235b5fd4b8d43aa4e1bace3cd73c8bb2f7913823
[linux-2.6.git] / drivers / net / ixgbevf / ixgbevf_main.c
1 /*******************************************************************************
2
3   Intel 82599 Virtual Function driver
4   Copyright(c) 1999 - 2009 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28
29 /******************************************************************************
30  Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code
31 ******************************************************************************/
32 #include <linux/types.h>
33 #include <linux/module.h>
34 #include <linux/pci.h>
35 #include <linux/netdevice.h>
36 #include <linux/vmalloc.h>
37 #include <linux/string.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <linux/tcp.h>
41 #include <linux/ipv6.h>
42 #include <net/checksum.h>
43 #include <net/ip6_checksum.h>
44 #include <linux/ethtool.h>
45 #include <linux/if_vlan.h>
46
47 #include "ixgbevf.h"
48
49 char ixgbevf_driver_name[] = "ixgbevf";
50 static const char ixgbevf_driver_string[] =
51         "Intel(R) 82599 Virtual Function";
52
53 #define DRV_VERSION "1.0.0-k0"
54 const char ixgbevf_driver_version[] = DRV_VERSION;
55 static char ixgbevf_copyright[] = "Copyright (c) 2009 Intel Corporation.";
56
57 static const struct ixgbevf_info *ixgbevf_info_tbl[] = {
58         [board_82599_vf] = &ixgbevf_vf_info,
59 };
60
61 /* ixgbevf_pci_tbl - PCI Device ID Table
62  *
63  * Wildcard entries (PCI_ANY_ID) should come last
64  * Last entry must be all 0s
65  *
66  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
67  *   Class, Class Mask, private data (not used) }
68  */
69 static struct pci_device_id ixgbevf_pci_tbl[] = {
70         {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF),
71         board_82599_vf},
72
73         /* required last entry */
74         {0, }
75 };
76 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl);
77
78 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
79 MODULE_DESCRIPTION("Intel(R) 82599 Virtual Function Driver");
80 MODULE_LICENSE("GPL");
81 MODULE_VERSION(DRV_VERSION);
82
83 #define DEFAULT_DEBUG_LEVEL_SHIFT 3
84
85 /* forward decls */
86 static void ixgbevf_set_itr_msix(struct ixgbevf_q_vector *q_vector);
87 static void ixgbevf_write_eitr(struct ixgbevf_adapter *adapter, int v_idx,
88                                u32 itr_reg);
89
90 static inline void ixgbevf_release_rx_desc(struct ixgbe_hw *hw,
91                                            struct ixgbevf_ring *rx_ring,
92                                            u32 val)
93 {
94         /*
95          * Force memory writes to complete before letting h/w
96          * know there are new descriptors to fetch.  (Only
97          * applicable for weak-ordered memory model archs,
98          * such as IA-64).
99          */
100         wmb();
101         IXGBE_WRITE_REG(hw, IXGBE_VFRDT(rx_ring->reg_idx), val);
102 }
103
104 /*
105  * ixgbe_set_ivar - set the IVAR registers, mapping interrupt causes to vectors
106  * @adapter: pointer to adapter struct
107  * @direction: 0 for Rx, 1 for Tx, -1 for other causes
108  * @queue: queue to map the corresponding interrupt to
109  * @msix_vector: the vector to map to the corresponding queue
110  *
111  */
112 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction,
113                              u8 queue, u8 msix_vector)
114 {
115         u32 ivar, index;
116         struct ixgbe_hw *hw = &adapter->hw;
117         if (direction == -1) {
118                 /* other causes */
119                 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
120                 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC);
121                 ivar &= ~0xFF;
122                 ivar |= msix_vector;
123                 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar);
124         } else {
125                 /* tx or rx causes */
126                 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
127                 index = ((16 * (queue & 1)) + (8 * direction));
128                 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1));
129                 ivar &= ~(0xFF << index);
130                 ivar |= (msix_vector << index);
131                 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar);
132         }
133 }
134
135 static void ixgbevf_unmap_and_free_tx_resource(struct ixgbevf_adapter *adapter,
136                                                struct ixgbevf_tx_buffer
137                                                *tx_buffer_info)
138 {
139         if (tx_buffer_info->dma) {
140                 if (tx_buffer_info->mapped_as_page)
141                         pci_unmap_page(adapter->pdev,
142                                        tx_buffer_info->dma,
143                                        tx_buffer_info->length,
144                                        PCI_DMA_TODEVICE);
145                 else
146                         pci_unmap_single(adapter->pdev,
147                                          tx_buffer_info->dma,
148                                          tx_buffer_info->length,
149                                          PCI_DMA_TODEVICE);
150                 tx_buffer_info->dma = 0;
151         }
152         if (tx_buffer_info->skb) {
153                 dev_kfree_skb_any(tx_buffer_info->skb);
154                 tx_buffer_info->skb = NULL;
155         }
156         tx_buffer_info->time_stamp = 0;
157         /* tx_buffer_info must be completely set up in the transmit path */
158 }
159
160 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_adapter *adapter,
161                                          struct ixgbevf_ring *tx_ring,
162                                          unsigned int eop)
163 {
164         struct ixgbe_hw *hw = &adapter->hw;
165         u32 head, tail;
166
167         /* Detect a transmit hang in hardware, this serializes the
168          * check with the clearing of time_stamp and movement of eop */
169         head = readl(hw->hw_addr + tx_ring->head);
170         tail = readl(hw->hw_addr + tx_ring->tail);
171         adapter->detect_tx_hung = false;
172         if ((head != tail) &&
173             tx_ring->tx_buffer_info[eop].time_stamp &&
174             time_after(jiffies, tx_ring->tx_buffer_info[eop].time_stamp + HZ)) {
175                 /* detected Tx unit hang */
176                 union ixgbe_adv_tx_desc *tx_desc;
177                 tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
178                 printk(KERN_ERR "Detected Tx Unit Hang\n"
179                        "  Tx Queue             <%d>\n"
180                        "  TDH, TDT             <%x>, <%x>\n"
181                        "  next_to_use          <%x>\n"
182                        "  next_to_clean        <%x>\n"
183                        "tx_buffer_info[next_to_clean]\n"
184                        "  time_stamp           <%lx>\n"
185                        "  jiffies              <%lx>\n",
186                        tx_ring->queue_index,
187                        head, tail,
188                        tx_ring->next_to_use, eop,
189                        tx_ring->tx_buffer_info[eop].time_stamp, jiffies);
190                 return true;
191         }
192
193         return false;
194 }
195
196 #define IXGBE_MAX_TXD_PWR       14
197 #define IXGBE_MAX_DATA_PER_TXD  (1 << IXGBE_MAX_TXD_PWR)
198
199 /* Tx Descriptors needed, worst case */
200 #define TXD_USE_COUNT(S) (((S) >> IXGBE_MAX_TXD_PWR) + \
201                          (((S) & (IXGBE_MAX_DATA_PER_TXD - 1)) ? 1 : 0))
202 #ifdef MAX_SKB_FRAGS
203 #define DESC_NEEDED (TXD_USE_COUNT(IXGBE_MAX_DATA_PER_TXD) /* skb->data */ + \
204         MAX_SKB_FRAGS * TXD_USE_COUNT(PAGE_SIZE) + 1)      /* for context */
205 #else
206 #define DESC_NEEDED TXD_USE_COUNT(IXGBE_MAX_DATA_PER_TXD)
207 #endif
208
209 static void ixgbevf_tx_timeout(struct net_device *netdev);
210
211 /**
212  * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes
213  * @adapter: board private structure
214  * @tx_ring: tx ring to clean
215  **/
216 static bool ixgbevf_clean_tx_irq(struct ixgbevf_adapter *adapter,
217                                  struct ixgbevf_ring *tx_ring)
218 {
219         struct net_device *netdev = adapter->netdev;
220         struct ixgbe_hw *hw = &adapter->hw;
221         union ixgbe_adv_tx_desc *tx_desc, *eop_desc;
222         struct ixgbevf_tx_buffer *tx_buffer_info;
223         unsigned int i, eop, count = 0;
224         unsigned int total_bytes = 0, total_packets = 0;
225
226         i = tx_ring->next_to_clean;
227         eop = tx_ring->tx_buffer_info[i].next_to_watch;
228         eop_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
229
230         while ((eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD)) &&
231                (count < tx_ring->work_limit)) {
232                 bool cleaned = false;
233                 for ( ; !cleaned; count++) {
234                         struct sk_buff *skb;
235                         tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, i);
236                         tx_buffer_info = &tx_ring->tx_buffer_info[i];
237                         cleaned = (i == eop);
238                         skb = tx_buffer_info->skb;
239
240                         if (cleaned && skb) {
241                                 unsigned int segs, bytecount;
242
243                                 /* gso_segs is currently only valid for tcp */
244                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
245                                 /* multiply data chunks by size of headers */
246                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
247                                             skb->len;
248                                 total_packets += segs;
249                                 total_bytes += bytecount;
250                         }
251
252                         ixgbevf_unmap_and_free_tx_resource(adapter,
253                                                            tx_buffer_info);
254
255                         tx_desc->wb.status = 0;
256
257                         i++;
258                         if (i == tx_ring->count)
259                                 i = 0;
260                 }
261
262                 eop = tx_ring->tx_buffer_info[i].next_to_watch;
263                 eop_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
264         }
265
266         tx_ring->next_to_clean = i;
267
268 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
269         if (unlikely(count && netif_carrier_ok(netdev) &&
270                      (IXGBE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
271                 /* Make sure that anybody stopping the queue after this
272                  * sees the new next_to_clean.
273                  */
274                 smp_mb();
275 #ifdef HAVE_TX_MQ
276                 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
277                     !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
278                         netif_wake_subqueue(netdev, tx_ring->queue_index);
279                         ++adapter->restart_queue;
280                 }
281 #else
282                 if (netif_queue_stopped(netdev) &&
283                     !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
284                         netif_wake_queue(netdev);
285                         ++adapter->restart_queue;
286                 }
287 #endif
288         }
289
290         if (adapter->detect_tx_hung) {
291                 if (ixgbevf_check_tx_hang(adapter, tx_ring, i)) {
292                         /* schedule immediate reset if we believe we hung */
293                         printk(KERN_INFO
294                                "tx hang %d detected, resetting adapter\n",
295                                adapter->tx_timeout_count + 1);
296                         ixgbevf_tx_timeout(adapter->netdev);
297                 }
298         }
299
300         /* re-arm the interrupt */
301         if ((count >= tx_ring->work_limit) &&
302             (!test_bit(__IXGBEVF_DOWN, &adapter->state))) {
303                 IXGBE_WRITE_REG(hw, IXGBE_VTEICS, tx_ring->v_idx);
304         }
305
306         tx_ring->total_bytes += total_bytes;
307         tx_ring->total_packets += total_packets;
308
309         adapter->net_stats.tx_bytes += total_bytes;
310         adapter->net_stats.tx_packets += total_packets;
311
312         return (count < tx_ring->work_limit);
313 }
314
315 /**
316  * ixgbevf_receive_skb - Send a completed packet up the stack
317  * @q_vector: structure containing interrupt and ring information
318  * @skb: packet to send up
319  * @status: hardware indication of status of receive
320  * @rx_ring: rx descriptor ring (for a specific queue) to setup
321  * @rx_desc: rx descriptor
322  **/
323 static void ixgbevf_receive_skb(struct ixgbevf_q_vector *q_vector,
324                                 struct sk_buff *skb, u8 status,
325                                 struct ixgbevf_ring *ring,
326                                 union ixgbe_adv_rx_desc *rx_desc)
327 {
328         struct ixgbevf_adapter *adapter = q_vector->adapter;
329         bool is_vlan = (status & IXGBE_RXD_STAT_VP);
330         u16 tag = le16_to_cpu(rx_desc->wb.upper.vlan);
331         int ret;
332
333         if (!(adapter->flags & IXGBE_FLAG_IN_NETPOLL)) {
334                 if (adapter->vlgrp && is_vlan)
335                         vlan_gro_receive(&q_vector->napi,
336                                          adapter->vlgrp,
337                                          tag, skb);
338                 else
339                         napi_gro_receive(&q_vector->napi, skb);
340         } else {
341                 if (adapter->vlgrp && is_vlan)
342                         ret = vlan_hwaccel_rx(skb, adapter->vlgrp, tag);
343                 else
344                         ret = netif_rx(skb);
345         }
346 }
347
348 /**
349  * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum
350  * @adapter: address of board private structure
351  * @status_err: hardware indication of status of receive
352  * @skb: skb currently being received and modified
353  **/
354 static inline void ixgbevf_rx_checksum(struct ixgbevf_adapter *adapter,
355                                        u32 status_err, struct sk_buff *skb)
356 {
357         skb->ip_summed = CHECKSUM_NONE;
358
359         /* Rx csum disabled */
360         if (!(adapter->flags & IXGBE_FLAG_RX_CSUM_ENABLED))
361                 return;
362
363         /* if IP and error */
364         if ((status_err & IXGBE_RXD_STAT_IPCS) &&
365             (status_err & IXGBE_RXDADV_ERR_IPE)) {
366                 adapter->hw_csum_rx_error++;
367                 return;
368         }
369
370         if (!(status_err & IXGBE_RXD_STAT_L4CS))
371                 return;
372
373         if (status_err & IXGBE_RXDADV_ERR_TCPE) {
374                 adapter->hw_csum_rx_error++;
375                 return;
376         }
377
378         /* It must be a TCP or UDP packet with a valid checksum */
379         skb->ip_summed = CHECKSUM_UNNECESSARY;
380         adapter->hw_csum_rx_good++;
381 }
382
383 /**
384  * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split
385  * @adapter: address of board private structure
386  **/
387 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_adapter *adapter,
388                                      struct ixgbevf_ring *rx_ring,
389                                      int cleaned_count)
390 {
391         struct pci_dev *pdev = adapter->pdev;
392         union ixgbe_adv_rx_desc *rx_desc;
393         struct ixgbevf_rx_buffer *bi;
394         struct sk_buff *skb;
395         unsigned int i;
396         unsigned int bufsz = rx_ring->rx_buf_len + NET_IP_ALIGN;
397
398         i = rx_ring->next_to_use;
399         bi = &rx_ring->rx_buffer_info[i];
400
401         while (cleaned_count--) {
402                 rx_desc = IXGBE_RX_DESC_ADV(*rx_ring, i);
403
404                 if (!bi->page_dma &&
405                     (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED)) {
406                         if (!bi->page) {
407                                 bi->page = netdev_alloc_page(adapter->netdev);
408                                 if (!bi->page) {
409                                         adapter->alloc_rx_page_failed++;
410                                         goto no_buffers;
411                                 }
412                                 bi->page_offset = 0;
413                         } else {
414                                 /* use a half page if we're re-using */
415                                 bi->page_offset ^= (PAGE_SIZE / 2);
416                         }
417
418                         bi->page_dma = pci_map_page(pdev, bi->page,
419                                                     bi->page_offset,
420                                                     (PAGE_SIZE / 2),
421                                                     PCI_DMA_FROMDEVICE);
422                 }
423
424                 skb = bi->skb;
425                 if (!skb) {
426                         skb = netdev_alloc_skb(adapter->netdev,
427                                                                bufsz);
428
429                         if (!skb) {
430                                 adapter->alloc_rx_buff_failed++;
431                                 goto no_buffers;
432                         }
433
434                         /*
435                          * Make buffer alignment 2 beyond a 16 byte boundary
436                          * this will result in a 16 byte aligned IP header after
437                          * the 14 byte MAC header is removed
438                          */
439                         skb_reserve(skb, NET_IP_ALIGN);
440
441                         bi->skb = skb;
442                 }
443                 if (!bi->dma) {
444                         bi->dma = pci_map_single(pdev, skb->data,
445                                                  rx_ring->rx_buf_len,
446                                                  PCI_DMA_FROMDEVICE);
447                 }
448                 /* Refresh the desc even if buffer_addrs didn't change because
449                  * each write-back erases this info. */
450                 if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
451                         rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
452                         rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
453                 } else {
454                         rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
455                 }
456
457                 i++;
458                 if (i == rx_ring->count)
459                         i = 0;
460                 bi = &rx_ring->rx_buffer_info[i];
461         }
462
463 no_buffers:
464         if (rx_ring->next_to_use != i) {
465                 rx_ring->next_to_use = i;
466                 if (i-- == 0)
467                         i = (rx_ring->count - 1);
468
469                 ixgbevf_release_rx_desc(&adapter->hw, rx_ring, i);
470         }
471 }
472
473 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter,
474                                              u64 qmask)
475 {
476         u32 mask;
477         struct ixgbe_hw *hw = &adapter->hw;
478
479         mask = (qmask & 0xFFFFFFFF);
480         IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, mask);
481 }
482
483 static inline u16 ixgbevf_get_hdr_info(union ixgbe_adv_rx_desc *rx_desc)
484 {
485         return rx_desc->wb.lower.lo_dword.hs_rss.hdr_info;
486 }
487
488 static inline u16 ixgbevf_get_pkt_info(union ixgbe_adv_rx_desc *rx_desc)
489 {
490         return rx_desc->wb.lower.lo_dword.hs_rss.pkt_info;
491 }
492
493 static bool ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector,
494                                  struct ixgbevf_ring *rx_ring,
495                                  int *work_done, int work_to_do)
496 {
497         struct ixgbevf_adapter *adapter = q_vector->adapter;
498         struct pci_dev *pdev = adapter->pdev;
499         union ixgbe_adv_rx_desc *rx_desc, *next_rxd;
500         struct ixgbevf_rx_buffer *rx_buffer_info, *next_buffer;
501         struct sk_buff *skb;
502         unsigned int i;
503         u32 len, staterr;
504         u16 hdr_info;
505         bool cleaned = false;
506         int cleaned_count = 0;
507         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
508
509         i = rx_ring->next_to_clean;
510         rx_desc = IXGBE_RX_DESC_ADV(*rx_ring, i);
511         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
512         rx_buffer_info = &rx_ring->rx_buffer_info[i];
513
514         while (staterr & IXGBE_RXD_STAT_DD) {
515                 u32 upper_len = 0;
516                 if (*work_done >= work_to_do)
517                         break;
518                 (*work_done)++;
519
520                 if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
521                         hdr_info = le16_to_cpu(ixgbevf_get_hdr_info(rx_desc));
522                         len = (hdr_info & IXGBE_RXDADV_HDRBUFLEN_MASK) >>
523                                IXGBE_RXDADV_HDRBUFLEN_SHIFT;
524                         if (hdr_info & IXGBE_RXDADV_SPH)
525                                 adapter->rx_hdr_split++;
526                         if (len > IXGBEVF_RX_HDR_SIZE)
527                                 len = IXGBEVF_RX_HDR_SIZE;
528                         upper_len = le16_to_cpu(rx_desc->wb.upper.length);
529                 } else {
530                         len = le16_to_cpu(rx_desc->wb.upper.length);
531                 }
532                 cleaned = true;
533                 skb = rx_buffer_info->skb;
534                 prefetch(skb->data - NET_IP_ALIGN);
535                 rx_buffer_info->skb = NULL;
536
537                 if (rx_buffer_info->dma) {
538                         pci_unmap_single(pdev, rx_buffer_info->dma,
539                                          rx_ring->rx_buf_len,
540                                          PCI_DMA_FROMDEVICE);
541                         rx_buffer_info->dma = 0;
542                         skb_put(skb, len);
543                 }
544
545                 if (upper_len) {
546                         pci_unmap_page(pdev, rx_buffer_info->page_dma,
547                                        PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
548                         rx_buffer_info->page_dma = 0;
549                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
550                                            rx_buffer_info->page,
551                                            rx_buffer_info->page_offset,
552                                            upper_len);
553
554                         if ((rx_ring->rx_buf_len > (PAGE_SIZE / 2)) ||
555                             (page_count(rx_buffer_info->page) != 1))
556                                 rx_buffer_info->page = NULL;
557                         else
558                                 get_page(rx_buffer_info->page);
559
560                         skb->len += upper_len;
561                         skb->data_len += upper_len;
562                         skb->truesize += upper_len;
563                 }
564
565                 i++;
566                 if (i == rx_ring->count)
567                         i = 0;
568
569                 next_rxd = IXGBE_RX_DESC_ADV(*rx_ring, i);
570                 prefetch(next_rxd);
571                 cleaned_count++;
572
573                 next_buffer = &rx_ring->rx_buffer_info[i];
574
575                 if (!(staterr & IXGBE_RXD_STAT_EOP)) {
576                         if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
577                                 rx_buffer_info->skb = next_buffer->skb;
578                                 rx_buffer_info->dma = next_buffer->dma;
579                                 next_buffer->skb = skb;
580                                 next_buffer->dma = 0;
581                         } else {
582                                 skb->next = next_buffer->skb;
583                                 skb->next->prev = skb;
584                         }
585                         adapter->non_eop_descs++;
586                         goto next_desc;
587                 }
588
589                 /* ERR_MASK will only have valid bits if EOP set */
590                 if (unlikely(staterr & IXGBE_RXDADV_ERR_FRAME_ERR_MASK)) {
591                         dev_kfree_skb_irq(skb);
592                         goto next_desc;
593                 }
594
595                 ixgbevf_rx_checksum(adapter, staterr, skb);
596
597                 /* probably a little skewed due to removing CRC */
598                 total_rx_bytes += skb->len;
599                 total_rx_packets++;
600
601                 /*
602                  * Work around issue of some types of VM to VM loop back
603                  * packets not getting split correctly
604                  */
605                 if (staterr & IXGBE_RXD_STAT_LB) {
606                         u32 header_fixup_len = skb->len - skb->data_len;
607                         if (header_fixup_len < 14)
608                                 skb_push(skb, header_fixup_len);
609                 }
610                 skb->protocol = eth_type_trans(skb, adapter->netdev);
611
612                 ixgbevf_receive_skb(q_vector, skb, staterr, rx_ring, rx_desc);
613                 adapter->netdev->last_rx = jiffies;
614
615 next_desc:
616                 rx_desc->wb.upper.status_error = 0;
617
618                 /* return some buffers to hardware, one at a time is too slow */
619                 if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) {
620                         ixgbevf_alloc_rx_buffers(adapter, rx_ring,
621                                                  cleaned_count);
622                         cleaned_count = 0;
623                 }
624
625                 /* use prefetched values */
626                 rx_desc = next_rxd;
627                 rx_buffer_info = &rx_ring->rx_buffer_info[i];
628
629                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
630         }
631
632         rx_ring->next_to_clean = i;
633         cleaned_count = IXGBE_DESC_UNUSED(rx_ring);
634
635         if (cleaned_count)
636                 ixgbevf_alloc_rx_buffers(adapter, rx_ring, cleaned_count);
637
638         rx_ring->total_packets += total_rx_packets;
639         rx_ring->total_bytes += total_rx_bytes;
640         adapter->net_stats.rx_bytes += total_rx_bytes;
641         adapter->net_stats.rx_packets += total_rx_packets;
642
643         return cleaned;
644 }
645
646 /**
647  * ixgbevf_clean_rxonly - msix (aka one shot) rx clean routine
648  * @napi: napi struct with our devices info in it
649  * @budget: amount of work driver is allowed to do this pass, in packets
650  *
651  * This function is optimized for cleaning one queue only on a single
652  * q_vector!!!
653  **/
654 static int ixgbevf_clean_rxonly(struct napi_struct *napi, int budget)
655 {
656         struct ixgbevf_q_vector *q_vector =
657                 container_of(napi, struct ixgbevf_q_vector, napi);
658         struct ixgbevf_adapter *adapter = q_vector->adapter;
659         struct ixgbevf_ring *rx_ring = NULL;
660         int work_done = 0;
661         long r_idx;
662
663         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
664         rx_ring = &(adapter->rx_ring[r_idx]);
665
666         ixgbevf_clean_rx_irq(q_vector, rx_ring, &work_done, budget);
667
668         /* If all Rx work done, exit the polling mode */
669         if (work_done < budget) {
670                 napi_complete(napi);
671                 if (adapter->itr_setting & 1)
672                         ixgbevf_set_itr_msix(q_vector);
673                 if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
674                         ixgbevf_irq_enable_queues(adapter, rx_ring->v_idx);
675         }
676
677         return work_done;
678 }
679
680 /**
681  * ixgbevf_clean_rxonly_many - msix (aka one shot) rx clean routine
682  * @napi: napi struct with our devices info in it
683  * @budget: amount of work driver is allowed to do this pass, in packets
684  *
685  * This function will clean more than one rx queue associated with a
686  * q_vector.
687  **/
688 static int ixgbevf_clean_rxonly_many(struct napi_struct *napi, int budget)
689 {
690         struct ixgbevf_q_vector *q_vector =
691                 container_of(napi, struct ixgbevf_q_vector, napi);
692         struct ixgbevf_adapter *adapter = q_vector->adapter;
693         struct ixgbevf_ring *rx_ring = NULL;
694         int work_done = 0, i;
695         long r_idx;
696         u64 enable_mask = 0;
697
698         /* attempt to distribute budget to each queue fairly, but don't allow
699          * the budget to go below 1 because we'll exit polling */
700         budget /= (q_vector->rxr_count ?: 1);
701         budget = max(budget, 1);
702         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
703         for (i = 0; i < q_vector->rxr_count; i++) {
704                 rx_ring = &(adapter->rx_ring[r_idx]);
705                 ixgbevf_clean_rx_irq(q_vector, rx_ring, &work_done, budget);
706                 enable_mask |= rx_ring->v_idx;
707                 r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
708                                       r_idx + 1);
709         }
710
711 #ifndef HAVE_NETDEV_NAPI_LIST
712         if (!netif_running(adapter->netdev))
713                 work_done = 0;
714
715 #endif
716         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
717         rx_ring = &(adapter->rx_ring[r_idx]);
718
719         /* If all Rx work done, exit the polling mode */
720         if (work_done < budget) {
721                 napi_complete(napi);
722                 if (adapter->itr_setting & 1)
723                         ixgbevf_set_itr_msix(q_vector);
724                 if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
725                         ixgbevf_irq_enable_queues(adapter, enable_mask);
726         }
727
728         return work_done;
729 }
730
731
732 /**
733  * ixgbevf_configure_msix - Configure MSI-X hardware
734  * @adapter: board private structure
735  *
736  * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X
737  * interrupts.
738  **/
739 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter)
740 {
741         struct ixgbevf_q_vector *q_vector;
742         struct ixgbe_hw *hw = &adapter->hw;
743         int i, j, q_vectors, v_idx, r_idx;
744         u32 mask;
745
746         q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
747
748         /*
749          * Populate the IVAR table and set the ITR values to the
750          * corresponding register.
751          */
752         for (v_idx = 0; v_idx < q_vectors; v_idx++) {
753                 q_vector = adapter->q_vector[v_idx];
754                 /* XXX for_each_bit(...) */
755                 r_idx = find_first_bit(q_vector->rxr_idx,
756                                        adapter->num_rx_queues);
757
758                 for (i = 0; i < q_vector->rxr_count; i++) {
759                         j = adapter->rx_ring[r_idx].reg_idx;
760                         ixgbevf_set_ivar(adapter, 0, j, v_idx);
761                         r_idx = find_next_bit(q_vector->rxr_idx,
762                                               adapter->num_rx_queues,
763                                               r_idx + 1);
764                 }
765                 r_idx = find_first_bit(q_vector->txr_idx,
766                                        adapter->num_tx_queues);
767
768                 for (i = 0; i < q_vector->txr_count; i++) {
769                         j = adapter->tx_ring[r_idx].reg_idx;
770                         ixgbevf_set_ivar(adapter, 1, j, v_idx);
771                         r_idx = find_next_bit(q_vector->txr_idx,
772                                               adapter->num_tx_queues,
773                                               r_idx + 1);
774                 }
775
776                 /* if this is a tx only vector halve the interrupt rate */
777                 if (q_vector->txr_count && !q_vector->rxr_count)
778                         q_vector->eitr = (adapter->eitr_param >> 1);
779                 else if (q_vector->rxr_count)
780                         /* rx only */
781                         q_vector->eitr = adapter->eitr_param;
782
783                 ixgbevf_write_eitr(adapter, v_idx, q_vector->eitr);
784         }
785
786         ixgbevf_set_ivar(adapter, -1, 1, v_idx);
787
788         /* set up to autoclear timer, and the vectors */
789         mask = IXGBE_EIMS_ENABLE_MASK;
790         mask &= ~IXGBE_EIMS_OTHER;
791         IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, mask);
792 }
793
794 enum latency_range {
795         lowest_latency = 0,
796         low_latency = 1,
797         bulk_latency = 2,
798         latency_invalid = 255
799 };
800
801 /**
802  * ixgbevf_update_itr - update the dynamic ITR value based on statistics
803  * @adapter: pointer to adapter
804  * @eitr: eitr setting (ints per sec) to give last timeslice
805  * @itr_setting: current throttle rate in ints/second
806  * @packets: the number of packets during this measurement interval
807  * @bytes: the number of bytes during this measurement interval
808  *
809  *      Stores a new ITR value based on packets and byte
810  *      counts during the last interrupt.  The advantage of per interrupt
811  *      computation is faster updates and more accurate ITR for the current
812  *      traffic pattern.  Constants in this function were computed
813  *      based on theoretical maximum wire speed and thresholds were set based
814  *      on testing data as well as attempting to minimize response time
815  *      while increasing bulk throughput.
816  **/
817 static u8 ixgbevf_update_itr(struct ixgbevf_adapter *adapter,
818                              u32 eitr, u8 itr_setting,
819                              int packets, int bytes)
820 {
821         unsigned int retval = itr_setting;
822         u32 timepassed_us;
823         u64 bytes_perint;
824
825         if (packets == 0)
826                 goto update_itr_done;
827
828
829         /* simple throttlerate management
830          *    0-20MB/s lowest (100000 ints/s)
831          *   20-100MB/s low   (20000 ints/s)
832          *  100-1249MB/s bulk (8000 ints/s)
833          */
834         /* what was last interrupt timeslice? */
835         timepassed_us = 1000000/eitr;
836         bytes_perint = bytes / timepassed_us; /* bytes/usec */
837
838         switch (itr_setting) {
839         case lowest_latency:
840                 if (bytes_perint > adapter->eitr_low)
841                         retval = low_latency;
842                 break;
843         case low_latency:
844                 if (bytes_perint > adapter->eitr_high)
845                         retval = bulk_latency;
846                 else if (bytes_perint <= adapter->eitr_low)
847                         retval = lowest_latency;
848                 break;
849         case bulk_latency:
850                 if (bytes_perint <= adapter->eitr_high)
851                         retval = low_latency;
852                 break;
853         }
854
855 update_itr_done:
856         return retval;
857 }
858
859 /**
860  * ixgbevf_write_eitr - write VTEITR register in hardware specific way
861  * @adapter: pointer to adapter struct
862  * @v_idx: vector index into q_vector array
863  * @itr_reg: new value to be written in *register* format, not ints/s
864  *
865  * This function is made to be called by ethtool and by the driver
866  * when it needs to update VTEITR registers at runtime.  Hardware
867  * specific quirks/differences are taken care of here.
868  */
869 static void ixgbevf_write_eitr(struct ixgbevf_adapter *adapter, int v_idx,
870                                u32 itr_reg)
871 {
872         struct ixgbe_hw *hw = &adapter->hw;
873
874         itr_reg = EITR_INTS_PER_SEC_TO_REG(itr_reg);
875
876         /*
877          * set the WDIS bit to not clear the timer bits and cause an
878          * immediate assertion of the interrupt
879          */
880         itr_reg |= IXGBE_EITR_CNT_WDIS;
881
882         IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg);
883 }
884
885 static void ixgbevf_set_itr_msix(struct ixgbevf_q_vector *q_vector)
886 {
887         struct ixgbevf_adapter *adapter = q_vector->adapter;
888         u32 new_itr;
889         u8 current_itr, ret_itr;
890         int i, r_idx, v_idx = q_vector->v_idx;
891         struct ixgbevf_ring *rx_ring, *tx_ring;
892
893         r_idx = find_first_bit(q_vector->txr_idx, adapter->num_tx_queues);
894         for (i = 0; i < q_vector->txr_count; i++) {
895                 tx_ring = &(adapter->tx_ring[r_idx]);
896                 ret_itr = ixgbevf_update_itr(adapter, q_vector->eitr,
897                                              q_vector->tx_itr,
898                                              tx_ring->total_packets,
899                                              tx_ring->total_bytes);
900                 /* if the result for this queue would decrease interrupt
901                  * rate for this vector then use that result */
902                 q_vector->tx_itr = ((q_vector->tx_itr > ret_itr) ?
903                                     q_vector->tx_itr - 1 : ret_itr);
904                 r_idx = find_next_bit(q_vector->txr_idx, adapter->num_tx_queues,
905                                       r_idx + 1);
906         }
907
908         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
909         for (i = 0; i < q_vector->rxr_count; i++) {
910                 rx_ring = &(adapter->rx_ring[r_idx]);
911                 ret_itr = ixgbevf_update_itr(adapter, q_vector->eitr,
912                                              q_vector->rx_itr,
913                                              rx_ring->total_packets,
914                                              rx_ring->total_bytes);
915                 /* if the result for this queue would decrease interrupt
916                  * rate for this vector then use that result */
917                 q_vector->rx_itr = ((q_vector->rx_itr > ret_itr) ?
918                                     q_vector->rx_itr - 1 : ret_itr);
919                 r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
920                                       r_idx + 1);
921         }
922
923         current_itr = max(q_vector->rx_itr, q_vector->tx_itr);
924
925         switch (current_itr) {
926         /* counts and packets in update_itr are dependent on these numbers */
927         case lowest_latency:
928                 new_itr = 100000;
929                 break;
930         case low_latency:
931                 new_itr = 20000; /* aka hwitr = ~200 */
932                 break;
933         case bulk_latency:
934         default:
935                 new_itr = 8000;
936                 break;
937         }
938
939         if (new_itr != q_vector->eitr) {
940                 u32 itr_reg;
941
942                 /* save the algorithm value here, not the smoothed one */
943                 q_vector->eitr = new_itr;
944                 /* do an exponential smoothing */
945                 new_itr = ((q_vector->eitr * 90)/100) + ((new_itr * 10)/100);
946                 itr_reg = EITR_INTS_PER_SEC_TO_REG(new_itr);
947                 ixgbevf_write_eitr(adapter, v_idx, itr_reg);
948         }
949
950         return;
951 }
952
953 static irqreturn_t ixgbevf_msix_mbx(int irq, void *data)
954 {
955         struct net_device *netdev = data;
956         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
957         struct ixgbe_hw *hw = &adapter->hw;
958         u32 eicr;
959         u32 msg;
960
961         eicr = IXGBE_READ_REG(hw, IXGBE_VTEICS);
962         IXGBE_WRITE_REG(hw, IXGBE_VTEICR, eicr);
963
964         hw->mbx.ops.read(hw, &msg, 1);
965
966         if ((msg & IXGBE_MBVFICR_VFREQ_MASK) == IXGBE_PF_CONTROL_MSG)
967                 mod_timer(&adapter->watchdog_timer,
968                           round_jiffies(jiffies + 10));
969
970         return IRQ_HANDLED;
971 }
972
973 static irqreturn_t ixgbevf_msix_clean_tx(int irq, void *data)
974 {
975         struct ixgbevf_q_vector *q_vector = data;
976         struct ixgbevf_adapter  *adapter = q_vector->adapter;
977         struct ixgbevf_ring     *tx_ring;
978         int i, r_idx;
979
980         if (!q_vector->txr_count)
981                 return IRQ_HANDLED;
982
983         r_idx = find_first_bit(q_vector->txr_idx, adapter->num_tx_queues);
984         for (i = 0; i < q_vector->txr_count; i++) {
985                 tx_ring = &(adapter->tx_ring[r_idx]);
986                 tx_ring->total_bytes = 0;
987                 tx_ring->total_packets = 0;
988                 ixgbevf_clean_tx_irq(adapter, tx_ring);
989                 r_idx = find_next_bit(q_vector->txr_idx, adapter->num_tx_queues,
990                                       r_idx + 1);
991         }
992
993         if (adapter->itr_setting & 1)
994                 ixgbevf_set_itr_msix(q_vector);
995
996         return IRQ_HANDLED;
997 }
998
999 /**
1000  * ixgbe_msix_clean_rx - single unshared vector rx clean (all queues)
1001  * @irq: unused
1002  * @data: pointer to our q_vector struct for this interrupt vector
1003  **/
1004 static irqreturn_t ixgbevf_msix_clean_rx(int irq, void *data)
1005 {
1006         struct ixgbevf_q_vector *q_vector = data;
1007         struct ixgbevf_adapter  *adapter = q_vector->adapter;
1008         struct ixgbe_hw *hw = &adapter->hw;
1009         struct ixgbevf_ring  *rx_ring;
1010         int r_idx;
1011         int i;
1012
1013         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
1014         for (i = 0; i < q_vector->rxr_count; i++) {
1015                 rx_ring = &(adapter->rx_ring[r_idx]);
1016                 rx_ring->total_bytes = 0;
1017                 rx_ring->total_packets = 0;
1018                 r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
1019                                       r_idx + 1);
1020         }
1021
1022         if (!q_vector->rxr_count)
1023                 return IRQ_HANDLED;
1024
1025         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
1026         rx_ring = &(adapter->rx_ring[r_idx]);
1027         /* disable interrupts on this vector only */
1028         IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, rx_ring->v_idx);
1029         napi_schedule(&q_vector->napi);
1030
1031
1032         return IRQ_HANDLED;
1033 }
1034
1035 static irqreturn_t ixgbevf_msix_clean_many(int irq, void *data)
1036 {
1037         ixgbevf_msix_clean_rx(irq, data);
1038         ixgbevf_msix_clean_tx(irq, data);
1039
1040         return IRQ_HANDLED;
1041 }
1042
1043 static inline void map_vector_to_rxq(struct ixgbevf_adapter *a, int v_idx,
1044                                      int r_idx)
1045 {
1046         struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1047
1048         set_bit(r_idx, q_vector->rxr_idx);
1049         q_vector->rxr_count++;
1050         a->rx_ring[r_idx].v_idx = 1 << v_idx;
1051 }
1052
1053 static inline void map_vector_to_txq(struct ixgbevf_adapter *a, int v_idx,
1054                                      int t_idx)
1055 {
1056         struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1057
1058         set_bit(t_idx, q_vector->txr_idx);
1059         q_vector->txr_count++;
1060         a->tx_ring[t_idx].v_idx = 1 << v_idx;
1061 }
1062
1063 /**
1064  * ixgbevf_map_rings_to_vectors - Maps descriptor rings to vectors
1065  * @adapter: board private structure to initialize
1066  *
1067  * This function maps descriptor rings to the queue-specific vectors
1068  * we were allotted through the MSI-X enabling code.  Ideally, we'd have
1069  * one vector per ring/queue, but on a constrained vector budget, we
1070  * group the rings as "efficiently" as possible.  You would add new
1071  * mapping configurations in here.
1072  **/
1073 static int ixgbevf_map_rings_to_vectors(struct ixgbevf_adapter *adapter)
1074 {
1075         int q_vectors;
1076         int v_start = 0;
1077         int rxr_idx = 0, txr_idx = 0;
1078         int rxr_remaining = adapter->num_rx_queues;
1079         int txr_remaining = adapter->num_tx_queues;
1080         int i, j;
1081         int rqpv, tqpv;
1082         int err = 0;
1083
1084         q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1085
1086         /*
1087          * The ideal configuration...
1088          * We have enough vectors to map one per queue.
1089          */
1090         if (q_vectors == adapter->num_rx_queues + adapter->num_tx_queues) {
1091                 for (; rxr_idx < rxr_remaining; v_start++, rxr_idx++)
1092                         map_vector_to_rxq(adapter, v_start, rxr_idx);
1093
1094                 for (; txr_idx < txr_remaining; v_start++, txr_idx++)
1095                         map_vector_to_txq(adapter, v_start, txr_idx);
1096                 goto out;
1097         }
1098
1099         /*
1100          * If we don't have enough vectors for a 1-to-1
1101          * mapping, we'll have to group them so there are
1102          * multiple queues per vector.
1103          */
1104         /* Re-adjusting *qpv takes care of the remainder. */
1105         for (i = v_start; i < q_vectors; i++) {
1106                 rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - i);
1107                 for (j = 0; j < rqpv; j++) {
1108                         map_vector_to_rxq(adapter, i, rxr_idx);
1109                         rxr_idx++;
1110                         rxr_remaining--;
1111                 }
1112         }
1113         for (i = v_start; i < q_vectors; i++) {
1114                 tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - i);
1115                 for (j = 0; j < tqpv; j++) {
1116                         map_vector_to_txq(adapter, i, txr_idx);
1117                         txr_idx++;
1118                         txr_remaining--;
1119                 }
1120         }
1121
1122 out:
1123         return err;
1124 }
1125
1126 /**
1127  * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts
1128  * @adapter: board private structure
1129  *
1130  * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests
1131  * interrupts from the kernel.
1132  **/
1133 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter)
1134 {
1135         struct net_device *netdev = adapter->netdev;
1136         irqreturn_t (*handler)(int, void *);
1137         int i, vector, q_vectors, err;
1138         int ri = 0, ti = 0;
1139
1140         /* Decrement for Other and TCP Timer vectors */
1141         q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1142
1143 #define SET_HANDLER(_v) (((_v)->rxr_count && (_v)->txr_count)          \
1144                                           ? &ixgbevf_msix_clean_many : \
1145                           (_v)->rxr_count ? &ixgbevf_msix_clean_rx   : \
1146                           (_v)->txr_count ? &ixgbevf_msix_clean_tx   : \
1147                           NULL)
1148         for (vector = 0; vector < q_vectors; vector++) {
1149                 handler = SET_HANDLER(adapter->q_vector[vector]);
1150
1151                 if (handler == &ixgbevf_msix_clean_rx) {
1152                         sprintf(adapter->name[vector], "%s-%s-%d",
1153                                 netdev->name, "rx", ri++);
1154                 } else if (handler == &ixgbevf_msix_clean_tx) {
1155                         sprintf(adapter->name[vector], "%s-%s-%d",
1156                                 netdev->name, "tx", ti++);
1157                 } else if (handler == &ixgbevf_msix_clean_many) {
1158                         sprintf(adapter->name[vector], "%s-%s-%d",
1159                                 netdev->name, "TxRx", vector);
1160                 } else {
1161                         /* skip this unused q_vector */
1162                         continue;
1163                 }
1164                 err = request_irq(adapter->msix_entries[vector].vector,
1165                                   handler, 0, adapter->name[vector],
1166                                   adapter->q_vector[vector]);
1167                 if (err) {
1168                         hw_dbg(&adapter->hw,
1169                                "request_irq failed for MSIX interrupt "
1170                                "Error: %d\n", err);
1171                         goto free_queue_irqs;
1172                 }
1173         }
1174
1175         sprintf(adapter->name[vector], "%s:mbx", netdev->name);
1176         err = request_irq(adapter->msix_entries[vector].vector,
1177                           &ixgbevf_msix_mbx, 0, adapter->name[vector], netdev);
1178         if (err) {
1179                 hw_dbg(&adapter->hw,
1180                        "request_irq for msix_mbx failed: %d\n", err);
1181                 goto free_queue_irqs;
1182         }
1183
1184         return 0;
1185
1186 free_queue_irqs:
1187         for (i = vector - 1; i >= 0; i--)
1188                 free_irq(adapter->msix_entries[--vector].vector,
1189                          &(adapter->q_vector[i]));
1190         pci_disable_msix(adapter->pdev);
1191         kfree(adapter->msix_entries);
1192         adapter->msix_entries = NULL;
1193         return err;
1194 }
1195
1196 static inline void ixgbevf_reset_q_vectors(struct ixgbevf_adapter *adapter)
1197 {
1198         int i, q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1199
1200         for (i = 0; i < q_vectors; i++) {
1201                 struct ixgbevf_q_vector *q_vector = adapter->q_vector[i];
1202                 bitmap_zero(q_vector->rxr_idx, MAX_RX_QUEUES);
1203                 bitmap_zero(q_vector->txr_idx, MAX_TX_QUEUES);
1204                 q_vector->rxr_count = 0;
1205                 q_vector->txr_count = 0;
1206                 q_vector->eitr = adapter->eitr_param;
1207         }
1208 }
1209
1210 /**
1211  * ixgbevf_request_irq - initialize interrupts
1212  * @adapter: board private structure
1213  *
1214  * Attempts to configure interrupts using the best available
1215  * capabilities of the hardware and kernel.
1216  **/
1217 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter)
1218 {
1219         int err = 0;
1220
1221         err = ixgbevf_request_msix_irqs(adapter);
1222
1223         if (err)
1224                 hw_dbg(&adapter->hw,
1225                        "request_irq failed, Error %d\n", err);
1226
1227         return err;
1228 }
1229
1230 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter)
1231 {
1232         struct net_device *netdev = adapter->netdev;
1233         int i, q_vectors;
1234
1235         q_vectors = adapter->num_msix_vectors;
1236
1237         i = q_vectors - 1;
1238
1239         free_irq(adapter->msix_entries[i].vector, netdev);
1240         i--;
1241
1242         for (; i >= 0; i--) {
1243                 free_irq(adapter->msix_entries[i].vector,
1244                          adapter->q_vector[i]);
1245         }
1246
1247         ixgbevf_reset_q_vectors(adapter);
1248 }
1249
1250 /**
1251  * ixgbevf_irq_disable - Mask off interrupt generation on the NIC
1252  * @adapter: board private structure
1253  **/
1254 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter)
1255 {
1256         int i;
1257         struct ixgbe_hw *hw = &adapter->hw;
1258
1259         IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0);
1260
1261         IXGBE_WRITE_FLUSH(hw);
1262
1263         for (i = 0; i < adapter->num_msix_vectors; i++)
1264                 synchronize_irq(adapter->msix_entries[i].vector);
1265 }
1266
1267 /**
1268  * ixgbevf_irq_enable - Enable default interrupt generation settings
1269  * @adapter: board private structure
1270  **/
1271 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter,
1272                                       bool queues, bool flush)
1273 {
1274         struct ixgbe_hw *hw = &adapter->hw;
1275         u32 mask;
1276         u64 qmask;
1277
1278         mask = (IXGBE_EIMS_ENABLE_MASK & ~IXGBE_EIMS_RTX_QUEUE);
1279         qmask = ~0;
1280
1281         IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, mask);
1282
1283         if (queues)
1284                 ixgbevf_irq_enable_queues(adapter, qmask);
1285
1286         if (flush)
1287                 IXGBE_WRITE_FLUSH(hw);
1288 }
1289
1290 /**
1291  * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset
1292  * @adapter: board private structure
1293  *
1294  * Configure the Tx unit of the MAC after a reset.
1295  **/
1296 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter)
1297 {
1298         u64 tdba;
1299         struct ixgbe_hw *hw = &adapter->hw;
1300         u32 i, j, tdlen, txctrl;
1301
1302         /* Setup the HW Tx Head and Tail descriptor pointers */
1303         for (i = 0; i < adapter->num_tx_queues; i++) {
1304                 struct ixgbevf_ring *ring = &adapter->tx_ring[i];
1305                 j = ring->reg_idx;
1306                 tdba = ring->dma;
1307                 tdlen = ring->count * sizeof(union ixgbe_adv_tx_desc);
1308                 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(j),
1309                                 (tdba & DMA_BIT_MASK(32)));
1310                 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(j), (tdba >> 32));
1311                 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(j), tdlen);
1312                 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(j), 0);
1313                 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(j), 0);
1314                 adapter->tx_ring[i].head = IXGBE_VFTDH(j);
1315                 adapter->tx_ring[i].tail = IXGBE_VFTDT(j);
1316                 /* Disable Tx Head Writeback RO bit, since this hoses
1317                  * bookkeeping if things aren't delivered in order.
1318                  */
1319                 txctrl = IXGBE_READ_REG(hw, IXGBE_VFDCA_TXCTRL(j));
1320                 txctrl &= ~IXGBE_DCA_TXCTRL_TX_WB_RO_EN;
1321                 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(j), txctrl);
1322         }
1323 }
1324
1325 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2
1326
1327 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, int index)
1328 {
1329         struct ixgbevf_ring *rx_ring;
1330         struct ixgbe_hw *hw = &adapter->hw;
1331         u32 srrctl;
1332
1333         rx_ring = &adapter->rx_ring[index];
1334
1335         srrctl = IXGBE_SRRCTL_DROP_EN;
1336
1337         if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
1338                 u16 bufsz = IXGBEVF_RXBUFFER_2048;
1339                 /* grow the amount we can receive on large page machines */
1340                 if (bufsz < (PAGE_SIZE / 2))
1341                         bufsz = (PAGE_SIZE / 2);
1342                 /* cap the bufsz at our largest descriptor size */
1343                 bufsz = min((u16)IXGBEVF_MAX_RXBUFFER, bufsz);
1344
1345                 srrctl |= bufsz >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1346                 srrctl |= IXGBE_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1347                 srrctl |= ((IXGBEVF_RX_HDR_SIZE <<
1348                            IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT) &
1349                            IXGBE_SRRCTL_BSIZEHDR_MASK);
1350         } else {
1351                 srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
1352
1353                 if (rx_ring->rx_buf_len == MAXIMUM_ETHERNET_VLAN_SIZE)
1354                         srrctl |= IXGBEVF_RXBUFFER_2048 >>
1355                                 IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1356                 else
1357                         srrctl |= rx_ring->rx_buf_len >>
1358                                 IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1359         }
1360         IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl);
1361 }
1362
1363 /**
1364  * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset
1365  * @adapter: board private structure
1366  *
1367  * Configure the Rx unit of the MAC after a reset.
1368  **/
1369 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter)
1370 {
1371         u64 rdba;
1372         struct ixgbe_hw *hw = &adapter->hw;
1373         struct net_device *netdev = adapter->netdev;
1374         int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1375         int i, j;
1376         u32 rdlen;
1377         int rx_buf_len;
1378
1379         /* Decide whether to use packet split mode or not */
1380         if (netdev->mtu > ETH_DATA_LEN) {
1381                 if (adapter->flags & IXGBE_FLAG_RX_PS_CAPABLE)
1382                         adapter->flags |= IXGBE_FLAG_RX_PS_ENABLED;
1383                 else
1384                         adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
1385         } else {
1386                 if (adapter->flags & IXGBE_FLAG_RX_1BUF_CAPABLE)
1387                         adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
1388                 else
1389                         adapter->flags |= IXGBE_FLAG_RX_PS_ENABLED;
1390         }
1391
1392         /* Set the RX buffer length according to the mode */
1393         if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
1394                 /* PSRTYPE must be initialized in 82599 */
1395                 u32 psrtype = IXGBE_PSRTYPE_TCPHDR |
1396                         IXGBE_PSRTYPE_UDPHDR |
1397                         IXGBE_PSRTYPE_IPV4HDR |
1398                         IXGBE_PSRTYPE_IPV6HDR |
1399                         IXGBE_PSRTYPE_L2HDR;
1400                 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
1401                 rx_buf_len = IXGBEVF_RX_HDR_SIZE;
1402         } else {
1403                 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, 0);
1404                 if (netdev->mtu <= ETH_DATA_LEN)
1405                         rx_buf_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1406                 else
1407                         rx_buf_len = ALIGN(max_frame, 1024);
1408         }
1409
1410         rdlen = adapter->rx_ring[0].count * sizeof(union ixgbe_adv_rx_desc);
1411         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1412          * the Base and Length of the Rx Descriptor Ring */
1413         for (i = 0; i < adapter->num_rx_queues; i++) {
1414                 rdba = adapter->rx_ring[i].dma;
1415                 j = adapter->rx_ring[i].reg_idx;
1416                 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(j),
1417                                 (rdba & DMA_BIT_MASK(32)));
1418                 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(j), (rdba >> 32));
1419                 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(j), rdlen);
1420                 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(j), 0);
1421                 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(j), 0);
1422                 adapter->rx_ring[i].head = IXGBE_VFRDH(j);
1423                 adapter->rx_ring[i].tail = IXGBE_VFRDT(j);
1424                 adapter->rx_ring[i].rx_buf_len = rx_buf_len;
1425
1426                 ixgbevf_configure_srrctl(adapter, j);
1427         }
1428 }
1429
1430 static void ixgbevf_vlan_rx_register(struct net_device *netdev,
1431                                      struct vlan_group *grp)
1432 {
1433         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1434         struct ixgbe_hw *hw = &adapter->hw;
1435         int i, j;
1436         u32 ctrl;
1437
1438         adapter->vlgrp = grp;
1439
1440         for (i = 0; i < adapter->num_rx_queues; i++) {
1441                 j = adapter->rx_ring[i].reg_idx;
1442                 ctrl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j));
1443                 ctrl |= IXGBE_RXDCTL_VME;
1444                 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(j), ctrl);
1445         }
1446 }
1447
1448 static void ixgbevf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1449 {
1450         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1451         struct ixgbe_hw *hw = &adapter->hw;
1452         struct net_device *v_netdev;
1453
1454         /* add VID to filter table */
1455         if (hw->mac.ops.set_vfta)
1456                 hw->mac.ops.set_vfta(hw, vid, 0, true);
1457         /*
1458          * Copy feature flags from netdev to the vlan netdev for this vid.
1459          * This allows things like TSO to bubble down to our vlan device.
1460          */
1461         v_netdev = vlan_group_get_device(adapter->vlgrp, vid);
1462         v_netdev->features |= adapter->netdev->features;
1463         vlan_group_set_device(adapter->vlgrp, vid, v_netdev);
1464 }
1465
1466 static void ixgbevf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1467 {
1468         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1469         struct ixgbe_hw *hw = &adapter->hw;
1470
1471         if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
1472                 ixgbevf_irq_disable(adapter);
1473
1474         vlan_group_set_device(adapter->vlgrp, vid, NULL);
1475
1476         if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
1477                 ixgbevf_irq_enable(adapter, true, true);
1478
1479         /* remove VID from filter table */
1480         if (hw->mac.ops.set_vfta)
1481                 hw->mac.ops.set_vfta(hw, vid, 0, false);
1482 }
1483
1484 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter)
1485 {
1486         ixgbevf_vlan_rx_register(adapter->netdev, adapter->vlgrp);
1487
1488         if (adapter->vlgrp) {
1489                 u16 vid;
1490                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
1491                         if (!vlan_group_get_device(adapter->vlgrp, vid))
1492                                 continue;
1493                         ixgbevf_vlan_rx_add_vid(adapter->netdev, vid);
1494                 }
1495         }
1496 }
1497
1498 static u8 *ixgbevf_addr_list_itr(struct ixgbe_hw *hw, u8 **mc_addr_ptr,
1499                                  u32 *vmdq)
1500 {
1501         struct dev_mc_list *mc_ptr;
1502         u8 *addr = *mc_addr_ptr;
1503         *vmdq = 0;
1504
1505         mc_ptr = container_of(addr, struct dev_mc_list, dmi_addr[0]);
1506         if (mc_ptr->next)
1507                 *mc_addr_ptr = mc_ptr->next->dmi_addr;
1508         else
1509                 *mc_addr_ptr = NULL;
1510
1511         return addr;
1512 }
1513
1514 /**
1515  * ixgbevf_set_rx_mode - Multicast set
1516  * @netdev: network interface device structure
1517  *
1518  * The set_rx_method entry point is called whenever the multicast address
1519  * list or the network interface flags are updated.  This routine is
1520  * responsible for configuring the hardware for proper multicast mode.
1521  **/
1522 static void ixgbevf_set_rx_mode(struct net_device *netdev)
1523 {
1524         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1525         struct ixgbe_hw *hw = &adapter->hw;
1526         u8 *addr_list = NULL;
1527         int addr_count = 0;
1528
1529         /* reprogram multicast list */
1530         addr_count = netdev_mc_count(netdev);
1531         if (addr_count)
1532                 addr_list = netdev->mc_list->dmi_addr;
1533         if (hw->mac.ops.update_mc_addr_list)
1534                 hw->mac.ops.update_mc_addr_list(hw, addr_list, addr_count,
1535                                                 ixgbevf_addr_list_itr);
1536 }
1537
1538 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter)
1539 {
1540         int q_idx;
1541         struct ixgbevf_q_vector *q_vector;
1542         int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1543
1544         for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1545                 struct napi_struct *napi;
1546                 q_vector = adapter->q_vector[q_idx];
1547                 if (!q_vector->rxr_count)
1548                         continue;
1549                 napi = &q_vector->napi;
1550                 if (q_vector->rxr_count > 1)
1551                         napi->poll = &ixgbevf_clean_rxonly_many;
1552
1553                 napi_enable(napi);
1554         }
1555 }
1556
1557 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter)
1558 {
1559         int q_idx;
1560         struct ixgbevf_q_vector *q_vector;
1561         int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1562
1563         for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1564                 q_vector = adapter->q_vector[q_idx];
1565                 if (!q_vector->rxr_count)
1566                         continue;
1567                 napi_disable(&q_vector->napi);
1568         }
1569 }
1570
1571 static void ixgbevf_configure(struct ixgbevf_adapter *adapter)
1572 {
1573         struct net_device *netdev = adapter->netdev;
1574         int i;
1575
1576         ixgbevf_set_rx_mode(netdev);
1577
1578         ixgbevf_restore_vlan(adapter);
1579
1580         ixgbevf_configure_tx(adapter);
1581         ixgbevf_configure_rx(adapter);
1582         for (i = 0; i < adapter->num_rx_queues; i++) {
1583                 struct ixgbevf_ring *ring = &adapter->rx_ring[i];
1584                 ixgbevf_alloc_rx_buffers(adapter, ring, ring->count);
1585                 ring->next_to_use = ring->count - 1;
1586                 writel(ring->next_to_use, adapter->hw.hw_addr + ring->tail);
1587         }
1588 }
1589
1590 #define IXGBE_MAX_RX_DESC_POLL 10
1591 static inline void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter,
1592                                                 int rxr)
1593 {
1594         struct ixgbe_hw *hw = &adapter->hw;
1595         int j = adapter->rx_ring[rxr].reg_idx;
1596         int k;
1597
1598         for (k = 0; k < IXGBE_MAX_RX_DESC_POLL; k++) {
1599                 if (IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j)) & IXGBE_RXDCTL_ENABLE)
1600                         break;
1601                 else
1602                         msleep(1);
1603         }
1604         if (k >= IXGBE_MAX_RX_DESC_POLL) {
1605                 hw_dbg(hw, "RXDCTL.ENABLE on Rx queue %d "
1606                        "not set within the polling period\n", rxr);
1607         }
1608
1609         ixgbevf_release_rx_desc(&adapter->hw, &adapter->rx_ring[rxr],
1610                                 (adapter->rx_ring[rxr].count - 1));
1611 }
1612
1613 static int ixgbevf_up_complete(struct ixgbevf_adapter *adapter)
1614 {
1615         struct net_device *netdev = adapter->netdev;
1616         struct ixgbe_hw *hw = &adapter->hw;
1617         int i, j = 0;
1618         int num_rx_rings = adapter->num_rx_queues;
1619         u32 txdctl, rxdctl;
1620
1621         for (i = 0; i < adapter->num_tx_queues; i++) {
1622                 j = adapter->tx_ring[i].reg_idx;
1623                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1624                 /* enable WTHRESH=8 descriptors, to encourage burst writeback */
1625                 txdctl |= (8 << 16);
1626                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j), txdctl);
1627         }
1628
1629         for (i = 0; i < adapter->num_tx_queues; i++) {
1630                 j = adapter->tx_ring[i].reg_idx;
1631                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1632                 txdctl |= IXGBE_TXDCTL_ENABLE;
1633                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j), txdctl);
1634         }
1635
1636         for (i = 0; i < num_rx_rings; i++) {
1637                 j = adapter->rx_ring[i].reg_idx;
1638                 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j));
1639                 rxdctl |= IXGBE_RXDCTL_ENABLE;
1640                 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(j), rxdctl);
1641                 ixgbevf_rx_desc_queue_enable(adapter, i);
1642         }
1643
1644         ixgbevf_configure_msix(adapter);
1645
1646         if (hw->mac.ops.set_rar) {
1647                 if (is_valid_ether_addr(hw->mac.addr))
1648                         hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
1649                 else
1650                         hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0);
1651         }
1652
1653         clear_bit(__IXGBEVF_DOWN, &adapter->state);
1654         ixgbevf_napi_enable_all(adapter);
1655
1656         /* enable transmits */
1657         netif_tx_start_all_queues(netdev);
1658
1659         /* bring the link up in the watchdog, this could race with our first
1660          * link up interrupt but shouldn't be a problem */
1661         adapter->flags |= IXGBE_FLAG_NEED_LINK_UPDATE;
1662         adapter->link_check_timeout = jiffies;
1663         mod_timer(&adapter->watchdog_timer, jiffies);
1664         return 0;
1665 }
1666
1667 int ixgbevf_up(struct ixgbevf_adapter *adapter)
1668 {
1669         int err;
1670         struct ixgbe_hw *hw = &adapter->hw;
1671
1672         ixgbevf_configure(adapter);
1673
1674         err = ixgbevf_up_complete(adapter);
1675
1676         /* clear any pending interrupts, may auto mask */
1677         IXGBE_READ_REG(hw, IXGBE_VTEICR);
1678
1679         ixgbevf_irq_enable(adapter, true, true);
1680
1681         return err;
1682 }
1683
1684 /**
1685  * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue
1686  * @adapter: board private structure
1687  * @rx_ring: ring to free buffers from
1688  **/
1689 static void ixgbevf_clean_rx_ring(struct ixgbevf_adapter *adapter,
1690                                   struct ixgbevf_ring *rx_ring)
1691 {
1692         struct pci_dev *pdev = adapter->pdev;
1693         unsigned long size;
1694         unsigned int i;
1695
1696         if (!rx_ring->rx_buffer_info)
1697                 return;
1698
1699         /* Free all the Rx ring sk_buffs */
1700         for (i = 0; i < rx_ring->count; i++) {
1701                 struct ixgbevf_rx_buffer *rx_buffer_info;
1702
1703                 rx_buffer_info = &rx_ring->rx_buffer_info[i];
1704                 if (rx_buffer_info->dma) {
1705                         pci_unmap_single(pdev, rx_buffer_info->dma,
1706                                          rx_ring->rx_buf_len,
1707                                          PCI_DMA_FROMDEVICE);
1708                         rx_buffer_info->dma = 0;
1709                 }
1710                 if (rx_buffer_info->skb) {
1711                         struct sk_buff *skb = rx_buffer_info->skb;
1712                         rx_buffer_info->skb = NULL;
1713                         do {
1714                                 struct sk_buff *this = skb;
1715                                 skb = skb->prev;
1716                                 dev_kfree_skb(this);
1717                         } while (skb);
1718                 }
1719                 if (!rx_buffer_info->page)
1720                         continue;
1721                 pci_unmap_page(pdev, rx_buffer_info->page_dma, PAGE_SIZE / 2,
1722                                PCI_DMA_FROMDEVICE);
1723                 rx_buffer_info->page_dma = 0;
1724                 put_page(rx_buffer_info->page);
1725                 rx_buffer_info->page = NULL;
1726                 rx_buffer_info->page_offset = 0;
1727         }
1728
1729         size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
1730         memset(rx_ring->rx_buffer_info, 0, size);
1731
1732         /* Zero out the descriptor ring */
1733         memset(rx_ring->desc, 0, rx_ring->size);
1734
1735         rx_ring->next_to_clean = 0;
1736         rx_ring->next_to_use = 0;
1737
1738         if (rx_ring->head)
1739                 writel(0, adapter->hw.hw_addr + rx_ring->head);
1740         if (rx_ring->tail)
1741                 writel(0, adapter->hw.hw_addr + rx_ring->tail);
1742 }
1743
1744 /**
1745  * ixgbevf_clean_tx_ring - Free Tx Buffers
1746  * @adapter: board private structure
1747  * @tx_ring: ring to be cleaned
1748  **/
1749 static void ixgbevf_clean_tx_ring(struct ixgbevf_adapter *adapter,
1750                                   struct ixgbevf_ring *tx_ring)
1751 {
1752         struct ixgbevf_tx_buffer *tx_buffer_info;
1753         unsigned long size;
1754         unsigned int i;
1755
1756         if (!tx_ring->tx_buffer_info)
1757                 return;
1758
1759         /* Free all the Tx ring sk_buffs */
1760
1761         for (i = 0; i < tx_ring->count; i++) {
1762                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
1763                 ixgbevf_unmap_and_free_tx_resource(adapter, tx_buffer_info);
1764         }
1765
1766         size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
1767         memset(tx_ring->tx_buffer_info, 0, size);
1768
1769         memset(tx_ring->desc, 0, tx_ring->size);
1770
1771         tx_ring->next_to_use = 0;
1772         tx_ring->next_to_clean = 0;
1773
1774         if (tx_ring->head)
1775                 writel(0, adapter->hw.hw_addr + tx_ring->head);
1776         if (tx_ring->tail)
1777                 writel(0, adapter->hw.hw_addr + tx_ring->tail);
1778 }
1779
1780 /**
1781  * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues
1782  * @adapter: board private structure
1783  **/
1784 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter)
1785 {
1786         int i;
1787
1788         for (i = 0; i < adapter->num_rx_queues; i++)
1789                 ixgbevf_clean_rx_ring(adapter, &adapter->rx_ring[i]);
1790 }
1791
1792 /**
1793  * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues
1794  * @adapter: board private structure
1795  **/
1796 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter)
1797 {
1798         int i;
1799
1800         for (i = 0; i < adapter->num_tx_queues; i++)
1801                 ixgbevf_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1802 }
1803
1804 void ixgbevf_down(struct ixgbevf_adapter *adapter)
1805 {
1806         struct net_device *netdev = adapter->netdev;
1807         struct ixgbe_hw *hw = &adapter->hw;
1808         u32 txdctl;
1809         int i, j;
1810
1811         /* signal that we are down to the interrupt handler */
1812         set_bit(__IXGBEVF_DOWN, &adapter->state);
1813         /* disable receives */
1814
1815         netif_tx_disable(netdev);
1816
1817         msleep(10);
1818
1819         netif_tx_stop_all_queues(netdev);
1820
1821         ixgbevf_irq_disable(adapter);
1822
1823         ixgbevf_napi_disable_all(adapter);
1824
1825         del_timer_sync(&adapter->watchdog_timer);
1826         /* can't call flush scheduled work here because it can deadlock
1827          * if linkwatch_event tries to acquire the rtnl_lock which we are
1828          * holding */
1829         while (adapter->flags & IXGBE_FLAG_IN_WATCHDOG_TASK)
1830                 msleep(1);
1831
1832         /* disable transmits in the hardware now that interrupts are off */
1833         for (i = 0; i < adapter->num_tx_queues; i++) {
1834                 j = adapter->tx_ring[i].reg_idx;
1835                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1836                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j),
1837                                 (txdctl & ~IXGBE_TXDCTL_ENABLE));
1838         }
1839
1840         netif_carrier_off(netdev);
1841
1842         if (!pci_channel_offline(adapter->pdev))
1843                 ixgbevf_reset(adapter);
1844
1845         ixgbevf_clean_all_tx_rings(adapter);
1846         ixgbevf_clean_all_rx_rings(adapter);
1847 }
1848
1849 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter)
1850 {
1851         struct ixgbe_hw *hw = &adapter->hw;
1852
1853         WARN_ON(in_interrupt());
1854
1855         while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state))
1856                 msleep(1);
1857
1858         /*
1859          * Check if PF is up before re-init.  If not then skip until
1860          * later when the PF is up and ready to service requests from
1861          * the VF via mailbox.  If the VF is up and running then the
1862          * watchdog task will continue to schedule reset tasks until
1863          * the PF is up and running.
1864          */
1865         if (!hw->mac.ops.reset_hw(hw)) {
1866                 ixgbevf_down(adapter);
1867                 ixgbevf_up(adapter);
1868         }
1869
1870         clear_bit(__IXGBEVF_RESETTING, &adapter->state);
1871 }
1872
1873 void ixgbevf_reset(struct ixgbevf_adapter *adapter)
1874 {
1875         struct ixgbe_hw *hw = &adapter->hw;
1876         struct net_device *netdev = adapter->netdev;
1877
1878         if (hw->mac.ops.reset_hw(hw))
1879                 hw_dbg(hw, "PF still resetting\n");
1880         else
1881                 hw->mac.ops.init_hw(hw);
1882
1883         if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1884                 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1885                        netdev->addr_len);
1886                 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1887                        netdev->addr_len);
1888         }
1889 }
1890
1891 static void ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter,
1892                                          int vectors)
1893 {
1894         int err, vector_threshold;
1895
1896         /* We'll want at least 3 (vector_threshold):
1897          * 1) TxQ[0] Cleanup
1898          * 2) RxQ[0] Cleanup
1899          * 3) Other (Link Status Change, etc.)
1900          */
1901         vector_threshold = MIN_MSIX_COUNT;
1902
1903         /* The more we get, the more we will assign to Tx/Rx Cleanup
1904          * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1905          * Right now, we simply care about how many we'll get; we'll
1906          * set them up later while requesting irq's.
1907          */
1908         while (vectors >= vector_threshold) {
1909                 err = pci_enable_msix(adapter->pdev, adapter->msix_entries,
1910                                       vectors);
1911                 if (!err) /* Success in acquiring all requested vectors. */
1912                         break;
1913                 else if (err < 0)
1914                         vectors = 0; /* Nasty failure, quit now */
1915                 else /* err == number of vectors we should try again with */
1916                         vectors = err;
1917         }
1918
1919         if (vectors < vector_threshold) {
1920                 /* Can't allocate enough MSI-X interrupts?  Oh well.
1921                  * This just means we'll go with either a single MSI
1922                  * vector or fall back to legacy interrupts.
1923                  */
1924                 hw_dbg(&adapter->hw,
1925                        "Unable to allocate MSI-X interrupts\n");
1926                 kfree(adapter->msix_entries);
1927                 adapter->msix_entries = NULL;
1928         } else {
1929                 /*
1930                  * Adjust for only the vectors we'll use, which is minimum
1931                  * of max_msix_q_vectors + NON_Q_VECTORS, or the number of
1932                  * vectors we were allocated.
1933                  */
1934                 adapter->num_msix_vectors = vectors;
1935         }
1936 }
1937
1938 /*
1939  * ixgbe_set_num_queues: Allocate queues for device, feature dependant
1940  * @adapter: board private structure to initialize
1941  *
1942  * This is the top level queue allocation routine.  The order here is very
1943  * important, starting with the "most" number of features turned on at once,
1944  * and ending with the smallest set of features.  This way large combinations
1945  * can be allocated if they're turned on, and smaller combinations are the
1946  * fallthrough conditions.
1947  *
1948  **/
1949 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter)
1950 {
1951         /* Start with base case */
1952         adapter->num_rx_queues = 1;
1953         adapter->num_tx_queues = 1;
1954         adapter->num_rx_pools = adapter->num_rx_queues;
1955         adapter->num_rx_queues_per_pool = 1;
1956 }
1957
1958 /**
1959  * ixgbevf_alloc_queues - Allocate memory for all rings
1960  * @adapter: board private structure to initialize
1961  *
1962  * We allocate one ring per queue at run-time since we don't know the
1963  * number of queues at compile-time.  The polling_netdev array is
1964  * intended for Multiqueue, but should work fine with a single queue.
1965  **/
1966 static int ixgbevf_alloc_queues(struct ixgbevf_adapter *adapter)
1967 {
1968         int i;
1969
1970         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1971                                    sizeof(struct ixgbevf_ring), GFP_KERNEL);
1972         if (!adapter->tx_ring)
1973                 goto err_tx_ring_allocation;
1974
1975         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1976                                    sizeof(struct ixgbevf_ring), GFP_KERNEL);
1977         if (!adapter->rx_ring)
1978                 goto err_rx_ring_allocation;
1979
1980         for (i = 0; i < adapter->num_tx_queues; i++) {
1981                 adapter->tx_ring[i].count = adapter->tx_ring_count;
1982                 adapter->tx_ring[i].queue_index = i;
1983                 adapter->tx_ring[i].reg_idx = i;
1984         }
1985
1986         for (i = 0; i < adapter->num_rx_queues; i++) {
1987                 adapter->rx_ring[i].count = adapter->rx_ring_count;
1988                 adapter->rx_ring[i].queue_index = i;
1989                 adapter->rx_ring[i].reg_idx = i;
1990         }
1991
1992         return 0;
1993
1994 err_rx_ring_allocation:
1995         kfree(adapter->tx_ring);
1996 err_tx_ring_allocation:
1997         return -ENOMEM;
1998 }
1999
2000 /**
2001  * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported
2002  * @adapter: board private structure to initialize
2003  *
2004  * Attempt to configure the interrupts using the best available
2005  * capabilities of the hardware and the kernel.
2006  **/
2007 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter)
2008 {
2009         int err = 0;
2010         int vector, v_budget;
2011
2012         /*
2013          * It's easy to be greedy for MSI-X vectors, but it really
2014          * doesn't do us much good if we have a lot more vectors
2015          * than CPU's.  So let's be conservative and only ask for
2016          * (roughly) twice the number of vectors as there are CPU's.
2017          */
2018         v_budget = min(adapter->num_rx_queues + adapter->num_tx_queues,
2019                        (int)(num_online_cpus() * 2)) + NON_Q_VECTORS;
2020
2021         /* A failure in MSI-X entry allocation isn't fatal, but it does
2022          * mean we disable MSI-X capabilities of the adapter. */
2023         adapter->msix_entries = kcalloc(v_budget,
2024                                         sizeof(struct msix_entry), GFP_KERNEL);
2025         if (!adapter->msix_entries) {
2026                 err = -ENOMEM;
2027                 goto out;
2028         }
2029
2030         for (vector = 0; vector < v_budget; vector++)
2031                 adapter->msix_entries[vector].entry = vector;
2032
2033         ixgbevf_acquire_msix_vectors(adapter, v_budget);
2034
2035 out:
2036         return err;
2037 }
2038
2039 /**
2040  * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors
2041  * @adapter: board private structure to initialize
2042  *
2043  * We allocate one q_vector per queue interrupt.  If allocation fails we
2044  * return -ENOMEM.
2045  **/
2046 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter)
2047 {
2048         int q_idx, num_q_vectors;
2049         struct ixgbevf_q_vector *q_vector;
2050         int napi_vectors;
2051         int (*poll)(struct napi_struct *, int);
2052
2053         num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2054         napi_vectors = adapter->num_rx_queues;
2055         poll = &ixgbevf_clean_rxonly;
2056
2057         for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2058                 q_vector = kzalloc(sizeof(struct ixgbevf_q_vector), GFP_KERNEL);
2059                 if (!q_vector)
2060                         goto err_out;
2061                 q_vector->adapter = adapter;
2062                 q_vector->v_idx = q_idx;
2063                 q_vector->eitr = adapter->eitr_param;
2064                 if (q_idx < napi_vectors)
2065                         netif_napi_add(adapter->netdev, &q_vector->napi,
2066                                        (*poll), 64);
2067                 adapter->q_vector[q_idx] = q_vector;
2068         }
2069
2070         return 0;
2071
2072 err_out:
2073         while (q_idx) {
2074                 q_idx--;
2075                 q_vector = adapter->q_vector[q_idx];
2076                 netif_napi_del(&q_vector->napi);
2077                 kfree(q_vector);
2078                 adapter->q_vector[q_idx] = NULL;
2079         }
2080         return -ENOMEM;
2081 }
2082
2083 /**
2084  * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors
2085  * @adapter: board private structure to initialize
2086  *
2087  * This function frees the memory allocated to the q_vectors.  In addition if
2088  * NAPI is enabled it will delete any references to the NAPI struct prior
2089  * to freeing the q_vector.
2090  **/
2091 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter)
2092 {
2093         int q_idx, num_q_vectors;
2094         int napi_vectors;
2095
2096         num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2097         napi_vectors = adapter->num_rx_queues;
2098
2099         for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2100                 struct ixgbevf_q_vector *q_vector = adapter->q_vector[q_idx];
2101
2102                 adapter->q_vector[q_idx] = NULL;
2103                 if (q_idx < napi_vectors)
2104                         netif_napi_del(&q_vector->napi);
2105                 kfree(q_vector);
2106         }
2107 }
2108
2109 /**
2110  * ixgbevf_reset_interrupt_capability - Reset MSIX setup
2111  * @adapter: board private structure
2112  *
2113  **/
2114 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter)
2115 {
2116         pci_disable_msix(adapter->pdev);
2117         kfree(adapter->msix_entries);
2118         adapter->msix_entries = NULL;
2119
2120         return;
2121 }
2122
2123 /**
2124  * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init
2125  * @adapter: board private structure to initialize
2126  *
2127  **/
2128 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter)
2129 {
2130         int err;
2131
2132         /* Number of supported queues */
2133         ixgbevf_set_num_queues(adapter);
2134
2135         err = ixgbevf_set_interrupt_capability(adapter);
2136         if (err) {
2137                 hw_dbg(&adapter->hw,
2138                        "Unable to setup interrupt capabilities\n");
2139                 goto err_set_interrupt;
2140         }
2141
2142         err = ixgbevf_alloc_q_vectors(adapter);
2143         if (err) {
2144                 hw_dbg(&adapter->hw, "Unable to allocate memory for queue "
2145                        "vectors\n");
2146                 goto err_alloc_q_vectors;
2147         }
2148
2149         err = ixgbevf_alloc_queues(adapter);
2150         if (err) {
2151                 printk(KERN_ERR "Unable to allocate memory for queues\n");
2152                 goto err_alloc_queues;
2153         }
2154
2155         hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, "
2156                "Tx Queue count = %u\n",
2157                (adapter->num_rx_queues > 1) ? "Enabled" :
2158                "Disabled", adapter->num_rx_queues, adapter->num_tx_queues);
2159
2160         set_bit(__IXGBEVF_DOWN, &adapter->state);
2161
2162         return 0;
2163 err_alloc_queues:
2164         ixgbevf_free_q_vectors(adapter);
2165 err_alloc_q_vectors:
2166         ixgbevf_reset_interrupt_capability(adapter);
2167 err_set_interrupt:
2168         return err;
2169 }
2170
2171 /**
2172  * ixgbevf_sw_init - Initialize general software structures
2173  * (struct ixgbevf_adapter)
2174  * @adapter: board private structure to initialize
2175  *
2176  * ixgbevf_sw_init initializes the Adapter private data structure.
2177  * Fields are initialized based on PCI device information and
2178  * OS network device settings (MTU size).
2179  **/
2180 static int __devinit ixgbevf_sw_init(struct ixgbevf_adapter *adapter)
2181 {
2182         struct ixgbe_hw *hw = &adapter->hw;
2183         struct pci_dev *pdev = adapter->pdev;
2184         int err;
2185
2186         /* PCI config space info */
2187
2188         hw->vendor_id = pdev->vendor;
2189         hw->device_id = pdev->device;
2190         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
2191         hw->subsystem_vendor_id = pdev->subsystem_vendor;
2192         hw->subsystem_device_id = pdev->subsystem_device;
2193
2194         hw->mbx.ops.init_params(hw);
2195         hw->mac.max_tx_queues = MAX_TX_QUEUES;
2196         hw->mac.max_rx_queues = MAX_RX_QUEUES;
2197         err = hw->mac.ops.reset_hw(hw);
2198         if (err) {
2199                 dev_info(&pdev->dev,
2200                          "PF still in reset state, assigning new address\n");
2201                 random_ether_addr(hw->mac.addr);
2202         } else {
2203                 err = hw->mac.ops.init_hw(hw);
2204                 if (err) {
2205                         printk(KERN_ERR "init_shared_code failed: %d\n", err);
2206                         goto out;
2207                 }
2208         }
2209
2210         /* Enable dynamic interrupt throttling rates */
2211         adapter->eitr_param = 20000;
2212         adapter->itr_setting = 1;
2213
2214         /* set defaults for eitr in MegaBytes */
2215         adapter->eitr_low = 10;
2216         adapter->eitr_high = 20;
2217
2218         /* set default ring sizes */
2219         adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD;
2220         adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD;
2221
2222         /* enable rx csum by default */
2223         adapter->flags |= IXGBE_FLAG_RX_CSUM_ENABLED;
2224
2225         set_bit(__IXGBEVF_DOWN, &adapter->state);
2226
2227 out:
2228         return err;
2229 }
2230
2231 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter)
2232 {
2233         struct ixgbe_hw *hw = &adapter->hw;
2234
2235         adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC);
2236         adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB);
2237         adapter->stats.last_vfgorc |=
2238                 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32);
2239         adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC);
2240         adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB);
2241         adapter->stats.last_vfgotc |=
2242                 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32);
2243         adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC);
2244
2245         adapter->stats.base_vfgprc = adapter->stats.last_vfgprc;
2246         adapter->stats.base_vfgorc = adapter->stats.last_vfgorc;
2247         adapter->stats.base_vfgptc = adapter->stats.last_vfgptc;
2248         adapter->stats.base_vfgotc = adapter->stats.last_vfgotc;
2249         adapter->stats.base_vfmprc = adapter->stats.last_vfmprc;
2250 }
2251
2252 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter)     \
2253         {                                                       \
2254                 u32 current_counter = IXGBE_READ_REG(hw, reg);  \
2255                 if (current_counter < last_counter)             \
2256                         counter += 0x100000000LL;               \
2257                 last_counter = current_counter;                 \
2258                 counter &= 0xFFFFFFFF00000000LL;                \
2259                 counter |= current_counter;                     \
2260         }
2261
2262 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \
2263         {                                                                \
2264                 u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb);   \
2265                 u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb);   \
2266                 u64 current_counter = (current_counter_msb << 32) |      \
2267                         current_counter_lsb;                             \
2268                 if (current_counter < last_counter)                      \
2269                         counter += 0x1000000000LL;                       \
2270                 last_counter = current_counter;                          \
2271                 counter &= 0xFFFFFFF000000000LL;                         \
2272                 counter |= current_counter;                              \
2273         }
2274 /**
2275  * ixgbevf_update_stats - Update the board statistics counters.
2276  * @adapter: board private structure
2277  **/
2278 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter)
2279 {
2280         struct ixgbe_hw *hw = &adapter->hw;
2281
2282         UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc,
2283                                 adapter->stats.vfgprc);
2284         UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc,
2285                                 adapter->stats.vfgptc);
2286         UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB,
2287                                 adapter->stats.last_vfgorc,
2288                                 adapter->stats.vfgorc);
2289         UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB,
2290                                 adapter->stats.last_vfgotc,
2291                                 adapter->stats.vfgotc);
2292         UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc,
2293                                 adapter->stats.vfmprc);
2294
2295         /* Fill out the OS statistics structure */
2296         adapter->net_stats.multicast = adapter->stats.vfmprc -
2297                 adapter->stats.base_vfmprc;
2298 }
2299
2300 /**
2301  * ixgbevf_watchdog - Timer Call-back
2302  * @data: pointer to adapter cast into an unsigned long
2303  **/
2304 static void ixgbevf_watchdog(unsigned long data)
2305 {
2306         struct ixgbevf_adapter *adapter = (struct ixgbevf_adapter *)data;
2307         struct ixgbe_hw *hw = &adapter->hw;
2308         u64 eics = 0;
2309         int i;
2310
2311         /*
2312          * Do the watchdog outside of interrupt context due to the lovely
2313          * delays that some of the newer hardware requires
2314          */
2315
2316         if (test_bit(__IXGBEVF_DOWN, &adapter->state))
2317                 goto watchdog_short_circuit;
2318
2319         /* get one bit for every active tx/rx interrupt vector */
2320         for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) {
2321                 struct ixgbevf_q_vector *qv = adapter->q_vector[i];
2322                 if (qv->rxr_count || qv->txr_count)
2323                         eics |= (1 << i);
2324         }
2325
2326         IXGBE_WRITE_REG(hw, IXGBE_VTEICS, (u32)eics);
2327
2328 watchdog_short_circuit:
2329         schedule_work(&adapter->watchdog_task);
2330 }
2331
2332 /**
2333  * ixgbevf_tx_timeout - Respond to a Tx Hang
2334  * @netdev: network interface device structure
2335  **/
2336 static void ixgbevf_tx_timeout(struct net_device *netdev)
2337 {
2338         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2339
2340         /* Do the reset outside of interrupt context */
2341         schedule_work(&adapter->reset_task);
2342 }
2343
2344 static void ixgbevf_reset_task(struct work_struct *work)
2345 {
2346         struct ixgbevf_adapter *adapter;
2347         adapter = container_of(work, struct ixgbevf_adapter, reset_task);
2348
2349         /* If we're already down or resetting, just bail */
2350         if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2351             test_bit(__IXGBEVF_RESETTING, &adapter->state))
2352                 return;
2353
2354         adapter->tx_timeout_count++;
2355
2356         ixgbevf_reinit_locked(adapter);
2357 }
2358
2359 /**
2360  * ixgbevf_watchdog_task - worker thread to bring link up
2361  * @work: pointer to work_struct containing our data
2362  **/
2363 static void ixgbevf_watchdog_task(struct work_struct *work)
2364 {
2365         struct ixgbevf_adapter *adapter = container_of(work,
2366                                                        struct ixgbevf_adapter,
2367                                                        watchdog_task);
2368         struct net_device *netdev = adapter->netdev;
2369         struct ixgbe_hw *hw = &adapter->hw;
2370         u32 link_speed = adapter->link_speed;
2371         bool link_up = adapter->link_up;
2372
2373         adapter->flags |= IXGBE_FLAG_IN_WATCHDOG_TASK;
2374
2375         /*
2376          * Always check the link on the watchdog because we have
2377          * no LSC interrupt
2378          */
2379         if (hw->mac.ops.check_link) {
2380                 if ((hw->mac.ops.check_link(hw, &link_speed,
2381                                             &link_up, false)) != 0) {
2382                         adapter->link_up = link_up;
2383                         adapter->link_speed = link_speed;
2384                         netif_carrier_off(netdev);
2385                         netif_tx_stop_all_queues(netdev);
2386                         schedule_work(&adapter->reset_task);
2387                         goto pf_has_reset;
2388                 }
2389         } else {
2390                 /* always assume link is up, if no check link
2391                  * function */
2392                 link_speed = IXGBE_LINK_SPEED_10GB_FULL;
2393                 link_up = true;
2394         }
2395         adapter->link_up = link_up;
2396         adapter->link_speed = link_speed;
2397
2398         if (link_up) {
2399                 if (!netif_carrier_ok(netdev)) {
2400                         hw_dbg(&adapter->hw, "NIC Link is Up %s, ",
2401                                ((link_speed == IXGBE_LINK_SPEED_10GB_FULL) ?
2402                                 "10 Gbps" : "1 Gbps"));
2403                         netif_carrier_on(netdev);
2404                         netif_tx_wake_all_queues(netdev);
2405                 } else {
2406                         /* Force detection of hung controller */
2407                         adapter->detect_tx_hung = true;
2408                 }
2409         } else {
2410                 adapter->link_up = false;
2411                 adapter->link_speed = 0;
2412                 if (netif_carrier_ok(netdev)) {
2413                         hw_dbg(&adapter->hw, "NIC Link is Down\n");
2414                         netif_carrier_off(netdev);
2415                         netif_tx_stop_all_queues(netdev);
2416                 }
2417         }
2418
2419 pf_has_reset:
2420         ixgbevf_update_stats(adapter);
2421
2422         /* Force detection of hung controller every watchdog period */
2423         adapter->detect_tx_hung = true;
2424
2425         /* Reset the timer */
2426         if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
2427                 mod_timer(&adapter->watchdog_timer,
2428                           round_jiffies(jiffies + (2 * HZ)));
2429
2430         adapter->flags &= ~IXGBE_FLAG_IN_WATCHDOG_TASK;
2431 }
2432
2433 /**
2434  * ixgbevf_free_tx_resources - Free Tx Resources per Queue
2435  * @adapter: board private structure
2436  * @tx_ring: Tx descriptor ring for a specific queue
2437  *
2438  * Free all transmit software resources
2439  **/
2440 void ixgbevf_free_tx_resources(struct ixgbevf_adapter *adapter,
2441                                struct ixgbevf_ring *tx_ring)
2442 {
2443         struct pci_dev *pdev = adapter->pdev;
2444
2445         ixgbevf_clean_tx_ring(adapter, tx_ring);
2446
2447         vfree(tx_ring->tx_buffer_info);
2448         tx_ring->tx_buffer_info = NULL;
2449
2450         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2451
2452         tx_ring->desc = NULL;
2453 }
2454
2455 /**
2456  * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues
2457  * @adapter: board private structure
2458  *
2459  * Free all transmit software resources
2460  **/
2461 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter)
2462 {
2463         int i;
2464
2465         for (i = 0; i < adapter->num_tx_queues; i++)
2466                 if (adapter->tx_ring[i].desc)
2467                         ixgbevf_free_tx_resources(adapter,
2468                                                   &adapter->tx_ring[i]);
2469
2470 }
2471
2472 /**
2473  * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors)
2474  * @adapter: board private structure
2475  * @tx_ring:    tx descriptor ring (for a specific queue) to setup
2476  *
2477  * Return 0 on success, negative on failure
2478  **/
2479 int ixgbevf_setup_tx_resources(struct ixgbevf_adapter *adapter,
2480                                struct ixgbevf_ring *tx_ring)
2481 {
2482         struct pci_dev *pdev = adapter->pdev;
2483         int size;
2484
2485         size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
2486         tx_ring->tx_buffer_info = vmalloc(size);
2487         if (!tx_ring->tx_buffer_info)
2488                 goto err;
2489         memset(tx_ring->tx_buffer_info, 0, size);
2490
2491         /* round up to nearest 4K */
2492         tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc);
2493         tx_ring->size = ALIGN(tx_ring->size, 4096);
2494
2495         tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
2496                                              &tx_ring->dma);
2497         if (!tx_ring->desc)
2498                 goto err;
2499
2500         tx_ring->next_to_use = 0;
2501         tx_ring->next_to_clean = 0;
2502         tx_ring->work_limit = tx_ring->count;
2503         return 0;
2504
2505 err:
2506         vfree(tx_ring->tx_buffer_info);
2507         tx_ring->tx_buffer_info = NULL;
2508         hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit "
2509                "descriptor ring\n");
2510         return -ENOMEM;
2511 }
2512
2513 /**
2514  * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources
2515  * @adapter: board private structure
2516  *
2517  * If this function returns with an error, then it's possible one or
2518  * more of the rings is populated (while the rest are not).  It is the
2519  * callers duty to clean those orphaned rings.
2520  *
2521  * Return 0 on success, negative on failure
2522  **/
2523 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter)
2524 {
2525         int i, err = 0;
2526
2527         for (i = 0; i < adapter->num_tx_queues; i++) {
2528                 err = ixgbevf_setup_tx_resources(adapter, &adapter->tx_ring[i]);
2529                 if (!err)
2530                         continue;
2531                 hw_dbg(&adapter->hw,
2532                        "Allocation for Tx Queue %u failed\n", i);
2533                 break;
2534         }
2535
2536         return err;
2537 }
2538
2539 /**
2540  * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors)
2541  * @adapter: board private structure
2542  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
2543  *
2544  * Returns 0 on success, negative on failure
2545  **/
2546 int ixgbevf_setup_rx_resources(struct ixgbevf_adapter *adapter,
2547                                struct ixgbevf_ring *rx_ring)
2548 {
2549         struct pci_dev *pdev = adapter->pdev;
2550         int size;
2551
2552         size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
2553         rx_ring->rx_buffer_info = vmalloc(size);
2554         if (!rx_ring->rx_buffer_info) {
2555                 hw_dbg(&adapter->hw,
2556                        "Unable to vmalloc buffer memory for "
2557                        "the receive descriptor ring\n");
2558                 goto alloc_failed;
2559         }
2560         memset(rx_ring->rx_buffer_info, 0, size);
2561
2562         /* Round up to nearest 4K */
2563         rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc);
2564         rx_ring->size = ALIGN(rx_ring->size, 4096);
2565
2566         rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
2567                                              &rx_ring->dma);
2568
2569         if (!rx_ring->desc) {
2570                 hw_dbg(&adapter->hw,
2571                        "Unable to allocate memory for "
2572                        "the receive descriptor ring\n");
2573                 vfree(rx_ring->rx_buffer_info);
2574                 rx_ring->rx_buffer_info = NULL;
2575                 goto alloc_failed;
2576         }
2577
2578         rx_ring->next_to_clean = 0;
2579         rx_ring->next_to_use = 0;
2580
2581         return 0;
2582 alloc_failed:
2583         return -ENOMEM;
2584 }
2585
2586 /**
2587  * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources
2588  * @adapter: board private structure
2589  *
2590  * If this function returns with an error, then it's possible one or
2591  * more of the rings is populated (while the rest are not).  It is the
2592  * callers duty to clean those orphaned rings.
2593  *
2594  * Return 0 on success, negative on failure
2595  **/
2596 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter)
2597 {
2598         int i, err = 0;
2599
2600         for (i = 0; i < adapter->num_rx_queues; i++) {
2601                 err = ixgbevf_setup_rx_resources(adapter, &adapter->rx_ring[i]);
2602                 if (!err)
2603                         continue;
2604                 hw_dbg(&adapter->hw,
2605                        "Allocation for Rx Queue %u failed\n", i);
2606                 break;
2607         }
2608         return err;
2609 }
2610
2611 /**
2612  * ixgbevf_free_rx_resources - Free Rx Resources
2613  * @adapter: board private structure
2614  * @rx_ring: ring to clean the resources from
2615  *
2616  * Free all receive software resources
2617  **/
2618 void ixgbevf_free_rx_resources(struct ixgbevf_adapter *adapter,
2619                                struct ixgbevf_ring *rx_ring)
2620 {
2621         struct pci_dev *pdev = adapter->pdev;
2622
2623         ixgbevf_clean_rx_ring(adapter, rx_ring);
2624
2625         vfree(rx_ring->rx_buffer_info);
2626         rx_ring->rx_buffer_info = NULL;
2627
2628         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2629
2630         rx_ring->desc = NULL;
2631 }
2632
2633 /**
2634  * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues
2635  * @adapter: board private structure
2636  *
2637  * Free all receive software resources
2638  **/
2639 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter)
2640 {
2641         int i;
2642
2643         for (i = 0; i < adapter->num_rx_queues; i++)
2644                 if (adapter->rx_ring[i].desc)
2645                         ixgbevf_free_rx_resources(adapter,
2646                                                   &adapter->rx_ring[i]);
2647 }
2648
2649 /**
2650  * ixgbevf_open - Called when a network interface is made active
2651  * @netdev: network interface device structure
2652  *
2653  * Returns 0 on success, negative value on failure
2654  *
2655  * The open entry point is called when a network interface is made
2656  * active by the system (IFF_UP).  At this point all resources needed
2657  * for transmit and receive operations are allocated, the interrupt
2658  * handler is registered with the OS, the watchdog timer is started,
2659  * and the stack is notified that the interface is ready.
2660  **/
2661 static int ixgbevf_open(struct net_device *netdev)
2662 {
2663         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2664         struct ixgbe_hw *hw = &adapter->hw;
2665         int err;
2666
2667         /* disallow open during test */
2668         if (test_bit(__IXGBEVF_TESTING, &adapter->state))
2669                 return -EBUSY;
2670
2671         if (hw->adapter_stopped) {
2672                 ixgbevf_reset(adapter);
2673                 /* if adapter is still stopped then PF isn't up and
2674                  * the vf can't start. */
2675                 if (hw->adapter_stopped) {
2676                         err = IXGBE_ERR_MBX;
2677                         printk(KERN_ERR "Unable to start - perhaps the PF"
2678                                "Driver isn't up yet\n");
2679                         goto err_setup_reset;
2680                 }
2681         }
2682
2683         /* allocate transmit descriptors */
2684         err = ixgbevf_setup_all_tx_resources(adapter);
2685         if (err)
2686                 goto err_setup_tx;
2687
2688         /* allocate receive descriptors */
2689         err = ixgbevf_setup_all_rx_resources(adapter);
2690         if (err)
2691                 goto err_setup_rx;
2692
2693         ixgbevf_configure(adapter);
2694
2695         /*
2696          * Map the Tx/Rx rings to the vectors we were allotted.
2697          * if request_irq will be called in this function map_rings
2698          * must be called *before* up_complete
2699          */
2700         ixgbevf_map_rings_to_vectors(adapter);
2701
2702         err = ixgbevf_up_complete(adapter);
2703         if (err)
2704                 goto err_up;
2705
2706         /* clear any pending interrupts, may auto mask */
2707         IXGBE_READ_REG(hw, IXGBE_VTEICR);
2708         err = ixgbevf_request_irq(adapter);
2709         if (err)
2710                 goto err_req_irq;
2711
2712         ixgbevf_irq_enable(adapter, true, true);
2713
2714         return 0;
2715
2716 err_req_irq:
2717         ixgbevf_down(adapter);
2718 err_up:
2719         ixgbevf_free_irq(adapter);
2720 err_setup_rx:
2721         ixgbevf_free_all_rx_resources(adapter);
2722 err_setup_tx:
2723         ixgbevf_free_all_tx_resources(adapter);
2724         ixgbevf_reset(adapter);
2725
2726 err_setup_reset:
2727
2728         return err;
2729 }
2730
2731 /**
2732  * ixgbevf_close - Disables a network interface
2733  * @netdev: network interface device structure
2734  *
2735  * Returns 0, this is not allowed to fail
2736  *
2737  * The close entry point is called when an interface is de-activated
2738  * by the OS.  The hardware is still under the drivers control, but
2739  * needs to be disabled.  A global MAC reset is issued to stop the
2740  * hardware, and all transmit and receive resources are freed.
2741  **/
2742 static int ixgbevf_close(struct net_device *netdev)
2743 {
2744         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2745
2746         ixgbevf_down(adapter);
2747         ixgbevf_free_irq(adapter);
2748
2749         ixgbevf_free_all_tx_resources(adapter);
2750         ixgbevf_free_all_rx_resources(adapter);
2751
2752         return 0;
2753 }
2754
2755 static int ixgbevf_tso(struct ixgbevf_adapter *adapter,
2756                        struct ixgbevf_ring *tx_ring,
2757                        struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2758 {
2759         struct ixgbe_adv_tx_context_desc *context_desc;
2760         unsigned int i;
2761         int err;
2762         struct ixgbevf_tx_buffer *tx_buffer_info;
2763         u32 vlan_macip_lens = 0, type_tucmd_mlhl;
2764         u32 mss_l4len_idx, l4len;
2765
2766         if (skb_is_gso(skb)) {
2767                 if (skb_header_cloned(skb)) {
2768                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2769                         if (err)
2770                                 return err;
2771                 }
2772                 l4len = tcp_hdrlen(skb);
2773                 *hdr_len += l4len;
2774
2775                 if (skb->protocol == htons(ETH_P_IP)) {
2776                         struct iphdr *iph = ip_hdr(skb);
2777                         iph->tot_len = 0;
2778                         iph->check = 0;
2779                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2780                                                                  iph->daddr, 0,
2781                                                                  IPPROTO_TCP,
2782                                                                  0);
2783                         adapter->hw_tso_ctxt++;
2784                 } else if (skb_is_gso_v6(skb)) {
2785                         ipv6_hdr(skb)->payload_len = 0;
2786                         tcp_hdr(skb)->check =
2787                             ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2788                                              &ipv6_hdr(skb)->daddr,
2789                                              0, IPPROTO_TCP, 0);
2790                         adapter->hw_tso6_ctxt++;
2791                 }
2792
2793                 i = tx_ring->next_to_use;
2794
2795                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2796                 context_desc = IXGBE_TX_CTXTDESC_ADV(*tx_ring, i);
2797
2798                 /* VLAN MACLEN IPLEN */
2799                 if (tx_flags & IXGBE_TX_FLAGS_VLAN)
2800                         vlan_macip_lens |=
2801                                 (tx_flags & IXGBE_TX_FLAGS_VLAN_MASK);
2802                 vlan_macip_lens |= ((skb_network_offset(skb)) <<
2803                                     IXGBE_ADVTXD_MACLEN_SHIFT);
2804                 *hdr_len += skb_network_offset(skb);
2805                 vlan_macip_lens |=
2806                         (skb_transport_header(skb) - skb_network_header(skb));
2807                 *hdr_len +=
2808                         (skb_transport_header(skb) - skb_network_header(skb));
2809                 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
2810                 context_desc->seqnum_seed = 0;
2811
2812                 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2813                 type_tucmd_mlhl = (IXGBE_TXD_CMD_DEXT |
2814                                     IXGBE_ADVTXD_DTYP_CTXT);
2815
2816                 if (skb->protocol == htons(ETH_P_IP))
2817                         type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_IPV4;
2818                 type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_TCP;
2819                 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd_mlhl);
2820
2821                 /* MSS L4LEN IDX */
2822                 mss_l4len_idx =
2823                         (skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT);
2824                 mss_l4len_idx |= (l4len << IXGBE_ADVTXD_L4LEN_SHIFT);
2825                 /* use index 1 for TSO */
2826                 mss_l4len_idx |= (1 << IXGBE_ADVTXD_IDX_SHIFT);
2827                 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2828
2829                 tx_buffer_info->time_stamp = jiffies;
2830                 tx_buffer_info->next_to_watch = i;
2831
2832                 i++;
2833                 if (i == tx_ring->count)
2834                         i = 0;
2835                 tx_ring->next_to_use = i;
2836
2837                 return true;
2838         }
2839
2840         return false;
2841 }
2842
2843 static bool ixgbevf_tx_csum(struct ixgbevf_adapter *adapter,
2844                             struct ixgbevf_ring *tx_ring,
2845                             struct sk_buff *skb, u32 tx_flags)
2846 {
2847         struct ixgbe_adv_tx_context_desc *context_desc;
2848         unsigned int i;
2849         struct ixgbevf_tx_buffer *tx_buffer_info;
2850         u32 vlan_macip_lens = 0, type_tucmd_mlhl = 0;
2851
2852         if (skb->ip_summed == CHECKSUM_PARTIAL ||
2853             (tx_flags & IXGBE_TX_FLAGS_VLAN)) {
2854                 i = tx_ring->next_to_use;
2855                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2856                 context_desc = IXGBE_TX_CTXTDESC_ADV(*tx_ring, i);
2857
2858                 if (tx_flags & IXGBE_TX_FLAGS_VLAN)
2859                         vlan_macip_lens |= (tx_flags &
2860                                             IXGBE_TX_FLAGS_VLAN_MASK);
2861                 vlan_macip_lens |= (skb_network_offset(skb) <<
2862                                     IXGBE_ADVTXD_MACLEN_SHIFT);
2863                 if (skb->ip_summed == CHECKSUM_PARTIAL)
2864                         vlan_macip_lens |= (skb_transport_header(skb) -
2865                                             skb_network_header(skb));
2866
2867                 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
2868                 context_desc->seqnum_seed = 0;
2869
2870                 type_tucmd_mlhl |= (IXGBE_TXD_CMD_DEXT |
2871                                     IXGBE_ADVTXD_DTYP_CTXT);
2872
2873                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2874                         switch (skb->protocol) {
2875                         case __constant_htons(ETH_P_IP):
2876                                 type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_IPV4;
2877                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2878                                         type_tucmd_mlhl |=
2879                                             IXGBE_ADVTXD_TUCMD_L4T_TCP;
2880                                 break;
2881                         case __constant_htons(ETH_P_IPV6):
2882                                 /* XXX what about other V6 headers?? */
2883                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2884                                         type_tucmd_mlhl |=
2885                                                 IXGBE_ADVTXD_TUCMD_L4T_TCP;
2886                                 break;
2887                         default:
2888                                 if (unlikely(net_ratelimit())) {
2889                                         printk(KERN_WARNING
2890                                                "partial checksum but "
2891                                                "proto=%x!\n",
2892                                                skb->protocol);
2893                                 }
2894                                 break;
2895                         }
2896                 }
2897
2898                 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd_mlhl);
2899                 /* use index zero for tx checksum offload */
2900                 context_desc->mss_l4len_idx = 0;
2901
2902                 tx_buffer_info->time_stamp = jiffies;
2903                 tx_buffer_info->next_to_watch = i;
2904
2905                 adapter->hw_csum_tx_good++;
2906                 i++;
2907                 if (i == tx_ring->count)
2908                         i = 0;
2909                 tx_ring->next_to_use = i;
2910
2911                 return true;
2912         }
2913
2914         return false;
2915 }
2916
2917 static int ixgbevf_tx_map(struct ixgbevf_adapter *adapter,
2918                           struct ixgbevf_ring *tx_ring,
2919                           struct sk_buff *skb, u32 tx_flags,
2920                           unsigned int first)
2921 {
2922         struct pci_dev *pdev = adapter->pdev;
2923         struct ixgbevf_tx_buffer *tx_buffer_info;
2924         unsigned int len;
2925         unsigned int total = skb->len;
2926         unsigned int offset = 0, size, count = 0, i;
2927         unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
2928         unsigned int f;
2929
2930         i = tx_ring->next_to_use;
2931
2932         len = min(skb_headlen(skb), total);
2933         while (len) {
2934                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2935                 size = min(len, (unsigned int)IXGBE_MAX_DATA_PER_TXD);
2936
2937                 tx_buffer_info->length = size;
2938                 tx_buffer_info->mapped_as_page = false;
2939                 tx_buffer_info->dma = pci_map_single(adapter->pdev,
2940                                                      skb->data + offset,
2941                                                      size, PCI_DMA_TODEVICE);
2942                 if (pci_dma_mapping_error(pdev, tx_buffer_info->dma))
2943                         goto dma_error;
2944                 tx_buffer_info->time_stamp = jiffies;
2945                 tx_buffer_info->next_to_watch = i;
2946
2947                 len -= size;
2948                 total -= size;
2949                 offset += size;
2950                 count++;
2951                 i++;
2952                 if (i == tx_ring->count)
2953                         i = 0;
2954         }
2955
2956         for (f = 0; f < nr_frags; f++) {
2957                 struct skb_frag_struct *frag;
2958
2959                 frag = &skb_shinfo(skb)->frags[f];
2960                 len = min((unsigned int)frag->size, total);
2961                 offset = frag->page_offset;
2962
2963                 while (len) {
2964                         tx_buffer_info = &tx_ring->tx_buffer_info[i];
2965                         size = min(len, (unsigned int)IXGBE_MAX_DATA_PER_TXD);
2966
2967                         tx_buffer_info->length = size;
2968                         tx_buffer_info->dma = pci_map_page(adapter->pdev,
2969                                                            frag->page,
2970                                                            offset,
2971                                                            size,
2972                                                            PCI_DMA_TODEVICE);
2973                         tx_buffer_info->mapped_as_page = true;
2974                         if (pci_dma_mapping_error(pdev, tx_buffer_info->dma))
2975                                 goto dma_error;
2976                         tx_buffer_info->time_stamp = jiffies;
2977                         tx_buffer_info->next_to_watch = i;
2978
2979                         len -= size;
2980                         total -= size;
2981                         offset += size;
2982                         count++;
2983                         i++;
2984                         if (i == tx_ring->count)
2985                                 i = 0;
2986                 }
2987                 if (total == 0)
2988                         break;
2989         }
2990
2991         if (i == 0)
2992                 i = tx_ring->count - 1;
2993         else
2994                 i = i - 1;
2995         tx_ring->tx_buffer_info[i].skb = skb;
2996         tx_ring->tx_buffer_info[first].next_to_watch = i;
2997
2998         return count;
2999
3000 dma_error:
3001         dev_err(&pdev->dev, "TX DMA map failed\n");
3002
3003         /* clear timestamp and dma mappings for failed tx_buffer_info map */
3004         tx_buffer_info->dma = 0;
3005         tx_buffer_info->time_stamp = 0;
3006         tx_buffer_info->next_to_watch = 0;
3007         count--;
3008
3009         /* clear timestamp and dma mappings for remaining portion of packet */
3010         while (count >= 0) {
3011                 count--;
3012                 i--;
3013                 if (i < 0)
3014                         i += tx_ring->count;
3015                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
3016                 ixgbevf_unmap_and_free_tx_resource(adapter, tx_buffer_info);
3017         }
3018
3019         return count;
3020 }
3021
3022 static void ixgbevf_tx_queue(struct ixgbevf_adapter *adapter,
3023                              struct ixgbevf_ring *tx_ring, int tx_flags,
3024                              int count, u32 paylen, u8 hdr_len)
3025 {
3026         union ixgbe_adv_tx_desc *tx_desc = NULL;
3027         struct ixgbevf_tx_buffer *tx_buffer_info;
3028         u32 olinfo_status = 0, cmd_type_len = 0;
3029         unsigned int i;
3030
3031         u32 txd_cmd = IXGBE_TXD_CMD_EOP | IXGBE_TXD_CMD_RS | IXGBE_TXD_CMD_IFCS;
3032
3033         cmd_type_len |= IXGBE_ADVTXD_DTYP_DATA;
3034
3035         cmd_type_len |= IXGBE_ADVTXD_DCMD_IFCS | IXGBE_ADVTXD_DCMD_DEXT;
3036
3037         if (tx_flags & IXGBE_TX_FLAGS_VLAN)
3038                 cmd_type_len |= IXGBE_ADVTXD_DCMD_VLE;
3039
3040         if (tx_flags & IXGBE_TX_FLAGS_TSO) {
3041                 cmd_type_len |= IXGBE_ADVTXD_DCMD_TSE;
3042
3043                 olinfo_status |= IXGBE_TXD_POPTS_TXSM <<
3044                         IXGBE_ADVTXD_POPTS_SHIFT;
3045
3046                 /* use index 1 context for tso */
3047                 olinfo_status |= (1 << IXGBE_ADVTXD_IDX_SHIFT);
3048                 if (tx_flags & IXGBE_TX_FLAGS_IPV4)
3049                         olinfo_status |= IXGBE_TXD_POPTS_IXSM <<
3050                                 IXGBE_ADVTXD_POPTS_SHIFT;
3051
3052         } else if (tx_flags & IXGBE_TX_FLAGS_CSUM)
3053                 olinfo_status |= IXGBE_TXD_POPTS_TXSM <<
3054                         IXGBE_ADVTXD_POPTS_SHIFT;
3055
3056         olinfo_status |= ((paylen - hdr_len) << IXGBE_ADVTXD_PAYLEN_SHIFT);
3057
3058         i = tx_ring->next_to_use;
3059         while (count--) {
3060                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
3061                 tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, i);
3062                 tx_desc->read.buffer_addr = cpu_to_le64(tx_buffer_info->dma);
3063                 tx_desc->read.cmd_type_len =
3064                         cpu_to_le32(cmd_type_len | tx_buffer_info->length);
3065                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3066                 i++;
3067                 if (i == tx_ring->count)
3068                         i = 0;
3069         }
3070
3071         tx_desc->read.cmd_type_len |= cpu_to_le32(txd_cmd);
3072
3073         /*
3074          * Force memory writes to complete before letting h/w
3075          * know there are new descriptors to fetch.  (Only
3076          * applicable for weak-ordered memory model archs,
3077          * such as IA-64).
3078          */
3079         wmb();
3080
3081         tx_ring->next_to_use = i;
3082         writel(i, adapter->hw.hw_addr + tx_ring->tail);
3083 }
3084
3085 static int __ixgbevf_maybe_stop_tx(struct net_device *netdev,
3086                                    struct ixgbevf_ring *tx_ring, int size)
3087 {
3088         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3089
3090         netif_stop_subqueue(netdev, tx_ring->queue_index);
3091         /* Herbert's original patch had:
3092          *  smp_mb__after_netif_stop_queue();
3093          * but since that doesn't exist yet, just open code it. */
3094         smp_mb();
3095
3096         /* We need to check again in a case another CPU has just
3097          * made room available. */
3098         if (likely(IXGBE_DESC_UNUSED(tx_ring) < size))
3099                 return -EBUSY;
3100
3101         /* A reprieve! - use start_queue because it doesn't call schedule */
3102         netif_start_subqueue(netdev, tx_ring->queue_index);
3103         ++adapter->restart_queue;
3104         return 0;
3105 }
3106
3107 static int ixgbevf_maybe_stop_tx(struct net_device *netdev,
3108                                  struct ixgbevf_ring *tx_ring, int size)
3109 {
3110         if (likely(IXGBE_DESC_UNUSED(tx_ring) >= size))
3111                 return 0;
3112         return __ixgbevf_maybe_stop_tx(netdev, tx_ring, size);
3113 }
3114
3115 static int ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3116 {
3117         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3118         struct ixgbevf_ring *tx_ring;
3119         unsigned int first;
3120         unsigned int tx_flags = 0;
3121         u8 hdr_len = 0;
3122         int r_idx = 0, tso;
3123         int count = 0;
3124
3125         unsigned int f;
3126
3127         tx_ring = &adapter->tx_ring[r_idx];
3128
3129         if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
3130                 tx_flags |= vlan_tx_tag_get(skb);
3131                 tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT;
3132                 tx_flags |= IXGBE_TX_FLAGS_VLAN;
3133         }
3134
3135         /* four things can cause us to need a context descriptor */
3136         if (skb_is_gso(skb) ||
3137             (skb->ip_summed == CHECKSUM_PARTIAL) ||
3138             (tx_flags & IXGBE_TX_FLAGS_VLAN))
3139                 count++;
3140
3141         count += TXD_USE_COUNT(skb_headlen(skb));
3142         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
3143                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
3144
3145         if (ixgbevf_maybe_stop_tx(netdev, tx_ring, count)) {
3146                 adapter->tx_busy++;
3147                 return NETDEV_TX_BUSY;
3148         }
3149
3150         first = tx_ring->next_to_use;
3151
3152         if (skb->protocol == htons(ETH_P_IP))
3153                 tx_flags |= IXGBE_TX_FLAGS_IPV4;
3154         tso = ixgbevf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len);
3155         if (tso < 0) {
3156                 dev_kfree_skb_any(skb);
3157                 return NETDEV_TX_OK;
3158         }
3159
3160         if (tso)
3161                 tx_flags |= IXGBE_TX_FLAGS_TSO;
3162         else if (ixgbevf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
3163                  (skb->ip_summed == CHECKSUM_PARTIAL))
3164                 tx_flags |= IXGBE_TX_FLAGS_CSUM;
3165
3166         ixgbevf_tx_queue(adapter, tx_ring, tx_flags,
3167                          ixgbevf_tx_map(adapter, tx_ring, skb, tx_flags, first),
3168                          skb->len, hdr_len);
3169
3170         netdev->trans_start = jiffies;
3171
3172         ixgbevf_maybe_stop_tx(netdev, tx_ring, DESC_NEEDED);
3173
3174         return NETDEV_TX_OK;
3175 }
3176
3177 /**
3178  * ixgbevf_get_stats - Get System Network Statistics
3179  * @netdev: network interface device structure
3180  *
3181  * Returns the address of the device statistics structure.
3182  * The statistics are actually updated from the timer callback.
3183  **/
3184 static struct net_device_stats *ixgbevf_get_stats(struct net_device *netdev)
3185 {
3186         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3187
3188         /* only return the current stats */
3189         return &adapter->net_stats;
3190 }
3191
3192 /**
3193  * ixgbevf_set_mac - Change the Ethernet Address of the NIC
3194  * @netdev: network interface device structure
3195  * @p: pointer to an address structure
3196  *
3197  * Returns 0 on success, negative on failure
3198  **/
3199 static int ixgbevf_set_mac(struct net_device *netdev, void *p)
3200 {
3201         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3202         struct ixgbe_hw *hw = &adapter->hw;
3203         struct sockaddr *addr = p;
3204
3205         if (!is_valid_ether_addr(addr->sa_data))
3206                 return -EADDRNOTAVAIL;
3207
3208         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3209         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3210
3211         if (hw->mac.ops.set_rar)
3212                 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
3213
3214         return 0;
3215 }
3216
3217 /**
3218  * ixgbevf_change_mtu - Change the Maximum Transfer Unit
3219  * @netdev: network interface device structure
3220  * @new_mtu: new value for maximum frame size
3221  *
3222  * Returns 0 on success, negative on failure
3223  **/
3224 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu)
3225 {
3226         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3227         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3228
3229         /* MTU < 68 is an error and causes problems on some kernels */
3230         if ((new_mtu < 68) || (max_frame > MAXIMUM_ETHERNET_VLAN_SIZE))
3231                 return -EINVAL;
3232
3233         hw_dbg(&adapter->hw, "changing MTU from %d to %d\n",
3234                netdev->mtu, new_mtu);
3235         /* must set new MTU before calling down or up */
3236         netdev->mtu = new_mtu;
3237
3238         if (netif_running(netdev))
3239                 ixgbevf_reinit_locked(adapter);
3240
3241         return 0;
3242 }
3243
3244 static void ixgbevf_shutdown(struct pci_dev *pdev)
3245 {
3246         struct net_device *netdev = pci_get_drvdata(pdev);
3247         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3248
3249         netif_device_detach(netdev);
3250
3251         if (netif_running(netdev)) {
3252                 ixgbevf_down(adapter);
3253                 ixgbevf_free_irq(adapter);
3254                 ixgbevf_free_all_tx_resources(adapter);
3255                 ixgbevf_free_all_rx_resources(adapter);
3256         }
3257
3258 #ifdef CONFIG_PM
3259         pci_save_state(pdev);
3260 #endif
3261
3262         pci_disable_device(pdev);
3263 }
3264
3265 static const struct net_device_ops ixgbe_netdev_ops = {
3266         .ndo_open               = &ixgbevf_open,
3267         .ndo_stop               = &ixgbevf_close,
3268         .ndo_start_xmit         = &ixgbevf_xmit_frame,
3269         .ndo_get_stats          = &ixgbevf_get_stats,
3270         .ndo_set_rx_mode        = &ixgbevf_set_rx_mode,
3271         .ndo_set_multicast_list = &ixgbevf_set_rx_mode,
3272         .ndo_validate_addr      = eth_validate_addr,
3273         .ndo_set_mac_address    = &ixgbevf_set_mac,
3274         .ndo_change_mtu         = &ixgbevf_change_mtu,
3275         .ndo_tx_timeout         = &ixgbevf_tx_timeout,
3276         .ndo_vlan_rx_register   = &ixgbevf_vlan_rx_register,
3277         .ndo_vlan_rx_add_vid    = &ixgbevf_vlan_rx_add_vid,
3278         .ndo_vlan_rx_kill_vid   = &ixgbevf_vlan_rx_kill_vid,
3279 };
3280
3281 static void ixgbevf_assign_netdev_ops(struct net_device *dev)
3282 {
3283         struct ixgbevf_adapter *adapter;
3284         adapter = netdev_priv(dev);
3285         dev->netdev_ops = &ixgbe_netdev_ops;
3286         ixgbevf_set_ethtool_ops(dev);
3287         dev->watchdog_timeo = 5 * HZ;
3288 }
3289
3290 /**
3291  * ixgbevf_probe - Device Initialization Routine
3292  * @pdev: PCI device information struct
3293  * @ent: entry in ixgbevf_pci_tbl
3294  *
3295  * Returns 0 on success, negative on failure
3296  *
3297  * ixgbevf_probe initializes an adapter identified by a pci_dev structure.
3298  * The OS initialization, configuring of the adapter private structure,
3299  * and a hardware reset occur.
3300  **/
3301 static int __devinit ixgbevf_probe(struct pci_dev *pdev,
3302                                    const struct pci_device_id *ent)
3303 {
3304         struct net_device *netdev;
3305         struct ixgbevf_adapter *adapter = NULL;
3306         struct ixgbe_hw *hw = NULL;
3307         const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data];
3308         static int cards_found;
3309         int err, pci_using_dac;
3310
3311         err = pci_enable_device(pdev);
3312         if (err)
3313                 return err;
3314
3315         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) &&
3316             !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
3317                 pci_using_dac = 1;
3318         } else {
3319                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3320                 if (err) {
3321                         err = pci_set_consistent_dma_mask(pdev,
3322                                                           DMA_BIT_MASK(32));
3323                         if (err) {
3324                                 dev_err(&pdev->dev, "No usable DMA "
3325                                         "configuration, aborting\n");
3326                                 goto err_dma;
3327                         }
3328                 }
3329                 pci_using_dac = 0;
3330         }
3331
3332         err = pci_request_regions(pdev, ixgbevf_driver_name);
3333         if (err) {
3334                 dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err);
3335                 goto err_pci_reg;
3336         }
3337
3338         pci_set_master(pdev);
3339
3340 #ifdef HAVE_TX_MQ
3341         netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter),
3342                                    MAX_TX_QUEUES);
3343 #else
3344         netdev = alloc_etherdev(sizeof(struct ixgbevf_adapter));
3345 #endif
3346         if (!netdev) {
3347                 err = -ENOMEM;
3348                 goto err_alloc_etherdev;
3349         }
3350
3351         SET_NETDEV_DEV(netdev, &pdev->dev);
3352
3353         pci_set_drvdata(pdev, netdev);
3354         adapter = netdev_priv(netdev);
3355
3356         adapter->netdev = netdev;
3357         adapter->pdev = pdev;
3358         hw = &adapter->hw;
3359         hw->back = adapter;
3360         adapter->msg_enable = (1 << DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
3361
3362         /*
3363          * call save state here in standalone driver because it relies on
3364          * adapter struct to exist, and needs to call netdev_priv
3365          */
3366         pci_save_state(pdev);
3367
3368         hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3369                               pci_resource_len(pdev, 0));
3370         if (!hw->hw_addr) {
3371                 err = -EIO;
3372                 goto err_ioremap;
3373         }
3374
3375         ixgbevf_assign_netdev_ops(netdev);
3376
3377         adapter->bd_number = cards_found;
3378
3379         /* Setup hw api */
3380         memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops));
3381         hw->mac.type  = ii->mac;
3382
3383         memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops,
3384                sizeof(struct ixgbe_mac_operations));
3385
3386         adapter->flags &= ~IXGBE_FLAG_RX_PS_CAPABLE;
3387         adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
3388         adapter->flags |= IXGBE_FLAG_RX_1BUF_CAPABLE;
3389
3390         /* setup the private structure */
3391         err = ixgbevf_sw_init(adapter);
3392
3393         ixgbevf_init_last_counter_stats(adapter);
3394
3395 #ifdef MAX_SKB_FRAGS
3396         netdev->features = NETIF_F_SG |
3397                            NETIF_F_IP_CSUM |
3398                            NETIF_F_HW_VLAN_TX |
3399                            NETIF_F_HW_VLAN_RX |
3400                            NETIF_F_HW_VLAN_FILTER;
3401
3402         netdev->features |= NETIF_F_IPV6_CSUM;
3403         netdev->features |= NETIF_F_TSO;
3404         netdev->features |= NETIF_F_TSO6;
3405         netdev->vlan_features |= NETIF_F_TSO;
3406         netdev->vlan_features |= NETIF_F_TSO6;
3407         netdev->vlan_features |= NETIF_F_IP_CSUM;
3408         netdev->vlan_features |= NETIF_F_SG;
3409
3410         if (pci_using_dac)
3411                 netdev->features |= NETIF_F_HIGHDMA;
3412
3413 #endif /* MAX_SKB_FRAGS */
3414
3415         /* The HW MAC address was set and/or determined in sw_init */
3416         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
3417         memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
3418
3419         if (!is_valid_ether_addr(netdev->dev_addr)) {
3420                 printk(KERN_ERR "invalid MAC address\n");
3421                 err = -EIO;
3422                 goto err_sw_init;
3423         }
3424
3425         init_timer(&adapter->watchdog_timer);
3426         adapter->watchdog_timer.function = &ixgbevf_watchdog;
3427         adapter->watchdog_timer.data = (unsigned long)adapter;
3428
3429         INIT_WORK(&adapter->reset_task, ixgbevf_reset_task);
3430         INIT_WORK(&adapter->watchdog_task, ixgbevf_watchdog_task);
3431
3432         err = ixgbevf_init_interrupt_scheme(adapter);
3433         if (err)
3434                 goto err_sw_init;
3435
3436         /* pick up the PCI bus settings for reporting later */
3437         if (hw->mac.ops.get_bus_info)
3438                 hw->mac.ops.get_bus_info(hw);
3439
3440
3441         netif_carrier_off(netdev);
3442         netif_tx_stop_all_queues(netdev);
3443
3444         strcpy(netdev->name, "eth%d");
3445
3446         err = register_netdev(netdev);
3447         if (err)
3448                 goto err_register;
3449
3450         adapter->netdev_registered = true;
3451
3452         /* print the MAC address */
3453         hw_dbg(hw, "%2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
3454                netdev->dev_addr[0],
3455                netdev->dev_addr[1],
3456                netdev->dev_addr[2],
3457                netdev->dev_addr[3],
3458                netdev->dev_addr[4],
3459                netdev->dev_addr[5]);
3460
3461         hw_dbg(hw, "MAC: %d\n", hw->mac.type);
3462
3463         hw_dbg(hw, "LRO is disabled \n");
3464
3465         hw_dbg(hw, "Intel(R) 82599 Virtual Function\n");
3466         cards_found++;
3467         return 0;
3468
3469 err_register:
3470 err_sw_init:
3471         ixgbevf_reset_interrupt_capability(adapter);
3472         iounmap(hw->hw_addr);
3473 err_ioremap:
3474         free_netdev(netdev);
3475 err_alloc_etherdev:
3476         pci_release_regions(pdev);
3477 err_pci_reg:
3478 err_dma:
3479         pci_disable_device(pdev);
3480         return err;
3481 }
3482
3483 /**
3484  * ixgbevf_remove - Device Removal Routine
3485  * @pdev: PCI device information struct
3486  *
3487  * ixgbevf_remove is called by the PCI subsystem to alert the driver
3488  * that it should release a PCI device.  The could be caused by a
3489  * Hot-Plug event, or because the driver is going to be removed from
3490  * memory.
3491  **/
3492 static void __devexit ixgbevf_remove(struct pci_dev *pdev)
3493 {
3494         struct net_device *netdev = pci_get_drvdata(pdev);
3495         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3496
3497         set_bit(__IXGBEVF_DOWN, &adapter->state);
3498
3499         del_timer_sync(&adapter->watchdog_timer);
3500
3501         cancel_work_sync(&adapter->watchdog_task);
3502
3503         flush_scheduled_work();
3504
3505         if (adapter->netdev_registered) {
3506                 unregister_netdev(netdev);
3507                 adapter->netdev_registered = false;
3508         }
3509
3510         ixgbevf_reset_interrupt_capability(adapter);
3511
3512         iounmap(adapter->hw.hw_addr);
3513         pci_release_regions(pdev);
3514
3515         hw_dbg(&adapter->hw, "Remove complete\n");
3516
3517         kfree(adapter->tx_ring);
3518         kfree(adapter->rx_ring);
3519
3520         free_netdev(netdev);
3521
3522         pci_disable_device(pdev);
3523 }
3524
3525 static struct pci_driver ixgbevf_driver = {
3526         .name     = ixgbevf_driver_name,
3527         .id_table = ixgbevf_pci_tbl,
3528         .probe    = ixgbevf_probe,
3529         .remove   = __devexit_p(ixgbevf_remove),
3530         .shutdown = ixgbevf_shutdown,
3531 };
3532
3533 /**
3534  * ixgbe_init_module - Driver Registration Routine
3535  *
3536  * ixgbe_init_module is the first routine called when the driver is
3537  * loaded. All it does is register with the PCI subsystem.
3538  **/
3539 static int __init ixgbevf_init_module(void)
3540 {
3541         int ret;
3542         printk(KERN_INFO "ixgbevf: %s - version %s\n", ixgbevf_driver_string,
3543                ixgbevf_driver_version);
3544
3545         printk(KERN_INFO "%s\n", ixgbevf_copyright);
3546
3547         ret = pci_register_driver(&ixgbevf_driver);
3548         return ret;
3549 }
3550
3551 module_init(ixgbevf_init_module);
3552
3553 /**
3554  * ixgbe_exit_module - Driver Exit Cleanup Routine
3555  *
3556  * ixgbe_exit_module is called just before the driver is removed
3557  * from memory.
3558  **/
3559 static void __exit ixgbevf_exit_module(void)
3560 {
3561         pci_unregister_driver(&ixgbevf_driver);
3562 }
3563
3564 #ifdef DEBUG
3565 /**
3566  * ixgbe_get_hw_dev_name - return device name string
3567  * used by hardware layer to print debugging information
3568  **/
3569 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw)
3570 {
3571         struct ixgbevf_adapter *adapter = hw->back;
3572         return adapter->netdev->name;
3573 }
3574
3575 #endif
3576 module_exit(ixgbevf_exit_module);
3577
3578 /* ixgbevf_main.c */