netdev: restore MAC address set and validate operations
[linux-2.6.git] / drivers / net / gianfar.c
1 /*
2  * drivers/net/gianfar.c
3  *
4  * Gianfar Ethernet Driver
5  * This driver is designed for the non-CPM ethernet controllers
6  * on the 85xx and 83xx family of integrated processors
7  * Based on 8260_io/fcc_enet.c
8  *
9  * Author: Andy Fleming
10  * Maintainer: Kumar Gala
11  *
12  * Copyright (c) 2002-2006 Freescale Semiconductor, Inc.
13  * Copyright (c) 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through of_device. Configuration information
29  *  is therefore conveyed through an OF-style device tree.
30  *
31  *  The Gianfar Ethernet Controller uses a ring of buffer
32  *  descriptors.  The beginning is indicated by a register
33  *  pointing to the physical address of the start of the ring.
34  *  The end is determined by a "wrap" bit being set in the
35  *  last descriptor of the ring.
36  *
37  *  When a packet is received, the RXF bit in the
38  *  IEVENT register is set, triggering an interrupt when the
39  *  corresponding bit in the IMASK register is also set (if
40  *  interrupt coalescing is active, then the interrupt may not
41  *  happen immediately, but will wait until either a set number
42  *  of frames or amount of time have passed).  In NAPI, the
43  *  interrupt handler will signal there is work to be done, and
44  *  exit. This method will start at the last known empty
45  *  descriptor, and process every subsequent descriptor until there
46  *  are none left with data (NAPI will stop after a set number of
47  *  packets to give time to other tasks, but will eventually
48  *  process all the packets).  The data arrives inside a
49  *  pre-allocated skb, and so after the skb is passed up to the
50  *  stack, a new skb must be allocated, and the address field in
51  *  the buffer descriptor must be updated to indicate this new
52  *  skb.
53  *
54  *  When the kernel requests that a packet be transmitted, the
55  *  driver starts where it left off last time, and points the
56  *  descriptor at the buffer which was passed in.  The driver
57  *  then informs the DMA engine that there are packets ready to
58  *  be transmitted.  Once the controller is finished transmitting
59  *  the packet, an interrupt may be triggered (under the same
60  *  conditions as for reception, but depending on the TXF bit).
61  *  The driver then cleans up the buffer.
62  */
63
64 #include <linux/kernel.h>
65 #include <linux/string.h>
66 #include <linux/errno.h>
67 #include <linux/unistd.h>
68 #include <linux/slab.h>
69 #include <linux/interrupt.h>
70 #include <linux/init.h>
71 #include <linux/delay.h>
72 #include <linux/netdevice.h>
73 #include <linux/etherdevice.h>
74 #include <linux/skbuff.h>
75 #include <linux/if_vlan.h>
76 #include <linux/spinlock.h>
77 #include <linux/mm.h>
78 #include <linux/of_mdio.h>
79 #include <linux/of_platform.h>
80 #include <linux/ip.h>
81 #include <linux/tcp.h>
82 #include <linux/udp.h>
83 #include <linux/in.h>
84
85 #include <asm/io.h>
86 #include <asm/irq.h>
87 #include <asm/uaccess.h>
88 #include <linux/module.h>
89 #include <linux/dma-mapping.h>
90 #include <linux/crc32.h>
91 #include <linux/mii.h>
92 #include <linux/phy.h>
93 #include <linux/phy_fixed.h>
94 #include <linux/of.h>
95
96 #include "gianfar.h"
97 #include "fsl_pq_mdio.h"
98
99 #define TX_TIMEOUT      (1*HZ)
100 #undef BRIEF_GFAR_ERRORS
101 #undef VERBOSE_GFAR_ERRORS
102
103 const char gfar_driver_name[] = "Gianfar Ethernet";
104 const char gfar_driver_version[] = "1.3";
105
106 static int gfar_enet_open(struct net_device *dev);
107 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
108 static void gfar_reset_task(struct work_struct *work);
109 static void gfar_timeout(struct net_device *dev);
110 static int gfar_close(struct net_device *dev);
111 struct sk_buff *gfar_new_skb(struct net_device *dev);
112 static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
113                 struct sk_buff *skb);
114 static int gfar_set_mac_address(struct net_device *dev);
115 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
116 static irqreturn_t gfar_error(int irq, void *dev_id);
117 static irqreturn_t gfar_transmit(int irq, void *dev_id);
118 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
119 static void adjust_link(struct net_device *dev);
120 static void init_registers(struct net_device *dev);
121 static int init_phy(struct net_device *dev);
122 static int gfar_probe(struct of_device *ofdev,
123                 const struct of_device_id *match);
124 static int gfar_remove(struct of_device *ofdev);
125 static void free_skb_resources(struct gfar_private *priv);
126 static void gfar_set_multi(struct net_device *dev);
127 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
128 static void gfar_configure_serdes(struct net_device *dev);
129 static int gfar_poll(struct napi_struct *napi, int budget);
130 #ifdef CONFIG_NET_POLL_CONTROLLER
131 static void gfar_netpoll(struct net_device *dev);
132 #endif
133 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit);
134 static int gfar_clean_tx_ring(struct net_device *dev);
135 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
136                               int amount_pull);
137 static void gfar_vlan_rx_register(struct net_device *netdev,
138                                 struct vlan_group *grp);
139 void gfar_halt(struct net_device *dev);
140 static void gfar_halt_nodisable(struct net_device *dev);
141 void gfar_start(struct net_device *dev);
142 static void gfar_clear_exact_match(struct net_device *dev);
143 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
144 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
145
146 MODULE_AUTHOR("Freescale Semiconductor, Inc");
147 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
148 MODULE_LICENSE("GPL");
149
150 static const struct net_device_ops gfar_netdev_ops = {
151         .ndo_open = gfar_enet_open,
152         .ndo_start_xmit = gfar_start_xmit,
153         .ndo_stop = gfar_close,
154         .ndo_change_mtu = gfar_change_mtu,
155         .ndo_set_multicast_list = gfar_set_multi,
156         .ndo_tx_timeout = gfar_timeout,
157         .ndo_do_ioctl = gfar_ioctl,
158         .ndo_vlan_rx_register = gfar_vlan_rx_register,
159         .ndo_set_mac_address = eth_mac_addr,
160         .ndo_validate_addr = eth_validate_addr,
161 #ifdef CONFIG_NET_POLL_CONTROLLER
162         .ndo_poll_controller = gfar_netpoll,
163 #endif
164 };
165
166 /* Returns 1 if incoming frames use an FCB */
167 static inline int gfar_uses_fcb(struct gfar_private *priv)
168 {
169         return priv->vlgrp || priv->rx_csum_enable;
170 }
171
172 static int gfar_of_init(struct net_device *dev)
173 {
174         const char *model;
175         const char *ctype;
176         const void *mac_addr;
177         u64 addr, size;
178         int err = 0;
179         struct gfar_private *priv = netdev_priv(dev);
180         struct device_node *np = priv->node;
181         const u32 *stash;
182         const u32 *stash_len;
183         const u32 *stash_idx;
184
185         if (!np || !of_device_is_available(np))
186                 return -ENODEV;
187
188         /* get a pointer to the register memory */
189         addr = of_translate_address(np, of_get_address(np, 0, &size, NULL));
190         priv->regs = ioremap(addr, size);
191
192         if (priv->regs == NULL)
193                 return -ENOMEM;
194
195         priv->interruptTransmit = irq_of_parse_and_map(np, 0);
196
197         model = of_get_property(np, "model", NULL);
198
199         /* If we aren't the FEC we have multiple interrupts */
200         if (model && strcasecmp(model, "FEC")) {
201                 priv->interruptReceive = irq_of_parse_and_map(np, 1);
202
203                 priv->interruptError = irq_of_parse_and_map(np, 2);
204
205                 if (priv->interruptTransmit < 0 ||
206                                 priv->interruptReceive < 0 ||
207                                 priv->interruptError < 0) {
208                         err = -EINVAL;
209                         goto err_out;
210                 }
211         }
212
213         stash = of_get_property(np, "bd-stash", NULL);
214
215         if(stash) {
216                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
217                 priv->bd_stash_en = 1;
218         }
219
220         stash_len = of_get_property(np, "rx-stash-len", NULL);
221
222         if (stash_len)
223                 priv->rx_stash_size = *stash_len;
224
225         stash_idx = of_get_property(np, "rx-stash-idx", NULL);
226
227         if (stash_idx)
228                 priv->rx_stash_index = *stash_idx;
229
230         if (stash_len || stash_idx)
231                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
232
233         mac_addr = of_get_mac_address(np);
234         if (mac_addr)
235                 memcpy(dev->dev_addr, mac_addr, MAC_ADDR_LEN);
236
237         if (model && !strcasecmp(model, "TSEC"))
238                 priv->device_flags =
239                         FSL_GIANFAR_DEV_HAS_GIGABIT |
240                         FSL_GIANFAR_DEV_HAS_COALESCE |
241                         FSL_GIANFAR_DEV_HAS_RMON |
242                         FSL_GIANFAR_DEV_HAS_MULTI_INTR;
243         if (model && !strcasecmp(model, "eTSEC"))
244                 priv->device_flags =
245                         FSL_GIANFAR_DEV_HAS_GIGABIT |
246                         FSL_GIANFAR_DEV_HAS_COALESCE |
247                         FSL_GIANFAR_DEV_HAS_RMON |
248                         FSL_GIANFAR_DEV_HAS_MULTI_INTR |
249                         FSL_GIANFAR_DEV_HAS_PADDING |
250                         FSL_GIANFAR_DEV_HAS_CSUM |
251                         FSL_GIANFAR_DEV_HAS_VLAN |
252                         FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
253                         FSL_GIANFAR_DEV_HAS_EXTENDED_HASH;
254
255         ctype = of_get_property(np, "phy-connection-type", NULL);
256
257         /* We only care about rgmii-id.  The rest are autodetected */
258         if (ctype && !strcmp(ctype, "rgmii-id"))
259                 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
260         else
261                 priv->interface = PHY_INTERFACE_MODE_MII;
262
263         if (of_get_property(np, "fsl,magic-packet", NULL))
264                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
265
266         priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
267         if (!priv->phy_node) {
268                 u32 *fixed_link;
269
270                 fixed_link = (u32 *)of_get_property(np, "fixed-link", NULL);
271                 if (!fixed_link) {
272                         err = -ENODEV;
273                         goto err_out;
274                 }
275         }
276
277         /* Find the TBI PHY.  If it's not there, we don't support SGMII */
278         priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
279
280         return 0;
281
282 err_out:
283         iounmap(priv->regs);
284         return err;
285 }
286
287 /* Ioctl MII Interface */
288 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
289 {
290         struct gfar_private *priv = netdev_priv(dev);
291
292         if (!netif_running(dev))
293                 return -EINVAL;
294
295         if (!priv->phydev)
296                 return -ENODEV;
297
298         return phy_mii_ioctl(priv->phydev, if_mii(rq), cmd);
299 }
300
301 /* Set up the ethernet device structure, private data,
302  * and anything else we need before we start */
303 static int gfar_probe(struct of_device *ofdev,
304                 const struct of_device_id *match)
305 {
306         u32 tempval;
307         struct net_device *dev = NULL;
308         struct gfar_private *priv = NULL;
309         DECLARE_MAC_BUF(mac);
310         int err = 0;
311         int len_devname;
312
313         /* Create an ethernet device instance */
314         dev = alloc_etherdev(sizeof (*priv));
315
316         if (NULL == dev)
317                 return -ENOMEM;
318
319         priv = netdev_priv(dev);
320         priv->ndev = dev;
321         priv->ofdev = ofdev;
322         priv->node = ofdev->node;
323         SET_NETDEV_DEV(dev, &ofdev->dev);
324
325         err = gfar_of_init(dev);
326
327         if (err)
328                 goto regs_fail;
329
330         spin_lock_init(&priv->txlock);
331         spin_lock_init(&priv->rxlock);
332         spin_lock_init(&priv->bflock);
333         INIT_WORK(&priv->reset_task, gfar_reset_task);
334
335         dev_set_drvdata(&ofdev->dev, priv);
336
337         /* Stop the DMA engine now, in case it was running before */
338         /* (The firmware could have used it, and left it running). */
339         gfar_halt(dev);
340
341         /* Reset MAC layer */
342         gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
343
344         /* We need to delay at least 3 TX clocks */
345         udelay(2);
346
347         tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
348         gfar_write(&priv->regs->maccfg1, tempval);
349
350         /* Initialize MACCFG2. */
351         gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS);
352
353         /* Initialize ECNTRL */
354         gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS);
355
356         /* Set the dev->base_addr to the gfar reg region */
357         dev->base_addr = (unsigned long) (priv->regs);
358
359         SET_NETDEV_DEV(dev, &ofdev->dev);
360
361         /* Fill in the dev structure */
362         dev->watchdog_timeo = TX_TIMEOUT;
363         netif_napi_add(dev, &priv->napi, gfar_poll, GFAR_DEV_WEIGHT);
364         dev->mtu = 1500;
365
366         dev->netdev_ops = &gfar_netdev_ops;
367         dev->ethtool_ops = &gfar_ethtool_ops;
368
369         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
370                 priv->rx_csum_enable = 1;
371                 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_HIGHDMA;
372         } else
373                 priv->rx_csum_enable = 0;
374
375         priv->vlgrp = NULL;
376
377         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN)
378                 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
379
380         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
381                 priv->extended_hash = 1;
382                 priv->hash_width = 9;
383
384                 priv->hash_regs[0] = &priv->regs->igaddr0;
385                 priv->hash_regs[1] = &priv->regs->igaddr1;
386                 priv->hash_regs[2] = &priv->regs->igaddr2;
387                 priv->hash_regs[3] = &priv->regs->igaddr3;
388                 priv->hash_regs[4] = &priv->regs->igaddr4;
389                 priv->hash_regs[5] = &priv->regs->igaddr5;
390                 priv->hash_regs[6] = &priv->regs->igaddr6;
391                 priv->hash_regs[7] = &priv->regs->igaddr7;
392                 priv->hash_regs[8] = &priv->regs->gaddr0;
393                 priv->hash_regs[9] = &priv->regs->gaddr1;
394                 priv->hash_regs[10] = &priv->regs->gaddr2;
395                 priv->hash_regs[11] = &priv->regs->gaddr3;
396                 priv->hash_regs[12] = &priv->regs->gaddr4;
397                 priv->hash_regs[13] = &priv->regs->gaddr5;
398                 priv->hash_regs[14] = &priv->regs->gaddr6;
399                 priv->hash_regs[15] = &priv->regs->gaddr7;
400
401         } else {
402                 priv->extended_hash = 0;
403                 priv->hash_width = 8;
404
405                 priv->hash_regs[0] = &priv->regs->gaddr0;
406                 priv->hash_regs[1] = &priv->regs->gaddr1;
407                 priv->hash_regs[2] = &priv->regs->gaddr2;
408                 priv->hash_regs[3] = &priv->regs->gaddr3;
409                 priv->hash_regs[4] = &priv->regs->gaddr4;
410                 priv->hash_regs[5] = &priv->regs->gaddr5;
411                 priv->hash_regs[6] = &priv->regs->gaddr6;
412                 priv->hash_regs[7] = &priv->regs->gaddr7;
413         }
414
415         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
416                 priv->padding = DEFAULT_PADDING;
417         else
418                 priv->padding = 0;
419
420         if (dev->features & NETIF_F_IP_CSUM)
421                 dev->hard_header_len += GMAC_FCB_LEN;
422
423         priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
424         priv->tx_ring_size = DEFAULT_TX_RING_SIZE;
425         priv->rx_ring_size = DEFAULT_RX_RING_SIZE;
426         priv->num_txbdfree = DEFAULT_TX_RING_SIZE;
427
428         priv->txcoalescing = DEFAULT_TX_COALESCE;
429         priv->txic = DEFAULT_TXIC;
430         priv->rxcoalescing = DEFAULT_RX_COALESCE;
431         priv->rxic = DEFAULT_RXIC;
432
433         /* Enable most messages by default */
434         priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
435
436         /* Carrier starts down, phylib will bring it up */
437         netif_carrier_off(dev);
438
439         err = register_netdev(dev);
440
441         if (err) {
442                 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
443                                 dev->name);
444                 goto register_fail;
445         }
446
447         device_init_wakeup(&dev->dev,
448                 priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
449
450         /* fill out IRQ number and name fields */
451         len_devname = strlen(dev->name);
452         strncpy(&priv->int_name_tx[0], dev->name, len_devname);
453         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
454                 strncpy(&priv->int_name_tx[len_devname],
455                         "_tx", sizeof("_tx") + 1);
456
457                 strncpy(&priv->int_name_rx[0], dev->name, len_devname);
458                 strncpy(&priv->int_name_rx[len_devname],
459                         "_rx", sizeof("_rx") + 1);
460
461                 strncpy(&priv->int_name_er[0], dev->name, len_devname);
462                 strncpy(&priv->int_name_er[len_devname],
463                         "_er", sizeof("_er") + 1);
464         } else
465                 priv->int_name_tx[len_devname] = '\0';
466
467         /* Create all the sysfs files */
468         gfar_init_sysfs(dev);
469
470         /* Print out the device info */
471         printk(KERN_INFO DEVICE_NAME "%pM\n", dev->name, dev->dev_addr);
472
473         /* Even more device info helps when determining which kernel */
474         /* provided which set of benchmarks. */
475         printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
476         printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n",
477                dev->name, priv->rx_ring_size, priv->tx_ring_size);
478
479         return 0;
480
481 register_fail:
482         iounmap(priv->regs);
483 regs_fail:
484         if (priv->phy_node)
485                 of_node_put(priv->phy_node);
486         if (priv->tbi_node)
487                 of_node_put(priv->tbi_node);
488         free_netdev(dev);
489         return err;
490 }
491
492 static int gfar_remove(struct of_device *ofdev)
493 {
494         struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
495
496         if (priv->phy_node)
497                 of_node_put(priv->phy_node);
498         if (priv->tbi_node)
499                 of_node_put(priv->tbi_node);
500
501         dev_set_drvdata(&ofdev->dev, NULL);
502
503         iounmap(priv->regs);
504         free_netdev(priv->ndev);
505
506         return 0;
507 }
508
509 #ifdef CONFIG_PM
510 static int gfar_suspend(struct of_device *ofdev, pm_message_t state)
511 {
512         struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
513         struct net_device *dev = priv->ndev;
514         unsigned long flags;
515         u32 tempval;
516
517         int magic_packet = priv->wol_en &&
518                 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
519
520         netif_device_detach(dev);
521
522         if (netif_running(dev)) {
523                 spin_lock_irqsave(&priv->txlock, flags);
524                 spin_lock(&priv->rxlock);
525
526                 gfar_halt_nodisable(dev);
527
528                 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
529                 tempval = gfar_read(&priv->regs->maccfg1);
530
531                 tempval &= ~MACCFG1_TX_EN;
532
533                 if (!magic_packet)
534                         tempval &= ~MACCFG1_RX_EN;
535
536                 gfar_write(&priv->regs->maccfg1, tempval);
537
538                 spin_unlock(&priv->rxlock);
539                 spin_unlock_irqrestore(&priv->txlock, flags);
540
541                 napi_disable(&priv->napi);
542
543                 if (magic_packet) {
544                         /* Enable interrupt on Magic Packet */
545                         gfar_write(&priv->regs->imask, IMASK_MAG);
546
547                         /* Enable Magic Packet mode */
548                         tempval = gfar_read(&priv->regs->maccfg2);
549                         tempval |= MACCFG2_MPEN;
550                         gfar_write(&priv->regs->maccfg2, tempval);
551                 } else {
552                         phy_stop(priv->phydev);
553                 }
554         }
555
556         return 0;
557 }
558
559 static int gfar_resume(struct of_device *ofdev)
560 {
561         struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
562         struct net_device *dev = priv->ndev;
563         unsigned long flags;
564         u32 tempval;
565         int magic_packet = priv->wol_en &&
566                 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
567
568         if (!netif_running(dev)) {
569                 netif_device_attach(dev);
570                 return 0;
571         }
572
573         if (!magic_packet && priv->phydev)
574                 phy_start(priv->phydev);
575
576         /* Disable Magic Packet mode, in case something
577          * else woke us up.
578          */
579
580         spin_lock_irqsave(&priv->txlock, flags);
581         spin_lock(&priv->rxlock);
582
583         tempval = gfar_read(&priv->regs->maccfg2);
584         tempval &= ~MACCFG2_MPEN;
585         gfar_write(&priv->regs->maccfg2, tempval);
586
587         gfar_start(dev);
588
589         spin_unlock(&priv->rxlock);
590         spin_unlock_irqrestore(&priv->txlock, flags);
591
592         netif_device_attach(dev);
593
594         napi_enable(&priv->napi);
595
596         return 0;
597 }
598 #else
599 #define gfar_suspend NULL
600 #define gfar_resume NULL
601 #endif
602
603 /* Reads the controller's registers to determine what interface
604  * connects it to the PHY.
605  */
606 static phy_interface_t gfar_get_interface(struct net_device *dev)
607 {
608         struct gfar_private *priv = netdev_priv(dev);
609         u32 ecntrl = gfar_read(&priv->regs->ecntrl);
610
611         if (ecntrl & ECNTRL_SGMII_MODE)
612                 return PHY_INTERFACE_MODE_SGMII;
613
614         if (ecntrl & ECNTRL_TBI_MODE) {
615                 if (ecntrl & ECNTRL_REDUCED_MODE)
616                         return PHY_INTERFACE_MODE_RTBI;
617                 else
618                         return PHY_INTERFACE_MODE_TBI;
619         }
620
621         if (ecntrl & ECNTRL_REDUCED_MODE) {
622                 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
623                         return PHY_INTERFACE_MODE_RMII;
624                 else {
625                         phy_interface_t interface = priv->interface;
626
627                         /*
628                          * This isn't autodetected right now, so it must
629                          * be set by the device tree or platform code.
630                          */
631                         if (interface == PHY_INTERFACE_MODE_RGMII_ID)
632                                 return PHY_INTERFACE_MODE_RGMII_ID;
633
634                         return PHY_INTERFACE_MODE_RGMII;
635                 }
636         }
637
638         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
639                 return PHY_INTERFACE_MODE_GMII;
640
641         return PHY_INTERFACE_MODE_MII;
642 }
643
644
645 /* Initializes driver's PHY state, and attaches to the PHY.
646  * Returns 0 on success.
647  */
648 static int init_phy(struct net_device *dev)
649 {
650         struct gfar_private *priv = netdev_priv(dev);
651         uint gigabit_support =
652                 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
653                 SUPPORTED_1000baseT_Full : 0;
654         phy_interface_t interface;
655
656         priv->oldlink = 0;
657         priv->oldspeed = 0;
658         priv->oldduplex = -1;
659
660         interface = gfar_get_interface(dev);
661
662         if (priv->phy_node) {
663                 priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link,
664                                               0, interface);
665                 if (!priv->phydev) {
666                         dev_err(&dev->dev, "error: Could not attach to PHY\n");
667                         return -ENODEV;
668                 }
669         }
670
671         if (interface == PHY_INTERFACE_MODE_SGMII)
672                 gfar_configure_serdes(dev);
673
674         /* Remove any features not supported by the controller */
675         priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
676         priv->phydev->advertising = priv->phydev->supported;
677
678         return 0;
679 }
680
681 /*
682  * Initialize TBI PHY interface for communicating with the
683  * SERDES lynx PHY on the chip.  We communicate with this PHY
684  * through the MDIO bus on each controller, treating it as a
685  * "normal" PHY at the address found in the TBIPA register.  We assume
686  * that the TBIPA register is valid.  Either the MDIO bus code will set
687  * it to a value that doesn't conflict with other PHYs on the bus, or the
688  * value doesn't matter, as there are no other PHYs on the bus.
689  */
690 static void gfar_configure_serdes(struct net_device *dev)
691 {
692         struct gfar_private *priv = netdev_priv(dev);
693         struct phy_device *tbiphy;
694
695         if (!priv->tbi_node) {
696                 dev_warn(&dev->dev, "error: SGMII mode requires that the "
697                                     "device tree specify a tbi-handle\n");
698                 return;
699         }
700
701         tbiphy = of_phy_find_device(priv->tbi_node);
702         if (!tbiphy) {
703                 dev_err(&dev->dev, "error: Could not get TBI device\n");
704                 return;
705         }
706
707         /*
708          * If the link is already up, we must already be ok, and don't need to
709          * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
710          * everything for us?  Resetting it takes the link down and requires
711          * several seconds for it to come back.
712          */
713         if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
714                 return;
715
716         /* Single clk mode, mii mode off(for serdes communication) */
717         phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
718
719         phy_write(tbiphy, MII_ADVERTISE,
720                         ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
721                         ADVERTISE_1000XPSE_ASYM);
722
723         phy_write(tbiphy, MII_BMCR, BMCR_ANENABLE |
724                         BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
725 }
726
727 static void init_registers(struct net_device *dev)
728 {
729         struct gfar_private *priv = netdev_priv(dev);
730
731         /* Clear IEVENT */
732         gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR);
733
734         /* Initialize IMASK */
735         gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR);
736
737         /* Init hash registers to zero */
738         gfar_write(&priv->regs->igaddr0, 0);
739         gfar_write(&priv->regs->igaddr1, 0);
740         gfar_write(&priv->regs->igaddr2, 0);
741         gfar_write(&priv->regs->igaddr3, 0);
742         gfar_write(&priv->regs->igaddr4, 0);
743         gfar_write(&priv->regs->igaddr5, 0);
744         gfar_write(&priv->regs->igaddr6, 0);
745         gfar_write(&priv->regs->igaddr7, 0);
746
747         gfar_write(&priv->regs->gaddr0, 0);
748         gfar_write(&priv->regs->gaddr1, 0);
749         gfar_write(&priv->regs->gaddr2, 0);
750         gfar_write(&priv->regs->gaddr3, 0);
751         gfar_write(&priv->regs->gaddr4, 0);
752         gfar_write(&priv->regs->gaddr5, 0);
753         gfar_write(&priv->regs->gaddr6, 0);
754         gfar_write(&priv->regs->gaddr7, 0);
755
756         /* Zero out the rmon mib registers if it has them */
757         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
758                 memset_io(&(priv->regs->rmon), 0, sizeof (struct rmon_mib));
759
760                 /* Mask off the CAM interrupts */
761                 gfar_write(&priv->regs->rmon.cam1, 0xffffffff);
762                 gfar_write(&priv->regs->rmon.cam2, 0xffffffff);
763         }
764
765         /* Initialize the max receive buffer length */
766         gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
767
768         /* Initialize the Minimum Frame Length Register */
769         gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS);
770 }
771
772
773 /* Halt the receive and transmit queues */
774 static void gfar_halt_nodisable(struct net_device *dev)
775 {
776         struct gfar_private *priv = netdev_priv(dev);
777         struct gfar __iomem *regs = priv->regs;
778         u32 tempval;
779
780         /* Mask all interrupts */
781         gfar_write(&regs->imask, IMASK_INIT_CLEAR);
782
783         /* Clear all interrupts */
784         gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
785
786         /* Stop the DMA, and wait for it to stop */
787         tempval = gfar_read(&priv->regs->dmactrl);
788         if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
789             != (DMACTRL_GRS | DMACTRL_GTS)) {
790                 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
791                 gfar_write(&priv->regs->dmactrl, tempval);
792
793                 while (!(gfar_read(&priv->regs->ievent) &
794                          (IEVENT_GRSC | IEVENT_GTSC)))
795                         cpu_relax();
796         }
797 }
798
799 /* Halt the receive and transmit queues */
800 void gfar_halt(struct net_device *dev)
801 {
802         struct gfar_private *priv = netdev_priv(dev);
803         struct gfar __iomem *regs = priv->regs;
804         u32 tempval;
805
806         gfar_halt_nodisable(dev);
807
808         /* Disable Rx and Tx */
809         tempval = gfar_read(&regs->maccfg1);
810         tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
811         gfar_write(&regs->maccfg1, tempval);
812 }
813
814 void stop_gfar(struct net_device *dev)
815 {
816         struct gfar_private *priv = netdev_priv(dev);
817         struct gfar __iomem *regs = priv->regs;
818         unsigned long flags;
819
820         phy_stop(priv->phydev);
821
822         /* Lock it down */
823         spin_lock_irqsave(&priv->txlock, flags);
824         spin_lock(&priv->rxlock);
825
826         gfar_halt(dev);
827
828         spin_unlock(&priv->rxlock);
829         spin_unlock_irqrestore(&priv->txlock, flags);
830
831         /* Free the IRQs */
832         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
833                 free_irq(priv->interruptError, dev);
834                 free_irq(priv->interruptTransmit, dev);
835                 free_irq(priv->interruptReceive, dev);
836         } else {
837                 free_irq(priv->interruptTransmit, dev);
838         }
839
840         free_skb_resources(priv);
841
842         dma_free_coherent(&priv->ofdev->dev,
843                         sizeof(struct txbd8)*priv->tx_ring_size
844                         + sizeof(struct rxbd8)*priv->rx_ring_size,
845                         priv->tx_bd_base,
846                         gfar_read(&regs->tbase0));
847 }
848
849 /* If there are any tx skbs or rx skbs still around, free them.
850  * Then free tx_skbuff and rx_skbuff */
851 static void free_skb_resources(struct gfar_private *priv)
852 {
853         struct rxbd8 *rxbdp;
854         struct txbd8 *txbdp;
855         int i, j;
856
857         /* Go through all the buffer descriptors and free their data buffers */
858         txbdp = priv->tx_bd_base;
859
860         for (i = 0; i < priv->tx_ring_size; i++) {
861                 if (!priv->tx_skbuff[i])
862                         continue;
863
864                 dma_unmap_single(&priv->ofdev->dev, txbdp->bufPtr,
865                                 txbdp->length, DMA_TO_DEVICE);
866                 txbdp->lstatus = 0;
867                 for (j = 0; j < skb_shinfo(priv->tx_skbuff[i])->nr_frags; j++) {
868                         txbdp++;
869                         dma_unmap_page(&priv->ofdev->dev, txbdp->bufPtr,
870                                         txbdp->length, DMA_TO_DEVICE);
871                 }
872                 txbdp++;
873                 dev_kfree_skb_any(priv->tx_skbuff[i]);
874                 priv->tx_skbuff[i] = NULL;
875         }
876
877         kfree(priv->tx_skbuff);
878
879         rxbdp = priv->rx_bd_base;
880
881         /* rx_skbuff is not guaranteed to be allocated, so only
882          * free it and its contents if it is allocated */
883         if(priv->rx_skbuff != NULL) {
884                 for (i = 0; i < priv->rx_ring_size; i++) {
885                         if (priv->rx_skbuff[i]) {
886                                 dma_unmap_single(&priv->ofdev->dev, rxbdp->bufPtr,
887                                                 priv->rx_buffer_size,
888                                                 DMA_FROM_DEVICE);
889
890                                 dev_kfree_skb_any(priv->rx_skbuff[i]);
891                                 priv->rx_skbuff[i] = NULL;
892                         }
893
894                         rxbdp->lstatus = 0;
895                         rxbdp->bufPtr = 0;
896
897                         rxbdp++;
898                 }
899
900                 kfree(priv->rx_skbuff);
901         }
902 }
903
904 void gfar_start(struct net_device *dev)
905 {
906         struct gfar_private *priv = netdev_priv(dev);
907         struct gfar __iomem *regs = priv->regs;
908         u32 tempval;
909
910         /* Enable Rx and Tx in MACCFG1 */
911         tempval = gfar_read(&regs->maccfg1);
912         tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
913         gfar_write(&regs->maccfg1, tempval);
914
915         /* Initialize DMACTRL to have WWR and WOP */
916         tempval = gfar_read(&priv->regs->dmactrl);
917         tempval |= DMACTRL_INIT_SETTINGS;
918         gfar_write(&priv->regs->dmactrl, tempval);
919
920         /* Make sure we aren't stopped */
921         tempval = gfar_read(&priv->regs->dmactrl);
922         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
923         gfar_write(&priv->regs->dmactrl, tempval);
924
925         /* Clear THLT/RHLT, so that the DMA starts polling now */
926         gfar_write(&regs->tstat, TSTAT_CLEAR_THALT);
927         gfar_write(&regs->rstat, RSTAT_CLEAR_RHALT);
928
929         /* Unmask the interrupts we look for */
930         gfar_write(&regs->imask, IMASK_DEFAULT);
931
932         dev->trans_start = jiffies;
933 }
934
935 /* Bring the controller up and running */
936 int startup_gfar(struct net_device *dev)
937 {
938         struct txbd8 *txbdp;
939         struct rxbd8 *rxbdp;
940         dma_addr_t addr = 0;
941         unsigned long vaddr;
942         int i;
943         struct gfar_private *priv = netdev_priv(dev);
944         struct gfar __iomem *regs = priv->regs;
945         int err = 0;
946         u32 rctrl = 0;
947         u32 attrs = 0;
948
949         gfar_write(&regs->imask, IMASK_INIT_CLEAR);
950
951         /* Allocate memory for the buffer descriptors */
952         vaddr = (unsigned long) dma_alloc_coherent(&priv->ofdev->dev,
953                         sizeof (struct txbd8) * priv->tx_ring_size +
954                         sizeof (struct rxbd8) * priv->rx_ring_size,
955                         &addr, GFP_KERNEL);
956
957         if (vaddr == 0) {
958                 if (netif_msg_ifup(priv))
959                         printk(KERN_ERR "%s: Could not allocate buffer descriptors!\n",
960                                         dev->name);
961                 return -ENOMEM;
962         }
963
964         priv->tx_bd_base = (struct txbd8 *) vaddr;
965
966         /* enet DMA only understands physical addresses */
967         gfar_write(&regs->tbase0, addr);
968
969         /* Start the rx descriptor ring where the tx ring leaves off */
970         addr = addr + sizeof (struct txbd8) * priv->tx_ring_size;
971         vaddr = vaddr + sizeof (struct txbd8) * priv->tx_ring_size;
972         priv->rx_bd_base = (struct rxbd8 *) vaddr;
973         gfar_write(&regs->rbase0, addr);
974
975         /* Setup the skbuff rings */
976         priv->tx_skbuff =
977             (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
978                                         priv->tx_ring_size, GFP_KERNEL);
979
980         if (NULL == priv->tx_skbuff) {
981                 if (netif_msg_ifup(priv))
982                         printk(KERN_ERR "%s: Could not allocate tx_skbuff\n",
983                                         dev->name);
984                 err = -ENOMEM;
985                 goto tx_skb_fail;
986         }
987
988         for (i = 0; i < priv->tx_ring_size; i++)
989                 priv->tx_skbuff[i] = NULL;
990
991         priv->rx_skbuff =
992             (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
993                                         priv->rx_ring_size, GFP_KERNEL);
994
995         if (NULL == priv->rx_skbuff) {
996                 if (netif_msg_ifup(priv))
997                         printk(KERN_ERR "%s: Could not allocate rx_skbuff\n",
998                                         dev->name);
999                 err = -ENOMEM;
1000                 goto rx_skb_fail;
1001         }
1002
1003         for (i = 0; i < priv->rx_ring_size; i++)
1004                 priv->rx_skbuff[i] = NULL;
1005
1006         /* Initialize some variables in our dev structure */
1007         priv->num_txbdfree = priv->tx_ring_size;
1008         priv->dirty_tx = priv->cur_tx = priv->tx_bd_base;
1009         priv->cur_rx = priv->rx_bd_base;
1010         priv->skb_curtx = priv->skb_dirtytx = 0;
1011         priv->skb_currx = 0;
1012
1013         /* Initialize Transmit Descriptor Ring */
1014         txbdp = priv->tx_bd_base;
1015         for (i = 0; i < priv->tx_ring_size; i++) {
1016                 txbdp->lstatus = 0;
1017                 txbdp->bufPtr = 0;
1018                 txbdp++;
1019         }
1020
1021         /* Set the last descriptor in the ring to indicate wrap */
1022         txbdp--;
1023         txbdp->status |= TXBD_WRAP;
1024
1025         rxbdp = priv->rx_bd_base;
1026         for (i = 0; i < priv->rx_ring_size; i++) {
1027                 struct sk_buff *skb;
1028
1029                 skb = gfar_new_skb(dev);
1030
1031                 if (!skb) {
1032                         printk(KERN_ERR "%s: Can't allocate RX buffers\n",
1033                                         dev->name);
1034
1035                         goto err_rxalloc_fail;
1036                 }
1037
1038                 priv->rx_skbuff[i] = skb;
1039
1040                 gfar_new_rxbdp(dev, rxbdp, skb);
1041
1042                 rxbdp++;
1043         }
1044
1045         /* Set the last descriptor in the ring to wrap */
1046         rxbdp--;
1047         rxbdp->status |= RXBD_WRAP;
1048
1049         /* If the device has multiple interrupts, register for
1050          * them.  Otherwise, only register for the one */
1051         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1052                 /* Install our interrupt handlers for Error,
1053                  * Transmit, and Receive */
1054                 if (request_irq(priv->interruptError, gfar_error,
1055                                 0, priv->int_name_er, dev) < 0) {
1056                         if (netif_msg_intr(priv))
1057                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1058                                         dev->name, priv->interruptError);
1059
1060                         err = -1;
1061                         goto err_irq_fail;
1062                 }
1063
1064                 if (request_irq(priv->interruptTransmit, gfar_transmit,
1065                                 0, priv->int_name_tx, dev) < 0) {
1066                         if (netif_msg_intr(priv))
1067                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1068                                         dev->name, priv->interruptTransmit);
1069
1070                         err = -1;
1071
1072                         goto tx_irq_fail;
1073                 }
1074
1075                 if (request_irq(priv->interruptReceive, gfar_receive,
1076                                 0, priv->int_name_rx, dev) < 0) {
1077                         if (netif_msg_intr(priv))
1078                                 printk(KERN_ERR "%s: Can't get IRQ %d (receive0)\n",
1079                                                 dev->name, priv->interruptReceive);
1080
1081                         err = -1;
1082                         goto rx_irq_fail;
1083                 }
1084         } else {
1085                 if (request_irq(priv->interruptTransmit, gfar_interrupt,
1086                                 0, priv->int_name_tx, dev) < 0) {
1087                         if (netif_msg_intr(priv))
1088                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1089                                         dev->name, priv->interruptTransmit);
1090
1091                         err = -1;
1092                         goto err_irq_fail;
1093                 }
1094         }
1095
1096         phy_start(priv->phydev);
1097
1098         /* Configure the coalescing support */
1099         gfar_write(&regs->txic, 0);
1100         if (priv->txcoalescing)
1101                 gfar_write(&regs->txic, priv->txic);
1102
1103         gfar_write(&regs->rxic, 0);
1104         if (priv->rxcoalescing)
1105                 gfar_write(&regs->rxic, priv->rxic);
1106
1107         if (priv->rx_csum_enable)
1108                 rctrl |= RCTRL_CHECKSUMMING;
1109
1110         if (priv->extended_hash) {
1111                 rctrl |= RCTRL_EXTHASH;
1112
1113                 gfar_clear_exact_match(dev);
1114                 rctrl |= RCTRL_EMEN;
1115         }
1116
1117         if (priv->padding) {
1118                 rctrl &= ~RCTRL_PAL_MASK;
1119                 rctrl |= RCTRL_PADDING(priv->padding);
1120         }
1121
1122         /* Init rctrl based on our settings */
1123         gfar_write(&priv->regs->rctrl, rctrl);
1124
1125         if (dev->features & NETIF_F_IP_CSUM)
1126                 gfar_write(&priv->regs->tctrl, TCTRL_INIT_CSUM);
1127
1128         /* Set the extraction length and index */
1129         attrs = ATTRELI_EL(priv->rx_stash_size) |
1130                 ATTRELI_EI(priv->rx_stash_index);
1131
1132         gfar_write(&priv->regs->attreli, attrs);
1133
1134         /* Start with defaults, and add stashing or locking
1135          * depending on the approprate variables */
1136         attrs = ATTR_INIT_SETTINGS;
1137
1138         if (priv->bd_stash_en)
1139                 attrs |= ATTR_BDSTASH;
1140
1141         if (priv->rx_stash_size != 0)
1142                 attrs |= ATTR_BUFSTASH;
1143
1144         gfar_write(&priv->regs->attr, attrs);
1145
1146         gfar_write(&priv->regs->fifo_tx_thr, priv->fifo_threshold);
1147         gfar_write(&priv->regs->fifo_tx_starve, priv->fifo_starve);
1148         gfar_write(&priv->regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
1149
1150         /* Start the controller */
1151         gfar_start(dev);
1152
1153         return 0;
1154
1155 rx_irq_fail:
1156         free_irq(priv->interruptTransmit, dev);
1157 tx_irq_fail:
1158         free_irq(priv->interruptError, dev);
1159 err_irq_fail:
1160 err_rxalloc_fail:
1161 rx_skb_fail:
1162         free_skb_resources(priv);
1163 tx_skb_fail:
1164         dma_free_coherent(&priv->ofdev->dev,
1165                         sizeof(struct txbd8)*priv->tx_ring_size
1166                         + sizeof(struct rxbd8)*priv->rx_ring_size,
1167                         priv->tx_bd_base,
1168                         gfar_read(&regs->tbase0));
1169
1170         return err;
1171 }
1172
1173 /* Called when something needs to use the ethernet device */
1174 /* Returns 0 for success. */
1175 static int gfar_enet_open(struct net_device *dev)
1176 {
1177         struct gfar_private *priv = netdev_priv(dev);
1178         int err;
1179
1180         napi_enable(&priv->napi);
1181
1182         skb_queue_head_init(&priv->rx_recycle);
1183
1184         /* Initialize a bunch of registers */
1185         init_registers(dev);
1186
1187         gfar_set_mac_address(dev);
1188
1189         err = init_phy(dev);
1190
1191         if(err) {
1192                 napi_disable(&priv->napi);
1193                 return err;
1194         }
1195
1196         err = startup_gfar(dev);
1197         if (err) {
1198                 napi_disable(&priv->napi);
1199                 return err;
1200         }
1201
1202         netif_start_queue(dev);
1203
1204         device_set_wakeup_enable(&dev->dev, priv->wol_en);
1205
1206         return err;
1207 }
1208
1209 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1210 {
1211         struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
1212
1213         memset(fcb, 0, GMAC_FCB_LEN);
1214
1215         return fcb;
1216 }
1217
1218 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
1219 {
1220         u8 flags = 0;
1221
1222         /* If we're here, it's a IP packet with a TCP or UDP
1223          * payload.  We set it to checksum, using a pseudo-header
1224          * we provide
1225          */
1226         flags = TXFCB_DEFAULT;
1227
1228         /* Tell the controller what the protocol is */
1229         /* And provide the already calculated phcs */
1230         if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1231                 flags |= TXFCB_UDP;
1232                 fcb->phcs = udp_hdr(skb)->check;
1233         } else
1234                 fcb->phcs = tcp_hdr(skb)->check;
1235
1236         /* l3os is the distance between the start of the
1237          * frame (skb->data) and the start of the IP hdr.
1238          * l4os is the distance between the start of the
1239          * l3 hdr and the l4 hdr */
1240         fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
1241         fcb->l4os = skb_network_header_len(skb);
1242
1243         fcb->flags = flags;
1244 }
1245
1246 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1247 {
1248         fcb->flags |= TXFCB_VLN;
1249         fcb->vlctl = vlan_tx_tag_get(skb);
1250 }
1251
1252 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1253                                struct txbd8 *base, int ring_size)
1254 {
1255         struct txbd8 *new_bd = bdp + stride;
1256
1257         return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1258 }
1259
1260 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1261                 int ring_size)
1262 {
1263         return skip_txbd(bdp, 1, base, ring_size);
1264 }
1265
1266 /* This is called by the kernel when a frame is ready for transmission. */
1267 /* It is pointed to by the dev->hard_start_xmit function pointer */
1268 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1269 {
1270         struct gfar_private *priv = netdev_priv(dev);
1271         struct txfcb *fcb = NULL;
1272         struct txbd8 *txbdp, *txbdp_start, *base;
1273         u32 lstatus;
1274         int i;
1275         u32 bufaddr;
1276         unsigned long flags;
1277         unsigned int nr_frags, length;
1278
1279         base = priv->tx_bd_base;
1280
1281         /* make space for additional header when fcb is needed */
1282         if (((skb->ip_summed == CHECKSUM_PARTIAL) ||
1283                         (priv->vlgrp && vlan_tx_tag_present(skb))) &&
1284                         (skb_headroom(skb) < GMAC_FCB_LEN)) {
1285                 struct sk_buff *skb_new;
1286
1287                 skb_new = skb_realloc_headroom(skb, GMAC_FCB_LEN);
1288                 if (!skb_new) {
1289                         dev->stats.tx_errors++;
1290                         kfree_skb(skb);
1291                         return NETDEV_TX_OK;
1292                 }
1293                 kfree_skb(skb);
1294                 skb = skb_new;
1295         }
1296
1297         /* total number of fragments in the SKB */
1298         nr_frags = skb_shinfo(skb)->nr_frags;
1299
1300         spin_lock_irqsave(&priv->txlock, flags);
1301
1302         /* check if there is space to queue this packet */
1303         if ((nr_frags+1) > priv->num_txbdfree) {
1304                 /* no space, stop the queue */
1305                 netif_stop_queue(dev);
1306                 dev->stats.tx_fifo_errors++;
1307                 spin_unlock_irqrestore(&priv->txlock, flags);
1308                 return NETDEV_TX_BUSY;
1309         }
1310
1311         /* Update transmit stats */
1312         dev->stats.tx_bytes += skb->len;
1313
1314         txbdp = txbdp_start = priv->cur_tx;
1315
1316         if (nr_frags == 0) {
1317                 lstatus = txbdp->lstatus | BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1318         } else {
1319                 /* Place the fragment addresses and lengths into the TxBDs */
1320                 for (i = 0; i < nr_frags; i++) {
1321                         /* Point at the next BD, wrapping as needed */
1322                         txbdp = next_txbd(txbdp, base, priv->tx_ring_size);
1323
1324                         length = skb_shinfo(skb)->frags[i].size;
1325
1326                         lstatus = txbdp->lstatus | length |
1327                                 BD_LFLAG(TXBD_READY);
1328
1329                         /* Handle the last BD specially */
1330                         if (i == nr_frags - 1)
1331                                 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1332
1333                         bufaddr = dma_map_page(&priv->ofdev->dev,
1334                                         skb_shinfo(skb)->frags[i].page,
1335                                         skb_shinfo(skb)->frags[i].page_offset,
1336                                         length,
1337                                         DMA_TO_DEVICE);
1338
1339                         /* set the TxBD length and buffer pointer */
1340                         txbdp->bufPtr = bufaddr;
1341                         txbdp->lstatus = lstatus;
1342                 }
1343
1344                 lstatus = txbdp_start->lstatus;
1345         }
1346
1347         /* Set up checksumming */
1348         if (CHECKSUM_PARTIAL == skb->ip_summed) {
1349                 fcb = gfar_add_fcb(skb);
1350                 lstatus |= BD_LFLAG(TXBD_TOE);
1351                 gfar_tx_checksum(skb, fcb);
1352         }
1353
1354         if (priv->vlgrp && vlan_tx_tag_present(skb)) {
1355                 if (unlikely(NULL == fcb)) {
1356                         fcb = gfar_add_fcb(skb);
1357                         lstatus |= BD_LFLAG(TXBD_TOE);
1358                 }
1359
1360                 gfar_tx_vlan(skb, fcb);
1361         }
1362
1363         /* setup the TxBD length and buffer pointer for the first BD */
1364         priv->tx_skbuff[priv->skb_curtx] = skb;
1365         txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
1366                         skb_headlen(skb), DMA_TO_DEVICE);
1367
1368         lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
1369
1370         /*
1371          * The powerpc-specific eieio() is used, as wmb() has too strong
1372          * semantics (it requires synchronization between cacheable and
1373          * uncacheable mappings, which eieio doesn't provide and which we
1374          * don't need), thus requiring a more expensive sync instruction.  At
1375          * some point, the set of architecture-independent barrier functions
1376          * should be expanded to include weaker barriers.
1377          */
1378         eieio();
1379
1380         txbdp_start->lstatus = lstatus;
1381
1382         /* Update the current skb pointer to the next entry we will use
1383          * (wrapping if necessary) */
1384         priv->skb_curtx = (priv->skb_curtx + 1) &
1385                 TX_RING_MOD_MASK(priv->tx_ring_size);
1386
1387         priv->cur_tx = next_txbd(txbdp, base, priv->tx_ring_size);
1388
1389         /* reduce TxBD free count */
1390         priv->num_txbdfree -= (nr_frags + 1);
1391
1392         dev->trans_start = jiffies;
1393
1394         /* If the next BD still needs to be cleaned up, then the bds
1395            are full.  We need to tell the kernel to stop sending us stuff. */
1396         if (!priv->num_txbdfree) {
1397                 netif_stop_queue(dev);
1398
1399                 dev->stats.tx_fifo_errors++;
1400         }
1401
1402         /* Tell the DMA to go go go */
1403         gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1404
1405         /* Unlock priv */
1406         spin_unlock_irqrestore(&priv->txlock, flags);
1407
1408         return NETDEV_TX_OK;
1409 }
1410
1411 /* Stops the kernel queue, and halts the controller */
1412 static int gfar_close(struct net_device *dev)
1413 {
1414         struct gfar_private *priv = netdev_priv(dev);
1415
1416         napi_disable(&priv->napi);
1417
1418         skb_queue_purge(&priv->rx_recycle);
1419         cancel_work_sync(&priv->reset_task);
1420         stop_gfar(dev);
1421
1422         /* Disconnect from the PHY */
1423         phy_disconnect(priv->phydev);
1424         priv->phydev = NULL;
1425
1426         netif_stop_queue(dev);
1427
1428         return 0;
1429 }
1430
1431 /* Changes the mac address if the controller is not running. */
1432 static int gfar_set_mac_address(struct net_device *dev)
1433 {
1434         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
1435
1436         return 0;
1437 }
1438
1439
1440 /* Enables and disables VLAN insertion/extraction */
1441 static void gfar_vlan_rx_register(struct net_device *dev,
1442                 struct vlan_group *grp)
1443 {
1444         struct gfar_private *priv = netdev_priv(dev);
1445         unsigned long flags;
1446         u32 tempval;
1447
1448         spin_lock_irqsave(&priv->rxlock, flags);
1449
1450         priv->vlgrp = grp;
1451
1452         if (grp) {
1453                 /* Enable VLAN tag insertion */
1454                 tempval = gfar_read(&priv->regs->tctrl);
1455                 tempval |= TCTRL_VLINS;
1456
1457                 gfar_write(&priv->regs->tctrl, tempval);
1458
1459                 /* Enable VLAN tag extraction */
1460                 tempval = gfar_read(&priv->regs->rctrl);
1461                 tempval |= RCTRL_VLEX;
1462                 tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
1463                 gfar_write(&priv->regs->rctrl, tempval);
1464         } else {
1465                 /* Disable VLAN tag insertion */
1466                 tempval = gfar_read(&priv->regs->tctrl);
1467                 tempval &= ~TCTRL_VLINS;
1468                 gfar_write(&priv->regs->tctrl, tempval);
1469
1470                 /* Disable VLAN tag extraction */
1471                 tempval = gfar_read(&priv->regs->rctrl);
1472                 tempval &= ~RCTRL_VLEX;
1473                 /* If parse is no longer required, then disable parser */
1474                 if (tempval & RCTRL_REQ_PARSER)
1475                         tempval |= RCTRL_PRSDEP_INIT;
1476                 else
1477                         tempval &= ~RCTRL_PRSDEP_INIT;
1478                 gfar_write(&priv->regs->rctrl, tempval);
1479         }
1480
1481         gfar_change_mtu(dev, dev->mtu);
1482
1483         spin_unlock_irqrestore(&priv->rxlock, flags);
1484 }
1485
1486 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
1487 {
1488         int tempsize, tempval;
1489         struct gfar_private *priv = netdev_priv(dev);
1490         int oldsize = priv->rx_buffer_size;
1491         int frame_size = new_mtu + ETH_HLEN;
1492
1493         if (priv->vlgrp)
1494                 frame_size += VLAN_HLEN;
1495
1496         if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
1497                 if (netif_msg_drv(priv))
1498                         printk(KERN_ERR "%s: Invalid MTU setting\n",
1499                                         dev->name);
1500                 return -EINVAL;
1501         }
1502
1503         if (gfar_uses_fcb(priv))
1504                 frame_size += GMAC_FCB_LEN;
1505
1506         frame_size += priv->padding;
1507
1508         tempsize =
1509             (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
1510             INCREMENTAL_BUFFER_SIZE;
1511
1512         /* Only stop and start the controller if it isn't already
1513          * stopped, and we changed something */
1514         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1515                 stop_gfar(dev);
1516
1517         priv->rx_buffer_size = tempsize;
1518
1519         dev->mtu = new_mtu;
1520
1521         gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
1522         gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size);
1523
1524         /* If the mtu is larger than the max size for standard
1525          * ethernet frames (ie, a jumbo frame), then set maccfg2
1526          * to allow huge frames, and to check the length */
1527         tempval = gfar_read(&priv->regs->maccfg2);
1528
1529         if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
1530                 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1531         else
1532                 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1533
1534         gfar_write(&priv->regs->maccfg2, tempval);
1535
1536         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1537                 startup_gfar(dev);
1538
1539         return 0;
1540 }
1541
1542 /* gfar_reset_task gets scheduled when a packet has not been
1543  * transmitted after a set amount of time.
1544  * For now, assume that clearing out all the structures, and
1545  * starting over will fix the problem.
1546  */
1547 static void gfar_reset_task(struct work_struct *work)
1548 {
1549         struct gfar_private *priv = container_of(work, struct gfar_private,
1550                         reset_task);
1551         struct net_device *dev = priv->ndev;
1552
1553         if (dev->flags & IFF_UP) {
1554                 netif_stop_queue(dev);
1555                 stop_gfar(dev);
1556                 startup_gfar(dev);
1557                 netif_start_queue(dev);
1558         }
1559
1560         netif_tx_schedule_all(dev);
1561 }
1562
1563 static void gfar_timeout(struct net_device *dev)
1564 {
1565         struct gfar_private *priv = netdev_priv(dev);
1566
1567         dev->stats.tx_errors++;
1568         schedule_work(&priv->reset_task);
1569 }
1570
1571 /* Interrupt Handler for Transmit complete */
1572 static int gfar_clean_tx_ring(struct net_device *dev)
1573 {
1574         struct gfar_private *priv = netdev_priv(dev);
1575         struct txbd8 *bdp;
1576         struct txbd8 *lbdp = NULL;
1577         struct txbd8 *base = priv->tx_bd_base;
1578         struct sk_buff *skb;
1579         int skb_dirtytx;
1580         int tx_ring_size = priv->tx_ring_size;
1581         int frags = 0;
1582         int i;
1583         int howmany = 0;
1584         u32 lstatus;
1585
1586         bdp = priv->dirty_tx;
1587         skb_dirtytx = priv->skb_dirtytx;
1588
1589         while ((skb = priv->tx_skbuff[skb_dirtytx])) {
1590                 frags = skb_shinfo(skb)->nr_frags;
1591                 lbdp = skip_txbd(bdp, frags, base, tx_ring_size);
1592
1593                 lstatus = lbdp->lstatus;
1594
1595                 /* Only clean completed frames */
1596                 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
1597                                 (lstatus & BD_LENGTH_MASK))
1598                         break;
1599
1600                 dma_unmap_single(&priv->ofdev->dev,
1601                                 bdp->bufPtr,
1602                                 bdp->length,
1603                                 DMA_TO_DEVICE);
1604
1605                 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
1606                 bdp = next_txbd(bdp, base, tx_ring_size);
1607
1608                 for (i = 0; i < frags; i++) {
1609                         dma_unmap_page(&priv->ofdev->dev,
1610                                         bdp->bufPtr,
1611                                         bdp->length,
1612                                         DMA_TO_DEVICE);
1613                         bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
1614                         bdp = next_txbd(bdp, base, tx_ring_size);
1615                 }
1616
1617                 /*
1618                  * If there's room in the queue (limit it to rx_buffer_size)
1619                  * we add this skb back into the pool, if it's the right size
1620                  */
1621                 if (skb_queue_len(&priv->rx_recycle) < priv->rx_ring_size &&
1622                                 skb_recycle_check(skb, priv->rx_buffer_size +
1623                                         RXBUF_ALIGNMENT))
1624                         __skb_queue_head(&priv->rx_recycle, skb);
1625                 else
1626                         dev_kfree_skb_any(skb);
1627
1628                 priv->tx_skbuff[skb_dirtytx] = NULL;
1629
1630                 skb_dirtytx = (skb_dirtytx + 1) &
1631                         TX_RING_MOD_MASK(tx_ring_size);
1632
1633                 howmany++;
1634                 priv->num_txbdfree += frags + 1;
1635         }
1636
1637         /* If we freed a buffer, we can restart transmission, if necessary */
1638         if (netif_queue_stopped(dev) && priv->num_txbdfree)
1639                 netif_wake_queue(dev);
1640
1641         /* Update dirty indicators */
1642         priv->skb_dirtytx = skb_dirtytx;
1643         priv->dirty_tx = bdp;
1644
1645         dev->stats.tx_packets += howmany;
1646
1647         return howmany;
1648 }
1649
1650 static void gfar_schedule_cleanup(struct net_device *dev)
1651 {
1652         struct gfar_private *priv = netdev_priv(dev);
1653         unsigned long flags;
1654
1655         spin_lock_irqsave(&priv->txlock, flags);
1656         spin_lock(&priv->rxlock);
1657
1658         if (napi_schedule_prep(&priv->napi)) {
1659                 gfar_write(&priv->regs->imask, IMASK_RTX_DISABLED);
1660                 __napi_schedule(&priv->napi);
1661         } else {
1662                 /*
1663                  * Clear IEVENT, so interrupts aren't called again
1664                  * because of the packets that have already arrived.
1665                  */
1666                 gfar_write(&priv->regs->ievent, IEVENT_RTX_MASK);
1667         }
1668
1669         spin_unlock(&priv->rxlock);
1670         spin_unlock_irqrestore(&priv->txlock, flags);
1671 }
1672
1673 /* Interrupt Handler for Transmit complete */
1674 static irqreturn_t gfar_transmit(int irq, void *dev_id)
1675 {
1676         gfar_schedule_cleanup((struct net_device *)dev_id);
1677         return IRQ_HANDLED;
1678 }
1679
1680 static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
1681                 struct sk_buff *skb)
1682 {
1683         struct gfar_private *priv = netdev_priv(dev);
1684         u32 lstatus;
1685
1686         bdp->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
1687                         priv->rx_buffer_size, DMA_FROM_DEVICE);
1688
1689         lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
1690
1691         if (bdp == priv->rx_bd_base + priv->rx_ring_size - 1)
1692                 lstatus |= BD_LFLAG(RXBD_WRAP);
1693
1694         eieio();
1695
1696         bdp->lstatus = lstatus;
1697 }
1698
1699
1700 struct sk_buff * gfar_new_skb(struct net_device *dev)
1701 {
1702         unsigned int alignamount;
1703         struct gfar_private *priv = netdev_priv(dev);
1704         struct sk_buff *skb = NULL;
1705
1706         skb = __skb_dequeue(&priv->rx_recycle);
1707         if (!skb)
1708                 skb = netdev_alloc_skb(dev,
1709                                 priv->rx_buffer_size + RXBUF_ALIGNMENT);
1710
1711         if (!skb)
1712                 return NULL;
1713
1714         alignamount = RXBUF_ALIGNMENT -
1715                 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1));
1716
1717         /* We need the data buffer to be aligned properly.  We will reserve
1718          * as many bytes as needed to align the data properly
1719          */
1720         skb_reserve(skb, alignamount);
1721
1722         return skb;
1723 }
1724
1725 static inline void count_errors(unsigned short status, struct net_device *dev)
1726 {
1727         struct gfar_private *priv = netdev_priv(dev);
1728         struct net_device_stats *stats = &dev->stats;
1729         struct gfar_extra_stats *estats = &priv->extra_stats;
1730
1731         /* If the packet was truncated, none of the other errors
1732          * matter */
1733         if (status & RXBD_TRUNCATED) {
1734                 stats->rx_length_errors++;
1735
1736                 estats->rx_trunc++;
1737
1738                 return;
1739         }
1740         /* Count the errors, if there were any */
1741         if (status & (RXBD_LARGE | RXBD_SHORT)) {
1742                 stats->rx_length_errors++;
1743
1744                 if (status & RXBD_LARGE)
1745                         estats->rx_large++;
1746                 else
1747                         estats->rx_short++;
1748         }
1749         if (status & RXBD_NONOCTET) {
1750                 stats->rx_frame_errors++;
1751                 estats->rx_nonoctet++;
1752         }
1753         if (status & RXBD_CRCERR) {
1754                 estats->rx_crcerr++;
1755                 stats->rx_crc_errors++;
1756         }
1757         if (status & RXBD_OVERRUN) {
1758                 estats->rx_overrun++;
1759                 stats->rx_crc_errors++;
1760         }
1761 }
1762
1763 irqreturn_t gfar_receive(int irq, void *dev_id)
1764 {
1765         gfar_schedule_cleanup((struct net_device *)dev_id);
1766         return IRQ_HANDLED;
1767 }
1768
1769 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
1770 {
1771         /* If valid headers were found, and valid sums
1772          * were verified, then we tell the kernel that no
1773          * checksumming is necessary.  Otherwise, it is */
1774         if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
1775                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1776         else
1777                 skb->ip_summed = CHECKSUM_NONE;
1778 }
1779
1780
1781 /* gfar_process_frame() -- handle one incoming packet if skb
1782  * isn't NULL.  */
1783 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
1784                               int amount_pull)
1785 {
1786         struct gfar_private *priv = netdev_priv(dev);
1787         struct rxfcb *fcb = NULL;
1788
1789         int ret;
1790
1791         /* fcb is at the beginning if exists */
1792         fcb = (struct rxfcb *)skb->data;
1793
1794         /* Remove the FCB from the skb */
1795         /* Remove the padded bytes, if there are any */
1796         if (amount_pull)
1797                 skb_pull(skb, amount_pull);
1798
1799         if (priv->rx_csum_enable)
1800                 gfar_rx_checksum(skb, fcb);
1801
1802         /* Tell the skb what kind of packet this is */
1803         skb->protocol = eth_type_trans(skb, dev);
1804
1805         /* Send the packet up the stack */
1806         if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
1807                 ret = vlan_hwaccel_receive_skb(skb, priv->vlgrp, fcb->vlctl);
1808         else
1809                 ret = netif_receive_skb(skb);
1810
1811         if (NET_RX_DROP == ret)
1812                 priv->extra_stats.kernel_dropped++;
1813
1814         return 0;
1815 }
1816
1817 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1818  *   until the budget/quota has been reached. Returns the number
1819  *   of frames handled
1820  */
1821 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit)
1822 {
1823         struct rxbd8 *bdp, *base;
1824         struct sk_buff *skb;
1825         int pkt_len;
1826         int amount_pull;
1827         int howmany = 0;
1828         struct gfar_private *priv = netdev_priv(dev);
1829
1830         /* Get the first full descriptor */
1831         bdp = priv->cur_rx;
1832         base = priv->rx_bd_base;
1833
1834         amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0) +
1835                 priv->padding;
1836
1837         while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
1838                 struct sk_buff *newskb;
1839                 rmb();
1840
1841                 /* Add another skb for the future */
1842                 newskb = gfar_new_skb(dev);
1843
1844                 skb = priv->rx_skbuff[priv->skb_currx];
1845
1846                 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
1847                                 priv->rx_buffer_size, DMA_FROM_DEVICE);
1848
1849                 /* We drop the frame if we failed to allocate a new buffer */
1850                 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
1851                                  bdp->status & RXBD_ERR)) {
1852                         count_errors(bdp->status, dev);
1853
1854                         if (unlikely(!newskb))
1855                                 newskb = skb;
1856                         else if (skb) {
1857                                 /*
1858                                  * We need to reset ->data to what it
1859                                  * was before gfar_new_skb() re-aligned
1860                                  * it to an RXBUF_ALIGNMENT boundary
1861                                  * before we put the skb back on the
1862                                  * recycle list.
1863                                  */
1864                                 skb->data = skb->head + NET_SKB_PAD;
1865                                 __skb_queue_head(&priv->rx_recycle, skb);
1866                         }
1867                 } else {
1868                         /* Increment the number of packets */
1869                         dev->stats.rx_packets++;
1870                         howmany++;
1871
1872                         if (likely(skb)) {
1873                                 pkt_len = bdp->length - ETH_FCS_LEN;
1874                                 /* Remove the FCS from the packet length */
1875                                 skb_put(skb, pkt_len);
1876                                 dev->stats.rx_bytes += pkt_len;
1877
1878                                 if (in_irq() || irqs_disabled())
1879                                         printk("Interrupt problem!\n");
1880                                 gfar_process_frame(dev, skb, amount_pull);
1881
1882                         } else {
1883                                 if (netif_msg_rx_err(priv))
1884                                         printk(KERN_WARNING
1885                                                "%s: Missing skb!\n", dev->name);
1886                                 dev->stats.rx_dropped++;
1887                                 priv->extra_stats.rx_skbmissing++;
1888                         }
1889
1890                 }
1891
1892                 priv->rx_skbuff[priv->skb_currx] = newskb;
1893
1894                 /* Setup the new bdp */
1895                 gfar_new_rxbdp(dev, bdp, newskb);
1896
1897                 /* Update to the next pointer */
1898                 bdp = next_bd(bdp, base, priv->rx_ring_size);
1899
1900                 /* update to point at the next skb */
1901                 priv->skb_currx =
1902                     (priv->skb_currx + 1) &
1903                     RX_RING_MOD_MASK(priv->rx_ring_size);
1904         }
1905
1906         /* Update the current rxbd pointer to be the next one */
1907         priv->cur_rx = bdp;
1908
1909         return howmany;
1910 }
1911
1912 static int gfar_poll(struct napi_struct *napi, int budget)
1913 {
1914         struct gfar_private *priv = container_of(napi, struct gfar_private, napi);
1915         struct net_device *dev = priv->ndev;
1916         int tx_cleaned = 0;
1917         int rx_cleaned = 0;
1918         unsigned long flags;
1919
1920         /* Clear IEVENT, so interrupts aren't called again
1921          * because of the packets that have already arrived */
1922         gfar_write(&priv->regs->ievent, IEVENT_RTX_MASK);
1923
1924         /* If we fail to get the lock, don't bother with the TX BDs */
1925         if (spin_trylock_irqsave(&priv->txlock, flags)) {
1926                 tx_cleaned = gfar_clean_tx_ring(dev);
1927                 spin_unlock_irqrestore(&priv->txlock, flags);
1928         }
1929
1930         rx_cleaned = gfar_clean_rx_ring(dev, budget);
1931
1932         if (tx_cleaned)
1933                 return budget;
1934
1935         if (rx_cleaned < budget) {
1936                 napi_complete(napi);
1937
1938                 /* Clear the halt bit in RSTAT */
1939                 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1940
1941                 gfar_write(&priv->regs->imask, IMASK_DEFAULT);
1942
1943                 /* If we are coalescing interrupts, update the timer */
1944                 /* Otherwise, clear it */
1945                 if (likely(priv->rxcoalescing)) {
1946                         gfar_write(&priv->regs->rxic, 0);
1947                         gfar_write(&priv->regs->rxic, priv->rxic);
1948                 }
1949                 if (likely(priv->txcoalescing)) {
1950                         gfar_write(&priv->regs->txic, 0);
1951                         gfar_write(&priv->regs->txic, priv->txic);
1952                 }
1953         }
1954
1955         return rx_cleaned;
1956 }
1957
1958 #ifdef CONFIG_NET_POLL_CONTROLLER
1959 /*
1960  * Polling 'interrupt' - used by things like netconsole to send skbs
1961  * without having to re-enable interrupts. It's not called while
1962  * the interrupt routine is executing.
1963  */
1964 static void gfar_netpoll(struct net_device *dev)
1965 {
1966         struct gfar_private *priv = netdev_priv(dev);
1967
1968         /* If the device has multiple interrupts, run tx/rx */
1969         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1970                 disable_irq(priv->interruptTransmit);
1971                 disable_irq(priv->interruptReceive);
1972                 disable_irq(priv->interruptError);
1973                 gfar_interrupt(priv->interruptTransmit, dev);
1974                 enable_irq(priv->interruptError);
1975                 enable_irq(priv->interruptReceive);
1976                 enable_irq(priv->interruptTransmit);
1977         } else {
1978                 disable_irq(priv->interruptTransmit);
1979                 gfar_interrupt(priv->interruptTransmit, dev);
1980                 enable_irq(priv->interruptTransmit);
1981         }
1982 }
1983 #endif
1984
1985 /* The interrupt handler for devices with one interrupt */
1986 static irqreturn_t gfar_interrupt(int irq, void *dev_id)
1987 {
1988         struct net_device *dev = dev_id;
1989         struct gfar_private *priv = netdev_priv(dev);
1990
1991         /* Save ievent for future reference */
1992         u32 events = gfar_read(&priv->regs->ievent);
1993
1994         /* Check for reception */
1995         if (events & IEVENT_RX_MASK)
1996                 gfar_receive(irq, dev_id);
1997
1998         /* Check for transmit completion */
1999         if (events & IEVENT_TX_MASK)
2000                 gfar_transmit(irq, dev_id);
2001
2002         /* Check for errors */
2003         if (events & IEVENT_ERR_MASK)
2004                 gfar_error(irq, dev_id);
2005
2006         return IRQ_HANDLED;
2007 }
2008
2009 /* Called every time the controller might need to be made
2010  * aware of new link state.  The PHY code conveys this
2011  * information through variables in the phydev structure, and this
2012  * function converts those variables into the appropriate
2013  * register values, and can bring down the device if needed.
2014  */
2015 static void adjust_link(struct net_device *dev)
2016 {
2017         struct gfar_private *priv = netdev_priv(dev);
2018         struct gfar __iomem *regs = priv->regs;
2019         unsigned long flags;
2020         struct phy_device *phydev = priv->phydev;
2021         int new_state = 0;
2022
2023         spin_lock_irqsave(&priv->txlock, flags);
2024         if (phydev->link) {
2025                 u32 tempval = gfar_read(&regs->maccfg2);
2026                 u32 ecntrl = gfar_read(&regs->ecntrl);
2027
2028                 /* Now we make sure that we can be in full duplex mode.
2029                  * If not, we operate in half-duplex mode. */
2030                 if (phydev->duplex != priv->oldduplex) {
2031                         new_state = 1;
2032                         if (!(phydev->duplex))
2033                                 tempval &= ~(MACCFG2_FULL_DUPLEX);
2034                         else
2035                                 tempval |= MACCFG2_FULL_DUPLEX;
2036
2037                         priv->oldduplex = phydev->duplex;
2038                 }
2039
2040                 if (phydev->speed != priv->oldspeed) {
2041                         new_state = 1;
2042                         switch (phydev->speed) {
2043                         case 1000:
2044                                 tempval =
2045                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
2046
2047                                 ecntrl &= ~(ECNTRL_R100);
2048                                 break;
2049                         case 100:
2050                         case 10:
2051                                 tempval =
2052                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
2053
2054                                 /* Reduced mode distinguishes
2055                                  * between 10 and 100 */
2056                                 if (phydev->speed == SPEED_100)
2057                                         ecntrl |= ECNTRL_R100;
2058                                 else
2059                                         ecntrl &= ~(ECNTRL_R100);
2060                                 break;
2061                         default:
2062                                 if (netif_msg_link(priv))
2063                                         printk(KERN_WARNING
2064                                                 "%s: Ack!  Speed (%d) is not 10/100/1000!\n",
2065                                                 dev->name, phydev->speed);
2066                                 break;
2067                         }
2068
2069                         priv->oldspeed = phydev->speed;
2070                 }
2071
2072                 gfar_write(&regs->maccfg2, tempval);
2073                 gfar_write(&regs->ecntrl, ecntrl);
2074
2075                 if (!priv->oldlink) {
2076                         new_state = 1;
2077                         priv->oldlink = 1;
2078                 }
2079         } else if (priv->oldlink) {
2080                 new_state = 1;
2081                 priv->oldlink = 0;
2082                 priv->oldspeed = 0;
2083                 priv->oldduplex = -1;
2084         }
2085
2086         if (new_state && netif_msg_link(priv))
2087                 phy_print_status(phydev);
2088
2089         spin_unlock_irqrestore(&priv->txlock, flags);
2090 }
2091
2092 /* Update the hash table based on the current list of multicast
2093  * addresses we subscribe to.  Also, change the promiscuity of
2094  * the device based on the flags (this function is called
2095  * whenever dev->flags is changed */
2096 static void gfar_set_multi(struct net_device *dev)
2097 {
2098         struct dev_mc_list *mc_ptr;
2099         struct gfar_private *priv = netdev_priv(dev);
2100         struct gfar __iomem *regs = priv->regs;
2101         u32 tempval;
2102
2103         if(dev->flags & IFF_PROMISC) {
2104                 /* Set RCTRL to PROM */
2105                 tempval = gfar_read(&regs->rctrl);
2106                 tempval |= RCTRL_PROM;
2107                 gfar_write(&regs->rctrl, tempval);
2108         } else {
2109                 /* Set RCTRL to not PROM */
2110                 tempval = gfar_read(&regs->rctrl);
2111                 tempval &= ~(RCTRL_PROM);
2112                 gfar_write(&regs->rctrl, tempval);
2113         }
2114
2115         if(dev->flags & IFF_ALLMULTI) {
2116                 /* Set the hash to rx all multicast frames */
2117                 gfar_write(&regs->igaddr0, 0xffffffff);
2118                 gfar_write(&regs->igaddr1, 0xffffffff);
2119                 gfar_write(&regs->igaddr2, 0xffffffff);
2120                 gfar_write(&regs->igaddr3, 0xffffffff);
2121                 gfar_write(&regs->igaddr4, 0xffffffff);
2122                 gfar_write(&regs->igaddr5, 0xffffffff);
2123                 gfar_write(&regs->igaddr6, 0xffffffff);
2124                 gfar_write(&regs->igaddr7, 0xffffffff);
2125                 gfar_write(&regs->gaddr0, 0xffffffff);
2126                 gfar_write(&regs->gaddr1, 0xffffffff);
2127                 gfar_write(&regs->gaddr2, 0xffffffff);
2128                 gfar_write(&regs->gaddr3, 0xffffffff);
2129                 gfar_write(&regs->gaddr4, 0xffffffff);
2130                 gfar_write(&regs->gaddr5, 0xffffffff);
2131                 gfar_write(&regs->gaddr6, 0xffffffff);
2132                 gfar_write(&regs->gaddr7, 0xffffffff);
2133         } else {
2134                 int em_num;
2135                 int idx;
2136
2137                 /* zero out the hash */
2138                 gfar_write(&regs->igaddr0, 0x0);
2139                 gfar_write(&regs->igaddr1, 0x0);
2140                 gfar_write(&regs->igaddr2, 0x0);
2141                 gfar_write(&regs->igaddr3, 0x0);
2142                 gfar_write(&regs->igaddr4, 0x0);
2143                 gfar_write(&regs->igaddr5, 0x0);
2144                 gfar_write(&regs->igaddr6, 0x0);
2145                 gfar_write(&regs->igaddr7, 0x0);
2146                 gfar_write(&regs->gaddr0, 0x0);
2147                 gfar_write(&regs->gaddr1, 0x0);
2148                 gfar_write(&regs->gaddr2, 0x0);
2149                 gfar_write(&regs->gaddr3, 0x0);
2150                 gfar_write(&regs->gaddr4, 0x0);
2151                 gfar_write(&regs->gaddr5, 0x0);
2152                 gfar_write(&regs->gaddr6, 0x0);
2153                 gfar_write(&regs->gaddr7, 0x0);
2154
2155                 /* If we have extended hash tables, we need to
2156                  * clear the exact match registers to prepare for
2157                  * setting them */
2158                 if (priv->extended_hash) {
2159                         em_num = GFAR_EM_NUM + 1;
2160                         gfar_clear_exact_match(dev);
2161                         idx = 1;
2162                 } else {
2163                         idx = 0;
2164                         em_num = 0;
2165                 }
2166
2167                 if(dev->mc_count == 0)
2168                         return;
2169
2170                 /* Parse the list, and set the appropriate bits */
2171                 for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
2172                         if (idx < em_num) {
2173                                 gfar_set_mac_for_addr(dev, idx,
2174                                                 mc_ptr->dmi_addr);
2175                                 idx++;
2176                         } else
2177                                 gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
2178                 }
2179         }
2180
2181         return;
2182 }
2183
2184
2185 /* Clears each of the exact match registers to zero, so they
2186  * don't interfere with normal reception */
2187 static void gfar_clear_exact_match(struct net_device *dev)
2188 {
2189         int idx;
2190         u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
2191
2192         for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
2193                 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
2194 }
2195
2196 /* Set the appropriate hash bit for the given addr */
2197 /* The algorithm works like so:
2198  * 1) Take the Destination Address (ie the multicast address), and
2199  * do a CRC on it (little endian), and reverse the bits of the
2200  * result.
2201  * 2) Use the 8 most significant bits as a hash into a 256-entry
2202  * table.  The table is controlled through 8 32-bit registers:
2203  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
2204  * gaddr7.  This means that the 3 most significant bits in the
2205  * hash index which gaddr register to use, and the 5 other bits
2206  * indicate which bit (assuming an IBM numbering scheme, which
2207  * for PowerPC (tm) is usually the case) in the register holds
2208  * the entry. */
2209 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
2210 {
2211         u32 tempval;
2212         struct gfar_private *priv = netdev_priv(dev);
2213         u32 result = ether_crc(MAC_ADDR_LEN, addr);
2214         int width = priv->hash_width;
2215         u8 whichbit = (result >> (32 - width)) & 0x1f;
2216         u8 whichreg = result >> (32 - width + 5);
2217         u32 value = (1 << (31-whichbit));
2218
2219         tempval = gfar_read(priv->hash_regs[whichreg]);
2220         tempval |= value;
2221         gfar_write(priv->hash_regs[whichreg], tempval);
2222
2223         return;
2224 }
2225
2226
2227 /* There are multiple MAC Address register pairs on some controllers
2228  * This function sets the numth pair to a given address
2229  */
2230 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
2231 {
2232         struct gfar_private *priv = netdev_priv(dev);
2233         int idx;
2234         char tmpbuf[MAC_ADDR_LEN];
2235         u32 tempval;
2236         u32 __iomem *macptr = &priv->regs->macstnaddr1;
2237
2238         macptr += num*2;
2239
2240         /* Now copy it into the mac registers backwards, cuz */
2241         /* little endian is silly */
2242         for (idx = 0; idx < MAC_ADDR_LEN; idx++)
2243                 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
2244
2245         gfar_write(macptr, *((u32 *) (tmpbuf)));
2246
2247         tempval = *((u32 *) (tmpbuf + 4));
2248
2249         gfar_write(macptr+1, tempval);
2250 }
2251
2252 /* GFAR error interrupt handler */
2253 static irqreturn_t gfar_error(int irq, void *dev_id)
2254 {
2255         struct net_device *dev = dev_id;
2256         struct gfar_private *priv = netdev_priv(dev);
2257
2258         /* Save ievent for future reference */
2259         u32 events = gfar_read(&priv->regs->ievent);
2260
2261         /* Clear IEVENT */
2262         gfar_write(&priv->regs->ievent, events & IEVENT_ERR_MASK);
2263
2264         /* Magic Packet is not an error. */
2265         if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2266             (events & IEVENT_MAG))
2267                 events &= ~IEVENT_MAG;
2268
2269         /* Hmm... */
2270         if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2271                 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
2272                        dev->name, events, gfar_read(&priv->regs->imask));
2273
2274         /* Update the error counters */
2275         if (events & IEVENT_TXE) {
2276                 dev->stats.tx_errors++;
2277
2278                 if (events & IEVENT_LC)
2279                         dev->stats.tx_window_errors++;
2280                 if (events & IEVENT_CRL)
2281                         dev->stats.tx_aborted_errors++;
2282                 if (events & IEVENT_XFUN) {
2283                         if (netif_msg_tx_err(priv))
2284                                 printk(KERN_DEBUG "%s: TX FIFO underrun, "
2285                                        "packet dropped.\n", dev->name);
2286                         dev->stats.tx_dropped++;
2287                         priv->extra_stats.tx_underrun++;
2288
2289                         /* Reactivate the Tx Queues */
2290                         gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
2291                 }
2292                 if (netif_msg_tx_err(priv))
2293                         printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
2294         }
2295         if (events & IEVENT_BSY) {
2296                 dev->stats.rx_errors++;
2297                 priv->extra_stats.rx_bsy++;
2298
2299                 gfar_receive(irq, dev_id);
2300
2301                 if (netif_msg_rx_err(priv))
2302                         printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
2303                                dev->name, gfar_read(&priv->regs->rstat));
2304         }
2305         if (events & IEVENT_BABR) {
2306                 dev->stats.rx_errors++;
2307                 priv->extra_stats.rx_babr++;
2308
2309                 if (netif_msg_rx_err(priv))
2310                         printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
2311         }
2312         if (events & IEVENT_EBERR) {
2313                 priv->extra_stats.eberr++;
2314                 if (netif_msg_rx_err(priv))
2315                         printk(KERN_DEBUG "%s: bus error\n", dev->name);
2316         }
2317         if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
2318                 printk(KERN_DEBUG "%s: control frame\n", dev->name);
2319
2320         if (events & IEVENT_BABT) {
2321                 priv->extra_stats.tx_babt++;
2322                 if (netif_msg_tx_err(priv))
2323                         printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
2324         }
2325         return IRQ_HANDLED;
2326 }
2327
2328 /* work with hotplug and coldplug */
2329 MODULE_ALIAS("platform:fsl-gianfar");
2330
2331 static struct of_device_id gfar_match[] =
2332 {
2333         {
2334                 .type = "network",
2335                 .compatible = "gianfar",
2336         },
2337         {},
2338 };
2339
2340 /* Structure for a device driver */
2341 static struct of_platform_driver gfar_driver = {
2342         .name = "fsl-gianfar",
2343         .match_table = gfar_match,
2344
2345         .probe = gfar_probe,
2346         .remove = gfar_remove,
2347         .suspend = gfar_suspend,
2348         .resume = gfar_resume,
2349 };
2350
2351 static int __init gfar_init(void)
2352 {
2353         return of_register_platform_driver(&gfar_driver);
2354 }
2355
2356 static void __exit gfar_exit(void)
2357 {
2358         of_unregister_platform_driver(&gfar_driver);
2359 }
2360
2361 module_init(gfar_init);
2362 module_exit(gfar_exit);
2363