net: usb: raw-ip: support more rmnet interfaces
[linux-2.6.git] / drivers / net / tsi108_eth.c
1 /*******************************************************************************
2
3   Copyright(c) 2006 Tundra Semiconductor Corporation.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of the GNU General Public License as published by the Free
7   Software Foundation; either version 2 of the License, or (at your option)
8   any later version.
9
10   This program is distributed in the hope that it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc., 59
17   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
18
19 *******************************************************************************/
20
21 /* This driver is based on the driver code originally developed
22  * for the Intel IOC80314 (ForestLake) Gigabit Ethernet by
23  * scott.wood@timesys.com  * Copyright (C) 2003 TimeSys Corporation
24  *
25  * Currently changes from original version are:
26  * - porting to Tsi108-based platform and kernel 2.6 (kong.lai@tundra.com)
27  * - modifications to handle two ports independently and support for
28  *   additional PHY devices (alexandre.bounine@tundra.com)
29  * - Get hardware information from platform device. (tie-fei.zang@freescale.com)
30  *
31  */
32
33 #include <linux/module.h>
34 #include <linux/types.h>
35 #include <linux/init.h>
36 #include <linux/interrupt.h>
37 #include <linux/net.h>
38 #include <linux/netdevice.h>
39 #include <linux/etherdevice.h>
40 #include <linux/ethtool.h>
41 #include <linux/skbuff.h>
42 #include <linux/spinlock.h>
43 #include <linux/delay.h>
44 #include <linux/crc32.h>
45 #include <linux/mii.h>
46 #include <linux/device.h>
47 #include <linux/pci.h>
48 #include <linux/rtnetlink.h>
49 #include <linux/timer.h>
50 #include <linux/platform_device.h>
51 #include <linux/gfp.h>
52
53 #include <asm/system.h>
54 #include <asm/io.h>
55 #include <asm/tsi108.h>
56
57 #include "tsi108_eth.h"
58
59 #define MII_READ_DELAY 10000    /* max link wait time in msec */
60
61 #define TSI108_RXRING_LEN     256
62
63 /* NOTE: The driver currently does not support receiving packets
64  * larger than the buffer size, so don't decrease this (unless you
65  * want to add such support).
66  */
67 #define TSI108_RXBUF_SIZE     1536
68
69 #define TSI108_TXRING_LEN     256
70
71 #define TSI108_TX_INT_FREQ    64
72
73 /* Check the phy status every half a second. */
74 #define CHECK_PHY_INTERVAL (HZ/2)
75
76 static int tsi108_init_one(struct platform_device *pdev);
77 static int tsi108_ether_remove(struct platform_device *pdev);
78
79 struct tsi108_prv_data {
80         void  __iomem *regs;    /* Base of normal regs */
81         void  __iomem *phyregs; /* Base of register bank used for PHY access */
82
83         struct net_device *dev;
84         struct napi_struct napi;
85
86         unsigned int phy;               /* Index of PHY for this interface */
87         unsigned int irq_num;
88         unsigned int id;
89         unsigned int phy_type;
90
91         struct timer_list timer;/* Timer that triggers the check phy function */
92         unsigned int rxtail;    /* Next entry in rxring to read */
93         unsigned int rxhead;    /* Next entry in rxring to give a new buffer */
94         unsigned int rxfree;    /* Number of free, allocated RX buffers */
95
96         unsigned int rxpending; /* Non-zero if there are still descriptors
97                                  * to be processed from a previous descriptor
98                                  * interrupt condition that has been cleared */
99
100         unsigned int txtail;    /* Next TX descriptor to check status on */
101         unsigned int txhead;    /* Next TX descriptor to use */
102
103         /* Number of free TX descriptors.  This could be calculated from
104          * rxhead and rxtail if one descriptor were left unused to disambiguate
105          * full and empty conditions, but it's simpler to just keep track
106          * explicitly. */
107
108         unsigned int txfree;
109
110         unsigned int phy_ok;            /* The PHY is currently powered on. */
111
112         /* PHY status (duplex is 1 for half, 2 for full,
113          * so that the default 0 indicates that neither has
114          * yet been configured). */
115
116         unsigned int link_up;
117         unsigned int speed;
118         unsigned int duplex;
119
120         tx_desc *txring;
121         rx_desc *rxring;
122         struct sk_buff *txskbs[TSI108_TXRING_LEN];
123         struct sk_buff *rxskbs[TSI108_RXRING_LEN];
124
125         dma_addr_t txdma, rxdma;
126
127         /* txlock nests in misclock and phy_lock */
128
129         spinlock_t txlock, misclock;
130
131         /* stats is used to hold the upper bits of each hardware counter,
132          * and tmpstats is used to hold the full values for returning
133          * to the caller of get_stats().  They must be separate in case
134          * an overflow interrupt occurs before the stats are consumed.
135          */
136
137         struct net_device_stats stats;
138         struct net_device_stats tmpstats;
139
140         /* These stats are kept separate in hardware, thus require individual
141          * fields for handling carry.  They are combined in get_stats.
142          */
143
144         unsigned long rx_fcs;   /* Add to rx_frame_errors */
145         unsigned long rx_short_fcs;     /* Add to rx_frame_errors */
146         unsigned long rx_long_fcs;      /* Add to rx_frame_errors */
147         unsigned long rx_underruns;     /* Add to rx_length_errors */
148         unsigned long rx_overruns;      /* Add to rx_length_errors */
149
150         unsigned long tx_coll_abort;    /* Add to tx_aborted_errors/collisions */
151         unsigned long tx_pause_drop;    /* Add to tx_aborted_errors */
152
153         unsigned long mc_hash[16];
154         u32 msg_enable;                 /* debug message level */
155         struct mii_if_info mii_if;
156         unsigned int init_media;
157 };
158
159 /* Structure for a device driver */
160
161 static struct platform_driver tsi_eth_driver = {
162         .probe = tsi108_init_one,
163         .remove = tsi108_ether_remove,
164         .driver = {
165                 .name = "tsi-ethernet",
166                 .owner = THIS_MODULE,
167         },
168 };
169
170 static void tsi108_timed_checker(unsigned long dev_ptr);
171
172 static void dump_eth_one(struct net_device *dev)
173 {
174         struct tsi108_prv_data *data = netdev_priv(dev);
175
176         printk("Dumping %s...\n", dev->name);
177         printk("intstat %x intmask %x phy_ok %d"
178                " link %d speed %d duplex %d\n",
179                TSI_READ(TSI108_EC_INTSTAT),
180                TSI_READ(TSI108_EC_INTMASK), data->phy_ok,
181                data->link_up, data->speed, data->duplex);
182
183         printk("TX: head %d, tail %d, free %d, stat %x, estat %x, err %x\n",
184                data->txhead, data->txtail, data->txfree,
185                TSI_READ(TSI108_EC_TXSTAT),
186                TSI_READ(TSI108_EC_TXESTAT),
187                TSI_READ(TSI108_EC_TXERR));
188
189         printk("RX: head %d, tail %d, free %d, stat %x,"
190                " estat %x, err %x, pending %d\n\n",
191                data->rxhead, data->rxtail, data->rxfree,
192                TSI_READ(TSI108_EC_RXSTAT),
193                TSI_READ(TSI108_EC_RXESTAT),
194                TSI_READ(TSI108_EC_RXERR), data->rxpending);
195 }
196
197 /* Synchronization is needed between the thread and up/down events.
198  * Note that the PHY is accessed through the same registers for both
199  * interfaces, so this can't be made interface-specific.
200  */
201
202 static DEFINE_SPINLOCK(phy_lock);
203
204 static int tsi108_read_mii(struct tsi108_prv_data *data, int reg)
205 {
206         unsigned i;
207
208         TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
209                                 (data->phy << TSI108_MAC_MII_ADDR_PHY) |
210                                 (reg << TSI108_MAC_MII_ADDR_REG));
211         TSI_WRITE_PHY(TSI108_MAC_MII_CMD, 0);
212         TSI_WRITE_PHY(TSI108_MAC_MII_CMD, TSI108_MAC_MII_CMD_READ);
213         for (i = 0; i < 100; i++) {
214                 if (!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
215                       (TSI108_MAC_MII_IND_NOTVALID | TSI108_MAC_MII_IND_BUSY)))
216                         break;
217                 udelay(10);
218         }
219
220         if (i == 100)
221                 return 0xffff;
222         else
223                 return TSI_READ_PHY(TSI108_MAC_MII_DATAIN);
224 }
225
226 static void tsi108_write_mii(struct tsi108_prv_data *data,
227                                 int reg, u16 val)
228 {
229         unsigned i = 100;
230         TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
231                                 (data->phy << TSI108_MAC_MII_ADDR_PHY) |
232                                 (reg << TSI108_MAC_MII_ADDR_REG));
233         TSI_WRITE_PHY(TSI108_MAC_MII_DATAOUT, val);
234         while (i--) {
235                 if(!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
236                         TSI108_MAC_MII_IND_BUSY))
237                         break;
238                 udelay(10);
239         }
240 }
241
242 static int tsi108_mdio_read(struct net_device *dev, int addr, int reg)
243 {
244         struct tsi108_prv_data *data = netdev_priv(dev);
245         return tsi108_read_mii(data, reg);
246 }
247
248 static void tsi108_mdio_write(struct net_device *dev, int addr, int reg, int val)
249 {
250         struct tsi108_prv_data *data = netdev_priv(dev);
251         tsi108_write_mii(data, reg, val);
252 }
253
254 static inline void tsi108_write_tbi(struct tsi108_prv_data *data,
255                                         int reg, u16 val)
256 {
257         unsigned i = 1000;
258         TSI_WRITE(TSI108_MAC_MII_ADDR,
259                              (0x1e << TSI108_MAC_MII_ADDR_PHY)
260                              | (reg << TSI108_MAC_MII_ADDR_REG));
261         TSI_WRITE(TSI108_MAC_MII_DATAOUT, val);
262         while(i--) {
263                 if(!(TSI_READ(TSI108_MAC_MII_IND) & TSI108_MAC_MII_IND_BUSY))
264                         return;
265                 udelay(10);
266         }
267         printk(KERN_ERR "%s function time out\n", __func__);
268 }
269
270 static int mii_speed(struct mii_if_info *mii)
271 {
272         int advert, lpa, val, media;
273         int lpa2 = 0;
274         int speed;
275
276         if (!mii_link_ok(mii))
277                 return 0;
278
279         val = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_BMSR);
280         if ((val & BMSR_ANEGCOMPLETE) == 0)
281                 return 0;
282
283         advert = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_ADVERTISE);
284         lpa = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_LPA);
285         media = mii_nway_result(advert & lpa);
286
287         if (mii->supports_gmii)
288                 lpa2 = mii->mdio_read(mii->dev, mii->phy_id, MII_STAT1000);
289
290         speed = lpa2 & (LPA_1000FULL | LPA_1000HALF) ? 1000 :
291                         (media & (ADVERTISE_100FULL | ADVERTISE_100HALF) ? 100 : 10);
292         return speed;
293 }
294
295 static void tsi108_check_phy(struct net_device *dev)
296 {
297         struct tsi108_prv_data *data = netdev_priv(dev);
298         u32 mac_cfg2_reg, portctrl_reg;
299         u32 duplex;
300         u32 speed;
301         unsigned long flags;
302
303         spin_lock_irqsave(&phy_lock, flags);
304
305         if (!data->phy_ok)
306                 goto out;
307
308         duplex = mii_check_media(&data->mii_if, netif_msg_link(data), data->init_media);
309         data->init_media = 0;
310
311         if (netif_carrier_ok(dev)) {
312
313                 speed = mii_speed(&data->mii_if);
314
315                 if ((speed != data->speed) || duplex) {
316
317                         mac_cfg2_reg = TSI_READ(TSI108_MAC_CFG2);
318                         portctrl_reg = TSI_READ(TSI108_EC_PORTCTRL);
319
320                         mac_cfg2_reg &= ~TSI108_MAC_CFG2_IFACE_MASK;
321
322                         if (speed == 1000) {
323                                 mac_cfg2_reg |= TSI108_MAC_CFG2_GIG;
324                                 portctrl_reg &= ~TSI108_EC_PORTCTRL_NOGIG;
325                         } else {
326                                 mac_cfg2_reg |= TSI108_MAC_CFG2_NOGIG;
327                                 portctrl_reg |= TSI108_EC_PORTCTRL_NOGIG;
328                         }
329
330                         data->speed = speed;
331
332                         if (data->mii_if.full_duplex) {
333                                 mac_cfg2_reg |= TSI108_MAC_CFG2_FULLDUPLEX;
334                                 portctrl_reg &= ~TSI108_EC_PORTCTRL_HALFDUPLEX;
335                                 data->duplex = 2;
336                         } else {
337                                 mac_cfg2_reg &= ~TSI108_MAC_CFG2_FULLDUPLEX;
338                                 portctrl_reg |= TSI108_EC_PORTCTRL_HALFDUPLEX;
339                                 data->duplex = 1;
340                         }
341
342                         TSI_WRITE(TSI108_MAC_CFG2, mac_cfg2_reg);
343                         TSI_WRITE(TSI108_EC_PORTCTRL, portctrl_reg);
344                 }
345
346                 if (data->link_up == 0) {
347                         /* The manual says it can take 3-4 usecs for the speed change
348                          * to take effect.
349                          */
350                         udelay(5);
351
352                         spin_lock(&data->txlock);
353                         if (is_valid_ether_addr(dev->dev_addr) && data->txfree)
354                                 netif_wake_queue(dev);
355
356                         data->link_up = 1;
357                         spin_unlock(&data->txlock);
358                 }
359         } else {
360                 if (data->link_up == 1) {
361                         netif_stop_queue(dev);
362                         data->link_up = 0;
363                         printk(KERN_NOTICE "%s : link is down\n", dev->name);
364                 }
365
366                 goto out;
367         }
368
369
370 out:
371         spin_unlock_irqrestore(&phy_lock, flags);
372 }
373
374 static inline void
375 tsi108_stat_carry_one(int carry, int carry_bit, int carry_shift,
376                       unsigned long *upper)
377 {
378         if (carry & carry_bit)
379                 *upper += carry_shift;
380 }
381
382 static void tsi108_stat_carry(struct net_device *dev)
383 {
384         struct tsi108_prv_data *data = netdev_priv(dev);
385         u32 carry1, carry2;
386
387         spin_lock_irq(&data->misclock);
388
389         carry1 = TSI_READ(TSI108_STAT_CARRY1);
390         carry2 = TSI_READ(TSI108_STAT_CARRY2);
391
392         TSI_WRITE(TSI108_STAT_CARRY1, carry1);
393         TSI_WRITE(TSI108_STAT_CARRY2, carry2);
394
395         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXBYTES,
396                               TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
397
398         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXPKTS,
399                               TSI108_STAT_RXPKTS_CARRY,
400                               &data->stats.rx_packets);
401
402         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFCS,
403                               TSI108_STAT_RXFCS_CARRY, &data->rx_fcs);
404
405         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXMCAST,
406                               TSI108_STAT_RXMCAST_CARRY,
407                               &data->stats.multicast);
408
409         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXALIGN,
410                               TSI108_STAT_RXALIGN_CARRY,
411                               &data->stats.rx_frame_errors);
412
413         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXLENGTH,
414                               TSI108_STAT_RXLENGTH_CARRY,
415                               &data->stats.rx_length_errors);
416
417         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXRUNT,
418                               TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
419
420         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJUMBO,
421                               TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
422
423         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFRAG,
424                               TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
425
426         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJABBER,
427                               TSI108_STAT_RXJABBER_CARRY, &data->rx_long_fcs);
428
429         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXDROP,
430                               TSI108_STAT_RXDROP_CARRY,
431                               &data->stats.rx_missed_errors);
432
433         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXBYTES,
434                               TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
435
436         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPKTS,
437                               TSI108_STAT_TXPKTS_CARRY,
438                               &data->stats.tx_packets);
439
440         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXDEF,
441                               TSI108_STAT_TXEXDEF_CARRY,
442                               &data->stats.tx_aborted_errors);
443
444         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXCOL,
445                               TSI108_STAT_TXEXCOL_CARRY, &data->tx_coll_abort);
446
447         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXTCOL,
448                               TSI108_STAT_TXTCOL_CARRY,
449                               &data->stats.collisions);
450
451         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPAUSE,
452                               TSI108_STAT_TXPAUSEDROP_CARRY,
453                               &data->tx_pause_drop);
454
455         spin_unlock_irq(&data->misclock);
456 }
457
458 /* Read a stat counter atomically with respect to carries.
459  * data->misclock must be held.
460  */
461 static inline unsigned long
462 tsi108_read_stat(struct tsi108_prv_data * data, int reg, int carry_bit,
463                  int carry_shift, unsigned long *upper)
464 {
465         int carryreg;
466         unsigned long val;
467
468         if (reg < 0xb0)
469                 carryreg = TSI108_STAT_CARRY1;
470         else
471                 carryreg = TSI108_STAT_CARRY2;
472
473       again:
474         val = TSI_READ(reg) | *upper;
475
476         /* Check to see if it overflowed, but the interrupt hasn't
477          * been serviced yet.  If so, handle the carry here, and
478          * try again.
479          */
480
481         if (unlikely(TSI_READ(carryreg) & carry_bit)) {
482                 *upper += carry_shift;
483                 TSI_WRITE(carryreg, carry_bit);
484                 goto again;
485         }
486
487         return val;
488 }
489
490 static struct net_device_stats *tsi108_get_stats(struct net_device *dev)
491 {
492         unsigned long excol;
493
494         struct tsi108_prv_data *data = netdev_priv(dev);
495         spin_lock_irq(&data->misclock);
496
497         data->tmpstats.rx_packets =
498             tsi108_read_stat(data, TSI108_STAT_RXPKTS,
499                              TSI108_STAT_CARRY1_RXPKTS,
500                              TSI108_STAT_RXPKTS_CARRY, &data->stats.rx_packets);
501
502         data->tmpstats.tx_packets =
503             tsi108_read_stat(data, TSI108_STAT_TXPKTS,
504                              TSI108_STAT_CARRY2_TXPKTS,
505                              TSI108_STAT_TXPKTS_CARRY, &data->stats.tx_packets);
506
507         data->tmpstats.rx_bytes =
508             tsi108_read_stat(data, TSI108_STAT_RXBYTES,
509                              TSI108_STAT_CARRY1_RXBYTES,
510                              TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
511
512         data->tmpstats.tx_bytes =
513             tsi108_read_stat(data, TSI108_STAT_TXBYTES,
514                              TSI108_STAT_CARRY2_TXBYTES,
515                              TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
516
517         data->tmpstats.multicast =
518             tsi108_read_stat(data, TSI108_STAT_RXMCAST,
519                              TSI108_STAT_CARRY1_RXMCAST,
520                              TSI108_STAT_RXMCAST_CARRY, &data->stats.multicast);
521
522         excol = tsi108_read_stat(data, TSI108_STAT_TXEXCOL,
523                                  TSI108_STAT_CARRY2_TXEXCOL,
524                                  TSI108_STAT_TXEXCOL_CARRY,
525                                  &data->tx_coll_abort);
526
527         data->tmpstats.collisions =
528             tsi108_read_stat(data, TSI108_STAT_TXTCOL,
529                              TSI108_STAT_CARRY2_TXTCOL,
530                              TSI108_STAT_TXTCOL_CARRY, &data->stats.collisions);
531
532         data->tmpstats.collisions += excol;
533
534         data->tmpstats.rx_length_errors =
535             tsi108_read_stat(data, TSI108_STAT_RXLENGTH,
536                              TSI108_STAT_CARRY1_RXLENGTH,
537                              TSI108_STAT_RXLENGTH_CARRY,
538                              &data->stats.rx_length_errors);
539
540         data->tmpstats.rx_length_errors +=
541             tsi108_read_stat(data, TSI108_STAT_RXRUNT,
542                              TSI108_STAT_CARRY1_RXRUNT,
543                              TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
544
545         data->tmpstats.rx_length_errors +=
546             tsi108_read_stat(data, TSI108_STAT_RXJUMBO,
547                              TSI108_STAT_CARRY1_RXJUMBO,
548                              TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
549
550         data->tmpstats.rx_frame_errors =
551             tsi108_read_stat(data, TSI108_STAT_RXALIGN,
552                              TSI108_STAT_CARRY1_RXALIGN,
553                              TSI108_STAT_RXALIGN_CARRY,
554                              &data->stats.rx_frame_errors);
555
556         data->tmpstats.rx_frame_errors +=
557             tsi108_read_stat(data, TSI108_STAT_RXFCS,
558                              TSI108_STAT_CARRY1_RXFCS, TSI108_STAT_RXFCS_CARRY,
559                              &data->rx_fcs);
560
561         data->tmpstats.rx_frame_errors +=
562             tsi108_read_stat(data, TSI108_STAT_RXFRAG,
563                              TSI108_STAT_CARRY1_RXFRAG,
564                              TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
565
566         data->tmpstats.rx_missed_errors =
567             tsi108_read_stat(data, TSI108_STAT_RXDROP,
568                              TSI108_STAT_CARRY1_RXDROP,
569                              TSI108_STAT_RXDROP_CARRY,
570                              &data->stats.rx_missed_errors);
571
572         /* These three are maintained by software. */
573         data->tmpstats.rx_fifo_errors = data->stats.rx_fifo_errors;
574         data->tmpstats.rx_crc_errors = data->stats.rx_crc_errors;
575
576         data->tmpstats.tx_aborted_errors =
577             tsi108_read_stat(data, TSI108_STAT_TXEXDEF,
578                              TSI108_STAT_CARRY2_TXEXDEF,
579                              TSI108_STAT_TXEXDEF_CARRY,
580                              &data->stats.tx_aborted_errors);
581
582         data->tmpstats.tx_aborted_errors +=
583             tsi108_read_stat(data, TSI108_STAT_TXPAUSEDROP,
584                              TSI108_STAT_CARRY2_TXPAUSE,
585                              TSI108_STAT_TXPAUSEDROP_CARRY,
586                              &data->tx_pause_drop);
587
588         data->tmpstats.tx_aborted_errors += excol;
589
590         data->tmpstats.tx_errors = data->tmpstats.tx_aborted_errors;
591         data->tmpstats.rx_errors = data->tmpstats.rx_length_errors +
592             data->tmpstats.rx_crc_errors +
593             data->tmpstats.rx_frame_errors +
594             data->tmpstats.rx_fifo_errors + data->tmpstats.rx_missed_errors;
595
596         spin_unlock_irq(&data->misclock);
597         return &data->tmpstats;
598 }
599
600 static void tsi108_restart_rx(struct tsi108_prv_data * data, struct net_device *dev)
601 {
602         TSI_WRITE(TSI108_EC_RXQ_PTRHIGH,
603                              TSI108_EC_RXQ_PTRHIGH_VALID);
604
605         TSI_WRITE(TSI108_EC_RXCTRL, TSI108_EC_RXCTRL_GO
606                              | TSI108_EC_RXCTRL_QUEUE0);
607 }
608
609 static void tsi108_restart_tx(struct tsi108_prv_data * data)
610 {
611         TSI_WRITE(TSI108_EC_TXQ_PTRHIGH,
612                              TSI108_EC_TXQ_PTRHIGH_VALID);
613
614         TSI_WRITE(TSI108_EC_TXCTRL, TSI108_EC_TXCTRL_IDLEINT |
615                              TSI108_EC_TXCTRL_GO | TSI108_EC_TXCTRL_QUEUE0);
616 }
617
618 /* txlock must be held by caller, with IRQs disabled, and
619  * with permission to re-enable them when the lock is dropped.
620  */
621 static void tsi108_complete_tx(struct net_device *dev)
622 {
623         struct tsi108_prv_data *data = netdev_priv(dev);
624         int tx;
625         struct sk_buff *skb;
626         int release = 0;
627
628         while (!data->txfree || data->txhead != data->txtail) {
629                 tx = data->txtail;
630
631                 if (data->txring[tx].misc & TSI108_TX_OWN)
632                         break;
633
634                 skb = data->txskbs[tx];
635
636                 if (!(data->txring[tx].misc & TSI108_TX_OK))
637                         printk("%s: bad tx packet, misc %x\n",
638                                dev->name, data->txring[tx].misc);
639
640                 data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
641                 data->txfree++;
642
643                 if (data->txring[tx].misc & TSI108_TX_EOF) {
644                         dev_kfree_skb_any(skb);
645                         release++;
646                 }
647         }
648
649         if (release) {
650                 if (is_valid_ether_addr(dev->dev_addr) && data->link_up)
651                         netif_wake_queue(dev);
652         }
653 }
654
655 static int tsi108_send_packet(struct sk_buff * skb, struct net_device *dev)
656 {
657         struct tsi108_prv_data *data = netdev_priv(dev);
658         int frags = skb_shinfo(skb)->nr_frags + 1;
659         int i;
660
661         if (!data->phy_ok && net_ratelimit())
662                 printk(KERN_ERR "%s: Transmit while PHY is down!\n", dev->name);
663
664         if (!data->link_up) {
665                 printk(KERN_ERR "%s: Transmit while link is down!\n",
666                        dev->name);
667                 netif_stop_queue(dev);
668                 return NETDEV_TX_BUSY;
669         }
670
671         if (data->txfree < MAX_SKB_FRAGS + 1) {
672                 netif_stop_queue(dev);
673
674                 if (net_ratelimit())
675                         printk(KERN_ERR "%s: Transmit with full tx ring!\n",
676                                dev->name);
677                 return NETDEV_TX_BUSY;
678         }
679
680         if (data->txfree - frags < MAX_SKB_FRAGS + 1) {
681                 netif_stop_queue(dev);
682         }
683
684         spin_lock_irq(&data->txlock);
685
686         for (i = 0; i < frags; i++) {
687                 int misc = 0;
688                 int tx = data->txhead;
689
690                 /* This is done to mark every TSI108_TX_INT_FREQ tx buffers with
691                  * the interrupt bit.  TX descriptor-complete interrupts are
692                  * enabled when the queue fills up, and masked when there is
693                  * still free space.  This way, when saturating the outbound
694                  * link, the tx interrupts are kept to a reasonable level.
695                  * When the queue is not full, reclamation of skbs still occurs
696                  * as new packets are transmitted, or on a queue-empty
697                  * interrupt.
698                  */
699
700                 if ((tx % TSI108_TX_INT_FREQ == 0) &&
701                     ((TSI108_TXRING_LEN - data->txfree) >= TSI108_TX_INT_FREQ))
702                         misc = TSI108_TX_INT;
703
704                 data->txskbs[tx] = skb;
705
706                 if (i == 0) {
707                         data->txring[tx].buf0 = dma_map_single(NULL, skb->data,
708                                         skb_headlen(skb), DMA_TO_DEVICE);
709                         data->txring[tx].len = skb_headlen(skb);
710                         misc |= TSI108_TX_SOF;
711                 } else {
712                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
713
714                         data->txring[tx].buf0 =
715                             dma_map_page(NULL, frag->page, frag->page_offset,
716                                             frag->size, DMA_TO_DEVICE);
717                         data->txring[tx].len = frag->size;
718                 }
719
720                 if (i == frags - 1)
721                         misc |= TSI108_TX_EOF;
722
723                 if (netif_msg_pktdata(data)) {
724                         int i;
725                         printk("%s: Tx Frame contents (%d)\n", dev->name,
726                                skb->len);
727                         for (i = 0; i < skb->len; i++)
728                                 printk(" %2.2x", skb->data[i]);
729                         printk(".\n");
730                 }
731                 data->txring[tx].misc = misc | TSI108_TX_OWN;
732
733                 data->txhead = (data->txhead + 1) % TSI108_TXRING_LEN;
734                 data->txfree--;
735         }
736
737         tsi108_complete_tx(dev);
738
739         /* This must be done after the check for completed tx descriptors,
740          * so that the tail pointer is correct.
741          */
742
743         if (!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_QUEUE0))
744                 tsi108_restart_tx(data);
745
746         spin_unlock_irq(&data->txlock);
747         return NETDEV_TX_OK;
748 }
749
750 static int tsi108_complete_rx(struct net_device *dev, int budget)
751 {
752         struct tsi108_prv_data *data = netdev_priv(dev);
753         int done = 0;
754
755         while (data->rxfree && done != budget) {
756                 int rx = data->rxtail;
757                 struct sk_buff *skb;
758
759                 if (data->rxring[rx].misc & TSI108_RX_OWN)
760                         break;
761
762                 skb = data->rxskbs[rx];
763                 data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
764                 data->rxfree--;
765                 done++;
766
767                 if (data->rxring[rx].misc & TSI108_RX_BAD) {
768                         spin_lock_irq(&data->misclock);
769
770                         if (data->rxring[rx].misc & TSI108_RX_CRC)
771                                 data->stats.rx_crc_errors++;
772                         if (data->rxring[rx].misc & TSI108_RX_OVER)
773                                 data->stats.rx_fifo_errors++;
774
775                         spin_unlock_irq(&data->misclock);
776
777                         dev_kfree_skb_any(skb);
778                         continue;
779                 }
780                 if (netif_msg_pktdata(data)) {
781                         int i;
782                         printk("%s: Rx Frame contents (%d)\n",
783                                dev->name, data->rxring[rx].len);
784                         for (i = 0; i < data->rxring[rx].len; i++)
785                                 printk(" %2.2x", skb->data[i]);
786                         printk(".\n");
787                 }
788
789                 skb_put(skb, data->rxring[rx].len);
790                 skb->protocol = eth_type_trans(skb, dev);
791                 netif_receive_skb(skb);
792         }
793
794         return done;
795 }
796
797 static int tsi108_refill_rx(struct net_device *dev, int budget)
798 {
799         struct tsi108_prv_data *data = netdev_priv(dev);
800         int done = 0;
801
802         while (data->rxfree != TSI108_RXRING_LEN && done != budget) {
803                 int rx = data->rxhead;
804                 struct sk_buff *skb;
805
806                 skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE);
807                 data->rxskbs[rx] = skb;
808                 if (!skb)
809                         break;
810
811                 data->rxring[rx].buf0 = dma_map_single(NULL, skb->data,
812                                                         TSI108_RX_SKB_SIZE,
813                                                         DMA_FROM_DEVICE);
814
815                 /* Sometimes the hardware sets blen to zero after packet
816                  * reception, even though the manual says that it's only ever
817                  * modified by the driver.
818                  */
819
820                 data->rxring[rx].blen = TSI108_RX_SKB_SIZE;
821                 data->rxring[rx].misc = TSI108_RX_OWN | TSI108_RX_INT;
822
823                 data->rxhead = (data->rxhead + 1) % TSI108_RXRING_LEN;
824                 data->rxfree++;
825                 done++;
826         }
827
828         if (done != 0 && !(TSI_READ(TSI108_EC_RXSTAT) &
829                            TSI108_EC_RXSTAT_QUEUE0))
830                 tsi108_restart_rx(data, dev);
831
832         return done;
833 }
834
835 static int tsi108_poll(struct napi_struct *napi, int budget)
836 {
837         struct tsi108_prv_data *data = container_of(napi, struct tsi108_prv_data, napi);
838         struct net_device *dev = data->dev;
839         u32 estat = TSI_READ(TSI108_EC_RXESTAT);
840         u32 intstat = TSI_READ(TSI108_EC_INTSTAT);
841         int num_received = 0, num_filled = 0;
842
843         intstat &= TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
844             TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | TSI108_INT_RXWAIT;
845
846         TSI_WRITE(TSI108_EC_RXESTAT, estat);
847         TSI_WRITE(TSI108_EC_INTSTAT, intstat);
848
849         if (data->rxpending || (estat & TSI108_EC_RXESTAT_Q0_DESCINT))
850                 num_received = tsi108_complete_rx(dev, budget);
851
852         /* This should normally fill no more slots than the number of
853          * packets received in tsi108_complete_rx().  The exception
854          * is when we previously ran out of memory for RX SKBs.  In that
855          * case, it's helpful to obey the budget, not only so that the
856          * CPU isn't hogged, but so that memory (which may still be low)
857          * is not hogged by one device.
858          *
859          * A work unit is considered to be two SKBs to allow us to catch
860          * up when the ring has shrunk due to out-of-memory but we're
861          * still removing the full budget's worth of packets each time.
862          */
863
864         if (data->rxfree < TSI108_RXRING_LEN)
865                 num_filled = tsi108_refill_rx(dev, budget * 2);
866
867         if (intstat & TSI108_INT_RXERROR) {
868                 u32 err = TSI_READ(TSI108_EC_RXERR);
869                 TSI_WRITE(TSI108_EC_RXERR, err);
870
871                 if (err) {
872                         if (net_ratelimit())
873                                 printk(KERN_DEBUG "%s: RX error %x\n",
874                                        dev->name, err);
875
876                         if (!(TSI_READ(TSI108_EC_RXSTAT) &
877                               TSI108_EC_RXSTAT_QUEUE0))
878                                 tsi108_restart_rx(data, dev);
879                 }
880         }
881
882         if (intstat & TSI108_INT_RXOVERRUN) {
883                 spin_lock_irq(&data->misclock);
884                 data->stats.rx_fifo_errors++;
885                 spin_unlock_irq(&data->misclock);
886         }
887
888         if (num_received < budget) {
889                 data->rxpending = 0;
890                 napi_complete(napi);
891
892                 TSI_WRITE(TSI108_EC_INTMASK,
893                                      TSI_READ(TSI108_EC_INTMASK)
894                                      & ~(TSI108_INT_RXQUEUE0
895                                          | TSI108_INT_RXTHRESH |
896                                          TSI108_INT_RXOVERRUN |
897                                          TSI108_INT_RXERROR |
898                                          TSI108_INT_RXWAIT));
899         } else {
900                 data->rxpending = 1;
901         }
902
903         return num_received;
904 }
905
906 static void tsi108_rx_int(struct net_device *dev)
907 {
908         struct tsi108_prv_data *data = netdev_priv(dev);
909
910         /* A race could cause dev to already be scheduled, so it's not an
911          * error if that happens (and interrupts shouldn't be re-masked,
912          * because that can cause harmful races, if poll has already
913          * unmasked them but not cleared LINK_STATE_SCHED).
914          *
915          * This can happen if this code races with tsi108_poll(), which masks
916          * the interrupts after tsi108_irq_one() read the mask, but before
917          * napi_schedule is called.  It could also happen due to calls
918          * from tsi108_check_rxring().
919          */
920
921         if (napi_schedule_prep(&data->napi)) {
922                 /* Mask, rather than ack, the receive interrupts.  The ack
923                  * will happen in tsi108_poll().
924                  */
925
926                 TSI_WRITE(TSI108_EC_INTMASK,
927                                      TSI_READ(TSI108_EC_INTMASK) |
928                                      TSI108_INT_RXQUEUE0
929                                      | TSI108_INT_RXTHRESH |
930                                      TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR |
931                                      TSI108_INT_RXWAIT);
932                 __napi_schedule(&data->napi);
933         } else {
934                 if (!netif_running(dev)) {
935                         /* This can happen if an interrupt occurs while the
936                          * interface is being brought down, as the START
937                          * bit is cleared before the stop function is called.
938                          *
939                          * In this case, the interrupts must be masked, or
940                          * they will continue indefinitely.
941                          *
942                          * There's a race here if the interface is brought down
943                          * and then up in rapid succession, as the device could
944                          * be made running after the above check and before
945                          * the masking below.  This will only happen if the IRQ
946                          * thread has a lower priority than the task brining
947                          * up the interface.  Fixing this race would likely
948                          * require changes in generic code.
949                          */
950
951                         TSI_WRITE(TSI108_EC_INTMASK,
952                                              TSI_READ
953                                              (TSI108_EC_INTMASK) |
954                                              TSI108_INT_RXQUEUE0 |
955                                              TSI108_INT_RXTHRESH |
956                                              TSI108_INT_RXOVERRUN |
957                                              TSI108_INT_RXERROR |
958                                              TSI108_INT_RXWAIT);
959                 }
960         }
961 }
962
963 /* If the RX ring has run out of memory, try periodically
964  * to allocate some more, as otherwise poll would never
965  * get called (apart from the initial end-of-queue condition).
966  *
967  * This is called once per second (by default) from the thread.
968  */
969
970 static void tsi108_check_rxring(struct net_device *dev)
971 {
972         struct tsi108_prv_data *data = netdev_priv(dev);
973
974         /* A poll is scheduled, as opposed to caling tsi108_refill_rx
975          * directly, so as to keep the receive path single-threaded
976          * (and thus not needing a lock).
977          */
978
979         if (netif_running(dev) && data->rxfree < TSI108_RXRING_LEN / 4)
980                 tsi108_rx_int(dev);
981 }
982
983 static void tsi108_tx_int(struct net_device *dev)
984 {
985         struct tsi108_prv_data *data = netdev_priv(dev);
986         u32 estat = TSI_READ(TSI108_EC_TXESTAT);
987
988         TSI_WRITE(TSI108_EC_TXESTAT, estat);
989         TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_TXQUEUE0 |
990                              TSI108_INT_TXIDLE | TSI108_INT_TXERROR);
991         if (estat & TSI108_EC_TXESTAT_Q0_ERR) {
992                 u32 err = TSI_READ(TSI108_EC_TXERR);
993                 TSI_WRITE(TSI108_EC_TXERR, err);
994
995                 if (err && net_ratelimit())
996                         printk(KERN_ERR "%s: TX error %x\n", dev->name, err);
997         }
998
999         if (estat & (TSI108_EC_TXESTAT_Q0_DESCINT | TSI108_EC_TXESTAT_Q0_EOQ)) {
1000                 spin_lock(&data->txlock);
1001                 tsi108_complete_tx(dev);
1002                 spin_unlock(&data->txlock);
1003         }
1004 }
1005
1006
1007 static irqreturn_t tsi108_irq(int irq, void *dev_id)
1008 {
1009         struct net_device *dev = dev_id;
1010         struct tsi108_prv_data *data = netdev_priv(dev);
1011         u32 stat = TSI_READ(TSI108_EC_INTSTAT);
1012
1013         if (!(stat & TSI108_INT_ANY))
1014                 return IRQ_NONE;        /* Not our interrupt */
1015
1016         stat &= ~TSI_READ(TSI108_EC_INTMASK);
1017
1018         if (stat & (TSI108_INT_TXQUEUE0 | TSI108_INT_TXIDLE |
1019                     TSI108_INT_TXERROR))
1020                 tsi108_tx_int(dev);
1021         if (stat & (TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
1022                     TSI108_INT_RXWAIT | TSI108_INT_RXOVERRUN |
1023                     TSI108_INT_RXERROR))
1024                 tsi108_rx_int(dev);
1025
1026         if (stat & TSI108_INT_SFN) {
1027                 if (net_ratelimit())
1028                         printk(KERN_DEBUG "%s: SFN error\n", dev->name);
1029                 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_SFN);
1030         }
1031
1032         if (stat & TSI108_INT_STATCARRY) {
1033                 tsi108_stat_carry(dev);
1034                 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_STATCARRY);
1035         }
1036
1037         return IRQ_HANDLED;
1038 }
1039
1040 static void tsi108_stop_ethernet(struct net_device *dev)
1041 {
1042         struct tsi108_prv_data *data = netdev_priv(dev);
1043         int i = 1000;
1044         /* Disable all TX and RX queues ... */
1045         TSI_WRITE(TSI108_EC_TXCTRL, 0);
1046         TSI_WRITE(TSI108_EC_RXCTRL, 0);
1047
1048         /* ...and wait for them to become idle */
1049         while(i--) {
1050                 if(!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_ACTIVE))
1051                         break;
1052                 udelay(10);
1053         }
1054         i = 1000;
1055         while(i--){
1056                 if(!(TSI_READ(TSI108_EC_RXSTAT) & TSI108_EC_RXSTAT_ACTIVE))
1057                         return;
1058                 udelay(10);
1059         }
1060         printk(KERN_ERR "%s function time out\n", __func__);
1061 }
1062
1063 static void tsi108_reset_ether(struct tsi108_prv_data * data)
1064 {
1065         TSI_WRITE(TSI108_MAC_CFG1, TSI108_MAC_CFG1_SOFTRST);
1066         udelay(100);
1067         TSI_WRITE(TSI108_MAC_CFG1, 0);
1068
1069         TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATRST);
1070         udelay(100);
1071         TSI_WRITE(TSI108_EC_PORTCTRL,
1072                              TSI_READ(TSI108_EC_PORTCTRL) &
1073                              ~TSI108_EC_PORTCTRL_STATRST);
1074
1075         TSI_WRITE(TSI108_EC_TXCFG, TSI108_EC_TXCFG_RST);
1076         udelay(100);
1077         TSI_WRITE(TSI108_EC_TXCFG,
1078                              TSI_READ(TSI108_EC_TXCFG) &
1079                              ~TSI108_EC_TXCFG_RST);
1080
1081         TSI_WRITE(TSI108_EC_RXCFG, TSI108_EC_RXCFG_RST);
1082         udelay(100);
1083         TSI_WRITE(TSI108_EC_RXCFG,
1084                              TSI_READ(TSI108_EC_RXCFG) &
1085                              ~TSI108_EC_RXCFG_RST);
1086
1087         TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1088                              TSI_READ(TSI108_MAC_MII_MGMT_CFG) |
1089                              TSI108_MAC_MII_MGMT_RST);
1090         udelay(100);
1091         TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1092                              (TSI_READ(TSI108_MAC_MII_MGMT_CFG) &
1093                              ~(TSI108_MAC_MII_MGMT_RST |
1094                                TSI108_MAC_MII_MGMT_CLK)) | 0x07);
1095 }
1096
1097 static int tsi108_get_mac(struct net_device *dev)
1098 {
1099         struct tsi108_prv_data *data = netdev_priv(dev);
1100         u32 word1 = TSI_READ(TSI108_MAC_ADDR1);
1101         u32 word2 = TSI_READ(TSI108_MAC_ADDR2);
1102
1103         /* Note that the octets are reversed from what the manual says,
1104          * producing an even weirder ordering...
1105          */
1106         if (word2 == 0 && word1 == 0) {
1107                 dev->dev_addr[0] = 0x00;
1108                 dev->dev_addr[1] = 0x06;
1109                 dev->dev_addr[2] = 0xd2;
1110                 dev->dev_addr[3] = 0x00;
1111                 dev->dev_addr[4] = 0x00;
1112                 if (0x8 == data->phy)
1113                         dev->dev_addr[5] = 0x01;
1114                 else
1115                         dev->dev_addr[5] = 0x02;
1116
1117                 word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1118
1119                 word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1120                     (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1121
1122                 TSI_WRITE(TSI108_MAC_ADDR1, word1);
1123                 TSI_WRITE(TSI108_MAC_ADDR2, word2);
1124         } else {
1125                 dev->dev_addr[0] = (word2 >> 16) & 0xff;
1126                 dev->dev_addr[1] = (word2 >> 24) & 0xff;
1127                 dev->dev_addr[2] = (word1 >> 0) & 0xff;
1128                 dev->dev_addr[3] = (word1 >> 8) & 0xff;
1129                 dev->dev_addr[4] = (word1 >> 16) & 0xff;
1130                 dev->dev_addr[5] = (word1 >> 24) & 0xff;
1131         }
1132
1133         if (!is_valid_ether_addr(dev->dev_addr)) {
1134                 printk(KERN_ERR
1135                        "%s: Invalid MAC address. word1: %08x, word2: %08x\n",
1136                        dev->name, word1, word2);
1137                 return -EINVAL;
1138         }
1139
1140         return 0;
1141 }
1142
1143 static int tsi108_set_mac(struct net_device *dev, void *addr)
1144 {
1145         struct tsi108_prv_data *data = netdev_priv(dev);
1146         u32 word1, word2;
1147         int i;
1148
1149         if (!is_valid_ether_addr(addr))
1150                 return -EINVAL;
1151
1152         for (i = 0; i < 6; i++)
1153                 /* +2 is for the offset of the HW addr type */
1154                 dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
1155
1156         word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1157
1158         word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1159             (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1160
1161         spin_lock_irq(&data->misclock);
1162         TSI_WRITE(TSI108_MAC_ADDR1, word1);
1163         TSI_WRITE(TSI108_MAC_ADDR2, word2);
1164         spin_lock(&data->txlock);
1165
1166         if (data->txfree && data->link_up)
1167                 netif_wake_queue(dev);
1168
1169         spin_unlock(&data->txlock);
1170         spin_unlock_irq(&data->misclock);
1171         return 0;
1172 }
1173
1174 /* Protected by dev->xmit_lock. */
1175 static void tsi108_set_rx_mode(struct net_device *dev)
1176 {
1177         struct tsi108_prv_data *data = netdev_priv(dev);
1178         u32 rxcfg = TSI_READ(TSI108_EC_RXCFG);
1179
1180         if (dev->flags & IFF_PROMISC) {
1181                 rxcfg &= ~(TSI108_EC_RXCFG_UC_HASH | TSI108_EC_RXCFG_MC_HASH);
1182                 rxcfg |= TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE;
1183                 goto out;
1184         }
1185
1186         rxcfg &= ~(TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE);
1187
1188         if (dev->flags & IFF_ALLMULTI || !netdev_mc_empty(dev)) {
1189                 int i;
1190                 struct netdev_hw_addr *ha;
1191                 rxcfg |= TSI108_EC_RXCFG_MFE | TSI108_EC_RXCFG_MC_HASH;
1192
1193                 memset(data->mc_hash, 0, sizeof(data->mc_hash));
1194
1195                 netdev_for_each_mc_addr(ha, dev) {
1196                         u32 hash, crc;
1197
1198                         crc = ether_crc(6, ha->addr);
1199                         hash = crc >> 23;
1200                         __set_bit(hash, &data->mc_hash[0]);
1201                 }
1202
1203                 TSI_WRITE(TSI108_EC_HASHADDR,
1204                                      TSI108_EC_HASHADDR_AUTOINC |
1205                                      TSI108_EC_HASHADDR_MCAST);
1206
1207                 for (i = 0; i < 16; i++) {
1208                         /* The manual says that the hardware may drop
1209                          * back-to-back writes to the data register.
1210                          */
1211                         udelay(1);
1212                         TSI_WRITE(TSI108_EC_HASHDATA,
1213                                              data->mc_hash[i]);
1214                 }
1215         }
1216
1217       out:
1218         TSI_WRITE(TSI108_EC_RXCFG, rxcfg);
1219 }
1220
1221 static void tsi108_init_phy(struct net_device *dev)
1222 {
1223         struct tsi108_prv_data *data = netdev_priv(dev);
1224         u32 i = 0;
1225         u16 phyval = 0;
1226         unsigned long flags;
1227
1228         spin_lock_irqsave(&phy_lock, flags);
1229
1230         tsi108_write_mii(data, MII_BMCR, BMCR_RESET);
1231         while (--i) {
1232                 if(!(tsi108_read_mii(data, MII_BMCR) & BMCR_RESET))
1233                         break;
1234                 udelay(10);
1235         }
1236         if (i == 0)
1237                 printk(KERN_ERR "%s function time out\n", __func__);
1238
1239         if (data->phy_type == TSI108_PHY_BCM54XX) {
1240                 tsi108_write_mii(data, 0x09, 0x0300);
1241                 tsi108_write_mii(data, 0x10, 0x1020);
1242                 tsi108_write_mii(data, 0x1c, 0x8c00);
1243         }
1244
1245         tsi108_write_mii(data,
1246                          MII_BMCR,
1247                          BMCR_ANENABLE | BMCR_ANRESTART);
1248         while (tsi108_read_mii(data, MII_BMCR) & BMCR_ANRESTART)
1249                 cpu_relax();
1250
1251         /* Set G/MII mode and receive clock select in TBI control #2.  The
1252          * second port won't work if this isn't done, even though we don't
1253          * use TBI mode.
1254          */
1255
1256         tsi108_write_tbi(data, 0x11, 0x30);
1257
1258         /* FIXME: It seems to take more than 2 back-to-back reads to the
1259          * PHY_STAT register before the link up status bit is set.
1260          */
1261
1262         data->link_up = 0;
1263
1264         while (!((phyval = tsi108_read_mii(data, MII_BMSR)) &
1265                  BMSR_LSTATUS)) {
1266                 if (i++ > (MII_READ_DELAY / 10)) {
1267                         break;
1268                 }
1269                 spin_unlock_irqrestore(&phy_lock, flags);
1270                 msleep(10);
1271                 spin_lock_irqsave(&phy_lock, flags);
1272         }
1273
1274         data->mii_if.supports_gmii = mii_check_gmii_support(&data->mii_if);
1275         printk(KERN_DEBUG "PHY_STAT reg contains %08x\n", phyval);
1276         data->phy_ok = 1;
1277         data->init_media = 1;
1278         spin_unlock_irqrestore(&phy_lock, flags);
1279 }
1280
1281 static void tsi108_kill_phy(struct net_device *dev)
1282 {
1283         struct tsi108_prv_data *data = netdev_priv(dev);
1284         unsigned long flags;
1285
1286         spin_lock_irqsave(&phy_lock, flags);
1287         tsi108_write_mii(data, MII_BMCR, BMCR_PDOWN);
1288         data->phy_ok = 0;
1289         spin_unlock_irqrestore(&phy_lock, flags);
1290 }
1291
1292 static int tsi108_open(struct net_device *dev)
1293 {
1294         int i;
1295         struct tsi108_prv_data *data = netdev_priv(dev);
1296         unsigned int rxring_size = TSI108_RXRING_LEN * sizeof(rx_desc);
1297         unsigned int txring_size = TSI108_TXRING_LEN * sizeof(tx_desc);
1298
1299         i = request_irq(data->irq_num, tsi108_irq, 0, dev->name, dev);
1300         if (i != 0) {
1301                 printk(KERN_ERR "tsi108_eth%d: Could not allocate IRQ%d.\n",
1302                        data->id, data->irq_num);
1303                 return i;
1304         } else {
1305                 dev->irq = data->irq_num;
1306                 printk(KERN_NOTICE
1307                        "tsi108_open : Port %d Assigned IRQ %d to %s\n",
1308                        data->id, dev->irq, dev->name);
1309         }
1310
1311         data->rxring = dma_alloc_coherent(NULL, rxring_size,
1312                         &data->rxdma, GFP_KERNEL);
1313
1314         if (!data->rxring) {
1315                 printk(KERN_DEBUG
1316                        "TSI108_ETH: failed to allocate memory for rxring!\n");
1317                 return -ENOMEM;
1318         } else {
1319                 memset(data->rxring, 0, rxring_size);
1320         }
1321
1322         data->txring = dma_alloc_coherent(NULL, txring_size,
1323                         &data->txdma, GFP_KERNEL);
1324
1325         if (!data->txring) {
1326                 printk(KERN_DEBUG
1327                        "TSI108_ETH: failed to allocate memory for txring!\n");
1328                 pci_free_consistent(0, rxring_size, data->rxring, data->rxdma);
1329                 return -ENOMEM;
1330         } else {
1331                 memset(data->txring, 0, txring_size);
1332         }
1333
1334         for (i = 0; i < TSI108_RXRING_LEN; i++) {
1335                 data->rxring[i].next0 = data->rxdma + (i + 1) * sizeof(rx_desc);
1336                 data->rxring[i].blen = TSI108_RXBUF_SIZE;
1337                 data->rxring[i].vlan = 0;
1338         }
1339
1340         data->rxring[TSI108_RXRING_LEN - 1].next0 = data->rxdma;
1341
1342         data->rxtail = 0;
1343         data->rxhead = 0;
1344
1345         for (i = 0; i < TSI108_RXRING_LEN; i++) {
1346                 struct sk_buff *skb;
1347
1348                 skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE);
1349                 if (!skb) {
1350                         /* Bah.  No memory for now, but maybe we'll get
1351                          * some more later.
1352                          * For now, we'll live with the smaller ring.
1353                          */
1354                         printk(KERN_WARNING
1355                                "%s: Could only allocate %d receive skb(s).\n",
1356                                dev->name, i);
1357                         data->rxhead = i;
1358                         break;
1359                 }
1360
1361                 data->rxskbs[i] = skb;
1362                 data->rxskbs[i] = skb;
1363                 data->rxring[i].buf0 = virt_to_phys(data->rxskbs[i]->data);
1364                 data->rxring[i].misc = TSI108_RX_OWN | TSI108_RX_INT;
1365         }
1366
1367         data->rxfree = i;
1368         TSI_WRITE(TSI108_EC_RXQ_PTRLOW, data->rxdma);
1369
1370         for (i = 0; i < TSI108_TXRING_LEN; i++) {
1371                 data->txring[i].next0 = data->txdma + (i + 1) * sizeof(tx_desc);
1372                 data->txring[i].misc = 0;
1373         }
1374
1375         data->txring[TSI108_TXRING_LEN - 1].next0 = data->txdma;
1376         data->txtail = 0;
1377         data->txhead = 0;
1378         data->txfree = TSI108_TXRING_LEN;
1379         TSI_WRITE(TSI108_EC_TXQ_PTRLOW, data->txdma);
1380         tsi108_init_phy(dev);
1381
1382         napi_enable(&data->napi);
1383
1384         setup_timer(&data->timer, tsi108_timed_checker, (unsigned long)dev);
1385         mod_timer(&data->timer, jiffies + 1);
1386
1387         tsi108_restart_rx(data, dev);
1388
1389         TSI_WRITE(TSI108_EC_INTSTAT, ~0);
1390
1391         TSI_WRITE(TSI108_EC_INTMASK,
1392                              ~(TSI108_INT_TXQUEUE0 | TSI108_INT_RXERROR |
1393                                TSI108_INT_RXTHRESH | TSI108_INT_RXQUEUE0 |
1394                                TSI108_INT_RXOVERRUN | TSI108_INT_RXWAIT |
1395                                TSI108_INT_SFN | TSI108_INT_STATCARRY));
1396
1397         TSI_WRITE(TSI108_MAC_CFG1,
1398                              TSI108_MAC_CFG1_RXEN | TSI108_MAC_CFG1_TXEN);
1399         netif_start_queue(dev);
1400         return 0;
1401 }
1402
1403 static int tsi108_close(struct net_device *dev)
1404 {
1405         struct tsi108_prv_data *data = netdev_priv(dev);
1406
1407         netif_stop_queue(dev);
1408         napi_disable(&data->napi);
1409
1410         del_timer_sync(&data->timer);
1411
1412         tsi108_stop_ethernet(dev);
1413         tsi108_kill_phy(dev);
1414         TSI_WRITE(TSI108_EC_INTMASK, ~0);
1415         TSI_WRITE(TSI108_MAC_CFG1, 0);
1416
1417         /* Check for any pending TX packets, and drop them. */
1418
1419         while (!data->txfree || data->txhead != data->txtail) {
1420                 int tx = data->txtail;
1421                 struct sk_buff *skb;
1422                 skb = data->txskbs[tx];
1423                 data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
1424                 data->txfree++;
1425                 dev_kfree_skb(skb);
1426         }
1427
1428         free_irq(data->irq_num, dev);
1429
1430         /* Discard the RX ring. */
1431
1432         while (data->rxfree) {
1433                 int rx = data->rxtail;
1434                 struct sk_buff *skb;
1435
1436                 skb = data->rxskbs[rx];
1437                 data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
1438                 data->rxfree--;
1439                 dev_kfree_skb(skb);
1440         }
1441
1442         dma_free_coherent(0,
1443                             TSI108_RXRING_LEN * sizeof(rx_desc),
1444                             data->rxring, data->rxdma);
1445         dma_free_coherent(0,
1446                             TSI108_TXRING_LEN * sizeof(tx_desc),
1447                             data->txring, data->txdma);
1448
1449         return 0;
1450 }
1451
1452 static void tsi108_init_mac(struct net_device *dev)
1453 {
1454         struct tsi108_prv_data *data = netdev_priv(dev);
1455
1456         TSI_WRITE(TSI108_MAC_CFG2, TSI108_MAC_CFG2_DFLT_PREAMBLE |
1457                              TSI108_MAC_CFG2_PADCRC);
1458
1459         TSI_WRITE(TSI108_EC_TXTHRESH,
1460                              (192 << TSI108_EC_TXTHRESH_STARTFILL) |
1461                              (192 << TSI108_EC_TXTHRESH_STOPFILL));
1462
1463         TSI_WRITE(TSI108_STAT_CARRYMASK1,
1464                              ~(TSI108_STAT_CARRY1_RXBYTES |
1465                                TSI108_STAT_CARRY1_RXPKTS |
1466                                TSI108_STAT_CARRY1_RXFCS |
1467                                TSI108_STAT_CARRY1_RXMCAST |
1468                                TSI108_STAT_CARRY1_RXALIGN |
1469                                TSI108_STAT_CARRY1_RXLENGTH |
1470                                TSI108_STAT_CARRY1_RXRUNT |
1471                                TSI108_STAT_CARRY1_RXJUMBO |
1472                                TSI108_STAT_CARRY1_RXFRAG |
1473                                TSI108_STAT_CARRY1_RXJABBER |
1474                                TSI108_STAT_CARRY1_RXDROP));
1475
1476         TSI_WRITE(TSI108_STAT_CARRYMASK2,
1477                              ~(TSI108_STAT_CARRY2_TXBYTES |
1478                                TSI108_STAT_CARRY2_TXPKTS |
1479                                TSI108_STAT_CARRY2_TXEXDEF |
1480                                TSI108_STAT_CARRY2_TXEXCOL |
1481                                TSI108_STAT_CARRY2_TXTCOL |
1482                                TSI108_STAT_CARRY2_TXPAUSE));
1483
1484         TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATEN);
1485         TSI_WRITE(TSI108_MAC_CFG1, 0);
1486
1487         TSI_WRITE(TSI108_EC_RXCFG,
1488                              TSI108_EC_RXCFG_SE | TSI108_EC_RXCFG_BFE);
1489
1490         TSI_WRITE(TSI108_EC_TXQ_CFG, TSI108_EC_TXQ_CFG_DESC_INT |
1491                              TSI108_EC_TXQ_CFG_EOQ_OWN_INT |
1492                              TSI108_EC_TXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1493                                                 TSI108_EC_TXQ_CFG_SFNPORT));
1494
1495         TSI_WRITE(TSI108_EC_RXQ_CFG, TSI108_EC_RXQ_CFG_DESC_INT |
1496                              TSI108_EC_RXQ_CFG_EOQ_OWN_INT |
1497                              TSI108_EC_RXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1498                                                 TSI108_EC_RXQ_CFG_SFNPORT));
1499
1500         TSI_WRITE(TSI108_EC_TXQ_BUFCFG,
1501                              TSI108_EC_TXQ_BUFCFG_BURST256 |
1502                              TSI108_EC_TXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1503                                                 TSI108_EC_TXQ_BUFCFG_SFNPORT));
1504
1505         TSI_WRITE(TSI108_EC_RXQ_BUFCFG,
1506                              TSI108_EC_RXQ_BUFCFG_BURST256 |
1507                              TSI108_EC_RXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1508                                                 TSI108_EC_RXQ_BUFCFG_SFNPORT));
1509
1510         TSI_WRITE(TSI108_EC_INTMASK, ~0);
1511 }
1512
1513 static int tsi108_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1514 {
1515         struct tsi108_prv_data *data = netdev_priv(dev);
1516         unsigned long flags;
1517         int rc;
1518
1519         spin_lock_irqsave(&data->txlock, flags);
1520         rc = mii_ethtool_gset(&data->mii_if, cmd);
1521         spin_unlock_irqrestore(&data->txlock, flags);
1522
1523         return rc;
1524 }
1525
1526 static int tsi108_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1527 {
1528         struct tsi108_prv_data *data = netdev_priv(dev);
1529         unsigned long flags;
1530         int rc;
1531
1532         spin_lock_irqsave(&data->txlock, flags);
1533         rc = mii_ethtool_sset(&data->mii_if, cmd);
1534         spin_unlock_irqrestore(&data->txlock, flags);
1535
1536         return rc;
1537 }
1538
1539 static int tsi108_do_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1540 {
1541         struct tsi108_prv_data *data = netdev_priv(dev);
1542         if (!netif_running(dev))
1543                 return -EINVAL;
1544         return generic_mii_ioctl(&data->mii_if, if_mii(rq), cmd, NULL);
1545 }
1546
1547 static const struct ethtool_ops tsi108_ethtool_ops = {
1548         .get_link       = ethtool_op_get_link,
1549         .get_settings   = tsi108_get_settings,
1550         .set_settings   = tsi108_set_settings,
1551 };
1552
1553 static const struct net_device_ops tsi108_netdev_ops = {
1554         .ndo_open               = tsi108_open,
1555         .ndo_stop               = tsi108_close,
1556         .ndo_start_xmit         = tsi108_send_packet,
1557         .ndo_set_multicast_list = tsi108_set_rx_mode,
1558         .ndo_get_stats          = tsi108_get_stats,
1559         .ndo_do_ioctl           = tsi108_do_ioctl,
1560         .ndo_set_mac_address    = tsi108_set_mac,
1561         .ndo_validate_addr      = eth_validate_addr,
1562         .ndo_change_mtu         = eth_change_mtu,
1563 };
1564
1565 static int
1566 tsi108_init_one(struct platform_device *pdev)
1567 {
1568         struct net_device *dev = NULL;
1569         struct tsi108_prv_data *data = NULL;
1570         hw_info *einfo;
1571         int err = 0;
1572
1573         einfo = pdev->dev.platform_data;
1574
1575         if (NULL == einfo) {
1576                 printk(KERN_ERR "tsi-eth %d: Missing additional data!\n",
1577                        pdev->id);
1578                 return -ENODEV;
1579         }
1580
1581         /* Create an ethernet device instance */
1582
1583         dev = alloc_etherdev(sizeof(struct tsi108_prv_data));
1584         if (!dev) {
1585                 printk("tsi108_eth: Could not allocate a device structure\n");
1586                 return -ENOMEM;
1587         }
1588
1589         printk("tsi108_eth%d: probe...\n", pdev->id);
1590         data = netdev_priv(dev);
1591         data->dev = dev;
1592
1593         pr_debug("tsi108_eth%d:regs:phyresgs:phy:irq_num=0x%x:0x%x:0x%x:0x%x\n",
1594                         pdev->id, einfo->regs, einfo->phyregs,
1595                         einfo->phy, einfo->irq_num);
1596
1597         data->regs = ioremap(einfo->regs, 0x400);
1598         if (NULL == data->regs) {
1599                 err = -ENOMEM;
1600                 goto regs_fail;
1601         }
1602
1603         data->phyregs = ioremap(einfo->phyregs, 0x400);
1604         if (NULL == data->phyregs) {
1605                 err = -ENOMEM;
1606                 goto regs_fail;
1607         }
1608 /* MII setup */
1609         data->mii_if.dev = dev;
1610         data->mii_if.mdio_read = tsi108_mdio_read;
1611         data->mii_if.mdio_write = tsi108_mdio_write;
1612         data->mii_if.phy_id = einfo->phy;
1613         data->mii_if.phy_id_mask = 0x1f;
1614         data->mii_if.reg_num_mask = 0x1f;
1615
1616         data->phy = einfo->phy;
1617         data->phy_type = einfo->phy_type;
1618         data->irq_num = einfo->irq_num;
1619         data->id = pdev->id;
1620         netif_napi_add(dev, &data->napi, tsi108_poll, 64);
1621         dev->netdev_ops = &tsi108_netdev_ops;
1622         dev->ethtool_ops = &tsi108_ethtool_ops;
1623
1624         /* Apparently, the Linux networking code won't use scatter-gather
1625          * if the hardware doesn't do checksums.  However, it's faster
1626          * to checksum in place and use SG, as (among other reasons)
1627          * the cache won't be dirtied (which then has to be flushed
1628          * before DMA).  The checksumming is done by the driver (via
1629          * a new function skb_csum_dev() in net/core/skbuff.c).
1630          */
1631
1632         dev->features = NETIF_F_HIGHDMA;
1633
1634         spin_lock_init(&data->txlock);
1635         spin_lock_init(&data->misclock);
1636
1637         tsi108_reset_ether(data);
1638         tsi108_kill_phy(dev);
1639
1640         if ((err = tsi108_get_mac(dev)) != 0) {
1641                 printk(KERN_ERR "%s: Invalid MAC address.  Please correct.\n",
1642                        dev->name);
1643                 goto register_fail;
1644         }
1645
1646         tsi108_init_mac(dev);
1647         err = register_netdev(dev);
1648         if (err) {
1649                 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
1650                                 dev->name);
1651                 goto register_fail;
1652         }
1653
1654         platform_set_drvdata(pdev, dev);
1655         printk(KERN_INFO "%s: Tsi108 Gigabit Ethernet, MAC: %pM\n",
1656                dev->name, dev->dev_addr);
1657 #ifdef DEBUG
1658         data->msg_enable = DEBUG;
1659         dump_eth_one(dev);
1660 #endif
1661
1662         return 0;
1663
1664 register_fail:
1665         iounmap(data->regs);
1666         iounmap(data->phyregs);
1667
1668 regs_fail:
1669         free_netdev(dev);
1670         return err;
1671 }
1672
1673 /* There's no way to either get interrupts from the PHY when
1674  * something changes, or to have the Tsi108 automatically communicate
1675  * with the PHY to reconfigure itself.
1676  *
1677  * Thus, we have to do it using a timer.
1678  */
1679
1680 static void tsi108_timed_checker(unsigned long dev_ptr)
1681 {
1682         struct net_device *dev = (struct net_device *)dev_ptr;
1683         struct tsi108_prv_data *data = netdev_priv(dev);
1684
1685         tsi108_check_phy(dev);
1686         tsi108_check_rxring(dev);
1687         mod_timer(&data->timer, jiffies + CHECK_PHY_INTERVAL);
1688 }
1689
1690 static int tsi108_ether_init(void)
1691 {
1692         int ret;
1693         ret = platform_driver_register (&tsi_eth_driver);
1694         if (ret < 0){
1695                 printk("tsi108_ether_init: error initializing ethernet "
1696                        "device\n");
1697                 return ret;
1698         }
1699         return 0;
1700 }
1701
1702 static int tsi108_ether_remove(struct platform_device *pdev)
1703 {
1704         struct net_device *dev = platform_get_drvdata(pdev);
1705         struct tsi108_prv_data *priv = netdev_priv(dev);
1706
1707         unregister_netdev(dev);
1708         tsi108_stop_ethernet(dev);
1709         platform_set_drvdata(pdev, NULL);
1710         iounmap(priv->regs);
1711         iounmap(priv->phyregs);
1712         free_netdev(dev);
1713
1714         return 0;
1715 }
1716 static void tsi108_ether_exit(void)
1717 {
1718         platform_driver_unregister(&tsi_eth_driver);
1719 }
1720
1721 module_init(tsi108_ether_init);
1722 module_exit(tsi108_ether_exit);
1723
1724 MODULE_AUTHOR("Tundra Semiconductor Corporation");
1725 MODULE_DESCRIPTION("Tsi108 Gigabit Ethernet driver");
1726 MODULE_LICENSE("GPL");
1727 MODULE_ALIAS("platform:tsi-ethernet");