gianfar: Merge Tx and Rx interrupt for scheduling clean up ring
[linux-2.6.git] / drivers / net / gianfar.c
1 /*
2  * drivers/net/gianfar.c
3  *
4  * Gianfar Ethernet Driver
5  * This driver is designed for the non-CPM ethernet controllers
6  * on the 85xx and 83xx family of integrated processors
7  * Based on 8260_io/fcc_enet.c
8  *
9  * Author: Andy Fleming
10  * Maintainer: Kumar Gala
11  *
12  * Copyright (c) 2002-2006 Freescale Semiconductor, Inc.
13  * Copyright (c) 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through of_device. Configuration information
29  *  is therefore conveyed through an OF-style device tree.
30  *
31  *  The Gianfar Ethernet Controller uses a ring of buffer
32  *  descriptors.  The beginning is indicated by a register
33  *  pointing to the physical address of the start of the ring.
34  *  The end is determined by a "wrap" bit being set in the
35  *  last descriptor of the ring.
36  *
37  *  When a packet is received, the RXF bit in the
38  *  IEVENT register is set, triggering an interrupt when the
39  *  corresponding bit in the IMASK register is also set (if
40  *  interrupt coalescing is active, then the interrupt may not
41  *  happen immediately, but will wait until either a set number
42  *  of frames or amount of time have passed).  In NAPI, the
43  *  interrupt handler will signal there is work to be done, and
44  *  exit. This method will start at the last known empty
45  *  descriptor, and process every subsequent descriptor until there
46  *  are none left with data (NAPI will stop after a set number of
47  *  packets to give time to other tasks, but will eventually
48  *  process all the packets).  The data arrives inside a
49  *  pre-allocated skb, and so after the skb is passed up to the
50  *  stack, a new skb must be allocated, and the address field in
51  *  the buffer descriptor must be updated to indicate this new
52  *  skb.
53  *
54  *  When the kernel requests that a packet be transmitted, the
55  *  driver starts where it left off last time, and points the
56  *  descriptor at the buffer which was passed in.  The driver
57  *  then informs the DMA engine that there are packets ready to
58  *  be transmitted.  Once the controller is finished transmitting
59  *  the packet, an interrupt may be triggered (under the same
60  *  conditions as for reception, but depending on the TXF bit).
61  *  The driver then cleans up the buffer.
62  */
63
64 #include <linux/kernel.h>
65 #include <linux/string.h>
66 #include <linux/errno.h>
67 #include <linux/unistd.h>
68 #include <linux/slab.h>
69 #include <linux/interrupt.h>
70 #include <linux/init.h>
71 #include <linux/delay.h>
72 #include <linux/netdevice.h>
73 #include <linux/etherdevice.h>
74 #include <linux/skbuff.h>
75 #include <linux/if_vlan.h>
76 #include <linux/spinlock.h>
77 #include <linux/mm.h>
78 #include <linux/of_platform.h>
79 #include <linux/ip.h>
80 #include <linux/tcp.h>
81 #include <linux/udp.h>
82 #include <linux/in.h>
83
84 #include <asm/io.h>
85 #include <asm/irq.h>
86 #include <asm/uaccess.h>
87 #include <linux/module.h>
88 #include <linux/dma-mapping.h>
89 #include <linux/crc32.h>
90 #include <linux/mii.h>
91 #include <linux/phy.h>
92 #include <linux/phy_fixed.h>
93 #include <linux/of.h>
94
95 #include "gianfar.h"
96 #include "gianfar_mii.h"
97
98 #define TX_TIMEOUT      (1*HZ)
99 #undef BRIEF_GFAR_ERRORS
100 #undef VERBOSE_GFAR_ERRORS
101
102 const char gfar_driver_name[] = "Gianfar Ethernet";
103 const char gfar_driver_version[] = "1.3";
104
105 static int gfar_enet_open(struct net_device *dev);
106 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
107 static void gfar_reset_task(struct work_struct *work);
108 static void gfar_timeout(struct net_device *dev);
109 static int gfar_close(struct net_device *dev);
110 struct sk_buff *gfar_new_skb(struct net_device *dev);
111 static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
112                 struct sk_buff *skb);
113 static int gfar_set_mac_address(struct net_device *dev);
114 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
115 static irqreturn_t gfar_error(int irq, void *dev_id);
116 static irqreturn_t gfar_transmit(int irq, void *dev_id);
117 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
118 static void adjust_link(struct net_device *dev);
119 static void init_registers(struct net_device *dev);
120 static int init_phy(struct net_device *dev);
121 static int gfar_probe(struct of_device *ofdev,
122                 const struct of_device_id *match);
123 static int gfar_remove(struct of_device *ofdev);
124 static void free_skb_resources(struct gfar_private *priv);
125 static void gfar_set_multi(struct net_device *dev);
126 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
127 static void gfar_configure_serdes(struct net_device *dev);
128 static int gfar_poll(struct napi_struct *napi, int budget);
129 #ifdef CONFIG_NET_POLL_CONTROLLER
130 static void gfar_netpoll(struct net_device *dev);
131 #endif
132 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit);
133 static int gfar_clean_tx_ring(struct net_device *dev);
134 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
135                               int amount_pull);
136 static void gfar_vlan_rx_register(struct net_device *netdev,
137                                 struct vlan_group *grp);
138 void gfar_halt(struct net_device *dev);
139 static void gfar_halt_nodisable(struct net_device *dev);
140 void gfar_start(struct net_device *dev);
141 static void gfar_clear_exact_match(struct net_device *dev);
142 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
143
144 extern const struct ethtool_ops gfar_ethtool_ops;
145
146 MODULE_AUTHOR("Freescale Semiconductor, Inc");
147 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
148 MODULE_LICENSE("GPL");
149
150 /* Returns 1 if incoming frames use an FCB */
151 static inline int gfar_uses_fcb(struct gfar_private *priv)
152 {
153         return priv->vlgrp || priv->rx_csum_enable;
154 }
155
156 static int gfar_of_init(struct net_device *dev)
157 {
158         struct device_node *phy, *mdio;
159         const unsigned int *id;
160         const char *model;
161         const char *ctype;
162         const void *mac_addr;
163         const phandle *ph;
164         u64 addr, size;
165         int err = 0;
166         struct gfar_private *priv = netdev_priv(dev);
167         struct device_node *np = priv->node;
168         char bus_name[MII_BUS_ID_SIZE];
169
170         if (!np || !of_device_is_available(np))
171                 return -ENODEV;
172
173         /* get a pointer to the register memory */
174         addr = of_translate_address(np, of_get_address(np, 0, &size, NULL));
175         priv->regs = ioremap(addr, size);
176
177         if (priv->regs == NULL)
178                 return -ENOMEM;
179
180         priv->interruptTransmit = irq_of_parse_and_map(np, 0);
181
182         model = of_get_property(np, "model", NULL);
183
184         /* If we aren't the FEC we have multiple interrupts */
185         if (model && strcasecmp(model, "FEC")) {
186                 priv->interruptReceive = irq_of_parse_and_map(np, 1);
187
188                 priv->interruptError = irq_of_parse_and_map(np, 2);
189
190                 if (priv->interruptTransmit < 0 ||
191                                 priv->interruptReceive < 0 ||
192                                 priv->interruptError < 0) {
193                         err = -EINVAL;
194                         goto err_out;
195                 }
196         }
197
198         mac_addr = of_get_mac_address(np);
199         if (mac_addr)
200                 memcpy(dev->dev_addr, mac_addr, MAC_ADDR_LEN);
201
202         if (model && !strcasecmp(model, "TSEC"))
203                 priv->device_flags =
204                         FSL_GIANFAR_DEV_HAS_GIGABIT |
205                         FSL_GIANFAR_DEV_HAS_COALESCE |
206                         FSL_GIANFAR_DEV_HAS_RMON |
207                         FSL_GIANFAR_DEV_HAS_MULTI_INTR;
208         if (model && !strcasecmp(model, "eTSEC"))
209                 priv->device_flags =
210                         FSL_GIANFAR_DEV_HAS_GIGABIT |
211                         FSL_GIANFAR_DEV_HAS_COALESCE |
212                         FSL_GIANFAR_DEV_HAS_RMON |
213                         FSL_GIANFAR_DEV_HAS_MULTI_INTR |
214                         FSL_GIANFAR_DEV_HAS_PADDING |
215                         FSL_GIANFAR_DEV_HAS_CSUM |
216                         FSL_GIANFAR_DEV_HAS_VLAN |
217                         FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
218                         FSL_GIANFAR_DEV_HAS_EXTENDED_HASH;
219
220         ctype = of_get_property(np, "phy-connection-type", NULL);
221
222         /* We only care about rgmii-id.  The rest are autodetected */
223         if (ctype && !strcmp(ctype, "rgmii-id"))
224                 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
225         else
226                 priv->interface = PHY_INTERFACE_MODE_MII;
227
228         if (of_get_property(np, "fsl,magic-packet", NULL))
229                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
230
231         ph = of_get_property(np, "phy-handle", NULL);
232         if (ph == NULL) {
233                 u32 *fixed_link;
234
235                 fixed_link = (u32 *)of_get_property(np, "fixed-link", NULL);
236                 if (!fixed_link) {
237                         err = -ENODEV;
238                         goto err_out;
239                 }
240
241                 snprintf(priv->phy_bus_id, BUS_ID_SIZE, PHY_ID_FMT, "0",
242                                 fixed_link[0]);
243         } else {
244                 phy = of_find_node_by_phandle(*ph);
245
246                 if (phy == NULL) {
247                         err = -ENODEV;
248                         goto err_out;
249                 }
250
251                 mdio = of_get_parent(phy);
252
253                 id = of_get_property(phy, "reg", NULL);
254
255                 of_node_put(phy);
256                 of_node_put(mdio);
257
258                 gfar_mdio_bus_name(bus_name, mdio);
259                 snprintf(priv->phy_bus_id, BUS_ID_SIZE, "%s:%02x",
260                                 bus_name, *id);
261         }
262
263         /* Find the TBI PHY.  If it's not there, we don't support SGMII */
264         ph = of_get_property(np, "tbi-handle", NULL);
265         if (ph) {
266                 struct device_node *tbi = of_find_node_by_phandle(*ph);
267                 struct of_device *ofdev;
268                 struct mii_bus *bus;
269
270                 if (!tbi)
271                         return 0;
272
273                 mdio = of_get_parent(tbi);
274                 if (!mdio)
275                         return 0;
276
277                 ofdev = of_find_device_by_node(mdio);
278
279                 of_node_put(mdio);
280
281                 id = of_get_property(tbi, "reg", NULL);
282                 if (!id)
283                         return 0;
284
285                 of_node_put(tbi);
286
287                 bus = dev_get_drvdata(&ofdev->dev);
288
289                 priv->tbiphy = bus->phy_map[*id];
290         }
291
292         return 0;
293
294 err_out:
295         iounmap(priv->regs);
296         return err;
297 }
298
299 /* Set up the ethernet device structure, private data,
300  * and anything else we need before we start */
301 static int gfar_probe(struct of_device *ofdev,
302                 const struct of_device_id *match)
303 {
304         u32 tempval;
305         struct net_device *dev = NULL;
306         struct gfar_private *priv = NULL;
307         DECLARE_MAC_BUF(mac);
308         int err = 0;
309         int len_devname;
310
311         /* Create an ethernet device instance */
312         dev = alloc_etherdev(sizeof (*priv));
313
314         if (NULL == dev)
315                 return -ENOMEM;
316
317         priv = netdev_priv(dev);
318         priv->dev = dev;
319         priv->node = ofdev->node;
320
321         err = gfar_of_init(dev);
322
323         if (err)
324                 goto regs_fail;
325
326         spin_lock_init(&priv->txlock);
327         spin_lock_init(&priv->rxlock);
328         spin_lock_init(&priv->bflock);
329         INIT_WORK(&priv->reset_task, gfar_reset_task);
330
331         dev_set_drvdata(&ofdev->dev, priv);
332
333         /* Stop the DMA engine now, in case it was running before */
334         /* (The firmware could have used it, and left it running). */
335         gfar_halt(dev);
336
337         /* Reset MAC layer */
338         gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
339
340         tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
341         gfar_write(&priv->regs->maccfg1, tempval);
342
343         /* Initialize MACCFG2. */
344         gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS);
345
346         /* Initialize ECNTRL */
347         gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS);
348
349         /* Set the dev->base_addr to the gfar reg region */
350         dev->base_addr = (unsigned long) (priv->regs);
351
352         SET_NETDEV_DEV(dev, &ofdev->dev);
353
354         /* Fill in the dev structure */
355         dev->open = gfar_enet_open;
356         dev->hard_start_xmit = gfar_start_xmit;
357         dev->tx_timeout = gfar_timeout;
358         dev->watchdog_timeo = TX_TIMEOUT;
359         netif_napi_add(dev, &priv->napi, gfar_poll, GFAR_DEV_WEIGHT);
360 #ifdef CONFIG_NET_POLL_CONTROLLER
361         dev->poll_controller = gfar_netpoll;
362 #endif
363         dev->stop = gfar_close;
364         dev->change_mtu = gfar_change_mtu;
365         dev->mtu = 1500;
366         dev->set_multicast_list = gfar_set_multi;
367
368         dev->ethtool_ops = &gfar_ethtool_ops;
369
370         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
371                 priv->rx_csum_enable = 1;
372                 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_HIGHDMA;
373         } else
374                 priv->rx_csum_enable = 0;
375
376         priv->vlgrp = NULL;
377
378         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
379                 dev->vlan_rx_register = gfar_vlan_rx_register;
380
381                 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
382         }
383
384         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
385                 priv->extended_hash = 1;
386                 priv->hash_width = 9;
387
388                 priv->hash_regs[0] = &priv->regs->igaddr0;
389                 priv->hash_regs[1] = &priv->regs->igaddr1;
390                 priv->hash_regs[2] = &priv->regs->igaddr2;
391                 priv->hash_regs[3] = &priv->regs->igaddr3;
392                 priv->hash_regs[4] = &priv->regs->igaddr4;
393                 priv->hash_regs[5] = &priv->regs->igaddr5;
394                 priv->hash_regs[6] = &priv->regs->igaddr6;
395                 priv->hash_regs[7] = &priv->regs->igaddr7;
396                 priv->hash_regs[8] = &priv->regs->gaddr0;
397                 priv->hash_regs[9] = &priv->regs->gaddr1;
398                 priv->hash_regs[10] = &priv->regs->gaddr2;
399                 priv->hash_regs[11] = &priv->regs->gaddr3;
400                 priv->hash_regs[12] = &priv->regs->gaddr4;
401                 priv->hash_regs[13] = &priv->regs->gaddr5;
402                 priv->hash_regs[14] = &priv->regs->gaddr6;
403                 priv->hash_regs[15] = &priv->regs->gaddr7;
404
405         } else {
406                 priv->extended_hash = 0;
407                 priv->hash_width = 8;
408
409                 priv->hash_regs[0] = &priv->regs->gaddr0;
410                 priv->hash_regs[1] = &priv->regs->gaddr1;
411                 priv->hash_regs[2] = &priv->regs->gaddr2;
412                 priv->hash_regs[3] = &priv->regs->gaddr3;
413                 priv->hash_regs[4] = &priv->regs->gaddr4;
414                 priv->hash_regs[5] = &priv->regs->gaddr5;
415                 priv->hash_regs[6] = &priv->regs->gaddr6;
416                 priv->hash_regs[7] = &priv->regs->gaddr7;
417         }
418
419         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
420                 priv->padding = DEFAULT_PADDING;
421         else
422                 priv->padding = 0;
423
424         if (dev->features & NETIF_F_IP_CSUM)
425                 dev->hard_header_len += GMAC_FCB_LEN;
426
427         priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
428         priv->tx_ring_size = DEFAULT_TX_RING_SIZE;
429         priv->rx_ring_size = DEFAULT_RX_RING_SIZE;
430         priv->num_txbdfree = DEFAULT_TX_RING_SIZE;
431
432         priv->txcoalescing = DEFAULT_TX_COALESCE;
433         priv->txic = DEFAULT_TXIC;
434         priv->rxcoalescing = DEFAULT_RX_COALESCE;
435         priv->rxic = DEFAULT_RXIC;
436
437         /* Enable most messages by default */
438         priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
439
440         /* Carrier starts down, phylib will bring it up */
441         netif_carrier_off(dev);
442
443         err = register_netdev(dev);
444
445         if (err) {
446                 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
447                                 dev->name);
448                 goto register_fail;
449         }
450
451         /* fill out IRQ number and name fields */
452         len_devname = strlen(dev->name);
453         strncpy(&priv->int_name_tx[0], dev->name, len_devname);
454         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
455                 strncpy(&priv->int_name_tx[len_devname],
456                         "_tx", sizeof("_tx") + 1);
457
458                 strncpy(&priv->int_name_rx[0], dev->name, len_devname);
459                 strncpy(&priv->int_name_rx[len_devname],
460                         "_rx", sizeof("_rx") + 1);
461
462                 strncpy(&priv->int_name_er[0], dev->name, len_devname);
463                 strncpy(&priv->int_name_er[len_devname],
464                         "_er", sizeof("_er") + 1);
465         } else
466                 priv->int_name_tx[len_devname] = '\0';
467
468         /* Create all the sysfs files */
469         gfar_init_sysfs(dev);
470
471         /* Print out the device info */
472         printk(KERN_INFO DEVICE_NAME "%pM\n", dev->name, dev->dev_addr);
473
474         /* Even more device info helps when determining which kernel */
475         /* provided which set of benchmarks. */
476         printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
477         printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n",
478                dev->name, priv->rx_ring_size, priv->tx_ring_size);
479
480         return 0;
481
482 register_fail:
483         iounmap(priv->regs);
484 regs_fail:
485         free_netdev(dev);
486         return err;
487 }
488
489 static int gfar_remove(struct of_device *ofdev)
490 {
491         struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
492
493         dev_set_drvdata(&ofdev->dev, NULL);
494
495         iounmap(priv->regs);
496         free_netdev(priv->dev);
497
498         return 0;
499 }
500
501 #ifdef CONFIG_PM
502 static int gfar_suspend(struct of_device *ofdev, pm_message_t state)
503 {
504         struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
505         struct net_device *dev = priv->dev;
506         unsigned long flags;
507         u32 tempval;
508
509         int magic_packet = priv->wol_en &&
510                 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
511
512         netif_device_detach(dev);
513
514         if (netif_running(dev)) {
515                 spin_lock_irqsave(&priv->txlock, flags);
516                 spin_lock(&priv->rxlock);
517
518                 gfar_halt_nodisable(dev);
519
520                 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
521                 tempval = gfar_read(&priv->regs->maccfg1);
522
523                 tempval &= ~MACCFG1_TX_EN;
524
525                 if (!magic_packet)
526                         tempval &= ~MACCFG1_RX_EN;
527
528                 gfar_write(&priv->regs->maccfg1, tempval);
529
530                 spin_unlock(&priv->rxlock);
531                 spin_unlock_irqrestore(&priv->txlock, flags);
532
533                 napi_disable(&priv->napi);
534
535                 if (magic_packet) {
536                         /* Enable interrupt on Magic Packet */
537                         gfar_write(&priv->regs->imask, IMASK_MAG);
538
539                         /* Enable Magic Packet mode */
540                         tempval = gfar_read(&priv->regs->maccfg2);
541                         tempval |= MACCFG2_MPEN;
542                         gfar_write(&priv->regs->maccfg2, tempval);
543                 } else {
544                         phy_stop(priv->phydev);
545                 }
546         }
547
548         return 0;
549 }
550
551 static int gfar_resume(struct of_device *ofdev)
552 {
553         struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
554         struct net_device *dev = priv->dev;
555         unsigned long flags;
556         u32 tempval;
557         int magic_packet = priv->wol_en &&
558                 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
559
560         if (!netif_running(dev)) {
561                 netif_device_attach(dev);
562                 return 0;
563         }
564
565         if (!magic_packet && priv->phydev)
566                 phy_start(priv->phydev);
567
568         /* Disable Magic Packet mode, in case something
569          * else woke us up.
570          */
571
572         spin_lock_irqsave(&priv->txlock, flags);
573         spin_lock(&priv->rxlock);
574
575         tempval = gfar_read(&priv->regs->maccfg2);
576         tempval &= ~MACCFG2_MPEN;
577         gfar_write(&priv->regs->maccfg2, tempval);
578
579         gfar_start(dev);
580
581         spin_unlock(&priv->rxlock);
582         spin_unlock_irqrestore(&priv->txlock, flags);
583
584         netif_device_attach(dev);
585
586         napi_enable(&priv->napi);
587
588         return 0;
589 }
590 #else
591 #define gfar_suspend NULL
592 #define gfar_resume NULL
593 #endif
594
595 /* Reads the controller's registers to determine what interface
596  * connects it to the PHY.
597  */
598 static phy_interface_t gfar_get_interface(struct net_device *dev)
599 {
600         struct gfar_private *priv = netdev_priv(dev);
601         u32 ecntrl = gfar_read(&priv->regs->ecntrl);
602
603         if (ecntrl & ECNTRL_SGMII_MODE)
604                 return PHY_INTERFACE_MODE_SGMII;
605
606         if (ecntrl & ECNTRL_TBI_MODE) {
607                 if (ecntrl & ECNTRL_REDUCED_MODE)
608                         return PHY_INTERFACE_MODE_RTBI;
609                 else
610                         return PHY_INTERFACE_MODE_TBI;
611         }
612
613         if (ecntrl & ECNTRL_REDUCED_MODE) {
614                 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
615                         return PHY_INTERFACE_MODE_RMII;
616                 else {
617                         phy_interface_t interface = priv->interface;
618
619                         /*
620                          * This isn't autodetected right now, so it must
621                          * be set by the device tree or platform code.
622                          */
623                         if (interface == PHY_INTERFACE_MODE_RGMII_ID)
624                                 return PHY_INTERFACE_MODE_RGMII_ID;
625
626                         return PHY_INTERFACE_MODE_RGMII;
627                 }
628         }
629
630         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
631                 return PHY_INTERFACE_MODE_GMII;
632
633         return PHY_INTERFACE_MODE_MII;
634 }
635
636
637 /* Initializes driver's PHY state, and attaches to the PHY.
638  * Returns 0 on success.
639  */
640 static int init_phy(struct net_device *dev)
641 {
642         struct gfar_private *priv = netdev_priv(dev);
643         uint gigabit_support =
644                 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
645                 SUPPORTED_1000baseT_Full : 0;
646         struct phy_device *phydev;
647         phy_interface_t interface;
648
649         priv->oldlink = 0;
650         priv->oldspeed = 0;
651         priv->oldduplex = -1;
652
653         interface = gfar_get_interface(dev);
654
655         phydev = phy_connect(dev, priv->phy_bus_id, &adjust_link, 0, interface);
656
657         if (interface == PHY_INTERFACE_MODE_SGMII)
658                 gfar_configure_serdes(dev);
659
660         if (IS_ERR(phydev)) {
661                 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
662                 return PTR_ERR(phydev);
663         }
664
665         /* Remove any features not supported by the controller */
666         phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
667         phydev->advertising = phydev->supported;
668
669         priv->phydev = phydev;
670
671         return 0;
672 }
673
674 /*
675  * Initialize TBI PHY interface for communicating with the
676  * SERDES lynx PHY on the chip.  We communicate with this PHY
677  * through the MDIO bus on each controller, treating it as a
678  * "normal" PHY at the address found in the TBIPA register.  We assume
679  * that the TBIPA register is valid.  Either the MDIO bus code will set
680  * it to a value that doesn't conflict with other PHYs on the bus, or the
681  * value doesn't matter, as there are no other PHYs on the bus.
682  */
683 static void gfar_configure_serdes(struct net_device *dev)
684 {
685         struct gfar_private *priv = netdev_priv(dev);
686
687         if (!priv->tbiphy) {
688                 printk(KERN_WARNING "SGMII mode requires that the device "
689                                 "tree specify a tbi-handle\n");
690                 return;
691         }
692
693         /*
694          * If the link is already up, we must already be ok, and don't need to
695          * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
696          * everything for us?  Resetting it takes the link down and requires
697          * several seconds for it to come back.
698          */
699         if (phy_read(priv->tbiphy, MII_BMSR) & BMSR_LSTATUS)
700                 return;
701
702         /* Single clk mode, mii mode off(for serdes communication) */
703         phy_write(priv->tbiphy, MII_TBICON, TBICON_CLK_SELECT);
704
705         phy_write(priv->tbiphy, MII_ADVERTISE,
706                         ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
707                         ADVERTISE_1000XPSE_ASYM);
708
709         phy_write(priv->tbiphy, MII_BMCR, BMCR_ANENABLE |
710                         BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
711 }
712
713 static void init_registers(struct net_device *dev)
714 {
715         struct gfar_private *priv = netdev_priv(dev);
716
717         /* Clear IEVENT */
718         gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR);
719
720         /* Initialize IMASK */
721         gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR);
722
723         /* Init hash registers to zero */
724         gfar_write(&priv->regs->igaddr0, 0);
725         gfar_write(&priv->regs->igaddr1, 0);
726         gfar_write(&priv->regs->igaddr2, 0);
727         gfar_write(&priv->regs->igaddr3, 0);
728         gfar_write(&priv->regs->igaddr4, 0);
729         gfar_write(&priv->regs->igaddr5, 0);
730         gfar_write(&priv->regs->igaddr6, 0);
731         gfar_write(&priv->regs->igaddr7, 0);
732
733         gfar_write(&priv->regs->gaddr0, 0);
734         gfar_write(&priv->regs->gaddr1, 0);
735         gfar_write(&priv->regs->gaddr2, 0);
736         gfar_write(&priv->regs->gaddr3, 0);
737         gfar_write(&priv->regs->gaddr4, 0);
738         gfar_write(&priv->regs->gaddr5, 0);
739         gfar_write(&priv->regs->gaddr6, 0);
740         gfar_write(&priv->regs->gaddr7, 0);
741
742         /* Zero out the rmon mib registers if it has them */
743         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
744                 memset_io(&(priv->regs->rmon), 0, sizeof (struct rmon_mib));
745
746                 /* Mask off the CAM interrupts */
747                 gfar_write(&priv->regs->rmon.cam1, 0xffffffff);
748                 gfar_write(&priv->regs->rmon.cam2, 0xffffffff);
749         }
750
751         /* Initialize the max receive buffer length */
752         gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
753
754         /* Initialize the Minimum Frame Length Register */
755         gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS);
756 }
757
758
759 /* Halt the receive and transmit queues */
760 static void gfar_halt_nodisable(struct net_device *dev)
761 {
762         struct gfar_private *priv = netdev_priv(dev);
763         struct gfar __iomem *regs = priv->regs;
764         u32 tempval;
765
766         /* Mask all interrupts */
767         gfar_write(&regs->imask, IMASK_INIT_CLEAR);
768
769         /* Clear all interrupts */
770         gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
771
772         /* Stop the DMA, and wait for it to stop */
773         tempval = gfar_read(&priv->regs->dmactrl);
774         if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
775             != (DMACTRL_GRS | DMACTRL_GTS)) {
776                 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
777                 gfar_write(&priv->regs->dmactrl, tempval);
778
779                 while (!(gfar_read(&priv->regs->ievent) &
780                          (IEVENT_GRSC | IEVENT_GTSC)))
781                         cpu_relax();
782         }
783 }
784
785 /* Halt the receive and transmit queues */
786 void gfar_halt(struct net_device *dev)
787 {
788         struct gfar_private *priv = netdev_priv(dev);
789         struct gfar __iomem *regs = priv->regs;
790         u32 tempval;
791
792         gfar_halt_nodisable(dev);
793
794         /* Disable Rx and Tx */
795         tempval = gfar_read(&regs->maccfg1);
796         tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
797         gfar_write(&regs->maccfg1, tempval);
798 }
799
800 void stop_gfar(struct net_device *dev)
801 {
802         struct gfar_private *priv = netdev_priv(dev);
803         struct gfar __iomem *regs = priv->regs;
804         unsigned long flags;
805
806         phy_stop(priv->phydev);
807
808         /* Lock it down */
809         spin_lock_irqsave(&priv->txlock, flags);
810         spin_lock(&priv->rxlock);
811
812         gfar_halt(dev);
813
814         spin_unlock(&priv->rxlock);
815         spin_unlock_irqrestore(&priv->txlock, flags);
816
817         /* Free the IRQs */
818         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
819                 free_irq(priv->interruptError, dev);
820                 free_irq(priv->interruptTransmit, dev);
821                 free_irq(priv->interruptReceive, dev);
822         } else {
823                 free_irq(priv->interruptTransmit, dev);
824         }
825
826         free_skb_resources(priv);
827
828         dma_free_coherent(&dev->dev,
829                         sizeof(struct txbd8)*priv->tx_ring_size
830                         + sizeof(struct rxbd8)*priv->rx_ring_size,
831                         priv->tx_bd_base,
832                         gfar_read(&regs->tbase0));
833 }
834
835 /* If there are any tx skbs or rx skbs still around, free them.
836  * Then free tx_skbuff and rx_skbuff */
837 static void free_skb_resources(struct gfar_private *priv)
838 {
839         struct rxbd8 *rxbdp;
840         struct txbd8 *txbdp;
841         int i, j;
842
843         /* Go through all the buffer descriptors and free their data buffers */
844         txbdp = priv->tx_bd_base;
845
846         for (i = 0; i < priv->tx_ring_size; i++) {
847                 if (!priv->tx_skbuff[i])
848                         continue;
849
850                 dma_unmap_single(&priv->dev->dev, txbdp->bufPtr,
851                                 txbdp->length, DMA_TO_DEVICE);
852                 txbdp->lstatus = 0;
853                 for (j = 0; j < skb_shinfo(priv->tx_skbuff[i])->nr_frags; j++) {
854                         txbdp++;
855                         dma_unmap_page(&priv->dev->dev, txbdp->bufPtr,
856                                         txbdp->length, DMA_TO_DEVICE);
857                 }
858                 txbdp++;
859                 dev_kfree_skb_any(priv->tx_skbuff[i]);
860                 priv->tx_skbuff[i] = NULL;
861         }
862
863         kfree(priv->tx_skbuff);
864
865         rxbdp = priv->rx_bd_base;
866
867         /* rx_skbuff is not guaranteed to be allocated, so only
868          * free it and its contents if it is allocated */
869         if(priv->rx_skbuff != NULL) {
870                 for (i = 0; i < priv->rx_ring_size; i++) {
871                         if (priv->rx_skbuff[i]) {
872                                 dma_unmap_single(&priv->dev->dev, rxbdp->bufPtr,
873                                                 priv->rx_buffer_size,
874                                                 DMA_FROM_DEVICE);
875
876                                 dev_kfree_skb_any(priv->rx_skbuff[i]);
877                                 priv->rx_skbuff[i] = NULL;
878                         }
879
880                         rxbdp->lstatus = 0;
881                         rxbdp->bufPtr = 0;
882
883                         rxbdp++;
884                 }
885
886                 kfree(priv->rx_skbuff);
887         }
888 }
889
890 void gfar_start(struct net_device *dev)
891 {
892         struct gfar_private *priv = netdev_priv(dev);
893         struct gfar __iomem *regs = priv->regs;
894         u32 tempval;
895
896         /* Enable Rx and Tx in MACCFG1 */
897         tempval = gfar_read(&regs->maccfg1);
898         tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
899         gfar_write(&regs->maccfg1, tempval);
900
901         /* Initialize DMACTRL to have WWR and WOP */
902         tempval = gfar_read(&priv->regs->dmactrl);
903         tempval |= DMACTRL_INIT_SETTINGS;
904         gfar_write(&priv->regs->dmactrl, tempval);
905
906         /* Make sure we aren't stopped */
907         tempval = gfar_read(&priv->regs->dmactrl);
908         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
909         gfar_write(&priv->regs->dmactrl, tempval);
910
911         /* Clear THLT/RHLT, so that the DMA starts polling now */
912         gfar_write(&regs->tstat, TSTAT_CLEAR_THALT);
913         gfar_write(&regs->rstat, RSTAT_CLEAR_RHALT);
914
915         /* Unmask the interrupts we look for */
916         gfar_write(&regs->imask, IMASK_DEFAULT);
917
918         dev->trans_start = jiffies;
919 }
920
921 /* Bring the controller up and running */
922 int startup_gfar(struct net_device *dev)
923 {
924         struct txbd8 *txbdp;
925         struct rxbd8 *rxbdp;
926         dma_addr_t addr = 0;
927         unsigned long vaddr;
928         int i;
929         struct gfar_private *priv = netdev_priv(dev);
930         struct gfar __iomem *regs = priv->regs;
931         int err = 0;
932         u32 rctrl = 0;
933         u32 attrs = 0;
934
935         gfar_write(&regs->imask, IMASK_INIT_CLEAR);
936
937         /* Allocate memory for the buffer descriptors */
938         vaddr = (unsigned long) dma_alloc_coherent(&dev->dev,
939                         sizeof (struct txbd8) * priv->tx_ring_size +
940                         sizeof (struct rxbd8) * priv->rx_ring_size,
941                         &addr, GFP_KERNEL);
942
943         if (vaddr == 0) {
944                 if (netif_msg_ifup(priv))
945                         printk(KERN_ERR "%s: Could not allocate buffer descriptors!\n",
946                                         dev->name);
947                 return -ENOMEM;
948         }
949
950         priv->tx_bd_base = (struct txbd8 *) vaddr;
951
952         /* enet DMA only understands physical addresses */
953         gfar_write(&regs->tbase0, addr);
954
955         /* Start the rx descriptor ring where the tx ring leaves off */
956         addr = addr + sizeof (struct txbd8) * priv->tx_ring_size;
957         vaddr = vaddr + sizeof (struct txbd8) * priv->tx_ring_size;
958         priv->rx_bd_base = (struct rxbd8 *) vaddr;
959         gfar_write(&regs->rbase0, addr);
960
961         /* Setup the skbuff rings */
962         priv->tx_skbuff =
963             (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
964                                         priv->tx_ring_size, GFP_KERNEL);
965
966         if (NULL == priv->tx_skbuff) {
967                 if (netif_msg_ifup(priv))
968                         printk(KERN_ERR "%s: Could not allocate tx_skbuff\n",
969                                         dev->name);
970                 err = -ENOMEM;
971                 goto tx_skb_fail;
972         }
973
974         for (i = 0; i < priv->tx_ring_size; i++)
975                 priv->tx_skbuff[i] = NULL;
976
977         priv->rx_skbuff =
978             (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
979                                         priv->rx_ring_size, GFP_KERNEL);
980
981         if (NULL == priv->rx_skbuff) {
982                 if (netif_msg_ifup(priv))
983                         printk(KERN_ERR "%s: Could not allocate rx_skbuff\n",
984                                         dev->name);
985                 err = -ENOMEM;
986                 goto rx_skb_fail;
987         }
988
989         for (i = 0; i < priv->rx_ring_size; i++)
990                 priv->rx_skbuff[i] = NULL;
991
992         /* Initialize some variables in our dev structure */
993         priv->num_txbdfree = priv->tx_ring_size;
994         priv->dirty_tx = priv->cur_tx = priv->tx_bd_base;
995         priv->cur_rx = priv->rx_bd_base;
996         priv->skb_curtx = priv->skb_dirtytx = 0;
997         priv->skb_currx = 0;
998
999         /* Initialize Transmit Descriptor Ring */
1000         txbdp = priv->tx_bd_base;
1001         for (i = 0; i < priv->tx_ring_size; i++) {
1002                 txbdp->lstatus = 0;
1003                 txbdp->bufPtr = 0;
1004                 txbdp++;
1005         }
1006
1007         /* Set the last descriptor in the ring to indicate wrap */
1008         txbdp--;
1009         txbdp->status |= TXBD_WRAP;
1010
1011         rxbdp = priv->rx_bd_base;
1012         for (i = 0; i < priv->rx_ring_size; i++) {
1013                 struct sk_buff *skb;
1014
1015                 skb = gfar_new_skb(dev);
1016
1017                 if (!skb) {
1018                         printk(KERN_ERR "%s: Can't allocate RX buffers\n",
1019                                         dev->name);
1020
1021                         goto err_rxalloc_fail;
1022                 }
1023
1024                 priv->rx_skbuff[i] = skb;
1025
1026                 gfar_new_rxbdp(dev, rxbdp, skb);
1027
1028                 rxbdp++;
1029         }
1030
1031         /* Set the last descriptor in the ring to wrap */
1032         rxbdp--;
1033         rxbdp->status |= RXBD_WRAP;
1034
1035         /* If the device has multiple interrupts, register for
1036          * them.  Otherwise, only register for the one */
1037         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1038                 /* Install our interrupt handlers for Error,
1039                  * Transmit, and Receive */
1040                 if (request_irq(priv->interruptError, gfar_error,
1041                                 0, priv->int_name_er, dev) < 0) {
1042                         if (netif_msg_intr(priv))
1043                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1044                                         dev->name, priv->interruptError);
1045
1046                         err = -1;
1047                         goto err_irq_fail;
1048                 }
1049
1050                 if (request_irq(priv->interruptTransmit, gfar_transmit,
1051                                 0, priv->int_name_tx, dev) < 0) {
1052                         if (netif_msg_intr(priv))
1053                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1054                                         dev->name, priv->interruptTransmit);
1055
1056                         err = -1;
1057
1058                         goto tx_irq_fail;
1059                 }
1060
1061                 if (request_irq(priv->interruptReceive, gfar_receive,
1062                                 0, priv->int_name_rx, dev) < 0) {
1063                         if (netif_msg_intr(priv))
1064                                 printk(KERN_ERR "%s: Can't get IRQ %d (receive0)\n",
1065                                                 dev->name, priv->interruptReceive);
1066
1067                         err = -1;
1068                         goto rx_irq_fail;
1069                 }
1070         } else {
1071                 if (request_irq(priv->interruptTransmit, gfar_interrupt,
1072                                 0, priv->int_name_tx, dev) < 0) {
1073                         if (netif_msg_intr(priv))
1074                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1075                                         dev->name, priv->interruptTransmit);
1076
1077                         err = -1;
1078                         goto err_irq_fail;
1079                 }
1080         }
1081
1082         phy_start(priv->phydev);
1083
1084         /* Configure the coalescing support */
1085         gfar_write(&regs->txic, 0);
1086         if (priv->txcoalescing)
1087                 gfar_write(&regs->txic, priv->txic);
1088
1089         gfar_write(&regs->rxic, 0);
1090         if (priv->rxcoalescing)
1091                 gfar_write(&regs->rxic, priv->rxic);
1092
1093         if (priv->rx_csum_enable)
1094                 rctrl |= RCTRL_CHECKSUMMING;
1095
1096         if (priv->extended_hash) {
1097                 rctrl |= RCTRL_EXTHASH;
1098
1099                 gfar_clear_exact_match(dev);
1100                 rctrl |= RCTRL_EMEN;
1101         }
1102
1103         if (priv->padding) {
1104                 rctrl &= ~RCTRL_PAL_MASK;
1105                 rctrl |= RCTRL_PADDING(priv->padding);
1106         }
1107
1108         /* Init rctrl based on our settings */
1109         gfar_write(&priv->regs->rctrl, rctrl);
1110
1111         if (dev->features & NETIF_F_IP_CSUM)
1112                 gfar_write(&priv->regs->tctrl, TCTRL_INIT_CSUM);
1113
1114         /* Set the extraction length and index */
1115         attrs = ATTRELI_EL(priv->rx_stash_size) |
1116                 ATTRELI_EI(priv->rx_stash_index);
1117
1118         gfar_write(&priv->regs->attreli, attrs);
1119
1120         /* Start with defaults, and add stashing or locking
1121          * depending on the approprate variables */
1122         attrs = ATTR_INIT_SETTINGS;
1123
1124         if (priv->bd_stash_en)
1125                 attrs |= ATTR_BDSTASH;
1126
1127         if (priv->rx_stash_size != 0)
1128                 attrs |= ATTR_BUFSTASH;
1129
1130         gfar_write(&priv->regs->attr, attrs);
1131
1132         gfar_write(&priv->regs->fifo_tx_thr, priv->fifo_threshold);
1133         gfar_write(&priv->regs->fifo_tx_starve, priv->fifo_starve);
1134         gfar_write(&priv->regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
1135
1136         /* Start the controller */
1137         gfar_start(dev);
1138
1139         return 0;
1140
1141 rx_irq_fail:
1142         free_irq(priv->interruptTransmit, dev);
1143 tx_irq_fail:
1144         free_irq(priv->interruptError, dev);
1145 err_irq_fail:
1146 err_rxalloc_fail:
1147 rx_skb_fail:
1148         free_skb_resources(priv);
1149 tx_skb_fail:
1150         dma_free_coherent(&dev->dev,
1151                         sizeof(struct txbd8)*priv->tx_ring_size
1152                         + sizeof(struct rxbd8)*priv->rx_ring_size,
1153                         priv->tx_bd_base,
1154                         gfar_read(&regs->tbase0));
1155
1156         return err;
1157 }
1158
1159 /* Called when something needs to use the ethernet device */
1160 /* Returns 0 for success. */
1161 static int gfar_enet_open(struct net_device *dev)
1162 {
1163         struct gfar_private *priv = netdev_priv(dev);
1164         int err;
1165
1166         napi_enable(&priv->napi);
1167
1168         /* Initialize a bunch of registers */
1169         init_registers(dev);
1170
1171         gfar_set_mac_address(dev);
1172
1173         err = init_phy(dev);
1174
1175         if(err) {
1176                 napi_disable(&priv->napi);
1177                 return err;
1178         }
1179
1180         err = startup_gfar(dev);
1181         if (err) {
1182                 napi_disable(&priv->napi);
1183                 return err;
1184         }
1185
1186         netif_start_queue(dev);
1187
1188         return err;
1189 }
1190
1191 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1192 {
1193         struct txfcb *fcb = (struct txfcb *)skb_push (skb, GMAC_FCB_LEN);
1194
1195         cacheable_memzero(fcb, GMAC_FCB_LEN);
1196
1197         return fcb;
1198 }
1199
1200 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
1201 {
1202         u8 flags = 0;
1203
1204         /* If we're here, it's a IP packet with a TCP or UDP
1205          * payload.  We set it to checksum, using a pseudo-header
1206          * we provide
1207          */
1208         flags = TXFCB_DEFAULT;
1209
1210         /* Tell the controller what the protocol is */
1211         /* And provide the already calculated phcs */
1212         if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1213                 flags |= TXFCB_UDP;
1214                 fcb->phcs = udp_hdr(skb)->check;
1215         } else
1216                 fcb->phcs = tcp_hdr(skb)->check;
1217
1218         /* l3os is the distance between the start of the
1219          * frame (skb->data) and the start of the IP hdr.
1220          * l4os is the distance between the start of the
1221          * l3 hdr and the l4 hdr */
1222         fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
1223         fcb->l4os = skb_network_header_len(skb);
1224
1225         fcb->flags = flags;
1226 }
1227
1228 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1229 {
1230         fcb->flags |= TXFCB_VLN;
1231         fcb->vlctl = vlan_tx_tag_get(skb);
1232 }
1233
1234 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1235                                struct txbd8 *base, int ring_size)
1236 {
1237         struct txbd8 *new_bd = bdp + stride;
1238
1239         return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1240 }
1241
1242 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1243                 int ring_size)
1244 {
1245         return skip_txbd(bdp, 1, base, ring_size);
1246 }
1247
1248 /* This is called by the kernel when a frame is ready for transmission. */
1249 /* It is pointed to by the dev->hard_start_xmit function pointer */
1250 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1251 {
1252         struct gfar_private *priv = netdev_priv(dev);
1253         struct txfcb *fcb = NULL;
1254         struct txbd8 *txbdp, *txbdp_start, *base;
1255         u32 lstatus;
1256         int i;
1257         u32 bufaddr;
1258         unsigned long flags;
1259         unsigned int nr_frags, length;
1260
1261         base = priv->tx_bd_base;
1262
1263         /* total number of fragments in the SKB */
1264         nr_frags = skb_shinfo(skb)->nr_frags;
1265
1266         spin_lock_irqsave(&priv->txlock, flags);
1267
1268         /* check if there is space to queue this packet */
1269         if (nr_frags > priv->num_txbdfree) {
1270                 /* no space, stop the queue */
1271                 netif_stop_queue(dev);
1272                 dev->stats.tx_fifo_errors++;
1273                 spin_unlock_irqrestore(&priv->txlock, flags);
1274                 return NETDEV_TX_BUSY;
1275         }
1276
1277         /* Update transmit stats */
1278         dev->stats.tx_bytes += skb->len;
1279
1280         txbdp = txbdp_start = priv->cur_tx;
1281
1282         if (nr_frags == 0) {
1283                 lstatus = txbdp->lstatus | BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1284         } else {
1285                 /* Place the fragment addresses and lengths into the TxBDs */
1286                 for (i = 0; i < nr_frags; i++) {
1287                         /* Point at the next BD, wrapping as needed */
1288                         txbdp = next_txbd(txbdp, base, priv->tx_ring_size);
1289
1290                         length = skb_shinfo(skb)->frags[i].size;
1291
1292                         lstatus = txbdp->lstatus | length |
1293                                 BD_LFLAG(TXBD_READY);
1294
1295                         /* Handle the last BD specially */
1296                         if (i == nr_frags - 1)
1297                                 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1298
1299                         bufaddr = dma_map_page(&dev->dev,
1300                                         skb_shinfo(skb)->frags[i].page,
1301                                         skb_shinfo(skb)->frags[i].page_offset,
1302                                         length,
1303                                         DMA_TO_DEVICE);
1304
1305                         /* set the TxBD length and buffer pointer */
1306                         txbdp->bufPtr = bufaddr;
1307                         txbdp->lstatus = lstatus;
1308                 }
1309
1310                 lstatus = txbdp_start->lstatus;
1311         }
1312
1313         /* Set up checksumming */
1314         if (CHECKSUM_PARTIAL == skb->ip_summed) {
1315                 fcb = gfar_add_fcb(skb);
1316                 lstatus |= BD_LFLAG(TXBD_TOE);
1317                 gfar_tx_checksum(skb, fcb);
1318         }
1319
1320         if (priv->vlgrp && vlan_tx_tag_present(skb)) {
1321                 if (unlikely(NULL == fcb)) {
1322                         fcb = gfar_add_fcb(skb);
1323                         lstatus |= BD_LFLAG(TXBD_TOE);
1324                 }
1325
1326                 gfar_tx_vlan(skb, fcb);
1327         }
1328
1329         /* setup the TxBD length and buffer pointer for the first BD */
1330         priv->tx_skbuff[priv->skb_curtx] = skb;
1331         txbdp_start->bufPtr = dma_map_single(&dev->dev, skb->data,
1332                         skb_headlen(skb), DMA_TO_DEVICE);
1333
1334         lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
1335
1336         /*
1337          * The powerpc-specific eieio() is used, as wmb() has too strong
1338          * semantics (it requires synchronization between cacheable and
1339          * uncacheable mappings, which eieio doesn't provide and which we
1340          * don't need), thus requiring a more expensive sync instruction.  At
1341          * some point, the set of architecture-independent barrier functions
1342          * should be expanded to include weaker barriers.
1343          */
1344         eieio();
1345
1346         txbdp_start->lstatus = lstatus;
1347
1348         /* Update the current skb pointer to the next entry we will use
1349          * (wrapping if necessary) */
1350         priv->skb_curtx = (priv->skb_curtx + 1) &
1351                 TX_RING_MOD_MASK(priv->tx_ring_size);
1352
1353         priv->cur_tx = next_txbd(txbdp, base, priv->tx_ring_size);
1354
1355         /* reduce TxBD free count */
1356         priv->num_txbdfree -= (nr_frags + 1);
1357
1358         dev->trans_start = jiffies;
1359
1360         /* If the next BD still needs to be cleaned up, then the bds
1361            are full.  We need to tell the kernel to stop sending us stuff. */
1362         if (!priv->num_txbdfree) {
1363                 netif_stop_queue(dev);
1364
1365                 dev->stats.tx_fifo_errors++;
1366         }
1367
1368         /* Tell the DMA to go go go */
1369         gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1370
1371         /* Unlock priv */
1372         spin_unlock_irqrestore(&priv->txlock, flags);
1373
1374         return 0;
1375 }
1376
1377 /* Stops the kernel queue, and halts the controller */
1378 static int gfar_close(struct net_device *dev)
1379 {
1380         struct gfar_private *priv = netdev_priv(dev);
1381
1382         napi_disable(&priv->napi);
1383
1384         cancel_work_sync(&priv->reset_task);
1385         stop_gfar(dev);
1386
1387         /* Disconnect from the PHY */
1388         phy_disconnect(priv->phydev);
1389         priv->phydev = NULL;
1390
1391         netif_stop_queue(dev);
1392
1393         return 0;
1394 }
1395
1396 /* Changes the mac address if the controller is not running. */
1397 static int gfar_set_mac_address(struct net_device *dev)
1398 {
1399         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
1400
1401         return 0;
1402 }
1403
1404
1405 /* Enables and disables VLAN insertion/extraction */
1406 static void gfar_vlan_rx_register(struct net_device *dev,
1407                 struct vlan_group *grp)
1408 {
1409         struct gfar_private *priv = netdev_priv(dev);
1410         unsigned long flags;
1411         struct vlan_group *old_grp;
1412         u32 tempval;
1413
1414         spin_lock_irqsave(&priv->rxlock, flags);
1415
1416         old_grp = priv->vlgrp;
1417
1418         if (old_grp == grp)
1419                 return;
1420
1421         if (grp) {
1422                 /* Enable VLAN tag insertion */
1423                 tempval = gfar_read(&priv->regs->tctrl);
1424                 tempval |= TCTRL_VLINS;
1425
1426                 gfar_write(&priv->regs->tctrl, tempval);
1427
1428                 /* Enable VLAN tag extraction */
1429                 tempval = gfar_read(&priv->regs->rctrl);
1430                 tempval |= RCTRL_VLEX;
1431                 tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
1432                 gfar_write(&priv->regs->rctrl, tempval);
1433         } else {
1434                 /* Disable VLAN tag insertion */
1435                 tempval = gfar_read(&priv->regs->tctrl);
1436                 tempval &= ~TCTRL_VLINS;
1437                 gfar_write(&priv->regs->tctrl, tempval);
1438
1439                 /* Disable VLAN tag extraction */
1440                 tempval = gfar_read(&priv->regs->rctrl);
1441                 tempval &= ~RCTRL_VLEX;
1442                 /* If parse is no longer required, then disable parser */
1443                 if (tempval & RCTRL_REQ_PARSER)
1444                         tempval |= RCTRL_PRSDEP_INIT;
1445                 else
1446                         tempval &= ~RCTRL_PRSDEP_INIT;
1447                 gfar_write(&priv->regs->rctrl, tempval);
1448         }
1449
1450         gfar_change_mtu(dev, dev->mtu);
1451
1452         spin_unlock_irqrestore(&priv->rxlock, flags);
1453 }
1454
1455 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
1456 {
1457         int tempsize, tempval;
1458         struct gfar_private *priv = netdev_priv(dev);
1459         int oldsize = priv->rx_buffer_size;
1460         int frame_size = new_mtu + ETH_HLEN;
1461
1462         if (priv->vlgrp)
1463                 frame_size += VLAN_HLEN;
1464
1465         if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
1466                 if (netif_msg_drv(priv))
1467                         printk(KERN_ERR "%s: Invalid MTU setting\n",
1468                                         dev->name);
1469                 return -EINVAL;
1470         }
1471
1472         if (gfar_uses_fcb(priv))
1473                 frame_size += GMAC_FCB_LEN;
1474
1475         frame_size += priv->padding;
1476
1477         tempsize =
1478             (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
1479             INCREMENTAL_BUFFER_SIZE;
1480
1481         /* Only stop and start the controller if it isn't already
1482          * stopped, and we changed something */
1483         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1484                 stop_gfar(dev);
1485
1486         priv->rx_buffer_size = tempsize;
1487
1488         dev->mtu = new_mtu;
1489
1490         gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
1491         gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size);
1492
1493         /* If the mtu is larger than the max size for standard
1494          * ethernet frames (ie, a jumbo frame), then set maccfg2
1495          * to allow huge frames, and to check the length */
1496         tempval = gfar_read(&priv->regs->maccfg2);
1497
1498         if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
1499                 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1500         else
1501                 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1502
1503         gfar_write(&priv->regs->maccfg2, tempval);
1504
1505         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1506                 startup_gfar(dev);
1507
1508         return 0;
1509 }
1510
1511 /* gfar_reset_task gets scheduled when a packet has not been
1512  * transmitted after a set amount of time.
1513  * For now, assume that clearing out all the structures, and
1514  * starting over will fix the problem.
1515  */
1516 static void gfar_reset_task(struct work_struct *work)
1517 {
1518         struct gfar_private *priv = container_of(work, struct gfar_private,
1519                         reset_task);
1520         struct net_device *dev = priv->dev;
1521
1522         if (dev->flags & IFF_UP) {
1523                 stop_gfar(dev);
1524                 startup_gfar(dev);
1525         }
1526
1527         netif_tx_schedule_all(dev);
1528 }
1529
1530 static void gfar_timeout(struct net_device *dev)
1531 {
1532         struct gfar_private *priv = netdev_priv(dev);
1533
1534         dev->stats.tx_errors++;
1535         schedule_work(&priv->reset_task);
1536 }
1537
1538 /* Interrupt Handler for Transmit complete */
1539 static int gfar_clean_tx_ring(struct net_device *dev)
1540 {
1541         struct gfar_private *priv = netdev_priv(dev);
1542         struct txbd8 *bdp;
1543         struct txbd8 *lbdp = NULL;
1544         struct txbd8 *base = priv->tx_bd_base;
1545         struct sk_buff *skb;
1546         int skb_dirtytx;
1547         int tx_ring_size = priv->tx_ring_size;
1548         int frags = 0;
1549         int i;
1550         int howmany = 0;
1551         u32 lstatus;
1552
1553         bdp = priv->dirty_tx;
1554         skb_dirtytx = priv->skb_dirtytx;
1555
1556         while ((skb = priv->tx_skbuff[skb_dirtytx])) {
1557                 frags = skb_shinfo(skb)->nr_frags;
1558                 lbdp = skip_txbd(bdp, frags, base, tx_ring_size);
1559
1560                 lstatus = lbdp->lstatus;
1561
1562                 /* Only clean completed frames */
1563                 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
1564                                 (lstatus & BD_LENGTH_MASK))
1565                         break;
1566
1567                 dma_unmap_single(&dev->dev,
1568                                 bdp->bufPtr,
1569                                 bdp->length,
1570                                 DMA_TO_DEVICE);
1571
1572                 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
1573                 bdp = next_txbd(bdp, base, tx_ring_size);
1574
1575                 for (i = 0; i < frags; i++) {
1576                         dma_unmap_page(&dev->dev,
1577                                         bdp->bufPtr,
1578                                         bdp->length,
1579                                         DMA_TO_DEVICE);
1580                         bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
1581                         bdp = next_txbd(bdp, base, tx_ring_size);
1582                 }
1583
1584                 dev_kfree_skb_any(skb);
1585                 priv->tx_skbuff[skb_dirtytx] = NULL;
1586
1587                 skb_dirtytx = (skb_dirtytx + 1) &
1588                         TX_RING_MOD_MASK(tx_ring_size);
1589
1590                 howmany++;
1591                 priv->num_txbdfree += frags + 1;
1592         }
1593
1594         /* If we freed a buffer, we can restart transmission, if necessary */
1595         if (netif_queue_stopped(dev) && priv->num_txbdfree)
1596                 netif_wake_queue(dev);
1597
1598         /* Update dirty indicators */
1599         priv->skb_dirtytx = skb_dirtytx;
1600         priv->dirty_tx = bdp;
1601
1602         dev->stats.tx_packets += howmany;
1603
1604         return howmany;
1605 }
1606
1607 static void gfar_schedule_cleanup(struct net_device *dev)
1608 {
1609         struct gfar_private *priv = netdev_priv(dev);
1610         if (netif_rx_schedule_prep(dev, &priv->napi)) {
1611                 gfar_write(&priv->regs->imask, IMASK_RTX_DISABLED);
1612                 __netif_rx_schedule(dev, &priv->napi);
1613         }
1614 }
1615
1616 /* Interrupt Handler for Transmit complete */
1617 static irqreturn_t gfar_transmit(int irq, void *dev_id)
1618 {
1619         gfar_schedule_cleanup((struct net_device *)dev_id);
1620         return IRQ_HANDLED;
1621 }
1622
1623 static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
1624                 struct sk_buff *skb)
1625 {
1626         struct gfar_private *priv = netdev_priv(dev);
1627         u32 lstatus;
1628
1629         bdp->bufPtr = dma_map_single(&dev->dev, skb->data,
1630                         priv->rx_buffer_size, DMA_FROM_DEVICE);
1631
1632         lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
1633
1634         if (bdp == priv->rx_bd_base + priv->rx_ring_size - 1)
1635                 lstatus |= BD_LFLAG(RXBD_WRAP);
1636
1637         eieio();
1638
1639         bdp->lstatus = lstatus;
1640 }
1641
1642
1643 struct sk_buff * gfar_new_skb(struct net_device *dev)
1644 {
1645         unsigned int alignamount;
1646         struct gfar_private *priv = netdev_priv(dev);
1647         struct sk_buff *skb = NULL;
1648
1649         /* We have to allocate the skb, so keep trying till we succeed */
1650         skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
1651
1652         if (!skb)
1653                 return NULL;
1654
1655         alignamount = RXBUF_ALIGNMENT -
1656                 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1));
1657
1658         /* We need the data buffer to be aligned properly.  We will reserve
1659          * as many bytes as needed to align the data properly
1660          */
1661         skb_reserve(skb, alignamount);
1662
1663         return skb;
1664 }
1665
1666 static inline void count_errors(unsigned short status, struct net_device *dev)
1667 {
1668         struct gfar_private *priv = netdev_priv(dev);
1669         struct net_device_stats *stats = &dev->stats;
1670         struct gfar_extra_stats *estats = &priv->extra_stats;
1671
1672         /* If the packet was truncated, none of the other errors
1673          * matter */
1674         if (status & RXBD_TRUNCATED) {
1675                 stats->rx_length_errors++;
1676
1677                 estats->rx_trunc++;
1678
1679                 return;
1680         }
1681         /* Count the errors, if there were any */
1682         if (status & (RXBD_LARGE | RXBD_SHORT)) {
1683                 stats->rx_length_errors++;
1684
1685                 if (status & RXBD_LARGE)
1686                         estats->rx_large++;
1687                 else
1688                         estats->rx_short++;
1689         }
1690         if (status & RXBD_NONOCTET) {
1691                 stats->rx_frame_errors++;
1692                 estats->rx_nonoctet++;
1693         }
1694         if (status & RXBD_CRCERR) {
1695                 estats->rx_crcerr++;
1696                 stats->rx_crc_errors++;
1697         }
1698         if (status & RXBD_OVERRUN) {
1699                 estats->rx_overrun++;
1700                 stats->rx_crc_errors++;
1701         }
1702 }
1703
1704 irqreturn_t gfar_receive(int irq, void *dev_id)
1705 {
1706         gfar_schedule_cleanup((struct net_device *)dev_id);
1707         return IRQ_HANDLED;
1708 }
1709
1710 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
1711 {
1712         /* If valid headers were found, and valid sums
1713          * were verified, then we tell the kernel that no
1714          * checksumming is necessary.  Otherwise, it is */
1715         if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
1716                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1717         else
1718                 skb->ip_summed = CHECKSUM_NONE;
1719 }
1720
1721
1722 /* gfar_process_frame() -- handle one incoming packet if skb
1723  * isn't NULL.  */
1724 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
1725                               int amount_pull)
1726 {
1727         struct gfar_private *priv = netdev_priv(dev);
1728         struct rxfcb *fcb = NULL;
1729
1730         int ret;
1731
1732         /* fcb is at the beginning if exists */
1733         fcb = (struct rxfcb *)skb->data;
1734
1735         /* Remove the FCB from the skb */
1736         /* Remove the padded bytes, if there are any */
1737         if (amount_pull)
1738                 skb_pull(skb, amount_pull);
1739
1740         if (priv->rx_csum_enable)
1741                 gfar_rx_checksum(skb, fcb);
1742
1743         /* Tell the skb what kind of packet this is */
1744         skb->protocol = eth_type_trans(skb, dev);
1745
1746         /* Send the packet up the stack */
1747         if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
1748                 ret = vlan_hwaccel_receive_skb(skb, priv->vlgrp, fcb->vlctl);
1749         else
1750                 ret = netif_receive_skb(skb);
1751
1752         if (NET_RX_DROP == ret)
1753                 priv->extra_stats.kernel_dropped++;
1754
1755         return 0;
1756 }
1757
1758 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1759  *   until the budget/quota has been reached. Returns the number
1760  *   of frames handled
1761  */
1762 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit)
1763 {
1764         struct rxbd8 *bdp, *base;
1765         struct sk_buff *skb;
1766         int pkt_len;
1767         int amount_pull;
1768         int howmany = 0;
1769         struct gfar_private *priv = netdev_priv(dev);
1770
1771         /* Get the first full descriptor */
1772         bdp = priv->cur_rx;
1773         base = priv->rx_bd_base;
1774
1775         amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0) +
1776                 priv->padding;
1777
1778         while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
1779                 struct sk_buff *newskb;
1780                 rmb();
1781
1782                 /* Add another skb for the future */
1783                 newskb = gfar_new_skb(dev);
1784
1785                 skb = priv->rx_skbuff[priv->skb_currx];
1786
1787                 dma_unmap_single(&priv->dev->dev, bdp->bufPtr,
1788                                 priv->rx_buffer_size, DMA_FROM_DEVICE);
1789
1790                 /* We drop the frame if we failed to allocate a new buffer */
1791                 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
1792                                  bdp->status & RXBD_ERR)) {
1793                         count_errors(bdp->status, dev);
1794
1795                         if (unlikely(!newskb))
1796                                 newskb = skb;
1797                         else if (skb)
1798                                 dev_kfree_skb_any(skb);
1799                 } else {
1800                         /* Increment the number of packets */
1801                         dev->stats.rx_packets++;
1802                         howmany++;
1803
1804                         if (likely(skb)) {
1805                                 pkt_len = bdp->length - ETH_FCS_LEN;
1806                                 /* Remove the FCS from the packet length */
1807                                 skb_put(skb, pkt_len);
1808                                 dev->stats.rx_bytes += pkt_len;
1809
1810                                 gfar_process_frame(dev, skb, amount_pull);
1811
1812                         } else {
1813                                 if (netif_msg_rx_err(priv))
1814                                         printk(KERN_WARNING
1815                                                "%s: Missing skb!\n", dev->name);
1816                                 dev->stats.rx_dropped++;
1817                                 priv->extra_stats.rx_skbmissing++;
1818                         }
1819
1820                 }
1821
1822                 priv->rx_skbuff[priv->skb_currx] = newskb;
1823
1824                 /* Setup the new bdp */
1825                 gfar_new_rxbdp(dev, bdp, newskb);
1826
1827                 /* Update to the next pointer */
1828                 bdp = next_bd(bdp, base, priv->rx_ring_size);
1829
1830                 /* update to point at the next skb */
1831                 priv->skb_currx =
1832                     (priv->skb_currx + 1) &
1833                     RX_RING_MOD_MASK(priv->rx_ring_size);
1834         }
1835
1836         /* Update the current rxbd pointer to be the next one */
1837         priv->cur_rx = bdp;
1838
1839         return howmany;
1840 }
1841
1842 static int gfar_poll(struct napi_struct *napi, int budget)
1843 {
1844         struct gfar_private *priv = container_of(napi, struct gfar_private, napi);
1845         struct net_device *dev = priv->dev;
1846         int howmany;
1847         unsigned long flags;
1848
1849         /* Clear IEVENT, so interrupts aren't called again
1850          * because of the packets that have already arrived */
1851         gfar_write(&priv->regs->ievent, IEVENT_RTX_MASK);
1852
1853         /* If we fail to get the lock, don't bother with the TX BDs */
1854         if (spin_trylock_irqsave(&priv->txlock, flags)) {
1855                 gfar_clean_tx_ring(dev);
1856                 spin_unlock_irqrestore(&priv->txlock, flags);
1857         }
1858
1859         howmany = gfar_clean_rx_ring(dev, budget);
1860
1861         if (howmany < budget) {
1862                 netif_rx_complete(dev, napi);
1863
1864                 /* Clear the halt bit in RSTAT */
1865                 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1866
1867                 gfar_write(&priv->regs->imask, IMASK_DEFAULT);
1868
1869                 /* If we are coalescing interrupts, update the timer */
1870                 /* Otherwise, clear it */
1871                 if (likely(priv->rxcoalescing)) {
1872                         gfar_write(&priv->regs->rxic, 0);
1873                         gfar_write(&priv->regs->rxic, priv->rxic);
1874                 }
1875                 if (likely(priv->txcoalescing)) {
1876                         gfar_write(&priv->regs->txic, 0);
1877                         gfar_write(&priv->regs->txic, priv->txic);
1878                 }
1879         }
1880
1881         return howmany;
1882 }
1883
1884 #ifdef CONFIG_NET_POLL_CONTROLLER
1885 /*
1886  * Polling 'interrupt' - used by things like netconsole to send skbs
1887  * without having to re-enable interrupts. It's not called while
1888  * the interrupt routine is executing.
1889  */
1890 static void gfar_netpoll(struct net_device *dev)
1891 {
1892         struct gfar_private *priv = netdev_priv(dev);
1893
1894         /* If the device has multiple interrupts, run tx/rx */
1895         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1896                 disable_irq(priv->interruptTransmit);
1897                 disable_irq(priv->interruptReceive);
1898                 disable_irq(priv->interruptError);
1899                 gfar_interrupt(priv->interruptTransmit, dev);
1900                 enable_irq(priv->interruptError);
1901                 enable_irq(priv->interruptReceive);
1902                 enable_irq(priv->interruptTransmit);
1903         } else {
1904                 disable_irq(priv->interruptTransmit);
1905                 gfar_interrupt(priv->interruptTransmit, dev);
1906                 enable_irq(priv->interruptTransmit);
1907         }
1908 }
1909 #endif
1910
1911 /* The interrupt handler for devices with one interrupt */
1912 static irqreturn_t gfar_interrupt(int irq, void *dev_id)
1913 {
1914         struct net_device *dev = dev_id;
1915         struct gfar_private *priv = netdev_priv(dev);
1916
1917         /* Save ievent for future reference */
1918         u32 events = gfar_read(&priv->regs->ievent);
1919
1920         /* Check for reception */
1921         if (events & IEVENT_RX_MASK)
1922                 gfar_receive(irq, dev_id);
1923
1924         /* Check for transmit completion */
1925         if (events & IEVENT_TX_MASK)
1926                 gfar_transmit(irq, dev_id);
1927
1928         /* Check for errors */
1929         if (events & IEVENT_ERR_MASK)
1930                 gfar_error(irq, dev_id);
1931
1932         return IRQ_HANDLED;
1933 }
1934
1935 /* Called every time the controller might need to be made
1936  * aware of new link state.  The PHY code conveys this
1937  * information through variables in the phydev structure, and this
1938  * function converts those variables into the appropriate
1939  * register values, and can bring down the device if needed.
1940  */
1941 static void adjust_link(struct net_device *dev)
1942 {
1943         struct gfar_private *priv = netdev_priv(dev);
1944         struct gfar __iomem *regs = priv->regs;
1945         unsigned long flags;
1946         struct phy_device *phydev = priv->phydev;
1947         int new_state = 0;
1948
1949         spin_lock_irqsave(&priv->txlock, flags);
1950         if (phydev->link) {
1951                 u32 tempval = gfar_read(&regs->maccfg2);
1952                 u32 ecntrl = gfar_read(&regs->ecntrl);
1953
1954                 /* Now we make sure that we can be in full duplex mode.
1955                  * If not, we operate in half-duplex mode. */
1956                 if (phydev->duplex != priv->oldduplex) {
1957                         new_state = 1;
1958                         if (!(phydev->duplex))
1959                                 tempval &= ~(MACCFG2_FULL_DUPLEX);
1960                         else
1961                                 tempval |= MACCFG2_FULL_DUPLEX;
1962
1963                         priv->oldduplex = phydev->duplex;
1964                 }
1965
1966                 if (phydev->speed != priv->oldspeed) {
1967                         new_state = 1;
1968                         switch (phydev->speed) {
1969                         case 1000:
1970                                 tempval =
1971                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1972                                 break;
1973                         case 100:
1974                         case 10:
1975                                 tempval =
1976                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1977
1978                                 /* Reduced mode distinguishes
1979                                  * between 10 and 100 */
1980                                 if (phydev->speed == SPEED_100)
1981                                         ecntrl |= ECNTRL_R100;
1982                                 else
1983                                         ecntrl &= ~(ECNTRL_R100);
1984                                 break;
1985                         default:
1986                                 if (netif_msg_link(priv))
1987                                         printk(KERN_WARNING
1988                                                 "%s: Ack!  Speed (%d) is not 10/100/1000!\n",
1989                                                 dev->name, phydev->speed);
1990                                 break;
1991                         }
1992
1993                         priv->oldspeed = phydev->speed;
1994                 }
1995
1996                 gfar_write(&regs->maccfg2, tempval);
1997                 gfar_write(&regs->ecntrl, ecntrl);
1998
1999                 if (!priv->oldlink) {
2000                         new_state = 1;
2001                         priv->oldlink = 1;
2002                 }
2003         } else if (priv->oldlink) {
2004                 new_state = 1;
2005                 priv->oldlink = 0;
2006                 priv->oldspeed = 0;
2007                 priv->oldduplex = -1;
2008         }
2009
2010         if (new_state && netif_msg_link(priv))
2011                 phy_print_status(phydev);
2012
2013         spin_unlock_irqrestore(&priv->txlock, flags);
2014 }
2015
2016 /* Update the hash table based on the current list of multicast
2017  * addresses we subscribe to.  Also, change the promiscuity of
2018  * the device based on the flags (this function is called
2019  * whenever dev->flags is changed */
2020 static void gfar_set_multi(struct net_device *dev)
2021 {
2022         struct dev_mc_list *mc_ptr;
2023         struct gfar_private *priv = netdev_priv(dev);
2024         struct gfar __iomem *regs = priv->regs;
2025         u32 tempval;
2026
2027         if(dev->flags & IFF_PROMISC) {
2028                 /* Set RCTRL to PROM */
2029                 tempval = gfar_read(&regs->rctrl);
2030                 tempval |= RCTRL_PROM;
2031                 gfar_write(&regs->rctrl, tempval);
2032         } else {
2033                 /* Set RCTRL to not PROM */
2034                 tempval = gfar_read(&regs->rctrl);
2035                 tempval &= ~(RCTRL_PROM);
2036                 gfar_write(&regs->rctrl, tempval);
2037         }
2038
2039         if(dev->flags & IFF_ALLMULTI) {
2040                 /* Set the hash to rx all multicast frames */
2041                 gfar_write(&regs->igaddr0, 0xffffffff);
2042                 gfar_write(&regs->igaddr1, 0xffffffff);
2043                 gfar_write(&regs->igaddr2, 0xffffffff);
2044                 gfar_write(&regs->igaddr3, 0xffffffff);
2045                 gfar_write(&regs->igaddr4, 0xffffffff);
2046                 gfar_write(&regs->igaddr5, 0xffffffff);
2047                 gfar_write(&regs->igaddr6, 0xffffffff);
2048                 gfar_write(&regs->igaddr7, 0xffffffff);
2049                 gfar_write(&regs->gaddr0, 0xffffffff);
2050                 gfar_write(&regs->gaddr1, 0xffffffff);
2051                 gfar_write(&regs->gaddr2, 0xffffffff);
2052                 gfar_write(&regs->gaddr3, 0xffffffff);
2053                 gfar_write(&regs->gaddr4, 0xffffffff);
2054                 gfar_write(&regs->gaddr5, 0xffffffff);
2055                 gfar_write(&regs->gaddr6, 0xffffffff);
2056                 gfar_write(&regs->gaddr7, 0xffffffff);
2057         } else {
2058                 int em_num;
2059                 int idx;
2060
2061                 /* zero out the hash */
2062                 gfar_write(&regs->igaddr0, 0x0);
2063                 gfar_write(&regs->igaddr1, 0x0);
2064                 gfar_write(&regs->igaddr2, 0x0);
2065                 gfar_write(&regs->igaddr3, 0x0);
2066                 gfar_write(&regs->igaddr4, 0x0);
2067                 gfar_write(&regs->igaddr5, 0x0);
2068                 gfar_write(&regs->igaddr6, 0x0);
2069                 gfar_write(&regs->igaddr7, 0x0);
2070                 gfar_write(&regs->gaddr0, 0x0);
2071                 gfar_write(&regs->gaddr1, 0x0);
2072                 gfar_write(&regs->gaddr2, 0x0);
2073                 gfar_write(&regs->gaddr3, 0x0);
2074                 gfar_write(&regs->gaddr4, 0x0);
2075                 gfar_write(&regs->gaddr5, 0x0);
2076                 gfar_write(&regs->gaddr6, 0x0);
2077                 gfar_write(&regs->gaddr7, 0x0);
2078
2079                 /* If we have extended hash tables, we need to
2080                  * clear the exact match registers to prepare for
2081                  * setting them */
2082                 if (priv->extended_hash) {
2083                         em_num = GFAR_EM_NUM + 1;
2084                         gfar_clear_exact_match(dev);
2085                         idx = 1;
2086                 } else {
2087                         idx = 0;
2088                         em_num = 0;
2089                 }
2090
2091                 if(dev->mc_count == 0)
2092                         return;
2093
2094                 /* Parse the list, and set the appropriate bits */
2095                 for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
2096                         if (idx < em_num) {
2097                                 gfar_set_mac_for_addr(dev, idx,
2098                                                 mc_ptr->dmi_addr);
2099                                 idx++;
2100                         } else
2101                                 gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
2102                 }
2103         }
2104
2105         return;
2106 }
2107
2108
2109 /* Clears each of the exact match registers to zero, so they
2110  * don't interfere with normal reception */
2111 static void gfar_clear_exact_match(struct net_device *dev)
2112 {
2113         int idx;
2114         u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
2115
2116         for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
2117                 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
2118 }
2119
2120 /* Set the appropriate hash bit for the given addr */
2121 /* The algorithm works like so:
2122  * 1) Take the Destination Address (ie the multicast address), and
2123  * do a CRC on it (little endian), and reverse the bits of the
2124  * result.
2125  * 2) Use the 8 most significant bits as a hash into a 256-entry
2126  * table.  The table is controlled through 8 32-bit registers:
2127  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
2128  * gaddr7.  This means that the 3 most significant bits in the
2129  * hash index which gaddr register to use, and the 5 other bits
2130  * indicate which bit (assuming an IBM numbering scheme, which
2131  * for PowerPC (tm) is usually the case) in the register holds
2132  * the entry. */
2133 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
2134 {
2135         u32 tempval;
2136         struct gfar_private *priv = netdev_priv(dev);
2137         u32 result = ether_crc(MAC_ADDR_LEN, addr);
2138         int width = priv->hash_width;
2139         u8 whichbit = (result >> (32 - width)) & 0x1f;
2140         u8 whichreg = result >> (32 - width + 5);
2141         u32 value = (1 << (31-whichbit));
2142
2143         tempval = gfar_read(priv->hash_regs[whichreg]);
2144         tempval |= value;
2145         gfar_write(priv->hash_regs[whichreg], tempval);
2146
2147         return;
2148 }
2149
2150
2151 /* There are multiple MAC Address register pairs on some controllers
2152  * This function sets the numth pair to a given address
2153  */
2154 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
2155 {
2156         struct gfar_private *priv = netdev_priv(dev);
2157         int idx;
2158         char tmpbuf[MAC_ADDR_LEN];
2159         u32 tempval;
2160         u32 __iomem *macptr = &priv->regs->macstnaddr1;
2161
2162         macptr += num*2;
2163
2164         /* Now copy it into the mac registers backwards, cuz */
2165         /* little endian is silly */
2166         for (idx = 0; idx < MAC_ADDR_LEN; idx++)
2167                 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
2168
2169         gfar_write(macptr, *((u32 *) (tmpbuf)));
2170
2171         tempval = *((u32 *) (tmpbuf + 4));
2172
2173         gfar_write(macptr+1, tempval);
2174 }
2175
2176 /* GFAR error interrupt handler */
2177 static irqreturn_t gfar_error(int irq, void *dev_id)
2178 {
2179         struct net_device *dev = dev_id;
2180         struct gfar_private *priv = netdev_priv(dev);
2181
2182         /* Save ievent for future reference */
2183         u32 events = gfar_read(&priv->regs->ievent);
2184
2185         /* Clear IEVENT */
2186         gfar_write(&priv->regs->ievent, events & IEVENT_ERR_MASK);
2187
2188         /* Magic Packet is not an error. */
2189         if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2190             (events & IEVENT_MAG))
2191                 events &= ~IEVENT_MAG;
2192
2193         /* Hmm... */
2194         if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2195                 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
2196                        dev->name, events, gfar_read(&priv->regs->imask));
2197
2198         /* Update the error counters */
2199         if (events & IEVENT_TXE) {
2200                 dev->stats.tx_errors++;
2201
2202                 if (events & IEVENT_LC)
2203                         dev->stats.tx_window_errors++;
2204                 if (events & IEVENT_CRL)
2205                         dev->stats.tx_aborted_errors++;
2206                 if (events & IEVENT_XFUN) {
2207                         if (netif_msg_tx_err(priv))
2208                                 printk(KERN_DEBUG "%s: TX FIFO underrun, "
2209                                        "packet dropped.\n", dev->name);
2210                         dev->stats.tx_dropped++;
2211                         priv->extra_stats.tx_underrun++;
2212
2213                         /* Reactivate the Tx Queues */
2214                         gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
2215                 }
2216                 if (netif_msg_tx_err(priv))
2217                         printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
2218         }
2219         if (events & IEVENT_BSY) {
2220                 dev->stats.rx_errors++;
2221                 priv->extra_stats.rx_bsy++;
2222
2223                 gfar_receive(irq, dev_id);
2224
2225                 if (netif_msg_rx_err(priv))
2226                         printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
2227                                dev->name, gfar_read(&priv->regs->rstat));
2228         }
2229         if (events & IEVENT_BABR) {
2230                 dev->stats.rx_errors++;
2231                 priv->extra_stats.rx_babr++;
2232
2233                 if (netif_msg_rx_err(priv))
2234                         printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
2235         }
2236         if (events & IEVENT_EBERR) {
2237                 priv->extra_stats.eberr++;
2238                 if (netif_msg_rx_err(priv))
2239                         printk(KERN_DEBUG "%s: bus error\n", dev->name);
2240         }
2241         if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
2242                 printk(KERN_DEBUG "%s: control frame\n", dev->name);
2243
2244         if (events & IEVENT_BABT) {
2245                 priv->extra_stats.tx_babt++;
2246                 if (netif_msg_tx_err(priv))
2247                         printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
2248         }
2249         return IRQ_HANDLED;
2250 }
2251
2252 /* work with hotplug and coldplug */
2253 MODULE_ALIAS("platform:fsl-gianfar");
2254
2255 static struct of_device_id gfar_match[] =
2256 {
2257         {
2258                 .type = "network",
2259                 .compatible = "gianfar",
2260         },
2261         {},
2262 };
2263
2264 /* Structure for a device driver */
2265 static struct of_platform_driver gfar_driver = {
2266         .name = "fsl-gianfar",
2267         .match_table = gfar_match,
2268
2269         .probe = gfar_probe,
2270         .remove = gfar_remove,
2271         .suspend = gfar_suspend,
2272         .resume = gfar_resume,
2273 };
2274
2275 static int __init gfar_init(void)
2276 {
2277         int err = gfar_mdio_init();
2278
2279         if (err)
2280                 return err;
2281
2282         err = of_register_platform_driver(&gfar_driver);
2283
2284         if (err)
2285                 gfar_mdio_exit();
2286
2287         return err;
2288 }
2289
2290 static void __exit gfar_exit(void)
2291 {
2292         of_unregister_platform_driver(&gfar_driver);
2293         gfar_mdio_exit();
2294 }
2295
2296 module_init(gfar_init);
2297 module_exit(gfar_exit);
2298