edaedc7aa03ffd034483039e20caa8e817e4c73e
[linux-2.6.git] / drivers / net / korina.c
1 /*
2  *  Driver for the IDT RC32434 (Korina) on-chip ethernet controller.
3  *
4  *  Copyright 2004 IDT Inc. (rischelp@idt.com)
5  *  Copyright 2006 Felix Fietkau <nbd@openwrt.org>
6  *  Copyright 2008 Florian Fainelli <florian@openwrt.org>
7  *
8  *  This program is free software; you can redistribute  it and/or modify it
9  *  under  the terms of  the GNU General  Public License as published by the
10  *  Free Software Foundation;  either version 2 of the  License, or (at your
11  *  option) any later version.
12  *
13  *  THIS  SOFTWARE  IS PROVIDED   ``AS  IS'' AND   ANY  EXPRESS OR IMPLIED
14  *  WARRANTIES,   INCLUDING, BUT NOT  LIMITED  TO, THE IMPLIED WARRANTIES OF
15  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
16  *  NO  EVENT  SHALL   THE AUTHOR  BE    LIABLE FOR ANY   DIRECT, INDIRECT,
17  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
18  *  NOT LIMITED   TO, PROCUREMENT OF  SUBSTITUTE GOODS  OR SERVICES; LOSS OF
19  *  USE, DATA,  OR PROFITS; OR  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
20  *  ANY THEORY OF LIABILITY, WHETHER IN  CONTRACT, STRICT LIABILITY, OR TORT
21  *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
22  *  THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
23  *
24  *  You should have received a copy of the  GNU General Public License along
25  *  with this program; if not, write  to the Free Software Foundation, Inc.,
26  *  675 Mass Ave, Cambridge, MA 02139, USA.
27  *
28  *  Writing to a DMA status register:
29  *
30  *  When writing to the status register, you should mask the bit you have
31  *  been testing the status register with. Both Tx and Rx DMA registers
32  *  should stick to this procedure.
33  */
34
35 #include <linux/module.h>
36 #include <linux/kernel.h>
37 #include <linux/moduleparam.h>
38 #include <linux/sched.h>
39 #include <linux/ctype.h>
40 #include <linux/types.h>
41 #include <linux/interrupt.h>
42 #include <linux/init.h>
43 #include <linux/ioport.h>
44 #include <linux/in.h>
45 #include <linux/slab.h>
46 #include <linux/string.h>
47 #include <linux/delay.h>
48 #include <linux/netdevice.h>
49 #include <linux/etherdevice.h>
50 #include <linux/skbuff.h>
51 #include <linux/errno.h>
52 #include <linux/platform_device.h>
53 #include <linux/mii.h>
54 #include <linux/ethtool.h>
55 #include <linux/crc32.h>
56
57 #include <asm/bootinfo.h>
58 #include <asm/system.h>
59 #include <asm/bitops.h>
60 #include <asm/pgtable.h>
61 #include <asm/segment.h>
62 #include <asm/io.h>
63 #include <asm/dma.h>
64
65 #include <asm/mach-rc32434/rb.h>
66 #include <asm/mach-rc32434/rc32434.h>
67 #include <asm/mach-rc32434/eth.h>
68 #include <asm/mach-rc32434/dma_v.h>
69
70 #define DRV_NAME        "korina"
71 #define DRV_VERSION     "0.10"
72 #define DRV_RELDATE     "04Mar2008"
73
74 #define STATION_ADDRESS_HIGH(dev) (((dev)->dev_addr[0] << 8) | \
75                                    ((dev)->dev_addr[1]))
76 #define STATION_ADDRESS_LOW(dev)  (((dev)->dev_addr[2] << 24) | \
77                                    ((dev)->dev_addr[3] << 16) | \
78                                    ((dev)->dev_addr[4] << 8)  | \
79                                    ((dev)->dev_addr[5]))
80
81 #define MII_CLOCK 1250000       /* no more than 2.5MHz */
82
83 /* the following must be powers of two */
84 #define KORINA_NUM_RDS  64  /* number of receive descriptors */
85 #define KORINA_NUM_TDS  64  /* number of transmit descriptors */
86
87 /* KORINA_RBSIZE is the hardware's default maximum receive
88  * frame size in bytes. Having this hardcoded means that there
89  * is no support for MTU sizes greater than 1500. */
90 #define KORINA_RBSIZE   1536 /* size of one resource buffer = Ether MTU */
91 #define KORINA_RDS_MASK (KORINA_NUM_RDS - 1)
92 #define KORINA_TDS_MASK (KORINA_NUM_TDS - 1)
93 #define RD_RING_SIZE    (KORINA_NUM_RDS * sizeof(struct dma_desc))
94 #define TD_RING_SIZE    (KORINA_NUM_TDS * sizeof(struct dma_desc))
95
96 #define TX_TIMEOUT      (6000 * HZ / 1000)
97
98 enum chain_status { desc_filled, desc_empty };
99 #define IS_DMA_FINISHED(X)   (((X) & (DMA_DESC_FINI)) != 0)
100 #define IS_DMA_DONE(X)   (((X) & (DMA_DESC_DONE)) != 0)
101 #define RCVPKT_LENGTH(X)     (((X) & ETH_RX_LEN) >> ETH_RX_LEN_BIT)
102
103 /* Information that need to be kept for each board. */
104 struct korina_private {
105         struct eth_regs *eth_regs;
106         struct dma_reg *rx_dma_regs;
107         struct dma_reg *tx_dma_regs;
108         struct dma_desc *td_ring; /* transmit descriptor ring */
109         struct dma_desc *rd_ring; /* receive descriptor ring  */
110
111         struct sk_buff *tx_skb[KORINA_NUM_TDS];
112         struct sk_buff *rx_skb[KORINA_NUM_RDS];
113
114         int rx_next_done;
115         int rx_chain_head;
116         int rx_chain_tail;
117         enum chain_status rx_chain_status;
118
119         int tx_next_done;
120         int tx_chain_head;
121         int tx_chain_tail;
122         enum chain_status tx_chain_status;
123         int tx_count;
124         int tx_full;
125
126         int rx_irq;
127         int tx_irq;
128         int ovr_irq;
129         int und_irq;
130
131         spinlock_t lock;        /* NIC xmit lock */
132
133         int dma_halt_cnt;
134         int dma_run_cnt;
135         struct napi_struct napi;
136         struct timer_list media_check_timer;
137         struct mii_if_info mii_if;
138         struct net_device *dev;
139         int phy_addr;
140 };
141
142 extern unsigned int idt_cpu_freq;
143
144 static inline void korina_start_dma(struct dma_reg *ch, u32 dma_addr)
145 {
146         writel(0, &ch->dmandptr);
147         writel(dma_addr, &ch->dmadptr);
148 }
149
150 static inline void korina_abort_dma(struct net_device *dev,
151                                         struct dma_reg *ch)
152 {
153        if (readl(&ch->dmac) & DMA_CHAN_RUN_BIT) {
154                writel(0x10, &ch->dmac);
155
156                while (!(readl(&ch->dmas) & DMA_STAT_HALT))
157                        dev->trans_start = jiffies;
158
159                writel(0, &ch->dmas);
160        }
161
162        writel(0, &ch->dmadptr);
163        writel(0, &ch->dmandptr);
164 }
165
166 static inline void korina_chain_dma(struct dma_reg *ch, u32 dma_addr)
167 {
168         writel(dma_addr, &ch->dmandptr);
169 }
170
171 static void korina_abort_tx(struct net_device *dev)
172 {
173         struct korina_private *lp = netdev_priv(dev);
174
175         korina_abort_dma(dev, lp->tx_dma_regs);
176 }
177
178 static void korina_abort_rx(struct net_device *dev)
179 {
180         struct korina_private *lp = netdev_priv(dev);
181
182         korina_abort_dma(dev, lp->rx_dma_regs);
183 }
184
185 static void korina_start_rx(struct korina_private *lp,
186                                         struct dma_desc *rd)
187 {
188         korina_start_dma(lp->rx_dma_regs, CPHYSADDR(rd));
189 }
190
191 static void korina_chain_rx(struct korina_private *lp,
192                                         struct dma_desc *rd)
193 {
194         korina_chain_dma(lp->rx_dma_regs, CPHYSADDR(rd));
195 }
196
197 /* transmit packet */
198 static int korina_send_packet(struct sk_buff *skb, struct net_device *dev)
199 {
200         struct korina_private *lp = netdev_priv(dev);
201         unsigned long flags;
202         u32 length;
203         u32 chain_prev, chain_next;
204         struct dma_desc *td;
205
206         spin_lock_irqsave(&lp->lock, flags);
207
208         td = &lp->td_ring[lp->tx_chain_tail];
209
210         /* stop queue when full, drop pkts if queue already full */
211         if (lp->tx_count >= (KORINA_NUM_TDS - 2)) {
212                 lp->tx_full = 1;
213
214                 if (lp->tx_count == (KORINA_NUM_TDS - 2))
215                         netif_stop_queue(dev);
216                 else {
217                         dev->stats.tx_dropped++;
218                         dev_kfree_skb_any(skb);
219                         spin_unlock_irqrestore(&lp->lock, flags);
220
221                         return NETDEV_TX_BUSY;
222                 }
223         }
224
225         lp->tx_count++;
226
227         lp->tx_skb[lp->tx_chain_tail] = skb;
228
229         length = skb->len;
230         dma_cache_wback((u32)skb->data, skb->len);
231
232         /* Setup the transmit descriptor. */
233         dma_cache_inv((u32) td, sizeof(*td));
234         td->ca = CPHYSADDR(skb->data);
235         chain_prev = (lp->tx_chain_tail - 1) & KORINA_TDS_MASK;
236         chain_next = (lp->tx_chain_tail + 1) & KORINA_TDS_MASK;
237
238         if (readl(&(lp->tx_dma_regs->dmandptr)) == 0) {
239                 if (lp->tx_chain_status == desc_empty) {
240                         /* Update tail */
241                         td->control = DMA_COUNT(length) |
242                                         DMA_DESC_COF | DMA_DESC_IOF;
243                         /* Move tail */
244                         lp->tx_chain_tail = chain_next;
245                         /* Write to NDPTR */
246                         writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
247                                         &lp->tx_dma_regs->dmandptr);
248                         /* Move head to tail */
249                         lp->tx_chain_head = lp->tx_chain_tail;
250                 } else {
251                         /* Update tail */
252                         td->control = DMA_COUNT(length) |
253                                         DMA_DESC_COF | DMA_DESC_IOF;
254                         /* Link to prev */
255                         lp->td_ring[chain_prev].control &=
256                                         ~DMA_DESC_COF;
257                         /* Link to prev */
258                         lp->td_ring[chain_prev].link =  CPHYSADDR(td);
259                         /* Move tail */
260                         lp->tx_chain_tail = chain_next;
261                         /* Write to NDPTR */
262                         writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
263                                         &(lp->tx_dma_regs->dmandptr));
264                         /* Move head to tail */
265                         lp->tx_chain_head = lp->tx_chain_tail;
266                         lp->tx_chain_status = desc_empty;
267                 }
268         } else {
269                 if (lp->tx_chain_status == desc_empty) {
270                         /* Update tail */
271                         td->control = DMA_COUNT(length) |
272                                         DMA_DESC_COF | DMA_DESC_IOF;
273                         /* Move tail */
274                         lp->tx_chain_tail = chain_next;
275                         lp->tx_chain_status = desc_filled;
276                 } else {
277                         /* Update tail */
278                         td->control = DMA_COUNT(length) |
279                                         DMA_DESC_COF | DMA_DESC_IOF;
280                         lp->td_ring[chain_prev].control &=
281                                         ~DMA_DESC_COF;
282                         lp->td_ring[chain_prev].link =  CPHYSADDR(td);
283                         lp->tx_chain_tail = chain_next;
284                 }
285         }
286         dma_cache_wback((u32) td, sizeof(*td));
287
288         dev->trans_start = jiffies;
289         spin_unlock_irqrestore(&lp->lock, flags);
290
291         return NETDEV_TX_OK;
292 }
293
294 static int mdio_read(struct net_device *dev, int mii_id, int reg)
295 {
296         struct korina_private *lp = netdev_priv(dev);
297         int ret;
298
299         mii_id = ((lp->rx_irq == 0x2c ? 1 : 0) << 8);
300
301         writel(0, &lp->eth_regs->miimcfg);
302         writel(0, &lp->eth_regs->miimcmd);
303         writel(mii_id | reg, &lp->eth_regs->miimaddr);
304         writel(ETH_MII_CMD_SCN, &lp->eth_regs->miimcmd);
305
306         ret = (int)(readl(&lp->eth_regs->miimrdd));
307         return ret;
308 }
309
310 static void mdio_write(struct net_device *dev, int mii_id, int reg, int val)
311 {
312         struct korina_private *lp = netdev_priv(dev);
313
314         mii_id = ((lp->rx_irq == 0x2c ? 1 : 0) << 8);
315
316         writel(0, &lp->eth_regs->miimcfg);
317         writel(1, &lp->eth_regs->miimcmd);
318         writel(mii_id | reg, &lp->eth_regs->miimaddr);
319         writel(ETH_MII_CMD_SCN, &lp->eth_regs->miimcmd);
320         writel(val, &lp->eth_regs->miimwtd);
321 }
322
323 /* Ethernet Rx DMA interrupt */
324 static irqreturn_t korina_rx_dma_interrupt(int irq, void *dev_id)
325 {
326         struct net_device *dev = dev_id;
327         struct korina_private *lp = netdev_priv(dev);
328         u32 dmas, dmasm;
329         irqreturn_t retval;
330
331         dmas = readl(&lp->rx_dma_regs->dmas);
332         if (dmas & (DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR)) {
333                 dmasm = readl(&lp->rx_dma_regs->dmasm);
334                 writel(dmasm | (DMA_STAT_DONE |
335                                 DMA_STAT_HALT | DMA_STAT_ERR),
336                                 &lp->rx_dma_regs->dmasm);
337
338                 napi_schedule(&lp->napi);
339
340                 if (dmas & DMA_STAT_ERR)
341                         printk(KERN_ERR "%s: DMA error\n", dev->name);
342
343                 retval = IRQ_HANDLED;
344         } else
345                 retval = IRQ_NONE;
346
347         return retval;
348 }
349
350 static int korina_rx(struct net_device *dev, int limit)
351 {
352         struct korina_private *lp = netdev_priv(dev);
353         struct dma_desc *rd = &lp->rd_ring[lp->rx_next_done];
354         struct sk_buff *skb, *skb_new;
355         u8 *pkt_buf;
356         u32 devcs, pkt_len, dmas;
357         int count;
358
359         dma_cache_inv((u32)rd, sizeof(*rd));
360
361         for (count = 0; count < limit; count++) {
362                 skb = lp->rx_skb[lp->rx_next_done];
363                 skb_new = NULL;
364
365                 devcs = rd->devcs;
366
367                 if ((KORINA_RBSIZE - (u32)DMA_COUNT(rd->control)) == 0)
368                         break;
369
370                 /* Update statistics counters */
371                 if (devcs & ETH_RX_CRC)
372                         dev->stats.rx_crc_errors++;
373                 if (devcs & ETH_RX_LOR)
374                         dev->stats.rx_length_errors++;
375                 if (devcs & ETH_RX_LE)
376                         dev->stats.rx_length_errors++;
377                 if (devcs & ETH_RX_OVR)
378                         dev->stats.rx_over_errors++;
379                 if (devcs & ETH_RX_CV)
380                         dev->stats.rx_frame_errors++;
381                 if (devcs & ETH_RX_CES)
382                         dev->stats.rx_length_errors++;
383                 if (devcs & ETH_RX_MP)
384                         dev->stats.multicast++;
385
386                 if ((devcs & ETH_RX_LD) != ETH_RX_LD) {
387                         /* check that this is a whole packet
388                          * WARNING: DMA_FD bit incorrectly set
389                          * in Rc32434 (errata ref #077) */
390                         dev->stats.rx_errors++;
391                         dev->stats.rx_dropped++;
392                 } else if ((devcs & ETH_RX_ROK)) {
393                         pkt_len = RCVPKT_LENGTH(devcs);
394
395                         /* must be the (first and) last
396                          * descriptor then */
397                         pkt_buf = (u8 *)lp->rx_skb[lp->rx_next_done]->data;
398
399                         /* invalidate the cache */
400                         dma_cache_inv((unsigned long)pkt_buf, pkt_len - 4);
401
402                         /* Malloc up new buffer. */
403                         skb_new = netdev_alloc_skb_ip_align(dev, KORINA_RBSIZE);
404
405                         if (!skb_new)
406                                 break;
407                         /* Do not count the CRC */
408                         skb_put(skb, pkt_len - 4);
409                         skb->protocol = eth_type_trans(skb, dev);
410
411                         /* Pass the packet to upper layers */
412                         netif_receive_skb(skb);
413                         dev->stats.rx_packets++;
414                         dev->stats.rx_bytes += pkt_len;
415
416                         /* Update the mcast stats */
417                         if (devcs & ETH_RX_MP)
418                                 dev->stats.multicast++;
419
420                         lp->rx_skb[lp->rx_next_done] = skb_new;
421                 }
422
423                 rd->devcs = 0;
424
425                 /* Restore descriptor's curr_addr */
426                 if (skb_new)
427                         rd->ca = CPHYSADDR(skb_new->data);
428                 else
429                         rd->ca = CPHYSADDR(skb->data);
430
431                 rd->control = DMA_COUNT(KORINA_RBSIZE) |
432                         DMA_DESC_COD | DMA_DESC_IOD;
433                 lp->rd_ring[(lp->rx_next_done - 1) &
434                         KORINA_RDS_MASK].control &=
435                         ~DMA_DESC_COD;
436
437                 lp->rx_next_done = (lp->rx_next_done + 1) & KORINA_RDS_MASK;
438                 dma_cache_wback((u32)rd, sizeof(*rd));
439                 rd = &lp->rd_ring[lp->rx_next_done];
440                 writel(~DMA_STAT_DONE, &lp->rx_dma_regs->dmas);
441         }
442
443         dmas = readl(&lp->rx_dma_regs->dmas);
444
445         if (dmas & DMA_STAT_HALT) {
446                 writel(~(DMA_STAT_HALT | DMA_STAT_ERR),
447                                 &lp->rx_dma_regs->dmas);
448
449                 lp->dma_halt_cnt++;
450                 rd->devcs = 0;
451                 skb = lp->rx_skb[lp->rx_next_done];
452                 rd->ca = CPHYSADDR(skb->data);
453                 dma_cache_wback((u32)rd, sizeof(*rd));
454                 korina_chain_rx(lp, rd);
455         }
456
457         return count;
458 }
459
460 static int korina_poll(struct napi_struct *napi, int budget)
461 {
462         struct korina_private *lp =
463                 container_of(napi, struct korina_private, napi);
464         struct net_device *dev = lp->dev;
465         int work_done;
466
467         work_done = korina_rx(dev, budget);
468         if (work_done < budget) {
469                 napi_complete(napi);
470
471                 writel(readl(&lp->rx_dma_regs->dmasm) &
472                         ~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
473                         &lp->rx_dma_regs->dmasm);
474         }
475         return work_done;
476 }
477
478 /*
479  * Set or clear the multicast filter for this adaptor.
480  */
481 static void korina_multicast_list(struct net_device *dev)
482 {
483         struct korina_private *lp = netdev_priv(dev);
484         unsigned long flags;
485         struct dev_mc_list *dmi;
486         u32 recognise = ETH_ARC_AB;     /* always accept broadcasts */
487         int i;
488
489         /* Set promiscuous mode */
490         if (dev->flags & IFF_PROMISC)
491                 recognise |= ETH_ARC_PRO;
492
493         else if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 4))
494                 /* All multicast and broadcast */
495                 recognise |= ETH_ARC_AM;
496
497         /* Build the hash table */
498         if (netdev_mc_count(dev) > 4) {
499                 u16 hash_table[4];
500                 u32 crc;
501
502                 for (i = 0; i < 4; i++)
503                         hash_table[i] = 0;
504
505                 netdev_for_each_mc_addr(dmi, dev) {
506                         char *addrs = dmi->dmi_addr;
507
508                         if (!(*addrs & 1))
509                                 continue;
510
511                         crc = ether_crc_le(6, addrs);
512                         crc >>= 26;
513                         hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
514                 }
515                 /* Accept filtered multicast */
516                 recognise |= ETH_ARC_AFM;
517
518                 /* Fill the MAC hash tables with their values */
519                 writel((u32)(hash_table[1] << 16 | hash_table[0]),
520                                         &lp->eth_regs->ethhash0);
521                 writel((u32)(hash_table[3] << 16 | hash_table[2]),
522                                         &lp->eth_regs->ethhash1);
523         }
524
525         spin_lock_irqsave(&lp->lock, flags);
526         writel(recognise, &lp->eth_regs->etharc);
527         spin_unlock_irqrestore(&lp->lock, flags);
528 }
529
530 static void korina_tx(struct net_device *dev)
531 {
532         struct korina_private *lp = netdev_priv(dev);
533         struct dma_desc *td = &lp->td_ring[lp->tx_next_done];
534         u32 devcs;
535         u32 dmas;
536
537         spin_lock(&lp->lock);
538
539         /* Process all desc that are done */
540         while (IS_DMA_FINISHED(td->control)) {
541                 if (lp->tx_full == 1) {
542                         netif_wake_queue(dev);
543                         lp->tx_full = 0;
544                 }
545
546                 devcs = lp->td_ring[lp->tx_next_done].devcs;
547                 if ((devcs & (ETH_TX_FD | ETH_TX_LD)) !=
548                                 (ETH_TX_FD | ETH_TX_LD)) {
549                         dev->stats.tx_errors++;
550                         dev->stats.tx_dropped++;
551
552                         /* Should never happen */
553                         printk(KERN_ERR "%s: split tx ignored\n",
554                                                         dev->name);
555                 } else if (devcs & ETH_TX_TOK) {
556                         dev->stats.tx_packets++;
557                         dev->stats.tx_bytes +=
558                                         lp->tx_skb[lp->tx_next_done]->len;
559                 } else {
560                         dev->stats.tx_errors++;
561                         dev->stats.tx_dropped++;
562
563                         /* Underflow */
564                         if (devcs & ETH_TX_UND)
565                                 dev->stats.tx_fifo_errors++;
566
567                         /* Oversized frame */
568                         if (devcs & ETH_TX_OF)
569                                 dev->stats.tx_aborted_errors++;
570
571                         /* Excessive deferrals */
572                         if (devcs & ETH_TX_ED)
573                                 dev->stats.tx_carrier_errors++;
574
575                         /* Collisions: medium busy */
576                         if (devcs & ETH_TX_EC)
577                                 dev->stats.collisions++;
578
579                         /* Late collision */
580                         if (devcs & ETH_TX_LC)
581                                 dev->stats.tx_window_errors++;
582                 }
583
584                 /* We must always free the original skb */
585                 if (lp->tx_skb[lp->tx_next_done]) {
586                         dev_kfree_skb_any(lp->tx_skb[lp->tx_next_done]);
587                         lp->tx_skb[lp->tx_next_done] = NULL;
588                 }
589
590                 lp->td_ring[lp->tx_next_done].control = DMA_DESC_IOF;
591                 lp->td_ring[lp->tx_next_done].devcs = ETH_TX_FD | ETH_TX_LD;
592                 lp->td_ring[lp->tx_next_done].link = 0;
593                 lp->td_ring[lp->tx_next_done].ca = 0;
594                 lp->tx_count--;
595
596                 /* Go on to next transmission */
597                 lp->tx_next_done = (lp->tx_next_done + 1) & KORINA_TDS_MASK;
598                 td = &lp->td_ring[lp->tx_next_done];
599
600         }
601
602         /* Clear the DMA status register */
603         dmas = readl(&lp->tx_dma_regs->dmas);
604         writel(~dmas, &lp->tx_dma_regs->dmas);
605
606         writel(readl(&lp->tx_dma_regs->dmasm) &
607                         ~(DMA_STAT_FINI | DMA_STAT_ERR),
608                         &lp->tx_dma_regs->dmasm);
609
610         spin_unlock(&lp->lock);
611 }
612
613 static irqreturn_t
614 korina_tx_dma_interrupt(int irq, void *dev_id)
615 {
616         struct net_device *dev = dev_id;
617         struct korina_private *lp = netdev_priv(dev);
618         u32 dmas, dmasm;
619         irqreturn_t retval;
620
621         dmas = readl(&lp->tx_dma_regs->dmas);
622
623         if (dmas & (DMA_STAT_FINI | DMA_STAT_ERR)) {
624                 dmasm = readl(&lp->tx_dma_regs->dmasm);
625                 writel(dmasm | (DMA_STAT_FINI | DMA_STAT_ERR),
626                                 &lp->tx_dma_regs->dmasm);
627
628                 korina_tx(dev);
629
630                 if (lp->tx_chain_status == desc_filled &&
631                         (readl(&(lp->tx_dma_regs->dmandptr)) == 0)) {
632                         writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
633                                 &(lp->tx_dma_regs->dmandptr));
634                         lp->tx_chain_status = desc_empty;
635                         lp->tx_chain_head = lp->tx_chain_tail;
636                         dev->trans_start = jiffies;
637                 }
638                 if (dmas & DMA_STAT_ERR)
639                         printk(KERN_ERR "%s: DMA error\n", dev->name);
640
641                 retval = IRQ_HANDLED;
642         } else
643                 retval = IRQ_NONE;
644
645         return retval;
646 }
647
648
649 static void korina_check_media(struct net_device *dev, unsigned int init_media)
650 {
651         struct korina_private *lp = netdev_priv(dev);
652
653         mii_check_media(&lp->mii_if, 0, init_media);
654
655         if (lp->mii_if.full_duplex)
656                 writel(readl(&lp->eth_regs->ethmac2) | ETH_MAC2_FD,
657                                                 &lp->eth_regs->ethmac2);
658         else
659                 writel(readl(&lp->eth_regs->ethmac2) & ~ETH_MAC2_FD,
660                                                 &lp->eth_regs->ethmac2);
661 }
662
663 static void korina_poll_media(unsigned long data)
664 {
665         struct net_device *dev = (struct net_device *) data;
666         struct korina_private *lp = netdev_priv(dev);
667
668         korina_check_media(dev, 0);
669         mod_timer(&lp->media_check_timer, jiffies + HZ);
670 }
671
672 static void korina_set_carrier(struct mii_if_info *mii)
673 {
674         if (mii->force_media) {
675                 /* autoneg is off: Link is always assumed to be up */
676                 if (!netif_carrier_ok(mii->dev))
677                         netif_carrier_on(mii->dev);
678         } else  /* Let MMI library update carrier status */
679                 korina_check_media(mii->dev, 0);
680 }
681
682 static int korina_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
683 {
684         struct korina_private *lp = netdev_priv(dev);
685         struct mii_ioctl_data *data = if_mii(rq);
686         int rc;
687
688         if (!netif_running(dev))
689                 return -EINVAL;
690         spin_lock_irq(&lp->lock);
691         rc = generic_mii_ioctl(&lp->mii_if, data, cmd, NULL);
692         spin_unlock_irq(&lp->lock);
693         korina_set_carrier(&lp->mii_if);
694
695         return rc;
696 }
697
698 /* ethtool helpers */
699 static void netdev_get_drvinfo(struct net_device *dev,
700                         struct ethtool_drvinfo *info)
701 {
702         struct korina_private *lp = netdev_priv(dev);
703
704         strcpy(info->driver, DRV_NAME);
705         strcpy(info->version, DRV_VERSION);
706         strcpy(info->bus_info, lp->dev->name);
707 }
708
709 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
710 {
711         struct korina_private *lp = netdev_priv(dev);
712         int rc;
713
714         spin_lock_irq(&lp->lock);
715         rc = mii_ethtool_gset(&lp->mii_if, cmd);
716         spin_unlock_irq(&lp->lock);
717
718         return rc;
719 }
720
721 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
722 {
723         struct korina_private *lp = netdev_priv(dev);
724         int rc;
725
726         spin_lock_irq(&lp->lock);
727         rc = mii_ethtool_sset(&lp->mii_if, cmd);
728         spin_unlock_irq(&lp->lock);
729         korina_set_carrier(&lp->mii_if);
730
731         return rc;
732 }
733
734 static u32 netdev_get_link(struct net_device *dev)
735 {
736         struct korina_private *lp = netdev_priv(dev);
737
738         return mii_link_ok(&lp->mii_if);
739 }
740
741 static const struct ethtool_ops netdev_ethtool_ops = {
742         .get_drvinfo            = netdev_get_drvinfo,
743         .get_settings           = netdev_get_settings,
744         .set_settings           = netdev_set_settings,
745         .get_link               = netdev_get_link,
746 };
747
748 static int korina_alloc_ring(struct net_device *dev)
749 {
750         struct korina_private *lp = netdev_priv(dev);
751         struct sk_buff *skb;
752         int i;
753
754         /* Initialize the transmit descriptors */
755         for (i = 0; i < KORINA_NUM_TDS; i++) {
756                 lp->td_ring[i].control = DMA_DESC_IOF;
757                 lp->td_ring[i].devcs = ETH_TX_FD | ETH_TX_LD;
758                 lp->td_ring[i].ca = 0;
759                 lp->td_ring[i].link = 0;
760         }
761         lp->tx_next_done = lp->tx_chain_head = lp->tx_chain_tail =
762                         lp->tx_full = lp->tx_count = 0;
763         lp->tx_chain_status = desc_empty;
764
765         /* Initialize the receive descriptors */
766         for (i = 0; i < KORINA_NUM_RDS; i++) {
767                 skb = dev_alloc_skb(KORINA_RBSIZE + 2);
768                 if (!skb)
769                         return -ENOMEM;
770                 skb_reserve(skb, 2);
771                 lp->rx_skb[i] = skb;
772                 lp->rd_ring[i].control = DMA_DESC_IOD |
773                                 DMA_COUNT(KORINA_RBSIZE);
774                 lp->rd_ring[i].devcs = 0;
775                 lp->rd_ring[i].ca = CPHYSADDR(skb->data);
776                 lp->rd_ring[i].link = CPHYSADDR(&lp->rd_ring[i+1]);
777         }
778
779         /* loop back receive descriptors, so the last
780          * descriptor points to the first one */
781         lp->rd_ring[i - 1].link = CPHYSADDR(&lp->rd_ring[0]);
782         lp->rd_ring[i - 1].control |= DMA_DESC_COD;
783
784         lp->rx_next_done  = 0;
785         lp->rx_chain_head = 0;
786         lp->rx_chain_tail = 0;
787         lp->rx_chain_status = desc_empty;
788
789         return 0;
790 }
791
792 static void korina_free_ring(struct net_device *dev)
793 {
794         struct korina_private *lp = netdev_priv(dev);
795         int i;
796
797         for (i = 0; i < KORINA_NUM_RDS; i++) {
798                 lp->rd_ring[i].control = 0;
799                 if (lp->rx_skb[i])
800                         dev_kfree_skb_any(lp->rx_skb[i]);
801                 lp->rx_skb[i] = NULL;
802         }
803
804         for (i = 0; i < KORINA_NUM_TDS; i++) {
805                 lp->td_ring[i].control = 0;
806                 if (lp->tx_skb[i])
807                         dev_kfree_skb_any(lp->tx_skb[i]);
808                 lp->tx_skb[i] = NULL;
809         }
810 }
811
812 /*
813  * Initialize the RC32434 ethernet controller.
814  */
815 static int korina_init(struct net_device *dev)
816 {
817         struct korina_private *lp = netdev_priv(dev);
818
819         /* Disable DMA */
820         korina_abort_tx(dev);
821         korina_abort_rx(dev);
822
823         /* reset ethernet logic */
824         writel(0, &lp->eth_regs->ethintfc);
825         while ((readl(&lp->eth_regs->ethintfc) & ETH_INT_FC_RIP))
826                 dev->trans_start = jiffies;
827
828         /* Enable Ethernet Interface */
829         writel(ETH_INT_FC_EN, &lp->eth_regs->ethintfc);
830
831         /* Allocate rings */
832         if (korina_alloc_ring(dev)) {
833                 printk(KERN_ERR "%s: descriptor allocation failed\n", dev->name);
834                 korina_free_ring(dev);
835                 return -ENOMEM;
836         }
837
838         writel(0, &lp->rx_dma_regs->dmas);
839         /* Start Rx DMA */
840         korina_start_rx(lp, &lp->rd_ring[0]);
841
842         writel(readl(&lp->tx_dma_regs->dmasm) &
843                         ~(DMA_STAT_FINI | DMA_STAT_ERR),
844                         &lp->tx_dma_regs->dmasm);
845         writel(readl(&lp->rx_dma_regs->dmasm) &
846                         ~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
847                         &lp->rx_dma_regs->dmasm);
848
849         /* Accept only packets destined for this Ethernet device address */
850         writel(ETH_ARC_AB, &lp->eth_regs->etharc);
851
852         /* Set all Ether station address registers to their initial values */
853         writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal0);
854         writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah0);
855
856         writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal1);
857         writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah1);
858
859         writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal2);
860         writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah2);
861
862         writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal3);
863         writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah3);
864
865
866         /* Frame Length Checking, Pad Enable, CRC Enable, Full Duplex set */
867         writel(ETH_MAC2_PE | ETH_MAC2_CEN | ETH_MAC2_FD,
868                         &lp->eth_regs->ethmac2);
869
870         /* Back to back inter-packet-gap */
871         writel(0x15, &lp->eth_regs->ethipgt);
872         /* Non - Back to back inter-packet-gap */
873         writel(0x12, &lp->eth_regs->ethipgr);
874
875         /* Management Clock Prescaler Divisor
876          * Clock independent setting */
877         writel(((idt_cpu_freq) / MII_CLOCK + 1) & ~1,
878                        &lp->eth_regs->ethmcp);
879
880         /* don't transmit until fifo contains 48b */
881         writel(48, &lp->eth_regs->ethfifott);
882
883         writel(ETH_MAC1_RE, &lp->eth_regs->ethmac1);
884
885         napi_enable(&lp->napi);
886         netif_start_queue(dev);
887
888         return 0;
889 }
890
891 /*
892  * Restart the RC32434 ethernet controller.
893  * FIXME: check the return status where we call it
894  */
895 static int korina_restart(struct net_device *dev)
896 {
897         struct korina_private *lp = netdev_priv(dev);
898         int ret;
899
900         /*
901          * Disable interrupts
902          */
903         disable_irq(lp->rx_irq);
904         disable_irq(lp->tx_irq);
905         disable_irq(lp->ovr_irq);
906         disable_irq(lp->und_irq);
907
908         writel(readl(&lp->tx_dma_regs->dmasm) |
909                                 DMA_STAT_FINI | DMA_STAT_ERR,
910                                 &lp->tx_dma_regs->dmasm);
911         writel(readl(&lp->rx_dma_regs->dmasm) |
912                                 DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR,
913                                 &lp->rx_dma_regs->dmasm);
914
915         korina_free_ring(dev);
916
917         napi_disable(&lp->napi);
918
919         ret = korina_init(dev);
920         if (ret < 0) {
921                 printk(KERN_ERR "%s: cannot restart device\n", dev->name);
922                 return ret;
923         }
924         korina_multicast_list(dev);
925
926         enable_irq(lp->und_irq);
927         enable_irq(lp->ovr_irq);
928         enable_irq(lp->tx_irq);
929         enable_irq(lp->rx_irq);
930
931         return ret;
932 }
933
934 static void korina_clear_and_restart(struct net_device *dev, u32 value)
935 {
936         struct korina_private *lp = netdev_priv(dev);
937
938         netif_stop_queue(dev);
939         writel(value, &lp->eth_regs->ethintfc);
940         korina_restart(dev);
941 }
942
943 /* Ethernet Tx Underflow interrupt */
944 static irqreturn_t korina_und_interrupt(int irq, void *dev_id)
945 {
946         struct net_device *dev = dev_id;
947         struct korina_private *lp = netdev_priv(dev);
948         unsigned int und;
949
950         spin_lock(&lp->lock);
951
952         und = readl(&lp->eth_regs->ethintfc);
953
954         if (und & ETH_INT_FC_UND)
955                 korina_clear_and_restart(dev, und & ~ETH_INT_FC_UND);
956
957         spin_unlock(&lp->lock);
958
959         return IRQ_HANDLED;
960 }
961
962 static void korina_tx_timeout(struct net_device *dev)
963 {
964         struct korina_private *lp = netdev_priv(dev);
965         unsigned long flags;
966
967         spin_lock_irqsave(&lp->lock, flags);
968         korina_restart(dev);
969         spin_unlock_irqrestore(&lp->lock, flags);
970 }
971
972 /* Ethernet Rx Overflow interrupt */
973 static irqreturn_t
974 korina_ovr_interrupt(int irq, void *dev_id)
975 {
976         struct net_device *dev = dev_id;
977         struct korina_private *lp = netdev_priv(dev);
978         unsigned int ovr;
979
980         spin_lock(&lp->lock);
981         ovr = readl(&lp->eth_regs->ethintfc);
982
983         if (ovr & ETH_INT_FC_OVR)
984                 korina_clear_and_restart(dev, ovr & ~ETH_INT_FC_OVR);
985
986         spin_unlock(&lp->lock);
987
988         return IRQ_HANDLED;
989 }
990
991 #ifdef CONFIG_NET_POLL_CONTROLLER
992 static void korina_poll_controller(struct net_device *dev)
993 {
994         disable_irq(dev->irq);
995         korina_tx_dma_interrupt(dev->irq, dev);
996         enable_irq(dev->irq);
997 }
998 #endif
999
1000 static int korina_open(struct net_device *dev)
1001 {
1002         struct korina_private *lp = netdev_priv(dev);
1003         int ret;
1004
1005         /* Initialize */
1006         ret = korina_init(dev);
1007         if (ret < 0) {
1008                 printk(KERN_ERR "%s: cannot open device\n", dev->name);
1009                 goto out;
1010         }
1011
1012         /* Install the interrupt handler
1013          * that handles the Done Finished
1014          * Ovr and Und Events */
1015         ret = request_irq(lp->rx_irq, korina_rx_dma_interrupt,
1016                         IRQF_DISABLED, "Korina ethernet Rx", dev);
1017         if (ret < 0) {
1018                 printk(KERN_ERR "%s: unable to get Rx DMA IRQ %d\n",
1019                     dev->name, lp->rx_irq);
1020                 goto err_release;
1021         }
1022         ret = request_irq(lp->tx_irq, korina_tx_dma_interrupt,
1023                         IRQF_DISABLED, "Korina ethernet Tx", dev);
1024         if (ret < 0) {
1025                 printk(KERN_ERR "%s: unable to get Tx DMA IRQ %d\n",
1026                     dev->name, lp->tx_irq);
1027                 goto err_free_rx_irq;
1028         }
1029
1030         /* Install handler for overrun error. */
1031         ret = request_irq(lp->ovr_irq, korina_ovr_interrupt,
1032                         IRQF_DISABLED, "Ethernet Overflow", dev);
1033         if (ret < 0) {
1034                 printk(KERN_ERR "%s: unable to get OVR IRQ %d\n",
1035                     dev->name, lp->ovr_irq);
1036                 goto err_free_tx_irq;
1037         }
1038
1039         /* Install handler for underflow error. */
1040         ret = request_irq(lp->und_irq, korina_und_interrupt,
1041                         IRQF_DISABLED, "Ethernet Underflow", dev);
1042         if (ret < 0) {
1043                 printk(KERN_ERR "%s: unable to get UND IRQ %d\n",
1044                     dev->name, lp->und_irq);
1045                 goto err_free_ovr_irq;
1046         }
1047         mod_timer(&lp->media_check_timer, jiffies + 1);
1048 out:
1049         return ret;
1050
1051 err_free_ovr_irq:
1052         free_irq(lp->ovr_irq, dev);
1053 err_free_tx_irq:
1054         free_irq(lp->tx_irq, dev);
1055 err_free_rx_irq:
1056         free_irq(lp->rx_irq, dev);
1057 err_release:
1058         korina_free_ring(dev);
1059         goto out;
1060 }
1061
1062 static int korina_close(struct net_device *dev)
1063 {
1064         struct korina_private *lp = netdev_priv(dev);
1065         u32 tmp;
1066
1067         del_timer(&lp->media_check_timer);
1068
1069         /* Disable interrupts */
1070         disable_irq(lp->rx_irq);
1071         disable_irq(lp->tx_irq);
1072         disable_irq(lp->ovr_irq);
1073         disable_irq(lp->und_irq);
1074
1075         korina_abort_tx(dev);
1076         tmp = readl(&lp->tx_dma_regs->dmasm);
1077         tmp = tmp | DMA_STAT_FINI | DMA_STAT_ERR;
1078         writel(tmp, &lp->tx_dma_regs->dmasm);
1079
1080         korina_abort_rx(dev);
1081         tmp = readl(&lp->rx_dma_regs->dmasm);
1082         tmp = tmp | DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR;
1083         writel(tmp, &lp->rx_dma_regs->dmasm);
1084
1085         korina_free_ring(dev);
1086
1087         napi_disable(&lp->napi);
1088
1089         free_irq(lp->rx_irq, dev);
1090         free_irq(lp->tx_irq, dev);
1091         free_irq(lp->ovr_irq, dev);
1092         free_irq(lp->und_irq, dev);
1093
1094         return 0;
1095 }
1096
1097 static const struct net_device_ops korina_netdev_ops = {
1098         .ndo_open               = korina_open,
1099         .ndo_stop               = korina_close,
1100         .ndo_start_xmit         = korina_send_packet,
1101         .ndo_set_multicast_list = korina_multicast_list,
1102         .ndo_tx_timeout         = korina_tx_timeout,
1103         .ndo_do_ioctl           = korina_ioctl,
1104         .ndo_change_mtu         = eth_change_mtu,
1105         .ndo_validate_addr      = eth_validate_addr,
1106         .ndo_set_mac_address    = eth_mac_addr,
1107 #ifdef CONFIG_NET_POLL_CONTROLLER
1108         .ndo_poll_controller    = korina_poll_controller,
1109 #endif
1110 };
1111
1112 static int korina_probe(struct platform_device *pdev)
1113 {
1114         struct korina_device *bif = platform_get_drvdata(pdev);
1115         struct korina_private *lp;
1116         struct net_device *dev;
1117         struct resource *r;
1118         int rc;
1119
1120         dev = alloc_etherdev(sizeof(struct korina_private));
1121         if (!dev) {
1122                 printk(KERN_ERR DRV_NAME ": alloc_etherdev failed\n");
1123                 return -ENOMEM;
1124         }
1125         SET_NETDEV_DEV(dev, &pdev->dev);
1126         lp = netdev_priv(dev);
1127
1128         bif->dev = dev;
1129         memcpy(dev->dev_addr, bif->mac, 6);
1130
1131         lp->rx_irq = platform_get_irq_byname(pdev, "korina_rx");
1132         lp->tx_irq = platform_get_irq_byname(pdev, "korina_tx");
1133         lp->ovr_irq = platform_get_irq_byname(pdev, "korina_ovr");
1134         lp->und_irq = platform_get_irq_byname(pdev, "korina_und");
1135
1136         r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_regs");
1137         dev->base_addr = r->start;
1138         lp->eth_regs = ioremap_nocache(r->start, resource_size(r));
1139         if (!lp->eth_regs) {
1140                 printk(KERN_ERR DRV_NAME ": cannot remap registers\n");
1141                 rc = -ENXIO;
1142                 goto probe_err_out;
1143         }
1144
1145         r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_dma_rx");
1146         lp->rx_dma_regs = ioremap_nocache(r->start, resource_size(r));
1147         if (!lp->rx_dma_regs) {
1148                 printk(KERN_ERR DRV_NAME ": cannot remap Rx DMA registers\n");
1149                 rc = -ENXIO;
1150                 goto probe_err_dma_rx;
1151         }
1152
1153         r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_dma_tx");
1154         lp->tx_dma_regs = ioremap_nocache(r->start, resource_size(r));
1155         if (!lp->tx_dma_regs) {
1156                 printk(KERN_ERR DRV_NAME ": cannot remap Tx DMA registers\n");
1157                 rc = -ENXIO;
1158                 goto probe_err_dma_tx;
1159         }
1160
1161         lp->td_ring = kmalloc(TD_RING_SIZE + RD_RING_SIZE, GFP_KERNEL);
1162         if (!lp->td_ring) {
1163                 printk(KERN_ERR DRV_NAME ": cannot allocate descriptors\n");
1164                 rc = -ENXIO;
1165                 goto probe_err_td_ring;
1166         }
1167
1168         dma_cache_inv((unsigned long)(lp->td_ring),
1169                         TD_RING_SIZE + RD_RING_SIZE);
1170
1171         /* now convert TD_RING pointer to KSEG1 */
1172         lp->td_ring = (struct dma_desc *)KSEG1ADDR(lp->td_ring);
1173         lp->rd_ring = &lp->td_ring[KORINA_NUM_TDS];
1174
1175         spin_lock_init(&lp->lock);
1176         /* just use the rx dma irq */
1177         dev->irq = lp->rx_irq;
1178         lp->dev = dev;
1179
1180         dev->netdev_ops = &korina_netdev_ops;
1181         dev->ethtool_ops = &netdev_ethtool_ops;
1182         dev->watchdog_timeo = TX_TIMEOUT;
1183         netif_napi_add(dev, &lp->napi, korina_poll, 64);
1184
1185         lp->phy_addr = (((lp->rx_irq == 0x2c? 1:0) << 8) | 0x05);
1186         lp->mii_if.dev = dev;
1187         lp->mii_if.mdio_read = mdio_read;
1188         lp->mii_if.mdio_write = mdio_write;
1189         lp->mii_if.phy_id = lp->phy_addr;
1190         lp->mii_if.phy_id_mask = 0x1f;
1191         lp->mii_if.reg_num_mask = 0x1f;
1192
1193         rc = register_netdev(dev);
1194         if (rc < 0) {
1195                 printk(KERN_ERR DRV_NAME
1196                         ": cannot register net device: %d\n", rc);
1197                 goto probe_err_register;
1198         }
1199         setup_timer(&lp->media_check_timer, korina_poll_media, (unsigned long) dev);
1200
1201         printk(KERN_INFO "%s: " DRV_NAME "-" DRV_VERSION " " DRV_RELDATE "\n",
1202                         dev->name);
1203 out:
1204         return rc;
1205
1206 probe_err_register:
1207         kfree(lp->td_ring);
1208 probe_err_td_ring:
1209         iounmap(lp->tx_dma_regs);
1210 probe_err_dma_tx:
1211         iounmap(lp->rx_dma_regs);
1212 probe_err_dma_rx:
1213         iounmap(lp->eth_regs);
1214 probe_err_out:
1215         free_netdev(dev);
1216         goto out;
1217 }
1218
1219 static int korina_remove(struct platform_device *pdev)
1220 {
1221         struct korina_device *bif = platform_get_drvdata(pdev);
1222         struct korina_private *lp = netdev_priv(bif->dev);
1223
1224         iounmap(lp->eth_regs);
1225         iounmap(lp->rx_dma_regs);
1226         iounmap(lp->tx_dma_regs);
1227
1228         platform_set_drvdata(pdev, NULL);
1229         unregister_netdev(bif->dev);
1230         free_netdev(bif->dev);
1231
1232         return 0;
1233 }
1234
1235 static struct platform_driver korina_driver = {
1236         .driver.name = "korina",
1237         .probe = korina_probe,
1238         .remove = korina_remove,
1239 };
1240
1241 static int __init korina_init_module(void)
1242 {
1243         return platform_driver_register(&korina_driver);
1244 }
1245
1246 static void korina_cleanup_module(void)
1247 {
1248         return platform_driver_unregister(&korina_driver);
1249 }
1250
1251 module_init(korina_init_module);
1252 module_exit(korina_cleanup_module);
1253
1254 MODULE_AUTHOR("Philip Rischel <rischelp@idt.com>");
1255 MODULE_AUTHOR("Felix Fietkau <nbd@openwrt.org>");
1256 MODULE_AUTHOR("Florian Fainelli <florian@openwrt.org>");
1257 MODULE_DESCRIPTION("IDT RC32434 (Korina) Ethernet driver");
1258 MODULE_LICENSE("GPL");