78bfbe42ca9b9cb6a4f6aa3114188b6868b3de64
[linux-2.6.git] / drivers / net / ixgbevf / ixgbevf_main.c
1 /*******************************************************************************
2
3   Intel 82599 Virtual Function driver
4   Copyright(c) 1999 - 2009 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28
29 /******************************************************************************
30  Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code
31 ******************************************************************************/
32 #include <linux/types.h>
33 #include <linux/module.h>
34 #include <linux/pci.h>
35 #include <linux/netdevice.h>
36 #include <linux/vmalloc.h>
37 #include <linux/string.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <linux/tcp.h>
41 #include <linux/ipv6.h>
42 #include <linux/slab.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <linux/ethtool.h>
46 #include <linux/if_vlan.h>
47
48 #include "ixgbevf.h"
49
50 char ixgbevf_driver_name[] = "ixgbevf";
51 static const char ixgbevf_driver_string[] =
52         "Intel(R) 82599 Virtual Function";
53
54 #define DRV_VERSION "1.0.0-k0"
55 const char ixgbevf_driver_version[] = DRV_VERSION;
56 static char ixgbevf_copyright[] = "Copyright (c) 2009 Intel Corporation.";
57
58 static const struct ixgbevf_info *ixgbevf_info_tbl[] = {
59         [board_82599_vf] = &ixgbevf_vf_info,
60 };
61
62 /* ixgbevf_pci_tbl - PCI Device ID Table
63  *
64  * Wildcard entries (PCI_ANY_ID) should come last
65  * Last entry must be all 0s
66  *
67  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
68  *   Class, Class Mask, private data (not used) }
69  */
70 static struct pci_device_id ixgbevf_pci_tbl[] = {
71         {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF),
72         board_82599_vf},
73
74         /* required last entry */
75         {0, }
76 };
77 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl);
78
79 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
80 MODULE_DESCRIPTION("Intel(R) 82599 Virtual Function Driver");
81 MODULE_LICENSE("GPL");
82 MODULE_VERSION(DRV_VERSION);
83
84 #define DEFAULT_DEBUG_LEVEL_SHIFT 3
85
86 /* forward decls */
87 static void ixgbevf_set_itr_msix(struct ixgbevf_q_vector *q_vector);
88 static void ixgbevf_write_eitr(struct ixgbevf_adapter *adapter, int v_idx,
89                                u32 itr_reg);
90
91 static inline void ixgbevf_release_rx_desc(struct ixgbe_hw *hw,
92                                            struct ixgbevf_ring *rx_ring,
93                                            u32 val)
94 {
95         /*
96          * Force memory writes to complete before letting h/w
97          * know there are new descriptors to fetch.  (Only
98          * applicable for weak-ordered memory model archs,
99          * such as IA-64).
100          */
101         wmb();
102         IXGBE_WRITE_REG(hw, IXGBE_VFRDT(rx_ring->reg_idx), val);
103 }
104
105 /*
106  * ixgbe_set_ivar - set the IVAR registers, mapping interrupt causes to vectors
107  * @adapter: pointer to adapter struct
108  * @direction: 0 for Rx, 1 for Tx, -1 for other causes
109  * @queue: queue to map the corresponding interrupt to
110  * @msix_vector: the vector to map to the corresponding queue
111  *
112  */
113 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction,
114                              u8 queue, u8 msix_vector)
115 {
116         u32 ivar, index;
117         struct ixgbe_hw *hw = &adapter->hw;
118         if (direction == -1) {
119                 /* other causes */
120                 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
121                 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC);
122                 ivar &= ~0xFF;
123                 ivar |= msix_vector;
124                 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar);
125         } else {
126                 /* tx or rx causes */
127                 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
128                 index = ((16 * (queue & 1)) + (8 * direction));
129                 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1));
130                 ivar &= ~(0xFF << index);
131                 ivar |= (msix_vector << index);
132                 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar);
133         }
134 }
135
136 static void ixgbevf_unmap_and_free_tx_resource(struct ixgbevf_adapter *adapter,
137                                                struct ixgbevf_tx_buffer
138                                                *tx_buffer_info)
139 {
140         if (tx_buffer_info->dma) {
141                 if (tx_buffer_info->mapped_as_page)
142                         dma_unmap_page(&adapter->pdev->dev,
143                                        tx_buffer_info->dma,
144                                        tx_buffer_info->length,
145                                        DMA_TO_DEVICE);
146                 else
147                         dma_unmap_single(&adapter->pdev->dev,
148                                          tx_buffer_info->dma,
149                                          tx_buffer_info->length,
150                                          DMA_TO_DEVICE);
151                 tx_buffer_info->dma = 0;
152         }
153         if (tx_buffer_info->skb) {
154                 dev_kfree_skb_any(tx_buffer_info->skb);
155                 tx_buffer_info->skb = NULL;
156         }
157         tx_buffer_info->time_stamp = 0;
158         /* tx_buffer_info must be completely set up in the transmit path */
159 }
160
161 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_adapter *adapter,
162                                          struct ixgbevf_ring *tx_ring,
163                                          unsigned int eop)
164 {
165         struct ixgbe_hw *hw = &adapter->hw;
166         u32 head, tail;
167
168         /* Detect a transmit hang in hardware, this serializes the
169          * check with the clearing of time_stamp and movement of eop */
170         head = readl(hw->hw_addr + tx_ring->head);
171         tail = readl(hw->hw_addr + tx_ring->tail);
172         adapter->detect_tx_hung = false;
173         if ((head != tail) &&
174             tx_ring->tx_buffer_info[eop].time_stamp &&
175             time_after(jiffies, tx_ring->tx_buffer_info[eop].time_stamp + HZ)) {
176                 /* detected Tx unit hang */
177                 union ixgbe_adv_tx_desc *tx_desc;
178                 tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
179                 printk(KERN_ERR "Detected Tx Unit Hang\n"
180                        "  Tx Queue             <%d>\n"
181                        "  TDH, TDT             <%x>, <%x>\n"
182                        "  next_to_use          <%x>\n"
183                        "  next_to_clean        <%x>\n"
184                        "tx_buffer_info[next_to_clean]\n"
185                        "  time_stamp           <%lx>\n"
186                        "  jiffies              <%lx>\n",
187                        tx_ring->queue_index,
188                        head, tail,
189                        tx_ring->next_to_use, eop,
190                        tx_ring->tx_buffer_info[eop].time_stamp, jiffies);
191                 return true;
192         }
193
194         return false;
195 }
196
197 #define IXGBE_MAX_TXD_PWR       14
198 #define IXGBE_MAX_DATA_PER_TXD  (1 << IXGBE_MAX_TXD_PWR)
199
200 /* Tx Descriptors needed, worst case */
201 #define TXD_USE_COUNT(S) (((S) >> IXGBE_MAX_TXD_PWR) + \
202                          (((S) & (IXGBE_MAX_DATA_PER_TXD - 1)) ? 1 : 0))
203 #ifdef MAX_SKB_FRAGS
204 #define DESC_NEEDED (TXD_USE_COUNT(IXGBE_MAX_DATA_PER_TXD) /* skb->data */ + \
205         MAX_SKB_FRAGS * TXD_USE_COUNT(PAGE_SIZE) + 1)      /* for context */
206 #else
207 #define DESC_NEEDED TXD_USE_COUNT(IXGBE_MAX_DATA_PER_TXD)
208 #endif
209
210 static void ixgbevf_tx_timeout(struct net_device *netdev);
211
212 /**
213  * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes
214  * @adapter: board private structure
215  * @tx_ring: tx ring to clean
216  **/
217 static bool ixgbevf_clean_tx_irq(struct ixgbevf_adapter *adapter,
218                                  struct ixgbevf_ring *tx_ring)
219 {
220         struct net_device *netdev = adapter->netdev;
221         struct ixgbe_hw *hw = &adapter->hw;
222         union ixgbe_adv_tx_desc *tx_desc, *eop_desc;
223         struct ixgbevf_tx_buffer *tx_buffer_info;
224         unsigned int i, eop, count = 0;
225         unsigned int total_bytes = 0, total_packets = 0;
226
227         i = tx_ring->next_to_clean;
228         eop = tx_ring->tx_buffer_info[i].next_to_watch;
229         eop_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
230
231         while ((eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD)) &&
232                (count < tx_ring->work_limit)) {
233                 bool cleaned = false;
234                 rmb(); /* read buffer_info after eop_desc */
235                 for ( ; !cleaned; count++) {
236                         struct sk_buff *skb;
237                         tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, i);
238                         tx_buffer_info = &tx_ring->tx_buffer_info[i];
239                         cleaned = (i == eop);
240                         skb = tx_buffer_info->skb;
241
242                         if (cleaned && skb) {
243                                 unsigned int segs, bytecount;
244
245                                 /* gso_segs is currently only valid for tcp */
246                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
247                                 /* multiply data chunks by size of headers */
248                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
249                                             skb->len;
250                                 total_packets += segs;
251                                 total_bytes += bytecount;
252                         }
253
254                         ixgbevf_unmap_and_free_tx_resource(adapter,
255                                                            tx_buffer_info);
256
257                         tx_desc->wb.status = 0;
258
259                         i++;
260                         if (i == tx_ring->count)
261                                 i = 0;
262                 }
263
264                 eop = tx_ring->tx_buffer_info[i].next_to_watch;
265                 eop_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
266         }
267
268         tx_ring->next_to_clean = i;
269
270 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
271         if (unlikely(count && netif_carrier_ok(netdev) &&
272                      (IXGBE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
273                 /* Make sure that anybody stopping the queue after this
274                  * sees the new next_to_clean.
275                  */
276                 smp_mb();
277 #ifdef HAVE_TX_MQ
278                 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
279                     !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
280                         netif_wake_subqueue(netdev, tx_ring->queue_index);
281                         ++adapter->restart_queue;
282                 }
283 #else
284                 if (netif_queue_stopped(netdev) &&
285                     !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
286                         netif_wake_queue(netdev);
287                         ++adapter->restart_queue;
288                 }
289 #endif
290         }
291
292         if (adapter->detect_tx_hung) {
293                 if (ixgbevf_check_tx_hang(adapter, tx_ring, i)) {
294                         /* schedule immediate reset if we believe we hung */
295                         printk(KERN_INFO
296                                "tx hang %d detected, resetting adapter\n",
297                                adapter->tx_timeout_count + 1);
298                         ixgbevf_tx_timeout(adapter->netdev);
299                 }
300         }
301
302         /* re-arm the interrupt */
303         if ((count >= tx_ring->work_limit) &&
304             (!test_bit(__IXGBEVF_DOWN, &adapter->state))) {
305                 IXGBE_WRITE_REG(hw, IXGBE_VTEICS, tx_ring->v_idx);
306         }
307
308         tx_ring->total_bytes += total_bytes;
309         tx_ring->total_packets += total_packets;
310
311         netdev->stats.tx_bytes += total_bytes;
312         netdev->stats.tx_packets += total_packets;
313
314         return count < tx_ring->work_limit;
315 }
316
317 /**
318  * ixgbevf_receive_skb - Send a completed packet up the stack
319  * @q_vector: structure containing interrupt and ring information
320  * @skb: packet to send up
321  * @status: hardware indication of status of receive
322  * @rx_ring: rx descriptor ring (for a specific queue) to setup
323  * @rx_desc: rx descriptor
324  **/
325 static void ixgbevf_receive_skb(struct ixgbevf_q_vector *q_vector,
326                                 struct sk_buff *skb, u8 status,
327                                 struct ixgbevf_ring *ring,
328                                 union ixgbe_adv_rx_desc *rx_desc)
329 {
330         struct ixgbevf_adapter *adapter = q_vector->adapter;
331         bool is_vlan = (status & IXGBE_RXD_STAT_VP);
332         u16 tag = le16_to_cpu(rx_desc->wb.upper.vlan);
333         int ret;
334
335         if (!(adapter->flags & IXGBE_FLAG_IN_NETPOLL)) {
336                 if (adapter->vlgrp && is_vlan)
337                         vlan_gro_receive(&q_vector->napi,
338                                          adapter->vlgrp,
339                                          tag, skb);
340                 else
341                         napi_gro_receive(&q_vector->napi, skb);
342         } else {
343                 if (adapter->vlgrp && is_vlan)
344                         ret = vlan_hwaccel_rx(skb, adapter->vlgrp, tag);
345                 else
346                         ret = netif_rx(skb);
347         }
348 }
349
350 /**
351  * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum
352  * @adapter: address of board private structure
353  * @status_err: hardware indication of status of receive
354  * @skb: skb currently being received and modified
355  **/
356 static inline void ixgbevf_rx_checksum(struct ixgbevf_adapter *adapter,
357                                        u32 status_err, struct sk_buff *skb)
358 {
359         skb_checksum_none_assert(skb);
360
361         /* Rx csum disabled */
362         if (!(adapter->flags & IXGBE_FLAG_RX_CSUM_ENABLED))
363                 return;
364
365         /* if IP and error */
366         if ((status_err & IXGBE_RXD_STAT_IPCS) &&
367             (status_err & IXGBE_RXDADV_ERR_IPE)) {
368                 adapter->hw_csum_rx_error++;
369                 return;
370         }
371
372         if (!(status_err & IXGBE_RXD_STAT_L4CS))
373                 return;
374
375         if (status_err & IXGBE_RXDADV_ERR_TCPE) {
376                 adapter->hw_csum_rx_error++;
377                 return;
378         }
379
380         /* It must be a TCP or UDP packet with a valid checksum */
381         skb->ip_summed = CHECKSUM_UNNECESSARY;
382         adapter->hw_csum_rx_good++;
383 }
384
385 /**
386  * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split
387  * @adapter: address of board private structure
388  **/
389 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_adapter *adapter,
390                                      struct ixgbevf_ring *rx_ring,
391                                      int cleaned_count)
392 {
393         struct pci_dev *pdev = adapter->pdev;
394         union ixgbe_adv_rx_desc *rx_desc;
395         struct ixgbevf_rx_buffer *bi;
396         struct sk_buff *skb;
397         unsigned int i;
398         unsigned int bufsz = rx_ring->rx_buf_len + NET_IP_ALIGN;
399
400         i = rx_ring->next_to_use;
401         bi = &rx_ring->rx_buffer_info[i];
402
403         while (cleaned_count--) {
404                 rx_desc = IXGBE_RX_DESC_ADV(*rx_ring, i);
405
406                 if (!bi->page_dma &&
407                     (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED)) {
408                         if (!bi->page) {
409                                 bi->page = netdev_alloc_page(adapter->netdev);
410                                 if (!bi->page) {
411                                         adapter->alloc_rx_page_failed++;
412                                         goto no_buffers;
413                                 }
414                                 bi->page_offset = 0;
415                         } else {
416                                 /* use a half page if we're re-using */
417                                 bi->page_offset ^= (PAGE_SIZE / 2);
418                         }
419
420                         bi->page_dma = dma_map_page(&pdev->dev, bi->page,
421                                                     bi->page_offset,
422                                                     (PAGE_SIZE / 2),
423                                                     DMA_FROM_DEVICE);
424                 }
425
426                 skb = bi->skb;
427                 if (!skb) {
428                         skb = netdev_alloc_skb(adapter->netdev,
429                                                                bufsz);
430
431                         if (!skb) {
432                                 adapter->alloc_rx_buff_failed++;
433                                 goto no_buffers;
434                         }
435
436                         /*
437                          * Make buffer alignment 2 beyond a 16 byte boundary
438                          * this will result in a 16 byte aligned IP header after
439                          * the 14 byte MAC header is removed
440                          */
441                         skb_reserve(skb, NET_IP_ALIGN);
442
443                         bi->skb = skb;
444                 }
445                 if (!bi->dma) {
446                         bi->dma = dma_map_single(&pdev->dev, skb->data,
447                                                  rx_ring->rx_buf_len,
448                                                  DMA_FROM_DEVICE);
449                 }
450                 /* Refresh the desc even if buffer_addrs didn't change because
451                  * each write-back erases this info. */
452                 if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
453                         rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
454                         rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
455                 } else {
456                         rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
457                 }
458
459                 i++;
460                 if (i == rx_ring->count)
461                         i = 0;
462                 bi = &rx_ring->rx_buffer_info[i];
463         }
464
465 no_buffers:
466         if (rx_ring->next_to_use != i) {
467                 rx_ring->next_to_use = i;
468                 if (i-- == 0)
469                         i = (rx_ring->count - 1);
470
471                 ixgbevf_release_rx_desc(&adapter->hw, rx_ring, i);
472         }
473 }
474
475 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter,
476                                              u64 qmask)
477 {
478         u32 mask;
479         struct ixgbe_hw *hw = &adapter->hw;
480
481         mask = (qmask & 0xFFFFFFFF);
482         IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, mask);
483 }
484
485 static inline u16 ixgbevf_get_hdr_info(union ixgbe_adv_rx_desc *rx_desc)
486 {
487         return rx_desc->wb.lower.lo_dword.hs_rss.hdr_info;
488 }
489
490 static inline u16 ixgbevf_get_pkt_info(union ixgbe_adv_rx_desc *rx_desc)
491 {
492         return rx_desc->wb.lower.lo_dword.hs_rss.pkt_info;
493 }
494
495 static bool ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector,
496                                  struct ixgbevf_ring *rx_ring,
497                                  int *work_done, int work_to_do)
498 {
499         struct ixgbevf_adapter *adapter = q_vector->adapter;
500         struct pci_dev *pdev = adapter->pdev;
501         union ixgbe_adv_rx_desc *rx_desc, *next_rxd;
502         struct ixgbevf_rx_buffer *rx_buffer_info, *next_buffer;
503         struct sk_buff *skb;
504         unsigned int i;
505         u32 len, staterr;
506         u16 hdr_info;
507         bool cleaned = false;
508         int cleaned_count = 0;
509         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
510
511         i = rx_ring->next_to_clean;
512         rx_desc = IXGBE_RX_DESC_ADV(*rx_ring, i);
513         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
514         rx_buffer_info = &rx_ring->rx_buffer_info[i];
515
516         while (staterr & IXGBE_RXD_STAT_DD) {
517                 u32 upper_len = 0;
518                 if (*work_done >= work_to_do)
519                         break;
520                 (*work_done)++;
521
522                 rmb(); /* read descriptor and rx_buffer_info after status DD */
523                 if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
524                         hdr_info = le16_to_cpu(ixgbevf_get_hdr_info(rx_desc));
525                         len = (hdr_info & IXGBE_RXDADV_HDRBUFLEN_MASK) >>
526                                IXGBE_RXDADV_HDRBUFLEN_SHIFT;
527                         if (hdr_info & IXGBE_RXDADV_SPH)
528                                 adapter->rx_hdr_split++;
529                         if (len > IXGBEVF_RX_HDR_SIZE)
530                                 len = IXGBEVF_RX_HDR_SIZE;
531                         upper_len = le16_to_cpu(rx_desc->wb.upper.length);
532                 } else {
533                         len = le16_to_cpu(rx_desc->wb.upper.length);
534                 }
535                 cleaned = true;
536                 skb = rx_buffer_info->skb;
537                 prefetch(skb->data - NET_IP_ALIGN);
538                 rx_buffer_info->skb = NULL;
539
540                 if (rx_buffer_info->dma) {
541                         dma_unmap_single(&pdev->dev, rx_buffer_info->dma,
542                                          rx_ring->rx_buf_len,
543                                          DMA_FROM_DEVICE);
544                         rx_buffer_info->dma = 0;
545                         skb_put(skb, len);
546                 }
547
548                 if (upper_len) {
549                         dma_unmap_page(&pdev->dev, rx_buffer_info->page_dma,
550                                        PAGE_SIZE / 2, DMA_FROM_DEVICE);
551                         rx_buffer_info->page_dma = 0;
552                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
553                                            rx_buffer_info->page,
554                                            rx_buffer_info->page_offset,
555                                            upper_len);
556
557                         if ((rx_ring->rx_buf_len > (PAGE_SIZE / 2)) ||
558                             (page_count(rx_buffer_info->page) != 1))
559                                 rx_buffer_info->page = NULL;
560                         else
561                                 get_page(rx_buffer_info->page);
562
563                         skb->len += upper_len;
564                         skb->data_len += upper_len;
565                         skb->truesize += upper_len;
566                 }
567
568                 i++;
569                 if (i == rx_ring->count)
570                         i = 0;
571
572                 next_rxd = IXGBE_RX_DESC_ADV(*rx_ring, i);
573                 prefetch(next_rxd);
574                 cleaned_count++;
575
576                 next_buffer = &rx_ring->rx_buffer_info[i];
577
578                 if (!(staterr & IXGBE_RXD_STAT_EOP)) {
579                         if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
580                                 rx_buffer_info->skb = next_buffer->skb;
581                                 rx_buffer_info->dma = next_buffer->dma;
582                                 next_buffer->skb = skb;
583                                 next_buffer->dma = 0;
584                         } else {
585                                 skb->next = next_buffer->skb;
586                                 skb->next->prev = skb;
587                         }
588                         adapter->non_eop_descs++;
589                         goto next_desc;
590                 }
591
592                 /* ERR_MASK will only have valid bits if EOP set */
593                 if (unlikely(staterr & IXGBE_RXDADV_ERR_FRAME_ERR_MASK)) {
594                         dev_kfree_skb_irq(skb);
595                         goto next_desc;
596                 }
597
598                 ixgbevf_rx_checksum(adapter, staterr, skb);
599
600                 /* probably a little skewed due to removing CRC */
601                 total_rx_bytes += skb->len;
602                 total_rx_packets++;
603
604                 /*
605                  * Work around issue of some types of VM to VM loop back
606                  * packets not getting split correctly
607                  */
608                 if (staterr & IXGBE_RXD_STAT_LB) {
609                         u32 header_fixup_len = skb_headlen(skb);
610                         if (header_fixup_len < 14)
611                                 skb_push(skb, header_fixup_len);
612                 }
613                 skb->protocol = eth_type_trans(skb, adapter->netdev);
614
615                 ixgbevf_receive_skb(q_vector, skb, staterr, rx_ring, rx_desc);
616
617 next_desc:
618                 rx_desc->wb.upper.status_error = 0;
619
620                 /* return some buffers to hardware, one at a time is too slow */
621                 if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) {
622                         ixgbevf_alloc_rx_buffers(adapter, rx_ring,
623                                                  cleaned_count);
624                         cleaned_count = 0;
625                 }
626
627                 /* use prefetched values */
628                 rx_desc = next_rxd;
629                 rx_buffer_info = &rx_ring->rx_buffer_info[i];
630
631                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
632         }
633
634         rx_ring->next_to_clean = i;
635         cleaned_count = IXGBE_DESC_UNUSED(rx_ring);
636
637         if (cleaned_count)
638                 ixgbevf_alloc_rx_buffers(adapter, rx_ring, cleaned_count);
639
640         rx_ring->total_packets += total_rx_packets;
641         rx_ring->total_bytes += total_rx_bytes;
642         adapter->netdev->stats.rx_bytes += total_rx_bytes;
643         adapter->netdev->stats.rx_packets += total_rx_packets;
644
645         return cleaned;
646 }
647
648 /**
649  * ixgbevf_clean_rxonly - msix (aka one shot) rx clean routine
650  * @napi: napi struct with our devices info in it
651  * @budget: amount of work driver is allowed to do this pass, in packets
652  *
653  * This function is optimized for cleaning one queue only on a single
654  * q_vector!!!
655  **/
656 static int ixgbevf_clean_rxonly(struct napi_struct *napi, int budget)
657 {
658         struct ixgbevf_q_vector *q_vector =
659                 container_of(napi, struct ixgbevf_q_vector, napi);
660         struct ixgbevf_adapter *adapter = q_vector->adapter;
661         struct ixgbevf_ring *rx_ring = NULL;
662         int work_done = 0;
663         long r_idx;
664
665         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
666         rx_ring = &(adapter->rx_ring[r_idx]);
667
668         ixgbevf_clean_rx_irq(q_vector, rx_ring, &work_done, budget);
669
670         /* If all Rx work done, exit the polling mode */
671         if (work_done < budget) {
672                 napi_complete(napi);
673                 if (adapter->itr_setting & 1)
674                         ixgbevf_set_itr_msix(q_vector);
675                 if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
676                         ixgbevf_irq_enable_queues(adapter, rx_ring->v_idx);
677         }
678
679         return work_done;
680 }
681
682 /**
683  * ixgbevf_clean_rxonly_many - msix (aka one shot) rx clean routine
684  * @napi: napi struct with our devices info in it
685  * @budget: amount of work driver is allowed to do this pass, in packets
686  *
687  * This function will clean more than one rx queue associated with a
688  * q_vector.
689  **/
690 static int ixgbevf_clean_rxonly_many(struct napi_struct *napi, int budget)
691 {
692         struct ixgbevf_q_vector *q_vector =
693                 container_of(napi, struct ixgbevf_q_vector, napi);
694         struct ixgbevf_adapter *adapter = q_vector->adapter;
695         struct ixgbevf_ring *rx_ring = NULL;
696         int work_done = 0, i;
697         long r_idx;
698         u64 enable_mask = 0;
699
700         /* attempt to distribute budget to each queue fairly, but don't allow
701          * the budget to go below 1 because we'll exit polling */
702         budget /= (q_vector->rxr_count ?: 1);
703         budget = max(budget, 1);
704         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
705         for (i = 0; i < q_vector->rxr_count; i++) {
706                 rx_ring = &(adapter->rx_ring[r_idx]);
707                 ixgbevf_clean_rx_irq(q_vector, rx_ring, &work_done, budget);
708                 enable_mask |= rx_ring->v_idx;
709                 r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
710                                       r_idx + 1);
711         }
712
713 #ifndef HAVE_NETDEV_NAPI_LIST
714         if (!netif_running(adapter->netdev))
715                 work_done = 0;
716
717 #endif
718         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
719         rx_ring = &(adapter->rx_ring[r_idx]);
720
721         /* If all Rx work done, exit the polling mode */
722         if (work_done < budget) {
723                 napi_complete(napi);
724                 if (adapter->itr_setting & 1)
725                         ixgbevf_set_itr_msix(q_vector);
726                 if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
727                         ixgbevf_irq_enable_queues(adapter, enable_mask);
728         }
729
730         return work_done;
731 }
732
733
734 /**
735  * ixgbevf_configure_msix - Configure MSI-X hardware
736  * @adapter: board private structure
737  *
738  * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X
739  * interrupts.
740  **/
741 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter)
742 {
743         struct ixgbevf_q_vector *q_vector;
744         struct ixgbe_hw *hw = &adapter->hw;
745         int i, j, q_vectors, v_idx, r_idx;
746         u32 mask;
747
748         q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
749
750         /*
751          * Populate the IVAR table and set the ITR values to the
752          * corresponding register.
753          */
754         for (v_idx = 0; v_idx < q_vectors; v_idx++) {
755                 q_vector = adapter->q_vector[v_idx];
756                 /* XXX for_each_set_bit(...) */
757                 r_idx = find_first_bit(q_vector->rxr_idx,
758                                        adapter->num_rx_queues);
759
760                 for (i = 0; i < q_vector->rxr_count; i++) {
761                         j = adapter->rx_ring[r_idx].reg_idx;
762                         ixgbevf_set_ivar(adapter, 0, j, v_idx);
763                         r_idx = find_next_bit(q_vector->rxr_idx,
764                                               adapter->num_rx_queues,
765                                               r_idx + 1);
766                 }
767                 r_idx = find_first_bit(q_vector->txr_idx,
768                                        adapter->num_tx_queues);
769
770                 for (i = 0; i < q_vector->txr_count; i++) {
771                         j = adapter->tx_ring[r_idx].reg_idx;
772                         ixgbevf_set_ivar(adapter, 1, j, v_idx);
773                         r_idx = find_next_bit(q_vector->txr_idx,
774                                               adapter->num_tx_queues,
775                                               r_idx + 1);
776                 }
777
778                 /* if this is a tx only vector halve the interrupt rate */
779                 if (q_vector->txr_count && !q_vector->rxr_count)
780                         q_vector->eitr = (adapter->eitr_param >> 1);
781                 else if (q_vector->rxr_count)
782                         /* rx only */
783                         q_vector->eitr = adapter->eitr_param;
784
785                 ixgbevf_write_eitr(adapter, v_idx, q_vector->eitr);
786         }
787
788         ixgbevf_set_ivar(adapter, -1, 1, v_idx);
789
790         /* set up to autoclear timer, and the vectors */
791         mask = IXGBE_EIMS_ENABLE_MASK;
792         mask &= ~IXGBE_EIMS_OTHER;
793         IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, mask);
794 }
795
796 enum latency_range {
797         lowest_latency = 0,
798         low_latency = 1,
799         bulk_latency = 2,
800         latency_invalid = 255
801 };
802
803 /**
804  * ixgbevf_update_itr - update the dynamic ITR value based on statistics
805  * @adapter: pointer to adapter
806  * @eitr: eitr setting (ints per sec) to give last timeslice
807  * @itr_setting: current throttle rate in ints/second
808  * @packets: the number of packets during this measurement interval
809  * @bytes: the number of bytes during this measurement interval
810  *
811  *      Stores a new ITR value based on packets and byte
812  *      counts during the last interrupt.  The advantage of per interrupt
813  *      computation is faster updates and more accurate ITR for the current
814  *      traffic pattern.  Constants in this function were computed
815  *      based on theoretical maximum wire speed and thresholds were set based
816  *      on testing data as well as attempting to minimize response time
817  *      while increasing bulk throughput.
818  **/
819 static u8 ixgbevf_update_itr(struct ixgbevf_adapter *adapter,
820                              u32 eitr, u8 itr_setting,
821                              int packets, int bytes)
822 {
823         unsigned int retval = itr_setting;
824         u32 timepassed_us;
825         u64 bytes_perint;
826
827         if (packets == 0)
828                 goto update_itr_done;
829
830
831         /* simple throttlerate management
832          *    0-20MB/s lowest (100000 ints/s)
833          *   20-100MB/s low   (20000 ints/s)
834          *  100-1249MB/s bulk (8000 ints/s)
835          */
836         /* what was last interrupt timeslice? */
837         timepassed_us = 1000000/eitr;
838         bytes_perint = bytes / timepassed_us; /* bytes/usec */
839
840         switch (itr_setting) {
841         case lowest_latency:
842                 if (bytes_perint > adapter->eitr_low)
843                         retval = low_latency;
844                 break;
845         case low_latency:
846                 if (bytes_perint > adapter->eitr_high)
847                         retval = bulk_latency;
848                 else if (bytes_perint <= adapter->eitr_low)
849                         retval = lowest_latency;
850                 break;
851         case bulk_latency:
852                 if (bytes_perint <= adapter->eitr_high)
853                         retval = low_latency;
854                 break;
855         }
856
857 update_itr_done:
858         return retval;
859 }
860
861 /**
862  * ixgbevf_write_eitr - write VTEITR register in hardware specific way
863  * @adapter: pointer to adapter struct
864  * @v_idx: vector index into q_vector array
865  * @itr_reg: new value to be written in *register* format, not ints/s
866  *
867  * This function is made to be called by ethtool and by the driver
868  * when it needs to update VTEITR registers at runtime.  Hardware
869  * specific quirks/differences are taken care of here.
870  */
871 static void ixgbevf_write_eitr(struct ixgbevf_adapter *adapter, int v_idx,
872                                u32 itr_reg)
873 {
874         struct ixgbe_hw *hw = &adapter->hw;
875
876         itr_reg = EITR_INTS_PER_SEC_TO_REG(itr_reg);
877
878         /*
879          * set the WDIS bit to not clear the timer bits and cause an
880          * immediate assertion of the interrupt
881          */
882         itr_reg |= IXGBE_EITR_CNT_WDIS;
883
884         IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg);
885 }
886
887 static void ixgbevf_set_itr_msix(struct ixgbevf_q_vector *q_vector)
888 {
889         struct ixgbevf_adapter *adapter = q_vector->adapter;
890         u32 new_itr;
891         u8 current_itr, ret_itr;
892         int i, r_idx, v_idx = q_vector->v_idx;
893         struct ixgbevf_ring *rx_ring, *tx_ring;
894
895         r_idx = find_first_bit(q_vector->txr_idx, adapter->num_tx_queues);
896         for (i = 0; i < q_vector->txr_count; i++) {
897                 tx_ring = &(adapter->tx_ring[r_idx]);
898                 ret_itr = ixgbevf_update_itr(adapter, q_vector->eitr,
899                                              q_vector->tx_itr,
900                                              tx_ring->total_packets,
901                                              tx_ring->total_bytes);
902                 /* if the result for this queue would decrease interrupt
903                  * rate for this vector then use that result */
904                 q_vector->tx_itr = ((q_vector->tx_itr > ret_itr) ?
905                                     q_vector->tx_itr - 1 : ret_itr);
906                 r_idx = find_next_bit(q_vector->txr_idx, adapter->num_tx_queues,
907                                       r_idx + 1);
908         }
909
910         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
911         for (i = 0; i < q_vector->rxr_count; i++) {
912                 rx_ring = &(adapter->rx_ring[r_idx]);
913                 ret_itr = ixgbevf_update_itr(adapter, q_vector->eitr,
914                                              q_vector->rx_itr,
915                                              rx_ring->total_packets,
916                                              rx_ring->total_bytes);
917                 /* if the result for this queue would decrease interrupt
918                  * rate for this vector then use that result */
919                 q_vector->rx_itr = ((q_vector->rx_itr > ret_itr) ?
920                                     q_vector->rx_itr - 1 : ret_itr);
921                 r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
922                                       r_idx + 1);
923         }
924
925         current_itr = max(q_vector->rx_itr, q_vector->tx_itr);
926
927         switch (current_itr) {
928         /* counts and packets in update_itr are dependent on these numbers */
929         case lowest_latency:
930                 new_itr = 100000;
931                 break;
932         case low_latency:
933                 new_itr = 20000; /* aka hwitr = ~200 */
934                 break;
935         case bulk_latency:
936         default:
937                 new_itr = 8000;
938                 break;
939         }
940
941         if (new_itr != q_vector->eitr) {
942                 u32 itr_reg;
943
944                 /* save the algorithm value here, not the smoothed one */
945                 q_vector->eitr = new_itr;
946                 /* do an exponential smoothing */
947                 new_itr = ((q_vector->eitr * 90)/100) + ((new_itr * 10)/100);
948                 itr_reg = EITR_INTS_PER_SEC_TO_REG(new_itr);
949                 ixgbevf_write_eitr(adapter, v_idx, itr_reg);
950         }
951 }
952
953 static irqreturn_t ixgbevf_msix_mbx(int irq, void *data)
954 {
955         struct net_device *netdev = data;
956         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
957         struct ixgbe_hw *hw = &adapter->hw;
958         u32 eicr;
959         u32 msg;
960
961         eicr = IXGBE_READ_REG(hw, IXGBE_VTEICS);
962         IXGBE_WRITE_REG(hw, IXGBE_VTEICR, eicr);
963
964         if (!hw->mbx.ops.check_for_ack(hw)) {
965                 /*
966                  * checking for the ack clears the PFACK bit.  Place
967                  * it back in the v2p_mailbox cache so that anyone
968                  * polling for an ack will not miss it.  Also
969                  * avoid the read below because the code to read
970                  * the mailbox will also clear the ack bit.  This was
971                  * causing lost acks.  Just cache the bit and exit
972                  * the IRQ handler.
973                  */
974                 hw->mbx.v2p_mailbox |= IXGBE_VFMAILBOX_PFACK;
975                 goto out;
976         }
977
978         /* Not an ack interrupt, go ahead and read the message */
979         hw->mbx.ops.read(hw, &msg, 1);
980
981         if ((msg & IXGBE_MBVFICR_VFREQ_MASK) == IXGBE_PF_CONTROL_MSG)
982                 mod_timer(&adapter->watchdog_timer,
983                           round_jiffies(jiffies + 1));
984
985 out:
986         return IRQ_HANDLED;
987 }
988
989 static irqreturn_t ixgbevf_msix_clean_tx(int irq, void *data)
990 {
991         struct ixgbevf_q_vector *q_vector = data;
992         struct ixgbevf_adapter  *adapter = q_vector->adapter;
993         struct ixgbevf_ring     *tx_ring;
994         int i, r_idx;
995
996         if (!q_vector->txr_count)
997                 return IRQ_HANDLED;
998
999         r_idx = find_first_bit(q_vector->txr_idx, adapter->num_tx_queues);
1000         for (i = 0; i < q_vector->txr_count; i++) {
1001                 tx_ring = &(adapter->tx_ring[r_idx]);
1002                 tx_ring->total_bytes = 0;
1003                 tx_ring->total_packets = 0;
1004                 ixgbevf_clean_tx_irq(adapter, tx_ring);
1005                 r_idx = find_next_bit(q_vector->txr_idx, adapter->num_tx_queues,
1006                                       r_idx + 1);
1007         }
1008
1009         if (adapter->itr_setting & 1)
1010                 ixgbevf_set_itr_msix(q_vector);
1011
1012         return IRQ_HANDLED;
1013 }
1014
1015 /**
1016  * ixgbe_msix_clean_rx - single unshared vector rx clean (all queues)
1017  * @irq: unused
1018  * @data: pointer to our q_vector struct for this interrupt vector
1019  **/
1020 static irqreturn_t ixgbevf_msix_clean_rx(int irq, void *data)
1021 {
1022         struct ixgbevf_q_vector *q_vector = data;
1023         struct ixgbevf_adapter  *adapter = q_vector->adapter;
1024         struct ixgbe_hw *hw = &adapter->hw;
1025         struct ixgbevf_ring  *rx_ring;
1026         int r_idx;
1027         int i;
1028
1029         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
1030         for (i = 0; i < q_vector->rxr_count; i++) {
1031                 rx_ring = &(adapter->rx_ring[r_idx]);
1032                 rx_ring->total_bytes = 0;
1033                 rx_ring->total_packets = 0;
1034                 r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
1035                                       r_idx + 1);
1036         }
1037
1038         if (!q_vector->rxr_count)
1039                 return IRQ_HANDLED;
1040
1041         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
1042         rx_ring = &(adapter->rx_ring[r_idx]);
1043         /* disable interrupts on this vector only */
1044         IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, rx_ring->v_idx);
1045         napi_schedule(&q_vector->napi);
1046
1047
1048         return IRQ_HANDLED;
1049 }
1050
1051 static irqreturn_t ixgbevf_msix_clean_many(int irq, void *data)
1052 {
1053         ixgbevf_msix_clean_rx(irq, data);
1054         ixgbevf_msix_clean_tx(irq, data);
1055
1056         return IRQ_HANDLED;
1057 }
1058
1059 static inline void map_vector_to_rxq(struct ixgbevf_adapter *a, int v_idx,
1060                                      int r_idx)
1061 {
1062         struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1063
1064         set_bit(r_idx, q_vector->rxr_idx);
1065         q_vector->rxr_count++;
1066         a->rx_ring[r_idx].v_idx = 1 << v_idx;
1067 }
1068
1069 static inline void map_vector_to_txq(struct ixgbevf_adapter *a, int v_idx,
1070                                      int t_idx)
1071 {
1072         struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1073
1074         set_bit(t_idx, q_vector->txr_idx);
1075         q_vector->txr_count++;
1076         a->tx_ring[t_idx].v_idx = 1 << v_idx;
1077 }
1078
1079 /**
1080  * ixgbevf_map_rings_to_vectors - Maps descriptor rings to vectors
1081  * @adapter: board private structure to initialize
1082  *
1083  * This function maps descriptor rings to the queue-specific vectors
1084  * we were allotted through the MSI-X enabling code.  Ideally, we'd have
1085  * one vector per ring/queue, but on a constrained vector budget, we
1086  * group the rings as "efficiently" as possible.  You would add new
1087  * mapping configurations in here.
1088  **/
1089 static int ixgbevf_map_rings_to_vectors(struct ixgbevf_adapter *adapter)
1090 {
1091         int q_vectors;
1092         int v_start = 0;
1093         int rxr_idx = 0, txr_idx = 0;
1094         int rxr_remaining = adapter->num_rx_queues;
1095         int txr_remaining = adapter->num_tx_queues;
1096         int i, j;
1097         int rqpv, tqpv;
1098         int err = 0;
1099
1100         q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1101
1102         /*
1103          * The ideal configuration...
1104          * We have enough vectors to map one per queue.
1105          */
1106         if (q_vectors == adapter->num_rx_queues + adapter->num_tx_queues) {
1107                 for (; rxr_idx < rxr_remaining; v_start++, rxr_idx++)
1108                         map_vector_to_rxq(adapter, v_start, rxr_idx);
1109
1110                 for (; txr_idx < txr_remaining; v_start++, txr_idx++)
1111                         map_vector_to_txq(adapter, v_start, txr_idx);
1112                 goto out;
1113         }
1114
1115         /*
1116          * If we don't have enough vectors for a 1-to-1
1117          * mapping, we'll have to group them so there are
1118          * multiple queues per vector.
1119          */
1120         /* Re-adjusting *qpv takes care of the remainder. */
1121         for (i = v_start; i < q_vectors; i++) {
1122                 rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - i);
1123                 for (j = 0; j < rqpv; j++) {
1124                         map_vector_to_rxq(adapter, i, rxr_idx);
1125                         rxr_idx++;
1126                         rxr_remaining--;
1127                 }
1128         }
1129         for (i = v_start; i < q_vectors; i++) {
1130                 tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - i);
1131                 for (j = 0; j < tqpv; j++) {
1132                         map_vector_to_txq(adapter, i, txr_idx);
1133                         txr_idx++;
1134                         txr_remaining--;
1135                 }
1136         }
1137
1138 out:
1139         return err;
1140 }
1141
1142 /**
1143  * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts
1144  * @adapter: board private structure
1145  *
1146  * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests
1147  * interrupts from the kernel.
1148  **/
1149 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter)
1150 {
1151         struct net_device *netdev = adapter->netdev;
1152         irqreturn_t (*handler)(int, void *);
1153         int i, vector, q_vectors, err;
1154         int ri = 0, ti = 0;
1155
1156         /* Decrement for Other and TCP Timer vectors */
1157         q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1158
1159 #define SET_HANDLER(_v) (((_v)->rxr_count && (_v)->txr_count)          \
1160                                           ? &ixgbevf_msix_clean_many : \
1161                           (_v)->rxr_count ? &ixgbevf_msix_clean_rx   : \
1162                           (_v)->txr_count ? &ixgbevf_msix_clean_tx   : \
1163                           NULL)
1164         for (vector = 0; vector < q_vectors; vector++) {
1165                 handler = SET_HANDLER(adapter->q_vector[vector]);
1166
1167                 if (handler == &ixgbevf_msix_clean_rx) {
1168                         sprintf(adapter->name[vector], "%s-%s-%d",
1169                                 netdev->name, "rx", ri++);
1170                 } else if (handler == &ixgbevf_msix_clean_tx) {
1171                         sprintf(adapter->name[vector], "%s-%s-%d",
1172                                 netdev->name, "tx", ti++);
1173                 } else if (handler == &ixgbevf_msix_clean_many) {
1174                         sprintf(adapter->name[vector], "%s-%s-%d",
1175                                 netdev->name, "TxRx", vector);
1176                 } else {
1177                         /* skip this unused q_vector */
1178                         continue;
1179                 }
1180                 err = request_irq(adapter->msix_entries[vector].vector,
1181                                   handler, 0, adapter->name[vector],
1182                                   adapter->q_vector[vector]);
1183                 if (err) {
1184                         hw_dbg(&adapter->hw,
1185                                "request_irq failed for MSIX interrupt "
1186                                "Error: %d\n", err);
1187                         goto free_queue_irqs;
1188                 }
1189         }
1190
1191         sprintf(adapter->name[vector], "%s:mbx", netdev->name);
1192         err = request_irq(adapter->msix_entries[vector].vector,
1193                           &ixgbevf_msix_mbx, 0, adapter->name[vector], netdev);
1194         if (err) {
1195                 hw_dbg(&adapter->hw,
1196                        "request_irq for msix_mbx failed: %d\n", err);
1197                 goto free_queue_irqs;
1198         }
1199
1200         return 0;
1201
1202 free_queue_irqs:
1203         for (i = vector - 1; i >= 0; i--)
1204                 free_irq(adapter->msix_entries[--vector].vector,
1205                          &(adapter->q_vector[i]));
1206         pci_disable_msix(adapter->pdev);
1207         kfree(adapter->msix_entries);
1208         adapter->msix_entries = NULL;
1209         return err;
1210 }
1211
1212 static inline void ixgbevf_reset_q_vectors(struct ixgbevf_adapter *adapter)
1213 {
1214         int i, q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1215
1216         for (i = 0; i < q_vectors; i++) {
1217                 struct ixgbevf_q_vector *q_vector = adapter->q_vector[i];
1218                 bitmap_zero(q_vector->rxr_idx, MAX_RX_QUEUES);
1219                 bitmap_zero(q_vector->txr_idx, MAX_TX_QUEUES);
1220                 q_vector->rxr_count = 0;
1221                 q_vector->txr_count = 0;
1222                 q_vector->eitr = adapter->eitr_param;
1223         }
1224 }
1225
1226 /**
1227  * ixgbevf_request_irq - initialize interrupts
1228  * @adapter: board private structure
1229  *
1230  * Attempts to configure interrupts using the best available
1231  * capabilities of the hardware and kernel.
1232  **/
1233 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter)
1234 {
1235         int err = 0;
1236
1237         err = ixgbevf_request_msix_irqs(adapter);
1238
1239         if (err)
1240                 hw_dbg(&adapter->hw,
1241                        "request_irq failed, Error %d\n", err);
1242
1243         return err;
1244 }
1245
1246 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter)
1247 {
1248         struct net_device *netdev = adapter->netdev;
1249         int i, q_vectors;
1250
1251         q_vectors = adapter->num_msix_vectors;
1252
1253         i = q_vectors - 1;
1254
1255         free_irq(adapter->msix_entries[i].vector, netdev);
1256         i--;
1257
1258         for (; i >= 0; i--) {
1259                 free_irq(adapter->msix_entries[i].vector,
1260                          adapter->q_vector[i]);
1261         }
1262
1263         ixgbevf_reset_q_vectors(adapter);
1264 }
1265
1266 /**
1267  * ixgbevf_irq_disable - Mask off interrupt generation on the NIC
1268  * @adapter: board private structure
1269  **/
1270 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter)
1271 {
1272         int i;
1273         struct ixgbe_hw *hw = &adapter->hw;
1274
1275         IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0);
1276
1277         IXGBE_WRITE_FLUSH(hw);
1278
1279         for (i = 0; i < adapter->num_msix_vectors; i++)
1280                 synchronize_irq(adapter->msix_entries[i].vector);
1281 }
1282
1283 /**
1284  * ixgbevf_irq_enable - Enable default interrupt generation settings
1285  * @adapter: board private structure
1286  **/
1287 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter,
1288                                       bool queues, bool flush)
1289 {
1290         struct ixgbe_hw *hw = &adapter->hw;
1291         u32 mask;
1292         u64 qmask;
1293
1294         mask = (IXGBE_EIMS_ENABLE_MASK & ~IXGBE_EIMS_RTX_QUEUE);
1295         qmask = ~0;
1296
1297         IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, mask);
1298
1299         if (queues)
1300                 ixgbevf_irq_enable_queues(adapter, qmask);
1301
1302         if (flush)
1303                 IXGBE_WRITE_FLUSH(hw);
1304 }
1305
1306 /**
1307  * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset
1308  * @adapter: board private structure
1309  *
1310  * Configure the Tx unit of the MAC after a reset.
1311  **/
1312 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter)
1313 {
1314         u64 tdba;
1315         struct ixgbe_hw *hw = &adapter->hw;
1316         u32 i, j, tdlen, txctrl;
1317
1318         /* Setup the HW Tx Head and Tail descriptor pointers */
1319         for (i = 0; i < adapter->num_tx_queues; i++) {
1320                 struct ixgbevf_ring *ring = &adapter->tx_ring[i];
1321                 j = ring->reg_idx;
1322                 tdba = ring->dma;
1323                 tdlen = ring->count * sizeof(union ixgbe_adv_tx_desc);
1324                 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(j),
1325                                 (tdba & DMA_BIT_MASK(32)));
1326                 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(j), (tdba >> 32));
1327                 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(j), tdlen);
1328                 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(j), 0);
1329                 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(j), 0);
1330                 adapter->tx_ring[i].head = IXGBE_VFTDH(j);
1331                 adapter->tx_ring[i].tail = IXGBE_VFTDT(j);
1332                 /* Disable Tx Head Writeback RO bit, since this hoses
1333                  * bookkeeping if things aren't delivered in order.
1334                  */
1335                 txctrl = IXGBE_READ_REG(hw, IXGBE_VFDCA_TXCTRL(j));
1336                 txctrl &= ~IXGBE_DCA_TXCTRL_TX_WB_RO_EN;
1337                 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(j), txctrl);
1338         }
1339 }
1340
1341 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2
1342
1343 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, int index)
1344 {
1345         struct ixgbevf_ring *rx_ring;
1346         struct ixgbe_hw *hw = &adapter->hw;
1347         u32 srrctl;
1348
1349         rx_ring = &adapter->rx_ring[index];
1350
1351         srrctl = IXGBE_SRRCTL_DROP_EN;
1352
1353         if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
1354                 u16 bufsz = IXGBEVF_RXBUFFER_2048;
1355                 /* grow the amount we can receive on large page machines */
1356                 if (bufsz < (PAGE_SIZE / 2))
1357                         bufsz = (PAGE_SIZE / 2);
1358                 /* cap the bufsz at our largest descriptor size */
1359                 bufsz = min((u16)IXGBEVF_MAX_RXBUFFER, bufsz);
1360
1361                 srrctl |= bufsz >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1362                 srrctl |= IXGBE_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1363                 srrctl |= ((IXGBEVF_RX_HDR_SIZE <<
1364                            IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT) &
1365                            IXGBE_SRRCTL_BSIZEHDR_MASK);
1366         } else {
1367                 srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
1368
1369                 if (rx_ring->rx_buf_len == MAXIMUM_ETHERNET_VLAN_SIZE)
1370                         srrctl |= IXGBEVF_RXBUFFER_2048 >>
1371                                 IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1372                 else
1373                         srrctl |= rx_ring->rx_buf_len >>
1374                                 IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1375         }
1376         IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl);
1377 }
1378
1379 /**
1380  * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset
1381  * @adapter: board private structure
1382  *
1383  * Configure the Rx unit of the MAC after a reset.
1384  **/
1385 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter)
1386 {
1387         u64 rdba;
1388         struct ixgbe_hw *hw = &adapter->hw;
1389         struct net_device *netdev = adapter->netdev;
1390         int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1391         int i, j;
1392         u32 rdlen;
1393         int rx_buf_len;
1394
1395         /* Decide whether to use packet split mode or not */
1396         if (netdev->mtu > ETH_DATA_LEN) {
1397                 if (adapter->flags & IXGBE_FLAG_RX_PS_CAPABLE)
1398                         adapter->flags |= IXGBE_FLAG_RX_PS_ENABLED;
1399                 else
1400                         adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
1401         } else {
1402                 if (adapter->flags & IXGBE_FLAG_RX_1BUF_CAPABLE)
1403                         adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
1404                 else
1405                         adapter->flags |= IXGBE_FLAG_RX_PS_ENABLED;
1406         }
1407
1408         /* Set the RX buffer length according to the mode */
1409         if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
1410                 /* PSRTYPE must be initialized in 82599 */
1411                 u32 psrtype = IXGBE_PSRTYPE_TCPHDR |
1412                         IXGBE_PSRTYPE_UDPHDR |
1413                         IXGBE_PSRTYPE_IPV4HDR |
1414                         IXGBE_PSRTYPE_IPV6HDR |
1415                         IXGBE_PSRTYPE_L2HDR;
1416                 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
1417                 rx_buf_len = IXGBEVF_RX_HDR_SIZE;
1418         } else {
1419                 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, 0);
1420                 if (netdev->mtu <= ETH_DATA_LEN)
1421                         rx_buf_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1422                 else
1423                         rx_buf_len = ALIGN(max_frame, 1024);
1424         }
1425
1426         rdlen = adapter->rx_ring[0].count * sizeof(union ixgbe_adv_rx_desc);
1427         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1428          * the Base and Length of the Rx Descriptor Ring */
1429         for (i = 0; i < adapter->num_rx_queues; i++) {
1430                 rdba = adapter->rx_ring[i].dma;
1431                 j = adapter->rx_ring[i].reg_idx;
1432                 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(j),
1433                                 (rdba & DMA_BIT_MASK(32)));
1434                 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(j), (rdba >> 32));
1435                 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(j), rdlen);
1436                 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(j), 0);
1437                 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(j), 0);
1438                 adapter->rx_ring[i].head = IXGBE_VFRDH(j);
1439                 adapter->rx_ring[i].tail = IXGBE_VFRDT(j);
1440                 adapter->rx_ring[i].rx_buf_len = rx_buf_len;
1441
1442                 ixgbevf_configure_srrctl(adapter, j);
1443         }
1444 }
1445
1446 static void ixgbevf_vlan_rx_register(struct net_device *netdev,
1447                                      struct vlan_group *grp)
1448 {
1449         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1450         struct ixgbe_hw *hw = &adapter->hw;
1451         int i, j;
1452         u32 ctrl;
1453
1454         adapter->vlgrp = grp;
1455
1456         for (i = 0; i < adapter->num_rx_queues; i++) {
1457                 j = adapter->rx_ring[i].reg_idx;
1458                 ctrl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j));
1459                 ctrl |= IXGBE_RXDCTL_VME;
1460                 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(j), ctrl);
1461         }
1462 }
1463
1464 static void ixgbevf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1465 {
1466         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1467         struct ixgbe_hw *hw = &adapter->hw;
1468
1469         /* add VID to filter table */
1470         if (hw->mac.ops.set_vfta)
1471                 hw->mac.ops.set_vfta(hw, vid, 0, true);
1472 }
1473
1474 static void ixgbevf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1475 {
1476         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1477         struct ixgbe_hw *hw = &adapter->hw;
1478
1479         if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
1480                 ixgbevf_irq_disable(adapter);
1481
1482         vlan_group_set_device(adapter->vlgrp, vid, NULL);
1483
1484         if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
1485                 ixgbevf_irq_enable(adapter, true, true);
1486
1487         /* remove VID from filter table */
1488         if (hw->mac.ops.set_vfta)
1489                 hw->mac.ops.set_vfta(hw, vid, 0, false);
1490 }
1491
1492 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter)
1493 {
1494         ixgbevf_vlan_rx_register(adapter->netdev, adapter->vlgrp);
1495
1496         if (adapter->vlgrp) {
1497                 u16 vid;
1498                 for (vid = 0; vid < VLAN_N_VID; vid++) {
1499                         if (!vlan_group_get_device(adapter->vlgrp, vid))
1500                                 continue;
1501                         ixgbevf_vlan_rx_add_vid(adapter->netdev, vid);
1502                 }
1503         }
1504 }
1505
1506 /**
1507  * ixgbevf_set_rx_mode - Multicast set
1508  * @netdev: network interface device structure
1509  *
1510  * The set_rx_method entry point is called whenever the multicast address
1511  * list or the network interface flags are updated.  This routine is
1512  * responsible for configuring the hardware for proper multicast mode.
1513  **/
1514 static void ixgbevf_set_rx_mode(struct net_device *netdev)
1515 {
1516         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1517         struct ixgbe_hw *hw = &adapter->hw;
1518
1519         /* reprogram multicast list */
1520         if (hw->mac.ops.update_mc_addr_list)
1521                 hw->mac.ops.update_mc_addr_list(hw, netdev);
1522 }
1523
1524 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter)
1525 {
1526         int q_idx;
1527         struct ixgbevf_q_vector *q_vector;
1528         int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1529
1530         for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1531                 struct napi_struct *napi;
1532                 q_vector = adapter->q_vector[q_idx];
1533                 if (!q_vector->rxr_count)
1534                         continue;
1535                 napi = &q_vector->napi;
1536                 if (q_vector->rxr_count > 1)
1537                         napi->poll = &ixgbevf_clean_rxonly_many;
1538
1539                 napi_enable(napi);
1540         }
1541 }
1542
1543 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter)
1544 {
1545         int q_idx;
1546         struct ixgbevf_q_vector *q_vector;
1547         int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1548
1549         for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1550                 q_vector = adapter->q_vector[q_idx];
1551                 if (!q_vector->rxr_count)
1552                         continue;
1553                 napi_disable(&q_vector->napi);
1554         }
1555 }
1556
1557 static void ixgbevf_configure(struct ixgbevf_adapter *adapter)
1558 {
1559         struct net_device *netdev = adapter->netdev;
1560         int i;
1561
1562         ixgbevf_set_rx_mode(netdev);
1563
1564         ixgbevf_restore_vlan(adapter);
1565
1566         ixgbevf_configure_tx(adapter);
1567         ixgbevf_configure_rx(adapter);
1568         for (i = 0; i < adapter->num_rx_queues; i++) {
1569                 struct ixgbevf_ring *ring = &adapter->rx_ring[i];
1570                 ixgbevf_alloc_rx_buffers(adapter, ring, ring->count);
1571                 ring->next_to_use = ring->count - 1;
1572                 writel(ring->next_to_use, adapter->hw.hw_addr + ring->tail);
1573         }
1574 }
1575
1576 #define IXGBE_MAX_RX_DESC_POLL 10
1577 static inline void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter,
1578                                                 int rxr)
1579 {
1580         struct ixgbe_hw *hw = &adapter->hw;
1581         int j = adapter->rx_ring[rxr].reg_idx;
1582         int k;
1583
1584         for (k = 0; k < IXGBE_MAX_RX_DESC_POLL; k++) {
1585                 if (IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j)) & IXGBE_RXDCTL_ENABLE)
1586                         break;
1587                 else
1588                         msleep(1);
1589         }
1590         if (k >= IXGBE_MAX_RX_DESC_POLL) {
1591                 hw_dbg(hw, "RXDCTL.ENABLE on Rx queue %d "
1592                        "not set within the polling period\n", rxr);
1593         }
1594
1595         ixgbevf_release_rx_desc(&adapter->hw, &adapter->rx_ring[rxr],
1596                                 (adapter->rx_ring[rxr].count - 1));
1597 }
1598
1599 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter)
1600 {
1601         /* Only save pre-reset stats if there are some */
1602         if (adapter->stats.vfgprc || adapter->stats.vfgptc) {
1603                 adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc -
1604                         adapter->stats.base_vfgprc;
1605                 adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc -
1606                         adapter->stats.base_vfgptc;
1607                 adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc -
1608                         adapter->stats.base_vfgorc;
1609                 adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc -
1610                         adapter->stats.base_vfgotc;
1611                 adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc -
1612                         adapter->stats.base_vfmprc;
1613         }
1614 }
1615
1616 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter)
1617 {
1618         struct ixgbe_hw *hw = &adapter->hw;
1619
1620         adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC);
1621         adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB);
1622         adapter->stats.last_vfgorc |=
1623                 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32);
1624         adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC);
1625         adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB);
1626         adapter->stats.last_vfgotc |=
1627                 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32);
1628         adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC);
1629
1630         adapter->stats.base_vfgprc = adapter->stats.last_vfgprc;
1631         adapter->stats.base_vfgorc = adapter->stats.last_vfgorc;
1632         adapter->stats.base_vfgptc = adapter->stats.last_vfgptc;
1633         adapter->stats.base_vfgotc = adapter->stats.last_vfgotc;
1634         adapter->stats.base_vfmprc = adapter->stats.last_vfmprc;
1635 }
1636
1637 static int ixgbevf_up_complete(struct ixgbevf_adapter *adapter)
1638 {
1639         struct net_device *netdev = adapter->netdev;
1640         struct ixgbe_hw *hw = &adapter->hw;
1641         int i, j = 0;
1642         int num_rx_rings = adapter->num_rx_queues;
1643         u32 txdctl, rxdctl;
1644
1645         for (i = 0; i < adapter->num_tx_queues; i++) {
1646                 j = adapter->tx_ring[i].reg_idx;
1647                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1648                 /* enable WTHRESH=8 descriptors, to encourage burst writeback */
1649                 txdctl |= (8 << 16);
1650                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j), txdctl);
1651         }
1652
1653         for (i = 0; i < adapter->num_tx_queues; i++) {
1654                 j = adapter->tx_ring[i].reg_idx;
1655                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1656                 txdctl |= IXGBE_TXDCTL_ENABLE;
1657                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j), txdctl);
1658         }
1659
1660         for (i = 0; i < num_rx_rings; i++) {
1661                 j = adapter->rx_ring[i].reg_idx;
1662                 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j));
1663                 rxdctl |= IXGBE_RXDCTL_ENABLE;
1664                 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(j), rxdctl);
1665                 ixgbevf_rx_desc_queue_enable(adapter, i);
1666         }
1667
1668         ixgbevf_configure_msix(adapter);
1669
1670         if (hw->mac.ops.set_rar) {
1671                 if (is_valid_ether_addr(hw->mac.addr))
1672                         hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
1673                 else
1674                         hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0);
1675         }
1676
1677         clear_bit(__IXGBEVF_DOWN, &adapter->state);
1678         ixgbevf_napi_enable_all(adapter);
1679
1680         /* enable transmits */
1681         netif_tx_start_all_queues(netdev);
1682
1683         ixgbevf_save_reset_stats(adapter);
1684         ixgbevf_init_last_counter_stats(adapter);
1685
1686         /* bring the link up in the watchdog, this could race with our first
1687          * link up interrupt but shouldn't be a problem */
1688         adapter->flags |= IXGBE_FLAG_NEED_LINK_UPDATE;
1689         adapter->link_check_timeout = jiffies;
1690         mod_timer(&adapter->watchdog_timer, jiffies);
1691         return 0;
1692 }
1693
1694 int ixgbevf_up(struct ixgbevf_adapter *adapter)
1695 {
1696         int err;
1697         struct ixgbe_hw *hw = &adapter->hw;
1698
1699         ixgbevf_configure(adapter);
1700
1701         err = ixgbevf_up_complete(adapter);
1702
1703         /* clear any pending interrupts, may auto mask */
1704         IXGBE_READ_REG(hw, IXGBE_VTEICR);
1705
1706         ixgbevf_irq_enable(adapter, true, true);
1707
1708         return err;
1709 }
1710
1711 /**
1712  * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue
1713  * @adapter: board private structure
1714  * @rx_ring: ring to free buffers from
1715  **/
1716 static void ixgbevf_clean_rx_ring(struct ixgbevf_adapter *adapter,
1717                                   struct ixgbevf_ring *rx_ring)
1718 {
1719         struct pci_dev *pdev = adapter->pdev;
1720         unsigned long size;
1721         unsigned int i;
1722
1723         if (!rx_ring->rx_buffer_info)
1724                 return;
1725
1726         /* Free all the Rx ring sk_buffs */
1727         for (i = 0; i < rx_ring->count; i++) {
1728                 struct ixgbevf_rx_buffer *rx_buffer_info;
1729
1730                 rx_buffer_info = &rx_ring->rx_buffer_info[i];
1731                 if (rx_buffer_info->dma) {
1732                         dma_unmap_single(&pdev->dev, rx_buffer_info->dma,
1733                                          rx_ring->rx_buf_len,
1734                                          DMA_FROM_DEVICE);
1735                         rx_buffer_info->dma = 0;
1736                 }
1737                 if (rx_buffer_info->skb) {
1738                         struct sk_buff *skb = rx_buffer_info->skb;
1739                         rx_buffer_info->skb = NULL;
1740                         do {
1741                                 struct sk_buff *this = skb;
1742                                 skb = skb->prev;
1743                                 dev_kfree_skb(this);
1744                         } while (skb);
1745                 }
1746                 if (!rx_buffer_info->page)
1747                         continue;
1748                 dma_unmap_page(&pdev->dev, rx_buffer_info->page_dma,
1749                                PAGE_SIZE / 2, DMA_FROM_DEVICE);
1750                 rx_buffer_info->page_dma = 0;
1751                 put_page(rx_buffer_info->page);
1752                 rx_buffer_info->page = NULL;
1753                 rx_buffer_info->page_offset = 0;
1754         }
1755
1756         size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
1757         memset(rx_ring->rx_buffer_info, 0, size);
1758
1759         /* Zero out the descriptor ring */
1760         memset(rx_ring->desc, 0, rx_ring->size);
1761
1762         rx_ring->next_to_clean = 0;
1763         rx_ring->next_to_use = 0;
1764
1765         if (rx_ring->head)
1766                 writel(0, adapter->hw.hw_addr + rx_ring->head);
1767         if (rx_ring->tail)
1768                 writel(0, adapter->hw.hw_addr + rx_ring->tail);
1769 }
1770
1771 /**
1772  * ixgbevf_clean_tx_ring - Free Tx Buffers
1773  * @adapter: board private structure
1774  * @tx_ring: ring to be cleaned
1775  **/
1776 static void ixgbevf_clean_tx_ring(struct ixgbevf_adapter *adapter,
1777                                   struct ixgbevf_ring *tx_ring)
1778 {
1779         struct ixgbevf_tx_buffer *tx_buffer_info;
1780         unsigned long size;
1781         unsigned int i;
1782
1783         if (!tx_ring->tx_buffer_info)
1784                 return;
1785
1786         /* Free all the Tx ring sk_buffs */
1787
1788         for (i = 0; i < tx_ring->count; i++) {
1789                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
1790                 ixgbevf_unmap_and_free_tx_resource(adapter, tx_buffer_info);
1791         }
1792
1793         size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
1794         memset(tx_ring->tx_buffer_info, 0, size);
1795
1796         memset(tx_ring->desc, 0, tx_ring->size);
1797
1798         tx_ring->next_to_use = 0;
1799         tx_ring->next_to_clean = 0;
1800
1801         if (tx_ring->head)
1802                 writel(0, adapter->hw.hw_addr + tx_ring->head);
1803         if (tx_ring->tail)
1804                 writel(0, adapter->hw.hw_addr + tx_ring->tail);
1805 }
1806
1807 /**
1808  * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues
1809  * @adapter: board private structure
1810  **/
1811 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter)
1812 {
1813         int i;
1814
1815         for (i = 0; i < adapter->num_rx_queues; i++)
1816                 ixgbevf_clean_rx_ring(adapter, &adapter->rx_ring[i]);
1817 }
1818
1819 /**
1820  * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues
1821  * @adapter: board private structure
1822  **/
1823 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter)
1824 {
1825         int i;
1826
1827         for (i = 0; i < adapter->num_tx_queues; i++)
1828                 ixgbevf_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1829 }
1830
1831 void ixgbevf_down(struct ixgbevf_adapter *adapter)
1832 {
1833         struct net_device *netdev = adapter->netdev;
1834         struct ixgbe_hw *hw = &adapter->hw;
1835         u32 txdctl;
1836         int i, j;
1837
1838         /* signal that we are down to the interrupt handler */
1839         set_bit(__IXGBEVF_DOWN, &adapter->state);
1840         /* disable receives */
1841
1842         netif_tx_disable(netdev);
1843
1844         msleep(10);
1845
1846         netif_tx_stop_all_queues(netdev);
1847
1848         ixgbevf_irq_disable(adapter);
1849
1850         ixgbevf_napi_disable_all(adapter);
1851
1852         del_timer_sync(&adapter->watchdog_timer);
1853         /* can't call flush scheduled work here because it can deadlock
1854          * if linkwatch_event tries to acquire the rtnl_lock which we are
1855          * holding */
1856         while (adapter->flags & IXGBE_FLAG_IN_WATCHDOG_TASK)
1857                 msleep(1);
1858
1859         /* disable transmits in the hardware now that interrupts are off */
1860         for (i = 0; i < adapter->num_tx_queues; i++) {
1861                 j = adapter->tx_ring[i].reg_idx;
1862                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1863                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j),
1864                                 (txdctl & ~IXGBE_TXDCTL_ENABLE));
1865         }
1866
1867         netif_carrier_off(netdev);
1868
1869         if (!pci_channel_offline(adapter->pdev))
1870                 ixgbevf_reset(adapter);
1871
1872         ixgbevf_clean_all_tx_rings(adapter);
1873         ixgbevf_clean_all_rx_rings(adapter);
1874 }
1875
1876 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter)
1877 {
1878         struct ixgbe_hw *hw = &adapter->hw;
1879
1880         WARN_ON(in_interrupt());
1881
1882         while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state))
1883                 msleep(1);
1884
1885         /*
1886          * Check if PF is up before re-init.  If not then skip until
1887          * later when the PF is up and ready to service requests from
1888          * the VF via mailbox.  If the VF is up and running then the
1889          * watchdog task will continue to schedule reset tasks until
1890          * the PF is up and running.
1891          */
1892         if (!hw->mac.ops.reset_hw(hw)) {
1893                 ixgbevf_down(adapter);
1894                 ixgbevf_up(adapter);
1895         }
1896
1897         clear_bit(__IXGBEVF_RESETTING, &adapter->state);
1898 }
1899
1900 void ixgbevf_reset(struct ixgbevf_adapter *adapter)
1901 {
1902         struct ixgbe_hw *hw = &adapter->hw;
1903         struct net_device *netdev = adapter->netdev;
1904
1905         if (hw->mac.ops.reset_hw(hw))
1906                 hw_dbg(hw, "PF still resetting\n");
1907         else
1908                 hw->mac.ops.init_hw(hw);
1909
1910         if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1911                 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1912                        netdev->addr_len);
1913                 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1914                        netdev->addr_len);
1915         }
1916 }
1917
1918 static void ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter,
1919                                          int vectors)
1920 {
1921         int err, vector_threshold;
1922
1923         /* We'll want at least 3 (vector_threshold):
1924          * 1) TxQ[0] Cleanup
1925          * 2) RxQ[0] Cleanup
1926          * 3) Other (Link Status Change, etc.)
1927          */
1928         vector_threshold = MIN_MSIX_COUNT;
1929
1930         /* The more we get, the more we will assign to Tx/Rx Cleanup
1931          * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1932          * Right now, we simply care about how many we'll get; we'll
1933          * set them up later while requesting irq's.
1934          */
1935         while (vectors >= vector_threshold) {
1936                 err = pci_enable_msix(adapter->pdev, adapter->msix_entries,
1937                                       vectors);
1938                 if (!err) /* Success in acquiring all requested vectors. */
1939                         break;
1940                 else if (err < 0)
1941                         vectors = 0; /* Nasty failure, quit now */
1942                 else /* err == number of vectors we should try again with */
1943                         vectors = err;
1944         }
1945
1946         if (vectors < vector_threshold) {
1947                 /* Can't allocate enough MSI-X interrupts?  Oh well.
1948                  * This just means we'll go with either a single MSI
1949                  * vector or fall back to legacy interrupts.
1950                  */
1951                 hw_dbg(&adapter->hw,
1952                        "Unable to allocate MSI-X interrupts\n");
1953                 kfree(adapter->msix_entries);
1954                 adapter->msix_entries = NULL;
1955         } else {
1956                 /*
1957                  * Adjust for only the vectors we'll use, which is minimum
1958                  * of max_msix_q_vectors + NON_Q_VECTORS, or the number of
1959                  * vectors we were allocated.
1960                  */
1961                 adapter->num_msix_vectors = vectors;
1962         }
1963 }
1964
1965 /*
1966  * ixgbe_set_num_queues: Allocate queues for device, feature dependant
1967  * @adapter: board private structure to initialize
1968  *
1969  * This is the top level queue allocation routine.  The order here is very
1970  * important, starting with the "most" number of features turned on at once,
1971  * and ending with the smallest set of features.  This way large combinations
1972  * can be allocated if they're turned on, and smaller combinations are the
1973  * fallthrough conditions.
1974  *
1975  **/
1976 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter)
1977 {
1978         /* Start with base case */
1979         adapter->num_rx_queues = 1;
1980         adapter->num_tx_queues = 1;
1981         adapter->num_rx_pools = adapter->num_rx_queues;
1982         adapter->num_rx_queues_per_pool = 1;
1983 }
1984
1985 /**
1986  * ixgbevf_alloc_queues - Allocate memory for all rings
1987  * @adapter: board private structure to initialize
1988  *
1989  * We allocate one ring per queue at run-time since we don't know the
1990  * number of queues at compile-time.  The polling_netdev array is
1991  * intended for Multiqueue, but should work fine with a single queue.
1992  **/
1993 static int ixgbevf_alloc_queues(struct ixgbevf_adapter *adapter)
1994 {
1995         int i;
1996
1997         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1998                                    sizeof(struct ixgbevf_ring), GFP_KERNEL);
1999         if (!adapter->tx_ring)
2000                 goto err_tx_ring_allocation;
2001
2002         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
2003                                    sizeof(struct ixgbevf_ring), GFP_KERNEL);
2004         if (!adapter->rx_ring)
2005                 goto err_rx_ring_allocation;
2006
2007         for (i = 0; i < adapter->num_tx_queues; i++) {
2008                 adapter->tx_ring[i].count = adapter->tx_ring_count;
2009                 adapter->tx_ring[i].queue_index = i;
2010                 adapter->tx_ring[i].reg_idx = i;
2011         }
2012
2013         for (i = 0; i < adapter->num_rx_queues; i++) {
2014                 adapter->rx_ring[i].count = adapter->rx_ring_count;
2015                 adapter->rx_ring[i].queue_index = i;
2016                 adapter->rx_ring[i].reg_idx = i;
2017         }
2018
2019         return 0;
2020
2021 err_rx_ring_allocation:
2022         kfree(adapter->tx_ring);
2023 err_tx_ring_allocation:
2024         return -ENOMEM;
2025 }
2026
2027 /**
2028  * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported
2029  * @adapter: board private structure to initialize
2030  *
2031  * Attempt to configure the interrupts using the best available
2032  * capabilities of the hardware and the kernel.
2033  **/
2034 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter)
2035 {
2036         int err = 0;
2037         int vector, v_budget;
2038
2039         /*
2040          * It's easy to be greedy for MSI-X vectors, but it really
2041          * doesn't do us much good if we have a lot more vectors
2042          * than CPU's.  So let's be conservative and only ask for
2043          * (roughly) twice the number of vectors as there are CPU's.
2044          */
2045         v_budget = min(adapter->num_rx_queues + adapter->num_tx_queues,
2046                        (int)(num_online_cpus() * 2)) + NON_Q_VECTORS;
2047
2048         /* A failure in MSI-X entry allocation isn't fatal, but it does
2049          * mean we disable MSI-X capabilities of the adapter. */
2050         adapter->msix_entries = kcalloc(v_budget,
2051                                         sizeof(struct msix_entry), GFP_KERNEL);
2052         if (!adapter->msix_entries) {
2053                 err = -ENOMEM;
2054                 goto out;
2055         }
2056
2057         for (vector = 0; vector < v_budget; vector++)
2058                 adapter->msix_entries[vector].entry = vector;
2059
2060         ixgbevf_acquire_msix_vectors(adapter, v_budget);
2061
2062 out:
2063         return err;
2064 }
2065
2066 /**
2067  * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors
2068  * @adapter: board private structure to initialize
2069  *
2070  * We allocate one q_vector per queue interrupt.  If allocation fails we
2071  * return -ENOMEM.
2072  **/
2073 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter)
2074 {
2075         int q_idx, num_q_vectors;
2076         struct ixgbevf_q_vector *q_vector;
2077         int napi_vectors;
2078         int (*poll)(struct napi_struct *, int);
2079
2080         num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2081         napi_vectors = adapter->num_rx_queues;
2082         poll = &ixgbevf_clean_rxonly;
2083
2084         for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2085                 q_vector = kzalloc(sizeof(struct ixgbevf_q_vector), GFP_KERNEL);
2086                 if (!q_vector)
2087                         goto err_out;
2088                 q_vector->adapter = adapter;
2089                 q_vector->v_idx = q_idx;
2090                 q_vector->eitr = adapter->eitr_param;
2091                 if (q_idx < napi_vectors)
2092                         netif_napi_add(adapter->netdev, &q_vector->napi,
2093                                        (*poll), 64);
2094                 adapter->q_vector[q_idx] = q_vector;
2095         }
2096
2097         return 0;
2098
2099 err_out:
2100         while (q_idx) {
2101                 q_idx--;
2102                 q_vector = adapter->q_vector[q_idx];
2103                 netif_napi_del(&q_vector->napi);
2104                 kfree(q_vector);
2105                 adapter->q_vector[q_idx] = NULL;
2106         }
2107         return -ENOMEM;
2108 }
2109
2110 /**
2111  * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors
2112  * @adapter: board private structure to initialize
2113  *
2114  * This function frees the memory allocated to the q_vectors.  In addition if
2115  * NAPI is enabled it will delete any references to the NAPI struct prior
2116  * to freeing the q_vector.
2117  **/
2118 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter)
2119 {
2120         int q_idx, num_q_vectors;
2121         int napi_vectors;
2122
2123         num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2124         napi_vectors = adapter->num_rx_queues;
2125
2126         for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2127                 struct ixgbevf_q_vector *q_vector = adapter->q_vector[q_idx];
2128
2129                 adapter->q_vector[q_idx] = NULL;
2130                 if (q_idx < napi_vectors)
2131                         netif_napi_del(&q_vector->napi);
2132                 kfree(q_vector);
2133         }
2134 }
2135
2136 /**
2137  * ixgbevf_reset_interrupt_capability - Reset MSIX setup
2138  * @adapter: board private structure
2139  *
2140  **/
2141 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter)
2142 {
2143         pci_disable_msix(adapter->pdev);
2144         kfree(adapter->msix_entries);
2145         adapter->msix_entries = NULL;
2146 }
2147
2148 /**
2149  * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init
2150  * @adapter: board private structure to initialize
2151  *
2152  **/
2153 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter)
2154 {
2155         int err;
2156
2157         /* Number of supported queues */
2158         ixgbevf_set_num_queues(adapter);
2159
2160         err = ixgbevf_set_interrupt_capability(adapter);
2161         if (err) {
2162                 hw_dbg(&adapter->hw,
2163                        "Unable to setup interrupt capabilities\n");
2164                 goto err_set_interrupt;
2165         }
2166
2167         err = ixgbevf_alloc_q_vectors(adapter);
2168         if (err) {
2169                 hw_dbg(&adapter->hw, "Unable to allocate memory for queue "
2170                        "vectors\n");
2171                 goto err_alloc_q_vectors;
2172         }
2173
2174         err = ixgbevf_alloc_queues(adapter);
2175         if (err) {
2176                 printk(KERN_ERR "Unable to allocate memory for queues\n");
2177                 goto err_alloc_queues;
2178         }
2179
2180         hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, "
2181                "Tx Queue count = %u\n",
2182                (adapter->num_rx_queues > 1) ? "Enabled" :
2183                "Disabled", adapter->num_rx_queues, adapter->num_tx_queues);
2184
2185         set_bit(__IXGBEVF_DOWN, &adapter->state);
2186
2187         return 0;
2188 err_alloc_queues:
2189         ixgbevf_free_q_vectors(adapter);
2190 err_alloc_q_vectors:
2191         ixgbevf_reset_interrupt_capability(adapter);
2192 err_set_interrupt:
2193         return err;
2194 }
2195
2196 /**
2197  * ixgbevf_sw_init - Initialize general software structures
2198  * (struct ixgbevf_adapter)
2199  * @adapter: board private structure to initialize
2200  *
2201  * ixgbevf_sw_init initializes the Adapter private data structure.
2202  * Fields are initialized based on PCI device information and
2203  * OS network device settings (MTU size).
2204  **/
2205 static int __devinit ixgbevf_sw_init(struct ixgbevf_adapter *adapter)
2206 {
2207         struct ixgbe_hw *hw = &adapter->hw;
2208         struct pci_dev *pdev = adapter->pdev;
2209         int err;
2210
2211         /* PCI config space info */
2212
2213         hw->vendor_id = pdev->vendor;
2214         hw->device_id = pdev->device;
2215         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
2216         hw->subsystem_vendor_id = pdev->subsystem_vendor;
2217         hw->subsystem_device_id = pdev->subsystem_device;
2218
2219         hw->mbx.ops.init_params(hw);
2220         hw->mac.max_tx_queues = MAX_TX_QUEUES;
2221         hw->mac.max_rx_queues = MAX_RX_QUEUES;
2222         err = hw->mac.ops.reset_hw(hw);
2223         if (err) {
2224                 dev_info(&pdev->dev,
2225                          "PF still in reset state, assigning new address\n");
2226                 dev_hw_addr_random(adapter->netdev, hw->mac.addr);
2227         } else {
2228                 err = hw->mac.ops.init_hw(hw);
2229                 if (err) {
2230                         printk(KERN_ERR "init_shared_code failed: %d\n", err);
2231                         goto out;
2232                 }
2233         }
2234
2235         /* Enable dynamic interrupt throttling rates */
2236         adapter->eitr_param = 20000;
2237         adapter->itr_setting = 1;
2238
2239         /* set defaults for eitr in MegaBytes */
2240         adapter->eitr_low = 10;
2241         adapter->eitr_high = 20;
2242
2243         /* set default ring sizes */
2244         adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD;
2245         adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD;
2246
2247         /* enable rx csum by default */
2248         adapter->flags |= IXGBE_FLAG_RX_CSUM_ENABLED;
2249
2250         set_bit(__IXGBEVF_DOWN, &adapter->state);
2251
2252 out:
2253         return err;
2254 }
2255
2256 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter)     \
2257         {                                                       \
2258                 u32 current_counter = IXGBE_READ_REG(hw, reg);  \
2259                 if (current_counter < last_counter)             \
2260                         counter += 0x100000000LL;               \
2261                 last_counter = current_counter;                 \
2262                 counter &= 0xFFFFFFFF00000000LL;                \
2263                 counter |= current_counter;                     \
2264         }
2265
2266 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \
2267         {                                                                \
2268                 u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb);   \
2269                 u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb);   \
2270                 u64 current_counter = (current_counter_msb << 32) |      \
2271                         current_counter_lsb;                             \
2272                 if (current_counter < last_counter)                      \
2273                         counter += 0x1000000000LL;                       \
2274                 last_counter = current_counter;                          \
2275                 counter &= 0xFFFFFFF000000000LL;                         \
2276                 counter |= current_counter;                              \
2277         }
2278 /**
2279  * ixgbevf_update_stats - Update the board statistics counters.
2280  * @adapter: board private structure
2281  **/
2282 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter)
2283 {
2284         struct ixgbe_hw *hw = &adapter->hw;
2285
2286         UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc,
2287                                 adapter->stats.vfgprc);
2288         UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc,
2289                                 adapter->stats.vfgptc);
2290         UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB,
2291                                 adapter->stats.last_vfgorc,
2292                                 adapter->stats.vfgorc);
2293         UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB,
2294                                 adapter->stats.last_vfgotc,
2295                                 adapter->stats.vfgotc);
2296         UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc,
2297                                 adapter->stats.vfmprc);
2298
2299         /* Fill out the OS statistics structure */
2300         adapter->netdev->stats.multicast = adapter->stats.vfmprc -
2301                 adapter->stats.base_vfmprc;
2302 }
2303
2304 /**
2305  * ixgbevf_watchdog - Timer Call-back
2306  * @data: pointer to adapter cast into an unsigned long
2307  **/
2308 static void ixgbevf_watchdog(unsigned long data)
2309 {
2310         struct ixgbevf_adapter *adapter = (struct ixgbevf_adapter *)data;
2311         struct ixgbe_hw *hw = &adapter->hw;
2312         u64 eics = 0;
2313         int i;
2314
2315         /*
2316          * Do the watchdog outside of interrupt context due to the lovely
2317          * delays that some of the newer hardware requires
2318          */
2319
2320         if (test_bit(__IXGBEVF_DOWN, &adapter->state))
2321                 goto watchdog_short_circuit;
2322
2323         /* get one bit for every active tx/rx interrupt vector */
2324         for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) {
2325                 struct ixgbevf_q_vector *qv = adapter->q_vector[i];
2326                 if (qv->rxr_count || qv->txr_count)
2327                         eics |= (1 << i);
2328         }
2329
2330         IXGBE_WRITE_REG(hw, IXGBE_VTEICS, (u32)eics);
2331
2332 watchdog_short_circuit:
2333         schedule_work(&adapter->watchdog_task);
2334 }
2335
2336 /**
2337  * ixgbevf_tx_timeout - Respond to a Tx Hang
2338  * @netdev: network interface device structure
2339  **/
2340 static void ixgbevf_tx_timeout(struct net_device *netdev)
2341 {
2342         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2343
2344         /* Do the reset outside of interrupt context */
2345         schedule_work(&adapter->reset_task);
2346 }
2347
2348 static void ixgbevf_reset_task(struct work_struct *work)
2349 {
2350         struct ixgbevf_adapter *adapter;
2351         adapter = container_of(work, struct ixgbevf_adapter, reset_task);
2352
2353         /* If we're already down or resetting, just bail */
2354         if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2355             test_bit(__IXGBEVF_RESETTING, &adapter->state))
2356                 return;
2357
2358         adapter->tx_timeout_count++;
2359
2360         ixgbevf_reinit_locked(adapter);
2361 }
2362
2363 /**
2364  * ixgbevf_watchdog_task - worker thread to bring link up
2365  * @work: pointer to work_struct containing our data
2366  **/
2367 static void ixgbevf_watchdog_task(struct work_struct *work)
2368 {
2369         struct ixgbevf_adapter *adapter = container_of(work,
2370                                                        struct ixgbevf_adapter,
2371                                                        watchdog_task);
2372         struct net_device *netdev = adapter->netdev;
2373         struct ixgbe_hw *hw = &adapter->hw;
2374         u32 link_speed = adapter->link_speed;
2375         bool link_up = adapter->link_up;
2376
2377         adapter->flags |= IXGBE_FLAG_IN_WATCHDOG_TASK;
2378
2379         /*
2380          * Always check the link on the watchdog because we have
2381          * no LSC interrupt
2382          */
2383         if (hw->mac.ops.check_link) {
2384                 if ((hw->mac.ops.check_link(hw, &link_speed,
2385                                             &link_up, false)) != 0) {
2386                         adapter->link_up = link_up;
2387                         adapter->link_speed = link_speed;
2388                         netif_carrier_off(netdev);
2389                         netif_tx_stop_all_queues(netdev);
2390                         schedule_work(&adapter->reset_task);
2391                         goto pf_has_reset;
2392                 }
2393         } else {
2394                 /* always assume link is up, if no check link
2395                  * function */
2396                 link_speed = IXGBE_LINK_SPEED_10GB_FULL;
2397                 link_up = true;
2398         }
2399         adapter->link_up = link_up;
2400         adapter->link_speed = link_speed;
2401
2402         if (link_up) {
2403                 if (!netif_carrier_ok(netdev)) {
2404                         hw_dbg(&adapter->hw, "NIC Link is Up, %u Gbps\n",
2405                                (link_speed == IXGBE_LINK_SPEED_10GB_FULL) ?
2406                                10 : 1);
2407                         netif_carrier_on(netdev);
2408                         netif_tx_wake_all_queues(netdev);
2409                 } else {
2410                         /* Force detection of hung controller */
2411                         adapter->detect_tx_hung = true;
2412                 }
2413         } else {
2414                 adapter->link_up = false;
2415                 adapter->link_speed = 0;
2416                 if (netif_carrier_ok(netdev)) {
2417                         hw_dbg(&adapter->hw, "NIC Link is Down\n");
2418                         netif_carrier_off(netdev);
2419                         netif_tx_stop_all_queues(netdev);
2420                 }
2421         }
2422
2423         ixgbevf_update_stats(adapter);
2424
2425 pf_has_reset:
2426         /* Force detection of hung controller every watchdog period */
2427         adapter->detect_tx_hung = true;
2428
2429         /* Reset the timer */
2430         if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
2431                 mod_timer(&adapter->watchdog_timer,
2432                           round_jiffies(jiffies + (2 * HZ)));
2433
2434         adapter->flags &= ~IXGBE_FLAG_IN_WATCHDOG_TASK;
2435 }
2436
2437 /**
2438  * ixgbevf_free_tx_resources - Free Tx Resources per Queue
2439  * @adapter: board private structure
2440  * @tx_ring: Tx descriptor ring for a specific queue
2441  *
2442  * Free all transmit software resources
2443  **/
2444 void ixgbevf_free_tx_resources(struct ixgbevf_adapter *adapter,
2445                                struct ixgbevf_ring *tx_ring)
2446 {
2447         struct pci_dev *pdev = adapter->pdev;
2448
2449         ixgbevf_clean_tx_ring(adapter, tx_ring);
2450
2451         vfree(tx_ring->tx_buffer_info);
2452         tx_ring->tx_buffer_info = NULL;
2453
2454         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2455                           tx_ring->dma);
2456
2457         tx_ring->desc = NULL;
2458 }
2459
2460 /**
2461  * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues
2462  * @adapter: board private structure
2463  *
2464  * Free all transmit software resources
2465  **/
2466 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter)
2467 {
2468         int i;
2469
2470         for (i = 0; i < adapter->num_tx_queues; i++)
2471                 if (adapter->tx_ring[i].desc)
2472                         ixgbevf_free_tx_resources(adapter,
2473                                                   &adapter->tx_ring[i]);
2474
2475 }
2476
2477 /**
2478  * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors)
2479  * @adapter: board private structure
2480  * @tx_ring:    tx descriptor ring (for a specific queue) to setup
2481  *
2482  * Return 0 on success, negative on failure
2483  **/
2484 int ixgbevf_setup_tx_resources(struct ixgbevf_adapter *adapter,
2485                                struct ixgbevf_ring *tx_ring)
2486 {
2487         struct pci_dev *pdev = adapter->pdev;
2488         int size;
2489
2490         size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
2491         tx_ring->tx_buffer_info = vmalloc(size);
2492         if (!tx_ring->tx_buffer_info)
2493                 goto err;
2494         memset(tx_ring->tx_buffer_info, 0, size);
2495
2496         /* round up to nearest 4K */
2497         tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc);
2498         tx_ring->size = ALIGN(tx_ring->size, 4096);
2499
2500         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
2501                                            &tx_ring->dma, GFP_KERNEL);
2502         if (!tx_ring->desc)
2503                 goto err;
2504
2505         tx_ring->next_to_use = 0;
2506         tx_ring->next_to_clean = 0;
2507         tx_ring->work_limit = tx_ring->count;
2508         return 0;
2509
2510 err:
2511         vfree(tx_ring->tx_buffer_info);
2512         tx_ring->tx_buffer_info = NULL;
2513         hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit "
2514                "descriptor ring\n");
2515         return -ENOMEM;
2516 }
2517
2518 /**
2519  * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources
2520  * @adapter: board private structure
2521  *
2522  * If this function returns with an error, then it's possible one or
2523  * more of the rings is populated (while the rest are not).  It is the
2524  * callers duty to clean those orphaned rings.
2525  *
2526  * Return 0 on success, negative on failure
2527  **/
2528 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter)
2529 {
2530         int i, err = 0;
2531
2532         for (i = 0; i < adapter->num_tx_queues; i++) {
2533                 err = ixgbevf_setup_tx_resources(adapter, &adapter->tx_ring[i]);
2534                 if (!err)
2535                         continue;
2536                 hw_dbg(&adapter->hw,
2537                        "Allocation for Tx Queue %u failed\n", i);
2538                 break;
2539         }
2540
2541         return err;
2542 }
2543
2544 /**
2545  * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors)
2546  * @adapter: board private structure
2547  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
2548  *
2549  * Returns 0 on success, negative on failure
2550  **/
2551 int ixgbevf_setup_rx_resources(struct ixgbevf_adapter *adapter,
2552                                struct ixgbevf_ring *rx_ring)
2553 {
2554         struct pci_dev *pdev = adapter->pdev;
2555         int size;
2556
2557         size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
2558         rx_ring->rx_buffer_info = vmalloc(size);
2559         if (!rx_ring->rx_buffer_info) {
2560                 hw_dbg(&adapter->hw,
2561                        "Unable to vmalloc buffer memory for "
2562                        "the receive descriptor ring\n");
2563                 goto alloc_failed;
2564         }
2565         memset(rx_ring->rx_buffer_info, 0, size);
2566
2567         /* Round up to nearest 4K */
2568         rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc);
2569         rx_ring->size = ALIGN(rx_ring->size, 4096);
2570
2571         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
2572                                            &rx_ring->dma, GFP_KERNEL);
2573
2574         if (!rx_ring->desc) {
2575                 hw_dbg(&adapter->hw,
2576                        "Unable to allocate memory for "
2577                        "the receive descriptor ring\n");
2578                 vfree(rx_ring->rx_buffer_info);
2579                 rx_ring->rx_buffer_info = NULL;
2580                 goto alloc_failed;
2581         }
2582
2583         rx_ring->next_to_clean = 0;
2584         rx_ring->next_to_use = 0;
2585
2586         return 0;
2587 alloc_failed:
2588         return -ENOMEM;
2589 }
2590
2591 /**
2592  * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources
2593  * @adapter: board private structure
2594  *
2595  * If this function returns with an error, then it's possible one or
2596  * more of the rings is populated (while the rest are not).  It is the
2597  * callers duty to clean those orphaned rings.
2598  *
2599  * Return 0 on success, negative on failure
2600  **/
2601 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter)
2602 {
2603         int i, err = 0;
2604
2605         for (i = 0; i < adapter->num_rx_queues; i++) {
2606                 err = ixgbevf_setup_rx_resources(adapter, &adapter->rx_ring[i]);
2607                 if (!err)
2608                         continue;
2609                 hw_dbg(&adapter->hw,
2610                        "Allocation for Rx Queue %u failed\n", i);
2611                 break;
2612         }
2613         return err;
2614 }
2615
2616 /**
2617  * ixgbevf_free_rx_resources - Free Rx Resources
2618  * @adapter: board private structure
2619  * @rx_ring: ring to clean the resources from
2620  *
2621  * Free all receive software resources
2622  **/
2623 void ixgbevf_free_rx_resources(struct ixgbevf_adapter *adapter,
2624                                struct ixgbevf_ring *rx_ring)
2625 {
2626         struct pci_dev *pdev = adapter->pdev;
2627
2628         ixgbevf_clean_rx_ring(adapter, rx_ring);
2629
2630         vfree(rx_ring->rx_buffer_info);
2631         rx_ring->rx_buffer_info = NULL;
2632
2633         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2634                           rx_ring->dma);
2635
2636         rx_ring->desc = NULL;
2637 }
2638
2639 /**
2640  * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues
2641  * @adapter: board private structure
2642  *
2643  * Free all receive software resources
2644  **/
2645 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter)
2646 {
2647         int i;
2648
2649         for (i = 0; i < adapter->num_rx_queues; i++)
2650                 if (adapter->rx_ring[i].desc)
2651                         ixgbevf_free_rx_resources(adapter,
2652                                                   &adapter->rx_ring[i]);
2653 }
2654
2655 /**
2656  * ixgbevf_open - Called when a network interface is made active
2657  * @netdev: network interface device structure
2658  *
2659  * Returns 0 on success, negative value on failure
2660  *
2661  * The open entry point is called when a network interface is made
2662  * active by the system (IFF_UP).  At this point all resources needed
2663  * for transmit and receive operations are allocated, the interrupt
2664  * handler is registered with the OS, the watchdog timer is started,
2665  * and the stack is notified that the interface is ready.
2666  **/
2667 static int ixgbevf_open(struct net_device *netdev)
2668 {
2669         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2670         struct ixgbe_hw *hw = &adapter->hw;
2671         int err;
2672
2673         /* disallow open during test */
2674         if (test_bit(__IXGBEVF_TESTING, &adapter->state))
2675                 return -EBUSY;
2676
2677         if (hw->adapter_stopped) {
2678                 ixgbevf_reset(adapter);
2679                 /* if adapter is still stopped then PF isn't up and
2680                  * the vf can't start. */
2681                 if (hw->adapter_stopped) {
2682                         err = IXGBE_ERR_MBX;
2683                         printk(KERN_ERR "Unable to start - perhaps the PF"
2684                                " Driver isn't up yet\n");
2685                         goto err_setup_reset;
2686                 }
2687         }
2688
2689         /* allocate transmit descriptors */
2690         err = ixgbevf_setup_all_tx_resources(adapter);
2691         if (err)
2692                 goto err_setup_tx;
2693
2694         /* allocate receive descriptors */
2695         err = ixgbevf_setup_all_rx_resources(adapter);
2696         if (err)
2697                 goto err_setup_rx;
2698
2699         ixgbevf_configure(adapter);
2700
2701         /*
2702          * Map the Tx/Rx rings to the vectors we were allotted.
2703          * if request_irq will be called in this function map_rings
2704          * must be called *before* up_complete
2705          */
2706         ixgbevf_map_rings_to_vectors(adapter);
2707
2708         err = ixgbevf_up_complete(adapter);
2709         if (err)
2710                 goto err_up;
2711
2712         /* clear any pending interrupts, may auto mask */
2713         IXGBE_READ_REG(hw, IXGBE_VTEICR);
2714         err = ixgbevf_request_irq(adapter);
2715         if (err)
2716                 goto err_req_irq;
2717
2718         ixgbevf_irq_enable(adapter, true, true);
2719
2720         return 0;
2721
2722 err_req_irq:
2723         ixgbevf_down(adapter);
2724 err_up:
2725         ixgbevf_free_irq(adapter);
2726 err_setup_rx:
2727         ixgbevf_free_all_rx_resources(adapter);
2728 err_setup_tx:
2729         ixgbevf_free_all_tx_resources(adapter);
2730         ixgbevf_reset(adapter);
2731
2732 err_setup_reset:
2733
2734         return err;
2735 }
2736
2737 /**
2738  * ixgbevf_close - Disables a network interface
2739  * @netdev: network interface device structure
2740  *
2741  * Returns 0, this is not allowed to fail
2742  *
2743  * The close entry point is called when an interface is de-activated
2744  * by the OS.  The hardware is still under the drivers control, but
2745  * needs to be disabled.  A global MAC reset is issued to stop the
2746  * hardware, and all transmit and receive resources are freed.
2747  **/
2748 static int ixgbevf_close(struct net_device *netdev)
2749 {
2750         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2751
2752         ixgbevf_down(adapter);
2753         ixgbevf_free_irq(adapter);
2754
2755         ixgbevf_free_all_tx_resources(adapter);
2756         ixgbevf_free_all_rx_resources(adapter);
2757
2758         return 0;
2759 }
2760
2761 static int ixgbevf_tso(struct ixgbevf_adapter *adapter,
2762                        struct ixgbevf_ring *tx_ring,
2763                        struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2764 {
2765         struct ixgbe_adv_tx_context_desc *context_desc;
2766         unsigned int i;
2767         int err;
2768         struct ixgbevf_tx_buffer *tx_buffer_info;
2769         u32 vlan_macip_lens = 0, type_tucmd_mlhl;
2770         u32 mss_l4len_idx, l4len;
2771
2772         if (skb_is_gso(skb)) {
2773                 if (skb_header_cloned(skb)) {
2774                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2775                         if (err)
2776                                 return err;
2777                 }
2778                 l4len = tcp_hdrlen(skb);
2779                 *hdr_len += l4len;
2780
2781                 if (skb->protocol == htons(ETH_P_IP)) {
2782                         struct iphdr *iph = ip_hdr(skb);
2783                         iph->tot_len = 0;
2784                         iph->check = 0;
2785                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2786                                                                  iph->daddr, 0,
2787                                                                  IPPROTO_TCP,
2788                                                                  0);
2789                         adapter->hw_tso_ctxt++;
2790                 } else if (skb_is_gso_v6(skb)) {
2791                         ipv6_hdr(skb)->payload_len = 0;
2792                         tcp_hdr(skb)->check =
2793                             ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2794                                              &ipv6_hdr(skb)->daddr,
2795                                              0, IPPROTO_TCP, 0);
2796                         adapter->hw_tso6_ctxt++;
2797                 }
2798
2799                 i = tx_ring->next_to_use;
2800
2801                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2802                 context_desc = IXGBE_TX_CTXTDESC_ADV(*tx_ring, i);
2803
2804                 /* VLAN MACLEN IPLEN */
2805                 if (tx_flags & IXGBE_TX_FLAGS_VLAN)
2806                         vlan_macip_lens |=
2807                                 (tx_flags & IXGBE_TX_FLAGS_VLAN_MASK);
2808                 vlan_macip_lens |= ((skb_network_offset(skb)) <<
2809                                     IXGBE_ADVTXD_MACLEN_SHIFT);
2810                 *hdr_len += skb_network_offset(skb);
2811                 vlan_macip_lens |=
2812                         (skb_transport_header(skb) - skb_network_header(skb));
2813                 *hdr_len +=
2814                         (skb_transport_header(skb) - skb_network_header(skb));
2815                 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
2816                 context_desc->seqnum_seed = 0;
2817
2818                 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2819                 type_tucmd_mlhl = (IXGBE_TXD_CMD_DEXT |
2820                                     IXGBE_ADVTXD_DTYP_CTXT);
2821
2822                 if (skb->protocol == htons(ETH_P_IP))
2823                         type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_IPV4;
2824                 type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_TCP;
2825                 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd_mlhl);
2826
2827                 /* MSS L4LEN IDX */
2828                 mss_l4len_idx =
2829                         (skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT);
2830                 mss_l4len_idx |= (l4len << IXGBE_ADVTXD_L4LEN_SHIFT);
2831                 /* use index 1 for TSO */
2832                 mss_l4len_idx |= (1 << IXGBE_ADVTXD_IDX_SHIFT);
2833                 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2834
2835                 tx_buffer_info->time_stamp = jiffies;
2836                 tx_buffer_info->next_to_watch = i;
2837
2838                 i++;
2839                 if (i == tx_ring->count)
2840                         i = 0;
2841                 tx_ring->next_to_use = i;
2842
2843                 return true;
2844         }
2845
2846         return false;
2847 }
2848
2849 static bool ixgbevf_tx_csum(struct ixgbevf_adapter *adapter,
2850                             struct ixgbevf_ring *tx_ring,
2851                             struct sk_buff *skb, u32 tx_flags)
2852 {
2853         struct ixgbe_adv_tx_context_desc *context_desc;
2854         unsigned int i;
2855         struct ixgbevf_tx_buffer *tx_buffer_info;
2856         u32 vlan_macip_lens = 0, type_tucmd_mlhl = 0;
2857
2858         if (skb->ip_summed == CHECKSUM_PARTIAL ||
2859             (tx_flags & IXGBE_TX_FLAGS_VLAN)) {
2860                 i = tx_ring->next_to_use;
2861                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2862                 context_desc = IXGBE_TX_CTXTDESC_ADV(*tx_ring, i);
2863
2864                 if (tx_flags & IXGBE_TX_FLAGS_VLAN)
2865                         vlan_macip_lens |= (tx_flags &
2866                                             IXGBE_TX_FLAGS_VLAN_MASK);
2867                 vlan_macip_lens |= (skb_network_offset(skb) <<
2868                                     IXGBE_ADVTXD_MACLEN_SHIFT);
2869                 if (skb->ip_summed == CHECKSUM_PARTIAL)
2870                         vlan_macip_lens |= (skb_transport_header(skb) -
2871                                             skb_network_header(skb));
2872
2873                 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
2874                 context_desc->seqnum_seed = 0;
2875
2876                 type_tucmd_mlhl |= (IXGBE_TXD_CMD_DEXT |
2877                                     IXGBE_ADVTXD_DTYP_CTXT);
2878
2879                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2880                         switch (skb->protocol) {
2881                         case __constant_htons(ETH_P_IP):
2882                                 type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_IPV4;
2883                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2884                                         type_tucmd_mlhl |=
2885                                             IXGBE_ADVTXD_TUCMD_L4T_TCP;
2886                                 break;
2887                         case __constant_htons(ETH_P_IPV6):
2888                                 /* XXX what about other V6 headers?? */
2889                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2890                                         type_tucmd_mlhl |=
2891                                                 IXGBE_ADVTXD_TUCMD_L4T_TCP;
2892                                 break;
2893                         default:
2894                                 if (unlikely(net_ratelimit())) {
2895                                         printk(KERN_WARNING
2896                                                "partial checksum but "
2897                                                "proto=%x!\n",
2898                                                skb->protocol);
2899                                 }
2900                                 break;
2901                         }
2902                 }
2903
2904                 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd_mlhl);
2905                 /* use index zero for tx checksum offload */
2906                 context_desc->mss_l4len_idx = 0;
2907
2908                 tx_buffer_info->time_stamp = jiffies;
2909                 tx_buffer_info->next_to_watch = i;
2910
2911                 adapter->hw_csum_tx_good++;
2912                 i++;
2913                 if (i == tx_ring->count)
2914                         i = 0;
2915                 tx_ring->next_to_use = i;
2916
2917                 return true;
2918         }
2919
2920         return false;
2921 }
2922
2923 static int ixgbevf_tx_map(struct ixgbevf_adapter *adapter,
2924                           struct ixgbevf_ring *tx_ring,
2925                           struct sk_buff *skb, u32 tx_flags,
2926                           unsigned int first)
2927 {
2928         struct pci_dev *pdev = adapter->pdev;
2929         struct ixgbevf_tx_buffer *tx_buffer_info;
2930         unsigned int len;
2931         unsigned int total = skb->len;
2932         unsigned int offset = 0, size;
2933         int count = 0;
2934         unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
2935         unsigned int f;
2936         int i;
2937
2938         i = tx_ring->next_to_use;
2939
2940         len = min(skb_headlen(skb), total);
2941         while (len) {
2942                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2943                 size = min(len, (unsigned int)IXGBE_MAX_DATA_PER_TXD);
2944
2945                 tx_buffer_info->length = size;
2946                 tx_buffer_info->mapped_as_page = false;
2947                 tx_buffer_info->dma = dma_map_single(&adapter->pdev->dev,
2948                                                      skb->data + offset,
2949                                                      size, DMA_TO_DEVICE);
2950                 if (dma_mapping_error(&pdev->dev, tx_buffer_info->dma))
2951                         goto dma_error;
2952                 tx_buffer_info->time_stamp = jiffies;
2953                 tx_buffer_info->next_to_watch = i;
2954
2955                 len -= size;
2956                 total -= size;
2957                 offset += size;
2958                 count++;
2959                 i++;
2960                 if (i == tx_ring->count)
2961                         i = 0;
2962         }
2963
2964         for (f = 0; f < nr_frags; f++) {
2965                 struct skb_frag_struct *frag;
2966
2967                 frag = &skb_shinfo(skb)->frags[f];
2968                 len = min((unsigned int)frag->size, total);
2969                 offset = frag->page_offset;
2970
2971                 while (len) {
2972                         tx_buffer_info = &tx_ring->tx_buffer_info[i];
2973                         size = min(len, (unsigned int)IXGBE_MAX_DATA_PER_TXD);
2974
2975                         tx_buffer_info->length = size;
2976                         tx_buffer_info->dma = dma_map_page(&adapter->pdev->dev,
2977                                                            frag->page,
2978                                                            offset,
2979                                                            size,
2980                                                            DMA_TO_DEVICE);
2981                         tx_buffer_info->mapped_as_page = true;
2982                         if (dma_mapping_error(&pdev->dev, tx_buffer_info->dma))
2983                                 goto dma_error;
2984                         tx_buffer_info->time_stamp = jiffies;
2985                         tx_buffer_info->next_to_watch = i;
2986
2987                         len -= size;
2988                         total -= size;
2989                         offset += size;
2990                         count++;
2991                         i++;
2992                         if (i == tx_ring->count)
2993                                 i = 0;
2994                 }
2995                 if (total == 0)
2996                         break;
2997         }
2998
2999         if (i == 0)
3000                 i = tx_ring->count - 1;
3001         else
3002                 i = i - 1;
3003         tx_ring->tx_buffer_info[i].skb = skb;
3004         tx_ring->tx_buffer_info[first].next_to_watch = i;
3005
3006         return count;
3007
3008 dma_error:
3009         dev_err(&pdev->dev, "TX DMA map failed\n");
3010
3011         /* clear timestamp and dma mappings for failed tx_buffer_info map */
3012         tx_buffer_info->dma = 0;
3013         tx_buffer_info->time_stamp = 0;
3014         tx_buffer_info->next_to_watch = 0;
3015         count--;
3016
3017         /* clear timestamp and dma mappings for remaining portion of packet */
3018         while (count >= 0) {
3019                 count--;
3020                 i--;
3021                 if (i < 0)
3022                         i += tx_ring->count;
3023                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
3024                 ixgbevf_unmap_and_free_tx_resource(adapter, tx_buffer_info);
3025         }
3026
3027         return count;
3028 }
3029
3030 static void ixgbevf_tx_queue(struct ixgbevf_adapter *adapter,
3031                              struct ixgbevf_ring *tx_ring, int tx_flags,
3032                              int count, u32 paylen, u8 hdr_len)
3033 {
3034         union ixgbe_adv_tx_desc *tx_desc = NULL;
3035         struct ixgbevf_tx_buffer *tx_buffer_info;
3036         u32 olinfo_status = 0, cmd_type_len = 0;
3037         unsigned int i;
3038
3039         u32 txd_cmd = IXGBE_TXD_CMD_EOP | IXGBE_TXD_CMD_RS | IXGBE_TXD_CMD_IFCS;
3040
3041         cmd_type_len |= IXGBE_ADVTXD_DTYP_DATA;
3042
3043         cmd_type_len |= IXGBE_ADVTXD_DCMD_IFCS | IXGBE_ADVTXD_DCMD_DEXT;
3044
3045         if (tx_flags & IXGBE_TX_FLAGS_VLAN)
3046                 cmd_type_len |= IXGBE_ADVTXD_DCMD_VLE;
3047
3048         if (tx_flags & IXGBE_TX_FLAGS_TSO) {
3049                 cmd_type_len |= IXGBE_ADVTXD_DCMD_TSE;
3050
3051                 olinfo_status |= IXGBE_TXD_POPTS_TXSM <<
3052                         IXGBE_ADVTXD_POPTS_SHIFT;
3053
3054                 /* use index 1 context for tso */
3055                 olinfo_status |= (1 << IXGBE_ADVTXD_IDX_SHIFT);
3056                 if (tx_flags & IXGBE_TX_FLAGS_IPV4)
3057                         olinfo_status |= IXGBE_TXD_POPTS_IXSM <<
3058                                 IXGBE_ADVTXD_POPTS_SHIFT;
3059
3060         } else if (tx_flags & IXGBE_TX_FLAGS_CSUM)
3061                 olinfo_status |= IXGBE_TXD_POPTS_TXSM <<
3062                         IXGBE_ADVTXD_POPTS_SHIFT;
3063
3064         olinfo_status |= ((paylen - hdr_len) << IXGBE_ADVTXD_PAYLEN_SHIFT);
3065
3066         i = tx_ring->next_to_use;
3067         while (count--) {
3068                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
3069                 tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, i);
3070                 tx_desc->read.buffer_addr = cpu_to_le64(tx_buffer_info->dma);
3071                 tx_desc->read.cmd_type_len =
3072                         cpu_to_le32(cmd_type_len | tx_buffer_info->length);
3073                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3074                 i++;
3075                 if (i == tx_ring->count)
3076                         i = 0;
3077         }
3078
3079         tx_desc->read.cmd_type_len |= cpu_to_le32(txd_cmd);
3080
3081         /*
3082          * Force memory writes to complete before letting h/w
3083          * know there are new descriptors to fetch.  (Only
3084          * applicable for weak-ordered memory model archs,
3085          * such as IA-64).
3086          */
3087         wmb();
3088
3089         tx_ring->next_to_use = i;
3090         writel(i, adapter->hw.hw_addr + tx_ring->tail);
3091 }
3092
3093 static int __ixgbevf_maybe_stop_tx(struct net_device *netdev,
3094                                    struct ixgbevf_ring *tx_ring, int size)
3095 {
3096         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3097
3098         netif_stop_subqueue(netdev, tx_ring->queue_index);
3099         /* Herbert's original patch had:
3100          *  smp_mb__after_netif_stop_queue();
3101          * but since that doesn't exist yet, just open code it. */
3102         smp_mb();
3103
3104         /* We need to check again in a case another CPU has just
3105          * made room available. */
3106         if (likely(IXGBE_DESC_UNUSED(tx_ring) < size))
3107                 return -EBUSY;
3108
3109         /* A reprieve! - use start_queue because it doesn't call schedule */
3110         netif_start_subqueue(netdev, tx_ring->queue_index);
3111         ++adapter->restart_queue;
3112         return 0;
3113 }
3114
3115 static int ixgbevf_maybe_stop_tx(struct net_device *netdev,
3116                                  struct ixgbevf_ring *tx_ring, int size)
3117 {
3118         if (likely(IXGBE_DESC_UNUSED(tx_ring) >= size))
3119                 return 0;
3120         return __ixgbevf_maybe_stop_tx(netdev, tx_ring, size);
3121 }
3122
3123 static int ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3124 {
3125         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3126         struct ixgbevf_ring *tx_ring;
3127         unsigned int first;
3128         unsigned int tx_flags = 0;
3129         u8 hdr_len = 0;
3130         int r_idx = 0, tso;
3131         int count = 0;
3132
3133         unsigned int f;
3134
3135         tx_ring = &adapter->tx_ring[r_idx];
3136
3137         if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
3138                 tx_flags |= vlan_tx_tag_get(skb);
3139                 tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT;
3140                 tx_flags |= IXGBE_TX_FLAGS_VLAN;
3141         }
3142
3143         /* four things can cause us to need a context descriptor */
3144         if (skb_is_gso(skb) ||
3145             (skb->ip_summed == CHECKSUM_PARTIAL) ||
3146             (tx_flags & IXGBE_TX_FLAGS_VLAN))
3147                 count++;
3148
3149         count += TXD_USE_COUNT(skb_headlen(skb));
3150         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
3151                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
3152
3153         if (ixgbevf_maybe_stop_tx(netdev, tx_ring, count)) {
3154                 adapter->tx_busy++;
3155                 return NETDEV_TX_BUSY;
3156         }
3157
3158         first = tx_ring->next_to_use;
3159
3160         if (skb->protocol == htons(ETH_P_IP))
3161                 tx_flags |= IXGBE_TX_FLAGS_IPV4;
3162         tso = ixgbevf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len);
3163         if (tso < 0) {
3164                 dev_kfree_skb_any(skb);
3165                 return NETDEV_TX_OK;
3166         }
3167
3168         if (tso)
3169                 tx_flags |= IXGBE_TX_FLAGS_TSO;
3170         else if (ixgbevf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
3171                  (skb->ip_summed == CHECKSUM_PARTIAL))
3172                 tx_flags |= IXGBE_TX_FLAGS_CSUM;
3173
3174         ixgbevf_tx_queue(adapter, tx_ring, tx_flags,
3175                          ixgbevf_tx_map(adapter, tx_ring, skb, tx_flags, first),
3176                          skb->len, hdr_len);
3177
3178         ixgbevf_maybe_stop_tx(netdev, tx_ring, DESC_NEEDED);
3179
3180         return NETDEV_TX_OK;
3181 }
3182
3183 /**
3184  * ixgbevf_set_mac - Change the Ethernet Address of the NIC
3185  * @netdev: network interface device structure
3186  * @p: pointer to an address structure
3187  *
3188  * Returns 0 on success, negative on failure
3189  **/
3190 static int ixgbevf_set_mac(struct net_device *netdev, void *p)
3191 {
3192         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3193         struct ixgbe_hw *hw = &adapter->hw;
3194         struct sockaddr *addr = p;
3195
3196         if (!is_valid_ether_addr(addr->sa_data))
3197                 return -EADDRNOTAVAIL;
3198
3199         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3200         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3201
3202         if (hw->mac.ops.set_rar)
3203                 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
3204
3205         return 0;
3206 }
3207
3208 /**
3209  * ixgbevf_change_mtu - Change the Maximum Transfer Unit
3210  * @netdev: network interface device structure
3211  * @new_mtu: new value for maximum frame size
3212  *
3213  * Returns 0 on success, negative on failure
3214  **/
3215 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu)
3216 {
3217         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3218         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3219
3220         /* MTU < 68 is an error and causes problems on some kernels */
3221         if ((new_mtu < 68) || (max_frame > MAXIMUM_ETHERNET_VLAN_SIZE))
3222                 return -EINVAL;
3223
3224         hw_dbg(&adapter->hw, "changing MTU from %d to %d\n",
3225                netdev->mtu, new_mtu);
3226         /* must set new MTU before calling down or up */
3227         netdev->mtu = new_mtu;
3228
3229         if (netif_running(netdev))
3230                 ixgbevf_reinit_locked(adapter);
3231
3232         return 0;
3233 }
3234
3235 static void ixgbevf_shutdown(struct pci_dev *pdev)
3236 {
3237         struct net_device *netdev = pci_get_drvdata(pdev);
3238         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3239
3240         netif_device_detach(netdev);
3241
3242         if (netif_running(netdev)) {
3243                 ixgbevf_down(adapter);
3244                 ixgbevf_free_irq(adapter);
3245                 ixgbevf_free_all_tx_resources(adapter);
3246                 ixgbevf_free_all_rx_resources(adapter);
3247         }
3248
3249 #ifdef CONFIG_PM
3250         pci_save_state(pdev);
3251 #endif
3252
3253         pci_disable_device(pdev);
3254 }
3255
3256 static const struct net_device_ops ixgbe_netdev_ops = {
3257         .ndo_open               = &ixgbevf_open,
3258         .ndo_stop               = &ixgbevf_close,
3259         .ndo_start_xmit         = &ixgbevf_xmit_frame,
3260         .ndo_set_rx_mode        = &ixgbevf_set_rx_mode,
3261         .ndo_set_multicast_list = &ixgbevf_set_rx_mode,
3262         .ndo_validate_addr      = eth_validate_addr,
3263         .ndo_set_mac_address    = &ixgbevf_set_mac,
3264         .ndo_change_mtu         = &ixgbevf_change_mtu,
3265         .ndo_tx_timeout         = &ixgbevf_tx_timeout,
3266         .ndo_vlan_rx_register   = &ixgbevf_vlan_rx_register,
3267         .ndo_vlan_rx_add_vid    = &ixgbevf_vlan_rx_add_vid,
3268         .ndo_vlan_rx_kill_vid   = &ixgbevf_vlan_rx_kill_vid,
3269 };
3270
3271 static void ixgbevf_assign_netdev_ops(struct net_device *dev)
3272 {
3273         struct ixgbevf_adapter *adapter;
3274         adapter = netdev_priv(dev);
3275         dev->netdev_ops = &ixgbe_netdev_ops;
3276         ixgbevf_set_ethtool_ops(dev);
3277         dev->watchdog_timeo = 5 * HZ;
3278 }
3279
3280 /**
3281  * ixgbevf_probe - Device Initialization Routine
3282  * @pdev: PCI device information struct
3283  * @ent: entry in ixgbevf_pci_tbl
3284  *
3285  * Returns 0 on success, negative on failure
3286  *
3287  * ixgbevf_probe initializes an adapter identified by a pci_dev structure.
3288  * The OS initialization, configuring of the adapter private structure,
3289  * and a hardware reset occur.
3290  **/
3291 static int __devinit ixgbevf_probe(struct pci_dev *pdev,
3292                                    const struct pci_device_id *ent)
3293 {
3294         struct net_device *netdev;
3295         struct ixgbevf_adapter *adapter = NULL;
3296         struct ixgbe_hw *hw = NULL;
3297         const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data];
3298         static int cards_found;
3299         int err, pci_using_dac;
3300
3301         err = pci_enable_device(pdev);
3302         if (err)
3303                 return err;
3304
3305         if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)) &&
3306             !dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64))) {
3307                 pci_using_dac = 1;
3308         } else {
3309                 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
3310                 if (err) {
3311                         err = dma_set_coherent_mask(&pdev->dev,
3312                                                     DMA_BIT_MASK(32));
3313                         if (err) {
3314                                 dev_err(&pdev->dev, "No usable DMA "
3315                                         "configuration, aborting\n");
3316                                 goto err_dma;
3317                         }
3318                 }
3319                 pci_using_dac = 0;
3320         }
3321
3322         err = pci_request_regions(pdev, ixgbevf_driver_name);
3323         if (err) {
3324                 dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err);
3325                 goto err_pci_reg;
3326         }
3327
3328         pci_set_master(pdev);
3329
3330 #ifdef HAVE_TX_MQ
3331         netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter),
3332                                    MAX_TX_QUEUES);
3333 #else
3334         netdev = alloc_etherdev(sizeof(struct ixgbevf_adapter));
3335 #endif
3336         if (!netdev) {
3337                 err = -ENOMEM;
3338                 goto err_alloc_etherdev;
3339         }
3340
3341         SET_NETDEV_DEV(netdev, &pdev->dev);
3342
3343         pci_set_drvdata(pdev, netdev);
3344         adapter = netdev_priv(netdev);
3345
3346         adapter->netdev = netdev;
3347         adapter->pdev = pdev;
3348         hw = &adapter->hw;
3349         hw->back = adapter;
3350         adapter->msg_enable = (1 << DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
3351
3352         /*
3353          * call save state here in standalone driver because it relies on
3354          * adapter struct to exist, and needs to call netdev_priv
3355          */
3356         pci_save_state(pdev);
3357
3358         hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3359                               pci_resource_len(pdev, 0));
3360         if (!hw->hw_addr) {
3361                 err = -EIO;
3362                 goto err_ioremap;
3363         }
3364
3365         ixgbevf_assign_netdev_ops(netdev);
3366
3367         adapter->bd_number = cards_found;
3368
3369         /* Setup hw api */
3370         memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops));
3371         hw->mac.type  = ii->mac;
3372
3373         memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops,
3374                sizeof(struct ixgbe_mac_operations));
3375
3376         adapter->flags &= ~IXGBE_FLAG_RX_PS_CAPABLE;
3377         adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
3378         adapter->flags |= IXGBE_FLAG_RX_1BUF_CAPABLE;
3379
3380         /* setup the private structure */
3381         err = ixgbevf_sw_init(adapter);
3382
3383         netdev->features = NETIF_F_SG |
3384                            NETIF_F_IP_CSUM |
3385                            NETIF_F_HW_VLAN_TX |
3386                            NETIF_F_HW_VLAN_RX |
3387                            NETIF_F_HW_VLAN_FILTER;
3388
3389         netdev->features |= NETIF_F_IPV6_CSUM;
3390         netdev->features |= NETIF_F_TSO;
3391         netdev->features |= NETIF_F_TSO6;
3392         netdev->features |= NETIF_F_GRO;
3393         netdev->vlan_features |= NETIF_F_TSO;
3394         netdev->vlan_features |= NETIF_F_TSO6;
3395         netdev->vlan_features |= NETIF_F_IP_CSUM;
3396         netdev->vlan_features |= NETIF_F_IPV6_CSUM;
3397         netdev->vlan_features |= NETIF_F_SG;
3398
3399         if (pci_using_dac)
3400                 netdev->features |= NETIF_F_HIGHDMA;
3401
3402         /* The HW MAC address was set and/or determined in sw_init */
3403         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
3404         memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
3405
3406         if (!is_valid_ether_addr(netdev->dev_addr)) {
3407                 printk(KERN_ERR "invalid MAC address\n");
3408                 err = -EIO;
3409                 goto err_sw_init;
3410         }
3411
3412         init_timer(&adapter->watchdog_timer);
3413         adapter->watchdog_timer.function = ixgbevf_watchdog;
3414         adapter->watchdog_timer.data = (unsigned long)adapter;
3415
3416         INIT_WORK(&adapter->reset_task, ixgbevf_reset_task);
3417         INIT_WORK(&adapter->watchdog_task, ixgbevf_watchdog_task);
3418
3419         err = ixgbevf_init_interrupt_scheme(adapter);
3420         if (err)
3421                 goto err_sw_init;
3422
3423         /* pick up the PCI bus settings for reporting later */
3424         if (hw->mac.ops.get_bus_info)
3425                 hw->mac.ops.get_bus_info(hw);
3426
3427
3428         netif_carrier_off(netdev);
3429         netif_tx_stop_all_queues(netdev);
3430
3431         strcpy(netdev->name, "eth%d");
3432
3433         err = register_netdev(netdev);
3434         if (err)
3435                 goto err_register;
3436
3437         adapter->netdev_registered = true;
3438
3439         ixgbevf_init_last_counter_stats(adapter);
3440
3441         /* print the MAC address */
3442         hw_dbg(hw, "%2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
3443                netdev->dev_addr[0],
3444                netdev->dev_addr[1],
3445                netdev->dev_addr[2],
3446                netdev->dev_addr[3],
3447                netdev->dev_addr[4],
3448                netdev->dev_addr[5]);
3449
3450         hw_dbg(hw, "MAC: %d\n", hw->mac.type);
3451
3452         hw_dbg(hw, "LRO is disabled\n");
3453
3454         hw_dbg(hw, "Intel(R) 82599 Virtual Function\n");
3455         cards_found++;
3456         return 0;
3457
3458 err_register:
3459 err_sw_init:
3460         ixgbevf_reset_interrupt_capability(adapter);
3461         iounmap(hw->hw_addr);
3462 err_ioremap:
3463         free_netdev(netdev);
3464 err_alloc_etherdev:
3465         pci_release_regions(pdev);
3466 err_pci_reg:
3467 err_dma:
3468         pci_disable_device(pdev);
3469         return err;
3470 }
3471
3472 /**
3473  * ixgbevf_remove - Device Removal Routine
3474  * @pdev: PCI device information struct
3475  *
3476  * ixgbevf_remove is called by the PCI subsystem to alert the driver
3477  * that it should release a PCI device.  The could be caused by a
3478  * Hot-Plug event, or because the driver is going to be removed from
3479  * memory.
3480  **/
3481 static void __devexit ixgbevf_remove(struct pci_dev *pdev)
3482 {
3483         struct net_device *netdev = pci_get_drvdata(pdev);
3484         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3485
3486         set_bit(__IXGBEVF_DOWN, &adapter->state);
3487
3488         del_timer_sync(&adapter->watchdog_timer);
3489
3490         cancel_work_sync(&adapter->watchdog_task);
3491
3492         flush_scheduled_work();
3493
3494         if (adapter->netdev_registered) {
3495                 unregister_netdev(netdev);
3496                 adapter->netdev_registered = false;
3497         }
3498
3499         ixgbevf_reset_interrupt_capability(adapter);
3500
3501         iounmap(adapter->hw.hw_addr);
3502         pci_release_regions(pdev);
3503
3504         hw_dbg(&adapter->hw, "Remove complete\n");
3505
3506         kfree(adapter->tx_ring);
3507         kfree(adapter->rx_ring);
3508
3509         free_netdev(netdev);
3510
3511         pci_disable_device(pdev);
3512 }
3513
3514 static struct pci_driver ixgbevf_driver = {
3515         .name     = ixgbevf_driver_name,
3516         .id_table = ixgbevf_pci_tbl,
3517         .probe    = ixgbevf_probe,
3518         .remove   = __devexit_p(ixgbevf_remove),
3519         .shutdown = ixgbevf_shutdown,
3520 };
3521
3522 /**
3523  * ixgbe_init_module - Driver Registration Routine
3524  *
3525  * ixgbe_init_module is the first routine called when the driver is
3526  * loaded. All it does is register with the PCI subsystem.
3527  **/
3528 static int __init ixgbevf_init_module(void)
3529 {
3530         int ret;
3531         printk(KERN_INFO "ixgbevf: %s - version %s\n", ixgbevf_driver_string,
3532                ixgbevf_driver_version);
3533
3534         printk(KERN_INFO "%s\n", ixgbevf_copyright);
3535
3536         ret = pci_register_driver(&ixgbevf_driver);
3537         return ret;
3538 }
3539
3540 module_init(ixgbevf_init_module);
3541
3542 /**
3543  * ixgbe_exit_module - Driver Exit Cleanup Routine
3544  *
3545  * ixgbe_exit_module is called just before the driver is removed
3546  * from memory.
3547  **/
3548 static void __exit ixgbevf_exit_module(void)
3549 {
3550         pci_unregister_driver(&ixgbevf_driver);
3551 }
3552
3553 #ifdef DEBUG
3554 /**
3555  * ixgbe_get_hw_dev_name - return device name string
3556  * used by hardware layer to print debugging information
3557  **/
3558 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw)
3559 {
3560         struct ixgbevf_adapter *adapter = hw->back;
3561         return adapter->netdev->name;
3562 }
3563
3564 #endif
3565 module_exit(ixgbevf_exit_module);
3566
3567 /* ixgbevf_main.c */