netdrv intel: disable VLAN filtering in promiscous mode
[linux-2.6.git] / drivers / net / igb / igb_main.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/mii.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/interrupt.h>
43 #include <linux/if_ether.h>
44 #ifdef CONFIG_DCA
45 #include <linux/dca.h>
46 #endif
47 #include "igb.h"
48
49 #define DRV_VERSION "1.2.45-k2"
50 char igb_driver_name[] = "igb";
51 char igb_driver_version[] = DRV_VERSION;
52 static const char igb_driver_string[] =
53                                 "Intel(R) Gigabit Ethernet Network Driver";
54 static const char igb_copyright[] = "Copyright (c) 2008 Intel Corporation.";
55
56 static const struct e1000_info *igb_info_tbl[] = {
57         [board_82575] = &e1000_82575_info,
58 };
59
60 static struct pci_device_id igb_pci_tbl[] = {
61         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
62         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
63         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
64         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
65         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
66         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
67         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
68         /* required last entry */
69         {0, }
70 };
71
72 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
73
74 void igb_reset(struct igb_adapter *);
75 static int igb_setup_all_tx_resources(struct igb_adapter *);
76 static int igb_setup_all_rx_resources(struct igb_adapter *);
77 static void igb_free_all_tx_resources(struct igb_adapter *);
78 static void igb_free_all_rx_resources(struct igb_adapter *);
79 static void igb_free_tx_resources(struct igb_ring *);
80 static void igb_free_rx_resources(struct igb_ring *);
81 void igb_update_stats(struct igb_adapter *);
82 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
83 static void __devexit igb_remove(struct pci_dev *pdev);
84 static int igb_sw_init(struct igb_adapter *);
85 static int igb_open(struct net_device *);
86 static int igb_close(struct net_device *);
87 static void igb_configure_tx(struct igb_adapter *);
88 static void igb_configure_rx(struct igb_adapter *);
89 static void igb_setup_rctl(struct igb_adapter *);
90 static void igb_clean_all_tx_rings(struct igb_adapter *);
91 static void igb_clean_all_rx_rings(struct igb_adapter *);
92 static void igb_clean_tx_ring(struct igb_ring *);
93 static void igb_clean_rx_ring(struct igb_ring *);
94 static void igb_set_multi(struct net_device *);
95 static void igb_update_phy_info(unsigned long);
96 static void igb_watchdog(unsigned long);
97 static void igb_watchdog_task(struct work_struct *);
98 static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
99                                   struct igb_ring *);
100 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
101 static struct net_device_stats *igb_get_stats(struct net_device *);
102 static int igb_change_mtu(struct net_device *, int);
103 static int igb_set_mac(struct net_device *, void *);
104 static irqreturn_t igb_intr(int irq, void *);
105 static irqreturn_t igb_intr_msi(int irq, void *);
106 static irqreturn_t igb_msix_other(int irq, void *);
107 static irqreturn_t igb_msix_rx(int irq, void *);
108 static irqreturn_t igb_msix_tx(int irq, void *);
109 static int igb_clean_rx_ring_msix(struct napi_struct *, int);
110 #ifdef CONFIG_DCA
111 static void igb_update_rx_dca(struct igb_ring *);
112 static void igb_update_tx_dca(struct igb_ring *);
113 static void igb_setup_dca(struct igb_adapter *);
114 #endif /* CONFIG_DCA */
115 static bool igb_clean_tx_irq(struct igb_ring *);
116 static int igb_poll(struct napi_struct *, int);
117 static bool igb_clean_rx_irq_adv(struct igb_ring *, int *, int);
118 static void igb_alloc_rx_buffers_adv(struct igb_ring *, int);
119 #ifdef CONFIG_IGB_LRO
120 static int igb_get_skb_hdr(struct sk_buff *skb, void **, void **, u64 *, void *);
121 #endif
122 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
123 static void igb_tx_timeout(struct net_device *);
124 static void igb_reset_task(struct work_struct *);
125 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
126 static void igb_vlan_rx_add_vid(struct net_device *, u16);
127 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
128 static void igb_restore_vlan(struct igb_adapter *);
129
130 static int igb_suspend(struct pci_dev *, pm_message_t);
131 #ifdef CONFIG_PM
132 static int igb_resume(struct pci_dev *);
133 #endif
134 static void igb_shutdown(struct pci_dev *);
135 #ifdef CONFIG_DCA
136 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
137 static struct notifier_block dca_notifier = {
138         .notifier_call  = igb_notify_dca,
139         .next           = NULL,
140         .priority       = 0
141 };
142 #endif
143
144 #ifdef CONFIG_NET_POLL_CONTROLLER
145 /* for netdump / net console */
146 static void igb_netpoll(struct net_device *);
147 #endif
148
149 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
150                      pci_channel_state_t);
151 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
152 static void igb_io_resume(struct pci_dev *);
153
154 static struct pci_error_handlers igb_err_handler = {
155         .error_detected = igb_io_error_detected,
156         .slot_reset = igb_io_slot_reset,
157         .resume = igb_io_resume,
158 };
159
160
161 static struct pci_driver igb_driver = {
162         .name     = igb_driver_name,
163         .id_table = igb_pci_tbl,
164         .probe    = igb_probe,
165         .remove   = __devexit_p(igb_remove),
166 #ifdef CONFIG_PM
167         /* Power Managment Hooks */
168         .suspend  = igb_suspend,
169         .resume   = igb_resume,
170 #endif
171         .shutdown = igb_shutdown,
172         .err_handler = &igb_err_handler
173 };
174
175 static int global_quad_port_a; /* global quad port a indication */
176
177 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
178 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
179 MODULE_LICENSE("GPL");
180 MODULE_VERSION(DRV_VERSION);
181
182 #ifdef DEBUG
183 /**
184  * igb_get_hw_dev_name - return device name string
185  * used by hardware layer to print debugging information
186  **/
187 char *igb_get_hw_dev_name(struct e1000_hw *hw)
188 {
189         struct igb_adapter *adapter = hw->back;
190         return adapter->netdev->name;
191 }
192 #endif
193
194 /**
195  * igb_init_module - Driver Registration Routine
196  *
197  * igb_init_module is the first routine called when the driver is
198  * loaded. All it does is register with the PCI subsystem.
199  **/
200 static int __init igb_init_module(void)
201 {
202         int ret;
203         printk(KERN_INFO "%s - version %s\n",
204                igb_driver_string, igb_driver_version);
205
206         printk(KERN_INFO "%s\n", igb_copyright);
207
208         global_quad_port_a = 0;
209
210         ret = pci_register_driver(&igb_driver);
211 #ifdef CONFIG_DCA
212         dca_register_notify(&dca_notifier);
213 #endif
214         return ret;
215 }
216
217 module_init(igb_init_module);
218
219 /**
220  * igb_exit_module - Driver Exit Cleanup Routine
221  *
222  * igb_exit_module is called just before the driver is removed
223  * from memory.
224  **/
225 static void __exit igb_exit_module(void)
226 {
227 #ifdef CONFIG_DCA
228         dca_unregister_notify(&dca_notifier);
229 #endif
230         pci_unregister_driver(&igb_driver);
231 }
232
233 module_exit(igb_exit_module);
234
235 /**
236  * igb_alloc_queues - Allocate memory for all rings
237  * @adapter: board private structure to initialize
238  *
239  * We allocate one ring per queue at run-time since we don't know the
240  * number of queues at compile-time.
241  **/
242 static int igb_alloc_queues(struct igb_adapter *adapter)
243 {
244         int i;
245
246         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
247                                    sizeof(struct igb_ring), GFP_KERNEL);
248         if (!adapter->tx_ring)
249                 return -ENOMEM;
250
251         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
252                                    sizeof(struct igb_ring), GFP_KERNEL);
253         if (!adapter->rx_ring) {
254                 kfree(adapter->tx_ring);
255                 return -ENOMEM;
256         }
257
258         adapter->rx_ring->buddy = adapter->tx_ring;
259
260         for (i = 0; i < adapter->num_tx_queues; i++) {
261                 struct igb_ring *ring = &(adapter->tx_ring[i]);
262                 ring->adapter = adapter;
263                 ring->queue_index = i;
264         }
265         for (i = 0; i < adapter->num_rx_queues; i++) {
266                 struct igb_ring *ring = &(adapter->rx_ring[i]);
267                 ring->adapter = adapter;
268                 ring->queue_index = i;
269                 ring->itr_register = E1000_ITR;
270
271                 /* set a default napi handler for each rx_ring */
272                 netif_napi_add(adapter->netdev, &ring->napi, igb_poll, 64);
273         }
274         return 0;
275 }
276
277 static void igb_free_queues(struct igb_adapter *adapter)
278 {
279         int i;
280
281         for (i = 0; i < adapter->num_rx_queues; i++)
282                 netif_napi_del(&adapter->rx_ring[i].napi);
283
284         kfree(adapter->tx_ring);
285         kfree(adapter->rx_ring);
286 }
287
288 #define IGB_N0_QUEUE -1
289 static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
290                               int tx_queue, int msix_vector)
291 {
292         u32 msixbm = 0;
293         struct e1000_hw *hw = &adapter->hw;
294         u32 ivar, index;
295
296         switch (hw->mac.type) {
297         case e1000_82575:
298                 /* The 82575 assigns vectors using a bitmask, which matches the
299                    bitmask for the EICR/EIMS/EIMC registers.  To assign one
300                    or more queues to a vector, we write the appropriate bits
301                    into the MSIXBM register for that vector. */
302                 if (rx_queue > IGB_N0_QUEUE) {
303                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
304                         adapter->rx_ring[rx_queue].eims_value = msixbm;
305                 }
306                 if (tx_queue > IGB_N0_QUEUE) {
307                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
308                         adapter->tx_ring[tx_queue].eims_value =
309                                   E1000_EICR_TX_QUEUE0 << tx_queue;
310                 }
311                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
312                 break;
313         case e1000_82576:
314                 /* Kawela uses a table-based method for assigning vectors.
315                    Each queue has a single entry in the table to which we write
316                    a vector number along with a "valid" bit.  Sadly, the layout
317                    of the table is somewhat counterintuitive. */
318                 if (rx_queue > IGB_N0_QUEUE) {
319                         index = (rx_queue & 0x7);
320                         ivar = array_rd32(E1000_IVAR0, index);
321                         if (rx_queue < 8) {
322                                 /* vector goes into low byte of register */
323                                 ivar = ivar & 0xFFFFFF00;
324                                 ivar |= msix_vector | E1000_IVAR_VALID;
325                         } else {
326                                 /* vector goes into third byte of register */
327                                 ivar = ivar & 0xFF00FFFF;
328                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
329                         }
330                         adapter->rx_ring[rx_queue].eims_value= 1 << msix_vector;
331                         array_wr32(E1000_IVAR0, index, ivar);
332                 }
333                 if (tx_queue > IGB_N0_QUEUE) {
334                         index = (tx_queue & 0x7);
335                         ivar = array_rd32(E1000_IVAR0, index);
336                         if (tx_queue < 8) {
337                                 /* vector goes into second byte of register */
338                                 ivar = ivar & 0xFFFF00FF;
339                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
340                         } else {
341                                 /* vector goes into high byte of register */
342                                 ivar = ivar & 0x00FFFFFF;
343                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
344                         }
345                         adapter->tx_ring[tx_queue].eims_value= 1 << msix_vector;
346                         array_wr32(E1000_IVAR0, index, ivar);
347                 }
348                 break;
349         default:
350                 BUG();
351                 break;
352         }
353 }
354
355 /**
356  * igb_configure_msix - Configure MSI-X hardware
357  *
358  * igb_configure_msix sets up the hardware to properly
359  * generate MSI-X interrupts.
360  **/
361 static void igb_configure_msix(struct igb_adapter *adapter)
362 {
363         u32 tmp;
364         int i, vector = 0;
365         struct e1000_hw *hw = &adapter->hw;
366
367         adapter->eims_enable_mask = 0;
368         if (hw->mac.type == e1000_82576)
369                 /* Turn on MSI-X capability first, or our settings
370                  * won't stick.  And it will take days to debug. */
371                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
372                                    E1000_GPIE_PBA | E1000_GPIE_EIAME | 
373                                    E1000_GPIE_NSICR);
374
375         for (i = 0; i < adapter->num_tx_queues; i++) {
376                 struct igb_ring *tx_ring = &adapter->tx_ring[i];
377                 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
378                 adapter->eims_enable_mask |= tx_ring->eims_value;
379                 if (tx_ring->itr_val)
380                         writel(tx_ring->itr_val,
381                                hw->hw_addr + tx_ring->itr_register);
382                 else
383                         writel(1, hw->hw_addr + tx_ring->itr_register);
384         }
385
386         for (i = 0; i < adapter->num_rx_queues; i++) {
387                 struct igb_ring *rx_ring = &adapter->rx_ring[i];
388                 rx_ring->buddy = 0;
389                 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
390                 adapter->eims_enable_mask |= rx_ring->eims_value;
391                 if (rx_ring->itr_val)
392                         writel(rx_ring->itr_val,
393                                hw->hw_addr + rx_ring->itr_register);
394                 else
395                         writel(1, hw->hw_addr + rx_ring->itr_register);
396         }
397
398
399         /* set vector for other causes, i.e. link changes */
400         switch (hw->mac.type) {
401         case e1000_82575:
402                 array_wr32(E1000_MSIXBM(0), vector++,
403                                       E1000_EIMS_OTHER);
404
405                 tmp = rd32(E1000_CTRL_EXT);
406                 /* enable MSI-X PBA support*/
407                 tmp |= E1000_CTRL_EXT_PBA_CLR;
408
409                 /* Auto-Mask interrupts upon ICR read. */
410                 tmp |= E1000_CTRL_EXT_EIAME;
411                 tmp |= E1000_CTRL_EXT_IRCA;
412
413                 wr32(E1000_CTRL_EXT, tmp);
414                 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
415                 adapter->eims_other = E1000_EIMS_OTHER;
416
417                 break;
418
419         case e1000_82576:
420                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
421                 wr32(E1000_IVAR_MISC, tmp);
422
423                 adapter->eims_enable_mask = (1 << (vector)) - 1;
424                 adapter->eims_other = 1 << (vector - 1);
425                 break;
426         default:
427                 /* do nothing, since nothing else supports MSI-X */
428                 break;
429         } /* switch (hw->mac.type) */
430         wrfl();
431 }
432
433 /**
434  * igb_request_msix - Initialize MSI-X interrupts
435  *
436  * igb_request_msix allocates MSI-X vectors and requests interrupts from the
437  * kernel.
438  **/
439 static int igb_request_msix(struct igb_adapter *adapter)
440 {
441         struct net_device *netdev = adapter->netdev;
442         int i, err = 0, vector = 0;
443
444         vector = 0;
445
446         for (i = 0; i < adapter->num_tx_queues; i++) {
447                 struct igb_ring *ring = &(adapter->tx_ring[i]);
448                 sprintf(ring->name, "%s-tx%d", netdev->name, i);
449                 err = request_irq(adapter->msix_entries[vector].vector,
450                                   &igb_msix_tx, 0, ring->name,
451                                   &(adapter->tx_ring[i]));
452                 if (err)
453                         goto out;
454                 ring->itr_register = E1000_EITR(0) + (vector << 2);
455                 ring->itr_val = 976; /* ~4000 ints/sec */
456                 vector++;
457         }
458         for (i = 0; i < adapter->num_rx_queues; i++) {
459                 struct igb_ring *ring = &(adapter->rx_ring[i]);
460                 if (strlen(netdev->name) < (IFNAMSIZ - 5))
461                         sprintf(ring->name, "%s-rx%d", netdev->name, i);
462                 else
463                         memcpy(ring->name, netdev->name, IFNAMSIZ);
464                 err = request_irq(adapter->msix_entries[vector].vector,
465                                   &igb_msix_rx, 0, ring->name,
466                                   &(adapter->rx_ring[i]));
467                 if (err)
468                         goto out;
469                 ring->itr_register = E1000_EITR(0) + (vector << 2);
470                 ring->itr_val = adapter->itr;
471                 /* overwrite the poll routine for MSIX, we've already done
472                  * netif_napi_add */
473                 ring->napi.poll = &igb_clean_rx_ring_msix;
474                 vector++;
475         }
476
477         err = request_irq(adapter->msix_entries[vector].vector,
478                           &igb_msix_other, 0, netdev->name, netdev);
479         if (err)
480                 goto out;
481
482         igb_configure_msix(adapter);
483         return 0;
484 out:
485         return err;
486 }
487
488 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
489 {
490         if (adapter->msix_entries) {
491                 pci_disable_msix(adapter->pdev);
492                 kfree(adapter->msix_entries);
493                 adapter->msix_entries = NULL;
494         } else if (adapter->flags & IGB_FLAG_HAS_MSI)
495                 pci_disable_msi(adapter->pdev);
496         return;
497 }
498
499
500 /**
501  * igb_set_interrupt_capability - set MSI or MSI-X if supported
502  *
503  * Attempt to configure interrupts using the best available
504  * capabilities of the hardware and kernel.
505  **/
506 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
507 {
508         int err;
509         int numvecs, i;
510
511         numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
512         adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
513                                         GFP_KERNEL);
514         if (!adapter->msix_entries)
515                 goto msi_only;
516
517         for (i = 0; i < numvecs; i++)
518                 adapter->msix_entries[i].entry = i;
519
520         err = pci_enable_msix(adapter->pdev,
521                               adapter->msix_entries,
522                               numvecs);
523         if (err == 0)
524                 return;
525
526         igb_reset_interrupt_capability(adapter);
527
528         /* If we can't do MSI-X, try MSI */
529 msi_only:
530         adapter->num_rx_queues = 1;
531         adapter->num_tx_queues = 1;
532         if (!pci_enable_msi(adapter->pdev))
533                 adapter->flags |= IGB_FLAG_HAS_MSI;
534
535 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
536         /* Notify the stack of the (possibly) reduced Tx Queue count. */
537         adapter->netdev->egress_subqueue_count = adapter->num_tx_queues;
538 #endif
539         return;
540 }
541
542 /**
543  * igb_request_irq - initialize interrupts
544  *
545  * Attempts to configure interrupts using the best available
546  * capabilities of the hardware and kernel.
547  **/
548 static int igb_request_irq(struct igb_adapter *adapter)
549 {
550         struct net_device *netdev = adapter->netdev;
551         struct e1000_hw *hw = &adapter->hw;
552         int err = 0;
553
554         if (adapter->msix_entries) {
555                 err = igb_request_msix(adapter);
556                 if (!err)
557                         goto request_done;
558                 /* fall back to MSI */
559                 igb_reset_interrupt_capability(adapter);
560                 if (!pci_enable_msi(adapter->pdev))
561                         adapter->flags |= IGB_FLAG_HAS_MSI;
562                 igb_free_all_tx_resources(adapter);
563                 igb_free_all_rx_resources(adapter);
564                 adapter->num_rx_queues = 1;
565                 igb_alloc_queues(adapter);
566         } else {
567                 switch (hw->mac.type) {
568                 case e1000_82575:
569                         wr32(E1000_MSIXBM(0),
570                              (E1000_EICR_RX_QUEUE0 | E1000_EIMS_OTHER));
571                         break;
572                 case e1000_82576:
573                         wr32(E1000_IVAR0, E1000_IVAR_VALID);
574                         break;
575                 default:
576                         break;
577                 }
578         }
579
580         if (adapter->flags & IGB_FLAG_HAS_MSI) {
581                 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
582                                   netdev->name, netdev);
583                 if (!err)
584                         goto request_done;
585                 /* fall back to legacy interrupts */
586                 igb_reset_interrupt_capability(adapter);
587                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
588         }
589
590         err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
591                           netdev->name, netdev);
592
593         if (err)
594                 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
595                         err);
596
597 request_done:
598         return err;
599 }
600
601 static void igb_free_irq(struct igb_adapter *adapter)
602 {
603         struct net_device *netdev = adapter->netdev;
604
605         if (adapter->msix_entries) {
606                 int vector = 0, i;
607
608                 for (i = 0; i < adapter->num_tx_queues; i++)
609                         free_irq(adapter->msix_entries[vector++].vector,
610                                 &(adapter->tx_ring[i]));
611                 for (i = 0; i < adapter->num_rx_queues; i++)
612                         free_irq(adapter->msix_entries[vector++].vector,
613                                 &(adapter->rx_ring[i]));
614
615                 free_irq(adapter->msix_entries[vector++].vector, netdev);
616                 return;
617         }
618
619         free_irq(adapter->pdev->irq, netdev);
620 }
621
622 /**
623  * igb_irq_disable - Mask off interrupt generation on the NIC
624  * @adapter: board private structure
625  **/
626 static void igb_irq_disable(struct igb_adapter *adapter)
627 {
628         struct e1000_hw *hw = &adapter->hw;
629
630         if (adapter->msix_entries) {
631                 wr32(E1000_EIAM, 0);
632                 wr32(E1000_EIMC, ~0);
633                 wr32(E1000_EIAC, 0);
634         }
635
636         wr32(E1000_IAM, 0);
637         wr32(E1000_IMC, ~0);
638         wrfl();
639         synchronize_irq(adapter->pdev->irq);
640 }
641
642 /**
643  * igb_irq_enable - Enable default interrupt generation settings
644  * @adapter: board private structure
645  **/
646 static void igb_irq_enable(struct igb_adapter *adapter)
647 {
648         struct e1000_hw *hw = &adapter->hw;
649
650         if (adapter->msix_entries) {
651                 wr32(E1000_EIAC, adapter->eims_enable_mask);
652                 wr32(E1000_EIAM, adapter->eims_enable_mask);
653                 wr32(E1000_EIMS, adapter->eims_enable_mask);
654                 wr32(E1000_IMS, E1000_IMS_LSC);
655         } else {
656                 wr32(E1000_IMS, IMS_ENABLE_MASK);
657                 wr32(E1000_IAM, IMS_ENABLE_MASK);
658         }
659 }
660
661 static void igb_update_mng_vlan(struct igb_adapter *adapter)
662 {
663         struct net_device *netdev = adapter->netdev;
664         u16 vid = adapter->hw.mng_cookie.vlan_id;
665         u16 old_vid = adapter->mng_vlan_id;
666         if (adapter->vlgrp) {
667                 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
668                         if (adapter->hw.mng_cookie.status &
669                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
670                                 igb_vlan_rx_add_vid(netdev, vid);
671                                 adapter->mng_vlan_id = vid;
672                         } else
673                                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
674
675                         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
676                                         (vid != old_vid) &&
677                             !vlan_group_get_device(adapter->vlgrp, old_vid))
678                                 igb_vlan_rx_kill_vid(netdev, old_vid);
679                 } else
680                         adapter->mng_vlan_id = vid;
681         }
682 }
683
684 /**
685  * igb_release_hw_control - release control of the h/w to f/w
686  * @adapter: address of board private structure
687  *
688  * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
689  * For ASF and Pass Through versions of f/w this means that the
690  * driver is no longer loaded.
691  *
692  **/
693 static void igb_release_hw_control(struct igb_adapter *adapter)
694 {
695         struct e1000_hw *hw = &adapter->hw;
696         u32 ctrl_ext;
697
698         /* Let firmware take over control of h/w */
699         ctrl_ext = rd32(E1000_CTRL_EXT);
700         wr32(E1000_CTRL_EXT,
701                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
702 }
703
704
705 /**
706  * igb_get_hw_control - get control of the h/w from f/w
707  * @adapter: address of board private structure
708  *
709  * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
710  * For ASF and Pass Through versions of f/w this means that
711  * the driver is loaded.
712  *
713  **/
714 static void igb_get_hw_control(struct igb_adapter *adapter)
715 {
716         struct e1000_hw *hw = &adapter->hw;
717         u32 ctrl_ext;
718
719         /* Let firmware know the driver has taken over */
720         ctrl_ext = rd32(E1000_CTRL_EXT);
721         wr32(E1000_CTRL_EXT,
722                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
723 }
724
725 static void igb_init_manageability(struct igb_adapter *adapter)
726 {
727         struct e1000_hw *hw = &adapter->hw;
728
729         if (adapter->en_mng_pt) {
730                 u32 manc2h = rd32(E1000_MANC2H);
731                 u32 manc = rd32(E1000_MANC);
732
733                 /* enable receiving management packets to the host */
734                 /* this will probably generate destination unreachable messages
735                  * from the host OS, but the packets will be handled on SMBUS */
736                 manc |= E1000_MANC_EN_MNG2HOST;
737 #define E1000_MNG2HOST_PORT_623 (1 << 5)
738 #define E1000_MNG2HOST_PORT_664 (1 << 6)
739                 manc2h |= E1000_MNG2HOST_PORT_623;
740                 manc2h |= E1000_MNG2HOST_PORT_664;
741                 wr32(E1000_MANC2H, manc2h);
742
743                 wr32(E1000_MANC, manc);
744         }
745 }
746
747 /**
748  * igb_configure - configure the hardware for RX and TX
749  * @adapter: private board structure
750  **/
751 static void igb_configure(struct igb_adapter *adapter)
752 {
753         struct net_device *netdev = adapter->netdev;
754         int i;
755
756         igb_get_hw_control(adapter);
757         igb_set_multi(netdev);
758
759         igb_restore_vlan(adapter);
760         igb_init_manageability(adapter);
761
762         igb_configure_tx(adapter);
763         igb_setup_rctl(adapter);
764         igb_configure_rx(adapter);
765
766         igb_rx_fifo_flush_82575(&adapter->hw);
767
768         /* call IGB_DESC_UNUSED which always leaves
769          * at least 1 descriptor unused to make sure
770          * next_to_use != next_to_clean */
771         for (i = 0; i < adapter->num_rx_queues; i++) {
772                 struct igb_ring *ring = &adapter->rx_ring[i];
773                 igb_alloc_rx_buffers_adv(ring, IGB_DESC_UNUSED(ring));
774         }
775
776
777         adapter->tx_queue_len = netdev->tx_queue_len;
778 }
779
780
781 /**
782  * igb_up - Open the interface and prepare it to handle traffic
783  * @adapter: board private structure
784  **/
785
786 int igb_up(struct igb_adapter *adapter)
787 {
788         struct e1000_hw *hw = &adapter->hw;
789         int i;
790
791         /* hardware has been reset, we need to reload some things */
792         igb_configure(adapter);
793
794         clear_bit(__IGB_DOWN, &adapter->state);
795
796         for (i = 0; i < adapter->num_rx_queues; i++)
797                 napi_enable(&adapter->rx_ring[i].napi);
798         if (adapter->msix_entries)
799                 igb_configure_msix(adapter);
800
801         /* Clear any pending interrupts. */
802         rd32(E1000_ICR);
803         igb_irq_enable(adapter);
804
805         /* Fire a link change interrupt to start the watchdog. */
806         wr32(E1000_ICS, E1000_ICS_LSC);
807         return 0;
808 }
809
810 void igb_down(struct igb_adapter *adapter)
811 {
812         struct e1000_hw *hw = &adapter->hw;
813         struct net_device *netdev = adapter->netdev;
814         u32 tctl, rctl;
815         int i;
816
817         /* signal that we're down so the interrupt handler does not
818          * reschedule our watchdog timer */
819         set_bit(__IGB_DOWN, &adapter->state);
820
821         /* disable receives in the hardware */
822         rctl = rd32(E1000_RCTL);
823         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
824         /* flush and sleep below */
825
826         netif_stop_queue(netdev);
827 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
828         for (i = 0; i < adapter->num_tx_queues; i++)
829                 netif_stop_subqueue(netdev, i);
830 #endif
831
832         /* disable transmits in the hardware */
833         tctl = rd32(E1000_TCTL);
834         tctl &= ~E1000_TCTL_EN;
835         wr32(E1000_TCTL, tctl);
836         /* flush both disables and wait for them to finish */
837         wrfl();
838         msleep(10);
839
840         for (i = 0; i < adapter->num_rx_queues; i++)
841                 napi_disable(&adapter->rx_ring[i].napi);
842
843         igb_irq_disable(adapter);
844
845         del_timer_sync(&adapter->watchdog_timer);
846         del_timer_sync(&adapter->phy_info_timer);
847
848         netdev->tx_queue_len = adapter->tx_queue_len;
849         netif_carrier_off(netdev);
850         adapter->link_speed = 0;
851         adapter->link_duplex = 0;
852
853         if (!pci_channel_offline(adapter->pdev))
854                 igb_reset(adapter);
855         igb_clean_all_tx_rings(adapter);
856         igb_clean_all_rx_rings(adapter);
857 }
858
859 void igb_reinit_locked(struct igb_adapter *adapter)
860 {
861         WARN_ON(in_interrupt());
862         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
863                 msleep(1);
864         igb_down(adapter);
865         igb_up(adapter);
866         clear_bit(__IGB_RESETTING, &adapter->state);
867 }
868
869 void igb_reset(struct igb_adapter *adapter)
870 {
871         struct e1000_hw *hw = &adapter->hw;
872         struct e1000_mac_info *mac = &hw->mac;
873         struct e1000_fc_info *fc = &hw->fc;
874         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
875         u16 hwm;
876
877         /* Repartition Pba for greater than 9k mtu
878          * To take effect CTRL.RST is required.
879          */
880         if (mac->type != e1000_82576) {
881         pba = E1000_PBA_34K;
882         }
883         else {
884                 pba = E1000_PBA_64K;
885         }
886
887         if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
888             (mac->type < e1000_82576)) {
889                 /* adjust PBA for jumbo frames */
890                 wr32(E1000_PBA, pba);
891
892                 /* To maintain wire speed transmits, the Tx FIFO should be
893                  * large enough to accommodate two full transmit packets,
894                  * rounded up to the next 1KB and expressed in KB.  Likewise,
895                  * the Rx FIFO should be large enough to accommodate at least
896                  * one full receive packet and is similarly rounded up and
897                  * expressed in KB. */
898                 pba = rd32(E1000_PBA);
899                 /* upper 16 bits has Tx packet buffer allocation size in KB */
900                 tx_space = pba >> 16;
901                 /* lower 16 bits has Rx packet buffer allocation size in KB */
902                 pba &= 0xffff;
903                 /* the tx fifo also stores 16 bytes of information about the tx
904                  * but don't include ethernet FCS because hardware appends it */
905                 min_tx_space = (adapter->max_frame_size +
906                                 sizeof(struct e1000_tx_desc) -
907                                 ETH_FCS_LEN) * 2;
908                 min_tx_space = ALIGN(min_tx_space, 1024);
909                 min_tx_space >>= 10;
910                 /* software strips receive CRC, so leave room for it */
911                 min_rx_space = adapter->max_frame_size;
912                 min_rx_space = ALIGN(min_rx_space, 1024);
913                 min_rx_space >>= 10;
914
915                 /* If current Tx allocation is less than the min Tx FIFO size,
916                  * and the min Tx FIFO size is less than the current Rx FIFO
917                  * allocation, take space away from current Rx allocation */
918                 if (tx_space < min_tx_space &&
919                     ((min_tx_space - tx_space) < pba)) {
920                         pba = pba - (min_tx_space - tx_space);
921
922                         /* if short on rx space, rx wins and must trump tx
923                          * adjustment */
924                         if (pba < min_rx_space)
925                                 pba = min_rx_space;
926                 }
927                 wr32(E1000_PBA, pba);
928         }
929
930         /* flow control settings */
931         /* The high water mark must be low enough to fit one full frame
932          * (or the size used for early receive) above it in the Rx FIFO.
933          * Set it to the lower of:
934          * - 90% of the Rx FIFO size, or
935          * - the full Rx FIFO size minus one full frame */
936         hwm = min(((pba << 10) * 9 / 10),
937                         ((pba << 10) - 2 * adapter->max_frame_size));
938
939         if (mac->type < e1000_82576) {
940                 fc->high_water = hwm & 0xFFF8;  /* 8-byte granularity */
941                 fc->low_water = fc->high_water - 8;
942         } else {
943                 fc->high_water = hwm & 0xFFF0;  /* 16-byte granularity */
944                 fc->low_water = fc->high_water - 16;
945         }
946         fc->pause_time = 0xFFFF;
947         fc->send_xon = 1;
948         fc->type = fc->original_type;
949
950         /* Allow time for pending master requests to run */
951         adapter->hw.mac.ops.reset_hw(&adapter->hw);
952         wr32(E1000_WUC, 0);
953
954         if (adapter->hw.mac.ops.init_hw(&adapter->hw))
955                 dev_err(&adapter->pdev->dev, "Hardware Error\n");
956
957         igb_update_mng_vlan(adapter);
958
959         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
960         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
961
962         igb_reset_adaptive(&adapter->hw);
963         if (adapter->hw.phy.ops.get_phy_info)
964                 adapter->hw.phy.ops.get_phy_info(&adapter->hw);
965 }
966
967 /**
968  * igb_is_need_ioport - determine if an adapter needs ioport resources or not
969  * @pdev: PCI device information struct
970  *
971  * Returns true if an adapter needs ioport resources
972  **/
973 static int igb_is_need_ioport(struct pci_dev *pdev)
974 {
975         switch (pdev->device) {
976         /* Currently there are no adapters that need ioport resources */
977         default:
978                 return false;
979         }
980 }
981
982 /**
983  * igb_probe - Device Initialization Routine
984  * @pdev: PCI device information struct
985  * @ent: entry in igb_pci_tbl
986  *
987  * Returns 0 on success, negative on failure
988  *
989  * igb_probe initializes an adapter identified by a pci_dev structure.
990  * The OS initialization, configuring of the adapter private structure,
991  * and a hardware reset occur.
992  **/
993 static int __devinit igb_probe(struct pci_dev *pdev,
994                                const struct pci_device_id *ent)
995 {
996         struct net_device *netdev;
997         struct igb_adapter *adapter;
998         struct e1000_hw *hw;
999         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1000         unsigned long mmio_start, mmio_len;
1001         int i, err, pci_using_dac;
1002         u16 eeprom_data = 0;
1003         u16 eeprom_apme_mask = IGB_EEPROM_APME;
1004         u32 part_num;
1005         int bars, need_ioport;
1006
1007         /* do not allocate ioport bars when not needed */
1008         need_ioport = igb_is_need_ioport(pdev);
1009         if (need_ioport) {
1010                 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
1011                 err = pci_enable_device(pdev);
1012         } else {
1013                 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1014                 err = pci_enable_device_mem(pdev);
1015         }
1016         if (err)
1017                 return err;
1018
1019         pci_using_dac = 0;
1020         err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
1021         if (!err) {
1022                 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
1023                 if (!err)
1024                         pci_using_dac = 1;
1025         } else {
1026                 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
1027                 if (err) {
1028                         err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
1029                         if (err) {
1030                                 dev_err(&pdev->dev, "No usable DMA "
1031                                         "configuration, aborting\n");
1032                                 goto err_dma;
1033                         }
1034                 }
1035         }
1036
1037         err = pci_request_selected_regions(pdev, bars, igb_driver_name);
1038         if (err)
1039                 goto err_pci_reg;
1040
1041         pci_set_master(pdev);
1042         pci_save_state(pdev);
1043
1044         err = -ENOMEM;
1045 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1046         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter), IGB_MAX_TX_QUEUES);
1047 #else
1048         netdev = alloc_etherdev(sizeof(struct igb_adapter));
1049 #endif /* CONFIG_NETDEVICES_MULTIQUEUE */
1050         if (!netdev)
1051                 goto err_alloc_etherdev;
1052
1053         SET_NETDEV_DEV(netdev, &pdev->dev);
1054
1055         pci_set_drvdata(pdev, netdev);
1056         adapter = netdev_priv(netdev);
1057         adapter->netdev = netdev;
1058         adapter->pdev = pdev;
1059         hw = &adapter->hw;
1060         hw->back = adapter;
1061         adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1062         adapter->bars = bars;
1063         adapter->need_ioport = need_ioport;
1064
1065         mmio_start = pci_resource_start(pdev, 0);
1066         mmio_len = pci_resource_len(pdev, 0);
1067
1068         err = -EIO;
1069         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
1070         if (!adapter->hw.hw_addr)
1071                 goto err_ioremap;
1072
1073         netdev->open = &igb_open;
1074         netdev->stop = &igb_close;
1075         netdev->get_stats = &igb_get_stats;
1076         netdev->set_multicast_list = &igb_set_multi;
1077         netdev->set_mac_address = &igb_set_mac;
1078         netdev->change_mtu = &igb_change_mtu;
1079         netdev->do_ioctl = &igb_ioctl;
1080         igb_set_ethtool_ops(netdev);
1081         netdev->tx_timeout = &igb_tx_timeout;
1082         netdev->watchdog_timeo = 5 * HZ;
1083         netdev->vlan_rx_register = igb_vlan_rx_register;
1084         netdev->vlan_rx_add_vid = igb_vlan_rx_add_vid;
1085         netdev->vlan_rx_kill_vid = igb_vlan_rx_kill_vid;
1086 #ifdef CONFIG_NET_POLL_CONTROLLER
1087         netdev->poll_controller = igb_netpoll;
1088 #endif
1089         netdev->hard_start_xmit = &igb_xmit_frame_adv;
1090
1091         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1092
1093         netdev->mem_start = mmio_start;
1094         netdev->mem_end = mmio_start + mmio_len;
1095
1096         /* PCI config space info */
1097         hw->vendor_id = pdev->vendor;
1098         hw->device_id = pdev->device;
1099         hw->revision_id = pdev->revision;
1100         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1101         hw->subsystem_device_id = pdev->subsystem_device;
1102
1103         /* setup the private structure */
1104         hw->back = adapter;
1105         /* Copy the default MAC, PHY and NVM function pointers */
1106         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1107         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1108         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1109         /* Initialize skew-specific constants */
1110         err = ei->get_invariants(hw);
1111         if (err)
1112                 goto err_hw_init;
1113
1114         err = igb_sw_init(adapter);
1115         if (err)
1116                 goto err_sw_init;
1117
1118         igb_get_bus_info_pcie(hw);
1119
1120         /* set flags */
1121         switch (hw->mac.type) {
1122         case e1000_82576:
1123         case e1000_82575:
1124                 adapter->flags |= IGB_FLAG_HAS_DCA;
1125                 adapter->flags |= IGB_FLAG_NEED_CTX_IDX;
1126                 break;
1127         default:
1128                 break;
1129         }
1130
1131         hw->phy.autoneg_wait_to_complete = false;
1132         hw->mac.adaptive_ifs = true;
1133
1134         /* Copper options */
1135         if (hw->phy.media_type == e1000_media_type_copper) {
1136                 hw->phy.mdix = AUTO_ALL_MODES;
1137                 hw->phy.disable_polarity_correction = false;
1138                 hw->phy.ms_type = e1000_ms_hw_default;
1139         }
1140
1141         if (igb_check_reset_block(hw))
1142                 dev_info(&pdev->dev,
1143                         "PHY reset is blocked due to SOL/IDER session.\n");
1144
1145         netdev->features = NETIF_F_SG |
1146                            NETIF_F_HW_CSUM |
1147                            NETIF_F_HW_VLAN_TX |
1148                            NETIF_F_HW_VLAN_RX |
1149                            NETIF_F_HW_VLAN_FILTER;
1150
1151         netdev->features |= NETIF_F_TSO;
1152         netdev->features |= NETIF_F_TSO6;
1153
1154 #ifdef CONFIG_IGB_LRO
1155         netdev->features |= NETIF_F_LRO;
1156 #endif
1157
1158         netdev->vlan_features |= NETIF_F_TSO;
1159         netdev->vlan_features |= NETIF_F_TSO6;
1160         netdev->vlan_features |= NETIF_F_HW_CSUM;
1161         netdev->vlan_features |= NETIF_F_SG;
1162
1163         if (pci_using_dac)
1164                 netdev->features |= NETIF_F_HIGHDMA;
1165
1166 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1167         netdev->features |= NETIF_F_MULTI_QUEUE;
1168 #endif
1169
1170         netdev->features |= NETIF_F_LLTX;
1171         adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1172
1173         /* before reading the NVM, reset the controller to put the device in a
1174          * known good starting state */
1175         hw->mac.ops.reset_hw(hw);
1176
1177         /* make sure the NVM is good */
1178         if (igb_validate_nvm_checksum(hw) < 0) {
1179                 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1180                 err = -EIO;
1181                 goto err_eeprom;
1182         }
1183
1184         /* copy the MAC address out of the NVM */
1185         if (hw->mac.ops.read_mac_addr(hw))
1186                 dev_err(&pdev->dev, "NVM Read Error\n");
1187
1188         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1189         memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1190
1191         if (!is_valid_ether_addr(netdev->perm_addr)) {
1192                 dev_err(&pdev->dev, "Invalid MAC Address\n");
1193                 err = -EIO;
1194                 goto err_eeprom;
1195         }
1196
1197         init_timer(&adapter->watchdog_timer);
1198         adapter->watchdog_timer.function = &igb_watchdog;
1199         adapter->watchdog_timer.data = (unsigned long) adapter;
1200
1201         init_timer(&adapter->phy_info_timer);
1202         adapter->phy_info_timer.function = &igb_update_phy_info;
1203         adapter->phy_info_timer.data = (unsigned long) adapter;
1204
1205         INIT_WORK(&adapter->reset_task, igb_reset_task);
1206         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1207
1208         /* Initialize link & ring properties that are user-changeable */
1209         adapter->tx_ring->count = 256;
1210         for (i = 0; i < adapter->num_tx_queues; i++)
1211                 adapter->tx_ring[i].count = adapter->tx_ring->count;
1212         adapter->rx_ring->count = 256;
1213         for (i = 0; i < adapter->num_rx_queues; i++)
1214                 adapter->rx_ring[i].count = adapter->rx_ring->count;
1215
1216         adapter->fc_autoneg = true;
1217         hw->mac.autoneg = true;
1218         hw->phy.autoneg_advertised = 0x2f;
1219
1220         hw->fc.original_type = e1000_fc_default;
1221         hw->fc.type = e1000_fc_default;
1222
1223         adapter->itr_setting = 3;
1224         adapter->itr = IGB_START_ITR;
1225
1226         igb_validate_mdi_setting(hw);
1227
1228         adapter->rx_csum = 1;
1229
1230         /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1231          * enable the ACPI Magic Packet filter
1232          */
1233
1234         if (hw->bus.func == 0 ||
1235             hw->device_id == E1000_DEV_ID_82575EB_COPPER)
1236                 hw->nvm.ops.read_nvm(hw, NVM_INIT_CONTROL3_PORT_A, 1,
1237                                      &eeprom_data);
1238
1239         if (eeprom_data & eeprom_apme_mask)
1240                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1241
1242         /* now that we have the eeprom settings, apply the special cases where
1243          * the eeprom may be wrong or the board simply won't support wake on
1244          * lan on a particular port */
1245         switch (pdev->device) {
1246         case E1000_DEV_ID_82575GB_QUAD_COPPER:
1247                 adapter->eeprom_wol = 0;
1248                 break;
1249         case E1000_DEV_ID_82575EB_FIBER_SERDES:
1250         case E1000_DEV_ID_82576_FIBER:
1251         case E1000_DEV_ID_82576_SERDES:
1252                 /* Wake events only supported on port A for dual fiber
1253                  * regardless of eeprom setting */
1254                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1255                         adapter->eeprom_wol = 0;
1256                 break;
1257         case E1000_DEV_ID_82576_QUAD_COPPER:
1258                 /* if quad port adapter, disable WoL on all but port A */
1259                 if (global_quad_port_a != 0)
1260                         adapter->eeprom_wol = 0;
1261                 else
1262                         adapter->flags |= IGB_FLAG_QUAD_PORT_A;
1263                 /* Reset for multiple quad port adapters */
1264                 if (++global_quad_port_a == 4)
1265                         global_quad_port_a = 0;
1266                 break;
1267         }
1268
1269         /* initialize the wol settings based on the eeprom settings */
1270         adapter->wol = adapter->eeprom_wol;
1271
1272         /* reset the hardware with the new settings */
1273         igb_reset(adapter);
1274
1275         /* let the f/w know that the h/w is now under the control of the
1276          * driver. */
1277         igb_get_hw_control(adapter);
1278
1279         /* tell the stack to leave us alone until igb_open() is called */
1280         netif_carrier_off(netdev);
1281         netif_stop_queue(netdev);
1282 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1283         for (i = 0; i < adapter->num_tx_queues; i++)
1284                 netif_stop_subqueue(netdev, i);
1285 #endif
1286
1287         strcpy(netdev->name, "eth%d");
1288         err = register_netdev(netdev);
1289         if (err)
1290                 goto err_register;
1291
1292 #ifdef CONFIG_DCA
1293         if ((adapter->flags & IGB_FLAG_HAS_DCA) &&
1294             (dca_add_requester(&pdev->dev) == 0)) {
1295                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1296                 dev_info(&pdev->dev, "DCA enabled\n");
1297                 /* Always use CB2 mode, difference is masked
1298                  * in the CB driver. */
1299                 wr32(E1000_DCA_CTRL, 2);
1300                 igb_setup_dca(adapter);
1301         }
1302 #endif
1303
1304         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1305         /* print bus type/speed/width info */
1306         dev_info(&pdev->dev,
1307                  "%s: (PCIe:%s:%s) %02x:%02x:%02x:%02x:%02x:%02x\n",
1308                  netdev->name,
1309                  ((hw->bus.speed == e1000_bus_speed_2500)
1310                   ? "2.5Gb/s" : "unknown"),
1311                  ((hw->bus.width == e1000_bus_width_pcie_x4)
1312                   ? "Width x4" : (hw->bus.width == e1000_bus_width_pcie_x1)
1313                   ? "Width x1" : "unknown"),
1314                  netdev->dev_addr[0], netdev->dev_addr[1], netdev->dev_addr[2],
1315                  netdev->dev_addr[3], netdev->dev_addr[4], netdev->dev_addr[5]);
1316
1317         igb_read_part_num(hw, &part_num);
1318         dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1319                 (part_num >> 8), (part_num & 0xff));
1320
1321         dev_info(&pdev->dev,
1322                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1323                 adapter->msix_entries ? "MSI-X" :
1324                 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1325                 adapter->num_rx_queues, adapter->num_tx_queues);
1326
1327         return 0;
1328
1329 err_register:
1330         igb_release_hw_control(adapter);
1331 err_eeprom:
1332         if (!igb_check_reset_block(hw))
1333                 hw->phy.ops.reset_phy(hw);
1334
1335         if (hw->flash_address)
1336                 iounmap(hw->flash_address);
1337
1338         igb_remove_device(hw);
1339         igb_free_queues(adapter);
1340 err_sw_init:
1341 err_hw_init:
1342         iounmap(hw->hw_addr);
1343 err_ioremap:
1344         free_netdev(netdev);
1345 err_alloc_etherdev:
1346         pci_release_selected_regions(pdev, bars);
1347 err_pci_reg:
1348 err_dma:
1349         pci_disable_device(pdev);
1350         return err;
1351 }
1352
1353 /**
1354  * igb_remove - Device Removal Routine
1355  * @pdev: PCI device information struct
1356  *
1357  * igb_remove is called by the PCI subsystem to alert the driver
1358  * that it should release a PCI device.  The could be caused by a
1359  * Hot-Plug event, or because the driver is going to be removed from
1360  * memory.
1361  **/
1362 static void __devexit igb_remove(struct pci_dev *pdev)
1363 {
1364         struct net_device *netdev = pci_get_drvdata(pdev);
1365         struct igb_adapter *adapter = netdev_priv(netdev);
1366 #ifdef CONFIG_DCA
1367         struct e1000_hw *hw = &adapter->hw;
1368 #endif
1369
1370         /* flush_scheduled work may reschedule our watchdog task, so
1371          * explicitly disable watchdog tasks from being rescheduled  */
1372         set_bit(__IGB_DOWN, &adapter->state);
1373         del_timer_sync(&adapter->watchdog_timer);
1374         del_timer_sync(&adapter->phy_info_timer);
1375
1376         flush_scheduled_work();
1377
1378 #ifdef CONFIG_DCA
1379         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
1380                 dev_info(&pdev->dev, "DCA disabled\n");
1381                 dca_remove_requester(&pdev->dev);
1382                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
1383                 wr32(E1000_DCA_CTRL, 1);
1384         }
1385 #endif
1386
1387         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1388          * would have already happened in close and is redundant. */
1389         igb_release_hw_control(adapter);
1390
1391         unregister_netdev(netdev);
1392
1393         if (!igb_check_reset_block(&adapter->hw))
1394                 adapter->hw.phy.ops.reset_phy(&adapter->hw);
1395
1396         igb_remove_device(&adapter->hw);
1397         igb_reset_interrupt_capability(adapter);
1398
1399         igb_free_queues(adapter);
1400
1401         iounmap(adapter->hw.hw_addr);
1402         if (adapter->hw.flash_address)
1403                 iounmap(adapter->hw.flash_address);
1404         pci_release_selected_regions(pdev, adapter->bars);
1405
1406         free_netdev(netdev);
1407
1408         pci_disable_device(pdev);
1409 }
1410
1411 /**
1412  * igb_sw_init - Initialize general software structures (struct igb_adapter)
1413  * @adapter: board private structure to initialize
1414  *
1415  * igb_sw_init initializes the Adapter private data structure.
1416  * Fields are initialized based on PCI device information and
1417  * OS network device settings (MTU size).
1418  **/
1419 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1420 {
1421         struct e1000_hw *hw = &adapter->hw;
1422         struct net_device *netdev = adapter->netdev;
1423         struct pci_dev *pdev = adapter->pdev;
1424
1425         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1426
1427         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1428         adapter->rx_ps_hdr_size = 0; /* disable packet split */
1429         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1430         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1431
1432         /* Number of supported queues. */
1433         /* Having more queues than CPUs doesn't make sense. */
1434         adapter->num_rx_queues = min((u32)IGB_MAX_RX_QUEUES, (u32)num_online_cpus());
1435 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1436         adapter->num_tx_queues = min(IGB_MAX_TX_QUEUES, num_online_cpus());
1437 #else
1438         adapter->num_tx_queues = 1;
1439 #endif /* CONFIG_NET_MULTI_QUEUE_DEVICE */
1440
1441         /* This call may decrease the number of queues depending on
1442          * interrupt mode. */
1443         igb_set_interrupt_capability(adapter);
1444
1445         if (igb_alloc_queues(adapter)) {
1446                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1447                 return -ENOMEM;
1448         }
1449
1450         /* Explicitly disable IRQ since the NIC can be in any state. */
1451         igb_irq_disable(adapter);
1452
1453         set_bit(__IGB_DOWN, &adapter->state);
1454         return 0;
1455 }
1456
1457 /**
1458  * igb_open - Called when a network interface is made active
1459  * @netdev: network interface device structure
1460  *
1461  * Returns 0 on success, negative value on failure
1462  *
1463  * The open entry point is called when a network interface is made
1464  * active by the system (IFF_UP).  At this point all resources needed
1465  * for transmit and receive operations are allocated, the interrupt
1466  * handler is registered with the OS, the watchdog timer is started,
1467  * and the stack is notified that the interface is ready.
1468  **/
1469 static int igb_open(struct net_device *netdev)
1470 {
1471         struct igb_adapter *adapter = netdev_priv(netdev);
1472         struct e1000_hw *hw = &adapter->hw;
1473         int err;
1474         int i;
1475
1476         /* disallow open during test */
1477         if (test_bit(__IGB_TESTING, &adapter->state))
1478                 return -EBUSY;
1479
1480         /* allocate transmit descriptors */
1481         err = igb_setup_all_tx_resources(adapter);
1482         if (err)
1483                 goto err_setup_tx;
1484
1485         /* allocate receive descriptors */
1486         err = igb_setup_all_rx_resources(adapter);
1487         if (err)
1488                 goto err_setup_rx;
1489
1490         /* e1000_power_up_phy(adapter); */
1491
1492         adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1493         if ((adapter->hw.mng_cookie.status &
1494              E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1495                 igb_update_mng_vlan(adapter);
1496
1497         /* before we allocate an interrupt, we must be ready to handle it.
1498          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1499          * as soon as we call pci_request_irq, so we have to setup our
1500          * clean_rx handler before we do so.  */
1501         igb_configure(adapter);
1502
1503         err = igb_request_irq(adapter);
1504         if (err)
1505                 goto err_req_irq;
1506
1507         /* From here on the code is the same as igb_up() */
1508         clear_bit(__IGB_DOWN, &adapter->state);
1509
1510         for (i = 0; i < adapter->num_rx_queues; i++)
1511                 napi_enable(&adapter->rx_ring[i].napi);
1512
1513         /* Clear any pending interrupts. */
1514         rd32(E1000_ICR);
1515
1516         igb_irq_enable(adapter);
1517
1518         /* Fire a link status change interrupt to start the watchdog. */
1519         wr32(E1000_ICS, E1000_ICS_LSC);
1520
1521         return 0;
1522
1523 err_req_irq:
1524         igb_release_hw_control(adapter);
1525         /* e1000_power_down_phy(adapter); */
1526         igb_free_all_rx_resources(adapter);
1527 err_setup_rx:
1528         igb_free_all_tx_resources(adapter);
1529 err_setup_tx:
1530         igb_reset(adapter);
1531
1532         return err;
1533 }
1534
1535 /**
1536  * igb_close - Disables a network interface
1537  * @netdev: network interface device structure
1538  *
1539  * Returns 0, this is not allowed to fail
1540  *
1541  * The close entry point is called when an interface is de-activated
1542  * by the OS.  The hardware is still under the driver's control, but
1543  * needs to be disabled.  A global MAC reset is issued to stop the
1544  * hardware, and all transmit and receive resources are freed.
1545  **/
1546 static int igb_close(struct net_device *netdev)
1547 {
1548         struct igb_adapter *adapter = netdev_priv(netdev);
1549
1550         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1551         igb_down(adapter);
1552
1553         igb_free_irq(adapter);
1554
1555         igb_free_all_tx_resources(adapter);
1556         igb_free_all_rx_resources(adapter);
1557
1558         /* kill manageability vlan ID if supported, but not if a vlan with
1559          * the same ID is registered on the host OS (let 8021q kill it) */
1560         if ((adapter->hw.mng_cookie.status &
1561                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1562              !(adapter->vlgrp &&
1563                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1564                 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1565
1566         return 0;
1567 }
1568
1569 /**
1570  * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1571  * @adapter: board private structure
1572  * @tx_ring: tx descriptor ring (for a specific queue) to setup
1573  *
1574  * Return 0 on success, negative on failure
1575  **/
1576
1577 int igb_setup_tx_resources(struct igb_adapter *adapter,
1578                            struct igb_ring *tx_ring)
1579 {
1580         struct pci_dev *pdev = adapter->pdev;
1581         int size;
1582
1583         size = sizeof(struct igb_buffer) * tx_ring->count;
1584         tx_ring->buffer_info = vmalloc(size);
1585         if (!tx_ring->buffer_info)
1586                 goto err;
1587         memset(tx_ring->buffer_info, 0, size);
1588
1589         /* round up to nearest 4K */
1590         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc)
1591                         + sizeof(u32);
1592         tx_ring->size = ALIGN(tx_ring->size, 4096);
1593
1594         tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1595                                              &tx_ring->dma);
1596
1597         if (!tx_ring->desc)
1598                 goto err;
1599
1600         tx_ring->adapter = adapter;
1601         tx_ring->next_to_use = 0;
1602         tx_ring->next_to_clean = 0;
1603         return 0;
1604
1605 err:
1606         vfree(tx_ring->buffer_info);
1607         dev_err(&adapter->pdev->dev,
1608                 "Unable to allocate memory for the transmit descriptor ring\n");
1609         return -ENOMEM;
1610 }
1611
1612 /**
1613  * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1614  *                                (Descriptors) for all queues
1615  * @adapter: board private structure
1616  *
1617  * Return 0 on success, negative on failure
1618  **/
1619 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1620 {
1621         int i, err = 0;
1622 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1623         int r_idx;
1624 #endif  
1625
1626         for (i = 0; i < adapter->num_tx_queues; i++) {
1627                 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1628                 if (err) {
1629                         dev_err(&adapter->pdev->dev,
1630                                 "Allocation for Tx Queue %u failed\n", i);
1631                         for (i--; i >= 0; i--)
1632                                 igb_free_tx_resources(&adapter->tx_ring[i]);
1633                         break;
1634                 }
1635         }
1636
1637 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1638         for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
1639                 r_idx = i % adapter->num_tx_queues;
1640                 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
1641         }       
1642 #endif          
1643         return err;
1644 }
1645
1646 /**
1647  * igb_configure_tx - Configure transmit Unit after Reset
1648  * @adapter: board private structure
1649  *
1650  * Configure the Tx unit of the MAC after a reset.
1651  **/
1652 static void igb_configure_tx(struct igb_adapter *adapter)
1653 {
1654         u64 tdba, tdwba;
1655         struct e1000_hw *hw = &adapter->hw;
1656         u32 tctl;
1657         u32 txdctl, txctrl;
1658         int i;
1659
1660         for (i = 0; i < adapter->num_tx_queues; i++) {
1661                 struct igb_ring *ring = &(adapter->tx_ring[i]);
1662
1663                 wr32(E1000_TDLEN(i),
1664                                 ring->count * sizeof(struct e1000_tx_desc));
1665                 tdba = ring->dma;
1666                 wr32(E1000_TDBAL(i),
1667                                 tdba & 0x00000000ffffffffULL);
1668                 wr32(E1000_TDBAH(i), tdba >> 32);
1669
1670                 tdwba = ring->dma + ring->count * sizeof(struct e1000_tx_desc);
1671                 tdwba |= 1; /* enable head wb */
1672                 wr32(E1000_TDWBAL(i),
1673                                 tdwba & 0x00000000ffffffffULL);
1674                 wr32(E1000_TDWBAH(i), tdwba >> 32);
1675
1676                 ring->head = E1000_TDH(i);
1677                 ring->tail = E1000_TDT(i);
1678                 writel(0, hw->hw_addr + ring->tail);
1679                 writel(0, hw->hw_addr + ring->head);
1680                 txdctl = rd32(E1000_TXDCTL(i));
1681                 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1682                 wr32(E1000_TXDCTL(i), txdctl);
1683
1684                 /* Turn off Relaxed Ordering on head write-backs.  The
1685                  * writebacks MUST be delivered in order or it will
1686                  * completely screw up our bookeeping.
1687                  */
1688                 txctrl = rd32(E1000_DCA_TXCTRL(i));
1689                 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1690                 wr32(E1000_DCA_TXCTRL(i), txctrl);
1691         }
1692
1693
1694
1695         /* Use the default values for the Tx Inter Packet Gap (IPG) timer */
1696
1697         /* Program the Transmit Control Register */
1698
1699         tctl = rd32(E1000_TCTL);
1700         tctl &= ~E1000_TCTL_CT;
1701         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1702                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1703
1704         igb_config_collision_dist(hw);
1705
1706         /* Setup Transmit Descriptor Settings for eop descriptor */
1707         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1708
1709         /* Enable transmits */
1710         tctl |= E1000_TCTL_EN;
1711
1712         wr32(E1000_TCTL, tctl);
1713 }
1714
1715 /**
1716  * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1717  * @adapter: board private structure
1718  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
1719  *
1720  * Returns 0 on success, negative on failure
1721  **/
1722
1723 int igb_setup_rx_resources(struct igb_adapter *adapter,
1724                            struct igb_ring *rx_ring)
1725 {
1726         struct pci_dev *pdev = adapter->pdev;
1727         int size, desc_len;
1728
1729 #ifdef CONFIG_IGB_LRO
1730         size = sizeof(struct net_lro_desc) * MAX_LRO_DESCRIPTORS;
1731         rx_ring->lro_mgr.lro_arr = vmalloc(size);
1732         if (!rx_ring->lro_mgr.lro_arr)
1733                 goto err;
1734         memset(rx_ring->lro_mgr.lro_arr, 0, size);
1735 #endif
1736
1737         size = sizeof(struct igb_buffer) * rx_ring->count;
1738         rx_ring->buffer_info = vmalloc(size);
1739         if (!rx_ring->buffer_info)
1740                 goto err;
1741         memset(rx_ring->buffer_info, 0, size);
1742
1743         desc_len = sizeof(union e1000_adv_rx_desc);
1744
1745         /* Round up to nearest 4K */
1746         rx_ring->size = rx_ring->count * desc_len;
1747         rx_ring->size = ALIGN(rx_ring->size, 4096);
1748
1749         rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1750                                              &rx_ring->dma);
1751
1752         if (!rx_ring->desc)
1753                 goto err;
1754
1755         rx_ring->next_to_clean = 0;
1756         rx_ring->next_to_use = 0;
1757
1758         rx_ring->adapter = adapter;
1759
1760         return 0;
1761
1762 err:
1763 #ifdef CONFIG_IGB_LRO
1764         vfree(rx_ring->lro_mgr.lro_arr);
1765         rx_ring->lro_mgr.lro_arr = NULL;
1766 #endif
1767         vfree(rx_ring->buffer_info);
1768         dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
1769                 "the receive descriptor ring\n");
1770         return -ENOMEM;
1771 }
1772
1773 /**
1774  * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1775  *                                (Descriptors) for all queues
1776  * @adapter: board private structure
1777  *
1778  * Return 0 on success, negative on failure
1779  **/
1780 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
1781 {
1782         int i, err = 0;
1783
1784         for (i = 0; i < adapter->num_rx_queues; i++) {
1785                 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1786                 if (err) {
1787                         dev_err(&adapter->pdev->dev,
1788                                 "Allocation for Rx Queue %u failed\n", i);
1789                         for (i--; i >= 0; i--)
1790                                 igb_free_rx_resources(&adapter->rx_ring[i]);
1791                         break;
1792                 }
1793         }
1794
1795         return err;
1796 }
1797
1798 /**
1799  * igb_setup_rctl - configure the receive control registers
1800  * @adapter: Board private structure
1801  **/
1802 static void igb_setup_rctl(struct igb_adapter *adapter)
1803 {
1804         struct e1000_hw *hw = &adapter->hw;
1805         u32 rctl;
1806         u32 srrctl = 0;
1807         int i;
1808
1809         rctl = rd32(E1000_RCTL);
1810
1811         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1812
1813         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1814                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1815                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1816
1817         /*
1818          * enable stripping of CRC. It's unlikely this will break BMC
1819          * redirection as it did with e1000. Newer features require
1820          * that the HW strips the CRC.
1821         */
1822         rctl |= E1000_RCTL_SECRC;
1823
1824         rctl &= ~E1000_RCTL_SBP;
1825
1826         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1827                 rctl &= ~E1000_RCTL_LPE;
1828         else
1829                 rctl |= E1000_RCTL_LPE;
1830         if (adapter->rx_buffer_len <= IGB_RXBUFFER_2048) {
1831                 /* Setup buffer sizes */
1832                 rctl &= ~E1000_RCTL_SZ_4096;
1833                 rctl |= E1000_RCTL_BSEX;
1834                 switch (adapter->rx_buffer_len) {
1835                 case IGB_RXBUFFER_256:
1836                         rctl |= E1000_RCTL_SZ_256;
1837                         rctl &= ~E1000_RCTL_BSEX;
1838                         break;
1839                 case IGB_RXBUFFER_512:
1840                         rctl |= E1000_RCTL_SZ_512;
1841                         rctl &= ~E1000_RCTL_BSEX;
1842                         break;
1843                 case IGB_RXBUFFER_1024:
1844                         rctl |= E1000_RCTL_SZ_1024;
1845                         rctl &= ~E1000_RCTL_BSEX;
1846                         break;
1847                 case IGB_RXBUFFER_2048:
1848                 default:
1849                         rctl |= E1000_RCTL_SZ_2048;
1850                         rctl &= ~E1000_RCTL_BSEX;
1851                         break;
1852                 }
1853         } else {
1854                 rctl &= ~E1000_RCTL_BSEX;
1855                 srrctl = adapter->rx_buffer_len >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1856         }
1857
1858         /* 82575 and greater support packet-split where the protocol
1859          * header is placed in skb->data and the packet data is
1860          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1861          * In the case of a non-split, skb->data is linearly filled,
1862          * followed by the page buffers.  Therefore, skb->data is
1863          * sized to hold the largest protocol header.
1864          */
1865         /* allocations using alloc_page take too long for regular MTU
1866          * so only enable packet split for jumbo frames */
1867         if (rctl & E1000_RCTL_LPE) {
1868                 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
1869                 srrctl |= adapter->rx_ps_hdr_size <<
1870                          E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1871                 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1872         } else {
1873                 adapter->rx_ps_hdr_size = 0;
1874                 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1875         }
1876
1877         for (i = 0; i < adapter->num_rx_queues; i++)
1878                 wr32(E1000_SRRCTL(i), srrctl);
1879
1880         wr32(E1000_RCTL, rctl);
1881 }
1882
1883 /**
1884  * igb_configure_rx - Configure receive Unit after Reset
1885  * @adapter: board private structure
1886  *
1887  * Configure the Rx unit of the MAC after a reset.
1888  **/
1889 static void igb_configure_rx(struct igb_adapter *adapter)
1890 {
1891         u64 rdba;
1892         struct e1000_hw *hw = &adapter->hw;
1893         u32 rctl, rxcsum;
1894         u32 rxdctl;
1895         int i;
1896
1897         /* disable receives while setting up the descriptors */
1898         rctl = rd32(E1000_RCTL);
1899         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1900         wrfl();
1901         mdelay(10);
1902
1903         if (adapter->itr_setting > 3)
1904                 wr32(E1000_ITR, adapter->itr);
1905
1906         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1907          * the Base and Length of the Rx Descriptor Ring */
1908         for (i = 0; i < adapter->num_rx_queues; i++) {
1909                 struct igb_ring *ring = &(adapter->rx_ring[i]);
1910                 rdba = ring->dma;
1911                 wr32(E1000_RDBAL(i),
1912                                 rdba & 0x00000000ffffffffULL);
1913                 wr32(E1000_RDBAH(i), rdba >> 32);
1914                 wr32(E1000_RDLEN(i),
1915                                ring->count * sizeof(union e1000_adv_rx_desc));
1916
1917                 ring->head = E1000_RDH(i);
1918                 ring->tail = E1000_RDT(i);
1919                 writel(0, hw->hw_addr + ring->tail);
1920                 writel(0, hw->hw_addr + ring->head);
1921
1922                 rxdctl = rd32(E1000_RXDCTL(i));
1923                 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1924                 rxdctl &= 0xFFF00000;
1925                 rxdctl |= IGB_RX_PTHRESH;
1926                 rxdctl |= IGB_RX_HTHRESH << 8;
1927                 rxdctl |= IGB_RX_WTHRESH << 16;
1928                 wr32(E1000_RXDCTL(i), rxdctl);
1929 #ifdef CONFIG_IGB_LRO
1930                 /* Intitial LRO Settings */
1931                 ring->lro_mgr.max_aggr = MAX_LRO_AGGR;
1932                 ring->lro_mgr.max_desc = MAX_LRO_DESCRIPTORS;
1933                 ring->lro_mgr.get_skb_header = igb_get_skb_hdr;
1934                 ring->lro_mgr.features = LRO_F_NAPI | LRO_F_EXTRACT_VLAN_ID;
1935                 ring->lro_mgr.dev = adapter->netdev;
1936                 ring->lro_mgr.ip_summed = CHECKSUM_UNNECESSARY;
1937                 ring->lro_mgr.ip_summed_aggr = CHECKSUM_UNNECESSARY;
1938 #endif
1939         }
1940
1941         if (adapter->num_rx_queues > 1) {
1942                 u32 random[10];
1943                 u32 mrqc;
1944                 u32 j, shift;
1945                 union e1000_reta {
1946                         u32 dword;
1947                         u8  bytes[4];
1948                 } reta;
1949
1950                 get_random_bytes(&random[0], 40);
1951
1952                 if (hw->mac.type >= e1000_82576)
1953                         shift = 0;
1954                 else
1955                         shift = 6;
1956                 for (j = 0; j < (32 * 4); j++) {
1957                         reta.bytes[j & 3] =
1958                                 (j % adapter->num_rx_queues) << shift;
1959                         if ((j & 3) == 3)
1960                                 writel(reta.dword,
1961                                        hw->hw_addr + E1000_RETA(0) + (j & ~3));
1962                 }
1963                 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
1964
1965                 /* Fill out hash function seeds */
1966                 for (j = 0; j < 10; j++)
1967                         array_wr32(E1000_RSSRK(0), j, random[j]);
1968
1969                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
1970                          E1000_MRQC_RSS_FIELD_IPV4_TCP);
1971                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
1972                          E1000_MRQC_RSS_FIELD_IPV6_TCP);
1973                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
1974                          E1000_MRQC_RSS_FIELD_IPV6_UDP);
1975                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
1976                          E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
1977
1978
1979                 wr32(E1000_MRQC, mrqc);
1980
1981                 /* Multiqueue and raw packet checksumming are mutually
1982                  * exclusive.  Note that this not the same as TCP/IP
1983                  * checksumming, which works fine. */
1984                 rxcsum = rd32(E1000_RXCSUM);
1985                 rxcsum |= E1000_RXCSUM_PCSD;
1986                 wr32(E1000_RXCSUM, rxcsum);
1987         } else {
1988                 /* Enable Receive Checksum Offload for TCP and UDP */
1989                 rxcsum = rd32(E1000_RXCSUM);
1990                 if (adapter->rx_csum) {
1991                         rxcsum |= E1000_RXCSUM_TUOFL;
1992
1993                         /* Enable IPv4 payload checksum for UDP fragments
1994                          * Must be used in conjunction with packet-split. */
1995                         if (adapter->rx_ps_hdr_size)
1996                                 rxcsum |= E1000_RXCSUM_IPPCSE;
1997                 } else {
1998                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1999                         /* don't need to clear IPPCSE as it defaults to 0 */
2000                 }
2001                 wr32(E1000_RXCSUM, rxcsum);
2002         }
2003
2004         if (adapter->vlgrp)
2005                 wr32(E1000_RLPML,
2006                                 adapter->max_frame_size + VLAN_TAG_SIZE);
2007         else
2008                 wr32(E1000_RLPML, adapter->max_frame_size);
2009
2010         /* Enable Receives */
2011         wr32(E1000_RCTL, rctl);
2012 }
2013
2014 /**
2015  * igb_free_tx_resources - Free Tx Resources per Queue
2016  * @adapter: board private structure
2017  * @tx_ring: Tx descriptor ring for a specific queue
2018  *
2019  * Free all transmit software resources
2020  **/
2021 static void igb_free_tx_resources(struct igb_ring *tx_ring)
2022 {
2023         struct pci_dev *pdev = tx_ring->adapter->pdev;
2024
2025         igb_clean_tx_ring(tx_ring);
2026
2027         vfree(tx_ring->buffer_info);
2028         tx_ring->buffer_info = NULL;
2029
2030         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2031
2032         tx_ring->desc = NULL;
2033 }
2034
2035 /**
2036  * igb_free_all_tx_resources - Free Tx Resources for All Queues
2037  * @adapter: board private structure
2038  *
2039  * Free all transmit software resources
2040  **/
2041 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2042 {
2043         int i;
2044
2045         for (i = 0; i < adapter->num_tx_queues; i++)
2046                 igb_free_tx_resources(&adapter->tx_ring[i]);
2047 }
2048
2049 static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
2050                                            struct igb_buffer *buffer_info)
2051 {
2052         if (buffer_info->dma) {
2053                 pci_unmap_page(adapter->pdev,
2054                                 buffer_info->dma,
2055                                 buffer_info->length,
2056                                 PCI_DMA_TODEVICE);
2057                 buffer_info->dma = 0;
2058         }
2059         if (buffer_info->skb) {
2060                 dev_kfree_skb_any(buffer_info->skb);
2061                 buffer_info->skb = NULL;
2062         }
2063         buffer_info->time_stamp = 0;
2064         /* buffer_info must be completely set up in the transmit path */
2065 }
2066
2067 /**
2068  * igb_clean_tx_ring - Free Tx Buffers
2069  * @adapter: board private structure
2070  * @tx_ring: ring to be cleaned
2071  **/
2072 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2073 {
2074         struct igb_adapter *adapter = tx_ring->adapter;
2075         struct igb_buffer *buffer_info;
2076         unsigned long size;
2077         unsigned int i;
2078
2079         if (!tx_ring->buffer_info)
2080                 return;
2081         /* Free all the Tx ring sk_buffs */
2082
2083         for (i = 0; i < tx_ring->count; i++) {
2084                 buffer_info = &tx_ring->buffer_info[i];
2085                 igb_unmap_and_free_tx_resource(adapter, buffer_info);
2086         }
2087
2088         size = sizeof(struct igb_buffer) * tx_ring->count;
2089         memset(tx_ring->buffer_info, 0, size);
2090
2091         /* Zero out the descriptor ring */
2092
2093         memset(tx_ring->desc, 0, tx_ring->size);
2094
2095         tx_ring->next_to_use = 0;
2096         tx_ring->next_to_clean = 0;
2097
2098         writel(0, adapter->hw.hw_addr + tx_ring->head);
2099         writel(0, adapter->hw.hw_addr + tx_ring->tail);
2100 }
2101
2102 /**
2103  * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2104  * @adapter: board private structure
2105  **/
2106 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2107 {
2108         int i;
2109
2110         for (i = 0; i < adapter->num_tx_queues; i++)
2111                 igb_clean_tx_ring(&adapter->tx_ring[i]);
2112 }
2113
2114 /**
2115  * igb_free_rx_resources - Free Rx Resources
2116  * @adapter: board private structure
2117  * @rx_ring: ring to clean the resources from
2118  *
2119  * Free all receive software resources
2120  **/
2121 static void igb_free_rx_resources(struct igb_ring *rx_ring)
2122 {
2123         struct pci_dev *pdev = rx_ring->adapter->pdev;
2124
2125         igb_clean_rx_ring(rx_ring);
2126
2127         vfree(rx_ring->buffer_info);
2128         rx_ring->buffer_info = NULL;
2129
2130 #ifdef CONFIG_IGB_LRO
2131         vfree(rx_ring->lro_mgr.lro_arr);
2132         rx_ring->lro_mgr.lro_arr = NULL;
2133 #endif 
2134
2135         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2136
2137         rx_ring->desc = NULL;
2138 }
2139
2140 /**
2141  * igb_free_all_rx_resources - Free Rx Resources for All Queues
2142  * @adapter: board private structure
2143  *
2144  * Free all receive software resources
2145  **/
2146 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2147 {
2148         int i;
2149
2150         for (i = 0; i < adapter->num_rx_queues; i++)
2151                 igb_free_rx_resources(&adapter->rx_ring[i]);
2152 }
2153
2154 /**
2155  * igb_clean_rx_ring - Free Rx Buffers per Queue
2156  * @adapter: board private structure
2157  * @rx_ring: ring to free buffers from
2158  **/
2159 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2160 {
2161         struct igb_adapter *adapter = rx_ring->adapter;
2162         struct igb_buffer *buffer_info;
2163         struct pci_dev *pdev = adapter->pdev;
2164         unsigned long size;
2165         unsigned int i;
2166
2167         if (!rx_ring->buffer_info)
2168                 return;
2169         /* Free all the Rx ring sk_buffs */
2170         for (i = 0; i < rx_ring->count; i++) {
2171                 buffer_info = &rx_ring->buffer_info[i];
2172                 if (buffer_info->dma) {
2173                         if (adapter->rx_ps_hdr_size)
2174                                 pci_unmap_single(pdev, buffer_info->dma,
2175                                                  adapter->rx_ps_hdr_size,
2176                                                  PCI_DMA_FROMDEVICE);
2177                         else
2178                                 pci_unmap_single(pdev, buffer_info->dma,
2179                                                  adapter->rx_buffer_len,
2180                                                  PCI_DMA_FROMDEVICE);
2181                         buffer_info->dma = 0;
2182                 }
2183
2184                 if (buffer_info->skb) {
2185                         dev_kfree_skb(buffer_info->skb);
2186                         buffer_info->skb = NULL;
2187                 }
2188                 if (buffer_info->page) {
2189                         if (buffer_info->page_dma)
2190                                 pci_unmap_page(pdev, buffer_info->page_dma,
2191                                                PAGE_SIZE / 2,
2192                                                PCI_DMA_FROMDEVICE);
2193                         put_page(buffer_info->page);
2194                         buffer_info->page = NULL;
2195                         buffer_info->page_dma = 0;
2196                         buffer_info->page_offset = 0;
2197                 }
2198         }
2199
2200         size = sizeof(struct igb_buffer) * rx_ring->count;
2201         memset(rx_ring->buffer_info, 0, size);
2202
2203         /* Zero out the descriptor ring */
2204         memset(rx_ring->desc, 0, rx_ring->size);
2205
2206         rx_ring->next_to_clean = 0;
2207         rx_ring->next_to_use = 0;
2208
2209         writel(0, adapter->hw.hw_addr + rx_ring->head);
2210         writel(0, adapter->hw.hw_addr + rx_ring->tail);
2211 }
2212
2213 /**
2214  * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2215  * @adapter: board private structure
2216  **/
2217 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2218 {
2219         int i;
2220
2221         for (i = 0; i < adapter->num_rx_queues; i++)
2222                 igb_clean_rx_ring(&adapter->rx_ring[i]);
2223 }
2224
2225 /**
2226  * igb_set_mac - Change the Ethernet Address of the NIC
2227  * @netdev: network interface device structure
2228  * @p: pointer to an address structure
2229  *
2230  * Returns 0 on success, negative on failure
2231  **/
2232 static int igb_set_mac(struct net_device *netdev, void *p)
2233 {
2234         struct igb_adapter *adapter = netdev_priv(netdev);
2235         struct sockaddr *addr = p;
2236
2237         if (!is_valid_ether_addr(addr->sa_data))
2238                 return -EADDRNOTAVAIL;
2239
2240         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2241         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
2242
2243         adapter->hw.mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2244
2245         return 0;
2246 }
2247
2248 /**
2249  * igb_set_multi - Multicast and Promiscuous mode set
2250  * @netdev: network interface device structure
2251  *
2252  * The set_multi entry point is called whenever the multicast address
2253  * list or the network interface flags are updated.  This routine is
2254  * responsible for configuring the hardware for proper multicast,
2255  * promiscuous mode, and all-multi behavior.
2256  **/
2257 static void igb_set_multi(struct net_device *netdev)
2258 {
2259         struct igb_adapter *adapter = netdev_priv(netdev);
2260         struct e1000_hw *hw = &adapter->hw;
2261         struct e1000_mac_info *mac = &hw->mac;
2262         struct dev_mc_list *mc_ptr;
2263         u8  *mta_list;
2264         u32 rctl;
2265         int i;
2266
2267         /* Check for Promiscuous and All Multicast modes */
2268
2269         rctl = rd32(E1000_RCTL);
2270
2271         if (netdev->flags & IFF_PROMISC) {
2272                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2273                 rctl &= ~E1000_RCTL_VFE;
2274         } else {
2275                 if (netdev->flags & IFF_ALLMULTI) {
2276                         rctl |= E1000_RCTL_MPE;
2277                         rctl &= ~E1000_RCTL_UPE;
2278                 } else
2279                         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2280                 if (adapter->vlgrp)
2281                         rctl |= E1000_RCTL_VFE;
2282         }
2283         wr32(E1000_RCTL, rctl);
2284
2285         if (!netdev->mc_count) {
2286                 /* nothing to program, so clear mc list */
2287                 igb_update_mc_addr_list_82575(hw, NULL, 0, 1,
2288                                           mac->rar_entry_count);
2289                 return;
2290         }
2291
2292         mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2293         if (!mta_list)
2294                 return;
2295
2296         /* The shared function expects a packed array of only addresses. */
2297         mc_ptr = netdev->mc_list;
2298
2299         for (i = 0; i < netdev->mc_count; i++) {
2300                 if (!mc_ptr)
2301                         break;
2302                 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2303                 mc_ptr = mc_ptr->next;
2304         }
2305         igb_update_mc_addr_list_82575(hw, mta_list, i, 1,
2306                                       mac->rar_entry_count);
2307         kfree(mta_list);
2308 }
2309
2310 /* Need to wait a few seconds after link up to get diagnostic information from
2311  * the phy */
2312 static void igb_update_phy_info(unsigned long data)
2313 {
2314         struct igb_adapter *adapter = (struct igb_adapter *) data;
2315         if (adapter->hw.phy.ops.get_phy_info)
2316                 adapter->hw.phy.ops.get_phy_info(&adapter->hw);
2317 }
2318
2319 /**
2320  * igb_watchdog - Timer Call-back
2321  * @data: pointer to adapter cast into an unsigned long
2322  **/
2323 static void igb_watchdog(unsigned long data)
2324 {
2325         struct igb_adapter *adapter = (struct igb_adapter *)data;
2326         /* Do the rest outside of interrupt context */
2327         schedule_work(&adapter->watchdog_task);
2328 }
2329
2330 static void igb_watchdog_task(struct work_struct *work)
2331 {
2332         struct igb_adapter *adapter = container_of(work,
2333                                         struct igb_adapter, watchdog_task);
2334         struct e1000_hw *hw = &adapter->hw;
2335
2336         struct net_device *netdev = adapter->netdev;
2337         struct igb_ring *tx_ring = adapter->tx_ring;
2338         struct e1000_mac_info *mac = &adapter->hw.mac;
2339         u32 link;
2340         s32 ret_val;
2341 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
2342         int i;
2343 #endif
2344
2345         if ((netif_carrier_ok(netdev)) &&
2346             (rd32(E1000_STATUS) & E1000_STATUS_LU))
2347                 goto link_up;
2348
2349         ret_val = hw->mac.ops.check_for_link(&adapter->hw);
2350         if ((ret_val == E1000_ERR_PHY) &&
2351             (hw->phy.type == e1000_phy_igp_3) &&
2352             (rd32(E1000_CTRL) &
2353              E1000_PHY_CTRL_GBE_DISABLE))
2354                 dev_info(&adapter->pdev->dev,
2355                          "Gigabit has been disabled, downgrading speed\n");
2356
2357         if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
2358             !(rd32(E1000_TXCW) & E1000_TXCW_ANE))
2359                 link = mac->serdes_has_link;
2360         else
2361                 link = rd32(E1000_STATUS) &
2362                                       E1000_STATUS_LU;
2363
2364         if (link) {
2365                 if (!netif_carrier_ok(netdev)) {
2366                         u32 ctrl;
2367                         hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2368                                                    &adapter->link_speed,
2369                                                    &adapter->link_duplex);
2370
2371                         ctrl = rd32(E1000_CTRL);
2372                         dev_info(&adapter->pdev->dev,
2373                                  "NIC Link is Up %d Mbps %s, "
2374                                  "Flow Control: %s\n",
2375                                  adapter->link_speed,
2376                                  adapter->link_duplex == FULL_DUPLEX ?
2377                                  "Full Duplex" : "Half Duplex",
2378                                  ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2379                                  E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2380                                  E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2381                                  E1000_CTRL_TFCE) ? "TX" : "None")));
2382
2383                         /* tweak tx_queue_len according to speed/duplex and
2384                          * adjust the timeout factor */
2385                         netdev->tx_queue_len = adapter->tx_queue_len;
2386                         adapter->tx_timeout_factor = 1;
2387                         switch (adapter->link_speed) {
2388                         case SPEED_10:
2389                                 netdev->tx_queue_len = 10;
2390                                 adapter->tx_timeout_factor = 14;
2391                                 break;
2392                         case SPEED_100:
2393                                 netdev->tx_queue_len = 100;
2394                                 /* maybe add some timeout factor ? */
2395                                 break;
2396                         }
2397
2398                         netif_carrier_on(netdev);
2399                         netif_wake_queue(netdev);
2400 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
2401                         for (i = 0; i < adapter->num_tx_queues; i++)
2402                                 netif_wake_subqueue(netdev, i);
2403 #endif
2404
2405                         if (!test_bit(__IGB_DOWN, &adapter->state))
2406                                 mod_timer(&adapter->phy_info_timer,
2407                                           round_jiffies(jiffies + 2 * HZ));
2408                 }
2409         } else {
2410                 if (netif_carrier_ok(netdev)) {
2411                         adapter->link_speed = 0;
2412                         adapter->link_duplex = 0;
2413                         dev_info(&adapter->pdev->dev, "NIC Link is Down\n");
2414                         netif_carrier_off(netdev);
2415                         netif_stop_queue(netdev);
2416 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
2417                         for (i = 0; i < adapter->num_tx_queues; i++)
2418                                 netif_stop_subqueue(netdev, i);
2419 #endif
2420                         if (!test_bit(__IGB_DOWN, &adapter->state))
2421                                 mod_timer(&adapter->phy_info_timer,
2422                                           round_jiffies(jiffies + 2 * HZ));
2423                 }
2424         }
2425
2426 link_up:
2427         igb_update_stats(adapter);
2428
2429         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2430         adapter->tpt_old = adapter->stats.tpt;
2431         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
2432         adapter->colc_old = adapter->stats.colc;
2433
2434         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2435         adapter->gorc_old = adapter->stats.gorc;
2436         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2437         adapter->gotc_old = adapter->stats.gotc;
2438
2439         igb_update_adaptive(&adapter->hw);
2440
2441         if (!netif_carrier_ok(netdev)) {
2442                 if (IGB_DESC_UNUSED(tx_ring) + 1 < tx_ring->count) {
2443                         /* We've lost link, so the controller stops DMA,
2444                          * but we've got queued Tx work that's never going
2445                          * to get done, so reset controller to flush Tx.
2446                          * (Do the reset outside of interrupt context). */
2447                         adapter->tx_timeout_count++;
2448                         schedule_work(&adapter->reset_task);
2449                 }
2450         }
2451
2452         /* Cause software interrupt to ensure rx ring is cleaned */
2453         wr32(E1000_ICS, E1000_ICS_RXDMT0);
2454
2455         /* Force detection of hung controller every watchdog period */
2456         tx_ring->detect_tx_hung = true;
2457
2458         /* Reset the timer */
2459         if (!test_bit(__IGB_DOWN, &adapter->state))
2460                 mod_timer(&adapter->watchdog_timer,
2461                           round_jiffies(jiffies + 2 * HZ));
2462 }
2463
2464 enum latency_range {
2465         lowest_latency = 0,
2466         low_latency = 1,
2467         bulk_latency = 2,
2468         latency_invalid = 255
2469 };
2470
2471
2472 /**
2473  * igb_update_ring_itr - update the dynamic ITR value based on packet size
2474  *
2475  *      Stores a new ITR value based on strictly on packet size.  This
2476  *      algorithm is less sophisticated than that used in igb_update_itr,
2477  *      due to the difficulty of synchronizing statistics across multiple
2478  *      receive rings.  The divisors and thresholds used by this fuction
2479  *      were determined based on theoretical maximum wire speed and testing
2480  *      data, in order to minimize response time while increasing bulk
2481  *      throughput.
2482  *      This functionality is controlled by the InterruptThrottleRate module
2483  *      parameter (see igb_param.c)
2484  *      NOTE:  This function is called only when operating in a multiqueue
2485  *             receive environment.
2486  * @rx_ring: pointer to ring
2487  **/
2488 static void igb_update_ring_itr(struct igb_ring *rx_ring)
2489 {
2490         int new_val = rx_ring->itr_val;
2491         int avg_wire_size = 0;
2492         struct igb_adapter *adapter = rx_ring->adapter;
2493
2494         if (!rx_ring->total_packets)
2495                 goto clear_counts; /* no packets, so don't do anything */
2496
2497         /* For non-gigabit speeds, just fix the interrupt rate at 4000
2498          * ints/sec - ITR timer value of 120 ticks.
2499          */
2500         if (adapter->link_speed != SPEED_1000) {
2501                 new_val = 120;
2502                 goto set_itr_val;
2503         }
2504         avg_wire_size = rx_ring->total_bytes / rx_ring->total_packets;
2505
2506         /* Add 24 bytes to size to account for CRC, preamble, and gap */
2507         avg_wire_size += 24;
2508
2509         /* Don't starve jumbo frames */
2510         avg_wire_size = min(avg_wire_size, 3000);
2511
2512         /* Give a little boost to mid-size frames */
2513         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
2514                 new_val = avg_wire_size / 3;
2515         else
2516                 new_val = avg_wire_size / 2;
2517
2518 set_itr_val:
2519         if (new_val != rx_ring->itr_val) {
2520                 rx_ring->itr_val = new_val;
2521                 rx_ring->set_itr = 1;
2522         }
2523 clear_counts:
2524         rx_ring->total_bytes = 0;
2525         rx_ring->total_packets = 0;
2526 }
2527
2528 /**
2529  * igb_update_itr - update the dynamic ITR value based on statistics
2530  *      Stores a new ITR value based on packets and byte
2531  *      counts during the last interrupt.  The advantage of per interrupt
2532  *      computation is faster updates and more accurate ITR for the current
2533  *      traffic pattern.  Constants in this function were computed
2534  *      based on theoretical maximum wire speed and thresholds were set based
2535  *      on testing data as well as attempting to minimize response time
2536  *      while increasing bulk throughput.
2537  *      this functionality is controlled by the InterruptThrottleRate module
2538  *      parameter (see igb_param.c)
2539  *      NOTE:  These calculations are only valid when operating in a single-
2540  *             queue environment.
2541  * @adapter: pointer to adapter
2542  * @itr_setting: current adapter->itr
2543  * @packets: the number of packets during this measurement interval
2544  * @bytes: the number of bytes during this measurement interval
2545  **/
2546 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2547                                    int packets, int bytes)
2548 {
2549         unsigned int retval = itr_setting;
2550
2551         if (packets == 0)
2552                 goto update_itr_done;
2553
2554         switch (itr_setting) {
2555         case lowest_latency:
2556                 /* handle TSO and jumbo frames */
2557                 if (bytes/packets > 8000)
2558                         retval = bulk_latency;
2559                 else if ((packets < 5) && (bytes > 512))
2560                         retval = low_latency;
2561                 break;
2562         case low_latency:  /* 50 usec aka 20000 ints/s */
2563                 if (bytes > 10000) {
2564                         /* this if handles the TSO accounting */
2565                         if (bytes/packets > 8000) {
2566                                 retval = bulk_latency;
2567                         } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2568                                 retval = bulk_latency;
2569                         } else if ((packets > 35)) {
2570                                 retval = lowest_latency;
2571                         }
2572                 } else if (bytes/packets > 2000) {
2573                         retval = bulk_latency;
2574                 } else if (packets <= 2 && bytes < 512) {
2575                         retval = lowest_latency;
2576                 }
2577                 break;
2578         case bulk_latency: /* 250 usec aka 4000 ints/s */
2579                 if (bytes > 25000) {
2580                         if (packets > 35)
2581                                 retval = low_latency;
2582                 } else if (bytes < 6000) {
2583                         retval = low_latency;
2584                 }
2585                 break;
2586         }
2587
2588 update_itr_done:
2589         return retval;
2590 }
2591
2592 static void igb_set_itr(struct igb_adapter *adapter)
2593 {
2594         u16 current_itr;
2595         u32 new_itr = adapter->itr;
2596
2597         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2598         if (adapter->link_speed != SPEED_1000) {
2599                 current_itr = 0;
2600                 new_itr = 4000;
2601                 goto set_itr_now;
2602         }
2603
2604         adapter->rx_itr = igb_update_itr(adapter,
2605                                     adapter->rx_itr,
2606                                     adapter->rx_ring->total_packets,
2607                                     adapter->rx_ring->total_bytes);
2608
2609         if (adapter->rx_ring->buddy) {
2610                 adapter->tx_itr = igb_update_itr(adapter,
2611                                             adapter->tx_itr,
2612                                             adapter->tx_ring->total_packets,
2613                                             adapter->tx_ring->total_bytes);
2614
2615                 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2616         } else {
2617                 current_itr = adapter->rx_itr;
2618         }
2619
2620         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2621         if (adapter->itr_setting == 3 &&
2622             current_itr == lowest_latency)
2623                 current_itr = low_latency;
2624
2625         switch (current_itr) {
2626         /* counts and packets in update_itr are dependent on these numbers */
2627         case lowest_latency:
2628                 new_itr = 70000;
2629                 break;
2630         case low_latency:
2631                 new_itr = 20000; /* aka hwitr = ~200 */
2632                 break;
2633         case bulk_latency:
2634                 new_itr = 4000;
2635                 break;
2636         default:
2637                 break;
2638         }
2639
2640 set_itr_now:
2641         adapter->rx_ring->total_bytes = 0;
2642         adapter->rx_ring->total_packets = 0;
2643         if (adapter->rx_ring->buddy) {
2644                 adapter->rx_ring->buddy->total_bytes = 0;
2645                 adapter->rx_ring->buddy->total_packets = 0;
2646         }
2647
2648         if (new_itr != adapter->itr) {
2649                 /* this attempts to bias the interrupt rate towards Bulk
2650                  * by adding intermediate steps when interrupt rate is
2651                  * increasing */
2652                 new_itr = new_itr > adapter->itr ?
2653                              min(adapter->itr + (new_itr >> 2), new_itr) :
2654                              new_itr;
2655                 /* Don't write the value here; it resets the adapter's
2656                  * internal timer, and causes us to delay far longer than
2657                  * we should between interrupts.  Instead, we write the ITR
2658                  * value at the beginning of the next interrupt so the timing
2659                  * ends up being correct.
2660                  */
2661                 adapter->itr = new_itr;
2662                 adapter->rx_ring->itr_val = 1000000000 / (new_itr * 256);
2663                 adapter->rx_ring->set_itr = 1;
2664         }
2665
2666         return;
2667 }
2668
2669
2670 #define IGB_TX_FLAGS_CSUM               0x00000001
2671 #define IGB_TX_FLAGS_VLAN               0x00000002
2672 #define IGB_TX_FLAGS_TSO                0x00000004
2673 #define IGB_TX_FLAGS_IPV4               0x00000008
2674 #define IGB_TX_FLAGS_VLAN_MASK  0xffff0000
2675 #define IGB_TX_FLAGS_VLAN_SHIFT 16
2676
2677 static inline int igb_tso_adv(struct igb_adapter *adapter,
2678                               struct igb_ring *tx_ring,
2679                               struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2680 {
2681         struct e1000_adv_tx_context_desc *context_desc;
2682         unsigned int i;
2683         int err;
2684         struct igb_buffer *buffer_info;
2685         u32 info = 0, tu_cmd = 0;
2686         u32 mss_l4len_idx, l4len;
2687         *hdr_len = 0;
2688
2689         if (skb_header_cloned(skb)) {
2690                 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2691                 if (err)
2692                         return err;
2693         }
2694
2695         l4len = tcp_hdrlen(skb);
2696         *hdr_len += l4len;
2697
2698         if (skb->protocol == htons(ETH_P_IP)) {
2699                 struct iphdr *iph = ip_hdr(skb);
2700                 iph->tot_len = 0;
2701                 iph->check = 0;
2702                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2703                                                          iph->daddr, 0,
2704                                                          IPPROTO_TCP,
2705                                                          0);
2706         } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2707                 ipv6_hdr(skb)->payload_len = 0;
2708                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2709                                                        &ipv6_hdr(skb)->daddr,
2710                                                        0, IPPROTO_TCP, 0);
2711         }
2712
2713         i = tx_ring->next_to_use;
2714
2715         buffer_info = &tx_ring->buffer_info[i];
2716         context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2717         /* VLAN MACLEN IPLEN */
2718         if (tx_flags & IGB_TX_FLAGS_VLAN)
2719                 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2720         info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2721         *hdr_len += skb_network_offset(skb);
2722         info |= skb_network_header_len(skb);
2723         *hdr_len += skb_network_header_len(skb);
2724         context_desc->vlan_macip_lens = cpu_to_le32(info);
2725
2726         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2727         tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2728
2729         if (skb->protocol == htons(ETH_P_IP))
2730                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2731         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2732
2733         context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2734
2735         /* MSS L4LEN IDX */
2736         mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
2737         mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
2738
2739         /* Context index must be unique per ring. */
2740         if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2741                 mss_l4len_idx |= tx_ring->queue_index << 4;
2742
2743         context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2744         context_desc->seqnum_seed = 0;
2745
2746         buffer_info->time_stamp = jiffies;
2747         buffer_info->dma = 0;
2748         i++;
2749         if (i == tx_ring->count)
2750                 i = 0;
2751
2752         tx_ring->next_to_use = i;
2753
2754         return true;
2755 }
2756
2757 static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
2758                                         struct igb_ring *tx_ring,
2759                                         struct sk_buff *skb, u32 tx_flags)
2760 {
2761         struct e1000_adv_tx_context_desc *context_desc;
2762         unsigned int i;
2763         struct igb_buffer *buffer_info;
2764         u32 info = 0, tu_cmd = 0;
2765
2766         if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2767             (tx_flags & IGB_TX_FLAGS_VLAN)) {
2768                 i = tx_ring->next_to_use;
2769                 buffer_info = &tx_ring->buffer_info[i];
2770                 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2771
2772                 if (tx_flags & IGB_TX_FLAGS_VLAN)
2773                         info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2774                 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2775                 if (skb->ip_summed == CHECKSUM_PARTIAL)
2776                         info |= skb_network_header_len(skb);
2777
2778                 context_desc->vlan_macip_lens = cpu_to_le32(info);
2779
2780                 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2781
2782                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2783                         switch (skb->protocol) {
2784                         case __constant_htons(ETH_P_IP):
2785                                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2786                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2787                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2788                                 break;
2789                         case __constant_htons(ETH_P_IPV6):
2790                                 /* XXX what about other V6 headers?? */
2791                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2792                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2793                                 break;
2794                         default:
2795                                 if (unlikely(net_ratelimit()))
2796                                         dev_warn(&adapter->pdev->dev,
2797                                             "partial checksum but proto=%x!\n",
2798                                             skb->protocol);
2799                                 break;
2800                         }
2801                 }
2802
2803                 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2804                 context_desc->seqnum_seed = 0;
2805                 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2806                         context_desc->mss_l4len_idx =
2807                                 cpu_to_le32(tx_ring->queue_index << 4);
2808
2809                 buffer_info->time_stamp = jiffies;
2810                 buffer_info->dma = 0;
2811
2812                 i++;
2813                 if (i == tx_ring->count)
2814                         i = 0;
2815                 tx_ring->next_to_use = i;
2816
2817                 return true;
2818         }
2819
2820
2821         return false;
2822 }
2823
2824 #define IGB_MAX_TXD_PWR 16
2825 #define IGB_MAX_DATA_PER_TXD    (1<<IGB_MAX_TXD_PWR)
2826
2827 static inline int igb_tx_map_adv(struct igb_adapter *adapter,
2828                                  struct igb_ring *tx_ring,
2829                                  struct sk_buff *skb)
2830 {
2831         struct igb_buffer *buffer_info;
2832         unsigned int len = skb_headlen(skb);
2833         unsigned int count = 0, i;
2834         unsigned int f;
2835
2836         i = tx_ring->next_to_use;
2837
2838         buffer_info = &tx_ring->buffer_info[i];
2839         BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2840         buffer_info->length = len;
2841         /* set time_stamp *before* dma to help avoid a possible race */
2842         buffer_info->time_stamp = jiffies;
2843         buffer_info->dma = pci_map_single(adapter->pdev, skb->data, len,
2844                                           PCI_DMA_TODEVICE);
2845         count++;
2846         i++;
2847         if (i == tx_ring->count)
2848                 i = 0;
2849
2850         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2851                 struct skb_frag_struct *frag;
2852
2853                 frag = &skb_shinfo(skb)->frags[f];
2854                 len = frag->size;
2855
2856                 buffer_info = &tx_ring->buffer_info[i];
2857                 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2858                 buffer_info->length = len;
2859                 buffer_info->time_stamp = jiffies;
2860                 buffer_info->dma = pci_map_page(adapter->pdev,
2861                                                 frag->page,
2862                                                 frag->page_offset,
2863                                                 len,
2864                                                 PCI_DMA_TODEVICE);
2865
2866                 count++;
2867                 i++;
2868                 if (i == tx_ring->count)
2869                         i = 0;
2870         }
2871
2872         i = (i == 0) ? tx_ring->count - 1 : i - 1;
2873         tx_ring->buffer_info[i].skb = skb;
2874
2875         return count;
2876 }
2877
2878 static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
2879                                     struct igb_ring *tx_ring,
2880                                     int tx_flags, int count, u32 paylen,
2881                                     u8 hdr_len)
2882 {
2883         union e1000_adv_tx_desc *tx_desc = NULL;
2884         struct igb_buffer *buffer_info;
2885         u32 olinfo_status = 0, cmd_type_len;
2886         unsigned int i;
2887
2888         cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2889                         E1000_ADVTXD_DCMD_DEXT);
2890
2891         if (tx_flags & IGB_TX_FLAGS_VLAN)
2892                 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2893
2894         if (tx_flags & IGB_TX_FLAGS_TSO) {
2895                 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2896
2897                 /* insert tcp checksum */
2898                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2899
2900                 /* insert ip checksum */
2901                 if (tx_flags & IGB_TX_FLAGS_IPV4)
2902                         olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2903
2904         } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
2905                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2906         }
2907
2908         if ((adapter->flags & IGB_FLAG_NEED_CTX_IDX) &&
2909             (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
2910                          IGB_TX_FLAGS_VLAN)))
2911                 olinfo_status |= tx_ring->queue_index << 4;
2912
2913         olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2914
2915         i = tx_ring->next_to_use;
2916         while (count--) {
2917                 buffer_info = &tx_ring->buffer_info[i];
2918                 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
2919                 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2920                 tx_desc->read.cmd_type_len =
2921                         cpu_to_le32(cmd_type_len | buffer_info->length);
2922                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2923                 i++;
2924                 if (i == tx_ring->count)
2925                         i = 0;
2926         }
2927
2928         tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2929         /* Force memory writes to complete before letting h/w
2930          * know there are new descriptors to fetch.  (Only
2931          * applicable for weak-ordered memory model archs,
2932          * such as IA-64). */
2933         wmb();
2934
2935         tx_ring->next_to_use = i;
2936         writel(i, adapter->hw.hw_addr + tx_ring->tail);
2937         /* we need this if more than one processor can write to our tail
2938          * at a time, it syncronizes IO on IA64/Altix systems */
2939         mmiowb();
2940 }
2941
2942 static int __igb_maybe_stop_tx(struct net_device *netdev,
2943                                struct igb_ring *tx_ring, int size)
2944 {
2945         struct igb_adapter *adapter = netdev_priv(netdev);
2946
2947 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
2948         netif_stop_subqueue(netdev, tx_ring->queue_index);
2949 #else
2950         netif_stop_queue(netdev);
2951 #endif
2952
2953         /* Herbert's original patch had:
2954          *  smp_mb__after_netif_stop_queue();
2955          * but since that doesn't exist yet, just open code it. */
2956         smp_mb();
2957
2958         /* We need to check again in a case another CPU has just
2959          * made room available. */
2960         if (IGB_DESC_UNUSED(tx_ring) < size)
2961                 return -EBUSY;
2962
2963         /* A reprieve! */
2964 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
2965         netif_wake_subqueue(netdev, tx_ring->queue_index);
2966 #else
2967         netif_wake_queue(netdev);
2968 #endif  
2969         ++adapter->restart_queue;
2970         return 0;
2971 }
2972
2973 static int igb_maybe_stop_tx(struct net_device *netdev,
2974                              struct igb_ring *tx_ring, int size)
2975 {
2976         if (IGB_DESC_UNUSED(tx_ring) >= size)
2977                 return 0;
2978         return __igb_maybe_stop_tx(netdev, tx_ring, size);
2979 }
2980
2981 #define TXD_USE_COUNT(S) (((S) >> (IGB_MAX_TXD_PWR)) + 1)
2982
2983 static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
2984                                    struct net_device *netdev,
2985                                    struct igb_ring *tx_ring)
2986 {
2987         struct igb_adapter *adapter = netdev_priv(netdev);
2988         unsigned int tx_flags = 0;
2989         unsigned int len;
2990         u8 hdr_len = 0;
2991         int tso = 0;
2992
2993         len = skb_headlen(skb);
2994
2995         if (test_bit(__IGB_DOWN, &adapter->state)) {
2996                 dev_kfree_skb_any(skb);
2997                 return NETDEV_TX_OK;
2998         }
2999
3000         if (skb->len <= 0) {
3001                 dev_kfree_skb_any(skb);
3002                 return NETDEV_TX_OK;
3003         }
3004
3005         /* need: 1 descriptor per page,
3006          *       + 2 desc gap to keep tail from touching head,
3007          *       + 1 desc for skb->data,
3008          *       + 1 desc for context descriptor,
3009          * otherwise try next time */
3010         if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
3011                 /* this is a hard error */
3012                 return NETDEV_TX_BUSY;
3013         }
3014         skb_orphan(skb);
3015
3016         if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
3017                 tx_flags |= IGB_TX_FLAGS_VLAN;
3018                 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
3019         }
3020
3021         if (skb->protocol == htons(ETH_P_IP))
3022                 tx_flags |= IGB_TX_FLAGS_IPV4;
3023
3024         tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
3025                                               &hdr_len) : 0;
3026
3027         if (tso < 0) {
3028                 dev_kfree_skb_any(skb);
3029                 return NETDEV_TX_OK;
3030         }
3031
3032         if (tso)
3033                 tx_flags |= IGB_TX_FLAGS_TSO;
3034         else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags))
3035                         if (skb->ip_summed == CHECKSUM_PARTIAL)
3036                                 tx_flags |= IGB_TX_FLAGS_CSUM;
3037
3038         igb_tx_queue_adv(adapter, tx_ring, tx_flags,
3039                          igb_tx_map_adv(adapter, tx_ring, skb),
3040                          skb->len, hdr_len);
3041
3042         netdev->trans_start = jiffies;
3043
3044         /* Make sure there is space in the ring for the next send. */
3045         igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
3046
3047         return NETDEV_TX_OK;
3048 }
3049
3050 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
3051 {
3052         struct igb_adapter *adapter = netdev_priv(netdev);
3053         struct igb_ring *tx_ring;
3054
3055 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
3056         int r_idx = 0;
3057         r_idx = skb->queue_mapping & (IGB_MAX_TX_QUEUES - 1);
3058         tx_ring = adapter->multi_tx_table[r_idx];
3059 #else
3060         tx_ring = &adapter->tx_ring[0];
3061 #endif
3062
3063
3064         /* This goes back to the question of how to logically map a tx queue
3065          * to a flow.  Right now, performance is impacted slightly negatively
3066          * if using multiple tx queues.  If the stack breaks away from a
3067          * single qdisc implementation, we can look at this again. */
3068         return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
3069 }
3070
3071 /**
3072  * igb_tx_timeout - Respond to a Tx Hang
3073  * @netdev: network interface device structure
3074  **/
3075 static void igb_tx_timeout(struct net_device *netdev)
3076 {
3077         struct igb_adapter *adapter = netdev_priv(netdev);
3078         struct e1000_hw *hw = &adapter->hw;
3079
3080         /* Do the reset outside of interrupt context */
3081         adapter->tx_timeout_count++;
3082         schedule_work(&adapter->reset_task);
3083         wr32(E1000_EICS, adapter->eims_enable_mask &
3084                 ~(E1000_EIMS_TCP_TIMER | E1000_EIMS_OTHER));
3085 }
3086
3087 static void igb_reset_task(struct work_struct *work)
3088 {
3089         struct igb_adapter *adapter;
3090         adapter = container_of(work, struct igb_adapter, reset_task);
3091
3092         igb_reinit_locked(adapter);
3093 }
3094
3095 /**
3096  * igb_get_stats - Get System Network Statistics
3097  * @netdev: network interface device structure
3098  *
3099  * Returns the address of the device statistics structure.
3100  * The statistics are actually updated from the timer callback.
3101  **/
3102 static struct net_device_stats *
3103 igb_get_stats(struct net_device *netdev)
3104 {
3105         struct igb_adapter *adapter = netdev_priv(netdev);
3106
3107         /* only return the current stats */
3108         return &adapter->net_stats;
3109 }
3110
3111 /**
3112  * igb_change_mtu - Change the Maximum Transfer Unit
3113  * @netdev: network interface device structure
3114  * @new_mtu: new value for maximum frame size
3115  *
3116  * Returns 0 on success, negative on failure
3117  **/
3118 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3119 {
3120         struct igb_adapter *adapter = netdev_priv(netdev);
3121         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3122
3123         if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3124             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3125                 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
3126                 return -EINVAL;
3127         }
3128
3129 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3130         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3131                 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
3132                 return -EINVAL;
3133         }
3134
3135         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3136                 msleep(1);
3137         /* igb_down has a dependency on max_frame_size */
3138         adapter->max_frame_size = max_frame;
3139         if (netif_running(netdev))
3140                 igb_down(adapter);
3141
3142         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3143          * means we reserve 2 more, this pushes us to allocate from the next
3144          * larger slab size.
3145          * i.e. RXBUFFER_2048 --> size-4096 slab
3146          */
3147
3148         if (max_frame <= IGB_RXBUFFER_256)
3149                 adapter->rx_buffer_len = IGB_RXBUFFER_256;
3150         else if (max_frame <= IGB_RXBUFFER_512)
3151                 adapter->rx_buffer_len = IGB_RXBUFFER_512;
3152         else if (max_frame <= IGB_RXBUFFER_1024)
3153                 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3154         else if (max_frame <= IGB_RXBUFFER_2048)
3155                 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
3156         else
3157 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3158                 adapter->rx_buffer_len = IGB_RXBUFFER_16384;
3159 #else
3160                 adapter->rx_buffer_len = PAGE_SIZE / 2;
3161 #endif
3162         /* adjust allocation if LPE protects us, and we aren't using SBP */
3163         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3164              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
3165                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3166
3167         dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
3168                  netdev->mtu, new_mtu);
3169         netdev->mtu = new_mtu;
3170
3171         if (netif_running(netdev))
3172                 igb_up(adapter);
3173         else
3174                 igb_reset(adapter);
3175
3176         clear_bit(__IGB_RESETTING, &adapter->state);
3177
3178         return 0;
3179 }
3180
3181 /**
3182  * igb_update_stats - Update the board statistics counters
3183  * @adapter: board private structure
3184  **/
3185
3186 void igb_update_stats(struct igb_adapter *adapter)
3187 {
3188         struct e1000_hw *hw = &adapter->hw;
3189         struct pci_dev *pdev = adapter->pdev;
3190         u16 phy_tmp;
3191
3192 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3193
3194         /*
3195          * Prevent stats update while adapter is being reset, or if the pci
3196          * connection is down.
3197          */
3198         if (adapter->link_speed == 0)
3199                 return;
3200         if (pci_channel_offline(pdev))
3201                 return;
3202
3203         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3204         adapter->stats.gprc += rd32(E1000_GPRC);
3205         adapter->stats.gorc += rd32(E1000_GORCL);
3206         rd32(E1000_GORCH); /* clear GORCL */
3207         adapter->stats.bprc += rd32(E1000_BPRC);
3208         adapter->stats.mprc += rd32(E1000_MPRC);
3209         adapter->stats.roc += rd32(E1000_ROC);
3210
3211         adapter->stats.prc64 += rd32(E1000_PRC64);
3212         adapter->stats.prc127 += rd32(E1000_PRC127);
3213         adapter->stats.prc255 += rd32(E1000_PRC255);
3214         adapter->stats.prc511 += rd32(E1000_PRC511);
3215         adapter->stats.prc1023 += rd32(E1000_PRC1023);
3216         adapter->stats.prc1522 += rd32(E1000_PRC1522);
3217         adapter->stats.symerrs += rd32(E1000_SYMERRS);
3218         adapter->stats.sec += rd32(E1000_SEC);
3219
3220         adapter->stats.mpc += rd32(E1000_MPC);
3221         adapter->stats.scc += rd32(E1000_SCC);
3222         adapter->stats.ecol += rd32(E1000_ECOL);
3223         adapter->stats.mcc += rd32(E1000_MCC);
3224         adapter->stats.latecol += rd32(E1000_LATECOL);
3225         adapter->stats.dc += rd32(E1000_DC);
3226         adapter->stats.rlec += rd32(E1000_RLEC);
3227         adapter->stats.xonrxc += rd32(E1000_XONRXC);
3228         adapter->stats.xontxc += rd32(E1000_XONTXC);
3229         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3230         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3231         adapter->stats.fcruc += rd32(E1000_FCRUC);
3232         adapter->stats.gptc += rd32(E1000_GPTC);
3233         adapter->stats.gotc += rd32(E1000_GOTCL);
3234         rd32(E1000_GOTCH); /* clear GOTCL */
3235         adapter->stats.rnbc += rd32(E1000_RNBC);
3236         adapter->stats.ruc += rd32(E1000_RUC);
3237         adapter->stats.rfc += rd32(E1000_RFC);
3238         adapter->stats.rjc += rd32(E1000_RJC);
3239         adapter->stats.tor += rd32(E1000_TORH);
3240         adapter->stats.tot += rd32(E1000_TOTH);
3241         adapter->stats.tpr += rd32(E1000_TPR);
3242
3243         adapter->stats.ptc64 += rd32(E1000_PTC64);
3244         adapter->stats.ptc127 += rd32(E1000_PTC127);
3245         adapter->stats.ptc255 += rd32(E1000_PTC255);
3246         adapter->stats.ptc511 += rd32(E1000_PTC511);
3247         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3248         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3249
3250         adapter->stats.mptc += rd32(E1000_MPTC);
3251         adapter->stats.bptc += rd32(E1000_BPTC);
3252
3253         /* used for adaptive IFS */
3254
3255         hw->mac.tx_packet_delta = rd32(E1000_TPT);
3256         adapter->stats.tpt += hw->mac.tx_packet_delta;
3257         hw->mac.collision_delta = rd32(E1000_COLC);
3258         adapter->stats.colc += hw->mac.collision_delta;
3259
3260         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3261         adapter->stats.rxerrc += rd32(E1000_RXERRC);
3262         adapter->stats.tncrs += rd32(E1000_TNCRS);
3263         adapter->stats.tsctc += rd32(E1000_TSCTC);
3264         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3265
3266         adapter->stats.iac += rd32(E1000_IAC);
3267         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3268         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3269         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3270         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3271         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3272         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3273         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3274         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3275
3276         /* Fill out the OS statistics structure */
3277         adapter->net_stats.multicast = adapter->stats.mprc;
3278         adapter->net_stats.collisions = adapter->stats.colc;
3279
3280         /* Rx Errors */
3281
3282         /* RLEC on some newer hardware can be incorrect so build
3283         * our own version based on RUC and ROC */
3284         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3285                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3286                 adapter->stats.ruc + adapter->stats.roc +
3287                 adapter->stats.cexterr;
3288         adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3289                                               adapter->stats.roc;
3290         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3291         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3292         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3293
3294         /* Tx Errors */
3295         adapter->net_stats.tx_errors = adapter->stats.ecol +
3296                                        adapter->stats.latecol;
3297         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3298         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3299         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3300
3301         /* Tx Dropped needs to be maintained elsewhere */
3302
3303         /* Phy Stats */
3304         if (hw->phy.media_type == e1000_media_type_copper) {
3305                 if ((adapter->link_speed == SPEED_1000) &&
3306                    (!hw->phy.ops.read_phy_reg(hw, PHY_1000T_STATUS,
3307                                               &phy_tmp))) {
3308                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3309                         adapter->phy_stats.idle_errors += phy_tmp;
3310                 }
3311         }
3312
3313         /* Management Stats */
3314         adapter->stats.mgptc += rd32(E1000_MGTPTC);
3315         adapter->stats.mgprc += rd32(E1000_MGTPRC);
3316         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3317 }
3318
3319
3320 static irqreturn_t igb_msix_other(int irq, void *data)
3321 {
3322         struct net_device *netdev = data;
3323         struct igb_adapter *adapter = netdev_priv(netdev);
3324         struct e1000_hw *hw = &adapter->hw;
3325         u32 icr = rd32(E1000_ICR);
3326
3327         /* reading ICR causes bit 31 of EICR to be cleared */
3328         if (!(icr & E1000_ICR_LSC))
3329                 goto no_link_interrupt;
3330         hw->mac.get_link_status = 1;
3331         /* guard against interrupt when we're going down */
3332         if (!test_bit(__IGB_DOWN, &adapter->state))
3333                 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3334         
3335 no_link_interrupt:
3336         wr32(E1000_IMS, E1000_IMS_LSC);
3337         wr32(E1000_EIMS, adapter->eims_other);
3338
3339         return IRQ_HANDLED;
3340 }
3341
3342 static irqreturn_t igb_msix_tx(int irq, void *data)
3343 {
3344         struct igb_ring *tx_ring = data;
3345         struct igb_adapter *adapter = tx_ring->adapter;
3346         struct e1000_hw *hw = &adapter->hw;
3347
3348 #ifdef CONFIG_DCA
3349         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3350                 igb_update_tx_dca(tx_ring);
3351 #endif
3352         tx_ring->total_bytes = 0;
3353         tx_ring->total_packets = 0;
3354
3355         /* auto mask will automatically reenable the interrupt when we write
3356          * EICS */
3357         if (!igb_clean_tx_irq(tx_ring))
3358                 /* Ring was not completely cleaned, so fire another interrupt */
3359                 wr32(E1000_EICS, tx_ring->eims_value);
3360         else
3361                 wr32(E1000_EIMS, tx_ring->eims_value);
3362
3363         return IRQ_HANDLED;
3364 }
3365
3366 static void igb_write_itr(struct igb_ring *ring)
3367 {
3368         struct e1000_hw *hw = &ring->adapter->hw;
3369         if ((ring->adapter->itr_setting & 3) && ring->set_itr) {
3370                 switch (hw->mac.type) {
3371                 case e1000_82576:
3372                         wr32(ring->itr_register,
3373                              ring->itr_val |
3374                              0x80000000);
3375                         break;
3376                 default:
3377                         wr32(ring->itr_register,
3378                              ring->itr_val |
3379                              (ring->itr_val << 16));
3380                         break;
3381                 }
3382                 ring->set_itr = 0;
3383         }
3384 }
3385
3386 static irqreturn_t igb_msix_rx(int irq, void *data)
3387 {
3388         struct igb_ring *rx_ring = data;
3389         struct igb_adapter *adapter = rx_ring->adapter;
3390
3391         /* Write the ITR value calculated at the end of the
3392          * previous interrupt.
3393          */
3394
3395         igb_write_itr(rx_ring);
3396
3397         if (netif_rx_schedule_prep(adapter->netdev, &rx_ring->napi))
3398                 __netif_rx_schedule(adapter->netdev, &rx_ring->napi);
3399
3400 #ifdef CONFIG_DCA
3401         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3402                 igb_update_rx_dca(rx_ring);
3403 #endif
3404                 return IRQ_HANDLED;
3405 }
3406
3407 #ifdef CONFIG_DCA
3408 static void igb_update_rx_dca(struct igb_ring *rx_ring)
3409 {
3410         u32 dca_rxctrl;
3411         struct igb_adapter *adapter = rx_ring->adapter;
3412         struct e1000_hw *hw = &adapter->hw;
3413         int cpu = get_cpu();
3414         int q = rx_ring - adapter->rx_ring;
3415
3416         if (rx_ring->cpu != cpu) {
3417                 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
3418                 if (hw->mac.type == e1000_82576) {
3419                         dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
3420                         dca_rxctrl |= dca_get_tag(cpu) <<
3421                                       E1000_DCA_RXCTRL_CPUID_SHIFT;
3422                 } else {
3423                         dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
3424                         dca_rxctrl |= dca_get_tag(cpu);
3425                 }
3426                 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
3427                 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
3428                 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
3429                 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
3430                 rx_ring->cpu = cpu;
3431         }
3432         put_cpu();
3433 }
3434
3435 static void igb_update_tx_dca(struct igb_ring *tx_ring)
3436 {
3437         u32 dca_txctrl;
3438         struct igb_adapter *adapter = tx_ring->adapter;
3439         struct e1000_hw *hw = &adapter->hw;
3440         int cpu = get_cpu();
3441         int q = tx_ring - adapter->tx_ring;
3442
3443         if (tx_ring->cpu != cpu) {
3444                 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
3445                 if (hw->mac.type == e1000_82576) {
3446                         dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
3447                         dca_txctrl |= dca_get_tag(cpu) <<
3448                                       E1000_DCA_TXCTRL_CPUID_SHIFT;
3449                 } else {
3450                         dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
3451                         dca_txctrl |= dca_get_tag(cpu);
3452                 }
3453                 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
3454                 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
3455                 tx_ring->cpu = cpu;
3456         }
3457         put_cpu();
3458 }
3459
3460 static void igb_setup_dca(struct igb_adapter *adapter)
3461 {
3462         int i;
3463
3464         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
3465                 return;
3466
3467         for (i = 0; i < adapter->num_tx_queues; i++) {
3468                 adapter->tx_ring[i].cpu = -1;
3469                 igb_update_tx_dca(&adapter->tx_ring[i]);
3470         }
3471         for (i = 0; i < adapter->num_rx_queues; i++) {
3472                 adapter->rx_ring[i].cpu = -1;
3473                 igb_update_rx_dca(&adapter->rx_ring[i]);
3474         }
3475 }
3476
3477 static int __igb_notify_dca(struct device *dev, void *data)
3478 {
3479         struct net_device *netdev = dev_get_drvdata(dev);
3480         struct igb_adapter *adapter = netdev_priv(netdev);
3481         struct e1000_hw *hw = &adapter->hw;
3482         unsigned long event = *(unsigned long *)data;
3483
3484         if (!(adapter->flags & IGB_FLAG_HAS_DCA))
3485                 goto out;
3486
3487         switch (event) {
3488         case DCA_PROVIDER_ADD:
3489                 /* if already enabled, don't do it again */
3490                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3491                         break;
3492                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3493                 /* Always use CB2 mode, difference is masked
3494                  * in the CB driver. */
3495                 wr32(E1000_DCA_CTRL, 2);
3496                 if (dca_add_requester(dev) == 0) {
3497                         dev_info(&adapter->pdev->dev, "DCA enabled\n");
3498                         igb_setup_dca(adapter);
3499                         break;
3500                 }
3501                 /* Fall Through since DCA is disabled. */
3502         case DCA_PROVIDER_REMOVE:
3503                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3504                         /* without this a class_device is left
3505                          * hanging around in the sysfs model */
3506                         dca_remove_requester(dev);
3507                         dev_info(&adapter->pdev->dev, "DCA disabled\n");
3508                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3509                         wr32(E1000_DCA_CTRL, 1);
3510                 }
3511                 break;
3512         }
3513 out:
3514         return 0;
3515 }
3516
3517 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
3518                           void *p)
3519 {
3520         int ret_val;
3521
3522         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
3523                                          __igb_notify_dca);
3524
3525         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
3526 }
3527 #endif /* CONFIG_DCA */
3528
3529 /**
3530  * igb_intr_msi - Interrupt Handler
3531  * @irq: interrupt number
3532  * @data: pointer to a network interface device structure
3533  **/
3534 static irqreturn_t igb_intr_msi(int irq, void *data)
3535 {
3536         struct net_device *netdev = data;
3537         struct igb_adapter *adapter = netdev_priv(netdev);
3538         struct e1000_hw *hw = &adapter->hw;
3539         /* read ICR disables interrupts using IAM */
3540         u32 icr = rd32(E1000_ICR);
3541
3542         igb_write_itr(adapter->rx_ring);
3543
3544         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3545                 hw->mac.get_link_status = 1;
3546                 if (!test_bit(__IGB_DOWN, &adapter->state))
3547                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3548         }
3549
3550         netif_rx_schedule(netdev, &adapter->rx_ring[0].napi);
3551
3552         return IRQ_HANDLED;
3553 }
3554
3555 /**
3556  * igb_intr - Interrupt Handler
3557  * @irq: interrupt number
3558  * @data: pointer to a network interface device structure
3559  **/
3560 static irqreturn_t igb_intr(int irq, void *data)
3561 {
3562         struct net_device *netdev = data;
3563         struct igb_adapter *adapter = netdev_priv(netdev);
3564         struct e1000_hw *hw = &adapter->hw;
3565         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
3566          * need for the IMC write */
3567         u32 icr = rd32(E1000_ICR);
3568         u32 eicr = 0;
3569         if (!icr)
3570                 return IRQ_NONE;  /* Not our interrupt */
3571
3572         igb_write_itr(adapter->rx_ring);
3573
3574         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3575          * not set, then the adapter didn't send an interrupt */
3576         if (!(icr & E1000_ICR_INT_ASSERTED))
3577                 return IRQ_NONE;
3578
3579         eicr = rd32(E1000_EICR);
3580
3581         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3582                 hw->mac.get_link_status = 1;
3583                 /* guard against interrupt when we're going down */
3584                 if (!test_bit(__IGB_DOWN, &adapter->state))
3585                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3586         }
3587
3588         netif_rx_schedule(netdev, &adapter->rx_ring[0].napi);
3589
3590         return IRQ_HANDLED;
3591 }
3592
3593 /**
3594  * igb_poll - NAPI Rx polling callback
3595  * @napi: napi polling structure
3596  * @budget: count of how many packets we should handle
3597  **/
3598 static int igb_poll(struct napi_struct *napi, int budget)
3599 {
3600         struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3601         struct igb_adapter *adapter = rx_ring->adapter;
3602         struct net_device *netdev = adapter->netdev;
3603         int tx_clean_complete, work_done = 0;
3604
3605         /* this poll routine only supports one tx and one rx queue */
3606 #ifdef CONFIG_DCA
3607         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3608                 igb_update_tx_dca(&adapter->tx_ring[0]);
3609 #endif
3610         tx_clean_complete = igb_clean_tx_irq(&adapter->tx_ring[0]);
3611
3612 #ifdef CONFIG_DCA
3613         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3614                 igb_update_rx_dca(&adapter->rx_ring[0]);
3615 #endif
3616         igb_clean_rx_irq_adv(&adapter->rx_ring[0], &work_done, budget);
3617
3618         /* If no Tx and not enough Rx work done, exit the polling mode */
3619         if ((tx_clean_complete && (work_done < budget)) ||
3620             !netif_running(netdev)) {
3621                 if (adapter->itr_setting & 3)
3622                         igb_set_itr(adapter);
3623                 netif_rx_complete(netdev, napi);
3624                 if (!test_bit(__IGB_DOWN, &adapter->state))
3625                         igb_irq_enable(adapter);
3626                 return 0;
3627         }
3628
3629         return 1;
3630 }
3631
3632 static int igb_clean_rx_ring_msix(struct napi_struct *napi, int budget)
3633 {
3634         struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3635         struct igb_adapter *adapter = rx_ring->adapter;
3636         struct e1000_hw *hw = &adapter->hw;
3637         struct net_device *netdev = adapter->netdev;
3638         int work_done = 0;
3639
3640         /* Keep link state information with original netdev */
3641         if (!netif_carrier_ok(netdev))
3642                 goto quit_polling;
3643
3644 #ifdef CONFIG_DCA
3645         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3646                 igb_update_rx_dca(rx_ring);
3647 #endif
3648         igb_clean_rx_irq_adv(rx_ring, &work_done, budget);
3649
3650
3651         /* If not enough Rx work done, exit the polling mode */
3652         if ((work_done == 0) || !netif_running(netdev)) {
3653 quit_polling:
3654                 netif_rx_complete(netdev, napi);
3655
3656                 if (adapter->itr_setting & 3) {
3657                         if (adapter->num_rx_queues == 1)
3658                                 igb_set_itr(adapter);
3659                         else
3660                                 igb_update_ring_itr(rx_ring);
3661                 }
3662
3663                 if (!test_bit(__IGB_DOWN, &adapter->state))
3664                         wr32(E1000_EIMS, rx_ring->eims_value);
3665
3666                 return 0;
3667         }
3668
3669         return 1;
3670 }
3671
3672 static inline u32 get_head(struct igb_ring *tx_ring)
3673 {
3674         void *end = (struct e1000_tx_desc *)tx_ring->desc + tx_ring->count;
3675         return le32_to_cpu(*(volatile __le32 *)end);
3676 }
3677
3678 /**
3679  * igb_clean_tx_irq - Reclaim resources after transmit completes
3680  * @adapter: board private structure
3681  * returns true if ring is completely cleaned
3682  **/
3683 static bool igb_clean_tx_irq(struct igb_ring *tx_ring)
3684 {
3685         struct igb_adapter *adapter = tx_ring->adapter;
3686         struct e1000_hw *hw = &adapter->hw;
3687         struct net_device *netdev = adapter->netdev;
3688         struct e1000_tx_desc *tx_desc;
3689         struct igb_buffer *buffer_info;
3690         struct sk_buff *skb;
3691         unsigned int i;
3692         u32 head, oldhead;
3693         unsigned int count = 0;
3694         bool cleaned = false;
3695         bool retval = true;
3696         unsigned int total_bytes = 0, total_packets = 0;
3697
3698         rmb();
3699         head = get_head(tx_ring);
3700         i = tx_ring->next_to_clean;
3701         while (1) {
3702                 while (i != head) {
3703                         cleaned = true;
3704                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3705                         buffer_info = &tx_ring->buffer_info[i];
3706                         skb = buffer_info->skb;
3707
3708                         if (skb) {
3709                                 unsigned int segs, bytecount;
3710                                 /* gso_segs is currently only valid for tcp */
3711                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
3712                                 /* multiply data chunks by size of headers */
3713                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
3714                                             skb->len;
3715                                 total_packets += segs;
3716                                 total_bytes += bytecount;
3717                         }
3718
3719                         igb_unmap_and_free_tx_resource(adapter, buffer_info);
3720                         tx_desc->upper.data = 0;
3721
3722                         i++;
3723                         if (i == tx_ring->count)
3724                                 i = 0;
3725
3726                         count++;
3727                         if (count == IGB_MAX_TX_CLEAN) {
3728                                 retval = false;
3729                                 goto done_cleaning;
3730                         }
3731                 }
3732                 oldhead = head;
3733                 rmb();
3734                 head = get_head(tx_ring);
3735                 if (head == oldhead)
3736                         goto done_cleaning;
3737         }  /* while (1) */
3738
3739 done_cleaning:
3740         tx_ring->next_to_clean = i;
3741
3742         if (unlikely(cleaned &&
3743                      netif_carrier_ok(netdev) &&
3744                      IGB_DESC_UNUSED(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
3745                 /* Make sure that anybody stopping the queue after this
3746                  * sees the new next_to_clean.
3747                  */
3748                 smp_mb();
3749 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
3750                 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
3751                     !(test_bit(__IGB_DOWN, &adapter->state))) {
3752                         netif_wake_subqueue(netdev, tx_ring->queue_index);
3753                         ++adapter->restart_queue;
3754                 }
3755 #else
3756                 if (netif_queue_stopped(netdev) &&
3757                     !(test_bit(__IGB_DOWN, &adapter->state))) {
3758                         netif_wake_queue(netdev);
3759                         ++adapter->restart_queue;
3760                 }
3761 #endif          
3762         }
3763
3764         if (tx_ring->detect_tx_hung) {
3765                 /* Detect a transmit hang in hardware, this serializes the
3766                  * check with the clearing of time_stamp and movement of i */
3767                 tx_ring->detect_tx_hung = false;
3768                 if (tx_ring->buffer_info[i].time_stamp &&
3769                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
3770                                (adapter->tx_timeout_factor * HZ))
3771                     && !(rd32(E1000_STATUS) &
3772                          E1000_STATUS_TXOFF)) {
3773
3774                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3775                         /* detected Tx unit hang */
3776                         dev_err(&adapter->pdev->dev,
3777                                 "Detected Tx Unit Hang\n"
3778                                 "  Tx Queue             <%d>\n"
3779                                 "  TDH                  <%x>\n"
3780                                 "  TDT                  <%x>\n"
3781                                 "  next_to_use          <%x>\n"
3782                                 "  next_to_clean        <%x>\n"
3783                                 "  head (WB)            <%x>\n"
3784                                 "buffer_info[next_to_clean]\n"
3785                                 "  time_stamp           <%lx>\n"
3786                                 "  jiffies              <%lx>\n"
3787                                 "  desc.status          <%x>\n",
3788                                 tx_ring->queue_index,
3789                                 readl(adapter->hw.hw_addr + tx_ring->head),
3790                                 readl(adapter->hw.hw_addr + tx_ring->tail),
3791                                 tx_ring->next_to_use,
3792                                 tx_ring->next_to_clean,
3793                                 head,
3794                                 tx_ring->buffer_info[i].time_stamp,
3795                                 jiffies,
3796                                 tx_desc->upper.fields.status);
3797 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
3798                         netif_stop_subqueue(netdev, tx_ring->queue_index);
3799 #else
3800                         netif_stop_queue(netdev);
3801 #endif
3802                 }
3803         }
3804         tx_ring->total_bytes += total_bytes;
3805         tx_ring->total_packets += total_packets;
3806         tx_ring->tx_stats.bytes += total_bytes;
3807         tx_ring->tx_stats.packets += total_packets;
3808         adapter->net_stats.tx_bytes += total_bytes;
3809         adapter->net_stats.tx_packets += total_packets;
3810         return retval;
3811 }
3812
3813 #ifdef CONFIG_IGB_LRO
3814  /**
3815  * igb_get_skb_hdr - helper function for LRO header processing
3816  * @skb: pointer to sk_buff to be added to LRO packet
3817  * @iphdr: pointer to ip header structure
3818  * @tcph: pointer to tcp header structure
3819  * @hdr_flags: pointer to header flags
3820  * @priv: pointer to the receive descriptor for the current sk_buff
3821  **/
3822 static int igb_get_skb_hdr(struct sk_buff *skb, void **iphdr, void **tcph,
3823                            u64 *hdr_flags, void *priv)
3824 {
3825         union e1000_adv_rx_desc *rx_desc = priv;
3826         u16 pkt_type = rx_desc->wb.lower.lo_dword.pkt_info &
3827                        (E1000_RXDADV_PKTTYPE_IPV4 | E1000_RXDADV_PKTTYPE_TCP);
3828
3829         /* Verify that this is a valid IPv4 TCP packet */
3830         if (pkt_type != (E1000_RXDADV_PKTTYPE_IPV4 |
3831                           E1000_RXDADV_PKTTYPE_TCP))
3832                 return -1;
3833
3834         /* Set network headers */
3835         skb_reset_network_header(skb);
3836         skb_set_transport_header(skb, ip_hdrlen(skb));
3837         *iphdr = ip_hdr(skb);
3838         *tcph = tcp_hdr(skb);
3839         *hdr_flags = LRO_IPV4 | LRO_TCP;
3840
3841         return 0;
3842
3843 }
3844 #endif /* CONFIG_IGB_LRO */
3845
3846 /**
3847  * igb_receive_skb - helper function to handle rx indications
3848  * @ring: pointer to receive ring receving this packet 
3849  * @status: descriptor status field as written by hardware
3850  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3851  * @skb: pointer to sk_buff to be indicated to stack
3852  **/
3853 static void igb_receive_skb(struct igb_ring *ring, u8 status,
3854                             union e1000_adv_rx_desc * rx_desc,
3855                             struct sk_buff *skb)
3856 {
3857         struct igb_adapter * adapter = ring->adapter;
3858         bool vlan_extracted = (adapter->vlgrp && (status & E1000_RXD_STAT_VP));
3859
3860 #ifdef CONFIG_IGB_LRO
3861         if (adapter->netdev->features & NETIF_F_LRO &&
3862             skb->ip_summed == CHECKSUM_UNNECESSARY) {
3863                 if (vlan_extracted)
3864                         lro_vlan_hwaccel_receive_skb(&ring->lro_mgr, skb,
3865                                            adapter->vlgrp,
3866                                            le16_to_cpu(rx_desc->wb.upper.vlan),
3867                                            rx_desc);
3868                 else
3869                         lro_receive_skb(&ring->lro_mgr,skb, rx_desc);
3870                 ring->lro_used = 1;
3871         } else {
3872 #endif
3873                 if (vlan_extracted)
3874                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3875                                           le16_to_cpu(rx_desc->wb.upper.vlan));
3876                 else
3877
3878                         netif_receive_skb(skb);
3879 #ifdef CONFIG_IGB_LRO
3880         }
3881 #endif
3882 }
3883
3884
3885 static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
3886                                        u32 status_err, struct sk_buff *skb)
3887 {
3888         skb->ip_summed = CHECKSUM_NONE;
3889
3890         /* Ignore Checksum bit is set or checksum is disabled through ethtool */
3891         if ((status_err & E1000_RXD_STAT_IXSM) || !adapter->rx_csum)
3892                 return;
3893         /* TCP/UDP checksum error bit is set */
3894         if (status_err &
3895             (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
3896                 /* let the stack verify checksum errors */
3897                 adapter->hw_csum_err++;
3898                 return;
3899         }
3900         /* It must be a TCP or UDP packet with a valid checksum */
3901         if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
3902                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3903
3904         adapter->hw_csum_good++;
3905 }
3906
3907 static bool igb_clean_rx_irq_adv(struct igb_ring *rx_ring,
3908                                  int *work_done, int budget)
3909 {
3910         struct igb_adapter *adapter = rx_ring->adapter;
3911         struct net_device *netdev = adapter->netdev;
3912         struct pci_dev *pdev = adapter->pdev;
3913         union e1000_adv_rx_desc *rx_desc , *next_rxd;
3914         struct igb_buffer *buffer_info , *next_buffer;
3915         struct sk_buff *skb;
3916         unsigned int i;
3917         u32 length, hlen, staterr;
3918         bool cleaned = false;
3919         int cleaned_count = 0;
3920         unsigned int total_bytes = 0, total_packets = 0;
3921
3922         i = rx_ring->next_to_clean;
3923         rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3924         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3925
3926         while (staterr & E1000_RXD_STAT_DD) {
3927                 if (*work_done >= budget)
3928                         break;
3929                 (*work_done)++;
3930                 buffer_info = &rx_ring->buffer_info[i];
3931
3932                 /* HW will not DMA in data larger than the given buffer, even
3933                  * if it parses the (NFS, of course) header to be larger.  In
3934                  * that case, it fills the header buffer and spills the rest
3935                  * into the page.
3936                  */
3937                 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
3938                   E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
3939                 if (hlen > adapter->rx_ps_hdr_size)
3940                         hlen = adapter->rx_ps_hdr_size;
3941
3942                 length = le16_to_cpu(rx_desc->wb.upper.length);
3943                 cleaned = true;
3944                 cleaned_count++;
3945
3946                 skb = buffer_info->skb;
3947                 prefetch(skb->data - NET_IP_ALIGN);
3948                 buffer_info->skb = NULL;
3949                 if (!adapter->rx_ps_hdr_size) {
3950                         pci_unmap_single(pdev, buffer_info->dma,
3951                                          adapter->rx_buffer_len +
3952                                            NET_IP_ALIGN,
3953                                          PCI_DMA_FROMDEVICE);
3954                         skb_put(skb, length);
3955                         goto send_up;
3956                 }
3957
3958                 if (!skb_shinfo(skb)->nr_frags) {
3959                         pci_unmap_single(pdev, buffer_info->dma,
3960                                          adapter->rx_ps_hdr_size +
3961                                            NET_IP_ALIGN,
3962                                          PCI_DMA_FROMDEVICE);
3963                         skb_put(skb, hlen);
3964                 }
3965
3966                 if (length) {
3967                         pci_unmap_page(pdev, buffer_info->page_dma,
3968                                        PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
3969                         buffer_info->page_dma = 0;
3970
3971                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
3972                                                 buffer_info->page,
3973                                                 buffer_info->page_offset,
3974                                                 length);
3975
3976                         if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
3977                             (page_count(buffer_info->page) != 1))
3978                                 buffer_info->page = NULL;
3979                         else
3980                                 get_page(buffer_info->page);
3981
3982                         skb->len += length;
3983                         skb->data_len += length;
3984
3985                         skb->truesize += length;
3986                 }
3987 send_up:
3988                 i++;
3989                 if (i == rx_ring->count)
3990                         i = 0;
3991                 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
3992                 prefetch(next_rxd);
3993                 next_buffer = &rx_ring->buffer_info[i];
3994
3995                 if (!(staterr & E1000_RXD_STAT_EOP)) {
3996                         buffer_info->skb = xchg(&next_buffer->skb, skb);
3997                         buffer_info->dma = xchg(&next_buffer->dma, 0);
3998                         goto next_desc;
3999                 }
4000
4001                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
4002                         dev_kfree_skb_irq(skb);
4003                         goto next_desc;
4004                 }
4005
4006                 total_bytes += skb->len;
4007                 total_packets++;
4008
4009                 igb_rx_checksum_adv(adapter, staterr, skb);
4010
4011                 skb->protocol = eth_type_trans(skb, netdev);
4012
4013                 igb_receive_skb(rx_ring, staterr, rx_desc, skb);
4014
4015                 netdev->last_rx = jiffies;
4016
4017 next_desc:
4018                 rx_desc->wb.upper.status_error = 0;
4019
4020                 /* return some buffers to hardware, one at a time is too slow */
4021                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
4022                         igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
4023                         cleaned_count = 0;
4024                 }
4025
4026                 /* use prefetched values */
4027                 rx_desc = next_rxd;
4028                 buffer_info = next_buffer;
4029
4030                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
4031         }
4032
4033         rx_ring->next_to_clean = i;
4034         cleaned_count = IGB_DESC_UNUSED(rx_ring);
4035
4036 #ifdef CONFIG_IGB_LRO
4037         if (rx_ring->lro_used) {
4038                 lro_flush_all(&rx_ring->lro_mgr);
4039                 rx_ring->lro_used = 0;
4040         }
4041 #endif
4042
4043         if (cleaned_count)
4044                 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
4045
4046         rx_ring->total_packets += total_packets;
4047         rx_ring->total_bytes += total_bytes;
4048         rx_ring->rx_stats.packets += total_packets;
4049         rx_ring->rx_stats.bytes += total_bytes;
4050         adapter->net_stats.rx_bytes += total_bytes;
4051         adapter->net_stats.rx_packets += total_packets;
4052         return cleaned;
4053 }
4054
4055
4056 /**
4057  * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
4058  * @adapter: address of board private structure
4059  **/
4060 static void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring,
4061                                      int cleaned_count)
4062 {
4063         struct igb_adapter *adapter = rx_ring->adapter;
4064         struct net_device *netdev = adapter->netdev;
4065         struct pci_dev *pdev = adapter->pdev;
4066         union e1000_adv_rx_desc *rx_desc;
4067         struct igb_buffer *buffer_info;
4068         struct sk_buff *skb;
4069         unsigned int i;
4070
4071         i = rx_ring->next_to_use;
4072         buffer_info = &rx_ring->buffer_info[i];
4073
4074         while (cleaned_count--) {
4075                 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4076
4077                 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
4078                         if (!buffer_info->page) {
4079                                 buffer_info->page = alloc_page(GFP_ATOMIC);
4080                                 if (!buffer_info->page) {
4081                                         adapter->alloc_rx_buff_failed++;
4082                                         goto no_buffers;
4083                                 }
4084                                 buffer_info->page_offset = 0;
4085                         } else {
4086                                 buffer_info->page_offset ^= PAGE_SIZE / 2;
4087                         }
4088                         buffer_info->page_dma =
4089                                 pci_map_page(pdev,
4090                                              buffer_info->page,
4091                                              buffer_info->page_offset,
4092                                              PAGE_SIZE / 2,
4093                                              PCI_DMA_FROMDEVICE);
4094                 }
4095
4096                 if (!buffer_info->skb) {
4097                         int bufsz;
4098
4099                         if (adapter->rx_ps_hdr_size)
4100                                 bufsz = adapter->rx_ps_hdr_size;
4101                         else
4102                                 bufsz = adapter->rx_buffer_len;
4103                         bufsz += NET_IP_ALIGN;
4104                         skb = netdev_alloc_skb(netdev, bufsz);
4105
4106                         if (!skb) {
4107                                 adapter->alloc_rx_buff_failed++;
4108                                 goto no_buffers;
4109                         }
4110
4111                         /* Make buffer alignment 2 beyond a 16 byte boundary
4112                          * this will result in a 16 byte aligned IP header after
4113                          * the 14 byte MAC header is removed
4114                          */
4115                         skb_reserve(skb, NET_IP_ALIGN);
4116
4117                         buffer_info->skb = skb;
4118                         buffer_info->dma = pci_map_single(pdev, skb->data,
4119                                                           bufsz,
4120                                                           PCI_DMA_FROMDEVICE);
4121
4122                 }
4123                 /* Refresh the desc even if buffer_addrs didn't change because
4124                  * each write-back erases this info. */
4125                 if (adapter->rx_ps_hdr_size) {
4126                         rx_desc->read.pkt_addr =
4127                              cpu_to_le64(buffer_info->page_dma);
4128                         rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
4129                 } else {
4130                         rx_desc->read.pkt_addr =
4131                              cpu_to_le64(buffer_info->dma);
4132                         rx_desc->read.hdr_addr = 0;
4133                 }
4134
4135                 i++;
4136                 if (i == rx_ring->count)
4137                         i = 0;
4138                 buffer_info = &rx_ring->buffer_info[i];
4139         }
4140
4141 no_buffers:
4142         if (rx_ring->next_to_use != i) {
4143                 rx_ring->next_to_use = i;
4144                 if (i == 0)
4145                         i = (rx_ring->count - 1);
4146                 else
4147                         i--;
4148
4149                 /* Force memory writes to complete before letting h/w
4150                  * know there are new descriptors to fetch.  (Only
4151                  * applicable for weak-ordered memory model archs,
4152                  * such as IA-64). */
4153                 wmb();
4154                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
4155         }
4156 }
4157
4158 /**
4159  * igb_mii_ioctl -
4160  * @netdev:
4161  * @ifreq:
4162  * @cmd:
4163  **/
4164 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4165 {
4166         struct igb_adapter *adapter = netdev_priv(netdev);
4167         struct mii_ioctl_data *data = if_mii(ifr);
4168
4169         if (adapter->hw.phy.media_type != e1000_media_type_copper)
4170                 return -EOPNOTSUPP;
4171
4172         switch (cmd) {
4173         case SIOCGMIIPHY:
4174                 data->phy_id = adapter->hw.phy.addr;
4175                 break;
4176         case SIOCGMIIREG:
4177                 if (!capable(CAP_NET_ADMIN))
4178                         return -EPERM;
4179                 if (adapter->hw.phy.ops.read_phy_reg(&adapter->hw,
4180                                                      data->reg_num
4181                                                      & 0x1F, &data->val_out))
4182                         return -EIO;
4183                 break;
4184         case SIOCSMIIREG:
4185         default:
4186                 return -EOPNOTSUPP;
4187         }
4188         return 0;
4189 }
4190
4191 /**
4192  * igb_ioctl -
4193  * @netdev:
4194  * @ifreq:
4195  * @cmd:
4196  **/
4197 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4198 {
4199         switch (cmd) {
4200         case SIOCGMIIPHY:
4201         case SIOCGMIIREG:
4202         case SIOCSMIIREG:
4203                 return igb_mii_ioctl(netdev, ifr, cmd);
4204         default:
4205                 return -EOPNOTSUPP;
4206         }
4207 }
4208
4209 static void igb_vlan_rx_register(struct net_device *netdev,
4210                                  struct vlan_group *grp)
4211 {
4212         struct igb_adapter *adapter = netdev_priv(netdev);
4213         struct e1000_hw *hw = &adapter->hw;
4214         u32 ctrl, rctl;
4215
4216         igb_irq_disable(adapter);
4217         adapter->vlgrp = grp;
4218
4219         if (grp) {
4220                 /* enable VLAN tag insert/strip */
4221                 ctrl = rd32(E1000_CTRL);
4222                 ctrl |= E1000_CTRL_VME;
4223                 wr32(E1000_CTRL, ctrl);
4224
4225                 /* enable VLAN receive filtering */
4226                 rctl = rd32(E1000_RCTL);
4227                 if (!(netdev->flags & IFF_PROMISC))
4228                         rctl |= E1000_RCTL_VFE;
4229                 rctl &= ~E1000_RCTL_CFIEN;
4230                 wr32(E1000_RCTL, rctl);
4231                 igb_update_mng_vlan(adapter);
4232                 wr32(E1000_RLPML,
4233                                 adapter->max_frame_size + VLAN_TAG_SIZE);
4234         } else {
4235                 /* disable VLAN tag insert/strip */
4236                 ctrl = rd32(E1000_CTRL);
4237                 ctrl &= ~E1000_CTRL_VME;
4238                 wr32(E1000_CTRL, ctrl);
4239
4240                 /* disable VLAN filtering */
4241                 rctl = rd32(E1000_RCTL);
4242                 rctl &= ~E1000_RCTL_VFE;
4243                 wr32(E1000_RCTL, rctl);
4244                 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
4245                         igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4246                         adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
4247                 }
4248                 wr32(E1000_RLPML,
4249                                 adapter->max_frame_size);
4250         }
4251
4252         if (!test_bit(__IGB_DOWN, &adapter->state))
4253                 igb_irq_enable(adapter);
4254 }
4255
4256 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4257 {
4258         struct igb_adapter *adapter = netdev_priv(netdev);
4259         struct e1000_hw *hw = &adapter->hw;
4260         u32 vfta, index;
4261
4262         if ((adapter->hw.mng_cookie.status &
4263              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4264             (vid == adapter->mng_vlan_id))
4265                 return;
4266         /* add VID to filter table */
4267         index = (vid >> 5) & 0x7F;
4268         vfta = array_rd32(E1000_VFTA, index);
4269         vfta |= (1 << (vid & 0x1F));
4270         igb_write_vfta(&adapter->hw, index, vfta);
4271 }
4272
4273 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4274 {
4275         struct igb_adapter *adapter = netdev_priv(netdev);
4276         struct e1000_hw *hw = &adapter->hw;
4277         u32 vfta, index;
4278
4279         igb_irq_disable(adapter);
4280         vlan_group_set_device(adapter->vlgrp, vid, NULL);
4281
4282         if (!test_bit(__IGB_DOWN, &adapter->state))
4283                 igb_irq_enable(adapter);
4284
4285         if ((adapter->hw.mng_cookie.status &
4286              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4287             (vid == adapter->mng_vlan_id)) {
4288                 /* release control to f/w */
4289                 igb_release_hw_control(adapter);
4290                 return;
4291         }
4292
4293         /* remove VID from filter table */
4294         index = (vid >> 5) & 0x7F;
4295         vfta = array_rd32(E1000_VFTA, index);
4296         vfta &= ~(1 << (vid & 0x1F));
4297         igb_write_vfta(&adapter->hw, index, vfta);
4298 }
4299
4300 static void igb_restore_vlan(struct igb_adapter *adapter)
4301 {
4302         igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4303
4304         if (adapter->vlgrp) {
4305                 u16 vid;
4306                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4307                         if (!vlan_group_get_device(adapter->vlgrp, vid))
4308                                 continue;
4309                         igb_vlan_rx_add_vid(adapter->netdev, vid);
4310                 }
4311         }
4312 }
4313
4314 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
4315 {
4316         struct e1000_mac_info *mac = &adapter->hw.mac;
4317
4318         mac->autoneg = 0;
4319
4320         /* Fiber NICs only allow 1000 gbps Full duplex */
4321         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
4322                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4323                 dev_err(&adapter->pdev->dev,
4324                         "Unsupported Speed/Duplex configuration\n");
4325                 return -EINVAL;
4326         }
4327
4328         switch (spddplx) {
4329         case SPEED_10 + DUPLEX_HALF:
4330                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
4331                 break;
4332         case SPEED_10 + DUPLEX_FULL:
4333                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
4334                 break;
4335         case SPEED_100 + DUPLEX_HALF:
4336                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
4337                 break;
4338         case SPEED_100 + DUPLEX_FULL:
4339                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
4340                 break;
4341         case SPEED_1000 + DUPLEX_FULL:
4342                 mac->autoneg = 1;
4343                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
4344                 break;
4345         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4346         default:
4347                 dev_err(&adapter->pdev->dev,
4348                         "Unsupported Speed/Duplex configuration\n");
4349                 return -EINVAL;
4350         }
4351         return 0;
4352 }
4353
4354
4355 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
4356 {
4357         struct net_device *netdev = pci_get_drvdata(pdev);
4358         struct igb_adapter *adapter = netdev_priv(netdev);
4359         struct e1000_hw *hw = &adapter->hw;
4360         u32 ctrl, rctl, status;
4361         u32 wufc = adapter->wol;
4362 #ifdef CONFIG_PM
4363         int retval = 0;
4364 #endif
4365
4366         netif_device_detach(netdev);
4367
4368         if (netif_running(netdev))
4369                 igb_close(netdev);
4370
4371         igb_reset_interrupt_capability(adapter);
4372
4373         igb_free_queues(adapter);
4374
4375 #ifdef CONFIG_PM
4376         retval = pci_save_state(pdev);
4377         if (retval)
4378                 return retval;
4379 #endif
4380
4381         status = rd32(E1000_STATUS);
4382         if (status & E1000_STATUS_LU)
4383                 wufc &= ~E1000_WUFC_LNKC;
4384
4385         if (wufc) {
4386                 igb_setup_rctl(adapter);
4387                 igb_set_multi(netdev);
4388
4389                 /* turn on all-multi mode if wake on multicast is enabled */
4390                 if (wufc & E1000_WUFC_MC) {
4391                         rctl = rd32(E1000_RCTL);
4392                         rctl |= E1000_RCTL_MPE;
4393                         wr32(E1000_RCTL, rctl);
4394                 }
4395
4396                 ctrl = rd32(E1000_CTRL);
4397                 /* advertise wake from D3Cold */
4398                 #define E1000_CTRL_ADVD3WUC 0x00100000
4399                 /* phy power management enable */
4400                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4401                 ctrl |= E1000_CTRL_ADVD3WUC;
4402                 wr32(E1000_CTRL, ctrl);
4403
4404                 /* Allow time for pending master requests to run */
4405                 igb_disable_pcie_master(&adapter->hw);
4406
4407                 wr32(E1000_WUC, E1000_WUC_PME_EN);
4408                 wr32(E1000_WUFC, wufc);
4409         } else {
4410                 wr32(E1000_WUC, 0);
4411                 wr32(E1000_WUFC, 0);
4412         }
4413
4414         /* make sure adapter isn't asleep if manageability/wol is enabled */
4415         if (wufc || adapter->en_mng_pt) {
4416                 pci_enable_wake(pdev, PCI_D3hot, 1);
4417                 pci_enable_wake(pdev, PCI_D3cold, 1);
4418         } else {
4419                 igb_shutdown_fiber_serdes_link_82575(hw);
4420                 pci_enable_wake(pdev, PCI_D3hot, 0);
4421                 pci_enable_wake(pdev, PCI_D3cold, 0);
4422         }
4423
4424         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
4425          * would have already happened in close and is redundant. */
4426         igb_release_hw_control(adapter);
4427
4428         pci_disable_device(pdev);
4429
4430         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4431
4432         return 0;
4433 }
4434
4435 #ifdef CONFIG_PM
4436 static int igb_resume(struct pci_dev *pdev)
4437 {
4438         struct net_device *netdev = pci_get_drvdata(pdev);
4439         struct igb_adapter *adapter = netdev_priv(netdev);
4440         struct e1000_hw *hw = &adapter->hw;
4441         u32 err;
4442
4443         pci_set_power_state(pdev, PCI_D0);
4444         pci_restore_state(pdev);
4445
4446         if (adapter->need_ioport)
4447                 err = pci_enable_device(pdev);
4448         else
4449                 err = pci_enable_device_mem(pdev);
4450         if (err) {
4451                 dev_err(&pdev->dev,
4452                         "igb: Cannot enable PCI device from suspend\n");
4453                 return err;
4454         }
4455         pci_set_master(pdev);
4456
4457         pci_enable_wake(pdev, PCI_D3hot, 0);
4458         pci_enable_wake(pdev, PCI_D3cold, 0);
4459
4460         igb_set_interrupt_capability(adapter);
4461
4462         if (igb_alloc_queues(adapter)) {
4463                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4464                 return -ENOMEM;
4465         }
4466
4467         /* e1000_power_up_phy(adapter); */
4468
4469         igb_reset(adapter);
4470         wr32(E1000_WUS, ~0);
4471
4472         if (netif_running(netdev)) {
4473                 err = igb_open(netdev);
4474                 if (err)
4475                         return err;
4476         }
4477
4478         netif_device_attach(netdev);
4479
4480         /* let the f/w know that the h/w is now under the control of the
4481          * driver. */
4482         igb_get_hw_control(adapter);
4483
4484         return 0;
4485 }
4486 #endif
4487
4488 static void igb_shutdown(struct pci_dev *pdev)
4489 {
4490         igb_suspend(pdev, PMSG_SUSPEND);
4491 }
4492
4493 #ifdef CONFIG_NET_POLL_CONTROLLER
4494 /*
4495  * Polling 'interrupt' - used by things like netconsole to send skbs
4496  * without having to re-enable interrupts. It's not called while
4497  * the interrupt routine is executing.
4498  */
4499 static void igb_netpoll(struct net_device *netdev)
4500 {
4501         struct igb_adapter *adapter = netdev_priv(netdev);
4502         int i;
4503         int work_done = 0;
4504
4505         igb_irq_disable(adapter);
4506         adapter->flags |= IGB_FLAG_IN_NETPOLL;
4507
4508         for (i = 0; i < adapter->num_tx_queues; i++)
4509                 igb_clean_tx_irq(&adapter->tx_ring[i]);
4510
4511         for (i = 0; i < adapter->num_rx_queues; i++)
4512                 igb_clean_rx_irq_adv(&adapter->rx_ring[i],
4513                                      &work_done,
4514                                      adapter->rx_ring[i].napi.weight);
4515
4516         adapter->flags &= ~IGB_FLAG_IN_NETPOLL;
4517         igb_irq_enable(adapter);
4518 }
4519 #endif /* CONFIG_NET_POLL_CONTROLLER */
4520
4521 /**
4522  * igb_io_error_detected - called when PCI error is detected
4523  * @pdev: Pointer to PCI device
4524  * @state: The current pci connection state
4525  *
4526  * This function is called after a PCI bus error affecting
4527  * this device has been detected.
4528  */
4529 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
4530                                               pci_channel_state_t state)
4531 {
4532         struct net_device *netdev = pci_get_drvdata(pdev);
4533         struct igb_adapter *adapter = netdev_priv(netdev);
4534
4535         netif_device_detach(netdev);
4536
4537         if (netif_running(netdev))
4538                 igb_down(adapter);
4539         pci_disable_device(pdev);
4540
4541         /* Request a slot slot reset. */
4542         return PCI_ERS_RESULT_NEED_RESET;
4543 }
4544
4545 /**
4546  * igb_io_slot_reset - called after the pci bus has been reset.
4547  * @pdev: Pointer to PCI device
4548  *
4549  * Restart the card from scratch, as if from a cold-boot. Implementation
4550  * resembles the first-half of the igb_resume routine.
4551  */
4552 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
4553 {
4554         struct net_device *netdev = pci_get_drvdata(pdev);
4555         struct igb_adapter *adapter = netdev_priv(netdev);
4556         struct e1000_hw *hw = &adapter->hw;
4557         int err;
4558
4559         if (adapter->need_ioport)
4560                 err = pci_enable_device(pdev);
4561         else
4562                 err = pci_enable_device_mem(pdev);
4563         if (err) {
4564                 dev_err(&pdev->dev,
4565                         "Cannot re-enable PCI device after reset.\n");
4566                 return PCI_ERS_RESULT_DISCONNECT;
4567         }
4568         pci_set_master(pdev);
4569         pci_restore_state(pdev);
4570
4571         pci_enable_wake(pdev, PCI_D3hot, 0);
4572         pci_enable_wake(pdev, PCI_D3cold, 0);
4573
4574         igb_reset(adapter);
4575         wr32(E1000_WUS, ~0);
4576
4577         return PCI_ERS_RESULT_RECOVERED;
4578 }
4579
4580 /**
4581  * igb_io_resume - called when traffic can start flowing again.
4582  * @pdev: Pointer to PCI device
4583  *
4584  * This callback is called when the error recovery driver tells us that
4585  * its OK to resume normal operation. Implementation resembles the
4586  * second-half of the igb_resume routine.
4587  */
4588 static void igb_io_resume(struct pci_dev *pdev)
4589 {
4590         struct net_device *netdev = pci_get_drvdata(pdev);
4591         struct igb_adapter *adapter = netdev_priv(netdev);
4592
4593         igb_init_manageability(adapter);
4594
4595         if (netif_running(netdev)) {
4596                 if (igb_up(adapter)) {
4597                         dev_err(&pdev->dev, "igb_up failed after reset\n");
4598                         return;
4599                 }
4600         }
4601
4602         netif_device_attach(netdev);
4603
4604         /* let the f/w know that the h/w is now under the control of the
4605          * driver. */
4606         igb_get_hw_control(adapter);
4607
4608 }
4609
4610 /* igb_main.c */