net: convert print_mac to %pM
[linux-2.6.git] / drivers / net / gianfar.c
1 /*
2  * drivers/net/gianfar.c
3  *
4  * Gianfar Ethernet Driver
5  * This driver is designed for the non-CPM ethernet controllers
6  * on the 85xx and 83xx family of integrated processors
7  * Based on 8260_io/fcc_enet.c
8  *
9  * Author: Andy Fleming
10  * Maintainer: Kumar Gala
11  *
12  * Copyright (c) 2002-2006 Freescale Semiconductor, Inc.
13  * Copyright (c) 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through platform_device.  Structures which
29  *  define the configuration needed by the board are defined in a
30  *  board structure in arch/ppc/platforms (though I do not
31  *  discount the possibility that other architectures could one
32  *  day be supported.
33  *
34  *  The Gianfar Ethernet Controller uses a ring of buffer
35  *  descriptors.  The beginning is indicated by a register
36  *  pointing to the physical address of the start of the ring.
37  *  The end is determined by a "wrap" bit being set in the
38  *  last descriptor of the ring.
39  *
40  *  When a packet is received, the RXF bit in the
41  *  IEVENT register is set, triggering an interrupt when the
42  *  corresponding bit in the IMASK register is also set (if
43  *  interrupt coalescing is active, then the interrupt may not
44  *  happen immediately, but will wait until either a set number
45  *  of frames or amount of time have passed).  In NAPI, the
46  *  interrupt handler will signal there is work to be done, and
47  *  exit. This method will start at the last known empty
48  *  descriptor, and process every subsequent descriptor until there
49  *  are none left with data (NAPI will stop after a set number of
50  *  packets to give time to other tasks, but will eventually
51  *  process all the packets).  The data arrives inside a
52  *  pre-allocated skb, and so after the skb is passed up to the
53  *  stack, a new skb must be allocated, and the address field in
54  *  the buffer descriptor must be updated to indicate this new
55  *  skb.
56  *
57  *  When the kernel requests that a packet be transmitted, the
58  *  driver starts where it left off last time, and points the
59  *  descriptor at the buffer which was passed in.  The driver
60  *  then informs the DMA engine that there are packets ready to
61  *  be transmitted.  Once the controller is finished transmitting
62  *  the packet, an interrupt may be triggered (under the same
63  *  conditions as for reception, but depending on the TXF bit).
64  *  The driver then cleans up the buffer.
65  */
66
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/init.h>
74 #include <linux/delay.h>
75 #include <linux/netdevice.h>
76 #include <linux/etherdevice.h>
77 #include <linux/skbuff.h>
78 #include <linux/if_vlan.h>
79 #include <linux/spinlock.h>
80 #include <linux/mm.h>
81 #include <linux/platform_device.h>
82 #include <linux/ip.h>
83 #include <linux/tcp.h>
84 #include <linux/udp.h>
85 #include <linux/in.h>
86
87 #include <asm/io.h>
88 #include <asm/irq.h>
89 #include <asm/uaccess.h>
90 #include <linux/module.h>
91 #include <linux/dma-mapping.h>
92 #include <linux/crc32.h>
93 #include <linux/mii.h>
94 #include <linux/phy.h>
95
96 #include "gianfar.h"
97 #include "gianfar_mii.h"
98
99 #define TX_TIMEOUT      (1*HZ)
100 #undef BRIEF_GFAR_ERRORS
101 #undef VERBOSE_GFAR_ERRORS
102
103 const char gfar_driver_name[] = "Gianfar Ethernet";
104 const char gfar_driver_version[] = "1.3";
105
106 static int gfar_enet_open(struct net_device *dev);
107 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
108 static void gfar_reset_task(struct work_struct *work);
109 static void gfar_timeout(struct net_device *dev);
110 static int gfar_close(struct net_device *dev);
111 struct sk_buff *gfar_new_skb(struct net_device *dev);
112 static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
113                 struct sk_buff *skb);
114 static int gfar_set_mac_address(struct net_device *dev);
115 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
116 static irqreturn_t gfar_error(int irq, void *dev_id);
117 static irqreturn_t gfar_transmit(int irq, void *dev_id);
118 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
119 static void adjust_link(struct net_device *dev);
120 static void init_registers(struct net_device *dev);
121 static int init_phy(struct net_device *dev);
122 static int gfar_probe(struct platform_device *pdev);
123 static int gfar_remove(struct platform_device *pdev);
124 static void free_skb_resources(struct gfar_private *priv);
125 static void gfar_set_multi(struct net_device *dev);
126 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
127 static void gfar_configure_serdes(struct net_device *dev);
128 static int gfar_poll(struct napi_struct *napi, int budget);
129 #ifdef CONFIG_NET_POLL_CONTROLLER
130 static void gfar_netpoll(struct net_device *dev);
131 #endif
132 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit);
133 static int gfar_clean_tx_ring(struct net_device *dev);
134 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb, int length);
135 static void gfar_vlan_rx_register(struct net_device *netdev,
136                                 struct vlan_group *grp);
137 void gfar_halt(struct net_device *dev);
138 static void gfar_halt_nodisable(struct net_device *dev);
139 void gfar_start(struct net_device *dev);
140 static void gfar_clear_exact_match(struct net_device *dev);
141 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
142
143 extern const struct ethtool_ops gfar_ethtool_ops;
144
145 MODULE_AUTHOR("Freescale Semiconductor, Inc");
146 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
147 MODULE_LICENSE("GPL");
148
149 /* Returns 1 if incoming frames use an FCB */
150 static inline int gfar_uses_fcb(struct gfar_private *priv)
151 {
152         return (priv->vlan_enable || priv->rx_csum_enable);
153 }
154
155 /* Set up the ethernet device structure, private data,
156  * and anything else we need before we start */
157 static int gfar_probe(struct platform_device *pdev)
158 {
159         u32 tempval;
160         struct net_device *dev = NULL;
161         struct gfar_private *priv = NULL;
162         struct gianfar_platform_data *einfo;
163         struct resource *r;
164         int err = 0, irq;
165
166         einfo = (struct gianfar_platform_data *) pdev->dev.platform_data;
167
168         if (NULL == einfo) {
169                 printk(KERN_ERR "gfar %d: Missing additional data!\n",
170                        pdev->id);
171
172                 return -ENODEV;
173         }
174
175         /* Create an ethernet device instance */
176         dev = alloc_etherdev(sizeof (*priv));
177
178         if (NULL == dev)
179                 return -ENOMEM;
180
181         priv = netdev_priv(dev);
182         priv->dev = dev;
183
184         /* Set the info in the priv to the current info */
185         priv->einfo = einfo;
186
187         /* fill out IRQ fields */
188         if (einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
189                 irq = platform_get_irq_byname(pdev, "tx");
190                 if (irq < 0)
191                         goto regs_fail;
192                 priv->interruptTransmit = irq;
193
194                 irq = platform_get_irq_byname(pdev, "rx");
195                 if (irq < 0)
196                         goto regs_fail;
197                 priv->interruptReceive = irq;
198
199                 irq = platform_get_irq_byname(pdev, "error");
200                 if (irq < 0)
201                         goto regs_fail;
202                 priv->interruptError = irq;
203         } else {
204                 irq = platform_get_irq(pdev, 0);
205                 if (irq < 0)
206                         goto regs_fail;
207                 priv->interruptTransmit = irq;
208         }
209
210         /* get a pointer to the register memory */
211         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
212         priv->regs = ioremap(r->start, sizeof (struct gfar));
213
214         if (NULL == priv->regs) {
215                 err = -ENOMEM;
216                 goto regs_fail;
217         }
218
219         spin_lock_init(&priv->txlock);
220         spin_lock_init(&priv->rxlock);
221         spin_lock_init(&priv->bflock);
222         INIT_WORK(&priv->reset_task, gfar_reset_task);
223
224         platform_set_drvdata(pdev, dev);
225
226         /* Stop the DMA engine now, in case it was running before */
227         /* (The firmware could have used it, and left it running). */
228         /* To do this, we write Graceful Receive Stop and Graceful */
229         /* Transmit Stop, and then wait until the corresponding bits */
230         /* in IEVENT indicate the stops have completed. */
231         tempval = gfar_read(&priv->regs->dmactrl);
232         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
233         gfar_write(&priv->regs->dmactrl, tempval);
234
235         tempval = gfar_read(&priv->regs->dmactrl);
236         tempval |= (DMACTRL_GRS | DMACTRL_GTS);
237         gfar_write(&priv->regs->dmactrl, tempval);
238
239         while (!(gfar_read(&priv->regs->ievent) & (IEVENT_GRSC | IEVENT_GTSC)))
240                 cpu_relax();
241
242         /* Reset MAC layer */
243         gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
244
245         tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
246         gfar_write(&priv->regs->maccfg1, tempval);
247
248         /* Initialize MACCFG2. */
249         gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS);
250
251         /* Initialize ECNTRL */
252         gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS);
253
254         /* Copy the station address into the dev structure, */
255         memcpy(dev->dev_addr, einfo->mac_addr, MAC_ADDR_LEN);
256
257         /* Set the dev->base_addr to the gfar reg region */
258         dev->base_addr = (unsigned long) (priv->regs);
259
260         SET_NETDEV_DEV(dev, &pdev->dev);
261
262         /* Fill in the dev structure */
263         dev->open = gfar_enet_open;
264         dev->hard_start_xmit = gfar_start_xmit;
265         dev->tx_timeout = gfar_timeout;
266         dev->watchdog_timeo = TX_TIMEOUT;
267         netif_napi_add(dev, &priv->napi, gfar_poll, GFAR_DEV_WEIGHT);
268 #ifdef CONFIG_NET_POLL_CONTROLLER
269         dev->poll_controller = gfar_netpoll;
270 #endif
271         dev->stop = gfar_close;
272         dev->change_mtu = gfar_change_mtu;
273         dev->mtu = 1500;
274         dev->set_multicast_list = gfar_set_multi;
275
276         dev->ethtool_ops = &gfar_ethtool_ops;
277
278         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
279                 priv->rx_csum_enable = 1;
280                 dev->features |= NETIF_F_IP_CSUM;
281         } else
282                 priv->rx_csum_enable = 0;
283
284         priv->vlgrp = NULL;
285
286         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
287                 dev->vlan_rx_register = gfar_vlan_rx_register;
288
289                 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
290
291                 priv->vlan_enable = 1;
292         }
293
294         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
295                 priv->extended_hash = 1;
296                 priv->hash_width = 9;
297
298                 priv->hash_regs[0] = &priv->regs->igaddr0;
299                 priv->hash_regs[1] = &priv->regs->igaddr1;
300                 priv->hash_regs[2] = &priv->regs->igaddr2;
301                 priv->hash_regs[3] = &priv->regs->igaddr3;
302                 priv->hash_regs[4] = &priv->regs->igaddr4;
303                 priv->hash_regs[5] = &priv->regs->igaddr5;
304                 priv->hash_regs[6] = &priv->regs->igaddr6;
305                 priv->hash_regs[7] = &priv->regs->igaddr7;
306                 priv->hash_regs[8] = &priv->regs->gaddr0;
307                 priv->hash_regs[9] = &priv->regs->gaddr1;
308                 priv->hash_regs[10] = &priv->regs->gaddr2;
309                 priv->hash_regs[11] = &priv->regs->gaddr3;
310                 priv->hash_regs[12] = &priv->regs->gaddr4;
311                 priv->hash_regs[13] = &priv->regs->gaddr5;
312                 priv->hash_regs[14] = &priv->regs->gaddr6;
313                 priv->hash_regs[15] = &priv->regs->gaddr7;
314
315         } else {
316                 priv->extended_hash = 0;
317                 priv->hash_width = 8;
318
319                 priv->hash_regs[0] = &priv->regs->gaddr0;
320                 priv->hash_regs[1] = &priv->regs->gaddr1;
321                 priv->hash_regs[2] = &priv->regs->gaddr2;
322                 priv->hash_regs[3] = &priv->regs->gaddr3;
323                 priv->hash_regs[4] = &priv->regs->gaddr4;
324                 priv->hash_regs[5] = &priv->regs->gaddr5;
325                 priv->hash_regs[6] = &priv->regs->gaddr6;
326                 priv->hash_regs[7] = &priv->regs->gaddr7;
327         }
328
329         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
330                 priv->padding = DEFAULT_PADDING;
331         else
332                 priv->padding = 0;
333
334         if (dev->features & NETIF_F_IP_CSUM)
335                 dev->hard_header_len += GMAC_FCB_LEN;
336
337         priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
338         priv->tx_ring_size = DEFAULT_TX_RING_SIZE;
339         priv->rx_ring_size = DEFAULT_RX_RING_SIZE;
340
341         priv->txcoalescing = DEFAULT_TX_COALESCE;
342         priv->txcount = DEFAULT_TXCOUNT;
343         priv->txtime = DEFAULT_TXTIME;
344         priv->rxcoalescing = DEFAULT_RX_COALESCE;
345         priv->rxcount = DEFAULT_RXCOUNT;
346         priv->rxtime = DEFAULT_RXTIME;
347
348         /* Enable most messages by default */
349         priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
350
351         /* Carrier starts down, phylib will bring it up */
352         netif_carrier_off(dev);
353
354         err = register_netdev(dev);
355
356         if (err) {
357                 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
358                                 dev->name);
359                 goto register_fail;
360         }
361
362         /* Create all the sysfs files */
363         gfar_init_sysfs(dev);
364
365         /* Print out the device info */
366         printk(KERN_INFO DEVICE_NAME "%pM\n", dev->name, dev->dev_addr);
367
368         /* Even more device info helps when determining which kernel */
369         /* provided which set of benchmarks. */
370         printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
371         printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n",
372                dev->name, priv->rx_ring_size, priv->tx_ring_size);
373
374         return 0;
375
376 register_fail:
377         iounmap(priv->regs);
378 regs_fail:
379         free_netdev(dev);
380         return err;
381 }
382
383 static int gfar_remove(struct platform_device *pdev)
384 {
385         struct net_device *dev = platform_get_drvdata(pdev);
386         struct gfar_private *priv = netdev_priv(dev);
387
388         platform_set_drvdata(pdev, NULL);
389
390         iounmap(priv->regs);
391         free_netdev(dev);
392
393         return 0;
394 }
395
396 #ifdef CONFIG_PM
397 static int gfar_suspend(struct platform_device *pdev, pm_message_t state)
398 {
399         struct net_device *dev = platform_get_drvdata(pdev);
400         struct gfar_private *priv = netdev_priv(dev);
401         unsigned long flags;
402         u32 tempval;
403
404         int magic_packet = priv->wol_en &&
405                 (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
406
407         netif_device_detach(dev);
408
409         if (netif_running(dev)) {
410                 spin_lock_irqsave(&priv->txlock, flags);
411                 spin_lock(&priv->rxlock);
412
413                 gfar_halt_nodisable(dev);
414
415                 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
416                 tempval = gfar_read(&priv->regs->maccfg1);
417
418                 tempval &= ~MACCFG1_TX_EN;
419
420                 if (!magic_packet)
421                         tempval &= ~MACCFG1_RX_EN;
422
423                 gfar_write(&priv->regs->maccfg1, tempval);
424
425                 spin_unlock(&priv->rxlock);
426                 spin_unlock_irqrestore(&priv->txlock, flags);
427
428                 napi_disable(&priv->napi);
429
430                 if (magic_packet) {
431                         /* Enable interrupt on Magic Packet */
432                         gfar_write(&priv->regs->imask, IMASK_MAG);
433
434                         /* Enable Magic Packet mode */
435                         tempval = gfar_read(&priv->regs->maccfg2);
436                         tempval |= MACCFG2_MPEN;
437                         gfar_write(&priv->regs->maccfg2, tempval);
438                 } else {
439                         phy_stop(priv->phydev);
440                 }
441         }
442
443         return 0;
444 }
445
446 static int gfar_resume(struct platform_device *pdev)
447 {
448         struct net_device *dev = platform_get_drvdata(pdev);
449         struct gfar_private *priv = netdev_priv(dev);
450         unsigned long flags;
451         u32 tempval;
452         int magic_packet = priv->wol_en &&
453                 (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
454
455         if (!netif_running(dev)) {
456                 netif_device_attach(dev);
457                 return 0;
458         }
459
460         if (!magic_packet && priv->phydev)
461                 phy_start(priv->phydev);
462
463         /* Disable Magic Packet mode, in case something
464          * else woke us up.
465          */
466
467         spin_lock_irqsave(&priv->txlock, flags);
468         spin_lock(&priv->rxlock);
469
470         tempval = gfar_read(&priv->regs->maccfg2);
471         tempval &= ~MACCFG2_MPEN;
472         gfar_write(&priv->regs->maccfg2, tempval);
473
474         gfar_start(dev);
475
476         spin_unlock(&priv->rxlock);
477         spin_unlock_irqrestore(&priv->txlock, flags);
478
479         netif_device_attach(dev);
480
481         napi_enable(&priv->napi);
482
483         return 0;
484 }
485 #else
486 #define gfar_suspend NULL
487 #define gfar_resume NULL
488 #endif
489
490 /* Reads the controller's registers to determine what interface
491  * connects it to the PHY.
492  */
493 static phy_interface_t gfar_get_interface(struct net_device *dev)
494 {
495         struct gfar_private *priv = netdev_priv(dev);
496         u32 ecntrl = gfar_read(&priv->regs->ecntrl);
497
498         if (ecntrl & ECNTRL_SGMII_MODE)
499                 return PHY_INTERFACE_MODE_SGMII;
500
501         if (ecntrl & ECNTRL_TBI_MODE) {
502                 if (ecntrl & ECNTRL_REDUCED_MODE)
503                         return PHY_INTERFACE_MODE_RTBI;
504                 else
505                         return PHY_INTERFACE_MODE_TBI;
506         }
507
508         if (ecntrl & ECNTRL_REDUCED_MODE) {
509                 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
510                         return PHY_INTERFACE_MODE_RMII;
511                 else {
512                         phy_interface_t interface = priv->einfo->interface;
513
514                         /*
515                          * This isn't autodetected right now, so it must
516                          * be set by the device tree or platform code.
517                          */
518                         if (interface == PHY_INTERFACE_MODE_RGMII_ID)
519                                 return PHY_INTERFACE_MODE_RGMII_ID;
520
521                         return PHY_INTERFACE_MODE_RGMII;
522                 }
523         }
524
525         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
526                 return PHY_INTERFACE_MODE_GMII;
527
528         return PHY_INTERFACE_MODE_MII;
529 }
530
531
532 /* Initializes driver's PHY state, and attaches to the PHY.
533  * Returns 0 on success.
534  */
535 static int init_phy(struct net_device *dev)
536 {
537         struct gfar_private *priv = netdev_priv(dev);
538         uint gigabit_support =
539                 priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
540                 SUPPORTED_1000baseT_Full : 0;
541         struct phy_device *phydev;
542         char phy_id[BUS_ID_SIZE];
543         phy_interface_t interface;
544
545         priv->oldlink = 0;
546         priv->oldspeed = 0;
547         priv->oldduplex = -1;
548
549         snprintf(phy_id, BUS_ID_SIZE, PHY_ID_FMT, priv->einfo->bus_id, priv->einfo->phy_id);
550
551         interface = gfar_get_interface(dev);
552
553         phydev = phy_connect(dev, phy_id, &adjust_link, 0, interface);
554
555         if (interface == PHY_INTERFACE_MODE_SGMII)
556                 gfar_configure_serdes(dev);
557
558         if (IS_ERR(phydev)) {
559                 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
560                 return PTR_ERR(phydev);
561         }
562
563         /* Remove any features not supported by the controller */
564         phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
565         phydev->advertising = phydev->supported;
566
567         priv->phydev = phydev;
568
569         return 0;
570 }
571
572 /*
573  * Initialize TBI PHY interface for communicating with the
574  * SERDES lynx PHY on the chip.  We communicate with this PHY
575  * through the MDIO bus on each controller, treating it as a
576  * "normal" PHY at the address found in the TBIPA register.  We assume
577  * that the TBIPA register is valid.  Either the MDIO bus code will set
578  * it to a value that doesn't conflict with other PHYs on the bus, or the
579  * value doesn't matter, as there are no other PHYs on the bus.
580  */
581 static void gfar_configure_serdes(struct net_device *dev)
582 {
583         struct gfar_private *priv = netdev_priv(dev);
584         struct gfar_mii __iomem *regs =
585                         (void __iomem *)&priv->regs->gfar_mii_regs;
586         int tbipa = gfar_read(&priv->regs->tbipa);
587
588         /* Single clk mode, mii mode off(for serdes communication) */
589         gfar_local_mdio_write(regs, tbipa, MII_TBICON, TBICON_CLK_SELECT);
590
591         gfar_local_mdio_write(regs, tbipa, MII_ADVERTISE,
592                         ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
593                         ADVERTISE_1000XPSE_ASYM);
594
595         gfar_local_mdio_write(regs, tbipa, MII_BMCR, BMCR_ANENABLE |
596                         BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
597 }
598
599 static void init_registers(struct net_device *dev)
600 {
601         struct gfar_private *priv = netdev_priv(dev);
602
603         /* Clear IEVENT */
604         gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR);
605
606         /* Initialize IMASK */
607         gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR);
608
609         /* Init hash registers to zero */
610         gfar_write(&priv->regs->igaddr0, 0);
611         gfar_write(&priv->regs->igaddr1, 0);
612         gfar_write(&priv->regs->igaddr2, 0);
613         gfar_write(&priv->regs->igaddr3, 0);
614         gfar_write(&priv->regs->igaddr4, 0);
615         gfar_write(&priv->regs->igaddr5, 0);
616         gfar_write(&priv->regs->igaddr6, 0);
617         gfar_write(&priv->regs->igaddr7, 0);
618
619         gfar_write(&priv->regs->gaddr0, 0);
620         gfar_write(&priv->regs->gaddr1, 0);
621         gfar_write(&priv->regs->gaddr2, 0);
622         gfar_write(&priv->regs->gaddr3, 0);
623         gfar_write(&priv->regs->gaddr4, 0);
624         gfar_write(&priv->regs->gaddr5, 0);
625         gfar_write(&priv->regs->gaddr6, 0);
626         gfar_write(&priv->regs->gaddr7, 0);
627
628         /* Zero out the rmon mib registers if it has them */
629         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
630                 memset_io(&(priv->regs->rmon), 0, sizeof (struct rmon_mib));
631
632                 /* Mask off the CAM interrupts */
633                 gfar_write(&priv->regs->rmon.cam1, 0xffffffff);
634                 gfar_write(&priv->regs->rmon.cam2, 0xffffffff);
635         }
636
637         /* Initialize the max receive buffer length */
638         gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
639
640         /* Initialize the Minimum Frame Length Register */
641         gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS);
642 }
643
644
645 /* Halt the receive and transmit queues */
646 static void gfar_halt_nodisable(struct net_device *dev)
647 {
648         struct gfar_private *priv = netdev_priv(dev);
649         struct gfar __iomem *regs = priv->regs;
650         u32 tempval;
651
652         /* Mask all interrupts */
653         gfar_write(&regs->imask, IMASK_INIT_CLEAR);
654
655         /* Clear all interrupts */
656         gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
657
658         /* Stop the DMA, and wait for it to stop */
659         tempval = gfar_read(&priv->regs->dmactrl);
660         if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
661             != (DMACTRL_GRS | DMACTRL_GTS)) {
662                 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
663                 gfar_write(&priv->regs->dmactrl, tempval);
664
665                 while (!(gfar_read(&priv->regs->ievent) &
666                          (IEVENT_GRSC | IEVENT_GTSC)))
667                         cpu_relax();
668         }
669 }
670
671 /* Halt the receive and transmit queues */
672 void gfar_halt(struct net_device *dev)
673 {
674         struct gfar_private *priv = netdev_priv(dev);
675         struct gfar __iomem *regs = priv->regs;
676         u32 tempval;
677
678         gfar_halt_nodisable(dev);
679
680         /* Disable Rx and Tx */
681         tempval = gfar_read(&regs->maccfg1);
682         tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
683         gfar_write(&regs->maccfg1, tempval);
684 }
685
686 void stop_gfar(struct net_device *dev)
687 {
688         struct gfar_private *priv = netdev_priv(dev);
689         struct gfar __iomem *regs = priv->regs;
690         unsigned long flags;
691
692         phy_stop(priv->phydev);
693
694         /* Lock it down */
695         spin_lock_irqsave(&priv->txlock, flags);
696         spin_lock(&priv->rxlock);
697
698         gfar_halt(dev);
699
700         spin_unlock(&priv->rxlock);
701         spin_unlock_irqrestore(&priv->txlock, flags);
702
703         /* Free the IRQs */
704         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
705                 free_irq(priv->interruptError, dev);
706                 free_irq(priv->interruptTransmit, dev);
707                 free_irq(priv->interruptReceive, dev);
708         } else {
709                 free_irq(priv->interruptTransmit, dev);
710         }
711
712         free_skb_resources(priv);
713
714         dma_free_coherent(&dev->dev,
715                         sizeof(struct txbd8)*priv->tx_ring_size
716                         + sizeof(struct rxbd8)*priv->rx_ring_size,
717                         priv->tx_bd_base,
718                         gfar_read(&regs->tbase0));
719 }
720
721 /* If there are any tx skbs or rx skbs still around, free them.
722  * Then free tx_skbuff and rx_skbuff */
723 static void free_skb_resources(struct gfar_private *priv)
724 {
725         struct rxbd8 *rxbdp;
726         struct txbd8 *txbdp;
727         int i;
728
729         /* Go through all the buffer descriptors and free their data buffers */
730         txbdp = priv->tx_bd_base;
731
732         for (i = 0; i < priv->tx_ring_size; i++) {
733
734                 if (priv->tx_skbuff[i]) {
735                         dma_unmap_single(&priv->dev->dev, txbdp->bufPtr,
736                                         txbdp->length,
737                                         DMA_TO_DEVICE);
738                         dev_kfree_skb_any(priv->tx_skbuff[i]);
739                         priv->tx_skbuff[i] = NULL;
740                 }
741
742                 txbdp++;
743         }
744
745         kfree(priv->tx_skbuff);
746
747         rxbdp = priv->rx_bd_base;
748
749         /* rx_skbuff is not guaranteed to be allocated, so only
750          * free it and its contents if it is allocated */
751         if(priv->rx_skbuff != NULL) {
752                 for (i = 0; i < priv->rx_ring_size; i++) {
753                         if (priv->rx_skbuff[i]) {
754                                 dma_unmap_single(&priv->dev->dev, rxbdp->bufPtr,
755                                                 priv->rx_buffer_size,
756                                                 DMA_FROM_DEVICE);
757
758                                 dev_kfree_skb_any(priv->rx_skbuff[i]);
759                                 priv->rx_skbuff[i] = NULL;
760                         }
761
762                         rxbdp->status = 0;
763                         rxbdp->length = 0;
764                         rxbdp->bufPtr = 0;
765
766                         rxbdp++;
767                 }
768
769                 kfree(priv->rx_skbuff);
770         }
771 }
772
773 void gfar_start(struct net_device *dev)
774 {
775         struct gfar_private *priv = netdev_priv(dev);
776         struct gfar __iomem *regs = priv->regs;
777         u32 tempval;
778
779         /* Enable Rx and Tx in MACCFG1 */
780         tempval = gfar_read(&regs->maccfg1);
781         tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
782         gfar_write(&regs->maccfg1, tempval);
783
784         /* Initialize DMACTRL to have WWR and WOP */
785         tempval = gfar_read(&priv->regs->dmactrl);
786         tempval |= DMACTRL_INIT_SETTINGS;
787         gfar_write(&priv->regs->dmactrl, tempval);
788
789         /* Make sure we aren't stopped */
790         tempval = gfar_read(&priv->regs->dmactrl);
791         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
792         gfar_write(&priv->regs->dmactrl, tempval);
793
794         /* Clear THLT/RHLT, so that the DMA starts polling now */
795         gfar_write(&regs->tstat, TSTAT_CLEAR_THALT);
796         gfar_write(&regs->rstat, RSTAT_CLEAR_RHALT);
797
798         /* Unmask the interrupts we look for */
799         gfar_write(&regs->imask, IMASK_DEFAULT);
800 }
801
802 /* Bring the controller up and running */
803 int startup_gfar(struct net_device *dev)
804 {
805         struct txbd8 *txbdp;
806         struct rxbd8 *rxbdp;
807         dma_addr_t addr = 0;
808         unsigned long vaddr;
809         int i;
810         struct gfar_private *priv = netdev_priv(dev);
811         struct gfar __iomem *regs = priv->regs;
812         int err = 0;
813         u32 rctrl = 0;
814         u32 attrs = 0;
815
816         gfar_write(&regs->imask, IMASK_INIT_CLEAR);
817
818         /* Allocate memory for the buffer descriptors */
819         vaddr = (unsigned long) dma_alloc_coherent(&dev->dev,
820                         sizeof (struct txbd8) * priv->tx_ring_size +
821                         sizeof (struct rxbd8) * priv->rx_ring_size,
822                         &addr, GFP_KERNEL);
823
824         if (vaddr == 0) {
825                 if (netif_msg_ifup(priv))
826                         printk(KERN_ERR "%s: Could not allocate buffer descriptors!\n",
827                                         dev->name);
828                 return -ENOMEM;
829         }
830
831         priv->tx_bd_base = (struct txbd8 *) vaddr;
832
833         /* enet DMA only understands physical addresses */
834         gfar_write(&regs->tbase0, addr);
835
836         /* Start the rx descriptor ring where the tx ring leaves off */
837         addr = addr + sizeof (struct txbd8) * priv->tx_ring_size;
838         vaddr = vaddr + sizeof (struct txbd8) * priv->tx_ring_size;
839         priv->rx_bd_base = (struct rxbd8 *) vaddr;
840         gfar_write(&regs->rbase0, addr);
841
842         /* Setup the skbuff rings */
843         priv->tx_skbuff =
844             (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
845                                         priv->tx_ring_size, GFP_KERNEL);
846
847         if (NULL == priv->tx_skbuff) {
848                 if (netif_msg_ifup(priv))
849                         printk(KERN_ERR "%s: Could not allocate tx_skbuff\n",
850                                         dev->name);
851                 err = -ENOMEM;
852                 goto tx_skb_fail;
853         }
854
855         for (i = 0; i < priv->tx_ring_size; i++)
856                 priv->tx_skbuff[i] = NULL;
857
858         priv->rx_skbuff =
859             (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
860                                         priv->rx_ring_size, GFP_KERNEL);
861
862         if (NULL == priv->rx_skbuff) {
863                 if (netif_msg_ifup(priv))
864                         printk(KERN_ERR "%s: Could not allocate rx_skbuff\n",
865                                         dev->name);
866                 err = -ENOMEM;
867                 goto rx_skb_fail;
868         }
869
870         for (i = 0; i < priv->rx_ring_size; i++)
871                 priv->rx_skbuff[i] = NULL;
872
873         /* Initialize some variables in our dev structure */
874         priv->dirty_tx = priv->cur_tx = priv->tx_bd_base;
875         priv->cur_rx = priv->rx_bd_base;
876         priv->skb_curtx = priv->skb_dirtytx = 0;
877         priv->skb_currx = 0;
878
879         /* Initialize Transmit Descriptor Ring */
880         txbdp = priv->tx_bd_base;
881         for (i = 0; i < priv->tx_ring_size; i++) {
882                 txbdp->status = 0;
883                 txbdp->length = 0;
884                 txbdp->bufPtr = 0;
885                 txbdp++;
886         }
887
888         /* Set the last descriptor in the ring to indicate wrap */
889         txbdp--;
890         txbdp->status |= TXBD_WRAP;
891
892         rxbdp = priv->rx_bd_base;
893         for (i = 0; i < priv->rx_ring_size; i++) {
894                 struct sk_buff *skb;
895
896                 skb = gfar_new_skb(dev);
897
898                 if (!skb) {
899                         printk(KERN_ERR "%s: Can't allocate RX buffers\n",
900                                         dev->name);
901
902                         goto err_rxalloc_fail;
903                 }
904
905                 priv->rx_skbuff[i] = skb;
906
907                 gfar_new_rxbdp(dev, rxbdp, skb);
908
909                 rxbdp++;
910         }
911
912         /* Set the last descriptor in the ring to wrap */
913         rxbdp--;
914         rxbdp->status |= RXBD_WRAP;
915
916         /* If the device has multiple interrupts, register for
917          * them.  Otherwise, only register for the one */
918         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
919                 /* Install our interrupt handlers for Error,
920                  * Transmit, and Receive */
921                 if (request_irq(priv->interruptError, gfar_error,
922                                 0, "enet_error", dev) < 0) {
923                         if (netif_msg_intr(priv))
924                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
925                                         dev->name, priv->interruptError);
926
927                         err = -1;
928                         goto err_irq_fail;
929                 }
930
931                 if (request_irq(priv->interruptTransmit, gfar_transmit,
932                                 0, "enet_tx", dev) < 0) {
933                         if (netif_msg_intr(priv))
934                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
935                                         dev->name, priv->interruptTransmit);
936
937                         err = -1;
938
939                         goto tx_irq_fail;
940                 }
941
942                 if (request_irq(priv->interruptReceive, gfar_receive,
943                                 0, "enet_rx", dev) < 0) {
944                         if (netif_msg_intr(priv))
945                                 printk(KERN_ERR "%s: Can't get IRQ %d (receive0)\n",
946                                                 dev->name, priv->interruptReceive);
947
948                         err = -1;
949                         goto rx_irq_fail;
950                 }
951         } else {
952                 if (request_irq(priv->interruptTransmit, gfar_interrupt,
953                                 0, "gfar_interrupt", dev) < 0) {
954                         if (netif_msg_intr(priv))
955                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
956                                         dev->name, priv->interruptError);
957
958                         err = -1;
959                         goto err_irq_fail;
960                 }
961         }
962
963         phy_start(priv->phydev);
964
965         /* Configure the coalescing support */
966         if (priv->txcoalescing)
967                 gfar_write(&regs->txic,
968                            mk_ic_value(priv->txcount, priv->txtime));
969         else
970                 gfar_write(&regs->txic, 0);
971
972         if (priv->rxcoalescing)
973                 gfar_write(&regs->rxic,
974                            mk_ic_value(priv->rxcount, priv->rxtime));
975         else
976                 gfar_write(&regs->rxic, 0);
977
978         if (priv->rx_csum_enable)
979                 rctrl |= RCTRL_CHECKSUMMING;
980
981         if (priv->extended_hash) {
982                 rctrl |= RCTRL_EXTHASH;
983
984                 gfar_clear_exact_match(dev);
985                 rctrl |= RCTRL_EMEN;
986         }
987
988         if (priv->vlan_enable)
989                 rctrl |= RCTRL_VLAN;
990
991         if (priv->padding) {
992                 rctrl &= ~RCTRL_PAL_MASK;
993                 rctrl |= RCTRL_PADDING(priv->padding);
994         }
995
996         /* Init rctrl based on our settings */
997         gfar_write(&priv->regs->rctrl, rctrl);
998
999         if (dev->features & NETIF_F_IP_CSUM)
1000                 gfar_write(&priv->regs->tctrl, TCTRL_INIT_CSUM);
1001
1002         /* Set the extraction length and index */
1003         attrs = ATTRELI_EL(priv->rx_stash_size) |
1004                 ATTRELI_EI(priv->rx_stash_index);
1005
1006         gfar_write(&priv->regs->attreli, attrs);
1007
1008         /* Start with defaults, and add stashing or locking
1009          * depending on the approprate variables */
1010         attrs = ATTR_INIT_SETTINGS;
1011
1012         if (priv->bd_stash_en)
1013                 attrs |= ATTR_BDSTASH;
1014
1015         if (priv->rx_stash_size != 0)
1016                 attrs |= ATTR_BUFSTASH;
1017
1018         gfar_write(&priv->regs->attr, attrs);
1019
1020         gfar_write(&priv->regs->fifo_tx_thr, priv->fifo_threshold);
1021         gfar_write(&priv->regs->fifo_tx_starve, priv->fifo_starve);
1022         gfar_write(&priv->regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
1023
1024         /* Start the controller */
1025         gfar_start(dev);
1026
1027         return 0;
1028
1029 rx_irq_fail:
1030         free_irq(priv->interruptTransmit, dev);
1031 tx_irq_fail:
1032         free_irq(priv->interruptError, dev);
1033 err_irq_fail:
1034 err_rxalloc_fail:
1035 rx_skb_fail:
1036         free_skb_resources(priv);
1037 tx_skb_fail:
1038         dma_free_coherent(&dev->dev,
1039                         sizeof(struct txbd8)*priv->tx_ring_size
1040                         + sizeof(struct rxbd8)*priv->rx_ring_size,
1041                         priv->tx_bd_base,
1042                         gfar_read(&regs->tbase0));
1043
1044         return err;
1045 }
1046
1047 /* Called when something needs to use the ethernet device */
1048 /* Returns 0 for success. */
1049 static int gfar_enet_open(struct net_device *dev)
1050 {
1051         struct gfar_private *priv = netdev_priv(dev);
1052         int err;
1053
1054         napi_enable(&priv->napi);
1055
1056         /* Initialize a bunch of registers */
1057         init_registers(dev);
1058
1059         gfar_set_mac_address(dev);
1060
1061         err = init_phy(dev);
1062
1063         if(err) {
1064                 napi_disable(&priv->napi);
1065                 return err;
1066         }
1067
1068         err = startup_gfar(dev);
1069         if (err) {
1070                 napi_disable(&priv->napi);
1071                 return err;
1072         }
1073
1074         netif_start_queue(dev);
1075
1076         return err;
1077 }
1078
1079 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb, struct txbd8 *bdp)
1080 {
1081         struct txfcb *fcb = (struct txfcb *)skb_push (skb, GMAC_FCB_LEN);
1082
1083         memset(fcb, 0, GMAC_FCB_LEN);
1084
1085         return fcb;
1086 }
1087
1088 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
1089 {
1090         u8 flags = 0;
1091
1092         /* If we're here, it's a IP packet with a TCP or UDP
1093          * payload.  We set it to checksum, using a pseudo-header
1094          * we provide
1095          */
1096         flags = TXFCB_DEFAULT;
1097
1098         /* Tell the controller what the protocol is */
1099         /* And provide the already calculated phcs */
1100         if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1101                 flags |= TXFCB_UDP;
1102                 fcb->phcs = udp_hdr(skb)->check;
1103         } else
1104                 fcb->phcs = tcp_hdr(skb)->check;
1105
1106         /* l3os is the distance between the start of the
1107          * frame (skb->data) and the start of the IP hdr.
1108          * l4os is the distance between the start of the
1109          * l3 hdr and the l4 hdr */
1110         fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
1111         fcb->l4os = skb_network_header_len(skb);
1112
1113         fcb->flags = flags;
1114 }
1115
1116 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1117 {
1118         fcb->flags |= TXFCB_VLN;
1119         fcb->vlctl = vlan_tx_tag_get(skb);
1120 }
1121
1122 /* This is called by the kernel when a frame is ready for transmission. */
1123 /* It is pointed to by the dev->hard_start_xmit function pointer */
1124 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1125 {
1126         struct gfar_private *priv = netdev_priv(dev);
1127         struct txfcb *fcb = NULL;
1128         struct txbd8 *txbdp;
1129         u16 status;
1130         unsigned long flags;
1131
1132         /* Update transmit stats */
1133         dev->stats.tx_bytes += skb->len;
1134
1135         /* Lock priv now */
1136         spin_lock_irqsave(&priv->txlock, flags);
1137
1138         /* Point at the first free tx descriptor */
1139         txbdp = priv->cur_tx;
1140
1141         /* Clear all but the WRAP status flags */
1142         status = txbdp->status & TXBD_WRAP;
1143
1144         /* Set up checksumming */
1145         if (likely((dev->features & NETIF_F_IP_CSUM)
1146                         && (CHECKSUM_PARTIAL == skb->ip_summed))) {
1147                 fcb = gfar_add_fcb(skb, txbdp);
1148                 status |= TXBD_TOE;
1149                 gfar_tx_checksum(skb, fcb);
1150         }
1151
1152         if (priv->vlan_enable &&
1153                         unlikely(priv->vlgrp && vlan_tx_tag_present(skb))) {
1154                 if (unlikely(NULL == fcb)) {
1155                         fcb = gfar_add_fcb(skb, txbdp);
1156                         status |= TXBD_TOE;
1157                 }
1158
1159                 gfar_tx_vlan(skb, fcb);
1160         }
1161
1162         /* Set buffer length and pointer */
1163         txbdp->length = skb->len;
1164         txbdp->bufPtr = dma_map_single(&dev->dev, skb->data,
1165                         skb->len, DMA_TO_DEVICE);
1166
1167         /* Save the skb pointer so we can free it later */
1168         priv->tx_skbuff[priv->skb_curtx] = skb;
1169
1170         /* Update the current skb pointer (wrapping if this was the last) */
1171         priv->skb_curtx =
1172             (priv->skb_curtx + 1) & TX_RING_MOD_MASK(priv->tx_ring_size);
1173
1174         /* Flag the BD as interrupt-causing */
1175         status |= TXBD_INTERRUPT;
1176
1177         /* Flag the BD as ready to go, last in frame, and  */
1178         /* in need of CRC */
1179         status |= (TXBD_READY | TXBD_LAST | TXBD_CRC);
1180
1181         dev->trans_start = jiffies;
1182
1183         /* The powerpc-specific eieio() is used, as wmb() has too strong
1184          * semantics (it requires synchronization between cacheable and
1185          * uncacheable mappings, which eieio doesn't provide and which we
1186          * don't need), thus requiring a more expensive sync instruction.  At
1187          * some point, the set of architecture-independent barrier functions
1188          * should be expanded to include weaker barriers.
1189          */
1190
1191         eieio();
1192         txbdp->status = status;
1193
1194         /* If this was the last BD in the ring, the next one */
1195         /* is at the beginning of the ring */
1196         if (txbdp->status & TXBD_WRAP)
1197                 txbdp = priv->tx_bd_base;
1198         else
1199                 txbdp++;
1200
1201         /* If the next BD still needs to be cleaned up, then the bds
1202            are full.  We need to tell the kernel to stop sending us stuff. */
1203         if (txbdp == priv->dirty_tx) {
1204                 netif_stop_queue(dev);
1205
1206                 dev->stats.tx_fifo_errors++;
1207         }
1208
1209         /* Update the current txbd to the next one */
1210         priv->cur_tx = txbdp;
1211
1212         /* Tell the DMA to go go go */
1213         gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1214
1215         /* Unlock priv */
1216         spin_unlock_irqrestore(&priv->txlock, flags);
1217
1218         return 0;
1219 }
1220
1221 /* Stops the kernel queue, and halts the controller */
1222 static int gfar_close(struct net_device *dev)
1223 {
1224         struct gfar_private *priv = netdev_priv(dev);
1225
1226         napi_disable(&priv->napi);
1227
1228         cancel_work_sync(&priv->reset_task);
1229         stop_gfar(dev);
1230
1231         /* Disconnect from the PHY */
1232         phy_disconnect(priv->phydev);
1233         priv->phydev = NULL;
1234
1235         netif_stop_queue(dev);
1236
1237         return 0;
1238 }
1239
1240 /* Changes the mac address if the controller is not running. */
1241 static int gfar_set_mac_address(struct net_device *dev)
1242 {
1243         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
1244
1245         return 0;
1246 }
1247
1248
1249 /* Enables and disables VLAN insertion/extraction */
1250 static void gfar_vlan_rx_register(struct net_device *dev,
1251                 struct vlan_group *grp)
1252 {
1253         struct gfar_private *priv = netdev_priv(dev);
1254         unsigned long flags;
1255         u32 tempval;
1256
1257         spin_lock_irqsave(&priv->rxlock, flags);
1258
1259         priv->vlgrp = grp;
1260
1261         if (grp) {
1262                 /* Enable VLAN tag insertion */
1263                 tempval = gfar_read(&priv->regs->tctrl);
1264                 tempval |= TCTRL_VLINS;
1265
1266                 gfar_write(&priv->regs->tctrl, tempval);
1267
1268                 /* Enable VLAN tag extraction */
1269                 tempval = gfar_read(&priv->regs->rctrl);
1270                 tempval |= RCTRL_VLEX;
1271                 gfar_write(&priv->regs->rctrl, tempval);
1272         } else {
1273                 /* Disable VLAN tag insertion */
1274                 tempval = gfar_read(&priv->regs->tctrl);
1275                 tempval &= ~TCTRL_VLINS;
1276                 gfar_write(&priv->regs->tctrl, tempval);
1277
1278                 /* Disable VLAN tag extraction */
1279                 tempval = gfar_read(&priv->regs->rctrl);
1280                 tempval &= ~RCTRL_VLEX;
1281                 gfar_write(&priv->regs->rctrl, tempval);
1282         }
1283
1284         spin_unlock_irqrestore(&priv->rxlock, flags);
1285 }
1286
1287 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
1288 {
1289         int tempsize, tempval;
1290         struct gfar_private *priv = netdev_priv(dev);
1291         int oldsize = priv->rx_buffer_size;
1292         int frame_size = new_mtu + ETH_HLEN;
1293
1294         if (priv->vlan_enable)
1295                 frame_size += VLAN_HLEN;
1296
1297         if (gfar_uses_fcb(priv))
1298                 frame_size += GMAC_FCB_LEN;
1299
1300         frame_size += priv->padding;
1301
1302         if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
1303                 if (netif_msg_drv(priv))
1304                         printk(KERN_ERR "%s: Invalid MTU setting\n",
1305                                         dev->name);
1306                 return -EINVAL;
1307         }
1308
1309         tempsize =
1310             (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
1311             INCREMENTAL_BUFFER_SIZE;
1312
1313         /* Only stop and start the controller if it isn't already
1314          * stopped, and we changed something */
1315         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1316                 stop_gfar(dev);
1317
1318         priv->rx_buffer_size = tempsize;
1319
1320         dev->mtu = new_mtu;
1321
1322         gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
1323         gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size);
1324
1325         /* If the mtu is larger than the max size for standard
1326          * ethernet frames (ie, a jumbo frame), then set maccfg2
1327          * to allow huge frames, and to check the length */
1328         tempval = gfar_read(&priv->regs->maccfg2);
1329
1330         if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
1331                 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1332         else
1333                 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1334
1335         gfar_write(&priv->regs->maccfg2, tempval);
1336
1337         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1338                 startup_gfar(dev);
1339
1340         return 0;
1341 }
1342
1343 /* gfar_reset_task gets scheduled when a packet has not been
1344  * transmitted after a set amount of time.
1345  * For now, assume that clearing out all the structures, and
1346  * starting over will fix the problem.
1347  */
1348 static void gfar_reset_task(struct work_struct *work)
1349 {
1350         struct gfar_private *priv = container_of(work, struct gfar_private,
1351                         reset_task);
1352         struct net_device *dev = priv->dev;
1353
1354         if (dev->flags & IFF_UP) {
1355                 stop_gfar(dev);
1356                 startup_gfar(dev);
1357         }
1358
1359         netif_tx_schedule_all(dev);
1360 }
1361
1362 static void gfar_timeout(struct net_device *dev)
1363 {
1364         struct gfar_private *priv = netdev_priv(dev);
1365
1366         dev->stats.tx_errors++;
1367         schedule_work(&priv->reset_task);
1368 }
1369
1370 /* Interrupt Handler for Transmit complete */
1371 static int gfar_clean_tx_ring(struct net_device *dev)
1372 {
1373         struct txbd8 *bdp;
1374         struct gfar_private *priv = netdev_priv(dev);
1375         int howmany = 0;
1376
1377         bdp = priv->dirty_tx;
1378         while ((bdp->status & TXBD_READY) == 0) {
1379                 /* If dirty_tx and cur_tx are the same, then either the */
1380                 /* ring is empty or full now (it could only be full in the beginning, */
1381                 /* obviously).  If it is empty, we are done. */
1382                 if ((bdp == priv->cur_tx) && (netif_queue_stopped(dev) == 0))
1383                         break;
1384
1385                 howmany++;
1386
1387                 /* Deferred means some collisions occurred during transmit, */
1388                 /* but we eventually sent the packet. */
1389                 if (bdp->status & TXBD_DEF)
1390                         dev->stats.collisions++;
1391
1392                 /* Free the sk buffer associated with this TxBD */
1393                 dev_kfree_skb_irq(priv->tx_skbuff[priv->skb_dirtytx]);
1394
1395                 priv->tx_skbuff[priv->skb_dirtytx] = NULL;
1396                 priv->skb_dirtytx =
1397                     (priv->skb_dirtytx +
1398                      1) & TX_RING_MOD_MASK(priv->tx_ring_size);
1399
1400                 /* Clean BD length for empty detection */
1401                 bdp->length = 0;
1402
1403                 /* update bdp to point at next bd in the ring (wrapping if necessary) */
1404                 if (bdp->status & TXBD_WRAP)
1405                         bdp = priv->tx_bd_base;
1406                 else
1407                         bdp++;
1408
1409                 /* Move dirty_tx to be the next bd */
1410                 priv->dirty_tx = bdp;
1411
1412                 /* We freed a buffer, so now we can restart transmission */
1413                 if (netif_queue_stopped(dev))
1414                         netif_wake_queue(dev);
1415         } /* while ((bdp->status & TXBD_READY) == 0) */
1416
1417         dev->stats.tx_packets += howmany;
1418
1419         return howmany;
1420 }
1421
1422 /* Interrupt Handler for Transmit complete */
1423 static irqreturn_t gfar_transmit(int irq, void *dev_id)
1424 {
1425         struct net_device *dev = (struct net_device *) dev_id;
1426         struct gfar_private *priv = netdev_priv(dev);
1427
1428         /* Clear IEVENT */
1429         gfar_write(&priv->regs->ievent, IEVENT_TX_MASK);
1430
1431         /* Lock priv */
1432         spin_lock(&priv->txlock);
1433
1434         gfar_clean_tx_ring(dev);
1435
1436         /* If we are coalescing the interrupts, reset the timer */
1437         /* Otherwise, clear it */
1438         if (likely(priv->txcoalescing)) {
1439                 gfar_write(&priv->regs->txic, 0);
1440                 gfar_write(&priv->regs->txic,
1441                            mk_ic_value(priv->txcount, priv->txtime));
1442         }
1443
1444         spin_unlock(&priv->txlock);
1445
1446         return IRQ_HANDLED;
1447 }
1448
1449 static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
1450                 struct sk_buff *skb)
1451 {
1452         struct gfar_private *priv = netdev_priv(dev);
1453         u32 * status_len = (u32 *)bdp;
1454         u16 flags;
1455
1456         bdp->bufPtr = dma_map_single(&dev->dev, skb->data,
1457                         priv->rx_buffer_size, DMA_FROM_DEVICE);
1458
1459         flags = RXBD_EMPTY | RXBD_INTERRUPT;
1460
1461         if (bdp == priv->rx_bd_base + priv->rx_ring_size - 1)
1462                 flags |= RXBD_WRAP;
1463
1464         eieio();
1465
1466         *status_len = (u32)flags << 16;
1467 }
1468
1469
1470 struct sk_buff * gfar_new_skb(struct net_device *dev)
1471 {
1472         unsigned int alignamount;
1473         struct gfar_private *priv = netdev_priv(dev);
1474         struct sk_buff *skb = NULL;
1475
1476         /* We have to allocate the skb, so keep trying till we succeed */
1477         skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
1478
1479         if (!skb)
1480                 return NULL;
1481
1482         alignamount = RXBUF_ALIGNMENT -
1483                 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1));
1484
1485         /* We need the data buffer to be aligned properly.  We will reserve
1486          * as many bytes as needed to align the data properly
1487          */
1488         skb_reserve(skb, alignamount);
1489
1490         return skb;
1491 }
1492
1493 static inline void count_errors(unsigned short status, struct net_device *dev)
1494 {
1495         struct gfar_private *priv = netdev_priv(dev);
1496         struct net_device_stats *stats = &dev->stats;
1497         struct gfar_extra_stats *estats = &priv->extra_stats;
1498
1499         /* If the packet was truncated, none of the other errors
1500          * matter */
1501         if (status & RXBD_TRUNCATED) {
1502                 stats->rx_length_errors++;
1503
1504                 estats->rx_trunc++;
1505
1506                 return;
1507         }
1508         /* Count the errors, if there were any */
1509         if (status & (RXBD_LARGE | RXBD_SHORT)) {
1510                 stats->rx_length_errors++;
1511
1512                 if (status & RXBD_LARGE)
1513                         estats->rx_large++;
1514                 else
1515                         estats->rx_short++;
1516         }
1517         if (status & RXBD_NONOCTET) {
1518                 stats->rx_frame_errors++;
1519                 estats->rx_nonoctet++;
1520         }
1521         if (status & RXBD_CRCERR) {
1522                 estats->rx_crcerr++;
1523                 stats->rx_crc_errors++;
1524         }
1525         if (status & RXBD_OVERRUN) {
1526                 estats->rx_overrun++;
1527                 stats->rx_crc_errors++;
1528         }
1529 }
1530
1531 irqreturn_t gfar_receive(int irq, void *dev_id)
1532 {
1533         struct net_device *dev = (struct net_device *) dev_id;
1534         struct gfar_private *priv = netdev_priv(dev);
1535         u32 tempval;
1536
1537         /* support NAPI */
1538         /* Clear IEVENT, so interrupts aren't called again
1539          * because of the packets that have already arrived */
1540         gfar_write(&priv->regs->ievent, IEVENT_RTX_MASK);
1541
1542         if (netif_rx_schedule_prep(dev, &priv->napi)) {
1543                 tempval = gfar_read(&priv->regs->imask);
1544                 tempval &= IMASK_RTX_DISABLED;
1545                 gfar_write(&priv->regs->imask, tempval);
1546
1547                 __netif_rx_schedule(dev, &priv->napi);
1548         } else {
1549                 if (netif_msg_rx_err(priv))
1550                         printk(KERN_DEBUG "%s: receive called twice (%x)[%x]\n",
1551                                 dev->name, gfar_read(&priv->regs->ievent),
1552                                 gfar_read(&priv->regs->imask));
1553         }
1554
1555         return IRQ_HANDLED;
1556 }
1557
1558 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
1559 {
1560         /* If valid headers were found, and valid sums
1561          * were verified, then we tell the kernel that no
1562          * checksumming is necessary.  Otherwise, it is */
1563         if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
1564                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1565         else
1566                 skb->ip_summed = CHECKSUM_NONE;
1567 }
1568
1569
1570 static inline struct rxfcb *gfar_get_fcb(struct sk_buff *skb)
1571 {
1572         struct rxfcb *fcb = (struct rxfcb *)skb->data;
1573
1574         /* Remove the FCB from the skb */
1575         skb_pull(skb, GMAC_FCB_LEN);
1576
1577         return fcb;
1578 }
1579
1580 /* gfar_process_frame() -- handle one incoming packet if skb
1581  * isn't NULL.  */
1582 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
1583                 int length)
1584 {
1585         struct gfar_private *priv = netdev_priv(dev);
1586         struct rxfcb *fcb = NULL;
1587
1588         if (NULL == skb) {
1589                 if (netif_msg_rx_err(priv))
1590                         printk(KERN_WARNING "%s: Missing skb!!.\n", dev->name);
1591                 dev->stats.rx_dropped++;
1592                 priv->extra_stats.rx_skbmissing++;
1593         } else {
1594                 int ret;
1595
1596                 /* Prep the skb for the packet */
1597                 skb_put(skb, length);
1598
1599                 /* Grab the FCB if there is one */
1600                 if (gfar_uses_fcb(priv))
1601                         fcb = gfar_get_fcb(skb);
1602
1603                 /* Remove the padded bytes, if there are any */
1604                 if (priv->padding)
1605                         skb_pull(skb, priv->padding);
1606
1607                 if (priv->rx_csum_enable)
1608                         gfar_rx_checksum(skb, fcb);
1609
1610                 /* Tell the skb what kind of packet this is */
1611                 skb->protocol = eth_type_trans(skb, dev);
1612
1613                 /* Send the packet up the stack */
1614                 if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN))) {
1615                         ret = vlan_hwaccel_receive_skb(skb, priv->vlgrp,
1616                                                        fcb->vlctl);
1617                 } else
1618                         ret = netif_receive_skb(skb);
1619
1620                 if (NET_RX_DROP == ret)
1621                         priv->extra_stats.kernel_dropped++;
1622         }
1623
1624         return 0;
1625 }
1626
1627 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1628  *   until the budget/quota has been reached. Returns the number
1629  *   of frames handled
1630  */
1631 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit)
1632 {
1633         struct rxbd8 *bdp;
1634         struct sk_buff *skb;
1635         u16 pkt_len;
1636         int howmany = 0;
1637         struct gfar_private *priv = netdev_priv(dev);
1638
1639         /* Get the first full descriptor */
1640         bdp = priv->cur_rx;
1641
1642         while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
1643                 struct sk_buff *newskb;
1644                 rmb();
1645
1646                 /* Add another skb for the future */
1647                 newskb = gfar_new_skb(dev);
1648
1649                 skb = priv->rx_skbuff[priv->skb_currx];
1650
1651                 /* We drop the frame if we failed to allocate a new buffer */
1652                 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
1653                                  bdp->status & RXBD_ERR)) {
1654                         count_errors(bdp->status, dev);
1655
1656                         if (unlikely(!newskb))
1657                                 newskb = skb;
1658
1659                         if (skb) {
1660                                 dma_unmap_single(&priv->dev->dev,
1661                                                 bdp->bufPtr,
1662                                                 priv->rx_buffer_size,
1663                                                 DMA_FROM_DEVICE);
1664
1665                                 dev_kfree_skb_any(skb);
1666                         }
1667                 } else {
1668                         /* Increment the number of packets */
1669                         dev->stats.rx_packets++;
1670                         howmany++;
1671
1672                         /* Remove the FCS from the packet length */
1673                         pkt_len = bdp->length - 4;
1674
1675                         gfar_process_frame(dev, skb, pkt_len);
1676
1677                         dev->stats.rx_bytes += pkt_len;
1678                 }
1679
1680                 dev->last_rx = jiffies;
1681
1682                 priv->rx_skbuff[priv->skb_currx] = newskb;
1683
1684                 /* Setup the new bdp */
1685                 gfar_new_rxbdp(dev, bdp, newskb);
1686
1687                 /* Update to the next pointer */
1688                 if (bdp->status & RXBD_WRAP)
1689                         bdp = priv->rx_bd_base;
1690                 else
1691                         bdp++;
1692
1693                 /* update to point at the next skb */
1694                 priv->skb_currx =
1695                     (priv->skb_currx + 1) &
1696                     RX_RING_MOD_MASK(priv->rx_ring_size);
1697         }
1698
1699         /* Update the current rxbd pointer to be the next one */
1700         priv->cur_rx = bdp;
1701
1702         return howmany;
1703 }
1704
1705 static int gfar_poll(struct napi_struct *napi, int budget)
1706 {
1707         struct gfar_private *priv = container_of(napi, struct gfar_private, napi);
1708         struct net_device *dev = priv->dev;
1709         int howmany;
1710         unsigned long flags;
1711
1712         /* If we fail to get the lock, don't bother with the TX BDs */
1713         if (spin_trylock_irqsave(&priv->txlock, flags)) {
1714                 gfar_clean_tx_ring(dev);
1715                 spin_unlock_irqrestore(&priv->txlock, flags);
1716         }
1717
1718         howmany = gfar_clean_rx_ring(dev, budget);
1719
1720         if (howmany < budget) {
1721                 netif_rx_complete(dev, napi);
1722
1723                 /* Clear the halt bit in RSTAT */
1724                 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1725
1726                 gfar_write(&priv->regs->imask, IMASK_DEFAULT);
1727
1728                 /* If we are coalescing interrupts, update the timer */
1729                 /* Otherwise, clear it */
1730                 if (likely(priv->rxcoalescing)) {
1731                         gfar_write(&priv->regs->rxic, 0);
1732                         gfar_write(&priv->regs->rxic,
1733                                    mk_ic_value(priv->rxcount, priv->rxtime));
1734                 }
1735         }
1736
1737         return howmany;
1738 }
1739
1740 #ifdef CONFIG_NET_POLL_CONTROLLER
1741 /*
1742  * Polling 'interrupt' - used by things like netconsole to send skbs
1743  * without having to re-enable interrupts. It's not called while
1744  * the interrupt routine is executing.
1745  */
1746 static void gfar_netpoll(struct net_device *dev)
1747 {
1748         struct gfar_private *priv = netdev_priv(dev);
1749
1750         /* If the device has multiple interrupts, run tx/rx */
1751         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1752                 disable_irq(priv->interruptTransmit);
1753                 disable_irq(priv->interruptReceive);
1754                 disable_irq(priv->interruptError);
1755                 gfar_interrupt(priv->interruptTransmit, dev);
1756                 enable_irq(priv->interruptError);
1757                 enable_irq(priv->interruptReceive);
1758                 enable_irq(priv->interruptTransmit);
1759         } else {
1760                 disable_irq(priv->interruptTransmit);
1761                 gfar_interrupt(priv->interruptTransmit, dev);
1762                 enable_irq(priv->interruptTransmit);
1763         }
1764 }
1765 #endif
1766
1767 /* The interrupt handler for devices with one interrupt */
1768 static irqreturn_t gfar_interrupt(int irq, void *dev_id)
1769 {
1770         struct net_device *dev = dev_id;
1771         struct gfar_private *priv = netdev_priv(dev);
1772
1773         /* Save ievent for future reference */
1774         u32 events = gfar_read(&priv->regs->ievent);
1775
1776         /* Check for reception */
1777         if (events & IEVENT_RX_MASK)
1778                 gfar_receive(irq, dev_id);
1779
1780         /* Check for transmit completion */
1781         if (events & IEVENT_TX_MASK)
1782                 gfar_transmit(irq, dev_id);
1783
1784         /* Check for errors */
1785         if (events & IEVENT_ERR_MASK)
1786                 gfar_error(irq, dev_id);
1787
1788         return IRQ_HANDLED;
1789 }
1790
1791 /* Called every time the controller might need to be made
1792  * aware of new link state.  The PHY code conveys this
1793  * information through variables in the phydev structure, and this
1794  * function converts those variables into the appropriate
1795  * register values, and can bring down the device if needed.
1796  */
1797 static void adjust_link(struct net_device *dev)
1798 {
1799         struct gfar_private *priv = netdev_priv(dev);
1800         struct gfar __iomem *regs = priv->regs;
1801         unsigned long flags;
1802         struct phy_device *phydev = priv->phydev;
1803         int new_state = 0;
1804
1805         spin_lock_irqsave(&priv->txlock, flags);
1806         if (phydev->link) {
1807                 u32 tempval = gfar_read(&regs->maccfg2);
1808                 u32 ecntrl = gfar_read(&regs->ecntrl);
1809
1810                 /* Now we make sure that we can be in full duplex mode.
1811                  * If not, we operate in half-duplex mode. */
1812                 if (phydev->duplex != priv->oldduplex) {
1813                         new_state = 1;
1814                         if (!(phydev->duplex))
1815                                 tempval &= ~(MACCFG2_FULL_DUPLEX);
1816                         else
1817                                 tempval |= MACCFG2_FULL_DUPLEX;
1818
1819                         priv->oldduplex = phydev->duplex;
1820                 }
1821
1822                 if (phydev->speed != priv->oldspeed) {
1823                         new_state = 1;
1824                         switch (phydev->speed) {
1825                         case 1000:
1826                                 tempval =
1827                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1828                                 break;
1829                         case 100:
1830                         case 10:
1831                                 tempval =
1832                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1833
1834                                 /* Reduced mode distinguishes
1835                                  * between 10 and 100 */
1836                                 if (phydev->speed == SPEED_100)
1837                                         ecntrl |= ECNTRL_R100;
1838                                 else
1839                                         ecntrl &= ~(ECNTRL_R100);
1840                                 break;
1841                         default:
1842                                 if (netif_msg_link(priv))
1843                                         printk(KERN_WARNING
1844                                                 "%s: Ack!  Speed (%d) is not 10/100/1000!\n",
1845                                                 dev->name, phydev->speed);
1846                                 break;
1847                         }
1848
1849                         priv->oldspeed = phydev->speed;
1850                 }
1851
1852                 gfar_write(&regs->maccfg2, tempval);
1853                 gfar_write(&regs->ecntrl, ecntrl);
1854
1855                 if (!priv->oldlink) {
1856                         new_state = 1;
1857                         priv->oldlink = 1;
1858                 }
1859         } else if (priv->oldlink) {
1860                 new_state = 1;
1861                 priv->oldlink = 0;
1862                 priv->oldspeed = 0;
1863                 priv->oldduplex = -1;
1864         }
1865
1866         if (new_state && netif_msg_link(priv))
1867                 phy_print_status(phydev);
1868
1869         spin_unlock_irqrestore(&priv->txlock, flags);
1870 }
1871
1872 /* Update the hash table based on the current list of multicast
1873  * addresses we subscribe to.  Also, change the promiscuity of
1874  * the device based on the flags (this function is called
1875  * whenever dev->flags is changed */
1876 static void gfar_set_multi(struct net_device *dev)
1877 {
1878         struct dev_mc_list *mc_ptr;
1879         struct gfar_private *priv = netdev_priv(dev);
1880         struct gfar __iomem *regs = priv->regs;
1881         u32 tempval;
1882
1883         if(dev->flags & IFF_PROMISC) {
1884                 /* Set RCTRL to PROM */
1885                 tempval = gfar_read(&regs->rctrl);
1886                 tempval |= RCTRL_PROM;
1887                 gfar_write(&regs->rctrl, tempval);
1888         } else {
1889                 /* Set RCTRL to not PROM */
1890                 tempval = gfar_read(&regs->rctrl);
1891                 tempval &= ~(RCTRL_PROM);
1892                 gfar_write(&regs->rctrl, tempval);
1893         }
1894
1895         if(dev->flags & IFF_ALLMULTI) {
1896                 /* Set the hash to rx all multicast frames */
1897                 gfar_write(&regs->igaddr0, 0xffffffff);
1898                 gfar_write(&regs->igaddr1, 0xffffffff);
1899                 gfar_write(&regs->igaddr2, 0xffffffff);
1900                 gfar_write(&regs->igaddr3, 0xffffffff);
1901                 gfar_write(&regs->igaddr4, 0xffffffff);
1902                 gfar_write(&regs->igaddr5, 0xffffffff);
1903                 gfar_write(&regs->igaddr6, 0xffffffff);
1904                 gfar_write(&regs->igaddr7, 0xffffffff);
1905                 gfar_write(&regs->gaddr0, 0xffffffff);
1906                 gfar_write(&regs->gaddr1, 0xffffffff);
1907                 gfar_write(&regs->gaddr2, 0xffffffff);
1908                 gfar_write(&regs->gaddr3, 0xffffffff);
1909                 gfar_write(&regs->gaddr4, 0xffffffff);
1910                 gfar_write(&regs->gaddr5, 0xffffffff);
1911                 gfar_write(&regs->gaddr6, 0xffffffff);
1912                 gfar_write(&regs->gaddr7, 0xffffffff);
1913         } else {
1914                 int em_num;
1915                 int idx;
1916
1917                 /* zero out the hash */
1918                 gfar_write(&regs->igaddr0, 0x0);
1919                 gfar_write(&regs->igaddr1, 0x0);
1920                 gfar_write(&regs->igaddr2, 0x0);
1921                 gfar_write(&regs->igaddr3, 0x0);
1922                 gfar_write(&regs->igaddr4, 0x0);
1923                 gfar_write(&regs->igaddr5, 0x0);
1924                 gfar_write(&regs->igaddr6, 0x0);
1925                 gfar_write(&regs->igaddr7, 0x0);
1926                 gfar_write(&regs->gaddr0, 0x0);
1927                 gfar_write(&regs->gaddr1, 0x0);
1928                 gfar_write(&regs->gaddr2, 0x0);
1929                 gfar_write(&regs->gaddr3, 0x0);
1930                 gfar_write(&regs->gaddr4, 0x0);
1931                 gfar_write(&regs->gaddr5, 0x0);
1932                 gfar_write(&regs->gaddr6, 0x0);
1933                 gfar_write(&regs->gaddr7, 0x0);
1934
1935                 /* If we have extended hash tables, we need to
1936                  * clear the exact match registers to prepare for
1937                  * setting them */
1938                 if (priv->extended_hash) {
1939                         em_num = GFAR_EM_NUM + 1;
1940                         gfar_clear_exact_match(dev);
1941                         idx = 1;
1942                 } else {
1943                         idx = 0;
1944                         em_num = 0;
1945                 }
1946
1947                 if(dev->mc_count == 0)
1948                         return;
1949
1950                 /* Parse the list, and set the appropriate bits */
1951                 for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
1952                         if (idx < em_num) {
1953                                 gfar_set_mac_for_addr(dev, idx,
1954                                                 mc_ptr->dmi_addr);
1955                                 idx++;
1956                         } else
1957                                 gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
1958                 }
1959         }
1960
1961         return;
1962 }
1963
1964
1965 /* Clears each of the exact match registers to zero, so they
1966  * don't interfere with normal reception */
1967 static void gfar_clear_exact_match(struct net_device *dev)
1968 {
1969         int idx;
1970         u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
1971
1972         for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
1973                 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
1974 }
1975
1976 /* Set the appropriate hash bit for the given addr */
1977 /* The algorithm works like so:
1978  * 1) Take the Destination Address (ie the multicast address), and
1979  * do a CRC on it (little endian), and reverse the bits of the
1980  * result.
1981  * 2) Use the 8 most significant bits as a hash into a 256-entry
1982  * table.  The table is controlled through 8 32-bit registers:
1983  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
1984  * gaddr7.  This means that the 3 most significant bits in the
1985  * hash index which gaddr register to use, and the 5 other bits
1986  * indicate which bit (assuming an IBM numbering scheme, which
1987  * for PowerPC (tm) is usually the case) in the register holds
1988  * the entry. */
1989 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
1990 {
1991         u32 tempval;
1992         struct gfar_private *priv = netdev_priv(dev);
1993         u32 result = ether_crc(MAC_ADDR_LEN, addr);
1994         int width = priv->hash_width;
1995         u8 whichbit = (result >> (32 - width)) & 0x1f;
1996         u8 whichreg = result >> (32 - width + 5);
1997         u32 value = (1 << (31-whichbit));
1998
1999         tempval = gfar_read(priv->hash_regs[whichreg]);
2000         tempval |= value;
2001         gfar_write(priv->hash_regs[whichreg], tempval);
2002
2003         return;
2004 }
2005
2006
2007 /* There are multiple MAC Address register pairs on some controllers
2008  * This function sets the numth pair to a given address
2009  */
2010 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
2011 {
2012         struct gfar_private *priv = netdev_priv(dev);
2013         int idx;
2014         char tmpbuf[MAC_ADDR_LEN];
2015         u32 tempval;
2016         u32 __iomem *macptr = &priv->regs->macstnaddr1;
2017
2018         macptr += num*2;
2019
2020         /* Now copy it into the mac registers backwards, cuz */
2021         /* little endian is silly */
2022         for (idx = 0; idx < MAC_ADDR_LEN; idx++)
2023                 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
2024
2025         gfar_write(macptr, *((u32 *) (tmpbuf)));
2026
2027         tempval = *((u32 *) (tmpbuf + 4));
2028
2029         gfar_write(macptr+1, tempval);
2030 }
2031
2032 /* GFAR error interrupt handler */
2033 static irqreturn_t gfar_error(int irq, void *dev_id)
2034 {
2035         struct net_device *dev = dev_id;
2036         struct gfar_private *priv = netdev_priv(dev);
2037
2038         /* Save ievent for future reference */
2039         u32 events = gfar_read(&priv->regs->ievent);
2040
2041         /* Clear IEVENT */
2042         gfar_write(&priv->regs->ievent, events & IEVENT_ERR_MASK);
2043
2044         /* Magic Packet is not an error. */
2045         if ((priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2046             (events & IEVENT_MAG))
2047                 events &= ~IEVENT_MAG;
2048
2049         /* Hmm... */
2050         if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2051                 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
2052                        dev->name, events, gfar_read(&priv->regs->imask));
2053
2054         /* Update the error counters */
2055         if (events & IEVENT_TXE) {
2056                 dev->stats.tx_errors++;
2057
2058                 if (events & IEVENT_LC)
2059                         dev->stats.tx_window_errors++;
2060                 if (events & IEVENT_CRL)
2061                         dev->stats.tx_aborted_errors++;
2062                 if (events & IEVENT_XFUN) {
2063                         if (netif_msg_tx_err(priv))
2064                                 printk(KERN_DEBUG "%s: TX FIFO underrun, "
2065                                        "packet dropped.\n", dev->name);
2066                         dev->stats.tx_dropped++;
2067                         priv->extra_stats.tx_underrun++;
2068
2069                         /* Reactivate the Tx Queues */
2070                         gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
2071                 }
2072                 if (netif_msg_tx_err(priv))
2073                         printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
2074         }
2075         if (events & IEVENT_BSY) {
2076                 dev->stats.rx_errors++;
2077                 priv->extra_stats.rx_bsy++;
2078
2079                 gfar_receive(irq, dev_id);
2080
2081                 if (netif_msg_rx_err(priv))
2082                         printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
2083                                dev->name, gfar_read(&priv->regs->rstat));
2084         }
2085         if (events & IEVENT_BABR) {
2086                 dev->stats.rx_errors++;
2087                 priv->extra_stats.rx_babr++;
2088
2089                 if (netif_msg_rx_err(priv))
2090                         printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
2091         }
2092         if (events & IEVENT_EBERR) {
2093                 priv->extra_stats.eberr++;
2094                 if (netif_msg_rx_err(priv))
2095                         printk(KERN_DEBUG "%s: bus error\n", dev->name);
2096         }
2097         if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
2098                 printk(KERN_DEBUG "%s: control frame\n", dev->name);
2099
2100         if (events & IEVENT_BABT) {
2101                 priv->extra_stats.tx_babt++;
2102                 if (netif_msg_tx_err(priv))
2103                         printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
2104         }
2105         return IRQ_HANDLED;
2106 }
2107
2108 /* work with hotplug and coldplug */
2109 MODULE_ALIAS("platform:fsl-gianfar");
2110
2111 /* Structure for a device driver */
2112 static struct platform_driver gfar_driver = {
2113         .probe = gfar_probe,
2114         .remove = gfar_remove,
2115         .suspend = gfar_suspend,
2116         .resume = gfar_resume,
2117         .driver = {
2118                 .name = "fsl-gianfar",
2119                 .owner = THIS_MODULE,
2120         },
2121 };
2122
2123 static int __init gfar_init(void)
2124 {
2125         int err = gfar_mdio_init();
2126
2127         if (err)
2128                 return err;
2129
2130         err = platform_driver_register(&gfar_driver);
2131
2132         if (err)
2133                 gfar_mdio_exit();
2134
2135         return err;
2136 }
2137
2138 static void __exit gfar_exit(void)
2139 {
2140         platform_driver_unregister(&gfar_driver);
2141         gfar_mdio_exit();
2142 }
2143
2144 module_init(gfar_init);
2145 module_exit(gfar_exit);
2146