vxge: Fix a receive stall due to driver being out of synch with chip.
[linux-2.6.git] / drivers / net / vxge / vxge-traffic.c
1 /******************************************************************************
2  * This software may be used and distributed according to the terms of
3  * the GNU General Public License (GPL), incorporated herein by reference.
4  * Drivers based on or derived from this code fall under the GPL and must
5  * retain the authorship, copyright and license notice.  This file is not
6  * a complete program and may only be used when the entire operating
7  * system is licensed under the GPL.
8  * See the file COPYING in this distribution for more information.
9  *
10  * vxge-traffic.c: Driver for Neterion Inc's X3100 Series 10GbE PCIe I/O
11  *                 Virtualized Server Adapter.
12  * Copyright(c) 2002-2009 Neterion Inc.
13  ******************************************************************************/
14 #include <linux/etherdevice.h>
15
16 #include "vxge-traffic.h"
17 #include "vxge-config.h"
18 #include "vxge-main.h"
19
20 /*
21  * vxge_hw_vpath_intr_enable - Enable vpath interrupts.
22  * @vp: Virtual Path handle.
23  *
24  * Enable vpath interrupts. The function is to be executed the last in
25  * vpath initialization sequence.
26  *
27  * See also: vxge_hw_vpath_intr_disable()
28  */
29 enum vxge_hw_status vxge_hw_vpath_intr_enable(struct __vxge_hw_vpath_handle *vp)
30 {
31         u64 val64;
32
33         struct __vxge_hw_virtualpath *vpath;
34         struct vxge_hw_vpath_reg __iomem *vp_reg;
35         enum vxge_hw_status status = VXGE_HW_OK;
36         if (vp == NULL) {
37                 status = VXGE_HW_ERR_INVALID_HANDLE;
38                 goto exit;
39         }
40
41         vpath = vp->vpath;
42
43         if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
44                 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
45                 goto exit;
46         }
47
48         vp_reg = vpath->vp_reg;
49
50         writeq(VXGE_HW_INTR_MASK_ALL, &vp_reg->kdfcctl_errors_reg);
51
52         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
53                         &vp_reg->general_errors_reg);
54
55         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
56                         &vp_reg->pci_config_errors_reg);
57
58         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
59                         &vp_reg->mrpcim_to_vpath_alarm_reg);
60
61         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
62                         &vp_reg->srpcim_to_vpath_alarm_reg);
63
64         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
65                         &vp_reg->vpath_ppif_int_status);
66
67         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
68                         &vp_reg->srpcim_msg_to_vpath_reg);
69
70         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
71                         &vp_reg->vpath_pcipif_int_status);
72
73         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
74                         &vp_reg->prc_alarm_reg);
75
76         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
77                         &vp_reg->wrdma_alarm_status);
78
79         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
80                         &vp_reg->asic_ntwk_vp_err_reg);
81
82         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
83                         &vp_reg->xgmac_vp_int_status);
84
85         val64 = readq(&vp_reg->vpath_general_int_status);
86
87         /* Mask unwanted interrupts */
88
89         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
90                         &vp_reg->vpath_pcipif_int_mask);
91
92         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
93                         &vp_reg->srpcim_msg_to_vpath_mask);
94
95         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
96                         &vp_reg->srpcim_to_vpath_alarm_mask);
97
98         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
99                         &vp_reg->mrpcim_to_vpath_alarm_mask);
100
101         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
102                         &vp_reg->pci_config_errors_mask);
103
104         /* Unmask the individual interrupts */
105
106         writeq((u32)vxge_bVALn((VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO1_OVRFLOW|
107                 VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO2_OVRFLOW|
108                 VXGE_HW_GENERAL_ERRORS_REG_STATSB_DROP_TIMEOUT_REQ|
109                 VXGE_HW_GENERAL_ERRORS_REG_STATSB_PIF_CHAIN_ERR), 0, 32),
110                 &vp_reg->general_errors_mask);
111
112         __vxge_hw_pio_mem_write32_upper(
113                 (u32)vxge_bVALn((VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_OVRWR|
114                 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_OVRWR|
115                 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_POISON|
116                 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_POISON|
117                 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_DMA_ERR|
118                 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_DMA_ERR), 0, 32),
119                 &vp_reg->kdfcctl_errors_mask);
120
121         __vxge_hw_pio_mem_write32_upper(0, &vp_reg->vpath_ppif_int_mask);
122
123         __vxge_hw_pio_mem_write32_upper(
124                 (u32)vxge_bVALn(VXGE_HW_PRC_ALARM_REG_PRC_RING_BUMP, 0, 32),
125                 &vp_reg->prc_alarm_mask);
126
127         __vxge_hw_pio_mem_write32_upper(0, &vp_reg->wrdma_alarm_mask);
128         __vxge_hw_pio_mem_write32_upper(0, &vp_reg->xgmac_vp_int_mask);
129
130         if (vpath->hldev->first_vp_id != vpath->vp_id)
131                 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
132                         &vp_reg->asic_ntwk_vp_err_mask);
133         else
134                 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn((
135                 VXGE_HW_ASIC_NTWK_VP_ERR_REG_XMACJ_NTWK_REAFFIRMED_FAULT |
136                 VXGE_HW_ASIC_NTWK_VP_ERR_REG_XMACJ_NTWK_REAFFIRMED_OK), 0, 32),
137                 &vp_reg->asic_ntwk_vp_err_mask);
138
139         __vxge_hw_pio_mem_write32_upper(0,
140                 &vp_reg->vpath_general_int_mask);
141 exit:
142         return status;
143
144 }
145
146 /*
147  * vxge_hw_vpath_intr_disable - Disable vpath interrupts.
148  * @vp: Virtual Path handle.
149  *
150  * Disable vpath interrupts. The function is to be executed the last in
151  * vpath initialization sequence.
152  *
153  * See also: vxge_hw_vpath_intr_enable()
154  */
155 enum vxge_hw_status vxge_hw_vpath_intr_disable(
156                         struct __vxge_hw_vpath_handle *vp)
157 {
158         u64 val64;
159
160         struct __vxge_hw_virtualpath *vpath;
161         enum vxge_hw_status status = VXGE_HW_OK;
162         struct vxge_hw_vpath_reg __iomem *vp_reg;
163         if (vp == NULL) {
164                 status = VXGE_HW_ERR_INVALID_HANDLE;
165                 goto exit;
166         }
167
168         vpath = vp->vpath;
169
170         if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
171                 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
172                 goto exit;
173         }
174         vp_reg = vpath->vp_reg;
175
176         __vxge_hw_pio_mem_write32_upper(
177                 (u32)VXGE_HW_INTR_MASK_ALL,
178                 &vp_reg->vpath_general_int_mask);
179
180         val64 = VXGE_HW_TIM_CLR_INT_EN_VP(1 << (16 - vpath->vp_id));
181
182         writeq(VXGE_HW_INTR_MASK_ALL, &vp_reg->kdfcctl_errors_mask);
183
184         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
185                         &vp_reg->general_errors_mask);
186
187         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
188                         &vp_reg->pci_config_errors_mask);
189
190         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
191                         &vp_reg->mrpcim_to_vpath_alarm_mask);
192
193         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
194                         &vp_reg->srpcim_to_vpath_alarm_mask);
195
196         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
197                         &vp_reg->vpath_ppif_int_mask);
198
199         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
200                         &vp_reg->srpcim_msg_to_vpath_mask);
201
202         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
203                         &vp_reg->vpath_pcipif_int_mask);
204
205         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
206                         &vp_reg->wrdma_alarm_mask);
207
208         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
209                         &vp_reg->prc_alarm_mask);
210
211         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
212                         &vp_reg->xgmac_vp_int_mask);
213
214         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
215                         &vp_reg->asic_ntwk_vp_err_mask);
216
217 exit:
218         return status;
219 }
220
221 /**
222  * vxge_hw_channel_msix_mask - Mask MSIX Vector.
223  * @channeh: Channel for rx or tx handle
224  * @msix_id:  MSIX ID
225  *
226  * The function masks the msix interrupt for the given msix_id
227  *
228  * Returns: 0
229  */
230 void vxge_hw_channel_msix_mask(struct __vxge_hw_channel *channel, int msix_id)
231 {
232
233         __vxge_hw_pio_mem_write32_upper(
234                 (u32)vxge_bVALn(vxge_mBIT(channel->first_vp_id+(msix_id/4)),
235                         0, 32),
236                 &channel->common_reg->set_msix_mask_vect[msix_id%4]);
237
238         return;
239 }
240
241 /**
242  * vxge_hw_channel_msix_unmask - Unmask the MSIX Vector.
243  * @channeh: Channel for rx or tx handle
244  * @msix_id:  MSI ID
245  *
246  * The function unmasks the msix interrupt for the given msix_id
247  *
248  * Returns: 0
249  */
250 void
251 vxge_hw_channel_msix_unmask(struct __vxge_hw_channel *channel, int msix_id)
252 {
253
254         __vxge_hw_pio_mem_write32_upper(
255                 (u32)vxge_bVALn(vxge_mBIT(channel->first_vp_id+(msix_id/4)),
256                         0, 32),
257                 &channel->common_reg->clear_msix_mask_vect[msix_id%4]);
258
259         return;
260 }
261
262 /**
263  * vxge_hw_device_set_intr_type - Updates the configuration
264  *              with new interrupt type.
265  * @hldev: HW device handle.
266  * @intr_mode: New interrupt type
267  */
268 u32 vxge_hw_device_set_intr_type(struct __vxge_hw_device *hldev, u32 intr_mode)
269 {
270
271         if ((intr_mode != VXGE_HW_INTR_MODE_IRQLINE) &&
272            (intr_mode != VXGE_HW_INTR_MODE_MSIX) &&
273            (intr_mode != VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) &&
274            (intr_mode != VXGE_HW_INTR_MODE_DEF))
275                 intr_mode = VXGE_HW_INTR_MODE_IRQLINE;
276
277         hldev->config.intr_mode = intr_mode;
278         return intr_mode;
279 }
280
281 /**
282  * vxge_hw_device_intr_enable - Enable interrupts.
283  * @hldev: HW device handle.
284  * @op: One of the enum vxge_hw_device_intr enumerated values specifying
285  *      the type(s) of interrupts to enable.
286  *
287  * Enable Titan interrupts. The function is to be executed the last in
288  * Titan initialization sequence.
289  *
290  * See also: vxge_hw_device_intr_disable()
291  */
292 void vxge_hw_device_intr_enable(struct __vxge_hw_device *hldev)
293 {
294         u32 i;
295         u64 val64;
296         u32 val32;
297
298         vxge_hw_device_mask_all(hldev);
299
300         for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
301
302                 if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
303                         continue;
304
305                 vxge_hw_vpath_intr_enable(
306                         VXGE_HW_VIRTUAL_PATH_HANDLE(&hldev->virtual_paths[i]));
307         }
308
309         if (hldev->config.intr_mode == VXGE_HW_INTR_MODE_IRQLINE) {
310                 val64 = hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
311                         hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX];
312
313                 if (val64 != 0) {
314                         writeq(val64, &hldev->common_reg->tim_int_status0);
315
316                         writeq(~val64, &hldev->common_reg->tim_int_mask0);
317                 }
318
319                 val32 = hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
320                         hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX];
321
322                 if (val32 != 0) {
323                         __vxge_hw_pio_mem_write32_upper(val32,
324                                         &hldev->common_reg->tim_int_status1);
325
326                         __vxge_hw_pio_mem_write32_upper(~val32,
327                                         &hldev->common_reg->tim_int_mask1);
328                 }
329         }
330
331         val64 = readq(&hldev->common_reg->titan_general_int_status);
332
333         vxge_hw_device_unmask_all(hldev);
334
335         return;
336 }
337
338 /**
339  * vxge_hw_device_intr_disable - Disable Titan interrupts.
340  * @hldev: HW device handle.
341  * @op: One of the enum vxge_hw_device_intr enumerated values specifying
342  *      the type(s) of interrupts to disable.
343  *
344  * Disable Titan interrupts.
345  *
346  * See also: vxge_hw_device_intr_enable()
347  */
348 void vxge_hw_device_intr_disable(struct __vxge_hw_device *hldev)
349 {
350         u32 i;
351
352         vxge_hw_device_mask_all(hldev);
353
354         /* mask all the tim interrupts */
355         writeq(VXGE_HW_INTR_MASK_ALL, &hldev->common_reg->tim_int_mask0);
356         __vxge_hw_pio_mem_write32_upper(VXGE_HW_DEFAULT_32,
357                 &hldev->common_reg->tim_int_mask1);
358
359         for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
360
361                 if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
362                         continue;
363
364                 vxge_hw_vpath_intr_disable(
365                         VXGE_HW_VIRTUAL_PATH_HANDLE(&hldev->virtual_paths[i]));
366         }
367
368         return;
369 }
370
371 /**
372  * vxge_hw_device_mask_all - Mask all device interrupts.
373  * @hldev: HW device handle.
374  *
375  * Mask all device interrupts.
376  *
377  * See also: vxge_hw_device_unmask_all()
378  */
379 void vxge_hw_device_mask_all(struct __vxge_hw_device *hldev)
380 {
381         u64 val64;
382
383         val64 = VXGE_HW_TITAN_MASK_ALL_INT_ALARM |
384                 VXGE_HW_TITAN_MASK_ALL_INT_TRAFFIC;
385
386         __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
387                                 &hldev->common_reg->titan_mask_all_int);
388
389         return;
390 }
391
392 /**
393  * vxge_hw_device_unmask_all - Unmask all device interrupts.
394  * @hldev: HW device handle.
395  *
396  * Unmask all device interrupts.
397  *
398  * See also: vxge_hw_device_mask_all()
399  */
400 void vxge_hw_device_unmask_all(struct __vxge_hw_device *hldev)
401 {
402         u64 val64 = 0;
403
404         if (hldev->config.intr_mode == VXGE_HW_INTR_MODE_IRQLINE)
405                 val64 =  VXGE_HW_TITAN_MASK_ALL_INT_TRAFFIC;
406
407         __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
408                         &hldev->common_reg->titan_mask_all_int);
409
410         return;
411 }
412
413 /**
414  * vxge_hw_device_flush_io - Flush io writes.
415  * @hldev: HW device handle.
416  *
417  * The function performs a read operation to flush io writes.
418  *
419  * Returns: void
420  */
421 void vxge_hw_device_flush_io(struct __vxge_hw_device *hldev)
422 {
423         u32 val32;
424
425         val32 = readl(&hldev->common_reg->titan_general_int_status);
426 }
427
428 /**
429  * vxge_hw_device_begin_irq - Begin IRQ processing.
430  * @hldev: HW device handle.
431  * @skip_alarms: Do not clear the alarms
432  * @reason: "Reason" for the interrupt, the value of Titan's
433  *      general_int_status register.
434  *
435  * The function performs two actions, It first checks whether (shared IRQ) the
436  * interrupt was raised by the device. Next, it masks the device interrupts.
437  *
438  * Note:
439  * vxge_hw_device_begin_irq() does not flush MMIO writes through the
440  * bridge. Therefore, two back-to-back interrupts are potentially possible.
441  *
442  * Returns: 0, if the interrupt is not "ours" (note that in this case the
443  * device remain enabled).
444  * Otherwise, vxge_hw_device_begin_irq() returns 64bit general adapter
445  * status.
446  */
447 enum vxge_hw_status vxge_hw_device_begin_irq(struct __vxge_hw_device *hldev,
448                                              u32 skip_alarms, u64 *reason)
449 {
450         u32 i;
451         u64 val64;
452         u64 adapter_status;
453         u64 vpath_mask;
454         enum vxge_hw_status ret = VXGE_HW_OK;
455
456         val64 = readq(&hldev->common_reg->titan_general_int_status);
457
458         if (unlikely(!val64)) {
459                 /* not Titan interrupt  */
460                 *reason = 0;
461                 ret = VXGE_HW_ERR_WRONG_IRQ;
462                 goto exit;
463         }
464
465         if (unlikely(val64 == VXGE_HW_ALL_FOXES)) {
466
467                 adapter_status = readq(&hldev->common_reg->adapter_status);
468
469                 if (adapter_status == VXGE_HW_ALL_FOXES) {
470
471                         __vxge_hw_device_handle_error(hldev,
472                                 NULL_VPID, VXGE_HW_EVENT_SLOT_FREEZE);
473                         *reason = 0;
474                         ret = VXGE_HW_ERR_SLOT_FREEZE;
475                         goto exit;
476                 }
477         }
478
479         hldev->stats.sw_dev_info_stats.total_intr_cnt++;
480
481         *reason = val64;
482
483         vpath_mask = hldev->vpaths_deployed >>
484                                 (64 - VXGE_HW_MAX_VIRTUAL_PATHS);
485
486         if (val64 &
487             VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_TRAFFIC_INT(vpath_mask)) {
488                 hldev->stats.sw_dev_info_stats.traffic_intr_cnt++;
489
490                 return VXGE_HW_OK;
491         }
492
493         hldev->stats.sw_dev_info_stats.not_traffic_intr_cnt++;
494
495         if (unlikely(val64 &
496                         VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_ALARM_INT)) {
497
498                 enum vxge_hw_status error_level = VXGE_HW_OK;
499
500                 hldev->stats.sw_dev_err_stats.vpath_alarms++;
501
502                 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
503
504                         if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
505                                 continue;
506
507                         ret = __vxge_hw_vpath_alarm_process(
508                                 &hldev->virtual_paths[i], skip_alarms);
509
510                         error_level = VXGE_HW_SET_LEVEL(ret, error_level);
511
512                         if (unlikely((ret == VXGE_HW_ERR_CRITICAL) ||
513                                 (ret == VXGE_HW_ERR_SLOT_FREEZE)))
514                                 break;
515                 }
516
517                 ret = error_level;
518         }
519 exit:
520         return ret;
521 }
522
523 /*
524  * __vxge_hw_device_handle_link_up_ind
525  * @hldev: HW device handle.
526  *
527  * Link up indication handler. The function is invoked by HW when
528  * Titan indicates that the link is up for programmable amount of time.
529  */
530 enum vxge_hw_status
531 __vxge_hw_device_handle_link_up_ind(struct __vxge_hw_device *hldev)
532 {
533         /*
534          * If the previous link state is not down, return.
535          */
536         if (hldev->link_state == VXGE_HW_LINK_UP)
537                 goto exit;
538
539         hldev->link_state = VXGE_HW_LINK_UP;
540
541         /* notify driver */
542         if (hldev->uld_callbacks.link_up)
543                 hldev->uld_callbacks.link_up(hldev);
544 exit:
545         return VXGE_HW_OK;
546 }
547
548 /*
549  * __vxge_hw_device_handle_link_down_ind
550  * @hldev: HW device handle.
551  *
552  * Link down indication handler. The function is invoked by HW when
553  * Titan indicates that the link is down.
554  */
555 enum vxge_hw_status
556 __vxge_hw_device_handle_link_down_ind(struct __vxge_hw_device *hldev)
557 {
558         /*
559          * If the previous link state is not down, return.
560          */
561         if (hldev->link_state == VXGE_HW_LINK_DOWN)
562                 goto exit;
563
564         hldev->link_state = VXGE_HW_LINK_DOWN;
565
566         /* notify driver */
567         if (hldev->uld_callbacks.link_down)
568                 hldev->uld_callbacks.link_down(hldev);
569 exit:
570         return VXGE_HW_OK;
571 }
572
573 /**
574  * __vxge_hw_device_handle_error - Handle error
575  * @hldev: HW device
576  * @vp_id: Vpath Id
577  * @type: Error type. Please see enum vxge_hw_event{}
578  *
579  * Handle error.
580  */
581 enum vxge_hw_status
582 __vxge_hw_device_handle_error(
583                 struct __vxge_hw_device *hldev,
584                 u32 vp_id,
585                 enum vxge_hw_event type)
586 {
587         switch (type) {
588         case VXGE_HW_EVENT_UNKNOWN:
589                 break;
590         case VXGE_HW_EVENT_RESET_START:
591         case VXGE_HW_EVENT_RESET_COMPLETE:
592         case VXGE_HW_EVENT_LINK_DOWN:
593         case VXGE_HW_EVENT_LINK_UP:
594                 goto out;
595         case VXGE_HW_EVENT_ALARM_CLEARED:
596                 goto out;
597         case VXGE_HW_EVENT_ECCERR:
598         case VXGE_HW_EVENT_MRPCIM_ECCERR:
599                 goto out;
600         case VXGE_HW_EVENT_FIFO_ERR:
601         case VXGE_HW_EVENT_VPATH_ERR:
602         case VXGE_HW_EVENT_CRITICAL_ERR:
603         case VXGE_HW_EVENT_SERR:
604                 break;
605         case VXGE_HW_EVENT_SRPCIM_SERR:
606         case VXGE_HW_EVENT_MRPCIM_SERR:
607                 goto out;
608         case VXGE_HW_EVENT_SLOT_FREEZE:
609                 break;
610         default:
611                 vxge_assert(0);
612                 goto out;
613         }
614
615         /* notify driver */
616         if (hldev->uld_callbacks.crit_err)
617                 hldev->uld_callbacks.crit_err(
618                         (struct __vxge_hw_device *)hldev,
619                         type, vp_id);
620 out:
621
622         return VXGE_HW_OK;
623 }
624
625 /**
626  * vxge_hw_device_clear_tx_rx - Acknowledge (that is, clear) the
627  * condition that has caused the Tx and RX interrupt.
628  * @hldev: HW device.
629  *
630  * Acknowledge (that is, clear) the condition that has caused
631  * the Tx and Rx interrupt.
632  * See also: vxge_hw_device_begin_irq(),
633  * vxge_hw_device_mask_tx_rx(), vxge_hw_device_unmask_tx_rx().
634  */
635 void vxge_hw_device_clear_tx_rx(struct __vxge_hw_device *hldev)
636 {
637
638         if ((hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
639            (hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
640                 writeq((hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
641                                  hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX]),
642                                 &hldev->common_reg->tim_int_status0);
643         }
644
645         if ((hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
646            (hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
647                 __vxge_hw_pio_mem_write32_upper(
648                                 (hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
649                                  hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX]),
650                                 &hldev->common_reg->tim_int_status1);
651         }
652
653         return;
654 }
655
656 /*
657  * vxge_hw_channel_dtr_alloc - Allocate a dtr from the channel
658  * @channel: Channel
659  * @dtrh: Buffer to return the DTR pointer
660  *
661  * Allocates a dtr from the reserve array. If the reserve array is empty,
662  * it swaps the reserve and free arrays.
663  *
664  */
665 enum vxge_hw_status
666 vxge_hw_channel_dtr_alloc(struct __vxge_hw_channel *channel, void **dtrh)
667 {
668         void **tmp_arr;
669
670         if (channel->reserve_ptr - channel->reserve_top > 0) {
671 _alloc_after_swap:
672                 *dtrh = channel->reserve_arr[--channel->reserve_ptr];
673
674                 return VXGE_HW_OK;
675         }
676
677         /* switch between empty and full arrays */
678
679         /* the idea behind such a design is that by having free and reserved
680          * arrays separated we basically separated irq and non-irq parts.
681          * i.e. no additional lock need to be done when we free a resource */
682
683         if (channel->length - channel->free_ptr > 0) {
684
685                 tmp_arr = channel->reserve_arr;
686                 channel->reserve_arr = channel->free_arr;
687                 channel->free_arr = tmp_arr;
688                 channel->reserve_ptr = channel->length;
689                 channel->reserve_top = channel->free_ptr;
690                 channel->free_ptr = channel->length;
691
692                 channel->stats->reserve_free_swaps_cnt++;
693
694                 goto _alloc_after_swap;
695         }
696
697         channel->stats->full_cnt++;
698
699         *dtrh = NULL;
700         return VXGE_HW_INF_OUT_OF_DESCRIPTORS;
701 }
702
703 /*
704  * vxge_hw_channel_dtr_post - Post a dtr to the channel
705  * @channelh: Channel
706  * @dtrh: DTR pointer
707  *
708  * Posts a dtr to work array.
709  *
710  */
711 void vxge_hw_channel_dtr_post(struct __vxge_hw_channel *channel, void *dtrh)
712 {
713         vxge_assert(channel->work_arr[channel->post_index] == NULL);
714
715         channel->work_arr[channel->post_index++] = dtrh;
716
717         /* wrap-around */
718         if (channel->post_index == channel->length)
719                 channel->post_index = 0;
720 }
721
722 /*
723  * vxge_hw_channel_dtr_try_complete - Returns next completed dtr
724  * @channel: Channel
725  * @dtr: Buffer to return the next completed DTR pointer
726  *
727  * Returns the next completed dtr with out removing it from work array
728  *
729  */
730 void
731 vxge_hw_channel_dtr_try_complete(struct __vxge_hw_channel *channel, void **dtrh)
732 {
733         vxge_assert(channel->compl_index < channel->length);
734
735         *dtrh = channel->work_arr[channel->compl_index];
736         prefetch(*dtrh);
737 }
738
739 /*
740  * vxge_hw_channel_dtr_complete - Removes next completed dtr from the work array
741  * @channel: Channel handle
742  *
743  * Removes the next completed dtr from work array
744  *
745  */
746 void vxge_hw_channel_dtr_complete(struct __vxge_hw_channel *channel)
747 {
748         channel->work_arr[channel->compl_index] = NULL;
749
750         /* wrap-around */
751         if (++channel->compl_index == channel->length)
752                 channel->compl_index = 0;
753
754         channel->stats->total_compl_cnt++;
755 }
756
757 /*
758  * vxge_hw_channel_dtr_free - Frees a dtr
759  * @channel: Channel handle
760  * @dtr:  DTR pointer
761  *
762  * Returns the dtr to free array
763  *
764  */
765 void vxge_hw_channel_dtr_free(struct __vxge_hw_channel *channel, void *dtrh)
766 {
767         channel->free_arr[--channel->free_ptr] = dtrh;
768 }
769
770 /*
771  * vxge_hw_channel_dtr_count
772  * @channel: Channel handle. Obtained via vxge_hw_channel_open().
773  *
774  * Retreive number of DTRs available. This function can not be called
775  * from data path. ring_initial_replenishi() is the only user.
776  */
777 int vxge_hw_channel_dtr_count(struct __vxge_hw_channel *channel)
778 {
779         return (channel->reserve_ptr - channel->reserve_top) +
780                 (channel->length - channel->free_ptr);
781 }
782
783 /**
784  * vxge_hw_ring_rxd_reserve     - Reserve ring descriptor.
785  * @ring: Handle to the ring object used for receive
786  * @rxdh: Reserved descriptor. On success HW fills this "out" parameter
787  * with a valid handle.
788  *
789  * Reserve Rx descriptor for the subsequent filling-in driver
790  * and posting on the corresponding channel (@channelh)
791  * via vxge_hw_ring_rxd_post().
792  *
793  * Returns: VXGE_HW_OK - success.
794  * VXGE_HW_INF_OUT_OF_DESCRIPTORS - Currently no descriptors available.
795  *
796  */
797 enum vxge_hw_status vxge_hw_ring_rxd_reserve(struct __vxge_hw_ring *ring,
798         void **rxdh)
799 {
800         enum vxge_hw_status status;
801         struct __vxge_hw_channel *channel;
802
803         channel = &ring->channel;
804
805         status = vxge_hw_channel_dtr_alloc(channel, rxdh);
806
807         if (status == VXGE_HW_OK) {
808                 struct vxge_hw_ring_rxd_1 *rxdp =
809                         (struct vxge_hw_ring_rxd_1 *)*rxdh;
810
811                 rxdp->control_0 = rxdp->control_1 = 0;
812         }
813
814         return status;
815 }
816
817 /**
818  * vxge_hw_ring_rxd_free - Free descriptor.
819  * @ring: Handle to the ring object used for receive
820  * @rxdh: Descriptor handle.
821  *
822  * Free the reserved descriptor. This operation is "symmetrical" to
823  * vxge_hw_ring_rxd_reserve. The "free-ing" completes the descriptor's
824  * lifecycle.
825  *
826  * After free-ing (see vxge_hw_ring_rxd_free()) the descriptor again can
827  * be:
828  *
829  * - reserved (vxge_hw_ring_rxd_reserve);
830  *
831  * - posted     (vxge_hw_ring_rxd_post);
832  *
833  * - completed (vxge_hw_ring_rxd_next_completed);
834  *
835  * - and recycled again (vxge_hw_ring_rxd_free).
836  *
837  * For alternative state transitions and more details please refer to
838  * the design doc.
839  *
840  */
841 void vxge_hw_ring_rxd_free(struct __vxge_hw_ring *ring, void *rxdh)
842 {
843         struct __vxge_hw_channel *channel;
844
845         channel = &ring->channel;
846
847         vxge_hw_channel_dtr_free(channel, rxdh);
848
849 }
850
851 /**
852  * vxge_hw_ring_rxd_pre_post - Prepare rxd and post
853  * @ring: Handle to the ring object used for receive
854  * @rxdh: Descriptor handle.
855  *
856  * This routine prepares a rxd and posts
857  */
858 void vxge_hw_ring_rxd_pre_post(struct __vxge_hw_ring *ring, void *rxdh)
859 {
860         struct __vxge_hw_channel *channel;
861
862         channel = &ring->channel;
863
864         vxge_hw_channel_dtr_post(channel, rxdh);
865 }
866
867 /**
868  * vxge_hw_ring_rxd_post_post - Process rxd after post.
869  * @ring: Handle to the ring object used for receive
870  * @rxdh: Descriptor handle.
871  *
872  * Processes rxd after post
873  */
874 void vxge_hw_ring_rxd_post_post(struct __vxge_hw_ring *ring, void *rxdh)
875 {
876         struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh;
877         struct __vxge_hw_channel *channel;
878
879         channel = &ring->channel;
880
881         rxdp->control_0 = VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
882
883         if (ring->stats->common_stats.usage_cnt > 0)
884                 ring->stats->common_stats.usage_cnt--;
885 }
886
887 /**
888  * vxge_hw_ring_rxd_post - Post descriptor on the ring.
889  * @ring: Handle to the ring object used for receive
890  * @rxdh: Descriptor obtained via vxge_hw_ring_rxd_reserve().
891  *
892  * Post descriptor on the ring.
893  * Prior to posting the descriptor should be filled in accordance with
894  * Host/Titan interface specification for a given service (LL, etc.).
895  *
896  */
897 void vxge_hw_ring_rxd_post(struct __vxge_hw_ring *ring, void *rxdh)
898 {
899         struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh;
900         struct __vxge_hw_channel *channel;
901
902         channel = &ring->channel;
903
904         wmb();
905         rxdp->control_0 = VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
906
907         vxge_hw_channel_dtr_post(channel, rxdh);
908
909         if (ring->stats->common_stats.usage_cnt > 0)
910                 ring->stats->common_stats.usage_cnt--;
911 }
912
913 /**
914  * vxge_hw_ring_rxd_post_post_wmb - Process rxd after post with memory barrier.
915  * @ring: Handle to the ring object used for receive
916  * @rxdh: Descriptor handle.
917  *
918  * Processes rxd after post with memory barrier.
919  */
920 void vxge_hw_ring_rxd_post_post_wmb(struct __vxge_hw_ring *ring, void *rxdh)
921 {
922         struct __vxge_hw_channel *channel;
923
924         channel = &ring->channel;
925
926         wmb();
927         vxge_hw_ring_rxd_post_post(ring, rxdh);
928 }
929
930 /**
931  * vxge_hw_ring_rxd_next_completed - Get the _next_ completed descriptor.
932  * @ring: Handle to the ring object used for receive
933  * @rxdh: Descriptor handle. Returned by HW.
934  * @t_code:     Transfer code, as per Titan User Guide,
935  *       Receive Descriptor Format. Returned by HW.
936  *
937  * Retrieve the _next_ completed descriptor.
938  * HW uses ring callback (*vxge_hw_ring_callback_f) to notifiy
939  * driver of new completed descriptors. After that
940  * the driver can use vxge_hw_ring_rxd_next_completed to retrieve the rest
941  * completions (the very first completion is passed by HW via
942  * vxge_hw_ring_callback_f).
943  *
944  * Implementation-wise, the driver is free to call
945  * vxge_hw_ring_rxd_next_completed either immediately from inside the
946  * ring callback, or in a deferred fashion and separate (from HW)
947  * context.
948  *
949  * Non-zero @t_code means failure to fill-in receive buffer(s)
950  * of the descriptor.
951  * For instance, parity error detected during the data transfer.
952  * In this case Titan will complete the descriptor and indicate
953  * for the host that the received data is not to be used.
954  * For details please refer to Titan User Guide.
955  *
956  * Returns: VXGE_HW_OK - success.
957  * VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS - No completed descriptors
958  * are currently available for processing.
959  *
960  * See also: vxge_hw_ring_callback_f{},
961  * vxge_hw_fifo_rxd_next_completed(), enum vxge_hw_status{}.
962  */
963 enum vxge_hw_status vxge_hw_ring_rxd_next_completed(
964         struct __vxge_hw_ring *ring, void **rxdh, u8 *t_code)
965 {
966         struct __vxge_hw_channel *channel;
967         struct vxge_hw_ring_rxd_1 *rxdp;
968         enum vxge_hw_status status = VXGE_HW_OK;
969         u64 control_0, own;
970
971         channel = &ring->channel;
972
973         vxge_hw_channel_dtr_try_complete(channel, rxdh);
974
975         rxdp = (struct vxge_hw_ring_rxd_1 *)*rxdh;
976         if (rxdp == NULL) {
977                 status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
978                 goto exit;
979         }
980
981         control_0 = rxdp->control_0;
982         own = control_0 & VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
983         *t_code = (u8)VXGE_HW_RING_RXD_T_CODE_GET(control_0);
984
985         /* check whether it is not the end */
986         if (!own || ((*t_code == VXGE_HW_RING_T_CODE_FRM_DROP) && own)) {
987
988                 vxge_assert(((struct vxge_hw_ring_rxd_1 *)rxdp)->host_control !=
989                                 0);
990
991                 ++ring->cmpl_cnt;
992                 vxge_hw_channel_dtr_complete(channel);
993
994                 vxge_assert(*t_code != VXGE_HW_RING_RXD_T_CODE_UNUSED);
995
996                 ring->stats->common_stats.usage_cnt++;
997                 if (ring->stats->common_stats.usage_max <
998                                 ring->stats->common_stats.usage_cnt)
999                         ring->stats->common_stats.usage_max =
1000                                 ring->stats->common_stats.usage_cnt;
1001
1002                 status = VXGE_HW_OK;
1003                 goto exit;
1004         }
1005
1006         /* reset it. since we don't want to return
1007          * garbage to the driver */
1008         *rxdh = NULL;
1009         status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1010 exit:
1011         return status;
1012 }
1013
1014 /**
1015  * vxge_hw_ring_handle_tcode - Handle transfer code.
1016  * @ring: Handle to the ring object used for receive
1017  * @rxdh: Descriptor handle.
1018  * @t_code: One of the enumerated (and documented in the Titan user guide)
1019  * "transfer codes".
1020  *
1021  * Handle descriptor's transfer code. The latter comes with each completed
1022  * descriptor.
1023  *
1024  * Returns: one of the enum vxge_hw_status{} enumerated types.
1025  * VXGE_HW_OK                   - for success.
1026  * VXGE_HW_ERR_CRITICAL         - when encounters critical error.
1027  */
1028 enum vxge_hw_status vxge_hw_ring_handle_tcode(
1029         struct __vxge_hw_ring *ring, void *rxdh, u8 t_code)
1030 {
1031         struct __vxge_hw_channel *channel;
1032         enum vxge_hw_status status = VXGE_HW_OK;
1033
1034         channel = &ring->channel;
1035
1036         /* If the t_code is not supported and if the
1037          * t_code is other than 0x5 (unparseable packet
1038          * such as unknown UPV6 header), Drop it !!!
1039          */
1040
1041         if (t_code ==  VXGE_HW_RING_T_CODE_OK ||
1042                 t_code == VXGE_HW_RING_T_CODE_L3_PKT_ERR) {
1043                 status = VXGE_HW_OK;
1044                 goto exit;
1045         }
1046
1047         if (t_code > VXGE_HW_RING_T_CODE_MULTI_ERR) {
1048                 status = VXGE_HW_ERR_INVALID_TCODE;
1049                 goto exit;
1050         }
1051
1052         ring->stats->rxd_t_code_err_cnt[t_code]++;
1053 exit:
1054         return status;
1055 }
1056
1057 /**
1058  * __vxge_hw_non_offload_db_post - Post non offload doorbell
1059  *
1060  * @fifo: fifohandle
1061  * @txdl_ptr: The starting location of the TxDL in host memory
1062  * @num_txds: The highest TxD in this TxDL (0 to 255 means 1 to 256)
1063  * @no_snoop: No snoop flags
1064  *
1065  * This function posts a non-offload doorbell to doorbell FIFO
1066  *
1067  */
1068 static void __vxge_hw_non_offload_db_post(struct __vxge_hw_fifo *fifo,
1069         u64 txdl_ptr, u32 num_txds, u32 no_snoop)
1070 {
1071         struct __vxge_hw_channel *channel;
1072
1073         channel = &fifo->channel;
1074
1075         writeq(VXGE_HW_NODBW_TYPE(VXGE_HW_NODBW_TYPE_NODBW) |
1076                 VXGE_HW_NODBW_LAST_TXD_NUMBER(num_txds) |
1077                 VXGE_HW_NODBW_GET_NO_SNOOP(no_snoop),
1078                 &fifo->nofl_db->control_0);
1079
1080         mmiowb();
1081
1082         writeq(txdl_ptr, &fifo->nofl_db->txdl_ptr);
1083
1084         mmiowb();
1085 }
1086
1087 /**
1088  * vxge_hw_fifo_free_txdl_count_get - returns the number of txdls available in
1089  * the fifo
1090  * @fifoh: Handle to the fifo object used for non offload send
1091  */
1092 u32 vxge_hw_fifo_free_txdl_count_get(struct __vxge_hw_fifo *fifoh)
1093 {
1094         return vxge_hw_channel_dtr_count(&fifoh->channel);
1095 }
1096
1097 /**
1098  * vxge_hw_fifo_txdl_reserve - Reserve fifo descriptor.
1099  * @fifoh: Handle to the fifo object used for non offload send
1100  * @txdlh: Reserved descriptor. On success HW fills this "out" parameter
1101  *        with a valid handle.
1102  * @txdl_priv: Buffer to return the pointer to per txdl space
1103  *
1104  * Reserve a single TxDL (that is, fifo descriptor)
1105  * for the subsequent filling-in by driver)
1106  * and posting on the corresponding channel (@channelh)
1107  * via vxge_hw_fifo_txdl_post().
1108  *
1109  * Note: it is the responsibility of driver to reserve multiple descriptors
1110  * for lengthy (e.g., LSO) transmit operation. A single fifo descriptor
1111  * carries up to configured number (fifo.max_frags) of contiguous buffers.
1112  *
1113  * Returns: VXGE_HW_OK - success;
1114  * VXGE_HW_INF_OUT_OF_DESCRIPTORS - Currently no descriptors available
1115  *
1116  */
1117 enum vxge_hw_status vxge_hw_fifo_txdl_reserve(
1118         struct __vxge_hw_fifo *fifo,
1119         void **txdlh, void **txdl_priv)
1120 {
1121         struct __vxge_hw_channel *channel;
1122         enum vxge_hw_status status;
1123         int i;
1124
1125         channel = &fifo->channel;
1126
1127         status = vxge_hw_channel_dtr_alloc(channel, txdlh);
1128
1129         if (status == VXGE_HW_OK) {
1130                 struct vxge_hw_fifo_txd *txdp =
1131                         (struct vxge_hw_fifo_txd *)*txdlh;
1132                 struct __vxge_hw_fifo_txdl_priv *priv;
1133
1134                 priv = __vxge_hw_fifo_txdl_priv(fifo, txdp);
1135
1136                 /* reset the TxDL's private */
1137                 priv->align_dma_offset = 0;
1138                 priv->align_vaddr_start = priv->align_vaddr;
1139                 priv->align_used_frags = 0;
1140                 priv->frags = 0;
1141                 priv->alloc_frags = fifo->config->max_frags;
1142                 priv->next_txdl_priv = NULL;
1143
1144                 *txdl_priv = (void *)(size_t)txdp->host_control;
1145
1146                 for (i = 0; i < fifo->config->max_frags; i++) {
1147                         txdp = ((struct vxge_hw_fifo_txd *)*txdlh) + i;
1148                         txdp->control_0 = txdp->control_1 = 0;
1149                 }
1150         }
1151
1152         return status;
1153 }
1154
1155 /**
1156  * vxge_hw_fifo_txdl_buffer_set - Set transmit buffer pointer in the
1157  * descriptor.
1158  * @fifo: Handle to the fifo object used for non offload send
1159  * @txdlh: Descriptor handle.
1160  * @frag_idx: Index of the data buffer in the caller's scatter-gather list
1161  *            (of buffers).
1162  * @dma_pointer: DMA address of the data buffer referenced by @frag_idx.
1163  * @size: Size of the data buffer (in bytes).
1164  *
1165  * This API is part of the preparation of the transmit descriptor for posting
1166  * (via vxge_hw_fifo_txdl_post()). The related "preparation" APIs include
1167  * vxge_hw_fifo_txdl_mss_set() and vxge_hw_fifo_txdl_cksum_set_bits().
1168  * All three APIs fill in the fields of the fifo descriptor,
1169  * in accordance with the Titan specification.
1170  *
1171  */
1172 void vxge_hw_fifo_txdl_buffer_set(struct __vxge_hw_fifo *fifo,
1173                                   void *txdlh, u32 frag_idx,
1174                                   dma_addr_t dma_pointer, u32 size)
1175 {
1176         struct __vxge_hw_fifo_txdl_priv *txdl_priv;
1177         struct vxge_hw_fifo_txd *txdp, *txdp_last;
1178         struct __vxge_hw_channel *channel;
1179
1180         channel = &fifo->channel;
1181
1182         txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdlh);
1183         txdp = (struct vxge_hw_fifo_txd *)txdlh  +  txdl_priv->frags;
1184
1185         if (frag_idx != 0)
1186                 txdp->control_0 = txdp->control_1 = 0;
1187         else {
1188                 txdp->control_0 |= VXGE_HW_FIFO_TXD_GATHER_CODE(
1189                         VXGE_HW_FIFO_TXD_GATHER_CODE_FIRST);
1190                 txdp->control_1 |= fifo->interrupt_type;
1191                 txdp->control_1 |= VXGE_HW_FIFO_TXD_INT_NUMBER(
1192                         fifo->tx_intr_num);
1193                 if (txdl_priv->frags) {
1194                         txdp_last = (struct vxge_hw_fifo_txd *)txdlh  +
1195                         (txdl_priv->frags - 1);
1196                         txdp_last->control_0 |= VXGE_HW_FIFO_TXD_GATHER_CODE(
1197                                 VXGE_HW_FIFO_TXD_GATHER_CODE_LAST);
1198                 }
1199         }
1200
1201         vxge_assert(frag_idx < txdl_priv->alloc_frags);
1202
1203         txdp->buffer_pointer = (u64)dma_pointer;
1204         txdp->control_0 |= VXGE_HW_FIFO_TXD_BUFFER_SIZE(size);
1205         fifo->stats->total_buffers++;
1206         txdl_priv->frags++;
1207 }
1208
1209 /**
1210  * vxge_hw_fifo_txdl_post - Post descriptor on the fifo channel.
1211  * @fifo: Handle to the fifo object used for non offload send
1212  * @txdlh: Descriptor obtained via vxge_hw_fifo_txdl_reserve()
1213  * @frags: Number of contiguous buffers that are part of a single
1214  *         transmit operation.
1215  *
1216  * Post descriptor on the 'fifo' type channel for transmission.
1217  * Prior to posting the descriptor should be filled in accordance with
1218  * Host/Titan interface specification for a given service (LL, etc.).
1219  *
1220  */
1221 void vxge_hw_fifo_txdl_post(struct __vxge_hw_fifo *fifo, void *txdlh)
1222 {
1223         struct __vxge_hw_fifo_txdl_priv *txdl_priv;
1224         struct vxge_hw_fifo_txd *txdp_last;
1225         struct vxge_hw_fifo_txd *txdp_first;
1226         struct __vxge_hw_channel *channel;
1227
1228         channel = &fifo->channel;
1229
1230         txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdlh);
1231         txdp_first = (struct vxge_hw_fifo_txd *)txdlh;
1232
1233         txdp_last = (struct vxge_hw_fifo_txd *)txdlh  +  (txdl_priv->frags - 1);
1234         txdp_last->control_0 |=
1235               VXGE_HW_FIFO_TXD_GATHER_CODE(VXGE_HW_FIFO_TXD_GATHER_CODE_LAST);
1236         txdp_first->control_0 |= VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER;
1237
1238         vxge_hw_channel_dtr_post(&fifo->channel, txdlh);
1239
1240         __vxge_hw_non_offload_db_post(fifo,
1241                 (u64)txdl_priv->dma_addr,
1242                 txdl_priv->frags - 1,
1243                 fifo->no_snoop_bits);
1244
1245         fifo->stats->total_posts++;
1246         fifo->stats->common_stats.usage_cnt++;
1247         if (fifo->stats->common_stats.usage_max <
1248                 fifo->stats->common_stats.usage_cnt)
1249                 fifo->stats->common_stats.usage_max =
1250                         fifo->stats->common_stats.usage_cnt;
1251 }
1252
1253 /**
1254  * vxge_hw_fifo_txdl_next_completed - Retrieve next completed descriptor.
1255  * @fifo: Handle to the fifo object used for non offload send
1256  * @txdlh: Descriptor handle. Returned by HW.
1257  * @t_code: Transfer code, as per Titan User Guide,
1258  *          Transmit Descriptor Format.
1259  *          Returned by HW.
1260  *
1261  * Retrieve the _next_ completed descriptor.
1262  * HW uses channel callback (*vxge_hw_channel_callback_f) to notifiy
1263  * driver of new completed descriptors. After that
1264  * the driver can use vxge_hw_fifo_txdl_next_completed to retrieve the rest
1265  * completions (the very first completion is passed by HW via
1266  * vxge_hw_channel_callback_f).
1267  *
1268  * Implementation-wise, the driver is free to call
1269  * vxge_hw_fifo_txdl_next_completed either immediately from inside the
1270  * channel callback, or in a deferred fashion and separate (from HW)
1271  * context.
1272  *
1273  * Non-zero @t_code means failure to process the descriptor.
1274  * The failure could happen, for instance, when the link is
1275  * down, in which case Titan completes the descriptor because it
1276  * is not able to send the data out.
1277  *
1278  * For details please refer to Titan User Guide.
1279  *
1280  * Returns: VXGE_HW_OK - success.
1281  * VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS - No completed descriptors
1282  * are currently available for processing.
1283  *
1284  */
1285 enum vxge_hw_status vxge_hw_fifo_txdl_next_completed(
1286         struct __vxge_hw_fifo *fifo, void **txdlh,
1287         enum vxge_hw_fifo_tcode *t_code)
1288 {
1289         struct __vxge_hw_channel *channel;
1290         struct vxge_hw_fifo_txd *txdp;
1291         enum vxge_hw_status status = VXGE_HW_OK;
1292
1293         channel = &fifo->channel;
1294
1295         vxge_hw_channel_dtr_try_complete(channel, txdlh);
1296
1297         txdp = (struct vxge_hw_fifo_txd *)*txdlh;
1298         if (txdp == NULL) {
1299                 status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1300                 goto exit;
1301         }
1302
1303         /* check whether host owns it */
1304         if (!(txdp->control_0 & VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER)) {
1305
1306                 vxge_assert(txdp->host_control != 0);
1307
1308                 vxge_hw_channel_dtr_complete(channel);
1309
1310                 *t_code = (u8)VXGE_HW_FIFO_TXD_T_CODE_GET(txdp->control_0);
1311
1312                 if (fifo->stats->common_stats.usage_cnt > 0)
1313                         fifo->stats->common_stats.usage_cnt--;
1314
1315                 status = VXGE_HW_OK;
1316                 goto exit;
1317         }
1318
1319         /* no more completions */
1320         *txdlh = NULL;
1321         status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1322 exit:
1323         return status;
1324 }
1325
1326 /**
1327  * vxge_hw_fifo_handle_tcode - Handle transfer code.
1328  * @fifo: Handle to the fifo object used for non offload send
1329  * @txdlh: Descriptor handle.
1330  * @t_code: One of the enumerated (and documented in the Titan user guide)
1331  *          "transfer codes".
1332  *
1333  * Handle descriptor's transfer code. The latter comes with each completed
1334  * descriptor.
1335  *
1336  * Returns: one of the enum vxge_hw_status{} enumerated types.
1337  * VXGE_HW_OK - for success.
1338  * VXGE_HW_ERR_CRITICAL - when encounters critical error.
1339  */
1340 enum vxge_hw_status vxge_hw_fifo_handle_tcode(struct __vxge_hw_fifo *fifo,
1341                                               void *txdlh,
1342                                               enum vxge_hw_fifo_tcode t_code)
1343 {
1344         struct __vxge_hw_channel *channel;
1345
1346         enum vxge_hw_status status = VXGE_HW_OK;
1347         channel = &fifo->channel;
1348
1349         if (((t_code & 0x7) < 0) || ((t_code & 0x7) > 0x4)) {
1350                 status = VXGE_HW_ERR_INVALID_TCODE;
1351                 goto exit;
1352         }
1353
1354         fifo->stats->txd_t_code_err_cnt[t_code]++;
1355 exit:
1356         return status;
1357 }
1358
1359 /**
1360  * vxge_hw_fifo_txdl_free - Free descriptor.
1361  * @fifo: Handle to the fifo object used for non offload send
1362  * @txdlh: Descriptor handle.
1363  *
1364  * Free the reserved descriptor. This operation is "symmetrical" to
1365  * vxge_hw_fifo_txdl_reserve. The "free-ing" completes the descriptor's
1366  * lifecycle.
1367  *
1368  * After free-ing (see vxge_hw_fifo_txdl_free()) the descriptor again can
1369  * be:
1370  *
1371  * - reserved (vxge_hw_fifo_txdl_reserve);
1372  *
1373  * - posted (vxge_hw_fifo_txdl_post);
1374  *
1375  * - completed (vxge_hw_fifo_txdl_next_completed);
1376  *
1377  * - and recycled again (vxge_hw_fifo_txdl_free).
1378  *
1379  * For alternative state transitions and more details please refer to
1380  * the design doc.
1381  *
1382  */
1383 void vxge_hw_fifo_txdl_free(struct __vxge_hw_fifo *fifo, void *txdlh)
1384 {
1385         struct __vxge_hw_fifo_txdl_priv *txdl_priv;
1386         u32 max_frags;
1387         struct __vxge_hw_channel *channel;
1388
1389         channel = &fifo->channel;
1390
1391         txdl_priv = __vxge_hw_fifo_txdl_priv(fifo,
1392                         (struct vxge_hw_fifo_txd *)txdlh);
1393
1394         max_frags = fifo->config->max_frags;
1395
1396         vxge_hw_channel_dtr_free(channel, txdlh);
1397 }
1398
1399 /**
1400  * vxge_hw_vpath_mac_addr_add - Add the mac address entry for this vpath
1401  *               to MAC address table.
1402  * @vp: Vpath handle.
1403  * @macaddr: MAC address to be added for this vpath into the list
1404  * @macaddr_mask: MAC address mask for macaddr
1405  * @duplicate_mode: Duplicate MAC address add mode. Please see
1406  *             enum vxge_hw_vpath_mac_addr_add_mode{}
1407  *
1408  * Adds the given mac address and mac address mask into the list for this
1409  * vpath.
1410  * see also: vxge_hw_vpath_mac_addr_delete, vxge_hw_vpath_mac_addr_get and
1411  * vxge_hw_vpath_mac_addr_get_next
1412  *
1413  */
1414 enum vxge_hw_status
1415 vxge_hw_vpath_mac_addr_add(
1416         struct __vxge_hw_vpath_handle *vp,
1417         u8 (macaddr)[ETH_ALEN],
1418         u8 (macaddr_mask)[ETH_ALEN],
1419         enum vxge_hw_vpath_mac_addr_add_mode duplicate_mode)
1420 {
1421         u32 i;
1422         u64 data1 = 0ULL;
1423         u64 data2 = 0ULL;
1424         enum vxge_hw_status status = VXGE_HW_OK;
1425
1426         if (vp == NULL) {
1427                 status = VXGE_HW_ERR_INVALID_HANDLE;
1428                 goto exit;
1429         }
1430
1431         for (i = 0; i < ETH_ALEN; i++) {
1432                 data1 <<= 8;
1433                 data1 |= (u8)macaddr[i];
1434
1435                 data2 <<= 8;
1436                 data2 |= (u8)macaddr_mask[i];
1437         }
1438
1439         switch (duplicate_mode) {
1440         case VXGE_HW_VPATH_MAC_ADDR_ADD_DUPLICATE:
1441                 i = 0;
1442                 break;
1443         case VXGE_HW_VPATH_MAC_ADDR_DISCARD_DUPLICATE:
1444                 i = 1;
1445                 break;
1446         case VXGE_HW_VPATH_MAC_ADDR_REPLACE_DUPLICATE:
1447                 i = 2;
1448                 break;
1449         default:
1450                 i = 0;
1451                 break;
1452         }
1453
1454         status = __vxge_hw_vpath_rts_table_set(vp,
1455                         VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_ADD_ENTRY,
1456                         VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1457                         0,
1458                         VXGE_HW_RTS_ACCESS_STEER_DATA0_DA_MAC_ADDR(data1),
1459                         VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MASK(data2)|
1460                         VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MODE(i));
1461 exit:
1462         return status;
1463 }
1464
1465 /**
1466  * vxge_hw_vpath_mac_addr_get - Get the first mac address entry for this vpath
1467  *               from MAC address table.
1468  * @vp: Vpath handle.
1469  * @macaddr: First MAC address entry for this vpath in the list
1470  * @macaddr_mask: MAC address mask for macaddr
1471  *
1472  * Returns the first mac address and mac address mask in the list for this
1473  * vpath.
1474  * see also: vxge_hw_vpath_mac_addr_get_next
1475  *
1476  */
1477 enum vxge_hw_status
1478 vxge_hw_vpath_mac_addr_get(
1479         struct __vxge_hw_vpath_handle *vp,
1480         u8 (macaddr)[ETH_ALEN],
1481         u8 (macaddr_mask)[ETH_ALEN])
1482 {
1483         u32 i;
1484         u64 data1 = 0ULL;
1485         u64 data2 = 0ULL;
1486         enum vxge_hw_status status = VXGE_HW_OK;
1487
1488         if (vp == NULL) {
1489                 status = VXGE_HW_ERR_INVALID_HANDLE;
1490                 goto exit;
1491         }
1492
1493         status = __vxge_hw_vpath_rts_table_get(vp,
1494                         VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY,
1495                         VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1496                         0, &data1, &data2);
1497
1498         if (status != VXGE_HW_OK)
1499                 goto exit;
1500
1501         data1 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1);
1502
1503         data2 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(data2);
1504
1505         for (i = ETH_ALEN; i > 0; i--) {
1506                 macaddr[i-1] = (u8)(data1 & 0xFF);
1507                 data1 >>= 8;
1508
1509                 macaddr_mask[i-1] = (u8)(data2 & 0xFF);
1510                 data2 >>= 8;
1511         }
1512 exit:
1513         return status;
1514 }
1515
1516 /**
1517  * vxge_hw_vpath_mac_addr_get_next - Get the next mac address entry for this
1518  * vpath
1519  *               from MAC address table.
1520  * @vp: Vpath handle.
1521  * @macaddr: Next MAC address entry for this vpath in the list
1522  * @macaddr_mask: MAC address mask for macaddr
1523  *
1524  * Returns the next mac address and mac address mask in the list for this
1525  * vpath.
1526  * see also: vxge_hw_vpath_mac_addr_get
1527  *
1528  */
1529 enum vxge_hw_status
1530 vxge_hw_vpath_mac_addr_get_next(
1531         struct __vxge_hw_vpath_handle *vp,
1532         u8 (macaddr)[ETH_ALEN],
1533         u8 (macaddr_mask)[ETH_ALEN])
1534 {
1535         u32 i;
1536         u64 data1 = 0ULL;
1537         u64 data2 = 0ULL;
1538         enum vxge_hw_status status = VXGE_HW_OK;
1539
1540         if (vp == NULL) {
1541                 status = VXGE_HW_ERR_INVALID_HANDLE;
1542                 goto exit;
1543         }
1544
1545         status = __vxge_hw_vpath_rts_table_get(vp,
1546                         VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_NEXT_ENTRY,
1547                         VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1548                         0, &data1, &data2);
1549
1550         if (status != VXGE_HW_OK)
1551                 goto exit;
1552
1553         data1 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1);
1554
1555         data2 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(data2);
1556
1557         for (i = ETH_ALEN; i > 0; i--) {
1558                 macaddr[i-1] = (u8)(data1 & 0xFF);
1559                 data1 >>= 8;
1560
1561                 macaddr_mask[i-1] = (u8)(data2 & 0xFF);
1562                 data2 >>= 8;
1563         }
1564
1565 exit:
1566         return status;
1567 }
1568
1569 /**
1570  * vxge_hw_vpath_mac_addr_delete - Delete the mac address entry for this vpath
1571  *               to MAC address table.
1572  * @vp: Vpath handle.
1573  * @macaddr: MAC address to be added for this vpath into the list
1574  * @macaddr_mask: MAC address mask for macaddr
1575  *
1576  * Delete the given mac address and mac address mask into the list for this
1577  * vpath.
1578  * see also: vxge_hw_vpath_mac_addr_add, vxge_hw_vpath_mac_addr_get and
1579  * vxge_hw_vpath_mac_addr_get_next
1580  *
1581  */
1582 enum vxge_hw_status
1583 vxge_hw_vpath_mac_addr_delete(
1584         struct __vxge_hw_vpath_handle *vp,
1585         u8 (macaddr)[ETH_ALEN],
1586         u8 (macaddr_mask)[ETH_ALEN])
1587 {
1588         u32 i;
1589         u64 data1 = 0ULL;
1590         u64 data2 = 0ULL;
1591         enum vxge_hw_status status = VXGE_HW_OK;
1592
1593         if (vp == NULL) {
1594                 status = VXGE_HW_ERR_INVALID_HANDLE;
1595                 goto exit;
1596         }
1597
1598         for (i = 0; i < ETH_ALEN; i++) {
1599                 data1 <<= 8;
1600                 data1 |= (u8)macaddr[i];
1601
1602                 data2 <<= 8;
1603                 data2 |= (u8)macaddr_mask[i];
1604         }
1605
1606         status = __vxge_hw_vpath_rts_table_set(vp,
1607                         VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_DELETE_ENTRY,
1608                         VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1609                         0,
1610                         VXGE_HW_RTS_ACCESS_STEER_DATA0_DA_MAC_ADDR(data1),
1611                         VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MASK(data2));
1612 exit:
1613         return status;
1614 }
1615
1616 /**
1617  * vxge_hw_vpath_vid_add - Add the vlan id entry for this vpath
1618  *               to vlan id table.
1619  * @vp: Vpath handle.
1620  * @vid: vlan id to be added for this vpath into the list
1621  *
1622  * Adds the given vlan id into the list for this  vpath.
1623  * see also: vxge_hw_vpath_vid_delete, vxge_hw_vpath_vid_get and
1624  * vxge_hw_vpath_vid_get_next
1625  *
1626  */
1627 enum vxge_hw_status
1628 vxge_hw_vpath_vid_add(struct __vxge_hw_vpath_handle *vp, u64 vid)
1629 {
1630         enum vxge_hw_status status = VXGE_HW_OK;
1631
1632         if (vp == NULL) {
1633                 status = VXGE_HW_ERR_INVALID_HANDLE;
1634                 goto exit;
1635         }
1636
1637         status = __vxge_hw_vpath_rts_table_set(vp,
1638                         VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_ADD_ENTRY,
1639                         VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
1640                         0, VXGE_HW_RTS_ACCESS_STEER_DATA0_VLAN_ID(vid), 0);
1641 exit:
1642         return status;
1643 }
1644
1645 /**
1646  * vxge_hw_vpath_vid_get - Get the first vid entry for this vpath
1647  *               from vlan id table.
1648  * @vp: Vpath handle.
1649  * @vid: Buffer to return vlan id
1650  *
1651  * Returns the first vlan id in the list for this vpath.
1652  * see also: vxge_hw_vpath_vid_get_next
1653  *
1654  */
1655 enum vxge_hw_status
1656 vxge_hw_vpath_vid_get(struct __vxge_hw_vpath_handle *vp, u64 *vid)
1657 {
1658         u64 data;
1659         enum vxge_hw_status status = VXGE_HW_OK;
1660
1661         if (vp == NULL) {
1662                 status = VXGE_HW_ERR_INVALID_HANDLE;
1663                 goto exit;
1664         }
1665
1666         status = __vxge_hw_vpath_rts_table_get(vp,
1667                         VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY,
1668                         VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
1669                         0, vid, &data);
1670
1671         *vid = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_VLAN_ID(*vid);
1672 exit:
1673         return status;
1674 }
1675
1676 /**
1677  * vxge_hw_vpath_vid_get_next - Get the next vid entry for this vpath
1678  *               from vlan id table.
1679  * @vp: Vpath handle.
1680  * @vid: Buffer to return vlan id
1681  *
1682  * Returns the next vlan id in the list for this vpath.
1683  * see also: vxge_hw_vpath_vid_get
1684  *
1685  */
1686 enum vxge_hw_status
1687 vxge_hw_vpath_vid_get_next(struct __vxge_hw_vpath_handle *vp, u64 *vid)
1688 {
1689         u64 data;
1690         enum vxge_hw_status status = VXGE_HW_OK;
1691
1692         if (vp == NULL) {
1693                 status = VXGE_HW_ERR_INVALID_HANDLE;
1694                 goto exit;
1695         }
1696
1697         status = __vxge_hw_vpath_rts_table_get(vp,
1698                         VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_NEXT_ENTRY,
1699                         VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
1700                         0, vid, &data);
1701
1702         *vid = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_VLAN_ID(*vid);
1703 exit:
1704         return status;
1705 }
1706
1707 /**
1708  * vxge_hw_vpath_vid_delete - Delete the vlan id entry for this vpath
1709  *               to vlan id table.
1710  * @vp: Vpath handle.
1711  * @vid: vlan id to be added for this vpath into the list
1712  *
1713  * Adds the given vlan id into the list for this  vpath.
1714  * see also: vxge_hw_vpath_vid_add, vxge_hw_vpath_vid_get and
1715  * vxge_hw_vpath_vid_get_next
1716  *
1717  */
1718 enum vxge_hw_status
1719 vxge_hw_vpath_vid_delete(struct __vxge_hw_vpath_handle *vp, u64 vid)
1720 {
1721         enum vxge_hw_status status = VXGE_HW_OK;
1722
1723         if (vp == NULL) {
1724                 status = VXGE_HW_ERR_INVALID_HANDLE;
1725                 goto exit;
1726         }
1727
1728         status = __vxge_hw_vpath_rts_table_set(vp,
1729                         VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_DELETE_ENTRY,
1730                         VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
1731                         0, VXGE_HW_RTS_ACCESS_STEER_DATA0_VLAN_ID(vid), 0);
1732 exit:
1733         return status;
1734 }
1735
1736 /**
1737  * vxge_hw_vpath_promisc_enable - Enable promiscuous mode.
1738  * @vp: Vpath handle.
1739  *
1740  * Enable promiscuous mode of Titan-e operation.
1741  *
1742  * See also: vxge_hw_vpath_promisc_disable().
1743  */
1744 enum vxge_hw_status vxge_hw_vpath_promisc_enable(
1745                         struct __vxge_hw_vpath_handle *vp)
1746 {
1747         u64 val64;
1748         struct __vxge_hw_virtualpath *vpath;
1749         enum vxge_hw_status status = VXGE_HW_OK;
1750
1751         if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
1752                 status = VXGE_HW_ERR_INVALID_HANDLE;
1753                 goto exit;
1754         }
1755
1756         vpath = vp->vpath;
1757
1758         /* Enable promiscous mode for function 0 only */
1759         if (!(vpath->hldev->access_rights &
1760                 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM))
1761                 return VXGE_HW_OK;
1762
1763         val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
1764
1765         if (!(val64 & VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN)) {
1766
1767                 val64 |= VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN |
1768                          VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN |
1769                          VXGE_HW_RXMAC_VCFG0_BCAST_EN |
1770                          VXGE_HW_RXMAC_VCFG0_ALL_VID_EN;
1771
1772                 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
1773         }
1774 exit:
1775         return status;
1776 }
1777
1778 /**
1779  * vxge_hw_vpath_promisc_disable - Disable promiscuous mode.
1780  * @vp: Vpath handle.
1781  *
1782  * Disable promiscuous mode of Titan-e operation.
1783  *
1784  * See also: vxge_hw_vpath_promisc_enable().
1785  */
1786 enum vxge_hw_status vxge_hw_vpath_promisc_disable(
1787                         struct __vxge_hw_vpath_handle *vp)
1788 {
1789         u64 val64;
1790         struct __vxge_hw_virtualpath *vpath;
1791         enum vxge_hw_status status = VXGE_HW_OK;
1792
1793         if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
1794                 status = VXGE_HW_ERR_INVALID_HANDLE;
1795                 goto exit;
1796         }
1797
1798         vpath = vp->vpath;
1799
1800         val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
1801
1802         if (val64 & VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN) {
1803
1804                 val64 &= ~(VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN |
1805                            VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN |
1806                            VXGE_HW_RXMAC_VCFG0_ALL_VID_EN);
1807
1808                 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
1809         }
1810 exit:
1811         return status;
1812 }
1813
1814 /*
1815  * vxge_hw_vpath_bcast_enable - Enable broadcast
1816  * @vp: Vpath handle.
1817  *
1818  * Enable receiving broadcasts.
1819  */
1820 enum vxge_hw_status vxge_hw_vpath_bcast_enable(
1821                         struct __vxge_hw_vpath_handle *vp)
1822 {
1823         u64 val64;
1824         struct __vxge_hw_virtualpath *vpath;
1825         enum vxge_hw_status status = VXGE_HW_OK;
1826
1827         if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
1828                 status = VXGE_HW_ERR_INVALID_HANDLE;
1829                 goto exit;
1830         }
1831
1832         vpath = vp->vpath;
1833
1834         val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
1835
1836         if (!(val64 & VXGE_HW_RXMAC_VCFG0_BCAST_EN)) {
1837                 val64 |= VXGE_HW_RXMAC_VCFG0_BCAST_EN;
1838                 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
1839         }
1840 exit:
1841         return status;
1842 }
1843
1844 /**
1845  * vxge_hw_vpath_mcast_enable - Enable multicast addresses.
1846  * @vp: Vpath handle.
1847  *
1848  * Enable Titan-e multicast addresses.
1849  * Returns: VXGE_HW_OK on success.
1850  *
1851  */
1852 enum vxge_hw_status vxge_hw_vpath_mcast_enable(
1853                         struct __vxge_hw_vpath_handle *vp)
1854 {
1855         u64 val64;
1856         struct __vxge_hw_virtualpath *vpath;
1857         enum vxge_hw_status status = VXGE_HW_OK;
1858
1859         if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
1860                 status = VXGE_HW_ERR_INVALID_HANDLE;
1861                 goto exit;
1862         }
1863
1864         vpath = vp->vpath;
1865
1866         val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
1867
1868         if (!(val64 & VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN)) {
1869                 val64 |= VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN;
1870                 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
1871         }
1872 exit:
1873         return status;
1874 }
1875
1876 /**
1877  * vxge_hw_vpath_mcast_disable - Disable  multicast addresses.
1878  * @vp: Vpath handle.
1879  *
1880  * Disable Titan-e multicast addresses.
1881  * Returns: VXGE_HW_OK - success.
1882  * VXGE_HW_ERR_INVALID_HANDLE - Invalid handle
1883  *
1884  */
1885 enum vxge_hw_status
1886 vxge_hw_vpath_mcast_disable(struct __vxge_hw_vpath_handle *vp)
1887 {
1888         u64 val64;
1889         struct __vxge_hw_virtualpath *vpath;
1890         enum vxge_hw_status status = VXGE_HW_OK;
1891
1892         if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
1893                 status = VXGE_HW_ERR_INVALID_HANDLE;
1894                 goto exit;
1895         }
1896
1897         vpath = vp->vpath;
1898
1899         val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
1900
1901         if (val64 & VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN) {
1902                 val64 &= ~VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN;
1903                 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
1904         }
1905 exit:
1906         return status;
1907 }
1908
1909 /*
1910  * __vxge_hw_vpath_alarm_process - Process Alarms.
1911  * @vpath: Virtual Path.
1912  * @skip_alarms: Do not clear the alarms
1913  *
1914  * Process vpath alarms.
1915  *
1916  */
1917 enum vxge_hw_status __vxge_hw_vpath_alarm_process(
1918                         struct __vxge_hw_virtualpath *vpath,
1919                         u32 skip_alarms)
1920 {
1921         u64 val64;
1922         u64 alarm_status;
1923         u64 pic_status;
1924         struct __vxge_hw_device *hldev = NULL;
1925         enum vxge_hw_event alarm_event = VXGE_HW_EVENT_UNKNOWN;
1926         u64 mask64;
1927         struct vxge_hw_vpath_stats_sw_info *sw_stats;
1928         struct vxge_hw_vpath_reg __iomem *vp_reg;
1929
1930         if (vpath == NULL) {
1931                 alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_UNKNOWN,
1932                         alarm_event);
1933                 goto out2;
1934         }
1935
1936         hldev = vpath->hldev;
1937         vp_reg = vpath->vp_reg;
1938         alarm_status = readq(&vp_reg->vpath_general_int_status);
1939
1940         if (alarm_status == VXGE_HW_ALL_FOXES) {
1941                 alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_SLOT_FREEZE,
1942                         alarm_event);
1943                 goto out;
1944         }
1945
1946         sw_stats = vpath->sw_stats;
1947
1948         if (alarm_status & ~(
1949                 VXGE_HW_VPATH_GENERAL_INT_STATUS_PIC_INT |
1950                 VXGE_HW_VPATH_GENERAL_INT_STATUS_PCI_INT |
1951                 VXGE_HW_VPATH_GENERAL_INT_STATUS_WRDMA_INT |
1952                 VXGE_HW_VPATH_GENERAL_INT_STATUS_XMAC_INT)) {
1953                 sw_stats->error_stats.unknown_alarms++;
1954
1955                 alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_UNKNOWN,
1956                         alarm_event);
1957                 goto out;
1958         }
1959
1960         if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_XMAC_INT) {
1961
1962                 val64 = readq(&vp_reg->xgmac_vp_int_status);
1963
1964                 if (val64 &
1965                 VXGE_HW_XGMAC_VP_INT_STATUS_ASIC_NTWK_VP_ERR_ASIC_NTWK_VP_INT) {
1966
1967                         val64 = readq(&vp_reg->asic_ntwk_vp_err_reg);
1968
1969                         if (((val64 &
1970                               VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT) &&
1971                              (!(val64 &
1972                                 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK))) ||
1973                             ((val64 &
1974                               VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT_OCCURR) &&
1975                              (!(val64 &
1976                                 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK_OCCURR)
1977                                      ))) {
1978                                 sw_stats->error_stats.network_sustained_fault++;
1979
1980                                 writeq(
1981                                 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT,
1982                                         &vp_reg->asic_ntwk_vp_err_mask);
1983
1984                                 __vxge_hw_device_handle_link_down_ind(hldev);
1985                                 alarm_event = VXGE_HW_SET_LEVEL(
1986                                         VXGE_HW_EVENT_LINK_DOWN, alarm_event);
1987                         }
1988
1989                         if (((val64 &
1990                               VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK) &&
1991                              (!(val64 &
1992                                 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT))) ||
1993                             ((val64 &
1994                               VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK_OCCURR) &&
1995                              (!(val64 &
1996                                 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT_OCCURR)
1997                                      ))) {
1998
1999                                 sw_stats->error_stats.network_sustained_ok++;
2000
2001                                 writeq(
2002                                 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK,
2003                                         &vp_reg->asic_ntwk_vp_err_mask);
2004
2005                                 __vxge_hw_device_handle_link_up_ind(hldev);
2006                                 alarm_event = VXGE_HW_SET_LEVEL(
2007                                         VXGE_HW_EVENT_LINK_UP, alarm_event);
2008                         }
2009
2010                         writeq(VXGE_HW_INTR_MASK_ALL,
2011                                 &vp_reg->asic_ntwk_vp_err_reg);
2012
2013                         alarm_event = VXGE_HW_SET_LEVEL(
2014                                 VXGE_HW_EVENT_ALARM_CLEARED, alarm_event);
2015
2016                         if (skip_alarms)
2017                                 return VXGE_HW_OK;
2018                 }
2019         }
2020
2021         if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_PIC_INT) {
2022
2023                 pic_status = readq(&vp_reg->vpath_ppif_int_status);
2024
2025                 if (pic_status &
2026                     VXGE_HW_VPATH_PPIF_INT_STATUS_GENERAL_ERRORS_GENERAL_INT) {
2027
2028                         val64 = readq(&vp_reg->general_errors_reg);
2029                         mask64 = readq(&vp_reg->general_errors_mask);
2030
2031                         if ((val64 &
2032                                 VXGE_HW_GENERAL_ERRORS_REG_INI_SERR_DET) &
2033                                 ~mask64) {
2034                                 sw_stats->error_stats.ini_serr_det++;
2035
2036                                 alarm_event = VXGE_HW_SET_LEVEL(
2037                                         VXGE_HW_EVENT_SERR, alarm_event);
2038                         }
2039
2040                         if ((val64 &
2041                             VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO0_OVRFLOW) &
2042                                 ~mask64) {
2043                                 sw_stats->error_stats.dblgen_fifo0_overflow++;
2044
2045                                 alarm_event = VXGE_HW_SET_LEVEL(
2046                                         VXGE_HW_EVENT_FIFO_ERR, alarm_event);
2047                         }
2048
2049                         if ((val64 &
2050                             VXGE_HW_GENERAL_ERRORS_REG_STATSB_PIF_CHAIN_ERR) &
2051                                 ~mask64)
2052                                 sw_stats->error_stats.statsb_pif_chain_error++;
2053
2054                         if ((val64 &
2055                            VXGE_HW_GENERAL_ERRORS_REG_STATSB_DROP_TIMEOUT_REQ) &
2056                                 ~mask64)
2057                                 sw_stats->error_stats.statsb_drop_timeout++;
2058
2059                         if ((val64 &
2060                                 VXGE_HW_GENERAL_ERRORS_REG_TGT_ILLEGAL_ACCESS) &
2061                                 ~mask64)
2062                                 sw_stats->error_stats.target_illegal_access++;
2063
2064                         if (!skip_alarms) {
2065                                 writeq(VXGE_HW_INTR_MASK_ALL,
2066                                         &vp_reg->general_errors_reg);
2067                                 alarm_event = VXGE_HW_SET_LEVEL(
2068                                         VXGE_HW_EVENT_ALARM_CLEARED,
2069                                         alarm_event);
2070                         }
2071                 }
2072
2073                 if (pic_status &
2074                     VXGE_HW_VPATH_PPIF_INT_STATUS_KDFCCTL_ERRORS_KDFCCTL_INT) {
2075
2076                         val64 = readq(&vp_reg->kdfcctl_errors_reg);
2077                         mask64 = readq(&vp_reg->kdfcctl_errors_mask);
2078
2079                         if ((val64 &
2080                             VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_OVRWR) &
2081                                 ~mask64) {
2082                                 sw_stats->error_stats.kdfcctl_fifo0_overwrite++;
2083
2084                                 alarm_event = VXGE_HW_SET_LEVEL(
2085                                         VXGE_HW_EVENT_FIFO_ERR,
2086                                         alarm_event);
2087                         }
2088
2089                         if ((val64 &
2090                             VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_POISON) &
2091                                 ~mask64) {
2092                                 sw_stats->error_stats.kdfcctl_fifo0_poison++;
2093
2094                                 alarm_event = VXGE_HW_SET_LEVEL(
2095                                         VXGE_HW_EVENT_FIFO_ERR,
2096                                         alarm_event);
2097                         }
2098
2099                         if ((val64 &
2100                             VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_DMA_ERR) &
2101                                 ~mask64) {
2102                                 sw_stats->error_stats.kdfcctl_fifo0_dma_error++;
2103
2104                                 alarm_event = VXGE_HW_SET_LEVEL(
2105                                         VXGE_HW_EVENT_FIFO_ERR,
2106                                         alarm_event);
2107                         }
2108
2109                         if (!skip_alarms) {
2110                                 writeq(VXGE_HW_INTR_MASK_ALL,
2111                                         &vp_reg->kdfcctl_errors_reg);
2112                                 alarm_event = VXGE_HW_SET_LEVEL(
2113                                         VXGE_HW_EVENT_ALARM_CLEARED,
2114                                         alarm_event);
2115                         }
2116                 }
2117
2118         }
2119
2120         if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_WRDMA_INT) {
2121
2122                 val64 = readq(&vp_reg->wrdma_alarm_status);
2123
2124                 if (val64 & VXGE_HW_WRDMA_ALARM_STATUS_PRC_ALARM_PRC_INT) {
2125
2126                         val64 = readq(&vp_reg->prc_alarm_reg);
2127                         mask64 = readq(&vp_reg->prc_alarm_mask);
2128
2129                         if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RING_BUMP)&
2130                                 ~mask64)
2131                                 sw_stats->error_stats.prc_ring_bumps++;
2132
2133                         if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RXDCM_SC_ERR) &
2134                                 ~mask64) {
2135                                 sw_stats->error_stats.prc_rxdcm_sc_err++;
2136
2137                                 alarm_event = VXGE_HW_SET_LEVEL(
2138                                         VXGE_HW_EVENT_VPATH_ERR,
2139                                         alarm_event);
2140                         }
2141
2142                         if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RXDCM_SC_ABORT)
2143                                 & ~mask64) {
2144                                 sw_stats->error_stats.prc_rxdcm_sc_abort++;
2145
2146                                 alarm_event = VXGE_HW_SET_LEVEL(
2147                                                 VXGE_HW_EVENT_VPATH_ERR,
2148                                                 alarm_event);
2149                         }
2150
2151                         if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_QUANTA_SIZE_ERR)
2152                                  & ~mask64) {
2153                                 sw_stats->error_stats.prc_quanta_size_err++;
2154
2155                                 alarm_event = VXGE_HW_SET_LEVEL(
2156                                         VXGE_HW_EVENT_VPATH_ERR,
2157                                         alarm_event);
2158                         }
2159
2160                         if (!skip_alarms) {
2161                                 writeq(VXGE_HW_INTR_MASK_ALL,
2162                                         &vp_reg->prc_alarm_reg);
2163                                 alarm_event = VXGE_HW_SET_LEVEL(
2164                                                 VXGE_HW_EVENT_ALARM_CLEARED,
2165                                                 alarm_event);
2166                         }
2167                 }
2168         }
2169 out:
2170         hldev->stats.sw_dev_err_stats.vpath_alarms++;
2171 out2:
2172         if ((alarm_event == VXGE_HW_EVENT_ALARM_CLEARED) ||
2173                 (alarm_event == VXGE_HW_EVENT_UNKNOWN))
2174                 return VXGE_HW_OK;
2175
2176         __vxge_hw_device_handle_error(hldev, vpath->vp_id, alarm_event);
2177
2178         if (alarm_event == VXGE_HW_EVENT_SERR)
2179                 return VXGE_HW_ERR_CRITICAL;
2180
2181         return (alarm_event == VXGE_HW_EVENT_SLOT_FREEZE) ?
2182                 VXGE_HW_ERR_SLOT_FREEZE :
2183                 (alarm_event == VXGE_HW_EVENT_FIFO_ERR) ? VXGE_HW_ERR_FIFO :
2184                 VXGE_HW_ERR_VPATH;
2185 }
2186
2187 /*
2188  * vxge_hw_vpath_alarm_process - Process Alarms.
2189  * @vpath: Virtual Path.
2190  * @skip_alarms: Do not clear the alarms
2191  *
2192  * Process vpath alarms.
2193  *
2194  */
2195 enum vxge_hw_status vxge_hw_vpath_alarm_process(
2196                         struct __vxge_hw_vpath_handle *vp,
2197                         u32 skip_alarms)
2198 {
2199         enum vxge_hw_status status = VXGE_HW_OK;
2200
2201         if (vp == NULL) {
2202                 status = VXGE_HW_ERR_INVALID_HANDLE;
2203                 goto exit;
2204         }
2205
2206         status = __vxge_hw_vpath_alarm_process(vp->vpath, skip_alarms);
2207 exit:
2208         return status;
2209 }
2210
2211 /**
2212  * vxge_hw_vpath_msix_set - Associate MSIX vectors with TIM interrupts and
2213  *                            alrms
2214  * @vp: Virtual Path handle.
2215  * @tim_msix_id: MSIX vectors associated with VXGE_HW_MAX_INTR_PER_VP number of
2216  *             interrupts(Can be repeated). If fifo or ring are not enabled
2217  *             the MSIX vector for that should be set to 0
2218  * @alarm_msix_id: MSIX vector for alarm.
2219  *
2220  * This API will associate a given MSIX vector numbers with the four TIM
2221  * interrupts and alarm interrupt.
2222  */
2223 enum vxge_hw_status
2224 vxge_hw_vpath_msix_set(struct __vxge_hw_vpath_handle *vp, int *tim_msix_id,
2225                        int alarm_msix_id)
2226 {
2227         u64 val64;
2228         struct __vxge_hw_virtualpath *vpath = vp->vpath;
2229         struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg;
2230         u32 first_vp_id = vpath->hldev->first_vp_id;
2231
2232         val64 =  VXGE_HW_INTERRUPT_CFG0_GROUP0_MSIX_FOR_TXTI(
2233                   (first_vp_id * 4) + tim_msix_id[0]) |
2234                  VXGE_HW_INTERRUPT_CFG0_GROUP1_MSIX_FOR_TXTI(
2235                   (first_vp_id * 4) + tim_msix_id[1]) |
2236                  VXGE_HW_INTERRUPT_CFG0_GROUP2_MSIX_FOR_TXTI(
2237                         (first_vp_id * 4) + tim_msix_id[2]);
2238
2239                 val64 |= VXGE_HW_INTERRUPT_CFG0_GROUP3_MSIX_FOR_TXTI(
2240                         (first_vp_id * 4) + tim_msix_id[3]);
2241
2242         writeq(val64, &vp_reg->interrupt_cfg0);
2243
2244         writeq(VXGE_HW_INTERRUPT_CFG2_ALARM_MAP_TO_MSG(
2245                         (first_vp_id * 4) + alarm_msix_id),
2246                         &vp_reg->interrupt_cfg2);
2247
2248         if (vpath->hldev->config.intr_mode ==
2249                                         VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) {
2250                 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
2251                                 VXGE_HW_ONE_SHOT_VECT1_EN_ONE_SHOT_VECT1_EN,
2252                                 0, 32), &vp_reg->one_shot_vect1_en);
2253         }
2254
2255         if (vpath->hldev->config.intr_mode ==
2256                 VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) {
2257                 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
2258                                 VXGE_HW_ONE_SHOT_VECT2_EN_ONE_SHOT_VECT2_EN,
2259                                 0, 32), &vp_reg->one_shot_vect2_en);
2260
2261                 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
2262                                 VXGE_HW_ONE_SHOT_VECT3_EN_ONE_SHOT_VECT3_EN,
2263                                 0, 32), &vp_reg->one_shot_vect3_en);
2264         }
2265
2266         return VXGE_HW_OK;
2267 }
2268
2269 /**
2270  * vxge_hw_vpath_msix_mask - Mask MSIX Vector.
2271  * @vp: Virtual Path handle.
2272  * @msix_id:  MSIX ID
2273  *
2274  * The function masks the msix interrupt for the given msix_id
2275  *
2276  * Returns: 0,
2277  * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2278  * status.
2279  * See also:
2280  */
2281 void
2282 vxge_hw_vpath_msix_mask(struct __vxge_hw_vpath_handle *vp, int msix_id)
2283 {
2284         struct __vxge_hw_device *hldev = vp->vpath->hldev;
2285         __vxge_hw_pio_mem_write32_upper(
2286                 (u32) vxge_bVALn(vxge_mBIT(hldev->first_vp_id +
2287                         (msix_id  / 4)), 0, 32),
2288                 &hldev->common_reg->set_msix_mask_vect[msix_id % 4]);
2289
2290         return;
2291 }
2292
2293 /**
2294  * vxge_hw_vpath_msix_clear - Clear MSIX Vector.
2295  * @vp: Virtual Path handle.
2296  * @msix_id:  MSI ID
2297  *
2298  * The function clears the msix interrupt for the given msix_id
2299  *
2300  * Returns: 0,
2301  * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2302  * status.
2303  * See also:
2304  */
2305 void
2306 vxge_hw_vpath_msix_clear(struct __vxge_hw_vpath_handle *vp, int msix_id)
2307 {
2308         struct __vxge_hw_device *hldev = vp->vpath->hldev;
2309         if (hldev->config.intr_mode ==
2310                         VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) {
2311                 __vxge_hw_pio_mem_write32_upper(
2312                         (u32)vxge_bVALn(vxge_mBIT(hldev->first_vp_id +
2313                                 (msix_id/4)), 0, 32),
2314                                 &hldev->common_reg->
2315                                         clr_msix_one_shot_vec[msix_id%4]);
2316         } else {
2317                 __vxge_hw_pio_mem_write32_upper(
2318                         (u32)vxge_bVALn(vxge_mBIT(hldev->first_vp_id +
2319                                 (msix_id/4)), 0, 32),
2320                                 &hldev->common_reg->
2321                                         clear_msix_mask_vect[msix_id%4]);
2322         }
2323
2324         return;
2325 }
2326
2327 /**
2328  * vxge_hw_vpath_msix_unmask - Unmask the MSIX Vector.
2329  * @vp: Virtual Path handle.
2330  * @msix_id:  MSI ID
2331  *
2332  * The function unmasks the msix interrupt for the given msix_id
2333  *
2334  * Returns: 0,
2335  * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2336  * status.
2337  * See also:
2338  */
2339 void
2340 vxge_hw_vpath_msix_unmask(struct __vxge_hw_vpath_handle *vp, int msix_id)
2341 {
2342         struct __vxge_hw_device *hldev = vp->vpath->hldev;
2343         __vxge_hw_pio_mem_write32_upper(
2344                         (u32)vxge_bVALn(vxge_mBIT(hldev->first_vp_id +
2345                         (msix_id/4)), 0, 32),
2346                         &hldev->common_reg->clear_msix_mask_vect[msix_id%4]);
2347
2348         return;
2349 }
2350
2351 /**
2352  * vxge_hw_vpath_msix_mask_all - Mask all MSIX vectors for the vpath.
2353  * @vp: Virtual Path handle.
2354  *
2355  * The function masks all msix interrupt for the given vpath
2356  *
2357  */
2358 void
2359 vxge_hw_vpath_msix_mask_all(struct __vxge_hw_vpath_handle *vp)
2360 {
2361
2362         __vxge_hw_pio_mem_write32_upper(
2363                 (u32)vxge_bVALn(vxge_mBIT(vp->vpath->vp_id), 0, 32),
2364                 &vp->vpath->hldev->common_reg->set_msix_mask_all_vect);
2365
2366         return;
2367 }
2368
2369 /**
2370  * vxge_hw_vpath_inta_mask_tx_rx - Mask Tx and Rx interrupts.
2371  * @vp: Virtual Path handle.
2372  *
2373  * Mask Tx and Rx vpath interrupts.
2374  *
2375  * See also: vxge_hw_vpath_inta_mask_tx_rx()
2376  */
2377 void vxge_hw_vpath_inta_mask_tx_rx(struct __vxge_hw_vpath_handle *vp)
2378 {
2379         u64     tim_int_mask0[4] = {[0 ...3] = 0};
2380         u32     tim_int_mask1[4] = {[0 ...3] = 0};
2381         u64     val64;
2382         struct __vxge_hw_device *hldev = vp->vpath->hldev;
2383
2384         VXGE_HW_DEVICE_TIM_INT_MASK_SET(tim_int_mask0,
2385                 tim_int_mask1, vp->vpath->vp_id);
2386
2387         val64 = readq(&hldev->common_reg->tim_int_mask0);
2388
2389         if ((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
2390                 (tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
2391                 writeq((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
2392                         tim_int_mask0[VXGE_HW_VPATH_INTR_RX] | val64),
2393                         &hldev->common_reg->tim_int_mask0);
2394         }
2395
2396         val64 = readl(&hldev->common_reg->tim_int_mask1);
2397
2398         if ((tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
2399                 (tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
2400                 __vxge_hw_pio_mem_write32_upper(
2401                         (tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
2402                         tim_int_mask1[VXGE_HW_VPATH_INTR_RX] | val64),
2403                         &hldev->common_reg->tim_int_mask1);
2404         }
2405
2406         return;
2407 }
2408
2409 /**
2410  * vxge_hw_vpath_inta_unmask_tx_rx - Unmask Tx and Rx interrupts.
2411  * @vp: Virtual Path handle.
2412  *
2413  * Unmask Tx and Rx vpath interrupts.
2414  *
2415  * See also: vxge_hw_vpath_inta_mask_tx_rx()
2416  */
2417 void vxge_hw_vpath_inta_unmask_tx_rx(struct __vxge_hw_vpath_handle *vp)
2418 {
2419         u64     tim_int_mask0[4] = {[0 ...3] = 0};
2420         u32     tim_int_mask1[4] = {[0 ...3] = 0};
2421         u64     val64;
2422         struct __vxge_hw_device *hldev = vp->vpath->hldev;
2423
2424         VXGE_HW_DEVICE_TIM_INT_MASK_SET(tim_int_mask0,
2425                 tim_int_mask1, vp->vpath->vp_id);
2426
2427         val64 = readq(&hldev->common_reg->tim_int_mask0);
2428
2429         if ((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
2430            (tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
2431                 writeq((~(tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
2432                         tim_int_mask0[VXGE_HW_VPATH_INTR_RX])) & val64,
2433                         &hldev->common_reg->tim_int_mask0);
2434         }
2435
2436         if ((tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
2437            (tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
2438                 __vxge_hw_pio_mem_write32_upper(
2439                         (~(tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
2440                           tim_int_mask1[VXGE_HW_VPATH_INTR_RX])) & val64,
2441                         &hldev->common_reg->tim_int_mask1);
2442         }
2443
2444         return;
2445 }
2446
2447 /**
2448  * vxge_hw_vpath_poll_rx - Poll Rx Virtual Path for completed
2449  * descriptors and process the same.
2450  * @ring: Handle to the ring object used for receive
2451  *
2452  * The function polls the Rx for the completed  descriptors and calls
2453  * the driver via supplied completion   callback.
2454  *
2455  * Returns: VXGE_HW_OK, if the polling is completed successful.
2456  * VXGE_HW_COMPLETIONS_REMAIN: There are still more completed
2457  * descriptors available which are yet to be processed.
2458  *
2459  * See also: vxge_hw_vpath_poll_rx()
2460  */
2461 enum vxge_hw_status vxge_hw_vpath_poll_rx(struct __vxge_hw_ring *ring)
2462 {
2463         u8 t_code;
2464         enum vxge_hw_status status = VXGE_HW_OK;
2465         void *first_rxdh;
2466         u64 val64 = 0;
2467         int new_count = 0;
2468
2469         ring->cmpl_cnt = 0;
2470
2471         status = vxge_hw_ring_rxd_next_completed(ring, &first_rxdh, &t_code);
2472         if (status == VXGE_HW_OK)
2473                 ring->callback(ring, first_rxdh,
2474                         t_code, ring->channel.userdata);
2475
2476         if (ring->cmpl_cnt != 0) {
2477                 ring->doorbell_cnt += ring->cmpl_cnt;
2478                 if (ring->doorbell_cnt >= ring->rxds_limit) {
2479                         /*
2480                          * Each RxD is of 4 qwords, update the number of
2481                          * qwords replenished
2482                          */
2483                         new_count = (ring->doorbell_cnt * 4);
2484
2485                         /* For each block add 4 more qwords */
2486                         ring->total_db_cnt += ring->doorbell_cnt;
2487                         if (ring->total_db_cnt >= ring->rxds_per_block) {
2488                                 new_count += 4;
2489                                 /* Reset total count */
2490                                 ring->total_db_cnt %= ring->rxds_per_block;
2491                         }
2492                         writeq(VXGE_HW_PRC_RXD_DOORBELL_NEW_QW_CNT(new_count),
2493                                 &ring->vp_reg->prc_rxd_doorbell);
2494                         val64 =
2495                           readl(&ring->common_reg->titan_general_int_status);
2496                         ring->doorbell_cnt = 0;
2497                 }
2498         }
2499
2500         return status;
2501 }
2502
2503 /**
2504  * vxge_hw_vpath_poll_tx - Poll Tx for completed descriptors and process
2505  * the same.
2506  * @fifo: Handle to the fifo object used for non offload send
2507  *
2508  * The function polls the Tx for the completed  descriptors and calls
2509  * the driver via supplied completion callback.
2510  *
2511  * Returns: VXGE_HW_OK, if the polling is completed successful.
2512  * VXGE_HW_COMPLETIONS_REMAIN: There are still more completed
2513  * descriptors available which are yet to be processed.
2514  *
2515  * See also: vxge_hw_vpath_poll_tx().
2516  */
2517 enum vxge_hw_status vxge_hw_vpath_poll_tx(struct __vxge_hw_fifo *fifo,
2518                                         struct sk_buff ***skb_ptr, int nr_skb,
2519                                         int *more)
2520 {
2521         enum vxge_hw_fifo_tcode t_code;
2522         void *first_txdlh;
2523         enum vxge_hw_status status = VXGE_HW_OK;
2524         struct __vxge_hw_channel *channel;
2525
2526         channel = &fifo->channel;
2527
2528         status = vxge_hw_fifo_txdl_next_completed(fifo,
2529                                 &first_txdlh, &t_code);
2530         if (status == VXGE_HW_OK)
2531                 if (fifo->callback(fifo, first_txdlh, t_code,
2532                         channel->userdata, skb_ptr, nr_skb, more) != VXGE_HW_OK)
2533                         status = VXGE_HW_COMPLETIONS_REMAIN;
2534
2535         return status;
2536 }