
574  * @vp_id: Vpath Id
575  * @type: Error type. Please see enum vxge_hw_event{}
576  *
577  * Handle error.
578  */
579 enum vxge_hw_status
580 __vxge_hw_device_handle_error(
581                 struct __vxge_hw_device *hldev,
582                 u32 vp_id,
583                 enum vxge_hw_event type)
584 {
585         switch (type) {
586         case VXGE_HW_EVENT_UNKNOWN:
587                 break;
588         case VXGE_HW_EVENT_RESET_START:
589         case VXGE_HW_EVENT_RESET_COMPLETE:
590         case VXGE_HW_EVENT_LINK_DOWN:
591         case VXGE_HW_EVENT_LINK_UP:
592                 goto out;
593         case VXGE_HW_EVENT_ALARM_CLEARED:
594                 goto out;
595         case VXGE_HW_EVENT_ECCERR:
596         case VXGE_HW_EVENT_MRPCIM_ECCERR:
597                 goto out;
598         case VXGE_HW_EVENT_FIFO_ERR:
599         case VXGE_HW_EVENT_VPATH_ERR:
600         case VXGE_HW_EVENT_CRITICAL_ERR:
601         case VXGE_HW_EVENT_SERR:
602                 break;
603         case VXGE_HW_EVENT_SRPCIM_SERR:
604         case VXGE_HW_EVENT_MRPCIM_SERR:
605                 goto out;
606         case VXGE_HW_EVENT_SLOT_FREEZE:
607                 break;
608         default:
609                 vxge_assert(0);
610                 goto out;
611         }
612
613         /* notify driver */
614         if (hldev->uld_callbacks.crit_err)
615                 hldev->uld_callbacks.crit_err(
616                         (struct __vxge_hw_device *)hldev,
617                         type, vp_id);
618 out:
619
620         return VXGE_HW_OK;
621 }
622
623 /**
624  * vxge_hw_device_clear_tx_rx - Acknowledge (that is, clear) the
625  * condition that has caused the Tx and RX interrupt.
626  * @hldev: HW device.
627  *
628  * Acknowledge (that is, clear) the condition that has caused
629  * the Tx and Rx interrupt.
630  * See also: vxge_hw_device_begin_irq(),
631  * vxge_hw_device_mask_tx_rx(), vxge_hw_device_unmask_tx_rx().
632  */
633 void vxge_hw_device_clear_tx_rx(struct __vxge_hw_device *hldev)
634 {
635
636         if ((hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
637            (hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
638                 writeq((hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
639                                  hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX]),
640                                 &hldev->common_reg->tim_int_status0);
641         }
642
643         if ((hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
644            (hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
645                 __vxge_hw_pio_mem_write32_upper(
646                                 (hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
647                                  hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX]),
648                                 &hldev->common_reg->tim_int_status1);
649         }
650
651         return;
652 }
653
654 /*
655  * vxge_hw_channel_dtr_alloc - Allocate a dtr from the channel
656  * @channel: Channel
657  * @dtrh: Buffer to return the DTR pointer
658  *
659  * Allocates a dtr from the reserve array. If the reserve array is empty,
660  * it swaps the reserve and free arrays.
661  *
662  */
663 enum vxge_hw_status
664 vxge_hw_channel_dtr_alloc(struct __vxge_hw_channel *channel, void **dtrh)
665 {
666         void **tmp_arr;
667
668         if (channel->reserve_ptr - channel->reserve_top > 0) {
669 _alloc_after_swap:
670                 *dtrh = channel->reserve_arr[--channel->reserve_ptr];
671
672                 return VXGE_HW_OK;
673         }
674
675         /* switch between empty and full arrays */
676
677         /* the idea behind such a design is that by having free and reserved
678          * arrays separated we basically separated irq and non-irq parts.
679          * i.e. no additional lock need to be done when we free a resource */
680
681         if (channel->length - channel->free_ptr > 0) {
682
683                 tmp_arr = channel->reserve_arr;
684                 channel->reserve_arr = channel->free_arr;
685                 channel->free_arr = tmp_arr;
686                 channel->reserve_ptr = channel->length;
687                 channel->reserve_top = channel->free_ptr;
688                 channel->free_ptr = channel->length;
689
690                 channel->stats->reserve_free_swaps_cnt++;
691
692                 goto _alloc_after_swap;
693         }
694
695         channel->stats->full_cnt++;
696
697         *dtrh = NULL;
698         return VXGE_HW_INF_OUT_OF_DESCRIPTORS;
699 }
700
701 /*
702  * vxge_hw_channel_dtr_post - Post a dtr to the channel
703  * @channelh: Channel
704  * @dtrh: DTR pointer
705  *
706  * Posts a dtr to work array.
707  *
708  */
709 void vxge_hw_channel_dtr_post(struct __vxge_hw_channel *channel, void *dtrh)
710 {
711         vxge_assert(channel->work_arr[channel->post_index] == NULL);
712
713         channel->work_arr[channel->post_index++] = dtrh;
714
715         /* wrap-around */
716         if (channel->post_index == channel->length)
717                 channel->post_index = 0;
718 }
719
720 /*
721  * vxge_hw_channel_dtr_try_complete - Returns next completed dtr
722  * @channel: Channel
723  * @dtr: Buffer to return the next completed DTR pointer
724  *
725  * Returns the next completed dtr with out removing it from work array
726  *
727  */
728 void
729 vxge_hw_channel_dtr_try_complete(struct __vxge_hw_channel *channel, void **dtrh)
730 {
731         vxge_assert(channel->compl_index < channel->length);
732
733         *dtrh = channel->work_arr[channel->compl_index];
734         prefetch(*dtrh);
735 }
736
737 /*
738  * vxge_hw_channel_dtr_complete - Removes next completed dtr from the work array
739  * @channel: Channel handle
740  *
741  * Removes the next completed dtr from work array
742  *
743  */
744 void vxge_hw_channel_dtr_complete(struct __vxge_hw_channel *channel)
745 {
746         channel->work_arr[channel->compl_index] = NULL;
747
748         /* wrap-around */
749         if (++channel->compl_index == channel->length)
750                 channel->compl_index = 0;
751
752         channel->stats->total_compl_cnt++;
753 }
754
755 /*
756  * vxge_hw_channel_dtr_free - Frees a dtr
757  * @channel: Channel handle
758  * @dtr:  DTR pointer
759  *
760  * Returns the dtr to free array
761  *
762  */
763 void vxge_hw_channel_dtr_free(struct __vxge_hw_channel *channel, void *dtrh)
764 {
765         channel->free_arr[--channel->free_ptr] = dtrh;
766 }
767
768 /*
769  * vxge_hw_channel_dtr_count
770  * @channel: Channel handle. Obtained via vxge_hw_channel_open().
771  *
772  * Retreive number of DTRs available. This function can not be called
773  * from data path. ring_initial_replenishi() is the only user.
774  */
775 int vxge_hw_channel_dtr_count(struct __vxge_hw_channel *channel)
776 {
777         return (channel->reserve_ptr - channel->reserve_top) +
778                 (channel->length - channel->free_ptr);
779 }
780
781 /**
782  * vxge_hw_ring_rxd_reserve     - Reserve ring descriptor.
783  * @ring: Handle to the ring object used for receive
784  * @rxdh: Reserved descriptor. On success HW fills this "out" parameter
785  * with a valid handle.
786  *
787  * Reserve Rx descriptor for the subsequent filling-in driver
788  * and posting on the corresponding channel (@channelh)
789  * via vxge_hw_ring_rxd_post().
790  *
791  * Returns: VXGE_HW_OK - success.
792  * VXGE_HW_INF_OUT_OF_DESCRIPTORS - Currently no descriptors available.
793  *
794  */
795 enum vxge_hw_status vxge_hw_ring_rxd_reserve(struct __vxge_hw_ring *ring,
796         void **rxdh)
797 {
798         enum vxge_hw_status status;
799         struct __vxge_hw_channel *channel;
800
801         channel = &ring->channel;
802
803         status = vxge_hw_channel_dtr_alloc(channel, rxdh);
804
805         if (status == VXGE_HW_OK) {
806                 struct vxge_hw_ring_rxd_1 *rxdp =
807                         (struct vxge_hw_ring_rxd_1 *)*rxdh;
808
809                 rxdp->control_0 = rxdp->control_1 = 0;
810         }
811
812         return status;
813 }
814
815 /**
816  * vxge_hw_ring_rxd_free - Free descriptor.
817  * @ring: Handle to the ring object used for receive
818  * @rxdh: Descriptor handle.
819  *
820  * Free the reserved descriptor. This operation is "symmetrical" to
821  * vxge_hw_ring_rxd_reserve. The "free-ing" completes the descriptor's
822  * lifecycle.
823  *
824  * After free-ing (see vxge_hw_ring_rxd_free()) the descriptor again can
825  * be:
826  *
827  * - reserved (vxge_hw_ring_rxd_reserve);
828  *
829  * - posted     (vxge_hw_ring_rxd_post);
830  *
831  * - completed (vxge_hw_ring_rxd_next_completed);
832  *
833  * - and recycled again (vxge_hw_ring_rxd_free).
834  *
835  * For alternative state transitions and more details please refer to
836  * the design doc.
837  *
838  */
839 void vxge_hw_ring_rxd_free(struct __vxge_hw_ring *ring, void *rxdh)
840 {
841         struct __vxge_hw_channel *channel;
842
843         channel = &ring->channel;
844
845         vxge_hw_channel_dtr_free(channel, rxdh);
846
847 }
848
849 /**
850  * vxge_hw_ring_rxd_pre_post - Prepare rxd and post
851  * @ring: Handle to the ring object used for receive
852  * @rxdh: Descriptor handle.
853  *
854  * This routine prepares a rxd and posts
855  */
856 void vxge_hw_ring_rxd_pre_post(struct __vxge_hw_ring *ring, void *rxdh)
857 {
858         struct __vxge_hw_channel *channel;
859
860         channel = &ring->channel;
861
862         vxge_hw_channel_dtr_post(channel, rxdh);
863 }
864
865 /**
866  * vxge_hw_ring_rxd_post_post - Process rxd after post.
867  * @ring: Handle to the ring object used for receive
868  * @rxdh: Descriptor handle.
869  *
870  * Processes rxd after post
871  */
872 void vxge_hw_ring_rxd_post_post(struct __vxge_hw_ring *ring, void *rxdh)
873 {
874         struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh;
875         struct __vxge_hw_channel *channel;
876
877         channel = &ring->channel;
878
879         rxdp->control_0 |= VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
880
881         if (ring->stats->common_stats.usage_cnt > 0)
882                 ring->stats->common_stats.usage_cnt--;
883 }
884
885 /**
886  * vxge_hw_ring_rxd_post - Post descriptor on the ring.
887  * @ring: Handle to the ring object used for receive
888  * @rxdh: Descriptor obtained via vxge_hw_ring_rxd_reserve().
889  *
890  * Post descriptor on the ring.
891  * Prior to posting the descriptor should be filled in accordance with
892  * Host/Titan interface specification for a given service (LL, etc.).
893  *
894  */
895 void vxge_hw_ring_rxd_post(struct __vxge_hw_ring *ring, void *rxdh)
896 {
897         struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh;
898         struct __vxge_hw_channel *channel;
899
900         channel = &ring->channel;
901
902         wmb();
903         rxdp->control_0 |= VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
904
905         vxge_hw_channel_dtr_post(channel, rxdh);
906
907         if (ring->stats->common_stats.usage_cnt > 0)
908                 ring->stats->common_stats.usage_cnt--;
909 }
910
911 /**
912  * vxge_hw_ring_rxd_post_post_wmb - Process rxd after post with memory barrier.
913  * @ring: Handle to the ring object used for receive
914  * @rxdh: Descriptor handle.
915  *
916  * Processes rxd after post with memory barrier.
917  */
918 void vxge_hw_ring_rxd_post_post_wmb(struct __vxge_hw_ring *ring, void *rxdh)
919 {
920         struct __vxge_hw_channel *channel;
921
922         channel = &ring->channel;
923
924         wmb();
925         vxge_hw_ring_rxd_post_post(ring, rxdh);
926 }
927
928 /**
929  * vxge_hw_ring_rxd_next_completed - Get the _next_ completed descriptor.
930  * @ring: Handle to the ring object used for receive
931  * @rxdh: Descriptor handle. Returned by HW.
932  * @t_code:     Transfer code, as per Titan User Guide,
933  *       Receive Descriptor Format. Returned by HW.
934  *
935  * Retrieve the _next_ completed descriptor.
936  * HW uses ring callback (*vxge_hw_ring_callback_f) to notifiy
937  * driver of new completed descriptors. After that
938  * the driver can use vxge_hw_ring_rxd_next_completed to retrieve the rest
939  * completions (the very first completion is passed by HW via
940  * vxge_hw_ring_callback_f).
941  *
942  * Implementation-wise, the driver is free to call
943  * vxge_hw_ring_rxd_next_completed either immediately from inside the
944  * ring callback, or in a deferred fashion and separate (from HW)
945  * context.
946  *
947  * Non-zero @t_code means failure to fill-in receive buffer(s)
948  * of the descriptor.
949  * For instance, parity error detected during the data transfer.
950  * In this case Titan will complete the descriptor and indicate
951  * for the host that the received data is not to be used.
952  * For details please refer to Titan User Guide.
953  *
954  * Returns: VXGE_HW_OK - success.
955  * VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS - No completed descriptors
956  * are currently available for processing.
957  *
958  * See also: vxge_hw_ring_callback_f{},
959  * vxge_hw_fifo_rxd_next_completed(), enum vxge_hw_status{}.
960  */
961 enum vxge_hw_status vxge_hw_ring_rxd_next_completed(
962         struct __vxge_hw_ring *ring, void **rxdh, u8 *t_code)
963 {
964         struct __vxge_hw_channel *channel;
965         struct vxge_hw_ring_rxd_1 *rxdp;
966         enum vxge_hw_status status = VXGE_HW_OK;
967
968         channel = &ring->channel;
969
970         vxge_hw_channel_dtr_try_complete(channel, rxdh);
971
972         rxdp = (struct vxge_hw_ring_rxd_1 *)*rxdh;
973         if (rxdp == NULL) {
974                 status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
975                 goto exit;
976         }
977
978         /* check whether it is not the end */
979         if (!(rxdp->control_0 & VXGE_HW_RING_RXD_LIST_OWN_ADAPTER)) {
980
981                 vxge_assert(((struct vxge_hw_ring_rxd_1 *)rxdp)->host_control !=
982                                 0);
983
984                 ++ring->cmpl_cnt;
985                 vxge_hw_channel_dtr_complete(channel);
986
987                 *t_code = (u8)VXGE_HW_RING_RXD_T_CODE_GET(rxdp->control_0);
988
989                 vxge_assert(*t_code != VXGE_HW_RING_RXD_T_CODE_UNUSED);
990
991                 ring->stats->common_stats.usage_cnt++;
992                 if (ring->stats->common_stats.usage_max <
993                                 ring->stats->common_stats.usage_cnt)
994                         ring->stats->common_stats.usage_max =
995                                 ring->stats->common_stats.usage_cnt;
996
997                 status = VXGE_HW_OK;
998                 goto exit;
999         }
1000
1001         /* reset it. since we don't want to return
1002          * garbage to the driver */
1003         *rxdh = NULL;
1004         status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1005 exit:
1006         return status;
1007 }
1008
1009 /**
1010  * vxge_hw_ring_handle_tcode - Handle transfer code.
1011  * @ring: Handle to the ring object used for receive
1012  * @rxdh: Descriptor handle.
1013  * @t_code: One of the enumerated (and documented in the Titan user guide)
1014  * "transfer codes".
1015  *
1016  * Handle descriptor's transfer code. The latter comes with each completed
1017  * descriptor.
1018  *
1019  * Returns: one of the enum vxge_hw_status{} enumerated types.
1020  * VXGE_HW_OK                   - for success.
1021  * VXGE_HW_ERR_CRITICAL         - when encounters critical error.
1022  */
1023 enum vxge_hw_status vxge_hw_ring_handle_tcode(
1024         struct __vxge_hw_ring *ring, void *rxdh, u8 t_code)
1025 {
1026         struct __vxge_hw_channel *channel;
1027         enum vxge_hw_status status = VXGE_HW_OK;
1028
1029         channel = &ring->channel;
1030
1031         /* If the t_code is not supported and if the
1032          * t_code is other than 0x5 (unparseable packet
1033          * such as unknown UPV6 header), Drop it !!!
1034          */
1035
1036         if (t_code == 0 || t_code == 5) {
1037                 status = VXGE_HW_OK;
1038                 goto exit;
1039         }
1040
1041         if (t_code > 0xF) {
1042                 status = VXGE_HW_ERR_INVALID_TCODE;
1043                 goto exit;
1044         }
1045
1046         ring->stats->rxd_t_code_err_cnt[t_code]++;
1047 exit:
1048         return status;
1049 }
1050
1051 /**
1052  * __vxge_hw_non_offload_db_post - Post non offload doorbell
1053  *
1054  * @fifo: fifohandle
1055  * @txdl_ptr: The starting location of the TxDL in host memory
1056  * @num_txds: The highest TxD in this TxDL (0 to 255 means 1 to 256)
1057  * @no_snoop: No snoop flags
1058  *
1059  * This function posts a non-offload doorbell to doorbell FIFO
1060  *
1061  */
1062 static void __vxge_hw_non_offload_db_post(struct __vxge_hw_fifo *fifo,
1063         u64 txdl_ptr, u32 num_txds, u32 no_snoop)
1064 {
1065         struct __vxge_hw_channel *channel;
1066
1067         channel = &fifo->channel;
1068
1069         writeq(VXGE_HW_NODBW_TYPE(VXGE_HW_NODBW_TYPE_NODBW) |
1070                 VXGE_HW_NODBW_LAST_TXD_NUMBER(num_txds) |
1071                 VXGE_HW_NODBW_GET_NO_SNOOP(no_snoop),
1072                 &fifo->nofl_db->control_0);
1073
1074         mmiowb();
1075
1076         writeq(txdl_ptr, &fifo->nofl_db->txdl_ptr);
1077
1078         mmiowb();
1079 }
1080
1081 /**
1082  * vxge_hw_fifo_free_txdl_count_get - returns the number of txdls available in
1083  * the fifo
1084  * @fifoh: Handle to the fifo object used for non offload send
1085  */
1086 u32 vxge_hw_fifo_free_txdl_count_get(struct __vxge_hw_fifo *fifoh)
1087 {
1088         return vxge_hw_channel_dtr_count(&fifoh->channel);
1089 }
1090
1091 /**
1092  * vxge_hw_fifo_txdl_reserve - Reserve fifo descriptor.
1093  * @fifoh: Handle to the fifo object used for non offload send
1094  * @txdlh: Reserved descriptor. On success HW fills this "out" parameter
1095  *        with a valid handle.
1096  * @txdl_priv: Buffer to return the pointer to per txdl space
1097  *
1098  * Reserve a single TxDL (that is, fifo descriptor)
1099  * for the subsequent filling-in by driver)
1100  * and posting on the corresponding channel (@channelh)
1101  * via vxge_hw_fifo_txdl_post().
1102  *
1103  * Note: it is the responsibility of driver to reserve multiple descriptors
1104  * for lengthy (e.g., LSO) transmit operation. A single fifo descriptor
1105  * carries up to configured number (fifo.max_frags) of contiguous buffers.
1106  *
1107  * Returns: VXGE_HW_OK - success;
1108  * VXGE_HW_INF_OUT_OF_DESCRIPTORS - Currently no descriptors available
1109  *
1110  */
1111 enum vxge_hw_status vxge_hw_fifo_txdl_reserve(
1112         struct __vxge_hw_fifo *fifo,
1113         void **txdlh, void **txdl_priv)
1114 {
1115         struct __vxge_hw_channel *channel;
1116         enum vxge_hw_status status;
1117         int i;
1118
1119         channel = &fifo->channel;
1120
1121         status = vxge_hw_channel_dtr_alloc(channel, txdlh);
1122
1123         if (status == VXGE_HW_OK) {
1124                 struct vxge_hw_fifo_txd *txdp =
1125                         (struct vxge_hw_fifo_txd *)*txdlh;
1126                 struct __vxge_hw_fifo_txdl_priv *priv;
1127
1128                 priv = __vxge_hw_fifo_txdl_priv(fifo, txdp);
1129
1130                 /* reset the TxDL's private */
1131                 priv->align_dma_offset = 0;
1132                 priv->align_vaddr_start = priv->align_vaddr;
1133                 priv->align_used_frags = 0;
1134                 priv->frags = 0;
1135                 priv->alloc_frags = fifo->config->max_frags;
1136                 priv->next_txdl_priv = NULL;
1137
1138                 *txdl_priv = (void *)(size_t)txdp->host_control;
1139
1140                 for (i = 0; i < fifo->config->max_frags; i++) {
1141                         txdp = ((struct vxge_hw_fifo_txd *)*txdlh) + i;
1142                         txdp->control_0 = txdp->control_1 = 0;
1143                 }
1144         }
1145
1146         return status;
1147 }
1148
1149 /**
1150  * vxge_hw_fifo_txdl_buffer_set - Set transmit buffer pointer in the
1151  * descriptor.
1152  * @fifo: Handle to the fifo object used for non offload send
1153  * @txdlh: Descriptor handle.
1154  * @frag_idx: Index of the data buffer in the caller's scatter-gather list
1155  *            (of buffers).
1156  * @dma_pointer: DMA address of the data buffer referenced by @frag_idx.
1157  * @size: Size of the data buffer (in bytes).
1158  *
1159  * This API is part of the preparation of the transmit descriptor for posting
1160  * (via vxge_hw_fifo_txdl_post()). The related "preparation" APIs include
1161  * vxge_hw_fifo_txdl_mss_set() and vxge_hw_fifo_txdl_cksum_set_bits().
1162  * All three APIs fill in the fields of the fifo descriptor,
1163  * in accordance with the Titan specification.
1164  *
1165  */
1166 void vxge_hw_fifo_txdl_buffer_set(struct __vxge_hw_fifo *fifo,
1167                                   void *txdlh, u32 frag_idx,
1168                                   dma_addr_t dma_pointer, u32 size)
1169 {
1170         struct __vxge_hw_fifo_txdl_priv *txdl_priv;
1171         struct vxge_hw_fifo_txd *txdp, *txdp_last;
1172         struct __vxge_hw_channel *channel;
1173
1174         channel = &fifo->channel;
1175
1176         txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdlh);
1177         txdp = (struct vxge_hw_fifo_txd *)txdlh  +  txdl_priv->frags;
1178
1179         if (frag_idx != 0)
1180                 txdp->control_0 = txdp->control_1 = 0;
1181         else {
1182                 txdp->control_0 |= VXGE_HW_FIFO_TXD_GATHER_CODE(
1183                         VXGE_HW_FIFO_TXD_GATHER_CODE_FIRST);
1184                 txdp->control_1 |= fifo->interrupt_type;
1185                 txdp->control_1 |= VXGE_HW_FIFO_TXD_INT_NUMBER(
1186                         fifo->tx_intr_num);
1187                 if (txdl_priv->frags) {
1188                         txdp_last = (struct vxge_hw_fifo_txd *)txdlh  +
1189                         (txdl_priv->frags - 1);
1190                         txdp_last->control_0 |= VXGE_HW_FIFO_TXD_GATHER_CODE(
1191                                 VXGE_HW_FIFO_TXD_GATHER_CODE_LAST);
1192                 }
1193         }
1194
1195         vxge_assert(frag_idx < txdl_priv->alloc_frags);
1196
1197         txdp->buffer_pointer = (u64)dma_pointer;
1198         txdp->control_0 |= VXGE_HW_FIFO_TXD_BUFFER_SIZE(size);
1199         fifo->stats->total_buffers++;
1200         txdl_priv->frags++;
1201 }
1202
1203 /**
1204  * vxge_hw_fifo_txdl_post - Post descriptor on the fifo channel.
1205  * @fifo: Handle to the fifo object used for non offload send
1206  * @txdlh: Descriptor obtained via vxge_hw_fifo_txdl_reserve()
1207  * @frags: Number of contiguous buffers that are part of a single
1208  *         transmit operation.
1209  *
1210  * Post descriptor on the 'fifo' type channel for transmission.
1211  * Prior to posting the descriptor should be filled in accordance with
1212  * Host/Titan interface specification for a given service (LL, etc.).
1213  *
1214  */
1215 void vxge_hw_fifo_txdl_post(struct __vxge_hw_fifo *fifo, void *txdlh)
1216 {
1217         struct __vxge_hw_fifo_txdl_priv *txdl_priv;
1218         struct vxge_hw_fifo_txd *txdp_last;
1219         struct vxge_hw_fifo_txd *txdp_first;
1220         struct __vxge_hw_channel *channel;
1221
1222         channel = &fifo->channel;
1223
1224         txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdlh);
1225         txdp_first = (struct vxge_hw_fifo_txd *)txdlh;
1226
1227         txdp_last = (struct vxge_hw_fifo_txd *)txdlh  +  (txdl_priv->frags - 1);
1228         txdp_last->control_0 |=
1229               VXGE_HW_FIFO_TXD_GATHER_CODE(VXGE_HW_FIFO_TXD_GATHER_CODE_LAST);
1230         txdp_first->control_0 |= VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER;
1231
1232         vxge_hw_channel_dtr_post(&fifo->channel, txdlh);
1233
1234         __vxge_hw_non_offload_db_post(fifo,
1235                 (u64)txdl_priv->dma_addr,
1236                 txdl_priv->frags - 1,
1237                 fifo->no_snoop_bits);
1238
1239         fifo->stats->total_posts++;
1240         fifo->stats->common_stats.usage_cnt++;
1241         if (fifo->stats->common_stats.usage_max <
1242                 fifo->stats->common_stats.usage_cnt)
1243                 fifo->stats->common_stats.usage_max =
1244                         fifo->stats->common_stats.usage_cnt;
1245 }
1246
1247 /**
1248  * vxge_hw_fifo_txdl_next_completed - Retrieve next completed descriptor.
1249  * @fifo: Handle to the fifo object used for non offload send
1250  * @txdlh: Descriptor handle. Returned by HW.
1251  * @t_code: Transfer code, as per Titan User Guide,
1252  *          Transmit Descriptor Format.
1253  *          Returned by HW.
1254  *
1255  * Retrieve the _next_ completed descriptor.
1256  * HW uses channel callback (*vxge_hw_channel_callback_f) to notifiy
1257  * driver of new completed descriptors. After that
1258  * the driver can use vxge_hw_fifo_txdl_next_completed to retrieve the rest
1259  * completions (the very first completion is passed by HW via
1260  * vxge_hw_channel_callback_f).
1261  *
1262  * Implementation-wise, the driver is free to call
1263  * vxge_hw_fifo_txdl_next_completed either immediately from inside the
1264  * channel callback, or in a deferred fashion and separate (from HW)
1265  * context.
1266  *
1267  * Non-zero @t_code means failure to process the descriptor.
1268  * The failure could happen, for instance, when the link is
1269  * down, in which case Titan completes the descriptor because it
1270  * is not able to send the data out.
1271  *
1272  * For details please refer to Titan User Guide.
1273  *
1274  * Returns: VXGE_HW_OK - success.
1275  * VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS - No completed descriptors
1276  * are currently available for processing.
1277  *
1278  */
1279 enum vxge_hw_status vxge_hw_fifo_txdl_next_completed(
1280         struct __vxge_hw_fifo *fifo, void **txdlh,
1281         enum vxge_hw_fifo_tcode *t_code)
1282 {
1283         struct __vxge_hw_channel *channel;
1284         struct vxge_hw_fifo_txd *txdp;
1285         enum vxge_hw_status status = VXGE_HW_OK;
1286
1287         channel = &fifo->channel;
1288
1289         vxge_hw_channel_dtr_try_complete(channel, txdlh);
1290
1291         txdp = (struct vxge_hw_fifo_txd *)*txdlh;
1292         if (txdp == NULL) {
1293                 status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1294                 goto exit;
1295         }
1296
1297         /* check whether host owns it */
1298         if (!(txdp->control_0 & VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER)) {
1299
1300                 vxge_assert(txdp->host_control != 0);
1301
1302                 vxge_hw_channel_dtr_complete(channel);
1303
1304                 *t_code = (u8)VXGE_HW_FIFO_TXD_T_CODE_GET(txdp->control_0);
1305
1306                 if (fifo->stats->common_stats.usage_cnt > 0)
1307                         fifo->stats->common_stats.usage_cnt--;
1308
1309                 status = VXGE_HW_OK;
1310                 goto exit;
1311         }
1312
1313         /* no more completions */
1314         *txdlh = NULL;
1315         status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1316 exit:
1317         return status;
1318 }
1319
1320 /**
1321  * vxge_hw_fifo_handle_tcode - Handle transfer code.
1322  * @fifo: Handle to the fifo object used for non offload send
1323  * @txdlh: Descriptor handle.
1324  * @t_code: One of the enumerated (and documented in the Titan user guide)
1325  *          "transfer codes".
1326  *
1327  * Handle descriptor's transfer code. The latter comes with each completed
1328  * descriptor.
1329  *
1330  * Returns: one of the enum vxge_hw_status{} enumerated types.
1331  * VXGE_HW_OK - for success.
1332  * VXGE_HW_ERR_CRITICAL - when encounters critical error.
1333  */
1334 enum vxge_hw_status vxge_hw_fifo_handle_tcode(struct __vxge_hw_fifo *fifo,
1335                                               void *txdlh,
1336                                               enum vxge_hw_fifo_tcode t_code)
1337 {
1338         struct __vxge_hw_channel *channel;
1339
1340         enum vxge_hw_status status = VXGE_HW_OK;
1341         channel = &fifo->channel;
1342
1343         if (((t_code & 0x7) < 0) || ((t_code & 0x7) > 0x4)) {
1344                 status = VXGE_HW_ERR_INVALID_TCODE;
1345                 goto exit;
1346         }
1347
1348         fifo->stats->txd_t_code_err_cnt[t_code]++;
1349 exit:
1350         return status;
1351 }
1352
1353 /**
1354  * vxge_hw_fifo_txdl_free - Free descriptor.
1355  * @fifo: Handle to the fifo object used for non offload send
1356  * @txdlh: Descriptor handle.
1357  *
1358  * Free the reserved descriptor. This operation is "symmetrical" to
1359  * vxge_hw_fifo_txdl_reserve. The "free-ing" completes the descriptor's
1360  * lifecycle.
1361  *
1362  * After free-ing (see vxge_hw_fifo_txdl_free()) the descriptor again can
1363  * be:
1364  *
1365  * - reserved (vxge_hw_fifo_txdl_reserve);
1366  *
1367  * - posted (vxge_hw_fifo_txdl_post);
1368  *
1369  * - completed (vxge_hw_fifo_txdl_next_completed);
1370  *
1371  * - and recycled again (vxge_hw_fifo_txdl_free).
1372  *
1373  * For alternative state transitions and more details please refer to
1374  * the design doc.
1375  *
1376  */
1377 void vxge_hw_fifo_txdl_free(struct __vxge_hw_fifo *fifo, void *txdlh)
1378 {
1379         struct __vxge_hw_fifo_txdl_priv *txdl_priv;
1380         u32 max_frags;
1381         struct __vxge_hw_channel *channel;
1382
1383         channel = &fifo->channel;
1384
1385         txdl_priv = __vxge_hw_fifo_txdl_priv(fifo,
1386                         (struct vxge_hw_fifo_txd *)txdlh);
1387
1388         max_frags = fifo->config->max_frags;
1389
1390         vxge_hw_channel_dtr_free(channel, txdlh);
1391 }
1392
1393 /**
1394  * vxge_hw_vpath_mac_addr_add - Add the mac address entry for this vpath
1395  *               to MAC address table.
1396  * @vp: Vpath handle.
1397  * @macaddr: MAC address to be added for this vpath into the list
1398  * @macaddr_mask: MAC address mask for macaddr
1399  * @duplicate_mode: Duplicate MAC address add mode. Please see
1400  *             enum vxge_hw_vpath_mac_addr_add_mode{}
1401  *
1402  * Adds the given mac address and mac address mask into the list for this
1403  * vpath.
1404  * see also: vxge_hw_vpath_mac_addr_delete, vxge_hw_vpath_mac_addr_get and
1405  * vxge_hw_vpath_mac_addr_get_next
1406  *
1407  */
1408 enum vxge_hw_status
1409 vxge_hw_vpath_mac_addr_add(
1410         struct __vxge_hw_vpath_handle *vp,
1411         u8 (macaddr)[ETH_ALEN],
1412         u8 (macaddr_mask)[ETH_ALEN],
1413         enum vxge_hw_vpath_mac_addr_add_mode duplicate_mode)
1414 {
1415         u32 i;
1416         u64 data1 = 0ULL;
1417         u64 data2 = 0ULL;
1418         enum vxge_hw_status status = VXGE_HW_OK;
1419
1420         if (vp == NULL) {
1421                 status = VXGE_HW_ERR_INVALID_HANDLE;
1422                 goto exit;
1423         }
1424
1425         for (i = 0; i < ETH_ALEN; i++) {
1426                 data1 <<= 8;
1427                 data1 |= (u8)macaddr[i];
1428
1429                 data2 <<= 8;
1430                 data2 |= (u8)macaddr_mask[i];
1431         }
1432
1433         switch (duplicate_mode) {
1434         case VXGE_HW_VPATH_MAC_ADDR_ADD_DUPLICATE:
1435                 i = 0;
1436                 break;
1437         case VXGE_HW_VPATH_MAC_ADDR_DISCARD_DUPLICATE:
1438                 i = 1;
1439                 break;
1440         case VXGE_HW_VPATH_MAC_ADDR_REPLACE_DUPLICATE:
1441                 i = 2;
1442                 break;
1443         default:
1444                 i = 0;
1445                 break;
1446         }
1447
1448         status = __vxge_hw_vpath_rts_table_set(vp,
1449                         VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_ADD_ENTRY,
1450                         VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1451                         0,
1452                         VXGE_HW_RTS_ACCESS_STEER_DATA0_DA_MAC_ADDR(data1),
1453                         VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MASK(data2)|
1454                         VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MODE(i));
1455 exit:
1456         return status;
1457 }
1458
1459 /**
1460  * vxge_hw_vpath_mac_addr_get - Get the first mac address entry for this vpath
1461  *               from MAC address table.
1462  * @vp: Vpath handle.
1463  * @macaddr: First MAC address entry for this vpath in the list
1464  * @macaddr_mask: MAC address mask for macaddr
1465  *
1466  * Returns the first mac address and mac address mask in the list for this
1467  * vpath.
1468  * see also: vxge_hw_vpath_mac_addr_get_next
1469  *
1470  */
1471 enum vxge_hw_status
1472 vxge_hw_vpath_mac_addr_get(
1473         struct __vxge_hw_vpath_handle *vp,
1474         u8 (macaddr)[ETH_ALEN],
1475         u8 (macaddr_mask)[ETH_ALEN])
1476 {
1477         u32 i;
1478         u64 data1 = 0ULL;
1479         u64 data2 = 0ULL;
1480         enum vxge_hw_status status = VXGE_HW_OK;
1481
1482         if (vp == NULL) {
1483                 status = VXGE_HW_ERR_INVALID_HANDLE;
1484                 goto exit;
1485         }
1486
1487         status = __vxge_hw_vpath_rts_table_get(vp,
1488                         VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY,
1489                         VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1490                         0, &data1, &data2);
1491
1492         if (status != VXGE_HW_OK)
1493                 goto exit;
1494
1495         data1 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1);
1496
1497         data2 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(data2);
1498
1499         for (i = ETH_ALEN; i > 0; i--) {
1500                 macaddr[i-1] = (u8)(data1 & 0xFF);
1501                 data1 >>= 8;
1502
1503                 macaddr_mask[i-1] = (u8)(data2 & 0xFF);
1504                 data2 >>= 8;
1505         }
1506 exit:
1507         return status;
1508 }
1509
1510 /**
1511  * vxge_hw_vpath_mac_addr_get_next - Get the next mac address entry for this
1512  * vpath
1513  *               from MAC address table.
1514  * @vp: Vpath handle.
1515  * @macaddr: Next MAC address entry for this vpath in the list
1516  * @macaddr_mask: MAC address mask for macaddr
1517  *
1518  * Returns the next mac address and mac address mask in the list for this
1519  * vpath.
1520  * see also: vxge_hw_vpath_mac_addr_get
1521  *
1522  */
1523 enum vxge_hw_status
1524 vxge_hw_vpath_mac_addr_get_next(
1525         struct __vxge_hw_vpath_handle *vp,
1526         u8 (macaddr)[ETH_ALEN],
1527         u8 (macaddr_mask)[ETH_ALEN])
1528 {
1529         u32 i;
1530         u64 data1 = 0ULL;
1531         u64 data2 = 0ULL;
1532         enum vxge_hw_status status = VXGE_HW_OK;
1533
1534         if (vp == NULL) {
1535                 status = VXGE_HW_ERR_INVALID_HANDLE;
1536                 goto exit;
1537         }
1538
1539         status = __vxge_hw_vpath_rts_table_get(vp,
1540                         VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_NEXT_ENTRY,
1541                         VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1542                         0, &data1, &data2);
1543
1544         if (status != VXGE_HW_OK)
1545                 goto exit;
1546
1547         data1 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1);
1548
1549         data2 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(data2);
1550
1551         for (i = ETH_ALEN; i > 0; i--) {
1552                 macaddr[i-1] = (u8)(data1 & 0xFF);
1553                 data1 >>= 8;
1554
1555                 macaddr_mask[i-1] = (u8)(data2 & 0xFF);
1556                 data2 >>= 8;
1557         }
1558
1559 exit:
1560         return status;
1561 }
1562
1563 /**
1564  * vxge_hw_vpath_mac_addr_delete - Delete the mac address entry for this vpath
1565  *               to MAC address table.
1566  * @vp: Vpath handle.
1567  * @macaddr: MAC address to be added for this vpath into the list
1568  * @macaddr_mask: MAC address mask for macaddr
1569  *
1570  * Delete the given mac address and mac address mask into the list for this
1571  * vpath.
1572  * see also: vxge_hw_vpath_mac_addr_add, vxge_hw_vpath_mac_addr_get and
1573  * vxge_hw_vpath_mac_addr_get_next
1574  *
1575  */
1576 enum vxge_hw_status
1577 vxge_hw_vpath_mac_addr_delete(
1578         struct __vxge_hw_vpath_handle *vp,
1579         u8 (macaddr)[ETH_ALEN],
1580         u8 (macaddr_mask)[ETH_ALEN])
1581 {
1582         u32 i;
1583         u64 data1 = 0ULL;
1584         u64 data2 = 0ULL;
1585         enum vxge_hw_status status = VXGE_HW_OK;
1586
1587         if (vp == NULL) {
1588                 status = VXGE_HW_ERR_INVALID_HANDLE;
1589                 goto exit;
1590         }
1591
1592         for (i = 0; i < ETH_ALEN; i++) {
1593                 data1 <<= 8;
1594                 data1 |= (u8)macaddr[i];
1595
1596                 data2 <<= 8;
1597                 data2 |= (u8)macaddr_mask[i];
1598         }
1599
1600         status = __vxge_hw_vpath_rts_table_set(vp,
1601                         VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_DELETE_ENTRY,
1602                         VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1603                         0,
1604                         VXGE_HW_RTS_ACCESS_STEER_DATA0_DA_MAC_ADDR(data1),
1605                         VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MASK(data2));
1606 exit:
1607         return status;
1608 }
1609
1610 /**
1611  * vxge_hw_vpath_vid_add - Add the vlan id entry for this vpath
1612  *               to vlan id table.
1613  * @vp: Vpath handle.
1614  * @vid: vlan id to be added for this vpath into the list
1615  *
1616  * Adds the given vlan id into the list for this  vpath.
1617  * see also: vxge_hw_vpath_vid_delete, vxge_hw_vpath_vid_get and
1618  * vxge_hw_vpath_vid_get_next
1619  *
1620  */
1621 enum vxge_hw_status
1622 vxge_hw_vpath_vid_add(struct __vxge_hw_vpath_handle *vp, u64 vid)
1623 {
1624         enum vxge_hw_status status = VXGE_HW_OK;
1625
1626         if (vp == NULL) {
1627                 status = VXGE_HW_ERR_INVALID_HANDLE;
1628                 goto exit;
1629         }
1630
1631         status = __vxge_hw_vpath_rts_table_set(vp,
1632                         VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_ADD_ENTRY,
1633                         VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
1634                         0, VXGE_HW_RTS_ACCESS_STEER_DATA0_VLAN_ID(vid), 0);
1635 exit:
1636         return status;
1637 }
1638
1639 /**
1640  * vxge_hw_vpath_vid_get - Get the first vid entry for this vpath
1641  *               from vlan id table.
1642  * @vp: Vpath handle.
1643  * @vid: Buffer to return vlan id
1644  *
1645  * Returns the first vlan id in the list for this vpath.
1646  * see also: vxge_hw_vpath_vid_get_next
1647  *
1648  */
1649 enum vxge_hw_status
1650 vxge_hw_vpath_vid_get(struct __vxge_hw_vpath_handle *vp, u64 *vid)
1651 {
1652         u64 data;
1653         enum vxge_hw_status status = VXGE_HW_OK;
1654
1655         if (vp == NULL) {
1656                 status = VXGE_HW_ERR_INVALID_HANDLE;
1657                 goto exit;
1658         }
1659
1660         status = __vxge_hw_vpath_rts_table_get(vp,
1661                         VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY,
1662                         VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
1663                         0, vid, &data);
1664
1665         *vid = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_VLAN_ID(*vid);
1666 exit:
1667         return status;
1668 }
1669
1670 /**
1671  * vxge_hw_vpath_vid_get_next - Get the next vid entry for this vpath
1672  *               from vlan id table.
1673  * @vp: Vpath handle.
1674  * @vid: Buffer to return vlan id
1675  *
1676  * Returns the next vlan id in the list for this vpath.
1677  * see also: vxge_hw_vpath_vid_get
1678  *
1679  */
1680 enum vxge_hw_status
1681 vxge_hw_vpath_vid_get_next(struct __vxge_hw_vpath_handle *vp, u64 *vid)
1682 {
1683         u64 data;
1684         enum vxge_hw_status status = VXGE_HW_OK;
1685
1686         if (vp == NULL) {
1687                 status = VXGE_HW_ERR_INVALID_HANDLE;
1688                 goto exit;
1689         }
1690
1691         status = __vxge_hw_vpath_rts_table_get(vp,
1692                         VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_NEXT_ENTRY,
1693                         VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
1694                         0, vid, &data);
1695
1696         *vid = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_VLAN_ID(*vid);
1697 exit:
1698         return status;
1699 }
1700
1701 /**
1702  * vxge_hw_vpath_vid_delete - Delete the vlan id entry for this vpath
1703  *               to vlan id table.
1704  * @vp: Vpath handle.
1705  * @vid: vlan id to be added for this vpath into the list
1706  *
1707  * Adds the given vlan id into the list for this  vpath.
1708  * see also: vxge_hw_vpath_vid_add, vxge_hw_vpath_vid_get and
1709  * vxge_hw_vpath_vid_get_next
1710  *
1711  */
1712 enum vxge_hw_status
1713 vxge_hw_vpath_vid_delete(struct __vxge_hw_vpath_handle *vp, u64 vid)
1714 {
1715         enum vxge_hw_status status = VXGE_HW_OK;
1716
1717         if (vp == NULL) {
1718                 status = VXGE_HW_ERR_INVALID_HANDLE;
1719                 goto exit;
1720         }
1721
1722         status = __vxge_hw_vpath_rts_table_set(vp,
1723                         VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_DELETE_ENTRY,
1724                         VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
1725                         0, VXGE_HW_RTS_ACCESS_STEER_DATA0_VLAN_ID(vid), 0);
1726 exit:
1727         return status;
1728 }
1729
1730 /**
1731  * vxge_hw_vpath_promisc_enable - Enable promiscuous mode.
1732  * @vp: Vpath handle.
1733  *
1734  * Enable promiscuous mode of Titan-e operation.
1735  *
1736  * See also: vxge_hw_vpath_promisc_disable().
1737  */
1738 enum vxge_hw_status vxge_hw_vpath_promisc_enable(
1739                         struct __vxge_hw_vpath_handle *vp)
1740 {
1741         u64 val64;
1742         struct __vxge_hw_virtualpath *vpath;
1743         enum vxge_hw_status status = VXGE_HW_OK;
1744
1745         if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
1746                 status = VXGE_HW_ERR_INVALID_HANDLE;
1747                 goto exit;
1748         }
1749
1750         vpath = vp->vpath;
1751
1752         /* Enable promiscous mode for function 0 only */
1753         if (!(vpath->hldev->access_rights &
1754                 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM))
1755                 return VXGE_HW_OK;
1756
1757         val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
1758
1759         if (!(val64 & VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN)) {
1760
1761                 val64 |= VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN |
1762                          VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN |
1763                          VXGE_HW_RXMAC_VCFG0_BCAST_EN |
1764                          VXGE_HW_RXMAC_VCFG0_ALL_VID_EN;
1765
1766                 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
1767         }
1768 exit:
1769         return status;
1770 }
1771
1772 /**
1773  * vxge_hw_vpath_promisc_disable - Disable promiscuous mode.
1774  * @vp: Vpath handle.
1775  *
1776  * Disable promiscuous mode of Titan-e operation.
1777  *
1778  * See also: vxge_hw_vpath_promisc_enable().
1779  */
1780 enum vxge_hw_status vxge_hw_vpath_promisc_disable(
1781                         struct __vxge_hw_vpath_handle *vp)
1782 {
1783         u64 val64;
1784         struct __vxge_hw_virtualpath *vpath;
1785         enum vxge_hw_status status = VXGE_HW_OK;
1786
1787         if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
1788                 status = VXGE_HW_ERR_INVALID_HANDLE;
1789                 goto exit;
1790         }
1791
1792         vpath = vp->vpath;
1793
1794         val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
1795
1796         if (val64 & VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN) {
1797
1798                 val64 &= ~(VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN |
1799                            VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN |
1800                            VXGE_HW_RXMAC_VCFG0_ALL_VID_EN);
1801
1802                 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
1803         }
1804 exit:
1805         return status;
1806 }
1807
1808 /*
1809  * vxge_hw_vpath_bcast_enable - Enable broadcast
1810  * @vp: Vpath handle.
1811  *
1812  * Enable receiving broadcasts.
1813  */
1814 enum vxge_hw_status vxge_hw_vpath_bcast_enable(
1815                         struct __vxge_hw_vpath_handle *vp)
1816 {
1817         u64 val64;
1818         struct __vxge_hw_virtualpath *vpath;
1819         enum vxge_hw_status status = VXGE_HW_OK;
1820
1821         if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
1822                 status = VXGE_HW_ERR_INVALID_HANDLE;
1823                 goto exit;
1824         }
1825
1826         vpath = vp->vpath;
1827
1828         val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
1829
1830         if (!(val64 & VXGE_HW_RXMAC_VCFG0_BCAST_EN)) {
1831                 val64 |= VXGE_HW_RXMAC_VCFG0_BCAST_EN;
1832                 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
1833         }
1834 exit:
1835         return status;
1836 }
1837
1838 /**
1839  * vxge_hw_vpath_mcast_enable - Enable multicast addresses.
1840  * @vp: Vpath handle.
1841  *
1842  * Enable Titan-e multicast addresses.
1843  * Returns: VXGE_HW_OK on success.
1844  *
1845  */
1846 enum vxge_hw_status vxge_hw_vpath_mcast_enable(
1847                         struct __vxge_hw_vpath_handle *vp)
1848 {
1849         u64 val64;
1850         struct __vxge_hw_virtualpath *vpath;
1851         enum vxge_hw_status status = VXGE_HW_OK;
1852
1853         if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
1854                 status = VXGE_HW_ERR_INVALID_HANDLE;
1855                 goto exit;
1856         }
1857
1858         vpath = vp->vpath;
1859
1860         val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
1861
1862         if (!(val64 & VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN)) {
1863                 val64 |= VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN;
1864                 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
1865         }
1866 exit:
1867         return status;
1868 }
1869
1870 /**
1871  * vxge_hw_vpath_mcast_disable - Disable  multicast addresses.
1872  * @vp: Vpath handle.
1873  *
1874  * Disable Titan-e multicast addresses.
1875  * Returns: VXGE_HW_OK - success.
1876  * VXGE_HW_ERR_INVALID_HANDLE - Invalid handle
1877  *
1878  */
1879 enum vxge_hw_status
1880 vxge_hw_vpath_mcast_disable(struct __vxge_hw_vpath_handle *vp)
1881 {
1882         u64 val64;
1883         struct __vxge_hw_virtualpath *vpath;
1884         enum vxge_hw_status status = VXGE_HW_OK;
1885
1886         if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
1887                 status = VXGE_HW_ERR_INVALID_HANDLE;
1888                 goto exit;
1889         }
1890
1891         vpath = vp->vpath;
1892
1893         val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
1894
1895         if (val64 & VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN) {
1896                 val64 &= ~VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN;
1897                 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
1898         }
1899 exit:
1900         return status;
1901 }
1902
1903 /*
1904  * __vxge_hw_vpath_alarm_process - Process Alarms.
1905  * @vpath: Virtual Path.
1906  * @skip_alarms: Do not clear the alarms
1907  *
1908  * Process vpath alarms.
1909  *
1910  */
1911 enum vxge_hw_status __vxge_hw_vpath_alarm_process(
1912                         struct __vxge_hw_virtualpath *vpath,
1913                         u32 skip_alarms)
1914 {
1915         u64 val64;
1916         u64 alarm_status;
1917         u64 pic_status;
1918         struct __vxge_hw_device *hldev = NULL;
1919         enum vxge_hw_event alarm_event = VXGE_HW_EVENT_UNKNOWN;
1920         u64 mask64;
1921         struct vxge_hw_vpath_stats_sw_info *sw_stats;
1922         struct vxge_hw_vpath_reg __iomem *vp_reg;
1923
1924         if (vpath == NULL) {
1925                 alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_UNKNOWN,
1926                         alarm_event);
1927                 goto out2;
1928         }
1929
1930         hldev = vpath->hldev;
1931         vp_reg = vpath->vp_reg;
1932         alarm_status = readq(&vp_reg->vpath_general_int_status);
1933
1934         if (alarm_status == VXGE_HW_ALL_FOXES) {
1935                 alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_SLOT_FREEZE,
1936                         alarm_event);
1937                 goto out;
1938         }
1939
1940         sw_stats = vpath->sw_stats;
1941
1942         if (alarm_status & ~(
1943                 VXGE_HW_VPATH_GENERAL_INT_STATUS_PIC_INT |
1944                 VXGE_HW_VPATH_GENERAL_INT_STATUS_PCI_INT |
1945                 VXGE_HW_VPATH_GENERAL_INT_STATUS_WRDMA_INT |
1946                 VXGE_HW_VPATH_GENERAL_INT_STATUS_XMAC_INT)) {
1947                 sw_stats->error_stats.unknown_alarms++;
1948
1949                 alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_UNKNOWN,
1950                         alarm_event);
1951                 goto out;
1952         }
1953
1954         if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_XMAC_INT) {
1955
1956                 val64 = readq(&vp_reg->xgmac_vp_int_status);
1957
1958                 if (val64 &
1959                 VXGE_HW_XGMAC_VP_INT_STATUS_ASIC_NTWK_VP_ERR_ASIC_NTWK_VP_INT) {
1960
1961                         val64 = readq(&vp_reg->asic_ntwk_vp_err_reg);
1962
1963                         if (((val64 &
1964                                 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT) &&
1965                             (!(val64 &
1966                                 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK))) ||
1967                             ((val64 &
1968                                 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT_OCCURR)
1969                                 && (!(val64 &
1970                                 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK_OCCURR)
1971                         ))) {
1972                                 sw_stats->error_stats.network_sustained_fault++;
1973
1974                                 writeq(
1975                                 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT,
1976                                         &vp_reg->asic_ntwk_vp_err_mask);
1977
1978                                 __vxge_hw_device_handle_link_down_ind(hldev);
1979                                 alarm_event = VXGE_HW_SET_LEVEL(
1980                                         VXGE_HW_EVENT_LINK_DOWN, alarm_event);
1981                         }
1982
1983                         if (((val64 &
1984                                 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK) &&
1985                             (!(val64 &
1986                                 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT))) ||
1987                             ((val64 &
1988                                 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK_OCCURR)
1989                                 && (!(val64 &
1990                                 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT_OCCURR)
1991                         ))) {
1992
1993                                 sw_stats->error_stats.network_sustained_ok++;
1994
1995                                 writeq(
1996                                 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK,
1997                                         &vp_reg->asic_ntwk_vp_err_mask);
1998
1999                                 __vxge_hw_device_handle_link_up_ind(hldev);
2000                                 alarm_event = VXGE_HW_SET_LEVEL(
2001                                         VXGE_HW_EVENT_LINK_UP, alarm_event);
2002                         }
2003
2004                         writeq(VXGE_HW_INTR_MASK_ALL,
2005                                 &vp_reg->asic_ntwk_vp_err_reg);
2006
2007                         alarm_event = VXGE_HW_SET_LEVEL(
2008                                 VXGE_HW_EVENT_ALARM_CLEARED, alarm_event);
2009
2010                         if (skip_alarms)
2011                                 return VXGE_HW_OK;
2012                 }
2013         }
2014
2015         if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_PIC_INT) {
2016
2017                 pic_status = readq(&vp_reg->vpath_ppif_int_status);
2018
2019                 if (pic_status &
2020                     VXGE_HW_VPATH_PPIF_INT_STATUS_GENERAL_ERRORS_GENERAL_INT) {
2021
2022                         val64 = readq(&vp_reg->general_errors_reg);
2023                         mask64 = readq(&vp_reg->general_errors_mask);
2024
2025                         if ((val64 &
2026                                 VXGE_HW_GENERAL_ERRORS_REG_INI_SERR_DET) &
2027                                 ~mask64) {
2028                                 sw_stats->error_stats.ini_serr_det++;
2029
2030                                 alarm_event = VXGE_HW_SET_LEVEL(
2031                                         VXGE_HW_EVENT_SERR, alarm_event);
2032                         }
2033
2034                         if ((val64 &
2035                             VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO0_OVRFLOW) &
2036                                 ~mask64) {
2037                                 sw_stats->error_stats.dblgen_fifo0_overflow++;
2038
2039                                 alarm_event = VXGE_HW_SET_LEVEL(
2040                                         VXGE_HW_EVENT_FIFO_ERR, alarm_event);
2041                         }
2042
2043                         if ((val64 &
2044                             VXGE_HW_GENERAL_ERRORS_REG_STATSB_PIF_CHAIN_ERR) &
2045                                 ~mask64)
2046                                 sw_stats->error_stats.statsb_pif_chain_error++;
2047
2048                         if ((val64 &
2049                            VXGE_HW_GENERAL_ERRORS_REG_STATSB_DROP_TIMEOUT_REQ) &
2050                                 ~mask64)
2051                                 sw_stats->error_stats.statsb_drop_timeout++;
2052
2053                         if ((val64 &
2054                                 VXGE_HW_GENERAL_ERRORS_REG_TGT_ILLEGAL_ACCESS) &
2055                                 ~mask64)
2056                                 sw_stats->error_stats.target_illegal_access++;
2057
2058                         if (!skip_alarms) {
2059                                 writeq(VXGE_HW_INTR_MASK_ALL,
2060                                         &vp_reg->general_errors_reg);
2061                                 alarm_event = VXGE_HW_SET_LEVEL(
2062                                         VXGE_HW_EVENT_ALARM_CLEARED,
2063                                         alarm_event);
2064                         }
2065                 }
2066
2067                 if (pic_status &
2068                     VXGE_HW_VPATH_PPIF_INT_STATUS_KDFCCTL_ERRORS_KDFCCTL_INT) {
2069
2070                         val64 = readq(&vp_reg->kdfcctl_errors_reg);
2071                         mask64 = readq(&vp_reg->kdfcctl_errors_mask);
2072
2073                         if ((val64 &
2074                             VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_OVRWR) &
2075                                 ~mask64) {
2076                                 sw_stats->error_stats.kdfcctl_fifo0_overwrite++;
2077
2078                                 alarm_event = VXGE_HW_SET_LEVEL(
2079                                         VXGE_HW_EVENT_FIFO_ERR,
2080                                         alarm_event);
2081                         }
2082
2083                         if ((val64 &
2084                             VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_POISON) &
2085                                 ~mask64) {
2086                                 sw_stats->error_stats.kdfcctl_fifo0_poison++;
2087
2088                                 alarm_event = VXGE_HW_SET_LEVEL(
2089                                         VXGE_HW_EVENT_FIFO_ERR,
2090                                         alarm_event);
2091                         }
2092
2093                         if ((val64 &
2094                             VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_DMA_ERR) &
2095                                 ~mask64) {
2096                                 sw_stats->error_stats.kdfcctl_fifo0_dma_error++;
2097
2098                                 alarm_event = VXGE_HW_SET_LEVEL(
2099                                         VXGE_HW_EVENT_FIFO_ERR,
2100                                         alarm_event);
2101                         }
2102
2103                         if (!skip_alarms) {
2104                                 writeq(VXGE_HW_INTR_MASK_ALL,
2105                                         &vp_reg->kdfcctl_errors_reg);
2106                                 alarm_event = VXGE_HW_SET_LEVEL(
2107                                         VXGE_HW_EVENT_ALARM_CLEARED,
2108                                         alarm_event);
2109                         }
2110                 }
2111
2112         }
2113
2114         if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_WRDMA_INT) {
2115
2116                 val64 = readq(&vp_reg->wrdma_alarm_status);
2117
2118                 if (val64 & VXGE_HW_WRDMA_ALARM_STATUS_PRC_ALARM_PRC_INT) {
2119
2120                         val64 = readq(&vp_reg->prc_alarm_reg);
2121                         mask64 = readq(&vp_reg->prc_alarm_mask);
2122
2123                         if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RING_BUMP)&
2124                                 ~mask64)
2125                                 sw_stats->error_stats.prc_ring_bumps++;
2126
2127                         if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RXDCM_SC_ERR) &
2128                                 ~mask64) {
2129                                 sw_stats->error_stats.prc_rxdcm_sc_err++;
2130
2131                                 alarm_event = VXGE_HW_SET_LEVEL(
2132                                         VXGE_HW_EVENT_VPATH_ERR,
2133                                         alarm_event);
2134                         }
2135
2136                         if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RXDCM_SC_ABORT)
2137                                 & ~mask64) {
2138                                 sw_stats->error_stats.prc_rxdcm_sc_abort++;
2139
2140                                 alarm_event = VXGE_HW_SET_LEVEL(
2141                                                 VXGE_HW_EVENT_VPATH_ERR,
2142                                                 alarm_event);
2143                         }
2144
2145                         if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_QUANTA_SIZE_ERR)
2146                                  & ~mask64) {
2147                                 sw_stats->error_stats.prc_quanta_size_err++;
2148
2149                                 alarm_event = VXGE_HW_SET_LEVEL(
2150                                         VXGE_HW_EVENT_VPATH_ERR,
2151                                         alarm_event);
2152                         }
2153
2154                         if (!skip_alarms) {
2155                                 writeq(VXGE_HW_INTR_MASK_ALL,
2156                                         &vp_reg->prc_alarm_reg);
2157                                 alarm_event = VXGE_HW_SET_LEVEL(
2158                                                 VXGE_HW_EVENT_ALARM_CLEARED,
2159                                                 alarm_event);
2160                         }
2161                 }
2162         }
2163 out:
2164         hldev->stats.sw_dev_err_stats.vpath_alarms++;
2165 out2:
2166         if ((alarm_event == VXGE_HW_EVENT_ALARM_CLEARED) ||
2167                 (alarm_event == VXGE_HW_EVENT_UNKNOWN))
2168                 return VXGE_HW_OK;
2169
2170         __vxge_hw_device_handle_error(hldev, vpath->vp_id, alarm_event);
2171
2172         if (alarm_event == VXGE_HW_EVENT_SERR)
2173                 return VXGE_HW_ERR_CRITICAL;
2174
2175         return (alarm_event == VXGE_HW_EVENT_SLOT_FREEZE) ?
2176                 VXGE_HW_ERR_SLOT_FREEZE :
2177                 (alarm_event == VXGE_HW_EVENT_FIFO_ERR) ? VXGE_HW_ERR_FIFO :
2178                 VXGE_HW_ERR_VPATH;
2179 }
2180
2181 /*
2182  * vxge_hw_vpath_alarm_process - Process Alarms.
2183  * @vpath: Virtual Path.
2184  * @skip_alarms: Do not clear the alarms
2185  *
2186  * Process vpath alarms.
2187  *
2188  */
2189 enum vxge_hw_status vxge_hw_vpath_alarm_process(
2190                         struct __vxge_hw_vpath_handle *vp,
2191                         u32 skip_alarms)
2192 {
2193         enum vxge_hw_status status = VXGE_HW_OK;
2194
2195         if (vp == NULL) {
2196                 status = VXGE_HW_ERR_INVALID_HANDLE;
2197                 goto exit;
2198         }
2199
2200         status = __vxge_hw_vpath_alarm_process(vp->vpath, skip_alarms);
2201 exit:
2202         return status;
2203 }
2204
2205 /**
2206  * vxge_hw_vpath_msix_set - Associate MSIX vectors with TIM interrupts and
2207  *                            alrms
2208  * @vp: Virtual Path handle.
2209  * @tim_msix_id: MSIX vectors associated with VXGE_HW_MAX_INTR_PER_VP number of
2210  *             interrupts(Can be repeated). If fifo or ring are not enabled
2211  *             the MSIX vector for that should be set to 0
2212  * @alarm_msix_id: MSIX vector for alarm.
2213  *
2214  * This API will associate a given MSIX vector numbers with the four TIM
2215  * interrupts and alarm interrupt.
2216  */
2217 enum vxge_hw_status
2218 vxge_hw_vpath_msix_set(struct __vxge_hw_vpath_handle *vp, int *tim_msix_id,
2219                        int alarm_msix_id)
2220 {
2221         u64 val64;
2222         struct __vxge_hw_virtualpath *vpath = vp->vpath;
2223         struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg;
2224         u32 first_vp_id = vpath->hldev->first_vp_id;
2225
2226         val64 =  VXGE_HW_INTERRUPT_CFG0_GROUP0_MSIX_FOR_TXTI(
2227                   (first_vp_id * 4) + tim_msix_id[0]) |
2228                  VXGE_HW_INTERRUPT_CFG0_GROUP1_MSIX_FOR_TXTI(
2229                   (first_vp_id * 4) + tim_msix_id[1]) |
2230                  VXGE_HW_INTERRUPT_CFG0_GROUP2_MSIX_FOR_TXTI(
2231                         (first_vp_id * 4) + tim_msix_id[2]);
2232
2233                 val64 |= VXGE_HW_INTERRUPT_CFG0_GROUP3_MSIX_FOR_TXTI(
2234                         (first_vp_id * 4) + tim_msix_id[3]);
2235
2236         writeq(val64, &vp_reg->interrupt_cfg0);
2237
2238         writeq(VXGE_HW_INTERRUPT_CFG2_ALARM_MAP_TO_MSG(
2239                         (first_vp_id * 4) + alarm_msix_id),
2240                         &vp_reg->interrupt_cfg2);
2241
2242         if (vpath->hldev->config.intr_mode ==
2243                                         VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) {
2244                 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
2245                                 VXGE_HW_ONE_SHOT_VECT1_EN_ONE_SHOT_VECT1_EN,
2246                                 0, 32), &vp_reg->one_shot_vect1_en);
2247         }
2248
2249         if (vpath->hldev->config.intr_mode ==
2250                 VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) {
2251                 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
2252                                 VXGE_HW_ONE_SHOT_VECT2_EN_ONE_SHOT_VECT2_EN,
2253                                 0, 32), &vp_reg->one_shot_vect2_en);
2254
2255                 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
2256                                 VXGE_HW_ONE_SHOT_VECT3_EN_ONE_SHOT_VECT3_EN,
2257                                 0, 32), &vp_reg->one_shot_vect3_en);
2258         }
2259
2260         return VXGE_HW_OK;
2261 }
2262
2263 /**
2264  * vxge_hw_vpath_msix_mask - Mask MSIX Vector.
2265  * @vp: Virtual Path handle.
2266  * @msix_id:  MSIX ID
2267  *
2268  * The function masks the msix interrupt for the given msix_id
2269  *
2270  * Returns: 0,
2271  * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2272  * status.
2273  * See also:
2274  */
2275 void
2276 vxge_hw_vpath_msix_mask(struct __vxge_hw_vpath_handle *vp, int msix_id)
2277 {
2278         struct __vxge_hw_device *hldev = vp->vpath->hldev;
2279         __vxge_hw_pio_mem_write32_upper(
2280                 (u32) vxge_bVALn(vxge_mBIT(hldev->first_vp_id +
2281                         (msix_id  / 4)), 0, 32),
2282                 &hldev->common_reg->set_msix_mask_vect[msix_id % 4]);
2283
2284         return;
2285 }
2286
2287 /**
2288  * vxge_hw_vpath_msix_clear - Clear MSIX Vector.
2289  * @vp: Virtual Path handle.
2290  * @msix_id:  MSI ID
2291  *
2292  * The function clears the msix interrupt for the given msix_id
2293  *
2294  * Returns: 0,
2295  * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2296  * status.
2297  * See also:
2298  */
2299 void
2300 vxge_hw_vpath_msix_clear(struct __vxge_hw_vpath_handle *vp, int msix_id)
2301 {
2302         struct __vxge_hw_device *hldev = vp->vpath->hldev;
2303         if (hldev->config.intr_mode ==
2304                         VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) {
2305                 __vxge_hw_pio_mem_write32_upper(
2306                         (u32)vxge_bVALn(vxge_mBIT(hldev->first_vp_id +
2307                                 (msix_id/4)), 0, 32),
2308                                 &hldev->common_reg->
2309                                         clr_msix_one_shot_vec[msix_id%4]);
2310         } else {
2311                 __vxge_hw_pio_mem_write32_upper(
2312                         (u32)vxge_bVALn(vxge_mBIT(hldev->first_vp_id +
2313                                 (msix_id/4)), 0, 32),
2314                                 &hldev->common_reg->
2315                                         clear_msix_mask_vect[msix_id%4]);
2316         }
2317
2318         return;
2319 }
2320
2321 /**
2322  * vxge_hw_vpath_msix_unmask - Unmask the MSIX Vector.
2323  * @vp: Virtual Path handle.
2324  * @msix_id:  MSI ID
2325  *
2326  * The function unmasks the msix interrupt for the given msix_id
2327  *
2328  * Returns: 0,
2329  * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2330  * status.
2331  * See also:
2332  */
2333 void
2334 vxge_hw_vpath_msix_unmask(struct __vxge_hw_vpath_handle *vp, int msix_id)
2335 {
2336         struct __vxge_hw_device *hldev = vp->vpath->hldev;
2337         __vxge_hw_pio_mem_write32_upper(
2338                         (u32)vxge_bVALn(vxge_mBIT(hldev->first_vp_id +
2339                         (msix_id/4)), 0, 32),
2340                         &hldev->common_reg->clear_msix_mask_vect[msix_id%4]);
2341
2342         return;
2343 }
2344
2345 /**
2346  * vxge_hw_vpath_msix_mask_all - Mask all MSIX vectors for the vpath.
2347  * @vp: Virtual Path handle.
2348  *
2349  * The function masks all msix interrupt for the given vpath
2350  *
2351  */
2352 void
2353 vxge_hw_vpath_msix_mask_all(struct __vxge_hw_vpath_handle *vp)
2354 {
2355
2356         __vxge_hw_pio_mem_write32_upper(
2357                 (u32)vxge_bVALn(vxge_mBIT(vp->vpath->vp_id), 0, 32),
2358                 &vp->vpath->hldev->common_reg->set_msix_mask_all_vect);
2359
2360         return;
2361 }
2362
2363 /**
2364  * vxge_hw_vpath_inta_mask_tx_rx - Mask Tx and Rx interrupts.
2365  * @vp: Virtual Path handle.
2366  *
2367  * Mask Tx and Rx vpath interrupts.
2368  *
2369  * See also: vxge_hw_vpath_inta_mask_tx_rx()
2370  */
2371 void vxge_hw_vpath_inta_mask_tx_rx(struct __vxge_hw_vpath_handle *vp)
2372 {
2373         u64     tim_int_mask0[4] = {[0 ...3] = 0};
2374         u32     tim_int_mask1[4] = {[0 ...3] = 0};
2375         u64     val64;
2376         struct __vxge_hw_device *hldev = vp->vpath->hldev;
2377
2378         VXGE_HW_DEVICE_TIM_INT_MASK_SET(tim_int_mask0,
2379                 tim_int_mask1, vp->vpath->vp_id);
2380
2381         val64 = readq(&hldev->common_reg->tim_int_mask0);
2382
2383         if ((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
2384                 (tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
2385                 writeq((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
2386                         tim_int_mask0[VXGE_HW_VPATH_INTR_RX] | val64),
2387                         &hldev->common_reg->tim_int_mask0);
2388         }
2389
2390         val64 = readl(&hldev->common_reg->tim_int_mask1);
2391
2392         if ((tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
2393                 (tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
2394                 __vxge_hw_pio_mem_write32_upper(
2395                         (tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
2396                         tim_int_mask1[VXGE_HW_VPATH_INTR_RX] | val64),
2397                         &hldev->common_reg->tim_int_mask1);
2398         }
2399
2400         return;
2401 }
2402
2403 /**
2404  * vxge_hw_vpath_inta_unmask_tx_rx - Unmask Tx and Rx interrupts.
2405  * @vp: Virtual Path handle.
2406  *
2407  * Unmask Tx and Rx vpath interrupts.
2408  *
2409  * See also: vxge_hw_vpath_inta_mask_tx_rx()
2410  */
2411 void vxge_hw_vpath_inta_unmask_tx_rx(struct __vxge_hw_vpath_handle *vp)
2412 {
2413         u64     tim_int_mask0[4] = {[0 ...3] = 0};
2414         u32     tim_int_mask1[4] = {[0 ...3] = 0};
2415         u64     val64;
2416         struct __vxge_hw_device *hldev = vp->vpath->hldev;
2417
2418         VXGE_HW_DEVICE_TIM_INT_MASK_SET(tim_int_mask0,
2419                 tim_int_mask1, vp->vpath->vp_id);
2420
2421         val64 = readq(&hldev->common_reg->tim_int_mask0);
2422
2423         if ((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
2424            (tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
2425                 writeq((~(tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
2426                         tim_int_mask0[VXGE_HW_VPATH_INTR_RX])) & val64,
2427                         &hldev->common_reg->tim_int_mask0);
2428         }
2429
2430         if ((tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
2431            (tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
2432                 __vxge_hw_pio_mem_write32_upper(
2433                         (~(tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
2434                           tim_int_mask1[VXGE_HW_VPATH_INTR_RX])) & val64,
2435                         &hldev->common_reg->tim_int_mask1);
2436         }
2437
2438         return;
2439 }
2440
2441 /**
2442  * vxge_hw_vpath_poll_rx - Poll Rx Virtual Path for completed
2443  * descriptors and process the same.
2444  * @ring: Handle to the ring object used for receive
2445  *
2446  * The function polls the Rx for the completed  descriptors and calls
2447  * the driver via supplied completion   callback.
2448  *
2449  * Returns: VXGE_HW_OK, if the polling is completed successful.
2450  * VXGE_HW_COMPLETIONS_REMAIN: There are still more completed
2451  * descriptors available which are yet to be processed.
2452  *
2453  * See also: vxge_hw_vpath_poll_rx()
2454  */
2455 enum vxge_hw_status vxge_hw_vpath_poll_rx(struct __vxge_hw_ring *ring)
2456 {
2457         u8 t_code;
2458         enum vxge_hw_status status = VXGE_HW_OK;
2459         void *first_rxdh;
2460         u64 val64 = 0;
2461         int new_count = 0;
2462
2463         ring->cmpl_cnt = 0;
2464
2465         status = vxge_hw_ring_rxd_next_completed(ring, &first_rxdh, &t_code);
2466         if (status == VXGE_HW_OK)
2467                 ring->callback(ring, first_rxdh,
2468                         t_code, ring->channel.userdata);
2469
2470         if (ring->cmpl_cnt != 0) {
2471                 ring->doorbell_cnt += ring->cmpl_cnt;
2472                 if (ring->doorbell_cnt >= ring->rxds_limit) {
2473                         /*
2474                          * Each RxD is of 4 qwords, update the number of
2475                          * qwords replenished
2476                          */
2477                         new_count = (ring->doorbell_cnt * 4);
2478
2479                         /* For each block add 4 more qwords */
2480                         ring->total_db_cnt += ring->doorbell_cnt;
2481                         if (ring->total_db_cnt >= ring->rxds_per_block) {
2482                                 new_count += 4;
2483                                 /* Reset total count */
2484                                 ring->total_db_cnt %= ring->rxds_per_block;
2485                         }
2486                         writeq(VXGE_HW_PRC_RXD_DOORBELL_NEW_QW_CNT(new_count),
2487                                 &ring->vp_reg->prc_rxd_doorbell);
2488                         val64 =
2489                           readl(&ring->common_reg->titan_general_int_status);
2490                         ring->doorbell_cnt = 0;
2491                 }
2492         }
2493
2494         return status;
2495 }
2496
2497 /**
2498  * vxge_hw_vpath_poll_tx - Poll Tx for completed descriptors and process
2499  * the same.
2500  * @fifo: Handle to the fifo object used for non offload send
2501  *
2502  * The function polls the Tx for the completed  descriptors and calls
2503  * the driver via supplied completion callback.
2504  *
2505  * Returns: VXGE_HW_OK, if the polling is completed successful.
2506  * VXGE_HW_COMPLETIONS_REMAIN: There are still more completed
2507  * descriptors available which are yet to be processed.
2508  *
2509  * See also: vxge_hw_vpath_poll_tx().
2510  */
2511 enum vxge_hw_status vxge_hw_vpath_poll_tx(struct __vxge_hw_fifo *fifo,
2512                                         struct sk_buff ***skb_ptr, int nr_skb,
2513                                         int *more)
2514 {
2515         enum vxge_hw_fifo_tcode t_code;
2516         void *first_txdlh;
2517         enum vxge_hw_status status = VXGE_HW_OK;
2518         struct __vxge_hw_channel *channel;
2519
2520         channel = &fifo->channel;
2521
2522         status = vxge_hw_fifo_txdl_next_completed(fifo,
2523                                 &first_txdlh, &t_code);
2524         if (status == VXGE_HW_OK)
2525                 if (fifo->callback(fifo, first_txdlh, t_code,
2526                         channel->userdata, skb_ptr, nr_skb, more) != VXGE_HW_OK)
2527                         status = VXGE_HW_COMPLETIONS_REMAIN;
2528
2529         return status;
2530 }