Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[linux-2.6.git] / drivers / net / forcedeth.c
1 /*
2  * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
3  *
4  * Note: This driver is a cleanroom reimplementation based on reverse
5  *      engineered documentation written by Carl-Daniel Hailfinger
6  *      and Andrew de Quincey.
7  *
8  * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
9  * trademarks of NVIDIA Corporation in the United States and other
10  * countries.
11  *
12  * Copyright (C) 2003,4,5 Manfred Spraul
13  * Copyright (C) 2004 Andrew de Quincey (wol support)
14  * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
15  *              IRQ rate fixes, bigendian fixes, cleanups, verification)
16  * Copyright (c) 2004,2005,2006,2007,2008 NVIDIA Corporation
17  *
18  * This program is free software; you can redistribute it and/or modify
19  * it under the terms of the GNU General Public License as published by
20  * the Free Software Foundation; either version 2 of the License, or
21  * (at your option) any later version.
22  *
23  * This program is distributed in the hope that it will be useful,
24  * but WITHOUT ANY WARRANTY; without even the implied warranty of
25  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
26  * GNU General Public License for more details.
27  *
28  * You should have received a copy of the GNU General Public License
29  * along with this program; if not, write to the Free Software
30  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
31  *
32  * Changelog:
33  *      0.01: 05 Oct 2003: First release that compiles without warnings.
34  *      0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs.
35  *                         Check all PCI BARs for the register window.
36  *                         udelay added to mii_rw.
37  *      0.03: 06 Oct 2003: Initialize dev->irq.
38  *      0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks.
39  *      0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout.
40  *      0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated,
41  *                         irq mask updated
42  *      0.07: 14 Oct 2003: Further irq mask updates.
43  *      0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill
44  *                         added into irq handler, NULL check for drain_ring.
45  *      0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the
46  *                         requested interrupt sources.
47  *      0.10: 20 Oct 2003: First cleanup for release.
48  *      0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased.
49  *                         MAC Address init fix, set_multicast cleanup.
50  *      0.12: 23 Oct 2003: Cleanups for release.
51  *      0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10.
52  *                         Set link speed correctly. start rx before starting
53  *                         tx (nv_start_rx sets the link speed).
54  *      0.14: 25 Oct 2003: Nic dependant irq mask.
55  *      0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during
56  *                         open.
57  *      0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size
58  *                         increased to 1628 bytes.
59  *      0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from
60  *                         the tx length.
61  *      0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats
62  *      0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac
63  *                         addresses, really stop rx if already running
64  *                         in nv_start_rx, clean up a bit.
65  *      0.20: 07 Dec 2003: alloc fixes
66  *      0.21: 12 Jan 2004: additional alloc fix, nic polling fix.
67  *      0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup
68  *                         on close.
69  *      0.23: 26 Jan 2004: various small cleanups
70  *      0.24: 27 Feb 2004: make driver even less anonymous in backtraces
71  *      0.25: 09 Mar 2004: wol support
72  *      0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes
73  *      0.27: 19 Jun 2004: Gigabit support, new descriptor rings,
74  *                         added CK804/MCP04 device IDs, code fixes
75  *                         for registers, link status and other minor fixes.
76  *      0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe
77  *      0.29: 31 Aug 2004: Add backup timer for link change notification.
78  *      0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset
79  *                         into nv_close, otherwise reenabling for wol can
80  *                         cause DMA to kfree'd memory.
81  *      0.31: 14 Nov 2004: ethtool support for getting/setting link
82  *                         capabilities.
83  *      0.32: 16 Apr 2005: RX_ERROR4 handling added.
84  *      0.33: 16 May 2005: Support for MCP51 added.
85  *      0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics.
86  *      0.35: 26 Jun 2005: Support for MCP55 added.
87  *      0.36: 28 Jun 2005: Add jumbo frame support.
88  *      0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list
89  *      0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of
90  *                         per-packet flags.
91  *      0.39: 18 Jul 2005: Add 64bit descriptor support.
92  *      0.40: 19 Jul 2005: Add support for mac address change.
93  *      0.41: 30 Jul 2005: Write back original MAC in nv_close instead
94  *                         of nv_remove
95  *      0.42: 06 Aug 2005: Fix lack of link speed initialization
96  *                         in the second (and later) nv_open call
97  *      0.43: 10 Aug 2005: Add support for tx checksum.
98  *      0.44: 20 Aug 2005: Add support for scatter gather and segmentation.
99  *      0.45: 18 Sep 2005: Remove nv_stop/start_rx from every link check
100  *      0.46: 20 Oct 2005: Add irq optimization modes.
101  *      0.47: 26 Oct 2005: Add phyaddr 0 in phy scan.
102  *      0.48: 24 Dec 2005: Disable TSO, bugfix for pci_map_single
103  *      0.49: 10 Dec 2005: Fix tso for large buffers.
104  *      0.50: 20 Jan 2006: Add 8021pq tagging support.
105  *      0.51: 20 Jan 2006: Add 64bit consistent memory allocation for rings.
106  *      0.52: 20 Jan 2006: Add MSI/MSIX support.
107  *      0.53: 19 Mar 2006: Fix init from low power mode and add hw reset.
108  *      0.54: 21 Mar 2006: Fix spin locks for multi irqs and cleanup.
109  *      0.55: 22 Mar 2006: Add flow control (pause frame).
110  *      0.56: 22 Mar 2006: Additional ethtool config and moduleparam support.
111  *      0.57: 14 May 2006: Mac address set in probe/remove and order corrections.
112  *      0.58: 30 Oct 2006: Added support for sideband management unit.
113  *      0.59: 30 Oct 2006: Added support for recoverable error.
114  *      0.60: 20 Jan 2007: Code optimizations for rings, rx & tx data paths, and stats.
115  *
116  * Known bugs:
117  * We suspect that on some hardware no TX done interrupts are generated.
118  * This means recovery from netif_stop_queue only happens if the hw timer
119  * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
120  * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
121  * If your hardware reliably generates tx done interrupts, then you can remove
122  * DEV_NEED_TIMERIRQ from the driver_data flags.
123  * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
124  * superfluous timer interrupts from the nic.
125  */
126 #ifdef CONFIG_FORCEDETH_NAPI
127 #define DRIVERNAPI "-NAPI"
128 #else
129 #define DRIVERNAPI
130 #endif
131 #define FORCEDETH_VERSION               "0.61"
132 #define DRV_NAME                        "forcedeth"
133
134 #include <linux/module.h>
135 #include <linux/types.h>
136 #include <linux/pci.h>
137 #include <linux/interrupt.h>
138 #include <linux/netdevice.h>
139 #include <linux/etherdevice.h>
140 #include <linux/delay.h>
141 #include <linux/spinlock.h>
142 #include <linux/ethtool.h>
143 #include <linux/timer.h>
144 #include <linux/skbuff.h>
145 #include <linux/mii.h>
146 #include <linux/random.h>
147 #include <linux/init.h>
148 #include <linux/if_vlan.h>
149 #include <linux/dma-mapping.h>
150
151 #include <asm/irq.h>
152 #include <asm/io.h>
153 #include <asm/uaccess.h>
154 #include <asm/system.h>
155
156 #if 0
157 #define dprintk                 printk
158 #else
159 #define dprintk(x...)           do { } while (0)
160 #endif
161
162 #define TX_WORK_PER_LOOP  64
163 #define RX_WORK_PER_LOOP  64
164
165 /*
166  * Hardware access:
167  */
168
169 #define DEV_NEED_TIMERIRQ          0x00001  /* set the timer irq flag in the irq mask */
170 #define DEV_NEED_LINKTIMER         0x00002  /* poll link settings. Relies on the timer irq */
171 #define DEV_HAS_LARGEDESC          0x00004  /* device supports jumbo frames and needs packet format 2 */
172 #define DEV_HAS_HIGH_DMA           0x00008  /* device supports 64bit dma */
173 #define DEV_HAS_CHECKSUM           0x00010  /* device supports tx and rx checksum offloads */
174 #define DEV_HAS_VLAN               0x00020  /* device supports vlan tagging and striping */
175 #define DEV_HAS_MSI                0x00040  /* device supports MSI */
176 #define DEV_HAS_MSI_X              0x00080  /* device supports MSI-X */
177 #define DEV_HAS_POWER_CNTRL        0x00100  /* device supports power savings */
178 #define DEV_HAS_STATISTICS_V1      0x00200  /* device supports hw statistics version 1 */
179 #define DEV_HAS_STATISTICS_V2      0x00400  /* device supports hw statistics version 2 */
180 #define DEV_HAS_TEST_EXTENDED      0x00800  /* device supports extended diagnostic test */
181 #define DEV_HAS_MGMT_UNIT          0x01000  /* device supports management unit */
182 #define DEV_HAS_CORRECT_MACADDR    0x02000  /* device supports correct mac address order */
183 #define DEV_HAS_COLLISION_FIX      0x04000  /* device supports tx collision fix */
184 #define DEV_HAS_PAUSEFRAME_TX_V1   0x08000  /* device supports tx pause frames version 1 */
185 #define DEV_HAS_PAUSEFRAME_TX_V2   0x10000  /* device supports tx pause frames version 2 */
186 #define DEV_HAS_PAUSEFRAME_TX_V3   0x20000  /* device supports tx pause frames version 3 */
187 #define DEV_NEED_TX_LIMIT          0x40000  /* device needs to limit tx */
188
189 enum {
190         NvRegIrqStatus = 0x000,
191 #define NVREG_IRQSTAT_MIIEVENT  0x040
192 #define NVREG_IRQSTAT_MASK              0x81ff
193         NvRegIrqMask = 0x004,
194 #define NVREG_IRQ_RX_ERROR              0x0001
195 #define NVREG_IRQ_RX                    0x0002
196 #define NVREG_IRQ_RX_NOBUF              0x0004
197 #define NVREG_IRQ_TX_ERR                0x0008
198 #define NVREG_IRQ_TX_OK                 0x0010
199 #define NVREG_IRQ_TIMER                 0x0020
200 #define NVREG_IRQ_LINK                  0x0040
201 #define NVREG_IRQ_RX_FORCED             0x0080
202 #define NVREG_IRQ_TX_FORCED             0x0100
203 #define NVREG_IRQ_RECOVER_ERROR         0x8000
204 #define NVREG_IRQMASK_THROUGHPUT        0x00df
205 #define NVREG_IRQMASK_CPU               0x0060
206 #define NVREG_IRQ_TX_ALL                (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
207 #define NVREG_IRQ_RX_ALL                (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
208 #define NVREG_IRQ_OTHER                 (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR)
209
210 #define NVREG_IRQ_UNKNOWN       (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
211                                         NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RX_FORCED| \
212                                         NVREG_IRQ_TX_FORCED|NVREG_IRQ_RECOVER_ERROR))
213
214         NvRegUnknownSetupReg6 = 0x008,
215 #define NVREG_UNKSETUP6_VAL             3
216
217 /*
218  * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
219  * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
220  */
221         NvRegPollingInterval = 0x00c,
222 #define NVREG_POLL_DEFAULT_THROUGHPUT   970 /* backup tx cleanup if loop max reached */
223 #define NVREG_POLL_DEFAULT_CPU  13
224         NvRegMSIMap0 = 0x020,
225         NvRegMSIMap1 = 0x024,
226         NvRegMSIIrqMask = 0x030,
227 #define NVREG_MSI_VECTOR_0_ENABLED 0x01
228         NvRegMisc1 = 0x080,
229 #define NVREG_MISC1_PAUSE_TX    0x01
230 #define NVREG_MISC1_HD          0x02
231 #define NVREG_MISC1_FORCE       0x3b0f3c
232
233         NvRegMacReset = 0x34,
234 #define NVREG_MAC_RESET_ASSERT  0x0F3
235         NvRegTransmitterControl = 0x084,
236 #define NVREG_XMITCTL_START     0x01
237 #define NVREG_XMITCTL_MGMT_ST   0x40000000
238 #define NVREG_XMITCTL_SYNC_MASK         0x000f0000
239 #define NVREG_XMITCTL_SYNC_NOT_READY    0x0
240 #define NVREG_XMITCTL_SYNC_PHY_INIT     0x00040000
241 #define NVREG_XMITCTL_MGMT_SEMA_MASK    0x00000f00
242 #define NVREG_XMITCTL_MGMT_SEMA_FREE    0x0
243 #define NVREG_XMITCTL_HOST_SEMA_MASK    0x0000f000
244 #define NVREG_XMITCTL_HOST_SEMA_ACQ     0x0000f000
245 #define NVREG_XMITCTL_HOST_LOADED       0x00004000
246 #define NVREG_XMITCTL_TX_PATH_EN        0x01000000
247         NvRegTransmitterStatus = 0x088,
248 #define NVREG_XMITSTAT_BUSY     0x01
249
250         NvRegPacketFilterFlags = 0x8c,
251 #define NVREG_PFF_PAUSE_RX      0x08
252 #define NVREG_PFF_ALWAYS        0x7F0000
253 #define NVREG_PFF_PROMISC       0x80
254 #define NVREG_PFF_MYADDR        0x20
255 #define NVREG_PFF_LOOPBACK      0x10
256
257         NvRegOffloadConfig = 0x90,
258 #define NVREG_OFFLOAD_HOMEPHY   0x601
259 #define NVREG_OFFLOAD_NORMAL    RX_NIC_BUFSIZE
260         NvRegReceiverControl = 0x094,
261 #define NVREG_RCVCTL_START      0x01
262 #define NVREG_RCVCTL_RX_PATH_EN 0x01000000
263         NvRegReceiverStatus = 0x98,
264 #define NVREG_RCVSTAT_BUSY      0x01
265
266         NvRegRandomSeed = 0x9c,
267 #define NVREG_RNDSEED_MASK      0x00ff
268 #define NVREG_RNDSEED_FORCE     0x7f00
269 #define NVREG_RNDSEED_FORCE2    0x2d00
270 #define NVREG_RNDSEED_FORCE3    0x7400
271
272         NvRegTxDeferral = 0xA0,
273 #define NVREG_TX_DEFERRAL_DEFAULT               0x15050f
274 #define NVREG_TX_DEFERRAL_RGMII_10_100          0x16070f
275 #define NVREG_TX_DEFERRAL_RGMII_1000            0x14050f
276 #define NVREG_TX_DEFERRAL_RGMII_STRETCH_10      0x16190f
277 #define NVREG_TX_DEFERRAL_RGMII_STRETCH_100     0x16300f
278 #define NVREG_TX_DEFERRAL_MII_STRETCH           0x152000
279         NvRegRxDeferral = 0xA4,
280 #define NVREG_RX_DEFERRAL_DEFAULT       0x16
281         NvRegMacAddrA = 0xA8,
282         NvRegMacAddrB = 0xAC,
283         NvRegMulticastAddrA = 0xB0,
284 #define NVREG_MCASTADDRA_FORCE  0x01
285         NvRegMulticastAddrB = 0xB4,
286         NvRegMulticastMaskA = 0xB8,
287 #define NVREG_MCASTMASKA_NONE           0xffffffff
288         NvRegMulticastMaskB = 0xBC,
289 #define NVREG_MCASTMASKB_NONE           0xffff
290
291         NvRegPhyInterface = 0xC0,
292 #define PHY_RGMII               0x10000000
293
294         NvRegTxRingPhysAddr = 0x100,
295         NvRegRxRingPhysAddr = 0x104,
296         NvRegRingSizes = 0x108,
297 #define NVREG_RINGSZ_TXSHIFT 0
298 #define NVREG_RINGSZ_RXSHIFT 16
299         NvRegTransmitPoll = 0x10c,
300 #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
301         NvRegLinkSpeed = 0x110,
302 #define NVREG_LINKSPEED_FORCE 0x10000
303 #define NVREG_LINKSPEED_10      1000
304 #define NVREG_LINKSPEED_100     100
305 #define NVREG_LINKSPEED_1000    50
306 #define NVREG_LINKSPEED_MASK    (0xFFF)
307         NvRegUnknownSetupReg5 = 0x130,
308 #define NVREG_UNKSETUP5_BIT31   (1<<31)
309         NvRegTxWatermark = 0x13c,
310 #define NVREG_TX_WM_DESC1_DEFAULT       0x0200010
311 #define NVREG_TX_WM_DESC2_3_DEFAULT     0x1e08000
312 #define NVREG_TX_WM_DESC2_3_1000        0xfe08000
313         NvRegTxRxControl = 0x144,
314 #define NVREG_TXRXCTL_KICK      0x0001
315 #define NVREG_TXRXCTL_BIT1      0x0002
316 #define NVREG_TXRXCTL_BIT2      0x0004
317 #define NVREG_TXRXCTL_IDLE      0x0008
318 #define NVREG_TXRXCTL_RESET     0x0010
319 #define NVREG_TXRXCTL_RXCHECK   0x0400
320 #define NVREG_TXRXCTL_DESC_1    0
321 #define NVREG_TXRXCTL_DESC_2    0x002100
322 #define NVREG_TXRXCTL_DESC_3    0xc02200
323 #define NVREG_TXRXCTL_VLANSTRIP 0x00040
324 #define NVREG_TXRXCTL_VLANINS   0x00080
325         NvRegTxRingPhysAddrHigh = 0x148,
326         NvRegRxRingPhysAddrHigh = 0x14C,
327         NvRegTxPauseFrame = 0x170,
328 #define NVREG_TX_PAUSEFRAME_DISABLE     0x0fff0080
329 #define NVREG_TX_PAUSEFRAME_ENABLE_V1   0x01800010
330 #define NVREG_TX_PAUSEFRAME_ENABLE_V2   0x056003f0
331 #define NVREG_TX_PAUSEFRAME_ENABLE_V3   0x09f00880
332         NvRegMIIStatus = 0x180,
333 #define NVREG_MIISTAT_ERROR             0x0001
334 #define NVREG_MIISTAT_LINKCHANGE        0x0008
335 #define NVREG_MIISTAT_MASK_RW           0x0007
336 #define NVREG_MIISTAT_MASK_ALL          0x000f
337         NvRegMIIMask = 0x184,
338 #define NVREG_MII_LINKCHANGE            0x0008
339
340         NvRegAdapterControl = 0x188,
341 #define NVREG_ADAPTCTL_START    0x02
342 #define NVREG_ADAPTCTL_LINKUP   0x04
343 #define NVREG_ADAPTCTL_PHYVALID 0x40000
344 #define NVREG_ADAPTCTL_RUNNING  0x100000
345 #define NVREG_ADAPTCTL_PHYSHIFT 24
346         NvRegMIISpeed = 0x18c,
347 #define NVREG_MIISPEED_BIT8     (1<<8)
348 #define NVREG_MIIDELAY  5
349         NvRegMIIControl = 0x190,
350 #define NVREG_MIICTL_INUSE      0x08000
351 #define NVREG_MIICTL_WRITE      0x00400
352 #define NVREG_MIICTL_ADDRSHIFT  5
353         NvRegMIIData = 0x194,
354         NvRegWakeUpFlags = 0x200,
355 #define NVREG_WAKEUPFLAGS_VAL           0x7770
356 #define NVREG_WAKEUPFLAGS_BUSYSHIFT     24
357 #define NVREG_WAKEUPFLAGS_ENABLESHIFT   16
358 #define NVREG_WAKEUPFLAGS_D3SHIFT       12
359 #define NVREG_WAKEUPFLAGS_D2SHIFT       8
360 #define NVREG_WAKEUPFLAGS_D1SHIFT       4
361 #define NVREG_WAKEUPFLAGS_D0SHIFT       0
362 #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT         0x01
363 #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT      0x02
364 #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE     0x04
365 #define NVREG_WAKEUPFLAGS_ENABLE        0x1111
366
367         NvRegPatternCRC = 0x204,
368         NvRegPatternMask = 0x208,
369         NvRegPowerCap = 0x268,
370 #define NVREG_POWERCAP_D3SUPP   (1<<30)
371 #define NVREG_POWERCAP_D2SUPP   (1<<26)
372 #define NVREG_POWERCAP_D1SUPP   (1<<25)
373         NvRegPowerState = 0x26c,
374 #define NVREG_POWERSTATE_POWEREDUP      0x8000
375 #define NVREG_POWERSTATE_VALID          0x0100
376 #define NVREG_POWERSTATE_MASK           0x0003
377 #define NVREG_POWERSTATE_D0             0x0000
378 #define NVREG_POWERSTATE_D1             0x0001
379 #define NVREG_POWERSTATE_D2             0x0002
380 #define NVREG_POWERSTATE_D3             0x0003
381         NvRegTxCnt = 0x280,
382         NvRegTxZeroReXmt = 0x284,
383         NvRegTxOneReXmt = 0x288,
384         NvRegTxManyReXmt = 0x28c,
385         NvRegTxLateCol = 0x290,
386         NvRegTxUnderflow = 0x294,
387         NvRegTxLossCarrier = 0x298,
388         NvRegTxExcessDef = 0x29c,
389         NvRegTxRetryErr = 0x2a0,
390         NvRegRxFrameErr = 0x2a4,
391         NvRegRxExtraByte = 0x2a8,
392         NvRegRxLateCol = 0x2ac,
393         NvRegRxRunt = 0x2b0,
394         NvRegRxFrameTooLong = 0x2b4,
395         NvRegRxOverflow = 0x2b8,
396         NvRegRxFCSErr = 0x2bc,
397         NvRegRxFrameAlignErr = 0x2c0,
398         NvRegRxLenErr = 0x2c4,
399         NvRegRxUnicast = 0x2c8,
400         NvRegRxMulticast = 0x2cc,
401         NvRegRxBroadcast = 0x2d0,
402         NvRegTxDef = 0x2d4,
403         NvRegTxFrame = 0x2d8,
404         NvRegRxCnt = 0x2dc,
405         NvRegTxPause = 0x2e0,
406         NvRegRxPause = 0x2e4,
407         NvRegRxDropFrame = 0x2e8,
408         NvRegVlanControl = 0x300,
409 #define NVREG_VLANCONTROL_ENABLE        0x2000
410         NvRegMSIXMap0 = 0x3e0,
411         NvRegMSIXMap1 = 0x3e4,
412         NvRegMSIXIrqStatus = 0x3f0,
413
414         NvRegPowerState2 = 0x600,
415 #define NVREG_POWERSTATE2_POWERUP_MASK          0x0F11
416 #define NVREG_POWERSTATE2_POWERUP_REV_A3        0x0001
417 };
418
419 /* Big endian: should work, but is untested */
420 struct ring_desc {
421         __le32 buf;
422         __le32 flaglen;
423 };
424
425 struct ring_desc_ex {
426         __le32 bufhigh;
427         __le32 buflow;
428         __le32 txvlan;
429         __le32 flaglen;
430 };
431
432 union ring_type {
433         struct ring_desc* orig;
434         struct ring_desc_ex* ex;
435 };
436
437 #define FLAG_MASK_V1 0xffff0000
438 #define FLAG_MASK_V2 0xffffc000
439 #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
440 #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
441
442 #define NV_TX_LASTPACKET        (1<<16)
443 #define NV_TX_RETRYERROR        (1<<19)
444 #define NV_TX_FORCED_INTERRUPT  (1<<24)
445 #define NV_TX_DEFERRED          (1<<26)
446 #define NV_TX_CARRIERLOST       (1<<27)
447 #define NV_TX_LATECOLLISION     (1<<28)
448 #define NV_TX_UNDERFLOW         (1<<29)
449 #define NV_TX_ERROR             (1<<30)
450 #define NV_TX_VALID             (1<<31)
451
452 #define NV_TX2_LASTPACKET       (1<<29)
453 #define NV_TX2_RETRYERROR       (1<<18)
454 #define NV_TX2_FORCED_INTERRUPT (1<<30)
455 #define NV_TX2_DEFERRED         (1<<25)
456 #define NV_TX2_CARRIERLOST      (1<<26)
457 #define NV_TX2_LATECOLLISION    (1<<27)
458 #define NV_TX2_UNDERFLOW        (1<<28)
459 /* error and valid are the same for both */
460 #define NV_TX2_ERROR            (1<<30)
461 #define NV_TX2_VALID            (1<<31)
462 #define NV_TX2_TSO              (1<<28)
463 #define NV_TX2_TSO_SHIFT        14
464 #define NV_TX2_TSO_MAX_SHIFT    14
465 #define NV_TX2_TSO_MAX_SIZE     (1<<NV_TX2_TSO_MAX_SHIFT)
466 #define NV_TX2_CHECKSUM_L3      (1<<27)
467 #define NV_TX2_CHECKSUM_L4      (1<<26)
468
469 #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
470
471 #define NV_RX_DESCRIPTORVALID   (1<<16)
472 #define NV_RX_MISSEDFRAME       (1<<17)
473 #define NV_RX_SUBSTRACT1        (1<<18)
474 #define NV_RX_ERROR1            (1<<23)
475 #define NV_RX_ERROR2            (1<<24)
476 #define NV_RX_ERROR3            (1<<25)
477 #define NV_RX_ERROR4            (1<<26)
478 #define NV_RX_CRCERR            (1<<27)
479 #define NV_RX_OVERFLOW          (1<<28)
480 #define NV_RX_FRAMINGERR        (1<<29)
481 #define NV_RX_ERROR             (1<<30)
482 #define NV_RX_AVAIL             (1<<31)
483
484 #define NV_RX2_CHECKSUMMASK     (0x1C000000)
485 #define NV_RX2_CHECKSUM_IP      (0x10000000)
486 #define NV_RX2_CHECKSUM_IP_TCP  (0x14000000)
487 #define NV_RX2_CHECKSUM_IP_UDP  (0x18000000)
488 #define NV_RX2_DESCRIPTORVALID  (1<<29)
489 #define NV_RX2_SUBSTRACT1       (1<<25)
490 #define NV_RX2_ERROR1           (1<<18)
491 #define NV_RX2_ERROR2           (1<<19)
492 #define NV_RX2_ERROR3           (1<<20)
493 #define NV_RX2_ERROR4           (1<<21)
494 #define NV_RX2_CRCERR           (1<<22)
495 #define NV_RX2_OVERFLOW         (1<<23)
496 #define NV_RX2_FRAMINGERR       (1<<24)
497 /* error and avail are the same for both */
498 #define NV_RX2_ERROR            (1<<30)
499 #define NV_RX2_AVAIL            (1<<31)
500
501 #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
502 #define NV_RX3_VLAN_TAG_MASK    (0x0000FFFF)
503
504 /* Miscelaneous hardware related defines: */
505 #define NV_PCI_REGSZ_VER1       0x270
506 #define NV_PCI_REGSZ_VER2       0x2d4
507 #define NV_PCI_REGSZ_VER3       0x604
508
509 /* various timeout delays: all in usec */
510 #define NV_TXRX_RESET_DELAY     4
511 #define NV_TXSTOP_DELAY1        10
512 #define NV_TXSTOP_DELAY1MAX     500000
513 #define NV_TXSTOP_DELAY2        100
514 #define NV_RXSTOP_DELAY1        10
515 #define NV_RXSTOP_DELAY1MAX     500000
516 #define NV_RXSTOP_DELAY2        100
517 #define NV_SETUP5_DELAY         5
518 #define NV_SETUP5_DELAYMAX      50000
519 #define NV_POWERUP_DELAY        5
520 #define NV_POWERUP_DELAYMAX     5000
521 #define NV_MIIBUSY_DELAY        50
522 #define NV_MIIPHY_DELAY 10
523 #define NV_MIIPHY_DELAYMAX      10000
524 #define NV_MAC_RESET_DELAY      64
525
526 #define NV_WAKEUPPATTERNS       5
527 #define NV_WAKEUPMASKENTRIES    4
528
529 /* General driver defaults */
530 #define NV_WATCHDOG_TIMEO       (5*HZ)
531
532 #define RX_RING_DEFAULT         128
533 #define TX_RING_DEFAULT         256
534 #define RX_RING_MIN             128
535 #define TX_RING_MIN             64
536 #define RING_MAX_DESC_VER_1     1024
537 #define RING_MAX_DESC_VER_2_3   16384
538
539 /* rx/tx mac addr + type + vlan + align + slack*/
540 #define NV_RX_HEADERS           (64)
541 /* even more slack. */
542 #define NV_RX_ALLOC_PAD         (64)
543
544 /* maximum mtu size */
545 #define NV_PKTLIMIT_1   ETH_DATA_LEN    /* hard limit not known */
546 #define NV_PKTLIMIT_2   9100    /* Actual limit according to NVidia: 9202 */
547
548 #define OOM_REFILL      (1+HZ/20)
549 #define POLL_WAIT       (1+HZ/100)
550 #define LINK_TIMEOUT    (3*HZ)
551 #define STATS_INTERVAL  (10*HZ)
552
553 /*
554  * desc_ver values:
555  * The nic supports three different descriptor types:
556  * - DESC_VER_1: Original
557  * - DESC_VER_2: support for jumbo frames.
558  * - DESC_VER_3: 64-bit format.
559  */
560 #define DESC_VER_1      1
561 #define DESC_VER_2      2
562 #define DESC_VER_3      3
563
564 /* PHY defines */
565 #define PHY_OUI_MARVELL 0x5043
566 #define PHY_OUI_CICADA  0x03f1
567 #define PHY_OUI_VITESSE 0x01c1
568 #define PHY_OUI_REALTEK 0x0732
569 #define PHYID1_OUI_MASK 0x03ff
570 #define PHYID1_OUI_SHFT 6
571 #define PHYID2_OUI_MASK 0xfc00
572 #define PHYID2_OUI_SHFT 10
573 #define PHYID2_MODEL_MASK               0x03f0
574 #define PHY_MODEL_MARVELL_E3016         0x220
575 #define PHY_MARVELL_E3016_INITMASK      0x0300
576 #define PHY_CICADA_INIT1        0x0f000
577 #define PHY_CICADA_INIT2        0x0e00
578 #define PHY_CICADA_INIT3        0x01000
579 #define PHY_CICADA_INIT4        0x0200
580 #define PHY_CICADA_INIT5        0x0004
581 #define PHY_CICADA_INIT6        0x02000
582 #define PHY_VITESSE_INIT_REG1   0x1f
583 #define PHY_VITESSE_INIT_REG2   0x10
584 #define PHY_VITESSE_INIT_REG3   0x11
585 #define PHY_VITESSE_INIT_REG4   0x12
586 #define PHY_VITESSE_INIT_MSK1   0xc
587 #define PHY_VITESSE_INIT_MSK2   0x0180
588 #define PHY_VITESSE_INIT1       0x52b5
589 #define PHY_VITESSE_INIT2       0xaf8a
590 #define PHY_VITESSE_INIT3       0x8
591 #define PHY_VITESSE_INIT4       0x8f8a
592 #define PHY_VITESSE_INIT5       0xaf86
593 #define PHY_VITESSE_INIT6       0x8f86
594 #define PHY_VITESSE_INIT7       0xaf82
595 #define PHY_VITESSE_INIT8       0x0100
596 #define PHY_VITESSE_INIT9       0x8f82
597 #define PHY_VITESSE_INIT10      0x0
598 #define PHY_REALTEK_INIT_REG1   0x1f
599 #define PHY_REALTEK_INIT_REG2   0x19
600 #define PHY_REALTEK_INIT_REG3   0x13
601 #define PHY_REALTEK_INIT1       0x0000
602 #define PHY_REALTEK_INIT2       0x8e00
603 #define PHY_REALTEK_INIT3       0x0001
604 #define PHY_REALTEK_INIT4       0xad17
605
606 #define PHY_GIGABIT     0x0100
607
608 #define PHY_TIMEOUT     0x1
609 #define PHY_ERROR       0x2
610
611 #define PHY_100 0x1
612 #define PHY_1000        0x2
613 #define PHY_HALF        0x100
614
615 #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
616 #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
617 #define NV_PAUSEFRAME_RX_ENABLE  0x0004
618 #define NV_PAUSEFRAME_TX_ENABLE  0x0008
619 #define NV_PAUSEFRAME_RX_REQ     0x0010
620 #define NV_PAUSEFRAME_TX_REQ     0x0020
621 #define NV_PAUSEFRAME_AUTONEG    0x0040
622
623 /* MSI/MSI-X defines */
624 #define NV_MSI_X_MAX_VECTORS  8
625 #define NV_MSI_X_VECTORS_MASK 0x000f
626 #define NV_MSI_CAPABLE        0x0010
627 #define NV_MSI_X_CAPABLE      0x0020
628 #define NV_MSI_ENABLED        0x0040
629 #define NV_MSI_X_ENABLED      0x0080
630
631 #define NV_MSI_X_VECTOR_ALL   0x0
632 #define NV_MSI_X_VECTOR_RX    0x0
633 #define NV_MSI_X_VECTOR_TX    0x1
634 #define NV_MSI_X_VECTOR_OTHER 0x2
635
636 #define NV_RESTART_TX         0x1
637 #define NV_RESTART_RX         0x2
638
639 #define NV_TX_LIMIT_COUNT     16
640
641 /* statistics */
642 struct nv_ethtool_str {
643         char name[ETH_GSTRING_LEN];
644 };
645
646 static const struct nv_ethtool_str nv_estats_str[] = {
647         { "tx_bytes" },
648         { "tx_zero_rexmt" },
649         { "tx_one_rexmt" },
650         { "tx_many_rexmt" },
651         { "tx_late_collision" },
652         { "tx_fifo_errors" },
653         { "tx_carrier_errors" },
654         { "tx_excess_deferral" },
655         { "tx_retry_error" },
656         { "rx_frame_error" },
657         { "rx_extra_byte" },
658         { "rx_late_collision" },
659         { "rx_runt" },
660         { "rx_frame_too_long" },
661         { "rx_over_errors" },
662         { "rx_crc_errors" },
663         { "rx_frame_align_error" },
664         { "rx_length_error" },
665         { "rx_unicast" },
666         { "rx_multicast" },
667         { "rx_broadcast" },
668         { "rx_packets" },
669         { "rx_errors_total" },
670         { "tx_errors_total" },
671
672         /* version 2 stats */
673         { "tx_deferral" },
674         { "tx_packets" },
675         { "rx_bytes" },
676         { "tx_pause" },
677         { "rx_pause" },
678         { "rx_drop_frame" }
679 };
680
681 struct nv_ethtool_stats {
682         u64 tx_bytes;
683         u64 tx_zero_rexmt;
684         u64 tx_one_rexmt;
685         u64 tx_many_rexmt;
686         u64 tx_late_collision;
687         u64 tx_fifo_errors;
688         u64 tx_carrier_errors;
689         u64 tx_excess_deferral;
690         u64 tx_retry_error;
691         u64 rx_frame_error;
692         u64 rx_extra_byte;
693         u64 rx_late_collision;
694         u64 rx_runt;
695         u64 rx_frame_too_long;
696         u64 rx_over_errors;
697         u64 rx_crc_errors;
698         u64 rx_frame_align_error;
699         u64 rx_length_error;
700         u64 rx_unicast;
701         u64 rx_multicast;
702         u64 rx_broadcast;
703         u64 rx_packets;
704         u64 rx_errors_total;
705         u64 tx_errors_total;
706
707         /* version 2 stats */
708         u64 tx_deferral;
709         u64 tx_packets;
710         u64 rx_bytes;
711         u64 tx_pause;
712         u64 rx_pause;
713         u64 rx_drop_frame;
714 };
715
716 #define NV_DEV_STATISTICS_V2_COUNT (sizeof(struct nv_ethtool_stats)/sizeof(u64))
717 #define NV_DEV_STATISTICS_V1_COUNT (NV_DEV_STATISTICS_V2_COUNT - 6)
718
719 /* diagnostics */
720 #define NV_TEST_COUNT_BASE 3
721 #define NV_TEST_COUNT_EXTENDED 4
722
723 static const struct nv_ethtool_str nv_etests_str[] = {
724         { "link      (online/offline)" },
725         { "register  (offline)       " },
726         { "interrupt (offline)       " },
727         { "loopback  (offline)       " }
728 };
729
730 struct register_test {
731         __u32 reg;
732         __u32 mask;
733 };
734
735 static const struct register_test nv_registers_test[] = {
736         { NvRegUnknownSetupReg6, 0x01 },
737         { NvRegMisc1, 0x03c },
738         { NvRegOffloadConfig, 0x03ff },
739         { NvRegMulticastAddrA, 0xffffffff },
740         { NvRegTxWatermark, 0x0ff },
741         { NvRegWakeUpFlags, 0x07777 },
742         { 0,0 }
743 };
744
745 struct nv_skb_map {
746         struct sk_buff *skb;
747         dma_addr_t dma;
748         unsigned int dma_len;
749         struct ring_desc_ex *first_tx_desc;
750         struct nv_skb_map *next_tx_ctx;
751 };
752
753 /*
754  * SMP locking:
755  * All hardware access under dev->priv->lock, except the performance
756  * critical parts:
757  * - rx is (pseudo-) lockless: it relies on the single-threading provided
758  *      by the arch code for interrupts.
759  * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
760  *      needs dev->priv->lock :-(
761  * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
762  */
763
764 /* in dev: base, irq */
765 struct fe_priv {
766         spinlock_t lock;
767
768         struct net_device *dev;
769         struct napi_struct napi;
770
771         /* General data:
772          * Locking: spin_lock(&np->lock); */
773         struct nv_ethtool_stats estats;
774         int in_shutdown;
775         u32 linkspeed;
776         int duplex;
777         int autoneg;
778         int fixed_mode;
779         int phyaddr;
780         int wolenabled;
781         unsigned int phy_oui;
782         unsigned int phy_model;
783         u16 gigabit;
784         int intr_test;
785         int recover_error;
786
787         /* General data: RO fields */
788         dma_addr_t ring_addr;
789         struct pci_dev *pci_dev;
790         u32 orig_mac[2];
791         u32 irqmask;
792         u32 desc_ver;
793         u32 txrxctl_bits;
794         u32 vlanctl_bits;
795         u32 driver_data;
796         u32 register_size;
797         int rx_csum;
798         u32 mac_in_use;
799
800         void __iomem *base;
801
802         /* rx specific fields.
803          * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
804          */
805         union ring_type get_rx, put_rx, first_rx, last_rx;
806         struct nv_skb_map *get_rx_ctx, *put_rx_ctx;
807         struct nv_skb_map *first_rx_ctx, *last_rx_ctx;
808         struct nv_skb_map *rx_skb;
809
810         union ring_type rx_ring;
811         unsigned int rx_buf_sz;
812         unsigned int pkt_limit;
813         struct timer_list oom_kick;
814         struct timer_list nic_poll;
815         struct timer_list stats_poll;
816         u32 nic_poll_irq;
817         int rx_ring_size;
818
819         /* media detection workaround.
820          * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
821          */
822         int need_linktimer;
823         unsigned long link_timeout;
824         /*
825          * tx specific fields.
826          */
827         union ring_type get_tx, put_tx, first_tx, last_tx;
828         struct nv_skb_map *get_tx_ctx, *put_tx_ctx;
829         struct nv_skb_map *first_tx_ctx, *last_tx_ctx;
830         struct nv_skb_map *tx_skb;
831
832         union ring_type tx_ring;
833         u32 tx_flags;
834         int tx_ring_size;
835         int tx_limit;
836         u32 tx_pkts_in_progress;
837         struct nv_skb_map *tx_change_owner;
838         struct nv_skb_map *tx_end_flip;
839         int tx_stop;
840
841         /* vlan fields */
842         struct vlan_group *vlangrp;
843
844         /* msi/msi-x fields */
845         u32 msi_flags;
846         struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
847
848         /* flow control */
849         u32 pause_flags;
850 };
851
852 /*
853  * Maximum number of loops until we assume that a bit in the irq mask
854  * is stuck. Overridable with module param.
855  */
856 static int max_interrupt_work = 5;
857
858 /*
859  * Optimization can be either throuput mode or cpu mode
860  *
861  * Throughput Mode: Every tx and rx packet will generate an interrupt.
862  * CPU Mode: Interrupts are controlled by a timer.
863  */
864 enum {
865         NV_OPTIMIZATION_MODE_THROUGHPUT,
866         NV_OPTIMIZATION_MODE_CPU
867 };
868 static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
869
870 /*
871  * Poll interval for timer irq
872  *
873  * This interval determines how frequent an interrupt is generated.
874  * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
875  * Min = 0, and Max = 65535
876  */
877 static int poll_interval = -1;
878
879 /*
880  * MSI interrupts
881  */
882 enum {
883         NV_MSI_INT_DISABLED,
884         NV_MSI_INT_ENABLED
885 };
886 static int msi = NV_MSI_INT_ENABLED;
887
888 /*
889  * MSIX interrupts
890  */
891 enum {
892         NV_MSIX_INT_DISABLED,
893         NV_MSIX_INT_ENABLED
894 };
895 static int msix = NV_MSIX_INT_DISABLED;
896
897 /*
898  * DMA 64bit
899  */
900 enum {
901         NV_DMA_64BIT_DISABLED,
902         NV_DMA_64BIT_ENABLED
903 };
904 static int dma_64bit = NV_DMA_64BIT_ENABLED;
905
906 static inline struct fe_priv *get_nvpriv(struct net_device *dev)
907 {
908         return netdev_priv(dev);
909 }
910
911 static inline u8 __iomem *get_hwbase(struct net_device *dev)
912 {
913         return ((struct fe_priv *)netdev_priv(dev))->base;
914 }
915
916 static inline void pci_push(u8 __iomem *base)
917 {
918         /* force out pending posted writes */
919         readl(base);
920 }
921
922 static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
923 {
924         return le32_to_cpu(prd->flaglen)
925                 & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
926 }
927
928 static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
929 {
930         return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
931 }
932
933 static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
934                                 int delay, int delaymax, const char *msg)
935 {
936         u8 __iomem *base = get_hwbase(dev);
937
938         pci_push(base);
939         do {
940                 udelay(delay);
941                 delaymax -= delay;
942                 if (delaymax < 0) {
943                         if (msg)
944                                 printk(msg);
945                         return 1;
946                 }
947         } while ((readl(base + offset) & mask) != target);
948         return 0;
949 }
950
951 #define NV_SETUP_RX_RING 0x01
952 #define NV_SETUP_TX_RING 0x02
953
954 static inline u32 dma_low(dma_addr_t addr)
955 {
956         return addr;
957 }
958
959 static inline u32 dma_high(dma_addr_t addr)
960 {
961         return addr>>31>>1;     /* 0 if 32bit, shift down by 32 if 64bit */
962 }
963
964 static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
965 {
966         struct fe_priv *np = get_nvpriv(dev);
967         u8 __iomem *base = get_hwbase(dev);
968
969         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
970                 if (rxtx_flags & NV_SETUP_RX_RING) {
971                         writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
972                 }
973                 if (rxtx_flags & NV_SETUP_TX_RING) {
974                         writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
975                 }
976         } else {
977                 if (rxtx_flags & NV_SETUP_RX_RING) {
978                         writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
979                         writel(dma_high(np->ring_addr), base + NvRegRxRingPhysAddrHigh);
980                 }
981                 if (rxtx_flags & NV_SETUP_TX_RING) {
982                         writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
983                         writel(dma_high(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddrHigh);
984                 }
985         }
986 }
987
988 static void free_rings(struct net_device *dev)
989 {
990         struct fe_priv *np = get_nvpriv(dev);
991
992         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
993                 if (np->rx_ring.orig)
994                         pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
995                                             np->rx_ring.orig, np->ring_addr);
996         } else {
997                 if (np->rx_ring.ex)
998                         pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
999                                             np->rx_ring.ex, np->ring_addr);
1000         }
1001         if (np->rx_skb)
1002                 kfree(np->rx_skb);
1003         if (np->tx_skb)
1004                 kfree(np->tx_skb);
1005 }
1006
1007 static int using_multi_irqs(struct net_device *dev)
1008 {
1009         struct fe_priv *np = get_nvpriv(dev);
1010
1011         if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
1012             ((np->msi_flags & NV_MSI_X_ENABLED) &&
1013              ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
1014                 return 0;
1015         else
1016                 return 1;
1017 }
1018
1019 static void nv_enable_irq(struct net_device *dev)
1020 {
1021         struct fe_priv *np = get_nvpriv(dev);
1022
1023         if (!using_multi_irqs(dev)) {
1024                 if (np->msi_flags & NV_MSI_X_ENABLED)
1025                         enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1026                 else
1027                         enable_irq(np->pci_dev->irq);
1028         } else {
1029                 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1030                 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
1031                 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
1032         }
1033 }
1034
1035 static void nv_disable_irq(struct net_device *dev)
1036 {
1037         struct fe_priv *np = get_nvpriv(dev);
1038
1039         if (!using_multi_irqs(dev)) {
1040                 if (np->msi_flags & NV_MSI_X_ENABLED)
1041                         disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1042                 else
1043                         disable_irq(np->pci_dev->irq);
1044         } else {
1045                 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1046                 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
1047                 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
1048         }
1049 }
1050
1051 /* In MSIX mode, a write to irqmask behaves as XOR */
1052 static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
1053 {
1054         u8 __iomem *base = get_hwbase(dev);
1055
1056         writel(mask, base + NvRegIrqMask);
1057 }
1058
1059 static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
1060 {
1061         struct fe_priv *np = get_nvpriv(dev);
1062         u8 __iomem *base = get_hwbase(dev);
1063
1064         if (np->msi_flags & NV_MSI_X_ENABLED) {
1065                 writel(mask, base + NvRegIrqMask);
1066         } else {
1067                 if (np->msi_flags & NV_MSI_ENABLED)
1068                         writel(0, base + NvRegMSIIrqMask);
1069                 writel(0, base + NvRegIrqMask);
1070         }
1071 }
1072
1073 #define MII_READ        (-1)
1074 /* mii_rw: read/write a register on the PHY.
1075  *
1076  * Caller must guarantee serialization
1077  */
1078 static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
1079 {
1080         u8 __iomem *base = get_hwbase(dev);
1081         u32 reg;
1082         int retval;
1083
1084         writel(NVREG_MIISTAT_MASK_RW, base + NvRegMIIStatus);
1085
1086         reg = readl(base + NvRegMIIControl);
1087         if (reg & NVREG_MIICTL_INUSE) {
1088                 writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
1089                 udelay(NV_MIIBUSY_DELAY);
1090         }
1091
1092         reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
1093         if (value != MII_READ) {
1094                 writel(value, base + NvRegMIIData);
1095                 reg |= NVREG_MIICTL_WRITE;
1096         }
1097         writel(reg, base + NvRegMIIControl);
1098
1099         if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
1100                         NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
1101                 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
1102                                 dev->name, miireg, addr);
1103                 retval = -1;
1104         } else if (value != MII_READ) {
1105                 /* it was a write operation - fewer failures are detectable */
1106                 dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
1107                                 dev->name, value, miireg, addr);
1108                 retval = 0;
1109         } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
1110                 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
1111                                 dev->name, miireg, addr);
1112                 retval = -1;
1113         } else {
1114                 retval = readl(base + NvRegMIIData);
1115                 dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
1116                                 dev->name, miireg, addr, retval);
1117         }
1118
1119         return retval;
1120 }
1121
1122 static int phy_reset(struct net_device *dev, u32 bmcr_setup)
1123 {
1124         struct fe_priv *np = netdev_priv(dev);
1125         u32 miicontrol;
1126         unsigned int tries = 0;
1127
1128         miicontrol = BMCR_RESET | bmcr_setup;
1129         if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
1130                 return -1;
1131         }
1132
1133         /* wait for 500ms */
1134         msleep(500);
1135
1136         /* must wait till reset is deasserted */
1137         while (miicontrol & BMCR_RESET) {
1138                 msleep(10);
1139                 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1140                 /* FIXME: 100 tries seem excessive */
1141                 if (tries++ > 100)
1142                         return -1;
1143         }
1144         return 0;
1145 }
1146
1147 static int phy_init(struct net_device *dev)
1148 {
1149         struct fe_priv *np = get_nvpriv(dev);
1150         u8 __iomem *base = get_hwbase(dev);
1151         u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
1152
1153         /* phy errata for E3016 phy */
1154         if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
1155                 reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
1156                 reg &= ~PHY_MARVELL_E3016_INITMASK;
1157                 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
1158                         printk(KERN_INFO "%s: phy write to errata reg failed.\n", pci_name(np->pci_dev));
1159                         return PHY_ERROR;
1160                 }
1161         }
1162         if (np->phy_oui == PHY_OUI_REALTEK) {
1163                 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1164                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1165                         return PHY_ERROR;
1166                 }
1167                 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
1168                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1169                         return PHY_ERROR;
1170                 }
1171                 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
1172                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1173                         return PHY_ERROR;
1174                 }
1175                 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
1176                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1177                         return PHY_ERROR;
1178                 }
1179                 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1180                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1181                         return PHY_ERROR;
1182                 }
1183         }
1184
1185         /* set advertise register */
1186         reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
1187         reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
1188         if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
1189                 printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
1190                 return PHY_ERROR;
1191         }
1192
1193         /* get phy interface type */
1194         phyinterface = readl(base + NvRegPhyInterface);
1195
1196         /* see if gigabit phy */
1197         mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
1198         if (mii_status & PHY_GIGABIT) {
1199                 np->gigabit = PHY_GIGABIT;
1200                 mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
1201                 mii_control_1000 &= ~ADVERTISE_1000HALF;
1202                 if (phyinterface & PHY_RGMII)
1203                         mii_control_1000 |= ADVERTISE_1000FULL;
1204                 else
1205                         mii_control_1000 &= ~ADVERTISE_1000FULL;
1206
1207                 if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
1208                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1209                         return PHY_ERROR;
1210                 }
1211         }
1212         else
1213                 np->gigabit = 0;
1214
1215         mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1216         mii_control |= BMCR_ANENABLE;
1217
1218         /* reset the phy
1219          * (certain phys need bmcr to be setup with reset)
1220          */
1221         if (phy_reset(dev, mii_control)) {
1222                 printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
1223                 return PHY_ERROR;
1224         }
1225
1226         /* phy vendor specific configuration */
1227         if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
1228                 phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
1229                 phy_reserved &= ~(PHY_CICADA_INIT1 | PHY_CICADA_INIT2);
1230                 phy_reserved |= (PHY_CICADA_INIT3 | PHY_CICADA_INIT4);
1231                 if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
1232                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1233                         return PHY_ERROR;
1234                 }
1235                 phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
1236                 phy_reserved |= PHY_CICADA_INIT5;
1237                 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
1238                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1239                         return PHY_ERROR;
1240                 }
1241         }
1242         if (np->phy_oui == PHY_OUI_CICADA) {
1243                 phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
1244                 phy_reserved |= PHY_CICADA_INIT6;
1245                 if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
1246                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1247                         return PHY_ERROR;
1248                 }
1249         }
1250         if (np->phy_oui == PHY_OUI_VITESSE) {
1251                 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT1)) {
1252                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1253                         return PHY_ERROR;
1254                 }
1255                 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT2)) {
1256                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1257                         return PHY_ERROR;
1258                 }
1259                 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
1260                 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
1261                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1262                         return PHY_ERROR;
1263                 }
1264                 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
1265                 phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
1266                 phy_reserved |= PHY_VITESSE_INIT3;
1267                 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
1268                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1269                         return PHY_ERROR;
1270                 }
1271                 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT4)) {
1272                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1273                         return PHY_ERROR;
1274                 }
1275                 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT5)) {
1276                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1277                         return PHY_ERROR;
1278                 }
1279                 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
1280                 phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
1281                 phy_reserved |= PHY_VITESSE_INIT3;
1282                 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
1283                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1284                         return PHY_ERROR;
1285                 }
1286                 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
1287                 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
1288                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1289                         return PHY_ERROR;
1290                 }
1291                 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT6)) {
1292                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1293                         return PHY_ERROR;
1294                 }
1295                 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT7)) {
1296                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1297                         return PHY_ERROR;
1298                 }
1299                 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
1300                 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
1301                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1302                         return PHY_ERROR;
1303                 }
1304                 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
1305                 phy_reserved &= ~PHY_VITESSE_INIT_MSK2;
1306                 phy_reserved |= PHY_VITESSE_INIT8;
1307                 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
1308                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1309                         return PHY_ERROR;
1310                 }
1311                 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT9)) {
1312                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1313                         return PHY_ERROR;
1314                 }
1315                 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT10)) {
1316                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1317                         return PHY_ERROR;
1318                 }
1319         }
1320         if (np->phy_oui == PHY_OUI_REALTEK) {
1321                 /* reset could have cleared these out, set them back */
1322                 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1323                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1324                         return PHY_ERROR;
1325                 }
1326                 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
1327                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1328                         return PHY_ERROR;
1329                 }
1330                 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
1331                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1332                         return PHY_ERROR;
1333                 }
1334                 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
1335                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1336                         return PHY_ERROR;
1337                 }
1338                 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1339                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1340                         return PHY_ERROR;
1341                 }
1342         }
1343
1344         /* some phys clear out pause advertisment on reset, set it back */
1345         mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
1346
1347         /* restart auto negotiation */
1348         mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1349         mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
1350         if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
1351                 return PHY_ERROR;
1352         }
1353
1354         return 0;
1355 }
1356
1357 static void nv_start_rx(struct net_device *dev)
1358 {
1359         struct fe_priv *np = netdev_priv(dev);
1360         u8 __iomem *base = get_hwbase(dev);
1361         u32 rx_ctrl = readl(base + NvRegReceiverControl);
1362
1363         dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
1364         /* Already running? Stop it. */
1365         if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) {
1366                 rx_ctrl &= ~NVREG_RCVCTL_START;
1367                 writel(rx_ctrl, base + NvRegReceiverControl);
1368                 pci_push(base);
1369         }
1370         writel(np->linkspeed, base + NvRegLinkSpeed);
1371         pci_push(base);
1372         rx_ctrl |= NVREG_RCVCTL_START;
1373         if (np->mac_in_use)
1374                 rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN;
1375         writel(rx_ctrl, base + NvRegReceiverControl);
1376         dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
1377                                 dev->name, np->duplex, np->linkspeed);
1378         pci_push(base);
1379 }
1380
1381 static void nv_stop_rx(struct net_device *dev)
1382 {
1383         struct fe_priv *np = netdev_priv(dev);
1384         u8 __iomem *base = get_hwbase(dev);
1385         u32 rx_ctrl = readl(base + NvRegReceiverControl);
1386
1387         dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
1388         if (!np->mac_in_use)
1389                 rx_ctrl &= ~NVREG_RCVCTL_START;
1390         else
1391                 rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN;
1392         writel(rx_ctrl, base + NvRegReceiverControl);
1393         reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
1394                         NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
1395                         KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
1396
1397         udelay(NV_RXSTOP_DELAY2);
1398         if (!np->mac_in_use)
1399                 writel(0, base + NvRegLinkSpeed);
1400 }
1401
1402 static void nv_start_tx(struct net_device *dev)
1403 {
1404         struct fe_priv *np = netdev_priv(dev);
1405         u8 __iomem *base = get_hwbase(dev);
1406         u32 tx_ctrl = readl(base + NvRegTransmitterControl);
1407
1408         dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
1409         tx_ctrl |= NVREG_XMITCTL_START;
1410         if (np->mac_in_use)
1411                 tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN;
1412         writel(tx_ctrl, base + NvRegTransmitterControl);
1413         pci_push(base);
1414 }
1415
1416 static void nv_stop_tx(struct net_device *dev)
1417 {
1418         struct fe_priv *np = netdev_priv(dev);
1419         u8 __iomem *base = get_hwbase(dev);
1420         u32 tx_ctrl = readl(base + NvRegTransmitterControl);
1421
1422         dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
1423         if (!np->mac_in_use)
1424                 tx_ctrl &= ~NVREG_XMITCTL_START;
1425         else
1426                 tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN;
1427         writel(tx_ctrl, base + NvRegTransmitterControl);
1428         reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
1429                         NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
1430                         KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
1431
1432         udelay(NV_TXSTOP_DELAY2);
1433         if (!np->mac_in_use)
1434                 writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV,
1435                        base + NvRegTransmitPoll);
1436 }
1437
1438 static void nv_txrx_reset(struct net_device *dev)
1439 {
1440         struct fe_priv *np = netdev_priv(dev);
1441         u8 __iomem *base = get_hwbase(dev);
1442
1443         dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
1444         writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1445         pci_push(base);
1446         udelay(NV_TXRX_RESET_DELAY);
1447         writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1448         pci_push(base);
1449 }
1450
1451 static void nv_mac_reset(struct net_device *dev)
1452 {
1453         struct fe_priv *np = netdev_priv(dev);
1454         u8 __iomem *base = get_hwbase(dev);
1455         u32 temp1, temp2, temp3;
1456
1457         dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
1458
1459         writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1460         pci_push(base);
1461
1462         /* save registers since they will be cleared on reset */
1463         temp1 = readl(base + NvRegMacAddrA);
1464         temp2 = readl(base + NvRegMacAddrB);
1465         temp3 = readl(base + NvRegTransmitPoll);
1466
1467         writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
1468         pci_push(base);
1469         udelay(NV_MAC_RESET_DELAY);
1470         writel(0, base + NvRegMacReset);
1471         pci_push(base);
1472         udelay(NV_MAC_RESET_DELAY);
1473
1474         /* restore saved registers */
1475         writel(temp1, base + NvRegMacAddrA);
1476         writel(temp2, base + NvRegMacAddrB);
1477         writel(temp3, base + NvRegTransmitPoll);
1478
1479         writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1480         pci_push(base);
1481 }
1482
1483 static void nv_get_hw_stats(struct net_device *dev)
1484 {
1485         struct fe_priv *np = netdev_priv(dev);
1486         u8 __iomem *base = get_hwbase(dev);
1487
1488         np->estats.tx_bytes += readl(base + NvRegTxCnt);
1489         np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
1490         np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
1491         np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
1492         np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
1493         np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
1494         np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
1495         np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
1496         np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
1497         np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
1498         np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
1499         np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
1500         np->estats.rx_runt += readl(base + NvRegRxRunt);
1501         np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
1502         np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
1503         np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
1504         np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
1505         np->estats.rx_length_error += readl(base + NvRegRxLenErr);
1506         np->estats.rx_unicast += readl(base + NvRegRxUnicast);
1507         np->estats.rx_multicast += readl(base + NvRegRxMulticast);
1508         np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
1509         np->estats.rx_packets =
1510                 np->estats.rx_unicast +
1511                 np->estats.rx_multicast +
1512                 np->estats.rx_broadcast;
1513         np->estats.rx_errors_total =
1514                 np->estats.rx_crc_errors +
1515                 np->estats.rx_over_errors +
1516                 np->estats.rx_frame_error +
1517                 (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
1518                 np->estats.rx_late_collision +
1519                 np->estats.rx_runt +
1520                 np->estats.rx_frame_too_long;
1521         np->estats.tx_errors_total =
1522                 np->estats.tx_late_collision +
1523                 np->estats.tx_fifo_errors +
1524                 np->estats.tx_carrier_errors +
1525                 np->estats.tx_excess_deferral +
1526                 np->estats.tx_retry_error;
1527
1528         if (np->driver_data & DEV_HAS_STATISTICS_V2) {
1529                 np->estats.tx_deferral += readl(base + NvRegTxDef);
1530                 np->estats.tx_packets += readl(base + NvRegTxFrame);
1531                 np->estats.rx_bytes += readl(base + NvRegRxCnt);
1532                 np->estats.tx_pause += readl(base + NvRegTxPause);
1533                 np->estats.rx_pause += readl(base + NvRegRxPause);
1534                 np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
1535         }
1536 }
1537
1538 /*
1539  * nv_get_stats: dev->get_stats function
1540  * Get latest stats value from the nic.
1541  * Called with read_lock(&dev_base_lock) held for read -
1542  * only synchronized against unregister_netdevice.
1543  */
1544 static struct net_device_stats *nv_get_stats(struct net_device *dev)
1545 {
1546         struct fe_priv *np = netdev_priv(dev);
1547
1548         /* If the nic supports hw counters then retrieve latest values */
1549         if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2)) {
1550                 nv_get_hw_stats(dev);
1551
1552                 /* copy to net_device stats */
1553                 dev->stats.tx_bytes = np->estats.tx_bytes;
1554                 dev->stats.tx_fifo_errors = np->estats.tx_fifo_errors;
1555                 dev->stats.tx_carrier_errors = np->estats.tx_carrier_errors;
1556                 dev->stats.rx_crc_errors = np->estats.rx_crc_errors;
1557                 dev->stats.rx_over_errors = np->estats.rx_over_errors;
1558                 dev->stats.rx_errors = np->estats.rx_errors_total;
1559                 dev->stats.tx_errors = np->estats.tx_errors_total;
1560         }
1561
1562         return &dev->stats;
1563 }
1564
1565 /*
1566  * nv_alloc_rx: fill rx ring entries.
1567  * Return 1 if the allocations for the skbs failed and the
1568  * rx engine is without Available descriptors
1569  */
1570 static int nv_alloc_rx(struct net_device *dev)
1571 {
1572         struct fe_priv *np = netdev_priv(dev);
1573         struct ring_desc* less_rx;
1574
1575         less_rx = np->get_rx.orig;
1576         if (less_rx-- == np->first_rx.orig)
1577                 less_rx = np->last_rx.orig;
1578
1579         while (np->put_rx.orig != less_rx) {
1580                 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
1581                 if (skb) {
1582                         np->put_rx_ctx->skb = skb;
1583                         np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
1584                                                              skb->data,
1585                                                              skb_tailroom(skb),
1586                                                              PCI_DMA_FROMDEVICE);
1587                         np->put_rx_ctx->dma_len = skb_tailroom(skb);
1588                         np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma);
1589                         wmb();
1590                         np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
1591                         if (unlikely(np->put_rx.orig++ == np->last_rx.orig))
1592                                 np->put_rx.orig = np->first_rx.orig;
1593                         if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
1594                                 np->put_rx_ctx = np->first_rx_ctx;
1595                 } else {
1596                         return 1;
1597                 }
1598         }
1599         return 0;
1600 }
1601
1602 static int nv_alloc_rx_optimized(struct net_device *dev)
1603 {
1604         struct fe_priv *np = netdev_priv(dev);
1605         struct ring_desc_ex* less_rx;
1606
1607         less_rx = np->get_rx.ex;
1608         if (less_rx-- == np->first_rx.ex)
1609                 less_rx = np->last_rx.ex;
1610
1611         while (np->put_rx.ex != less_rx) {
1612                 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
1613                 if (skb) {
1614                         np->put_rx_ctx->skb = skb;
1615                         np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
1616                                                              skb->data,
1617                                                              skb_tailroom(skb),
1618                                                              PCI_DMA_FROMDEVICE);
1619                         np->put_rx_ctx->dma_len = skb_tailroom(skb);
1620                         np->put_rx.ex->bufhigh = cpu_to_le32(dma_high(np->put_rx_ctx->dma));
1621                         np->put_rx.ex->buflow = cpu_to_le32(dma_low(np->put_rx_ctx->dma));
1622                         wmb();
1623                         np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
1624                         if (unlikely(np->put_rx.ex++ == np->last_rx.ex))
1625                                 np->put_rx.ex = np->first_rx.ex;
1626                         if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
1627                                 np->put_rx_ctx = np->first_rx_ctx;
1628                 } else {
1629                         return 1;
1630                 }
1631         }
1632         return 0;
1633 }
1634
1635 /* If rx bufs are exhausted called after 50ms to attempt to refresh */
1636 #ifdef CONFIG_FORCEDETH_NAPI
1637 static void nv_do_rx_refill(unsigned long data)
1638 {
1639         struct net_device *dev = (struct net_device *) data;
1640         struct fe_priv *np = netdev_priv(dev);
1641
1642         /* Just reschedule NAPI rx processing */
1643         netif_rx_schedule(dev, &np->napi);
1644 }
1645 #else
1646 static void nv_do_rx_refill(unsigned long data)
1647 {
1648         struct net_device *dev = (struct net_device *) data;
1649         struct fe_priv *np = netdev_priv(dev);
1650         int retcode;
1651
1652         if (!using_multi_irqs(dev)) {
1653                 if (np->msi_flags & NV_MSI_X_ENABLED)
1654                         disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1655                 else
1656                         disable_irq(np->pci_dev->irq);
1657         } else {
1658                 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1659         }
1660         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1661                 retcode = nv_alloc_rx(dev);
1662         else
1663                 retcode = nv_alloc_rx_optimized(dev);
1664         if (retcode) {
1665                 spin_lock_irq(&np->lock);
1666                 if (!np->in_shutdown)
1667                         mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1668                 spin_unlock_irq(&np->lock);
1669         }
1670         if (!using_multi_irqs(dev)) {
1671                 if (np->msi_flags & NV_MSI_X_ENABLED)
1672                         enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1673                 else
1674                         enable_irq(np->pci_dev->irq);
1675         } else {
1676                 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1677         }
1678 }
1679 #endif
1680
1681 static void nv_init_rx(struct net_device *dev)
1682 {
1683         struct fe_priv *np = netdev_priv(dev);
1684         int i;
1685         np->get_rx = np->put_rx = np->first_rx = np->rx_ring;
1686         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1687                 np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1];
1688         else
1689                 np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1];
1690         np->get_rx_ctx = np->put_rx_ctx = np->first_rx_ctx = np->rx_skb;
1691         np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1];
1692
1693         for (i = 0; i < np->rx_ring_size; i++) {
1694                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1695                         np->rx_ring.orig[i].flaglen = 0;
1696                         np->rx_ring.orig[i].buf = 0;
1697                 } else {
1698                         np->rx_ring.ex[i].flaglen = 0;
1699                         np->rx_ring.ex[i].txvlan = 0;
1700                         np->rx_ring.ex[i].bufhigh = 0;
1701                         np->rx_ring.ex[i].buflow = 0;
1702                 }
1703                 np->rx_skb[i].skb = NULL;
1704                 np->rx_skb[i].dma = 0;
1705         }
1706 }
1707
1708 static void nv_init_tx(struct net_device *dev)
1709 {
1710         struct fe_priv *np = netdev_priv(dev);
1711         int i;
1712         np->get_tx = np->put_tx = np->first_tx = np->tx_ring;
1713         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1714                 np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1];
1715         else
1716                 np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1];
1717         np->get_tx_ctx = np->put_tx_ctx = np->first_tx_ctx = np->tx_skb;
1718         np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1];
1719         np->tx_pkts_in_progress = 0;
1720         np->tx_change_owner = NULL;
1721         np->tx_end_flip = NULL;
1722
1723         for (i = 0; i < np->tx_ring_size; i++) {
1724                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1725                         np->tx_ring.orig[i].flaglen = 0;
1726                         np->tx_ring.orig[i].buf = 0;
1727                 } else {
1728                         np->tx_ring.ex[i].flaglen = 0;
1729                         np->tx_ring.ex[i].txvlan = 0;
1730                         np->tx_ring.ex[i].bufhigh = 0;
1731                         np->tx_ring.ex[i].buflow = 0;
1732                 }
1733                 np->tx_skb[i].skb = NULL;
1734                 np->tx_skb[i].dma = 0;
1735                 np->tx_skb[i].dma_len = 0;
1736                 np->tx_skb[i].first_tx_desc = NULL;
1737                 np->tx_skb[i].next_tx_ctx = NULL;
1738         }
1739 }
1740
1741 static int nv_init_ring(struct net_device *dev)
1742 {
1743         struct fe_priv *np = netdev_priv(dev);
1744
1745         nv_init_tx(dev);
1746         nv_init_rx(dev);
1747         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1748                 return nv_alloc_rx(dev);
1749         else
1750                 return nv_alloc_rx_optimized(dev);
1751 }
1752
1753 static int nv_release_txskb(struct net_device *dev, struct nv_skb_map* tx_skb)
1754 {
1755         struct fe_priv *np = netdev_priv(dev);
1756
1757         if (tx_skb->dma) {
1758                 pci_unmap_page(np->pci_dev, tx_skb->dma,
1759                                tx_skb->dma_len,
1760                                PCI_DMA_TODEVICE);
1761                 tx_skb->dma = 0;
1762         }
1763         if (tx_skb->skb) {
1764                 dev_kfree_skb_any(tx_skb->skb);
1765                 tx_skb->skb = NULL;
1766                 return 1;
1767         } else {
1768                 return 0;
1769         }
1770 }
1771
1772 static void nv_drain_tx(struct net_device *dev)
1773 {
1774         struct fe_priv *np = netdev_priv(dev);
1775         unsigned int i;
1776
1777         for (i = 0; i < np->tx_ring_size; i++) {
1778                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1779                         np->tx_ring.orig[i].flaglen = 0;
1780                         np->tx_ring.orig[i].buf = 0;
1781                 } else {
1782                         np->tx_ring.ex[i].flaglen = 0;
1783                         np->tx_ring.ex[i].txvlan = 0;
1784                         np->tx_ring.ex[i].bufhigh = 0;
1785                         np->tx_ring.ex[i].buflow = 0;
1786                 }
1787                 if (nv_release_txskb(dev, &np->tx_skb[i]))
1788                         dev->stats.tx_dropped++;
1789                 np->tx_skb[i].dma = 0;
1790                 np->tx_skb[i].dma_len = 0;
1791                 np->tx_skb[i].first_tx_desc = NULL;
1792                 np->tx_skb[i].next_tx_ctx = NULL;
1793         }
1794         np->tx_pkts_in_progress = 0;
1795         np->tx_change_owner = NULL;
1796         np->tx_end_flip = NULL;
1797 }
1798
1799 static void nv_drain_rx(struct net_device *dev)
1800 {
1801         struct fe_priv *np = netdev_priv(dev);
1802         int i;
1803
1804         for (i = 0; i < np->rx_ring_size; i++) {
1805                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1806                         np->rx_ring.orig[i].flaglen = 0;
1807                         np->rx_ring.orig[i].buf = 0;
1808                 } else {
1809                         np->rx_ring.ex[i].flaglen = 0;
1810                         np->rx_ring.ex[i].txvlan = 0;
1811                         np->rx_ring.ex[i].bufhigh = 0;
1812                         np->rx_ring.ex[i].buflow = 0;
1813                 }
1814                 wmb();
1815                 if (np->rx_skb[i].skb) {
1816                         pci_unmap_single(np->pci_dev, np->rx_skb[i].dma,
1817                                          (skb_end_pointer(np->rx_skb[i].skb) -
1818                                           np->rx_skb[i].skb->data),
1819                                          PCI_DMA_FROMDEVICE);
1820                         dev_kfree_skb(np->rx_skb[i].skb);
1821                         np->rx_skb[i].skb = NULL;
1822                 }
1823         }
1824 }
1825
1826 static void drain_ring(struct net_device *dev)
1827 {
1828         nv_drain_tx(dev);
1829         nv_drain_rx(dev);
1830 }
1831
1832 static inline u32 nv_get_empty_tx_slots(struct fe_priv *np)
1833 {
1834         return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size));
1835 }
1836
1837 /*
1838  * nv_start_xmit: dev->hard_start_xmit function
1839  * Called with netif_tx_lock held.
1840  */
1841 static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
1842 {
1843         struct fe_priv *np = netdev_priv(dev);
1844         u32 tx_flags = 0;
1845         u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
1846         unsigned int fragments = skb_shinfo(skb)->nr_frags;
1847         unsigned int i;
1848         u32 offset = 0;
1849         u32 bcnt;
1850         u32 size = skb->len-skb->data_len;
1851         u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1852         u32 empty_slots;
1853         struct ring_desc* put_tx;
1854         struct ring_desc* start_tx;
1855         struct ring_desc* prev_tx;
1856         struct nv_skb_map* prev_tx_ctx;
1857         unsigned long flags;
1858
1859         /* add fragments to entries count */
1860         for (i = 0; i < fragments; i++) {
1861                 entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
1862                            ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1863         }
1864
1865         empty_slots = nv_get_empty_tx_slots(np);
1866         if (unlikely(empty_slots <= entries)) {
1867                 spin_lock_irqsave(&np->lock, flags);
1868                 netif_stop_queue(dev);
1869                 np->tx_stop = 1;
1870                 spin_unlock_irqrestore(&np->lock, flags);
1871                 return NETDEV_TX_BUSY;
1872         }
1873
1874         start_tx = put_tx = np->put_tx.orig;
1875
1876         /* setup the header buffer */
1877         do {
1878                 prev_tx = put_tx;
1879                 prev_tx_ctx = np->put_tx_ctx;
1880                 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1881                 np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
1882                                                 PCI_DMA_TODEVICE);
1883                 np->put_tx_ctx->dma_len = bcnt;
1884                 put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
1885                 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
1886
1887                 tx_flags = np->tx_flags;
1888                 offset += bcnt;
1889                 size -= bcnt;
1890                 if (unlikely(put_tx++ == np->last_tx.orig))
1891                         put_tx = np->first_tx.orig;
1892                 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
1893                         np->put_tx_ctx = np->first_tx_ctx;
1894         } while (size);
1895
1896         /* setup the fragments */
1897         for (i = 0; i < fragments; i++) {
1898                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1899                 u32 size = frag->size;
1900                 offset = 0;
1901
1902                 do {
1903                         prev_tx = put_tx;
1904                         prev_tx_ctx = np->put_tx_ctx;
1905                         bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1906                         np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
1907                                                            PCI_DMA_TODEVICE);
1908                         np->put_tx_ctx->dma_len = bcnt;
1909                         put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
1910                         put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
1911
1912                         offset += bcnt;
1913                         size -= bcnt;
1914                         if (unlikely(put_tx++ == np->last_tx.orig))
1915                                 put_tx = np->first_tx.orig;
1916                         if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
1917                                 np->put_tx_ctx = np->first_tx_ctx;
1918                 } while (size);
1919         }
1920
1921         /* set last fragment flag  */
1922         prev_tx->flaglen |= cpu_to_le32(tx_flags_extra);
1923
1924         /* save skb in this slot's context area */
1925         prev_tx_ctx->skb = skb;
1926
1927         if (skb_is_gso(skb))
1928                 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
1929         else
1930                 tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
1931                          NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
1932
1933         spin_lock_irqsave(&np->lock, flags);
1934
1935         /* set tx flags */
1936         start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
1937         np->put_tx.orig = put_tx;
1938
1939         spin_unlock_irqrestore(&np->lock, flags);
1940
1941         dprintk(KERN_DEBUG "%s: nv_start_xmit: entries %d queued for transmission. tx_flags_extra: %x\n",
1942                 dev->name, entries, tx_flags_extra);
1943         {
1944                 int j;
1945                 for (j=0; j<64; j++) {
1946                         if ((j%16) == 0)
1947                                 dprintk("\n%03x:", j);
1948                         dprintk(" %02x", ((unsigned char*)skb->data)[j]);
1949                 }
1950                 dprintk("\n");
1951         }
1952
1953         dev->trans_start = jiffies;
1954         writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
1955         return NETDEV_TX_OK;
1956 }
1957
1958 static int nv_start_xmit_optimized(struct sk_buff *skb, struct net_device *dev)
1959 {
1960         struct fe_priv *np = netdev_priv(dev);
1961         u32 tx_flags = 0;
1962         u32 tx_flags_extra;
1963         unsigned int fragments = skb_shinfo(skb)->nr_frags;
1964         unsigned int i;
1965         u32 offset = 0;
1966         u32 bcnt;
1967         u32 size = skb->len-skb->data_len;
1968         u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1969         u32 empty_slots;
1970         struct ring_desc_ex* put_tx;
1971         struct ring_desc_ex* start_tx;
1972         struct ring_desc_ex* prev_tx;
1973         struct nv_skb_map* prev_tx_ctx;
1974         struct nv_skb_map* start_tx_ctx;
1975         unsigned long flags;
1976
1977         /* add fragments to entries count */
1978         for (i = 0; i < fragments; i++) {
1979                 entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
1980                            ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1981         }
1982
1983         empty_slots = nv_get_empty_tx_slots(np);
1984         if (unlikely(empty_slots <= entries)) {
1985                 spin_lock_irqsave(&np->lock, flags);
1986                 netif_stop_queue(dev);
1987                 np->tx_stop = 1;
1988                 spin_unlock_irqrestore(&np->lock, flags);
1989                 return NETDEV_TX_BUSY;
1990         }
1991
1992         start_tx = put_tx = np->put_tx.ex;
1993         start_tx_ctx = np->put_tx_ctx;
1994
1995         /* setup the header buffer */
1996         do {
1997                 prev_tx = put_tx;
1998                 prev_tx_ctx = np->put_tx_ctx;
1999                 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
2000                 np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
2001                                                 PCI_DMA_TODEVICE);
2002                 np->put_tx_ctx->dma_len = bcnt;
2003                 put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
2004                 put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
2005                 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
2006
2007                 tx_flags = NV_TX2_VALID;
2008                 offset += bcnt;
2009                 size -= bcnt;
2010                 if (unlikely(put_tx++ == np->last_tx.ex))
2011                         put_tx = np->first_tx.ex;
2012                 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
2013                         np->put_tx_ctx = np->first_tx_ctx;
2014         } while (size);
2015
2016         /* setup the fragments */
2017         for (i = 0; i < fragments; i++) {
2018                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2019                 u32 size = frag->size;
2020                 offset = 0;
2021
2022                 do {
2023                         prev_tx = put_tx;
2024                         prev_tx_ctx = np->put_tx_ctx;
2025                         bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
2026                         np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
2027                                                            PCI_DMA_TODEVICE);
2028                         np->put_tx_ctx->dma_len = bcnt;
2029                         put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
2030                         put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
2031                         put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
2032
2033                         offset += bcnt;
2034                         size -= bcnt;
2035                         if (unlikely(put_tx++ == np->last_tx.ex))
2036                                 put_tx = np->first_tx.ex;
2037                         if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
2038                                 np->put_tx_ctx = np->first_tx_ctx;
2039                 } while (size);
2040         }
2041
2042         /* set last fragment flag  */
2043         prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET);
2044
2045         /* save skb in this slot's context area */
2046         prev_tx_ctx->skb = skb;
2047
2048         if (skb_is_gso(skb))
2049                 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
2050         else
2051                 tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
2052                          NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
2053
2054         /* vlan tag */
2055         if (likely(!np->vlangrp)) {
2056                 start_tx->txvlan = 0;
2057         } else {
2058                 if (vlan_tx_tag_present(skb))
2059                         start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb));
2060                 else
2061                         start_tx->txvlan = 0;
2062         }
2063
2064         spin_lock_irqsave(&np->lock, flags);
2065
2066         if (np->tx_limit) {
2067                 /* Limit the number of outstanding tx. Setup all fragments, but
2068                  * do not set the VALID bit on the first descriptor. Save a pointer
2069                  * to that descriptor and also for next skb_map element.
2070                  */
2071
2072                 if (np->tx_pkts_in_progress == NV_TX_LIMIT_COUNT) {
2073                         if (!np->tx_change_owner)
2074                                 np->tx_change_owner = start_tx_ctx;
2075
2076                         /* remove VALID bit */
2077                         tx_flags &= ~NV_TX2_VALID;
2078                         start_tx_ctx->first_tx_desc = start_tx;
2079                         start_tx_ctx->next_tx_ctx = np->put_tx_ctx;
2080                         np->tx_end_flip = np->put_tx_ctx;
2081                 } else {
2082                         np->tx_pkts_in_progress++;
2083                 }
2084         }
2085
2086         /* set tx flags */
2087         start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
2088         np->put_tx.ex = put_tx;
2089
2090         spin_unlock_irqrestore(&np->lock, flags);
2091
2092         dprintk(KERN_DEBUG "%s: nv_start_xmit_optimized: entries %d queued for transmission. tx_flags_extra: %x\n",
2093                 dev->name, entries, tx_flags_extra);
2094         {
2095                 int j;
2096                 for (j=0; j<64; j++) {
2097                         if ((j%16) == 0)
2098                                 dprintk("\n%03x:", j);
2099                         dprintk(" %02x", ((unsigned char*)skb->data)[j]);
2100                 }
2101                 dprintk("\n");
2102         }
2103
2104         dev->trans_start = jiffies;
2105         writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2106         return NETDEV_TX_OK;
2107 }
2108
2109 static inline void nv_tx_flip_ownership(struct net_device *dev)
2110 {
2111         struct fe_priv *np = netdev_priv(dev);
2112
2113         np->tx_pkts_in_progress--;
2114         if (np->tx_change_owner) {
2115                 np->tx_change_owner->first_tx_desc->flaglen |=
2116                         cpu_to_le32(NV_TX2_VALID);
2117                 np->tx_pkts_in_progress++;
2118
2119                 np->tx_change_owner = np->tx_change_owner->next_tx_ctx;
2120                 if (np->tx_change_owner == np->tx_end_flip)
2121                         np->tx_change_owner = NULL;
2122
2123                 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2124         }
2125 }
2126
2127 /*
2128  * nv_tx_done: check for completed packets, release the skbs.
2129  *
2130  * Caller must own np->lock.
2131  */
2132 static void nv_tx_done(struct net_device *dev)
2133 {
2134         struct fe_priv *np = netdev_priv(dev);
2135         u32 flags;
2136         struct ring_desc* orig_get_tx = np->get_tx.orig;
2137
2138         while ((np->get_tx.orig != np->put_tx.orig) &&
2139                !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID)) {
2140
2141                 dprintk(KERN_DEBUG "%s: nv_tx_done: flags 0x%x.\n",
2142                                         dev->name, flags);
2143
2144                 pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
2145                                np->get_tx_ctx->dma_len,
2146                                PCI_DMA_TODEVICE);
2147                 np->get_tx_ctx->dma = 0;
2148
2149                 if (np->desc_ver == DESC_VER_1) {
2150                         if (flags & NV_TX_LASTPACKET) {
2151                                 if (flags & NV_TX_ERROR) {
2152                                         if (flags & NV_TX_UNDERFLOW)
2153                                                 dev->stats.tx_fifo_errors++;
2154                                         if (flags & NV_TX_CARRIERLOST)
2155                                                 dev->stats.tx_carrier_errors++;
2156                                         dev->stats.tx_errors++;
2157                                 } else {
2158                                         dev->stats.tx_packets++;
2159                                         dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
2160                                 }
2161                                 dev_kfree_skb_any(np->get_tx_ctx->skb);
2162                                 np->get_tx_ctx->skb = NULL;
2163                         }
2164                 } else {
2165                         if (flags & NV_TX2_LASTPACKET) {
2166                                 if (flags & NV_TX2_ERROR) {
2167                                         if (flags & NV_TX2_UNDERFLOW)
2168                                                 dev->stats.tx_fifo_errors++;
2169                                         if (flags & NV_TX2_CARRIERLOST)
2170                                                 dev->stats.tx_carrier_errors++;
2171                                         dev->stats.tx_errors++;
2172                                 } else {
2173                                         dev->stats.tx_packets++;
2174                                         dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
2175                                 }
2176                                 dev_kfree_skb_any(np->get_tx_ctx->skb);
2177                                 np->get_tx_ctx->skb = NULL;
2178                         }
2179                 }
2180                 if (unlikely(np->get_tx.orig++ == np->last_tx.orig))
2181                         np->get_tx.orig = np->first_tx.orig;
2182                 if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
2183                         np->get_tx_ctx = np->first_tx_ctx;
2184         }
2185         if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) {
2186                 np->tx_stop = 0;
2187                 netif_wake_queue(dev);
2188         }
2189 }
2190
2191 static void nv_tx_done_optimized(struct net_device *dev, int limit)
2192 {
2193         struct fe_priv *np = netdev_priv(dev);
2194         u32 flags;
2195         struct ring_desc_ex* orig_get_tx = np->get_tx.ex;
2196
2197         while ((np->get_tx.ex != np->put_tx.ex) &&
2198                !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX_VALID) &&
2199                (limit-- > 0)) {
2200
2201                 dprintk(KERN_DEBUG "%s: nv_tx_done_optimized: flags 0x%x.\n",
2202                                         dev->name, flags);
2203
2204                 pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
2205                                np->get_tx_ctx->dma_len,
2206                                PCI_DMA_TODEVICE);
2207                 np->get_tx_ctx->dma = 0;
2208
2209                 if (flags & NV_TX2_LASTPACKET) {
2210                         if (!(flags & NV_TX2_ERROR))
2211                                 dev->stats.tx_packets++;
2212                         dev_kfree_skb_any(np->get_tx_ctx->skb);
2213                         np->get_tx_ctx->skb = NULL;
2214
2215                         if (np->tx_limit) {
2216                                 nv_tx_flip_ownership(dev);
2217                         }
2218                 }
2219                 if (unlikely(np->get_tx.ex++ == np->last_tx.ex))
2220                         np->get_tx.ex = np->first_tx.ex;
2221                 if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
2222                         np->get_tx_ctx = np->first_tx_ctx;
2223         }
2224         if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) {
2225                 np->tx_stop = 0;
2226                 netif_wake_queue(dev);
2227         }
2228 }
2229
2230 /*
2231  * nv_tx_timeout: dev->tx_timeout function
2232  * Called with netif_tx_lock held.
2233  */
2234 static void nv_tx_timeout(struct net_device *dev)
2235 {
2236         struct fe_priv *np = netdev_priv(dev);
2237         u8 __iomem *base = get_hwbase(dev);
2238         u32 status;
2239
2240         if (np->msi_flags & NV_MSI_X_ENABLED)
2241                 status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
2242         else
2243                 status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
2244
2245         printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
2246
2247         {
2248                 int i;
2249
2250                 printk(KERN_INFO "%s: Ring at %lx\n",
2251                        dev->name, (unsigned long)np->ring_addr);
2252                 printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
2253                 for (i=0;i<=np->register_size;i+= 32) {
2254                         printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
2255                                         i,
2256                                         readl(base + i + 0), readl(base + i + 4),
2257                                         readl(base + i + 8), readl(base + i + 12),
2258                                         readl(base + i + 16), readl(base + i + 20),
2259                                         readl(base + i + 24), readl(base + i + 28));
2260                 }
2261                 printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
2262                 for (i=0;i<np->tx_ring_size;i+= 4) {
2263                         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
2264                                 printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
2265                                        i,
2266                                        le32_to_cpu(np->tx_ring.orig[i].buf),
2267                                        le32_to_cpu(np->tx_ring.orig[i].flaglen),
2268                                        le32_to_cpu(np->tx_ring.orig[i+1].buf),
2269                                        le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
2270                                        le32_to_cpu(np->tx_ring.orig[i+2].buf),
2271                                        le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
2272                                        le32_to_cpu(np->tx_ring.orig[i+3].buf),
2273                                        le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
2274                         } else {
2275                                 printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
2276                                        i,
2277                                        le32_to_cpu(np->tx_ring.ex[i].bufhigh),
2278                                        le32_to_cpu(np->tx_ring.ex[i].buflow),
2279                                        le32_to_cpu(np->tx_ring.ex[i].flaglen),
2280                                        le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
2281                                        le32_to_cpu(np->tx_ring.ex[i+1].buflow),
2282                                        le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
2283                                        le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
2284                                        le32_to_cpu(np->tx_ring.ex[i+2].buflow),
2285                                        le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
2286                                        le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
2287                                        le32_to_cpu(np->tx_ring.ex[i+3].buflow),
2288                                        le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
2289                         }
2290                 }
2291         }
2292
2293         spin_lock_irq(&np->lock);
2294
2295         /* 1) stop tx engine */
2296         nv_stop_tx(dev);
2297
2298         /* 2) check that the packets were not sent already: */
2299         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
2300                 nv_tx_done(dev);
2301         else
2302                 nv_tx_done_optimized(dev, np->tx_ring_size);
2303
2304         /* 3) if there are dead entries: clear everything */
2305         if (np->get_tx_ctx != np->put_tx_ctx) {
2306                 printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
2307                 nv_drain_tx(dev);
2308                 nv_init_tx(dev);
2309                 setup_hw_rings(dev, NV_SETUP_TX_RING);
2310         }
2311
2312         netif_wake_queue(dev);
2313
2314         /* 4) restart tx engine */
2315         nv_start_tx(dev);
2316         spin_unlock_irq(&np->lock);
2317 }
2318
2319 /*
2320  * Called when the nic notices a mismatch between the actual data len on the
2321  * wire and the len indicated in the 802 header
2322  */
2323 static int nv_getlen(struct net_device *dev, void *packet, int datalen)
2324 {
2325         int hdrlen;     /* length of the 802 header */
2326         int protolen;   /* length as stored in the proto field */
2327
2328         /* 1) calculate len according to header */
2329         if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
2330                 protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
2331                 hdrlen = VLAN_HLEN;
2332         } else {
2333                 protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
2334                 hdrlen = ETH_HLEN;
2335         }
2336         dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
2337                                 dev->name, datalen, protolen, hdrlen);
2338         if (protolen > ETH_DATA_LEN)
2339                 return datalen; /* Value in proto field not a len, no checks possible */
2340
2341         protolen += hdrlen;
2342         /* consistency checks: */
2343         if (datalen > ETH_ZLEN) {
2344                 if (datalen >= protolen) {
2345                         /* more data on wire than in 802 header, trim of
2346                          * additional data.
2347                          */
2348                         dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
2349                                         dev->name, protolen);
2350                         return protolen;
2351                 } else {
2352                         /* less data on wire than mentioned in header.
2353                          * Discard the packet.
2354                          */
2355                         dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
2356                                         dev->name);
2357                         return -1;
2358                 }
2359         } else {
2360                 /* short packet. Accept only if 802 values are also short */
2361                 if (protolen > ETH_ZLEN) {
2362                         dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
2363                                         dev->name);
2364                         return -1;
2365                 }
2366                 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
2367                                 dev->name, datalen);
2368                 return datalen;
2369         }
2370 }
2371
2372 static int nv_rx_process(struct net_device *dev, int limit)
2373 {
2374         struct fe_priv *np = netdev_priv(dev);
2375         u32 flags;
2376         int rx_work = 0;
2377         struct sk_buff *skb;
2378         int len;
2379
2380         while((np->get_rx.orig != np->put_rx.orig) &&
2381               !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) &&
2382                 (rx_work < limit)) {
2383
2384                 dprintk(KERN_DEBUG "%s: nv_rx_process: flags 0x%x.\n",
2385                                         dev->name, flags);
2386
2387                 /*
2388                  * the packet is for us - immediately tear down the pci mapping.
2389                  * TODO: check if a prefetch of the first cacheline improves
2390                  * the performance.
2391                  */
2392                 pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
2393                                 np->get_rx_ctx->dma_len,
2394                                 PCI_DMA_FROMDEVICE);
2395                 skb = np->get_rx_ctx->skb;
2396                 np->get_rx_ctx->skb = NULL;
2397
2398                 {
2399                         int j;
2400                         dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
2401                         for (j=0; j<64; j++) {
2402                                 if ((j%16) == 0)
2403                                         dprintk("\n%03x:", j);
2404                                 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
2405                         }
2406                         dprintk("\n");
2407                 }
2408                 /* look at what we actually got: */
2409                 if (np->desc_ver == DESC_VER_1) {
2410                         if (likely(flags & NV_RX_DESCRIPTORVALID)) {
2411                                 len = flags & LEN_MASK_V1;
2412                                 if (unlikely(flags & NV_RX_ERROR)) {
2413                                         if (flags & NV_RX_ERROR4) {
2414                                                 len = nv_getlen(dev, skb->data, len);
2415                                                 if (len < 0) {
2416                                                         dev->stats.rx_errors++;
2417                                                         dev_kfree_skb(skb);
2418                                                         goto next_pkt;
2419                                                 }
2420                                         }
2421                                         /* framing errors are soft errors */
2422                                         else if (flags & NV_RX_FRAMINGERR) {
2423                                                 if (flags & NV_RX_SUBSTRACT1) {
2424                                                         len--;
2425                                                 }
2426                                         }
2427                                         /* the rest are hard errors */
2428                                         else {
2429                                                 if (flags & NV_RX_MISSEDFRAME)
2430                                                         dev->stats.rx_missed_errors++;
2431                                                 if (flags & NV_RX_CRCERR)
2432                                                         dev->stats.rx_crc_errors++;
2433                                                 if (flags & NV_RX_OVERFLOW)
2434                                                         dev->stats.rx_over_errors++;
2435                                                 dev->stats.rx_errors++;
2436                                                 dev_kfree_skb(skb);
2437                                                 goto next_pkt;
2438                                         }
2439                                 }
2440                         } else {
2441                                 dev_kfree_skb(skb);
2442                                 goto next_pkt;
2443                         }
2444                 } else {
2445                         if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
2446                                 len = flags & LEN_MASK_V2;
2447                                 if (unlikely(flags & NV_RX2_ERROR)) {
2448                                         if (flags & NV_RX2_ERROR4) {
2449                                                 len = nv_getlen(dev, skb->data, len);
2450                                                 if (len < 0) {
2451                                                         dev->stats.rx_errors++;
2452                                                         dev_kfree_skb(skb);
2453                                                         goto next_pkt;
2454                                                 }
2455                                         }
2456                                         /* framing errors are soft errors */
2457                                         else if (flags & NV_RX2_FRAMINGERR) {
2458                                                 if (flags & NV_RX2_SUBSTRACT1) {
2459                                                         len--;
2460                                                 }
2461                                         }
2462                                         /* the rest are hard errors */
2463                                         else {
2464                                                 if (flags & NV_RX2_CRCERR)
2465                                                         dev->stats.rx_crc_errors++;
2466                                                 if (flags & NV_RX2_OVERFLOW)
2467                                                         dev->stats.rx_over_errors++;
2468                                                 dev->stats.rx_errors++;
2469                                                 dev_kfree_skb(skb);
2470                                                 goto next_pkt;
2471                                         }
2472                                 }
2473                                 if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
2474                                     ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP))   /*ip and udp */
2475                                         skb->ip_summed = CHECKSUM_UNNECESSARY;
2476                         } else {
2477                                 dev_kfree_skb(skb);
2478                                 goto next_pkt;
2479                         }
2480                 }
2481                 /* got a valid packet - forward it to the network core */
2482                 skb_put(skb, len);
2483                 skb->protocol = eth_type_trans(skb, dev);
2484                 dprintk(KERN_DEBUG "%s: nv_rx_process: %d bytes, proto %d accepted.\n",
2485                                         dev->name, len, skb->protocol);
2486 #ifdef CONFIG_FORCEDETH_NAPI
2487                 netif_receive_skb(skb);
2488 #else
2489                 netif_rx(skb);
2490 #endif
2491                 dev->last_rx = jiffies;
2492                 dev->stats.rx_packets++;
2493                 dev->stats.rx_bytes += len;
2494 next_pkt:
2495                 if (unlikely(np->get_rx.orig++ == np->last_rx.orig))
2496                         np->get_rx.orig = np->first_rx.orig;
2497                 if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
2498                         np->get_rx_ctx = np->first_rx_ctx;
2499
2500                 rx_work++;
2501         }
2502
2503         return rx_work;
2504 }
2505
2506 static int nv_rx_process_optimized(struct net_device *dev, int limit)
2507 {
2508         struct fe_priv *np = netdev_priv(dev);
2509         u32 flags;
2510         u32 vlanflags = 0;
2511         int rx_work = 0;
2512         struct sk_buff *skb;
2513         int len;
2514
2515         while((np->get_rx.ex != np->put_rx.ex) &&
2516               !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) &&
2517               (rx_work < limit)) {
2518
2519                 dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: flags 0x%x.\n",
2520                                         dev->name, flags);
2521
2522                 /*
2523                  * the packet is for us - immediately tear down the pci mapping.
2524                  * TODO: check if a prefetch of the first cacheline improves
2525                  * the performance.
2526                  */
2527                 pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
2528                                 np->get_rx_ctx->dma_len,
2529                                 PCI_DMA_FROMDEVICE);
2530                 skb = np->get_rx_ctx->skb;
2531                 np->get_rx_ctx->skb = NULL;
2532
2533                 {
2534                         int j;
2535                         dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
2536                         for (j=0; j<64; j++) {
2537                                 if ((j%16) == 0)
2538                                         dprintk("\n%03x:", j);
2539                                 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
2540                         }
2541                         dprintk("\n");
2542                 }
2543                 /* look at what we actually got: */
2544                 if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
2545                         len = flags & LEN_MASK_V2;
2546                         if (unlikely(flags & NV_RX2_ERROR)) {
2547                                 if (flags & NV_RX2_ERROR4) {
2548                                         len = nv_getlen(dev, skb->data, len);
2549                                         if (len < 0) {
2550                                                 dev_kfree_skb(skb);
2551                                                 goto next_pkt;
2552                                         }
2553                                 }
2554                                 /* framing errors are soft errors */
2555                                 else if (flags & NV_RX2_FRAMINGERR) {
2556                                         if (flags & NV_RX2_SUBSTRACT1) {
2557                                                 len--;
2558                                         }
2559                                 }
2560                                 /* the rest are hard errors */
2561                                 else {
2562                                         dev_kfree_skb(skb);
2563                                         goto next_pkt;
2564                                 }
2565                         }
2566
2567                         if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
2568                             ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP))   /*ip and udp */
2569                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2570
2571                         /* got a valid packet - forward it to the network core */
2572                         skb_put(skb, len);
2573                         skb->protocol = eth_type_trans(skb, dev);
2574                         prefetch(skb->data);
2575
2576                         dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: %d bytes, proto %d accepted.\n",
2577                                 dev->name, len, skb->protocol);
2578
2579                         if (likely(!np->vlangrp)) {
2580 #ifdef CONFIG_FORCEDETH_NAPI
2581                                 netif_receive_skb(skb);
2582 #else
2583                                 netif_rx(skb);
2584 #endif
2585                         } else {
2586                                 vlanflags = le32_to_cpu(np->get_rx.ex->buflow);
2587                                 if (vlanflags & NV_RX3_VLAN_TAG_PRESENT) {
2588 #ifdef CONFIG_FORCEDETH_NAPI
2589                                         vlan_hwaccel_receive_skb(skb, np->vlangrp,
2590                                                                  vlanflags & NV_RX3_VLAN_TAG_MASK);
2591 #else
2592                                         vlan_hwaccel_rx(skb, np->vlangrp,
2593                                                         vlanflags & NV_RX3_VLAN_TAG_MASK);
2594 #endif
2595                                 } else {
2596 #ifdef CONFIG_FORCEDETH_NAPI
2597                                         netif_receive_skb(skb);
2598 #else
2599                                         netif_rx(skb);
2600 #endif
2601                                 }
2602                         }
2603
2604                         dev->last_rx = jiffies;
2605                         dev->stats.rx_packets++;
2606                         dev->stats.rx_bytes += len;
2607                 } else {
2608                         dev_kfree_skb(skb);
2609                 }
2610 next_pkt:
2611                 if (unlikely(np->get_rx.ex++ == np->last_rx.ex))
2612                         np->get_rx.ex = np->first_rx.ex;
2613                 if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
2614                         np->get_rx_ctx = np->first_rx_ctx;
2615
2616                 rx_work++;
2617         }
2618
2619         return rx_work;
2620 }
2621
2622 static void set_bufsize(struct net_device *dev)
2623 {
2624         struct fe_priv *np = netdev_priv(dev);
2625
2626         if (dev->mtu <= ETH_DATA_LEN)
2627                 np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
2628         else
2629                 np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
2630 }
2631
2632 /*
2633  * nv_change_mtu: dev->change_mtu function
2634  * Called with dev_base_lock held for read.
2635  */
2636 static int nv_change_mtu(struct net_device *dev, int new_mtu)
2637 {
2638         struct fe_priv *np = netdev_priv(dev);
2639         int old_mtu;
2640
2641         if (new_mtu < 64 || new_mtu > np->pkt_limit)
2642                 return -EINVAL;
2643
2644         old_mtu = dev->mtu;
2645         dev->mtu = new_mtu;
2646
2647         /* return early if the buffer sizes will not change */
2648         if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
2649                 return 0;
2650         if (old_mtu == new_mtu)
2651                 return 0;
2652
2653         /* synchronized against open : rtnl_lock() held by caller */
2654         if (netif_running(dev)) {
2655                 u8 __iomem *base = get_hwbase(dev);
2656                 /*
2657                  * It seems that the nic preloads valid ring entries into an
2658                  * internal buffer. The procedure for flushing everything is
2659                  * guessed, there is probably a simpler approach.
2660                  * Changing the MTU is a rare event, it shouldn't matter.
2661                  */
2662                 nv_disable_irq(dev);
2663                 netif_tx_lock_bh(dev);
2664                 spin_lock(&np->lock);
2665                 /* stop engines */
2666                 nv_stop_rx(dev);
2667                 nv_stop_tx(dev);
2668                 nv_txrx_reset(dev);
2669                 /* drain rx queue */
2670                 nv_drain_rx(dev);
2671                 nv_drain_tx(dev);
2672                 /* reinit driver view of the rx queue */
2673                 set_bufsize(dev);
2674                 if (nv_init_ring(dev)) {
2675                         if (!np->in_shutdown)
2676                                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2677                 }
2678                 /* reinit nic view of the rx queue */
2679                 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
2680                 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
2681                 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
2682                         base + NvRegRingSizes);
2683                 pci_push(base);
2684                 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2685                 pci_push(base);
2686
2687                 /* restart rx engine */
2688                 nv_start_rx(dev);
2689                 nv_start_tx(dev);
2690                 spin_unlock(&np->lock);
2691                 netif_tx_unlock_bh(dev);
2692                 nv_enable_irq(dev);
2693         }
2694         return 0;
2695 }
2696
2697 static void nv_copy_mac_to_hw(struct net_device *dev)
2698 {
2699         u8 __iomem *base = get_hwbase(dev);
2700         u32 mac[2];
2701
2702         mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
2703                         (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
2704         mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
2705
2706         writel(mac[0], base + NvRegMacAddrA);
2707         writel(mac[1], base + NvRegMacAddrB);
2708 }
2709
2710 /*
2711  * nv_set_mac_address: dev->set_mac_address function
2712  * Called with rtnl_lock() held.
2713  */
2714 static int nv_set_mac_address(struct net_device *dev, void *addr)
2715 {
2716         struct fe_priv *np = netdev_priv(dev);
2717         struct sockaddr *macaddr = (struct sockaddr*)addr;
2718
2719         if (!is_valid_ether_addr(macaddr->sa_data))
2720                 return -EADDRNOTAVAIL;
2721
2722         /* synchronized against open : rtnl_lock() held by caller */
2723         memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
2724
2725         if (netif_running(dev)) {
2726                 netif_tx_lock_bh(dev);
2727                 spin_lock_irq(&np->lock);
2728
2729                 /* stop rx engine */
2730                 nv_stop_rx(dev);
2731
2732                 /* set mac address */
2733                 nv_copy_mac_to_hw(dev);
2734
2735                 /* restart rx engine */
2736                 nv_start_rx(dev);
2737                 spin_unlock_irq(&np->lock);
2738                 netif_tx_unlock_bh(dev);
2739         } else {
2740                 nv_copy_mac_to_hw(dev);
2741         }
2742         return 0;
2743 }
2744
2745 /*
2746  * nv_set_multicast: dev->set_multicast function
2747  * Called with netif_tx_lock held.
2748  */
2749 static void nv_set_multicast(struct net_device *dev)
2750 {
2751         struct fe_priv *np = netdev_priv(dev);
2752         u8 __iomem *base = get_hwbase(dev);
2753         u32 addr[2];
2754         u32 mask[2];
2755         u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
2756
2757         memset(addr, 0, sizeof(addr));
2758         memset(mask, 0, sizeof(mask));
2759
2760         if (dev->flags & IFF_PROMISC) {
2761                 pff |= NVREG_PFF_PROMISC;
2762         } else {
2763                 pff |= NVREG_PFF_MYADDR;
2764
2765                 if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
2766                         u32 alwaysOff[2];
2767                         u32 alwaysOn[2];
2768
2769                         alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
2770                         if (dev->flags & IFF_ALLMULTI) {
2771                                 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
2772                         } else {
2773                                 struct dev_mc_list *walk;
2774
2775                                 walk = dev->mc_list;
2776                                 while (walk != NULL) {
2777                                         u32 a, b;
2778                                         a = le32_to_cpu(*(__le32 *) walk->dmi_addr);
2779                                         b = le16_to_cpu(*(__le16 *) (&walk->dmi_addr[4]));
2780                                         alwaysOn[0] &= a;
2781                                         alwaysOff[0] &= ~a;
2782                                         alwaysOn[1] &= b;
2783                                         alwaysOff[1] &= ~b;
2784                                         walk = walk->next;
2785                                 }
2786                         }
2787                         addr[0] = alwaysOn[0];
2788                         addr[1] = alwaysOn[1];
2789                         mask[0] = alwaysOn[0] | alwaysOff[0];
2790                         mask[1] = alwaysOn[1] | alwaysOff[1];
2791                 } else {
2792                         mask[0] = NVREG_MCASTMASKA_NONE;
2793                         mask[1] = NVREG_MCASTMASKB_NONE;
2794                 }
2795         }
2796         addr[0] |= NVREG_MCASTADDRA_FORCE;
2797         pff |= NVREG_PFF_ALWAYS;
2798         spin_lock_irq(&np->lock);
2799         nv_stop_rx(dev);
2800         writel(addr[0], base + NvRegMulticastAddrA);
2801         writel(addr[1], base + NvRegMulticastAddrB);
2802         writel(mask[0], base + NvRegMulticastMaskA);
2803         writel(mask[1], base + NvRegMulticastMaskB);
2804         writel(pff, base + NvRegPacketFilterFlags);
2805         dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
2806                 dev->name);
2807         nv_start_rx(dev);
2808         spin_unlock_irq(&np->lock);
2809 }
2810
2811 static void nv_update_pause(struct net_device *dev, u32 pause_flags)
2812 {
2813         struct fe_priv *np = netdev_priv(dev);
2814         u8 __iomem *base = get_hwbase(dev);
2815
2816         np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
2817
2818         if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
2819                 u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
2820                 if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
2821                         writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
2822                         np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2823                 } else {
2824                         writel(pff, base + NvRegPacketFilterFlags);
2825                 }
2826         }
2827         if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
2828                 u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
2829                 if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
2830                         u32 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V1;
2831                         if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V2)
2832                                 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V2;
2833                         if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V3)
2834                                 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V3;
2835                         writel(pause_enable,  base + NvRegTxPauseFrame);
2836                         writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
2837                         np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2838                 } else {
2839                         writel(NVREG_TX_PAUSEFRAME_DISABLE,  base + NvRegTxPauseFrame);
2840                         writel(regmisc, base + NvRegMisc1);
2841                 }
2842         }
2843 }
2844
2845 /**
2846  * nv_update_linkspeed: Setup the MAC according to the link partner
2847  * @dev: Network device to be configured
2848  *
2849  * The function queries the PHY and checks if there is a link partner.
2850  * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
2851  * set to 10 MBit HD.
2852  *
2853  * The function returns 0 if there is no link partner and 1 if there is
2854  * a good link partner.
2855  */
2856 static int nv_update_linkspeed(struct net_device *dev)
2857 {
2858         struct fe_priv *np = netdev_priv(dev);
2859         u8 __iomem *base = get_hwbase(dev);
2860         int adv = 0;
2861         int lpa = 0;
2862         int adv_lpa, adv_pause, lpa_pause;
2863         int newls = np->linkspeed;
2864         int newdup = np->duplex;
2865         int mii_status;
2866         int retval = 0;
2867         u32 control_1000, status_1000, phyreg, pause_flags, txreg;
2868         u32 txrxFlags = 0;
2869         u32 phy_exp;
2870
2871         /* BMSR_LSTATUS is latched, read it twice:
2872          * we want the current value.
2873          */
2874         mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
2875         mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
2876
2877         if (!(mii_status & BMSR_LSTATUS)) {
2878                 dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
2879                                 dev->name);
2880                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2881                 newdup = 0;
2882                 retval = 0;
2883                 goto set_speed;
2884         }
2885
2886         if (np->autoneg == 0) {
2887                 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
2888                                 dev->name, np->fixed_mode);
2889                 if (np->fixed_mode & LPA_100FULL) {
2890                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2891                         newdup = 1;
2892                 } else if (np->fixed_mode & LPA_100HALF) {
2893                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2894                         newdup = 0;
2895                 } else if (np->fixed_mode & LPA_10FULL) {
2896                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2897                         newdup = 1;
2898                 } else {
2899                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2900                         newdup = 0;
2901                 }
2902                 retval = 1;
2903                 goto set_speed;
2904         }
2905         /* check auto negotiation is complete */
2906         if (!(mii_status & BMSR_ANEGCOMPLETE)) {
2907                 /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
2908                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2909                 newdup = 0;
2910                 retval = 0;
2911                 dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
2912                 goto set_speed;
2913         }
2914
2915         adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2916         lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
2917         dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
2918                                 dev->name, adv, lpa);
2919
2920         retval = 1;
2921         if (np->gigabit == PHY_GIGABIT) {
2922                 control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
2923                 status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
2924
2925                 if ((control_1000 & ADVERTISE_1000FULL) &&
2926                         (status_1000 & LPA_1000FULL)) {
2927                         dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
2928                                 dev->name);
2929                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
2930                         newdup = 1;
2931                         goto set_speed;
2932                 }
2933         }
2934
2935         /* FIXME: handle parallel detection properly */
2936         adv_lpa = lpa & adv;
2937         if (adv_lpa & LPA_100FULL) {
2938                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2939                 newdup = 1;
2940         } else if (adv_lpa & LPA_100HALF) {
2941                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2942                 newdup = 0;
2943         } else if (adv_lpa & LPA_10FULL) {
2944                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2945                 newdup = 1;
2946         } else if (adv_lpa & LPA_10HALF) {
2947                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2948                 newdup = 0;
2949         } else {
2950                 dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
2951                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2952                 newdup = 0;
2953         }
2954
2955 set_speed:
2956         if (np->duplex == newdup && np->linkspeed == newls)
2957                 return retval;
2958
2959         dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
2960                         dev->name, np->linkspeed, np->duplex, newls, newdup);
2961
2962         np->duplex = newdup;
2963         np->linkspeed = newls;
2964
2965         /* The transmitter and receiver must be restarted for safe update */
2966         if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START) {
2967                 txrxFlags |= NV_RESTART_TX;
2968                 nv_stop_tx(dev);
2969         }
2970         if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
2971                 txrxFlags |= NV_RESTART_RX;
2972                 nv_stop_rx(dev);
2973         }
2974
2975         if (np->gigabit == PHY_GIGABIT) {
2976                 phyreg = readl(base + NvRegRandomSeed);
2977                 phyreg &= ~(0x3FF00);
2978                 if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
2979                         phyreg |= NVREG_RNDSEED_FORCE3;
2980                 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
2981                         phyreg |= NVREG_RNDSEED_FORCE2;
2982                 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
2983                         phyreg |= NVREG_RNDSEED_FORCE;
2984                 writel(phyreg, base + NvRegRandomSeed);
2985         }
2986
2987         phyreg = readl(base + NvRegPhyInterface);
2988         phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
2989         if (np->duplex == 0)
2990                 phyreg |= PHY_HALF;
2991         if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
2992                 phyreg |= PHY_100;
2993         else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
2994                 phyreg |= PHY_1000;
2995         writel(phyreg, base + NvRegPhyInterface);
2996
2997         phy_exp = mii_rw(dev, np->phyaddr, MII_EXPANSION, MII_READ) & EXPANSION_NWAY; /* autoneg capable */
2998         if (phyreg & PHY_RGMII) {
2999                 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) {
3000                         txreg = NVREG_TX_DEFERRAL_RGMII_1000;
3001                 } else {
3002                         if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX)) {
3003                                 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_10)
3004                                         txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_10;
3005                                 else
3006                                         txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_100;
3007                         } else {
3008                                 txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
3009                         }
3010                 }
3011         } else {
3012                 if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX))
3013                         txreg = NVREG_TX_DEFERRAL_MII_STRETCH;
3014                 else
3015                         txreg = NVREG_TX_DEFERRAL_DEFAULT;
3016         }
3017         writel(txreg, base + NvRegTxDeferral);
3018
3019         if (np->desc_ver == DESC_VER_1) {
3020                 txreg = NVREG_TX_WM_DESC1_DEFAULT;
3021         } else {
3022                 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
3023                         txreg = NVREG_TX_WM_DESC2_3_1000;
3024                 else
3025                         txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
3026         }
3027         writel(txreg, base + NvRegTxWatermark);
3028
3029         writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
3030                 base + NvRegMisc1);
3031         pci_push(base);
3032         writel(np->linkspeed, base + NvRegLinkSpeed);
3033         pci_push(base);
3034
3035         pause_flags = 0;
3036         /* setup pause frame */
3037         if (np->duplex != 0) {
3038                 if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
3039                         adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
3040                         lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
3041
3042                         switch (adv_pause) {
3043                         case ADVERTISE_PAUSE_CAP:
3044                                 if (lpa_pause & LPA_PAUSE_CAP) {
3045                                         pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3046                                         if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
3047                                                 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3048                                 }
3049                                 break;
3050                         case ADVERTISE_PAUSE_ASYM:
3051                                 if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
3052                                 {
3053                                         pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3054                                 }
3055                                 break;
3056                         case ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM:
3057                                 if (lpa_pause & LPA_PAUSE_CAP)
3058                                 {
3059                                         pause_flags |=  NV_PAUSEFRAME_RX_ENABLE;
3060                                         if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
3061                                                 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3062                                 }
3063                                 if (lpa_pause == LPA_PAUSE_ASYM)
3064                                 {
3065                                         pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3066                                 }
3067                                 break;
3068                         }
3069                 } else {
3070                         pause_flags = np->pause_flags;
3071                 }
3072         }
3073         nv_update_pause(dev, pause_flags);
3074
3075         if (txrxFlags & NV_RESTART_TX)
3076                 nv_start_tx(dev);
3077         if (txrxFlags & NV_RESTART_RX)
3078                 nv_start_rx(dev);
3079
3080         return retval;
3081 }
3082
3083 static void nv_linkchange(struct net_device *dev)
3084 {
3085         if (nv_update_linkspeed(dev)) {
3086                 if (!netif_carrier_ok(dev)) {
3087                         netif_carrier_on(dev);
3088                         printk(KERN_INFO "%s: link up.\n", dev->name);
3089                         nv_start_rx(dev);
3090                 }
3091         } else {
3092                 if (netif_carrier_ok(dev)) {
3093                         netif_carrier_off(dev);
3094                         printk(KERN_INFO "%s: link down.\n", dev->name);
3095                         nv_stop_rx(dev);
3096                 }
3097         }
3098 }
3099
3100 static void nv_link_irq(struct net_device *dev)
3101 {
3102         u8 __iomem *base = get_hwbase(dev);
3103         u32 miistat;
3104
3105         miistat = readl(base + NvRegMIIStatus);
3106         writel(NVREG_MIISTAT_LINKCHANGE, base + NvRegMIIStatus);
3107         dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
3108
3109         if (miistat & (NVREG_MIISTAT_LINKCHANGE))
3110                 nv_linkchange(dev);
3111         dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
3112 }
3113
3114 static irqreturn_t nv_nic_irq(int foo, void *data)
3115 {
3116         struct net_device *dev = (struct net_device *) data;
3117         struct fe_priv *np = netdev_priv(dev);
3118         u8 __iomem *base = get_hwbase(dev);
3119         u32 events;
3120         int i;
3121
3122         dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
3123
3124         for (i=0; ; i++) {
3125                 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3126                         events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
3127                         writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
3128                 } else {
3129                         events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
3130                         writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
3131                 }
3132                 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
3133                 if (!(events & np->irqmask))
3134                         break;
3135
3136                 spin_lock(&np->lock);
3137                 nv_tx_done(dev);
3138                 spin_unlock(&np->lock);
3139
3140 #ifdef CONFIG_FORCEDETH_NAPI
3141                 if (events & NVREG_IRQ_RX_ALL) {
3142                         netif_rx_schedule(dev, &np->napi);
3143
3144                         /* Disable furthur receive irq's */
3145                         spin_lock(&np->lock);
3146                         np->irqmask &= ~NVREG_IRQ_RX_ALL;
3147
3148                         if (np->msi_flags & NV_MSI_X_ENABLED)
3149                                 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
3150                         else
3151                                 writel(np->irqmask, base + NvRegIrqMask);
3152                         spin_unlock(&np->lock);
3153                 }
3154 #else
3155                 if (nv_rx_process(dev, RX_WORK_PER_LOOP)) {
3156                         if (unlikely(nv_alloc_rx(dev))) {
3157                                 spin_lock(&np->lock);
3158                                 if (!np->in_shutdown)
3159                                         mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3160                                 spin_unlock(&np->lock);
3161                         }
3162                 }
3163 #endif
3164                 if (unlikely(events & NVREG_IRQ_LINK)) {
3165                         spin_lock(&np->lock);
3166                         nv_link_irq(dev);
3167                         spin_unlock(&np->lock);
3168                 }
3169                 if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
3170                         spin_lock(&np->lock);
3171                         nv_linkchange(dev);
3172                         spin_unlock(&np->lock);
3173                         np->link_timeout = jiffies + LINK_TIMEOUT;
3174                 }
3175                 if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
3176                         dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
3177                                                 dev->name, events);
3178                 }
3179                 if (unlikely(events & (NVREG_IRQ_UNKNOWN))) {
3180                         printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
3181                                                 dev->name, events);
3182                 }
3183                 if (unlikely(events & NVREG_IRQ_RECOVER_ERROR)) {
3184                         spin_lock(&np->lock);
3185                         /* disable interrupts on the nic */
3186                         if (!(np->msi_flags & NV_MSI_X_ENABLED))
3187                                 writel(0, base + NvRegIrqMask);
3188                         else
3189                                 writel(np->irqmask, base + NvRegIrqMask);
3190                         pci_push(base);
3191
3192                         if (!np->in_shutdown) {
3193                                 np->nic_poll_irq = np->irqmask;
3194                                 np->recover_error = 1;
3195                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3196                         }
3197                         spin_unlock(&np->lock);
3198                         break;
3199                 }
3200                 if (unlikely(i > max_interrupt_work)) {
3201                         spin_lock(&np->lock);
3202                         /* disable interrupts on the nic */
3203                         if (!(np->msi_flags & NV_MSI_X_ENABLED))
3204                                 writel(0, base + NvRegIrqMask);
3205                         else
3206                                 writel(np->irqmask, base + NvRegIrqMask);
3207                         pci_push(base);
3208
3209                         if (!np->in_shutdown) {
3210                                 np->nic_poll_irq = np->irqmask;
3211                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3212                         }
3213                         spin_unlock(&np->lock);
3214                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
3215                         break;
3216                 }
3217
3218         }
3219         dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
3220
3221         return IRQ_RETVAL(i);
3222 }
3223
3224 /**
3225  * All _optimized functions are used to help increase performance
3226  * (reduce CPU and increase throughput). They use descripter version 3,
3227  * compiler directives, and reduce memory accesses.
3228  */
3229 static irqreturn_t nv_nic_irq_optimized(int foo, void *data)
3230 {
3231         struct net_device *dev = (struct net_device *) data;
3232         struct fe_priv *np = netdev_priv(dev);
3233         u8 __iomem *base = get_hwbase(dev);
3234         u32 events;
3235         int i;
3236
3237         dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized\n", dev->name);
3238
3239         for (i=0; ; i++) {
3240                 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3241                         events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
3242                         writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
3243                 } else {
3244                         events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
3245                         writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
3246                 }
3247                 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
3248                 if (!(events & np->irqmask))
3249                         break;
3250
3251                 spin_lock(&np->lock);
3252                 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
3253                 spin_unlock(&np->lock);
3254
3255 #ifdef CONFIG_FORCEDETH_NAPI
3256                 if (events & NVREG_IRQ_RX_ALL) {
3257                         netif_rx_schedule(dev, &np->napi);
3258
3259                         /* Disable furthur receive irq's */
3260                         spin_lock(&np->lock);
3261                         np->irqmask &= ~NVREG_IRQ_RX_ALL;
3262
3263                         if (np->msi_flags & NV_MSI_X_ENABLED)
3264                                 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
3265                         else
3266                                 writel(np->irqmask, base + NvRegIrqMask);
3267                         spin_unlock(&np->lock);
3268                 }
3269 #else
3270                 if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
3271                         if (unlikely(nv_alloc_rx_optimized(dev))) {
3272                                 spin_lock(&np->lock);
3273                                 if (!np->in_shutdown)
3274                                         mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3275                                 spin_unlock(&np->lock);
3276                         }
3277                 }
3278 #endif
3279                 if (unlikely(events & NVREG_IRQ_LINK)) {
3280                         spin_lock(&np->lock);
3281                         nv_link_irq(dev);
3282                         spin_unlock(&np->lock);
3283                 }
3284                 if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
3285                         spin_lock(&np->lock);
3286                         nv_linkchange(dev);
3287                         spin_unlock(&np->lock);
3288                         np->link_timeout = jiffies + LINK_TIMEOUT;
3289                 }
3290                 if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
3291                         dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
3292                                                 dev->name, events);
3293                 }
3294                 if (unlikely(events & (NVREG_IRQ_UNKNOWN))) {
3295                         printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
3296                                                 dev->name, events);
3297                 }
3298                 if (unlikely(events & NVREG_IRQ_RECOVER_ERROR)) {
3299                         spin_lock(&np->lock);
3300                         /* disable interrupts on the nic */
3301                         if (!(np->msi_flags & NV_MSI_X_ENABLED))
3302                                 writel(0, base + NvRegIrqMask);
3303                         else
3304                                 writel(np->irqmask, base + NvRegIrqMask);
3305                         pci_push(base);
3306
3307                         if (!np->in_shutdown) {
3308                                 np->nic_poll_irq = np->irqmask;
3309                                 np->recover_error = 1;
3310                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3311                         }
3312                         spin_unlock(&np->lock);
3313                         break;
3314                 }
3315
3316                 if (unlikely(i > max_interrupt_work)) {
3317                         spin_lock(&np->lock);
3318                         /* disable interrupts on the nic */
3319                         if (!(np->msi_flags & NV_MSI_X_ENABLED))
3320                                 writel(0, base + NvRegIrqMask);
3321                         else
3322                                 writel(np->irqmask, base + NvRegIrqMask);
3323                         pci_push(base);
3324
3325                         if (!np->in_shutdown) {
3326                                 np->nic_poll_irq = np->irqmask;
3327                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3328                         }
3329                         spin_unlock(&np->lock);
3330                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
3331                         break;
3332                 }
3333
3334         }
3335         dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized completed\n", dev->name);
3336
3337         return IRQ_RETVAL(i);
3338 }
3339
3340 static irqreturn_t nv_nic_irq_tx(int foo, void *data)
3341 {
3342         struct net_device *dev = (struct net_device *) data;
3343         struct fe_priv *np = netdev_priv(dev);
3344         u8 __iomem *base = get_hwbase(dev);
3345         u32 events;
3346         int i;
3347         unsigned long flags;
3348
3349         dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
3350
3351         for (i=0; ; i++) {
3352                 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
3353                 writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
3354                 dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
3355                 if (!(events & np->irqmask))
3356                         break;
3357
3358                 spin_lock_irqsave(&np->lock, flags);
3359                 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
3360                 spin_unlock_irqrestore(&np->lock, flags);
3361
3362                 if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
3363                         dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
3364                                                 dev->name, events);
3365                 }
3366                 if (unlikely(i > max_interrupt_work)) {
3367                         spin_lock_irqsave(&np->lock, flags);
3368                         /* disable interrupts on the nic */
3369                         writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
3370                         pci_push(base);
3371
3372                         if (!np->in_shutdown) {
3373                                 np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
3374                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3375                         }
3376                         spin_unlock_irqrestore(&np->lock, flags);
3377                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
3378                         break;
3379                 }
3380
3381         }
3382         dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
3383
3384         return IRQ_RETVAL(i);
3385 }
3386
3387 #ifdef CONFIG_FORCEDETH_NAPI
3388 static int nv_napi_poll(struct napi_struct *napi, int budget)
3389 {
3390         struct fe_priv *np = container_of(napi, struct fe_priv, napi);
3391         struct net_device *dev = np->dev;
3392         u8 __iomem *base = get_hwbase(dev);
3393         unsigned long flags;
3394         int pkts, retcode;
3395
3396         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3397                 pkts = nv_rx_process(dev, budget);
3398                 retcode = nv_alloc_rx(dev);
3399         } else {
3400                 pkts = nv_rx_process_optimized(dev, budget);
3401                 retcode = nv_alloc_rx_optimized(dev);
3402         }
3403
3404         if (retcode) {
3405                 spin_lock_irqsave(&np->lock, flags);
3406                 if (!np->in_shutdown)
3407                         mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3408                 spin_unlock_irqrestore(&np->lock, flags);
3409         }
3410
3411         if (pkts < budget) {
3412                 /* re-enable receive interrupts */
3413                 spin_lock_irqsave(&np->lock, flags);
3414
3415                 __netif_rx_complete(dev, napi);
3416
3417                 np->irqmask |= NVREG_IRQ_RX_ALL;
3418                 if (np->msi_flags & NV_MSI_X_ENABLED)
3419                         writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
3420                 else
3421                         writel(np->irqmask, base + NvRegIrqMask);
3422
3423                 spin_unlock_irqrestore(&np->lock, flags);
3424         }
3425         return pkts;
3426 }
3427 #endif
3428
3429 #ifdef CONFIG_FORCEDETH_NAPI
3430 static irqreturn_t nv_nic_irq_rx(int foo, void *data)
3431 {
3432         struct net_device *dev = (struct net_device *) data;
3433         struct fe_priv *np = netdev_priv(dev);
3434         u8 __iomem *base = get_hwbase(dev);
3435         u32 events;
3436
3437         events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
3438         writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
3439
3440         if (events) {
3441                 netif_rx_schedule(dev, &np->napi);
3442                 /* disable receive interrupts on the nic */
3443                 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
3444                 pci_push(base);
3445         }
3446         return IRQ_HANDLED;
3447 }
3448 #else
3449 static irqreturn_t nv_nic_irq_rx(int foo, void *data)
3450 {
3451         struct net_device *dev = (struct net_device *) data;
3452         struct fe_priv *np = netdev_priv(dev);
3453         u8 __iomem *base = get_hwbase(dev);
3454         u32 events;
3455         int i;
3456         unsigned long flags;
3457
3458         dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
3459
3460         for (i=0; ; i++) {
3461                 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
3462                 writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
3463                 dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
3464                 if (!(events & np->irqmask))
3465                         break;
3466
3467                 if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
3468                         if (unlikely(nv_alloc_rx_optimized(dev))) {
3469                                 spin_lock_irqsave(&np->lock, flags);
3470                                 if (!np->in_shutdown)
3471                                         mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3472                                 spin_unlock_irqrestore(&np->lock, flags);
3473                         }
3474                 }
3475
3476                 if (unlikely(i > max_interrupt_work)) {
3477                         spin_lock_irqsave(&np->lock, flags);
3478                         /* disable interrupts on the nic */
3479                         writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
3480                         pci_push(base);
3481
3482                         if (!np->in_shutdown) {
3483                                 np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
3484                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3485                         }
3486                         spin_unlock_irqrestore(&np->lock, flags);
3487                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
3488                         break;
3489                 }
3490         }
3491         dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
3492
3493         return IRQ_RETVAL(i);
3494 }
3495 #endif
3496
3497 static irqreturn_t nv_nic_irq_other(int foo, void *data)
3498 {
3499         struct net_device *dev = (struct net_device *) data;
3500         struct fe_priv *np = netdev_priv(dev);
3501         u8 __iomem *base = get_hwbase(dev);
3502         u32 events;
3503         int i;
3504         unsigned long flags;
3505
3506         dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
3507
3508         for (i=0; ; i++) {
3509                 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
3510                 writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
3511                 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
3512                 if (!(events & np->irqmask))
3513                         break;
3514
3515                 /* check tx in case we reached max loop limit in tx isr */
3516                 spin_lock_irqsave(&np->lock, flags);
3517                 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
3518                 spin_unlock_irqrestore(&np->lock, flags);
3519
3520                 if (events & NVREG_IRQ_LINK) {
3521                         spin_lock_irqsave(&np->lock, flags);
3522                         nv_link_irq(dev);
3523                         spin_unlock_irqrestore(&np->lock, flags);
3524                 }
3525                 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
3526                         spin_lock_irqsave(&np->lock, flags);
3527                         nv_linkchange(dev);
3528                         spin_unlock_irqrestore(&np->lock, flags);
3529                         np->link_timeout = jiffies + LINK_TIMEOUT;
3530                 }
3531                 if (events & NVREG_IRQ_RECOVER_ERROR) {
3532                         spin_lock_irq(&np->lock);
3533                         /* disable interrupts on the nic */
3534                         writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
3535                         pci_push(base);
3536
3537                         if (!np->in_shutdown) {
3538                                 np->nic_poll_irq |= NVREG_IRQ_OTHER;
3539                                 np->recover_error = 1;
3540                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3541                         }
3542                         spin_unlock_irq(&np->lock);
3543                         break;
3544                 }
3545                 if (events & (NVREG_IRQ_UNKNOWN)) {
3546                         printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
3547                                                 dev->name, events);
3548                 }
3549                 if (unlikely(i > max_interrupt_work)) {
3550                         spin_lock_irqsave(&np->lock, flags);
3551                         /* disable interrupts on the nic */
3552                         writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
3553                         pci_push(base);
3554
3555                         if (!np->in_shutdown) {
3556                                 np->nic_poll_irq |= NVREG_IRQ_OTHER;
3557                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3558                         }
3559                         spin_unlock_irqrestore(&np->lock, flags);
3560                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
3561                         break;
3562                 }
3563
3564         }
3565         dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
3566
3567         return IRQ_RETVAL(i);
3568 }
3569
3570 static irqreturn_t nv_nic_irq_test(int foo, void *data)
3571 {
3572         struct net_device *dev = (struct net_device *) data;
3573         struct fe_priv *np = netdev_priv(dev);
3574         u8 __iomem *base = get_hwbase(dev);
3575         u32 events;
3576
3577         dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name);
3578
3579         if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3580                 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
3581                 writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
3582         } else {
3583                 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
3584                 writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
3585         }
3586         pci_push(base);
3587         dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
3588         if (!(events & NVREG_IRQ_TIMER))
3589                 return IRQ_RETVAL(0);
3590
3591         spin_lock(&np->lock);
3592         np->intr_test = 1;
3593         spin_unlock(&np->lock);
3594
3595         dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name);
3596
3597         return IRQ_RETVAL(1);
3598 }
3599
3600 static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
3601 {
3602         u8 __iomem *base = get_hwbase(dev);
3603         int i;
3604         u32 msixmap = 0;
3605
3606         /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
3607          * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
3608          * the remaining 8 interrupts.
3609          */
3610         for (i = 0; i < 8; i++) {
3611                 if ((irqmask >> i) & 0x1) {
3612                         msixmap |= vector << (i << 2);
3613                 }
3614         }
3615         writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
3616
3617         msixmap = 0;
3618         for (i = 0; i < 8; i++) {
3619                 if ((irqmask >> (i + 8)) & 0x1) {
3620                         msixmap |= vector << (i << 2);
3621                 }
3622         }
3623         writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
3624 }
3625
3626 static int nv_request_irq(struct net_device *dev, int intr_test)
3627 {
3628         struct fe_priv *np = get_nvpriv(dev);
3629         u8 __iomem *base = get_hwbase(dev);
3630         int ret = 1;
3631         int i;
3632         irqreturn_t (*handler)(int foo, void *data);
3633
3634         if (intr_test) {
3635                 handler = nv_nic_irq_test;
3636         } else {
3637                 if (np->desc_ver == DESC_VER_3)
3638                         handler = nv_nic_irq_optimized;
3639                 else
3640                         handler = nv_nic_irq;
3641         }
3642
3643         if (np->msi_flags & NV_MSI_X_CAPABLE) {
3644                 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
3645                         np->msi_x_entry[i].entry = i;
3646                 }
3647                 if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
3648                         np->msi_flags |= NV_MSI_X_ENABLED;
3649                         if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
3650                                 /* Request irq for rx handling */
3651                                 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, &nv_nic_irq_rx, IRQF_SHARED, dev->name, dev) != 0) {
3652                                         printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
3653                                         pci_disable_msix(np->pci_dev);
3654                                         np->msi_flags &= ~NV_MSI_X_ENABLED;
3655                                         goto out_err;
3656                                 }
3657                                 /* Request irq for tx handling */
3658                                 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, &nv_nic_irq_tx, IRQF_SHARED, dev->name, dev) != 0) {
3659                                         printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
3660                                         pci_disable_msix(np->pci_dev);
3661                                         np->msi_flags &= ~NV_MSI_X_ENABLED;
3662                                         goto out_free_rx;
3663                                 }
3664                                 /* Request irq for link and timer handling */
3665                                 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, &nv_nic_irq_other, IRQF_SHARED, dev->name, dev) != 0) {
3666                                         printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
3667                                         pci_disable_msix(np->pci_dev);
3668                                         np->msi_flags &= ~NV_MSI_X_ENABLED;
3669                                         goto out_free_tx;
3670                                 }
3671                                 /* map interrupts to their respective vector */
3672                                 writel(0, base + NvRegMSIXMap0);
3673                                 writel(0, base + NvRegMSIXMap1);
3674                                 set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
3675                                 set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
3676                                 set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
3677                         } else {
3678                                 /* Request irq for all interrupts */
3679                                 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, handler, IRQF_SHARED, dev->name, dev) != 0) {
3680                                         printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
3681                                         pci_disable_msix(np->pci_dev);
3682                                         np->msi_flags &= ~NV_MSI_X_ENABLED;
3683                                         goto out_err;
3684                                 }
3685
3686                                 /* map interrupts to vector 0 */
3687                                 writel(0, base + NvRegMSIXMap0);
3688                                 writel(0, base + NvRegMSIXMap1);
3689                         }
3690                 }
3691         }
3692         if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
3693                 if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
3694                         np->msi_flags |= NV_MSI_ENABLED;
3695                         dev->irq = np->pci_dev->irq;
3696                         if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0) {
3697                                 printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
3698                                 pci_disable_msi(np->pci_dev);
3699                                 np->msi_flags &= ~NV_MSI_ENABLED;
3700                                 dev->irq = np->pci_dev->irq;
3701                                 goto out_err;
3702                         }
3703
3704                         /* map interrupts to vector 0 */
3705                         writel(0, base + NvRegMSIMap0);
3706                         writel(0, base + NvRegMSIMap1);
3707                         /* enable msi vector 0 */
3708                         writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
3709                 }
3710         }
3711         if (ret != 0) {
3712                 if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0)
3713                         goto out_err;
3714
3715         }
3716
3717         return 0;
3718 out_free_tx:
3719         free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
3720 out_free_rx:
3721         free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
3722 out_err:
3723         return 1;
3724 }
3725
3726 static void nv_free_irq(struct net_device *dev)
3727 {
3728         struct fe_priv *np = get_nvpriv(dev);
3729         int i;
3730
3731         if (np->msi_flags & NV_MSI_X_ENABLED) {
3732                 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
3733                         free_irq(np->msi_x_entry[i].vector, dev);
3734                 }
3735                 pci_disable_msix(np->pci_dev);
3736                 np->msi_flags &= ~NV_MSI_X_ENABLED;
3737         } else {
3738                 free_irq(np->pci_dev->irq, dev);
3739                 if (np->msi_flags & NV_MSI_ENABLED) {
3740                         pci_disable_msi(np->pci_dev);
3741                         np->msi_flags &= ~NV_MSI_ENABLED;
3742                 }
3743         }
3744 }
3745
3746 static void nv_do_nic_poll(unsigned long data)
3747 {
3748         struct net_device *dev = (struct net_device *) data;
3749         struct fe_priv *np = netdev_priv(dev);
3750         u8 __iomem *base = get_hwbase(dev);
3751         u32 mask = 0;
3752
3753         /*
3754          * First disable irq(s) and then
3755          * reenable interrupts on the nic, we have to do this before calling
3756          * nv_nic_irq because that may decide to do otherwise
3757          */
3758
3759         if (!using_multi_irqs(dev)) {
3760                 if (np->msi_flags & NV_MSI_X_ENABLED)
3761                         disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
3762                 else
3763                         disable_irq_lockdep(np->pci_dev->irq);
3764                 mask = np->irqmask;
3765         } else {
3766                 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
3767                         disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
3768                         mask |= NVREG_IRQ_RX_ALL;
3769                 }
3770                 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
3771                         disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
3772                         mask |= NVREG_IRQ_TX_ALL;
3773                 }
3774                 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
3775                         disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
3776                         mask |= NVREG_IRQ_OTHER;
3777                 }
3778         }
3779         np->nic_poll_irq = 0;
3780
3781         /* disable_irq() contains synchronize_irq, thus no irq handler can run now */
3782
3783         if (np->recover_error) {
3784                 np->recover_error = 0;
3785                 printk(KERN_INFO "forcedeth: MAC in recoverable error state\n");
3786                 if (netif_running(dev)) {
3787                         netif_tx_lock_bh(dev);
3788                         spin_lock(&np->lock);
3789                         /* stop engines */
3790                         nv_stop_rx(dev);
3791                         nv_stop_tx(dev);
3792                         nv_txrx_reset(dev);
3793                         /* drain rx queue */
3794                         nv_drain_rx(dev);
3795                         nv_drain_tx(dev);
3796                         /* reinit driver view of the rx queue */
3797                         set_bufsize(dev);
3798                         if (nv_init_ring(dev)) {
3799                                 if (!np->in_shutdown)
3800                                         mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3801                         }
3802                         /* reinit nic view of the rx queue */
3803                         writel(np->rx_buf_sz, base + NvRegOffloadConfig);
3804                         setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
3805                         writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
3806                                 base + NvRegRingSizes);
3807                         pci_push(base);
3808                         writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
3809                         pci_push(base);
3810
3811                         /* restart rx engine */
3812                         nv_start_rx(dev);
3813                         nv_start_tx(dev);
3814                         spin_unlock(&np->lock);
3815                         netif_tx_unlock_bh(dev);
3816                 }
3817         }
3818
3819
3820         writel(mask, base + NvRegIrqMask);
3821         pci_push(base);
3822
3823         if (!using_multi_irqs(dev)) {
3824                 if (np->desc_ver == DESC_VER_3)
3825                         nv_nic_irq_optimized(0, dev);
3826                 else
3827                         nv_nic_irq(0, dev);
3828                 if (np->msi_flags & NV_MSI_X_ENABLED)
3829                         enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
3830                 else
3831                         enable_irq_lockdep(np->pci_dev->irq);
3832         } else {
3833                 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
3834                         nv_nic_irq_rx(0, dev);
3835                         enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
3836                 }
3837                 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
3838                         nv_nic_irq_tx(0, dev);
3839                         enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
3840                 }
3841                 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
3842                         nv_nic_irq_other(0, dev);
3843                         enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
3844                 }
3845         }
3846 }
3847
3848 #ifdef CONFIG_NET_POLL_CONTROLLER
3849 static void nv_poll_controller(struct net_device *dev)
3850 {
3851         nv_do_nic_poll((unsigned long) dev);
3852 }
3853 #endif
3854
3855 static void nv_do_stats_poll(unsigned long data)
3856 {
3857         struct net_device *dev = (struct net_device *) data;
3858         struct fe_priv *np = netdev_priv(dev);
3859
3860         nv_get_hw_stats(dev);
3861
3862         if (!np->in_shutdown)
3863                 mod_timer(&np->stats_poll,
3864                         round_jiffies(jiffies + STATS_INTERVAL));
3865 }
3866
3867 static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
3868 {
3869         struct fe_priv *np = netdev_priv(dev);
3870         strcpy(info->driver, DRV_NAME);
3871         strcpy(info->version, FORCEDETH_VERSION);
3872         strcpy(info->bus_info, pci_name(np->pci_dev));
3873 }
3874
3875 static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
3876 {
3877         struct fe_priv *np = netdev_priv(dev);
3878         wolinfo->supported = WAKE_MAGIC;
3879
3880         spin_lock_irq(&np->lock);
3881         if (np->wolenabled)
3882                 wolinfo->wolopts = WAKE_MAGIC;
3883         spin_unlock_irq(&np->lock);
3884 }
3885
3886 static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
3887 {
3888         struct fe_priv *np = netdev_priv(dev);
3889         u8 __iomem *base = get_hwbase(dev);
3890         u32 flags = 0;
3891
3892         if (wolinfo->wolopts == 0) {
3893                 np->wolenabled = 0;
3894         } else if (wolinfo->wolopts & WAKE_MAGIC) {
3895                 np->wolenabled = 1;
3896                 flags = NVREG_WAKEUPFLAGS_ENABLE;
3897         }
3898         if (netif_running(dev)) {
3899                 spin_lock_irq(&np->lock);
3900                 writel(flags, base + NvRegWakeUpFlags);
3901                 spin_unlock_irq(&np->lock);
3902         }
3903         return 0;
3904 }
3905
3906 static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
3907 {
3908         struct fe_priv *np = netdev_priv(dev);
3909         int adv;
3910
3911         spin_lock_irq(&np->lock);
3912         ecmd->port = PORT_MII;
3913         if (!netif_running(dev)) {
3914                 /* We do not track link speed / duplex setting if the
3915                  * interface is disabled. Force a link check */
3916                 if (nv_update_linkspeed(dev)) {
3917                         if (!netif_carrier_ok(dev))
3918                                 netif_carrier_on(dev);
3919                 } else {
3920                         if (netif_carrier_ok(dev))
3921                                 netif_carrier_off(dev);
3922                 }
3923         }
3924
3925         if (netif_carrier_ok(dev)) {
3926                 switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
3927                 case NVREG_LINKSPEED_10:
3928                         ecmd->speed = SPEED_10;
3929                         break;
3930                 case NVREG_LINKSPEED_100:
3931                         ecmd->speed = SPEED_100;
3932                         break;
3933                 case NVREG_LINKSPEED_1000:
3934                         ecmd->speed = SPEED_1000;
3935                         break;
3936                 }
3937                 ecmd->duplex = DUPLEX_HALF;
3938                 if (np->duplex)
3939                         ecmd->duplex = DUPLEX_FULL;
3940         } else {
3941                 ecmd->speed = -1;
3942                 ecmd->duplex = -1;
3943         }
3944
3945         ecmd->autoneg = np->autoneg;
3946
3947         ecmd->advertising = ADVERTISED_MII;
3948         if (np->autoneg) {
3949                 ecmd->advertising |= ADVERTISED_Autoneg;
3950                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3951                 if (adv & ADVERTISE_10HALF)
3952                         ecmd->advertising |= ADVERTISED_10baseT_Half;
3953                 if (adv & ADVERTISE_10FULL)
3954                         ecmd->advertising |= ADVERTISED_10baseT_Full;
3955                 if (adv & ADVERTISE_100HALF)
3956                         ecmd->advertising |= ADVERTISED_100baseT_Half;
3957                 if (adv & ADVERTISE_100FULL)
3958                         ecmd->advertising |= ADVERTISED_100baseT_Full;
3959                 if (np->gigabit == PHY_GIGABIT) {
3960                         adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
3961                         if (adv & ADVERTISE_1000FULL)
3962                                 ecmd->advertising |= ADVERTISED_1000baseT_Full;
3963                 }
3964         }
3965         ecmd->supported = (SUPPORTED_Autoneg |
3966                 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
3967                 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
3968                 SUPPORTED_MII);
3969         if (np->gigabit == PHY_GIGABIT)
3970                 ecmd->supported |= SUPPORTED_1000baseT_Full;
3971
3972         ecmd->phy_address = np->phyaddr;
3973         ecmd->transceiver = XCVR_EXTERNAL;
3974
3975         /* ignore maxtxpkt, maxrxpkt for now */
3976         spin_unlock_irq(&np->lock);
3977         return 0;
3978 }
3979
3980 static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
3981 {
3982         struct fe_priv *np = netdev_priv(dev);
3983
3984         if (ecmd->port != PORT_MII)
3985                 return -EINVAL;
3986         if (ecmd->transceiver != XCVR_EXTERNAL)
3987                 return -EINVAL;
3988         if (ecmd->phy_address != np->phyaddr) {
3989                 /* TODO: support switching between multiple phys. Should be
3990                  * trivial, but not enabled due to lack of test hardware. */
3991                 return -EINVAL;
3992         }
3993         if (ecmd->autoneg == AUTONEG_ENABLE) {
3994                 u32 mask;
3995
3996                 mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
3997                           ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
3998                 if (np->gigabit == PHY_GIGABIT)
3999                         mask |= ADVERTISED_1000baseT_Full;
4000
4001                 if ((ecmd->advertising & mask) == 0)
4002                         return -EINVAL;
4003
4004         } else if (ecmd->autoneg == AUTONEG_DISABLE) {
4005                 /* Note: autonegotiation disable, speed 1000 intentionally
4006                  * forbidden - noone should need that. */
4007
4008                 if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
4009                         return -EINVAL;
4010                 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
4011                         return -EINVAL;
4012         } else {
4013                 return -EINVAL;
4014         }
4015
4016         netif_carrier_off(dev);
4017         if (netif_running(dev)) {
4018                 nv_disable_irq(dev);
4019                 netif_tx_lock_bh(dev);
4020                 spin_lock(&np->lock);
4021                 /* stop engines */
4022                 nv_stop_rx(dev);
4023                 nv_stop_tx(dev);
4024                 spin_unlock(&np->lock);
4025                 netif_tx_unlock_bh(dev);
4026         }
4027
4028         if (ecmd->autoneg == AUTONEG_ENABLE) {
4029                 int adv, bmcr;
4030
4031                 np->autoneg = 1;
4032
4033                 /* advertise only what has been requested */
4034                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4035                 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
4036                 if (ecmd->advertising & ADVERTISED_10baseT_Half)
4037                         adv |= ADVERTISE_10HALF;
4038                 if (ecmd->advertising & ADVERTISED_10baseT_Full)
4039                         adv |= ADVERTISE_10FULL;
4040                 if (ecmd->advertising & ADVERTISED_100baseT_Half)
4041                         adv |= ADVERTISE_100HALF;
4042                 if (ecmd->advertising & ADVERTISED_100baseT_Full)
4043                         adv |= ADVERTISE_100FULL;
4044                 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ)  /* for rx we set both advertisments but disable tx pause */
4045                         adv |=  ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
4046                 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
4047                         adv |=  ADVERTISE_PAUSE_ASYM;
4048                 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
4049
4050                 if (np->gigabit == PHY_GIGABIT) {
4051                         adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
4052                         adv &= ~ADVERTISE_1000FULL;
4053                         if (ecmd->advertising & ADVERTISED_1000baseT_Full)
4054                                 adv |= ADVERTISE_1000FULL;
4055                         mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
4056                 }
4057
4058                 if (netif_running(dev))
4059                         printk(KERN_INFO "%s: link down.\n", dev->name);
4060                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4061                 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
4062                         bmcr |= BMCR_ANENABLE;
4063                         /* reset the phy in order for settings to stick,
4064                          * and cause autoneg to start */
4065                         if (phy_reset(dev, bmcr)) {
4066                                 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
4067                                 return -EINVAL;
4068                         }
4069                 } else {
4070                         bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
4071                         mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4072                 }
4073         } else {
4074                 int adv, bmcr;
4075
4076                 np->autoneg = 0;
4077
4078                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4079                 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
4080                 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
4081                         adv |= ADVERTISE_10HALF;
4082                 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
4083                         adv |= ADVERTISE_10FULL;
4084                 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
4085                         adv |= ADVERTISE_100HALF;
4086                 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
4087                         adv |= ADVERTISE_100FULL;
4088                 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
4089                 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
4090                         adv |=  ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
4091                         np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
4092                 }
4093                 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
4094                         adv |=  ADVERTISE_PAUSE_ASYM;
4095                         np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
4096                 }
4097                 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
4098                 np->fixed_mode = adv;
4099
4100                 if (np->gigabit == PHY_GIGABIT) {
4101                         adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
4102                         adv &= ~ADVERTISE_1000FULL;
4103                         mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
4104                 }
4105
4106                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4107                 bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
4108                 if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
4109                         bmcr |= BMCR_FULLDPLX;
4110                 if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
4111                         bmcr |= BMCR_SPEED100;
4112                 if (np->phy_oui == PHY_OUI_MARVELL) {
4113                         /* reset the phy in order for forced mode settings to stick */
4114                         if (phy_reset(dev, bmcr)) {
4115                                 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
4116                                 return -EINVAL;
4117                         }
4118                 } else {
4119                         mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4120                         if (netif_running(dev)) {
4121                                 /* Wait a bit and then reconfigure the nic. */
4122                                 udelay(10);
4123                                 nv_linkchange(dev);
4124                         }
4125                 }
4126         }
4127
4128         if (netif_running(dev)) {
4129                 nv_start_rx(dev);
4130                 nv_start_tx(dev);
4131                 nv_enable_irq(dev);
4132         }
4133
4134         return 0;
4135 }
4136
4137 #define FORCEDETH_REGS_VER      1
4138
4139 static int nv_get_regs_len(struct net_device *dev)
4140 {
4141         struct fe_priv *np = netdev_priv(dev);
4142         return np->register_size;
4143 }
4144
4145 static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
4146 {
4147         struct fe_priv *np = netdev_priv(dev);
4148         u8 __iomem *base = get_hwbase(dev);
4149         u32 *rbuf = buf;
4150         int i;
4151
4152         regs->version = FORCEDETH_REGS_VER;
4153         spin_lock_irq(&np->lock);
4154         for (i = 0;i <= np->register_size/sizeof(u32); i++)
4155                 rbuf[i] = readl(base + i*sizeof(u32));
4156         spin_unlock_irq(&np->lock);
4157 }
4158
4159 static int nv_nway_reset(struct net_device *dev)
4160 {
4161         struct fe_priv *np = netdev_priv(dev);
4162         int ret;
4163
4164         if (np->autoneg) {
4165                 int bmcr;
4166
4167                 netif_carrier_off(dev);
4168                 if (netif_running(dev)) {
4169                         nv_disable_irq(dev);
4170                         netif_tx_lock_bh(dev);
4171                         spin_lock(&np->lock);
4172                         /* stop engines */
4173                         nv_stop_rx(dev);
4174                         nv_stop_tx(dev);
4175                         spin_unlock(&np->lock);
4176                         netif_tx_unlock_bh(dev);
4177                         printk(KERN_INFO "%s: link down.\n", dev->name);
4178                 }
4179
4180                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4181                 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
4182                         bmcr |= BMCR_ANENABLE;
4183                         /* reset the phy in order for settings to stick*/
4184                         if (phy_reset(dev, bmcr)) {
4185                                 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
4186                                 return -EINVAL;
4187                         }
4188                 } else {
4189                         bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
4190                         mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4191                 }
4192
4193                 if (netif_running(dev)) {
4194                         nv_start_rx(dev);
4195                         nv_start_tx(dev);
4196                         nv_enable_irq(dev);
4197                 }
4198                 ret = 0;
4199         } else {
4200                 ret = -EINVAL;
4201         }
4202
4203         return ret;
4204 }
4205
4206 static int nv_set_tso(struct net_device *dev, u32 value)
4207 {
4208         struct fe_priv *np = netdev_priv(dev);
4209
4210         if ((np->driver_data & DEV_HAS_CHECKSUM))
4211                 return ethtool_op_set_tso(dev, value);
4212         else
4213                 return -EOPNOTSUPP;
4214 }
4215
4216 static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
4217 {
4218         struct fe_priv *np = netdev_priv(dev);
4219
4220         ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
4221         ring->rx_mini_max_pending = 0;
4222         ring->rx_jumbo_max_pending = 0;
4223         ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
4224
4225         ring->rx_pending = np->rx_ring_size;
4226         ring->rx_mini_pending = 0;
4227         ring->rx_jumbo_pending = 0;
4228         ring->tx_pending = np->tx_ring_size;
4229 }
4230
4231 static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
4232 {
4233         struct fe_priv *np = netdev_priv(dev);
4234         u8 __iomem *base = get_hwbase(dev);
4235         u8 *rxtx_ring, *rx_skbuff, *tx_skbuff;
4236         dma_addr_t ring_addr;
4237
4238         if (ring->rx_pending < RX_RING_MIN ||
4239             ring->tx_pending < TX_RING_MIN ||
4240             ring->rx_mini_pending != 0 ||
4241             ring->rx_jumbo_pending != 0 ||
4242             (np->desc_ver == DESC_VER_1 &&
4243              (ring->rx_pending > RING_MAX_DESC_VER_1 ||
4244               ring->tx_pending > RING_MAX_DESC_VER_1)) ||
4245             (np->desc_ver != DESC_VER_1 &&
4246              (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
4247               ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
4248                 return -EINVAL;
4249         }
4250
4251         /* allocate new rings */
4252         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
4253                 rxtx_ring = pci_alloc_consistent(np->pci_dev,
4254                                             sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
4255                                             &ring_addr);
4256         } else {
4257                 rxtx_ring = pci_alloc_consistent(np->pci_dev,
4258                                             sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
4259                                             &ring_addr);
4260         }
4261         rx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->rx_pending, GFP_KERNEL);
4262         tx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->tx_pending, GFP_KERNEL);
4263         if (!rxtx_ring || !rx_skbuff || !tx_skbuff) {
4264                 /* fall back to old rings */
4265                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
4266                         if (rxtx_ring)
4267                                 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
4268                                                     rxtx_ring, ring_addr);
4269                 } else {
4270                         if (rxtx_ring)
4271                                 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
4272                                                     rxtx_ring, ring_addr);
4273                 }
4274                 if (rx_skbuff)
4275                         kfree(rx_skbuff);
4276                 if (tx_skbuff)
4277                         kfree(tx_skbuff);
4278                 goto exit;
4279         }
4280
4281         if (netif_running(dev)) {
4282                 nv_disable_irq(dev);
4283                 netif_tx_lock_bh(dev);
4284                 spin_lock(&np->lock);
4285                 /* stop engines */
4286                 nv_stop_rx(dev);
4287                 nv_stop_tx(dev);
4288                 nv_txrx_reset(dev);
4289                 /* drain queues */
4290                 nv_drain_rx(dev);
4291                 nv_drain_tx(dev);
4292                 /* delete queues */
4293                 free_rings(dev);
4294         }
4295
4296         /* set new values */
4297         np->rx_ring_size = ring->rx_pending;
4298         np->tx_ring_size = ring->tx_pending;
4299         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
4300                 np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
4301                 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
4302         } else {
4303                 np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
4304                 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
4305         }
4306         np->rx_skb = (struct nv_skb_map*)rx_skbuff;
4307         np->tx_skb = (struct nv_skb_map*)tx_skbuff;
4308         np->ring_addr = ring_addr;
4309
4310         memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
4311         memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);
4312
4313         if (netif_running(dev)) {
4314                 /* reinit driver view of the queues */
4315                 set_bufsize(dev);
4316                 if (nv_init_ring(dev)) {
4317                         if (!np->in_shutdown)
4318                                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
4319                 }
4320
4321                 /* reinit nic view of the queues */
4322                 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4323                 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4324                 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4325                         base + NvRegRingSizes);
4326                 pci_push(base);
4327                 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4328                 pci_push(base);
4329
4330                 /* restart engines */
4331                 nv_start_rx(dev);
4332                 nv_start_tx(dev);
4333                 spin_unlock(&np->lock);
4334                 netif_tx_unlock_bh(dev);
4335                 nv_enable_irq(dev);
4336         }
4337         return 0;
4338 exit:
4339         return -ENOMEM;
4340 }
4341
4342 static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
4343 {
4344         struct fe_priv *np = netdev_priv(dev);
4345
4346         pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
4347         pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
4348         pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
4349 }
4350
4351 static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
4352 {
4353         struct fe_priv *np = netdev_priv(dev);
4354         int adv, bmcr;
4355
4356         if ((!np->autoneg && np->duplex == 0) ||
4357             (np->autoneg && !pause->autoneg && np->duplex == 0)) {
4358                 printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
4359                        dev->name);
4360                 return -EINVAL;
4361         }
4362         if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
4363                 printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
4364                 return -EINVAL;
4365         }
4366
4367         netif_carrier_off(dev);
4368         if (netif_running(dev)) {
4369                 nv_disable_irq(dev);
4370                 netif_tx_lock_bh(dev);
4371                 spin_lock(&np->lock);
4372                 /* stop engines */
4373                 nv_stop_rx(dev);
4374                 nv_stop_tx(dev);
4375                 spin_unlock(&np->lock);
4376                 netif_tx_unlock_bh(dev);
4377         }
4378
4379         np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
4380         if (pause->rx_pause)
4381                 np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
4382         if (pause->tx_pause)
4383                 np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
4384
4385         if (np->autoneg && pause->autoneg) {
4386                 np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
4387
4388                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4389                 adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
4390                 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
4391                         adv |=  ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
4392                 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
4393                         adv |=  ADVERTISE_PAUSE_ASYM;
4394                 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
4395
4396                 if (netif_running(dev))
4397                         printk(KERN_INFO "%s: link down.\n", dev->name);
4398                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4399                 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
4400                 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4401         } else {
4402                 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
4403                 if (pause->rx_pause)
4404                         np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
4405                 if (pause->tx_pause)
4406                         np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
4407
4408                 if (!netif_running(dev))
4409                         nv_update_linkspeed(dev);
4410                 else
4411                         nv_update_pause(dev, np->pause_flags);
4412         }
4413
4414         if (netif_running(dev)) {
4415                 nv_start_rx(dev);
4416                 nv_start_tx(dev);
4417                 nv_enable_irq(dev);
4418         }
4419         return 0;
4420 }
4421
4422 static u32 nv_get_rx_csum(struct net_device *dev)
4423 {
4424         struct fe_priv *np = netdev_priv(dev);
4425         return (np->rx_csum) != 0;
4426 }
4427
4428 static int nv_set_rx_csum(struct net_device *dev, u32 data)
4429 {
4430         struct fe_priv *np = netdev_priv(dev);
4431         u8 __iomem *base = get_hwbase(dev);
4432         int retcode = 0;
4433
4434         if (np->driver_data & DEV_HAS_CHECKSUM) {
4435                 if (data) {
4436                         np->rx_csum = 1;
4437                         np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
4438                 } else {
4439                         np->rx_csum = 0;
4440                         /* vlan is dependent on rx checksum offload */
4441                         if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE))
4442                                 np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
4443                 }
4444                 if (netif_running(dev)) {
4445                         spin_lock_irq(&np->lock);
4446                         writel(np->txrxctl_bits, base + NvRegTxRxControl);
4447                         spin_unlock_irq(&np->lock);
4448                 }
4449         } else {
4450                 return -EINVAL;
4451         }
4452
4453         return retcode;
4454 }
4455
4456 static int nv_set_tx_csum(struct net_device *dev, u32 data)
4457 {
4458         struct fe_priv *np = netdev_priv(dev);
4459
4460         if (np->driver_data & DEV_HAS_CHECKSUM)
4461                 return ethtool_op_set_tx_hw_csum(dev, data);
4462         else
4463                 return -EOPNOTSUPP;
4464 }
4465
4466 static int nv_set_sg(struct net_device *dev, u32 data)
4467 {
4468         struct fe_priv *np = netdev_priv(dev);
4469
4470         if (np->driver_data & DEV_HAS_CHECKSUM)
4471                 return ethtool_op_set_sg(dev, data);
4472         else
4473                 return -EOPNOTSUPP;
4474 }
4475
4476 static int nv_get_sset_count(struct net_device *dev, int sset)
4477 {
4478         struct fe_priv *np = netdev_priv(dev);
4479
4480         switch (sset) {
4481         case ETH_SS_TEST:
4482                 if (np->driver_data & DEV_HAS_TEST_EXTENDED)
4483                         return NV_TEST_COUNT_EXTENDED;
4484                 else
4485                         return NV_TEST_COUNT_BASE;
4486         case ETH_SS_STATS:
4487                 if (np->driver_data & DEV_HAS_STATISTICS_V1)
4488                         return NV_DEV_STATISTICS_V1_COUNT;
4489                 else if (np->driver_data & DEV_HAS_STATISTICS_V2)
4490                         return NV_DEV_STATISTICS_V2_COUNT;
4491                 else
4492                         return 0;
4493         default:
4494                 return -EOPNOTSUPP;
4495         }
4496 }
4497
4498 static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
4499 {
4500         struct fe_priv *np = netdev_priv(dev);
4501
4502         /* update stats */
4503         nv_do_stats_poll((unsigned long)dev);
4504
4505         memcpy(buffer, &np->estats, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(u64));
4506 }
4507
4508 static int nv_link_test(struct net_device *dev)
4509 {
4510         struct fe_priv *np = netdev_priv(dev);
4511         int mii_status;
4512
4513         mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
4514         mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
4515
4516         /* check phy link status */
4517         if (!(mii_status & BMSR_LSTATUS))
4518                 return 0;
4519         else
4520                 return 1;
4521 }
4522
4523 static int nv_register_test(struct net_device *dev)
4524 {
4525         u8 __iomem *base = get_hwbase(dev);
4526         int i = 0;
4527         u32 orig_read, new_read;
4528
4529         do {
4530                 orig_read = readl(base + nv_registers_test[i].reg);
4531
4532                 /* xor with mask to toggle bits */
4533                 orig_read ^= nv_registers_test[i].mask;
4534
4535                 writel(orig_read, base + nv_registers_test[i].reg);
4536
4537                 new_read = readl(base + nv_registers_test[i].reg);
4538
4539                 if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
4540                         return 0;
4541
4542                 /* restore original value */
4543                 orig_read ^= nv_registers_test[i].mask;
4544                 writel(orig_read, base + nv_registers_test[i].reg);
4545
4546         } while (nv_registers_test[++i].reg != 0);
4547
4548         return 1;
4549 }
4550
4551 static int nv_interrupt_test(struct net_device *dev)
4552 {
4553         struct fe_priv *np = netdev_priv(dev);
4554         u8 __iomem *base = get_hwbase(dev);
4555         int ret = 1;
4556         int testcnt;
4557         u32 save_msi_flags, save_poll_interval = 0;
4558
4559         if (netif_running(dev)) {
4560                 /* free current irq */
4561                 nv_free_irq(dev);
4562                 save_poll_interval = readl(base+NvRegPollingInterval);
4563         }
4564
4565         /* flag to test interrupt handler */
4566         np->intr_test = 0;
4567
4568         /* setup test irq */
4569         save_msi_flags = np->msi_flags;
4570         np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
4571         np->msi_flags |= 0x001; /* setup 1 vector */
4572         if (nv_request_irq(dev, 1))
4573                 return 0;
4574
4575         /* setup timer interrupt */
4576         writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
4577         writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
4578
4579         nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
4580
4581         /* wait for at least one interrupt */
4582         msleep(100);
4583
4584         spin_lock_irq(&np->lock);
4585
4586         /* flag should be set within ISR */
4587         testcnt = np->intr_test;
4588         if (!testcnt)
4589                 ret = 2;
4590
4591         nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
4592         if (!(np->msi_flags & NV_MSI_X_ENABLED))
4593                 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
4594         else
4595                 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
4596
4597         spin_unlock_irq(&np->lock);
4598
4599         nv_free_irq(dev);
4600
4601         np->msi_flags = save_msi_flags;
4602
4603         if (netif_running(dev)) {
4604                 writel(save_poll_interval, base + NvRegPollingInterval);
4605                 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
4606                 /* restore original irq */
4607                 if (nv_request_irq(dev, 0))
4608                         return 0;
4609         }
4610
4611         return ret;
4612 }
4613
4614 static int nv_loopback_test(struct net_device *dev)
4615 {
4616         struct fe_priv *np = netdev_priv(dev);
4617         u8 __iomem *base = get_hwbase(dev);
4618         struct sk_buff *tx_skb, *rx_skb;
4619         dma_addr_t test_dma_addr;
4620         u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
4621         u32 flags;
4622         int len, i, pkt_len;
4623         u8 *pkt_data;
4624         u32 filter_flags = 0;
4625         u32 misc1_flags = 0;
4626         int ret = 1;
4627
4628         if (netif_running(dev)) {
4629                 nv_disable_irq(dev);
4630                 filter_flags = readl(base + NvRegPacketFilterFlags);
4631                 misc1_flags = readl(base + NvRegMisc1);
4632         } else {
4633                 nv_txrx_reset(dev);
4634         }
4635
4636         /* reinit driver view of the rx queue */
4637         set_bufsize(dev);
4638         nv_init_ring(dev);
4639
4640         /* setup hardware for loopback */
4641         writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
4642         writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
4643
4644         /* reinit nic view of the rx queue */
4645         writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4646         setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4647         writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4648                 base + NvRegRingSizes);
4649         pci_push(base);
4650
4651         /* restart rx engine */
4652         nv_start_rx(dev);
4653         nv_start_tx(dev);
4654
4655         /* setup packet for tx */
4656         pkt_len = ETH_DATA_LEN;
4657         tx_skb = dev_alloc_skb(pkt_len);
4658         if (!tx_skb) {
4659                 printk(KERN_ERR "dev_alloc_skb() failed during loopback test"
4660                          " of %s\n", dev->name);
4661                 ret = 0;
4662                 goto out;
4663         }
4664         test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
4665                                        skb_tailroom(tx_skb),
4666                                        PCI_DMA_FROMDEVICE);
4667         pkt_data = skb_put(tx_skb, pkt_len);
4668         for (i = 0; i < pkt_len; i++)
4669                 pkt_data[i] = (u8)(i & 0xff);
4670
4671         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
4672                 np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
4673                 np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
4674         } else {
4675                 np->tx_ring.ex[0].bufhigh = cpu_to_le32(dma_high(test_dma_addr));
4676                 np->tx_ring.ex[0].buflow = cpu_to_le32(dma_low(test_dma_addr));
4677                 np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
4678         }
4679         writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4680         pci_push(get_hwbase(dev));
4681
4682         msleep(500);
4683
4684         /* check for rx of the packet */
4685         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
4686                 flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
4687                 len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
4688
4689         } else {
4690                 flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
4691                 len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
4692         }
4693
4694         if (flags & NV_RX_AVAIL) {
4695                 ret = 0;
4696         } else if (np->desc_ver == DESC_VER_1) {
4697                 if (flags & NV_RX_ERROR)
4698                         ret = 0;
4699         } else {
4700                 if (flags & NV_RX2_ERROR) {
4701                         ret = 0;
4702                 }
4703         }
4704
4705         if (ret) {
4706                 if (len != pkt_len) {
4707                         ret = 0;
4708                         dprintk(KERN_DEBUG "%s: loopback len mismatch %d vs %d\n",
4709                                 dev->name, len, pkt_len);
4710                 } else {
4711                         rx_skb = np->rx_skb[0].skb;
4712                         for (i = 0; i < pkt_len; i++) {
4713                                 if (rx_skb->data[i] != (u8)(i & 0xff)) {
4714                                         ret = 0;
4715                                         dprintk(KERN_DEBUG "%s: loopback pattern check failed on byte %d\n",
4716                                                 dev->name, i);
4717                                         break;
4718                                 }
4719                         }
4720                 }
4721         } else {
4722                 dprintk(KERN_DEBUG "%s: loopback - did not receive test packet\n", dev->name);
4723         }
4724
4725         pci_unmap_page(np->pci_dev, test_dma_addr,
4726                        (skb_end_pointer(tx_skb) - tx_skb->data),
4727                        PCI_DMA_TODEVICE);
4728         dev_kfree_skb_any(tx_skb);
4729  out:
4730         /* stop engines */
4731         nv_stop_rx(dev);
4732         nv_stop_tx(dev);
4733         nv_txrx_reset(dev);
4734         /* drain rx queue */
4735         nv_drain_rx(dev);
4736         nv_drain_tx(dev);
4737
4738         if (netif_running(dev)) {
4739                 writel(misc1_flags, base + NvRegMisc1);
4740                 writel(filter_flags, base + NvRegPacketFilterFlags);
4741                 nv_enable_irq(dev);
4742         }
4743
4744         return ret;
4745 }
4746
4747 static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
4748 {
4749         struct fe_priv *np = netdev_priv(dev);
4750         u8 __iomem *base = get_hwbase(dev);
4751         int result;
4752         memset(buffer, 0, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(u64));
4753
4754         if (!nv_link_test(dev)) {
4755                 test->flags |= ETH_TEST_FL_FAILED;
4756                 buffer[0] = 1;
4757         }
4758
4759         if (test->flags & ETH_TEST_FL_OFFLINE) {
4760                 if (netif_running(dev)) {
4761                         netif_stop_queue(dev);
4762 #ifdef CONFIG_FORCEDETH_NAPI
4763                         napi_disable(&np->napi);
4764 #endif
4765                         netif_tx_lock_bh(dev);
4766                         spin_lock_irq(&np->lock);
4767                         nv_disable_hw_interrupts(dev, np->irqmask);
4768                         if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
4769                                 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
4770                         } else {
4771                                 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
4772                         }
4773                         /* stop engines */
4774                         nv_stop_rx(dev);
4775                         nv_stop_tx(dev);
4776                         nv_txrx_reset(dev);
4777                         /* drain rx queue */
4778                         nv_drain_rx(dev);
4779                         nv_drain_tx(dev);
4780                         spin_unlock_irq(&np->lock);
4781                         netif_tx_unlock_bh(dev);
4782                 }
4783
4784                 if (!nv_register_test(dev)) {
4785                         test->flags |= ETH_TEST_FL_FAILED;
4786                         buffer[1] = 1;
4787                 }
4788
4789                 result = nv_interrupt_test(dev);
4790                 if (result != 1) {
4791                         test->flags |= ETH_TEST_FL_FAILED;
4792                         buffer[2] = 1;
4793                 }
4794                 if (result == 0) {
4795                         /* bail out */
4796                         return;
4797                 }
4798
4799                 if (!nv_loopback_test(dev)) {
4800                         test->flags |= ETH_TEST_FL_FAILED;
4801                         buffer[3] = 1;
4802                 }
4803
4804                 if (netif_running(dev)) {
4805                         /* reinit driver view of the rx queue */
4806                         set_bufsize(dev);
4807                         if (nv_init_ring(dev)) {
4808                                 if (!np->in_shutdown)
4809                                         mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
4810                         }
4811                         /* reinit nic view of the rx queue */
4812                         writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4813                         setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4814                         writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4815                                 base + NvRegRingSizes);
4816                         pci_push(base);
4817                         writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4818                         pci_push(base);
4819                         /* restart rx engine */
4820                         nv_start_rx(dev);
4821                         nv_start_tx(dev);
4822                         netif_start_queue(dev);
4823 #ifdef CONFIG_FORCEDETH_NAPI
4824                         napi_enable(&np->napi);
4825 #endif
4826                         nv_enable_hw_interrupts(dev, np->irqmask);
4827                 }
4828         }
4829 }
4830
4831 static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
4832 {
4833         switch (stringset) {
4834         case ETH_SS_STATS:
4835                 memcpy(buffer, &nv_estats_str, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(struct nv_ethtool_str));
4836                 break;
4837         case ETH_SS_TEST:
4838                 memcpy(buffer, &nv_etests_str, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(struct nv_ethtool_str));
4839                 break;
4840         }
4841 }
4842
4843 static const struct ethtool_ops ops = {
4844         .get_drvinfo = nv_get_drvinfo,
4845         .get_link = ethtool_op_get_link,
4846         .get_wol = nv_get_wol,
4847         .set_wol = nv_set_wol,
4848         .get_settings = nv_get_settings,
4849         .set_settings = nv_set_settings,
4850         .get_regs_len = nv_get_regs_len,
4851         .get_regs = nv_get_regs,
4852         .nway_reset = nv_nway_reset,
4853         .set_tso = nv_set_tso,
4854         .get_ringparam = nv_get_ringparam,
4855         .set_ringparam = nv_set_ringparam,
4856         .get_pauseparam = nv_get_pauseparam,
4857         .set_pauseparam = nv_set_pauseparam,
4858         .get_rx_csum = nv_get_rx_csum,
4859         .set_rx_csum = nv_set_rx_csum,
4860         .set_tx_csum = nv_set_tx_csum,
4861         .set_sg = nv_set_sg,
4862         .get_strings = nv_get_strings,
4863         .get_ethtool_stats = nv_get_ethtool_stats,
4864         .get_sset_count = nv_get_sset_count,
4865         .self_test = nv_self_test,
4866 };
4867
4868 static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
4869 {
4870         struct fe_priv *np = get_nvpriv(dev);
4871
4872         spin_lock_irq(&np->lock);
4873
4874         /* save vlan group */
4875         np->vlangrp = grp;
4876
4877         if (grp) {
4878                 /* enable vlan on MAC */
4879                 np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
4880         } else {
4881                 /* disable vlan on MAC */
4882                 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
4883                 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
4884         }
4885
4886         writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4887
4888         spin_unlock_irq(&np->lock);
4889 }
4890
4891 /* The mgmt unit and driver use a semaphore to access the phy during init */
4892 static int nv_mgmt_acquire_sema(struct net_device *dev)
4893 {
4894         u8 __iomem *base = get_hwbase(dev);
4895         int i;
4896         u32 tx_ctrl, mgmt_sema;
4897
4898         for (i = 0; i < 10; i++) {
4899                 mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK;
4900                 if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE)
4901                         break;
4902                 msleep(500);
4903         }
4904
4905         if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE)
4906                 return 0;
4907
4908         for (i = 0; i < 2; i++) {
4909                 tx_ctrl = readl(base + NvRegTransmitterControl);
4910                 tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ;
4911                 writel(tx_ctrl, base + NvRegTransmitterControl);
4912
4913                 /* verify that semaphore was acquired */
4914                 tx_ctrl = readl(base + NvRegTransmitterControl);
4915                 if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) &&
4916                     ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE))
4917                         return 1;
4918                 else
4919                         udelay(50);
4920         }
4921
4922         return 0;
4923 }
4924
4925 static int nv_open(struct net_device *dev)
4926 {
4927         struct fe_priv *np = netdev_priv(dev);
4928         u8 __iomem *base = get_hwbase(dev);
4929         int ret = 1;
4930         int oom, i;
4931
4932         dprintk(KERN_DEBUG "nv_open: begin\n");
4933
4934         /* erase previous misconfiguration */
4935         if (np->driver_data & DEV_HAS_POWER_CNTRL)
4936                 nv_mac_reset(dev);
4937         writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
4938         writel(0, base + NvRegMulticastAddrB);
4939         writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
4940         writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
4941         writel(0, base + NvRegPacketFilterFlags);
4942
4943         writel(0, base + NvRegTransmitterControl);
4944         writel(0, base + NvRegReceiverControl);
4945
4946         writel(0, base + NvRegAdapterControl);
4947
4948         if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
4949                 writel(NVREG_TX_PAUSEFRAME_DISABLE,  base + NvRegTxPauseFrame);
4950
4951         /* initialize descriptor rings */
4952         set_bufsize(dev);
4953         oom = nv_init_ring(dev);
4954
4955         writel(0, base + NvRegLinkSpeed);
4956         writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
4957         nv_txrx_reset(dev);
4958         writel(0, base + NvRegUnknownSetupReg6);
4959
4960         np->in_shutdown = 0;
4961
4962         /* give hw rings */
4963         setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4964         writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4965                 base + NvRegRingSizes);
4966
4967         writel(np->linkspeed, base + NvRegLinkSpeed);
4968         if (np->desc_ver == DESC_VER_1)
4969                 writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
4970         else
4971                 writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
4972         writel(np->txrxctl_bits, base + NvRegTxRxControl);
4973         writel(np->vlanctl_bits, base + NvRegVlanControl);
4974         pci_push(base);
4975         writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
4976         reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
4977                         NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
4978                         KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
4979
4980         writel(0, base + NvRegMIIMask);
4981         writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
4982         writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
4983
4984         writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
4985         writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
4986         writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
4987         writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4988
4989         writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
4990         get_random_bytes(&i, sizeof(i));
4991         writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed);
4992         writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
4993         writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
4994         if (poll_interval == -1) {
4995                 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
4996                         writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
4997                 else
4998                         writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
4999         }
5000         else
5001                 writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
5002         writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
5003         writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
5004                         base + NvRegAdapterControl);
5005         writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
5006         writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask);
5007         if (np->wolenabled)
5008                 writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
5009
5010         i = readl(base + NvRegPowerState);
5011         if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
5012                 writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
5013
5014         pci_push(base);
5015         udelay(10);
5016         writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
5017
5018         nv_disable_hw_interrupts(dev, np->irqmask);
5019         pci_push(base);
5020         writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
5021         writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
5022         pci_push(base);
5023
5024         if (nv_request_irq(dev, 0)) {
5025                 goto out_drain;
5026         }
5027
5028         /* ask for interrupts */
5029         nv_enable_hw_interrupts(dev, np->irqmask);
5030
5031         spin_lock_irq(&np->lock);
5032         writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
5033         writel(0, base + NvRegMulticastAddrB);
5034         writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
5035         writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
5036         writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
5037         /* One manual link speed update: Interrupts are enabled, future link
5038          * speed changes cause interrupts and are handled by nv_link_irq().
5039          */
5040         {
5041                 u32 miistat;
5042                 miistat = readl(base + NvRegMIIStatus);
5043                 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
5044                 dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
5045         }
5046         /* set linkspeed to invalid value, thus force nv_update_linkspeed
5047          * to init hw */
5048         np->linkspeed = 0;
5049         ret = nv_update_linkspeed(dev);
5050         nv_start_rx(dev);
5051         nv_start_tx(dev);
5052         netif_start_queue(dev);
5053 #ifdef CONFIG_FORCEDETH_NAPI
5054         napi_enable(&np->napi);
5055 #endif
5056
5057         if (ret) {
5058                 netif_carrier_on(dev);
5059         } else {
5060                 printk(KERN_INFO "%s: no link during initialization.\n", dev->name);
5061                 netif_carrier_off(dev);
5062         }
5063         if (oom)
5064                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
5065
5066         /* start statistics timer */
5067         if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2))
5068                 mod_timer(&np->stats_poll,
5069                         round_jiffies(jiffies + STATS_INTERVAL));
5070
5071         spin_unlock_irq(&np->lock);
5072
5073         return 0;
5074 out_drain:
5075         drain_ring(dev);
5076         return ret;
5077 }
5078
5079 static int nv_close(struct net_device *dev)
5080 {
5081         struct fe_priv *np = netdev_priv(dev);
5082         u8 __iomem *base;
5083
5084         spin_lock_irq(&np->lock);
5085         np->in_shutdown = 1;
5086         spin_unlock_irq(&np->lock);
5087 #ifdef CONFIG_FORCEDETH_NAPI
5088         napi_disable(&np->napi);
5089 #endif
5090         synchronize_irq(np->pci_dev->irq);
5091
5092         del_timer_sync(&np->oom_kick);
5093         del_timer_sync(&np->nic_poll);
5094         del_timer_sync(&np->stats_poll);
5095
5096         netif_stop_queue(dev);
5097         spin_lock_irq(&np->lock);
5098         nv_stop_tx(dev);
5099         nv_stop_rx(dev);
5100         nv_txrx_reset(dev);
5101
5102         /* disable interrupts on the nic or we will lock up */
5103         base = get_hwbase(dev);
5104         nv_disable_hw_interrupts(dev, np->irqmask);
5105         pci_push(base);
5106         dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
5107
5108         spin_unlock_irq(&np->lock);
5109
5110         nv_free_irq(dev);
5111
5112         drain_ring(dev);
5113
5114         if (np->wolenabled) {
5115                 writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
5116                 nv_start_rx(dev);
5117         }
5118
5119         /* FIXME: power down nic */
5120
5121         return 0;
5122 }
5123
5124 static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
5125 {
5126         struct net_device *dev;
5127         struct fe_priv *np;
5128         unsigned long addr;
5129         u8 __iomem *base;
5130         int err, i;
5131         u32 powerstate, txreg;
5132         u32 phystate_orig = 0, phystate;
5133         int phyinitialized = 0;
5134         DECLARE_MAC_BUF(mac);
5135         static int printed_version;
5136
5137         if (!printed_version++)
5138                 printk(KERN_INFO "%s: Reverse Engineered nForce ethernet"
5139                        " driver. Version %s.\n", DRV_NAME, FORCEDETH_VERSION);
5140
5141         dev = alloc_etherdev(sizeof(struct fe_priv));
5142         err = -ENOMEM;
5143         if (!dev)
5144                 goto out;
5145
5146         np = netdev_priv(dev);
5147         np->dev = dev;
5148         np->pci_dev = pci_dev;
5149         spin_lock_init(&np->lock);
5150         SET_NETDEV_DEV(dev, &pci_dev->dev);
5151
5152         init_timer(&np->oom_kick);
5153         np->oom_kick.data = (unsigned long) dev;
5154         np->oom_kick.function = &nv_do_rx_refill;       /* timer handler */
5155         init_timer(&np->nic_poll);
5156         np->nic_poll.data = (unsigned long) dev;
5157         np->nic_poll.function = &nv_do_nic_poll;        /* timer handler */
5158         init_timer(&np->stats_poll);
5159         np->stats_poll.data = (unsigned long) dev;
5160         np->stats_poll.function = &nv_do_stats_poll;    /* timer handler */
5161
5162         err = pci_enable_device(pci_dev);
5163         if (err)
5164                 goto out_free;
5165
5166         pci_set_master(pci_dev);
5167
5168         err = pci_request_regions(pci_dev, DRV_NAME);
5169         if (err < 0)
5170                 goto out_disable;
5171
5172         if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V2))
5173                 np->register_size = NV_PCI_REGSZ_VER3;
5174         else if (id->driver_data & DEV_HAS_STATISTICS_V1)
5175                 np->register_size = NV_PCI_REGSZ_VER2;
5176         else
5177                 np->register_size = NV_PCI_REGSZ_VER1;
5178
5179         err = -EINVAL;
5180         addr = 0;
5181         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
5182                 dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
5183                                 pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
5184                                 pci_resource_len(pci_dev, i),
5185                                 pci_resource_flags(pci_dev, i));
5186                 if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
5187                                 pci_resource_len(pci_dev, i) >= np->register_size) {
5188                         addr = pci_resource_start(pci_dev, i);
5189                         break;
5190                 }
5191         }
5192         if (i == DEVICE_COUNT_RESOURCE) {
5193                 dev_printk(KERN_INFO, &pci_dev->dev,
5194                            "Couldn't find register window\n");
5195                 goto out_relreg;
5196         }
5197
5198         /* copy of driver data */
5199         np->driver_data = id->driver_data;
5200
5201         /* handle different descriptor versions */
5202         if (id->driver_data & DEV_HAS_HIGH_DMA) {
5203                 /* packet format 3: supports 40-bit addressing */
5204                 np->desc_ver = DESC_VER_3;
5205                 np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
5206                 if (dma_64bit) {
5207                         if (pci_set_dma_mask(pci_dev, DMA_39BIT_MASK))
5208                                 dev_printk(KERN_INFO, &pci_dev->dev,
5209                                         "64-bit DMA failed, using 32-bit addressing\n");
5210                         else
5211                                 dev->features |= NETIF_F_HIGHDMA;
5212                         if (pci_set_consistent_dma_mask(pci_dev, DMA_39BIT_MASK)) {
5213                                 dev_printk(KERN_INFO, &pci_dev->dev,
5214                                         "64-bit DMA (consistent) failed, using 32-bit ring buffers\n");
5215                         }
5216                 }
5217         } else if (id->driver_data & DEV_HAS_LARGEDESC) {
5218                 /* packet format 2: supports jumbo frames */
5219                 np->desc_ver = DESC_VER_2;
5220                 np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
5221         } else {
5222                 /* original packet format */
5223                 np->desc_ver = DESC_VER_1;
5224                 np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
5225         }
5226
5227         np->pkt_limit = NV_PKTLIMIT_1;
5228         if (id->driver_data & DEV_HAS_LARGEDESC)
5229                 np->pkt_limit = NV_PKTLIMIT_2;
5230
5231         if (id->driver_data & DEV_HAS_CHECKSUM) {
5232                 np->rx_csum = 1;
5233                 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
5234                 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
5235                 dev->features |= NETIF_F_TSO;
5236         }
5237
5238         np->vlanctl_bits = 0;
5239         if (id->driver_data & DEV_HAS_VLAN) {
5240                 np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
5241                 dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
5242                 dev->vlan_rx_register = nv_vlan_rx_register;
5243         }
5244
5245         np->msi_flags = 0;
5246         if ((id->driver_data & DEV_HAS_MSI) && msi) {
5247                 np->msi_flags |= NV_MSI_CAPABLE;
5248         }
5249         if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
5250                 np->msi_flags |= NV_MSI_X_CAPABLE;
5251         }
5252
5253         np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
5254         if ((id->driver_data & DEV_HAS_PAUSEFRAME_TX_V1) ||
5255             (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V2) ||
5256             (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V3)) {
5257                 np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
5258         }
5259
5260
5261         err = -ENOMEM;
5262         np->base = ioremap(addr, np->register_size);
5263         if (!np->base)
5264                 goto out_relreg;
5265         dev->base_addr = (unsigned long)np->base;
5266
5267         dev->irq = pci_dev->irq;
5268
5269         np->rx_ring_size = RX_RING_DEFAULT;
5270         np->tx_ring_size = TX_RING_DEFAULT;
5271
5272         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
5273                 np->rx_ring.orig = pci_alloc_consistent(pci_dev,
5274                                         sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
5275                                         &np->ring_addr);
5276                 if (!np->rx_ring.orig)
5277                         goto out_unmap;
5278                 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
5279         } else {
5280                 np->rx_ring.ex = pci_alloc_consistent(pci_dev,
5281                                         sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
5282                                         &np->ring_addr);
5283                 if (!np->rx_ring.ex)
5284                         goto out_unmap;
5285                 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
5286         }
5287         np->rx_skb = kcalloc(np->rx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
5288         np->tx_skb = kcalloc(np->tx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
5289         if (!np->rx_skb || !np->tx_skb)
5290                 goto out_freering;
5291
5292         dev->open = nv_open;
5293         dev->stop = nv_close;
5294         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
5295                 dev->hard_start_xmit = nv_start_xmit;
5296         else
5297                 dev->hard_start_xmit = nv_start_xmit_optimized;
5298         dev->get_stats = nv_get_stats;
5299         dev->change_mtu = nv_change_mtu;
5300         dev->set_mac_address = nv_set_mac_address;
5301         dev->set_multicast_list = nv_set_multicast;
5302 #ifdef CONFIG_NET_POLL_CONTROLLER
5303         dev->poll_controller = nv_poll_controller;
5304 #endif
5305 #ifdef CONFIG_FORCEDETH_NAPI
5306         netif_napi_add(dev, &np->napi, nv_napi_poll, RX_WORK_PER_LOOP);
5307 #endif
5308         SET_ETHTOOL_OPS(dev, &ops);
5309         dev->tx_timeout = nv_tx_timeout;
5310         dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
5311
5312         pci_set_drvdata(pci_dev, dev);
5313
5314         /* read the mac address */
5315         base = get_hwbase(dev);
5316         np->orig_mac[0] = readl(base + NvRegMacAddrA);
5317         np->orig_mac[1] = readl(base + NvRegMacAddrB);
5318
5319         /* check the workaround bit for correct mac address order */
5320         txreg = readl(base + NvRegTransmitPoll);
5321         if (id->driver_data & DEV_HAS_CORRECT_MACADDR) {
5322                 /* mac address is already in correct order */
5323                 dev->dev_addr[0] = (np->orig_mac[0] >>  0) & 0xff;
5324                 dev->dev_addr[1] = (np->orig_mac[0] >>  8) & 0xff;
5325                 dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
5326                 dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
5327                 dev->dev_addr[4] = (np->orig_mac[1] >>  0) & 0xff;
5328                 dev->dev_addr[5] = (np->orig_mac[1] >>  8) & 0xff;
5329         } else if (txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) {
5330                 /* mac address is already in correct order */
5331                 dev->dev_addr[0] = (np->orig_mac[0] >>  0) & 0xff;
5332                 dev->dev_addr[1] = (np->orig_mac[0] >>  8) & 0xff;
5333                 dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
5334                 dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
5335                 dev->dev_addr[4] = (np->orig_mac[1] >>  0) & 0xff;
5336                 dev->dev_addr[5] = (np->orig_mac[1] >>  8) & 0xff;
5337                 /*
5338                  * Set orig mac address back to the reversed version.
5339                  * This flag will be cleared during low power transition.
5340                  * Therefore, we should always put back the reversed address.
5341                  */
5342                 np->orig_mac[0] = (dev->dev_addr[5] << 0) + (dev->dev_addr[4] << 8) +
5343                         (dev->dev_addr[3] << 16) + (dev->dev_addr[2] << 24);
5344                 np->orig_mac[1] = (dev->dev_addr[1] << 0) + (dev->dev_addr[0] << 8);
5345         } else {
5346                 /* need to reverse mac address to correct order */
5347                 dev->dev_addr[0] = (np->orig_mac[1] >>  8) & 0xff;
5348                 dev->dev_addr[1] = (np->orig_mac[1] >>  0) & 0xff;
5349                 dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
5350                 dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
5351                 dev->dev_addr[4] = (np->orig_mac[0] >>  8) & 0xff;
5352                 dev->dev_addr[5] = (np->orig_mac[0] >>  0) & 0xff;
5353                 writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
5354         }
5355         memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
5356
5357         if (!is_valid_ether_addr(dev->perm_addr)) {
5358                 /*
5359                  * Bad mac address. At least one bios sets the mac address
5360                  * to 01:23:45:67:89:ab
5361                  */
5362                 dev_printk(KERN_ERR, &pci_dev->dev,
5363                         "Invalid Mac address detected: %s\n",
5364                         print_mac(mac, dev->dev_addr));
5365                 dev_printk(KERN_ERR, &pci_dev->dev,
5366                         "Please complain to your hardware vendor. Switching to a random MAC.\n");
5367                 dev->dev_addr[0] = 0x00;
5368                 dev->dev_addr[1] = 0x00;
5369                 dev->dev_addr[2] = 0x6c;
5370                 get_random_bytes(&dev->dev_addr[3], 3);
5371         }
5372
5373         dprintk(KERN_DEBUG "%s: MAC Address %s\n",
5374                 pci_name(pci_dev), print_mac(mac, dev->dev_addr));
5375
5376         /* set mac address */
5377         nv_copy_mac_to_hw(dev);
5378
5379         /* disable WOL */
5380         writel(0, base + NvRegWakeUpFlags);
5381         np->wolenabled = 0;
5382
5383         if (id->driver_data & DEV_HAS_POWER_CNTRL) {
5384
5385                 /* take phy and nic out of low power mode */
5386                 powerstate = readl(base + NvRegPowerState2);
5387                 powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
5388                 if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_12 ||
5389                      id->device == PCI_DEVICE_ID_NVIDIA_NVENET_13) &&
5390                     pci_dev->revision >= 0xA3)
5391                         powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
5392                 writel(powerstate, base + NvRegPowerState2);
5393         }
5394
5395         if (np->desc_ver == DESC_VER_1) {
5396                 np->tx_flags = NV_TX_VALID;
5397         } else {
5398                 np->tx_flags = NV_TX2_VALID;
5399         }
5400         if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
5401                 np->irqmask = NVREG_IRQMASK_THROUGHPUT;
5402                 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
5403                         np->msi_flags |= 0x0003;
5404         } else {
5405                 np->irqmask = NVREG_IRQMASK_CPU;
5406                 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
5407                         np->msi_flags |= 0x0001;
5408         }
5409
5410         if (id->driver_data & DEV_NEED_TIMERIRQ)
5411                 np->irqmask |= NVREG_IRQ_TIMER;
5412         if (id->driver_data & DEV_NEED_LINKTIMER) {
5413                 dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
5414                 np->need_linktimer = 1;
5415                 np->link_timeout = jiffies + LINK_TIMEOUT;
5416         } else {
5417                 dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
5418                 np->need_linktimer = 0;
5419         }
5420
5421         /* Limit the number of tx's outstanding for hw bug */
5422         if (id->driver_data & DEV_NEED_TX_LIMIT) {
5423                 np->tx_limit = 1;
5424                 if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_32 ||
5425                      id->device == PCI_DEVICE_ID_NVIDIA_NVENET_33 ||
5426                      id->device == PCI_DEVICE_ID_NVIDIA_NVENET_34 ||
5427                      id->device == PCI_DEVICE_ID_NVIDIA_NVENET_35 ||
5428                      id->device == PCI_DEVICE_ID_NVIDIA_NVENET_36 ||
5429                      id->device == PCI_DEVICE_ID_NVIDIA_NVENET_37 ||
5430                      id->device == PCI_DEVICE_ID_NVIDIA_NVENET_38 ||
5431                      id->device == PCI_DEVICE_ID_NVIDIA_NVENET_39) &&
5432                     pci_dev->revision >= 0xA2)
5433                         np->tx_limit = 0;
5434         }
5435
5436         /* clear phy state and temporarily halt phy interrupts */
5437         writel(0, base + NvRegMIIMask);
5438         phystate = readl(base + NvRegAdapterControl);
5439         if (phystate & NVREG_ADAPTCTL_RUNNING) {
5440                 phystate_orig = 1;
5441                 phystate &= ~NVREG_ADAPTCTL_RUNNING;
5442                 writel(phystate, base + NvRegAdapterControl);
5443         }
5444         writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
5445
5446         if (id->driver_data & DEV_HAS_MGMT_UNIT) {
5447                 /* management unit running on the mac? */
5448                 if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) {
5449                         np->mac_in_use = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST;
5450                         dprintk(KERN_INFO "%s: mgmt unit is running. mac in use %x.\n", pci_name(pci_dev), np->mac_in_use);
5451                         if (nv_mgmt_acquire_sema(dev)) {
5452                                 /* management unit setup the phy already? */
5453                                 if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) ==
5454                                     NVREG_XMITCTL_SYNC_PHY_INIT) {
5455                                         /* phy is inited by mgmt unit */
5456                                         phyinitialized = 1;
5457                                         dprintk(KERN_INFO "%s: Phy already initialized by mgmt unit.\n", pci_name(pci_dev));
5458                                 } else {
5459                                         /* we need to init the phy */
5460                                 }
5461                         }
5462                 }
5463         }
5464
5465         /* find a suitable phy */
5466         for (i = 1; i <= 32; i++) {
5467                 int id1, id2;
5468                 int phyaddr = i & 0x1F;
5469
5470                 spin_lock_irq(&np->lock);
5471                 id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
5472                 spin_unlock_irq(&np->lock);
5473                 if (id1 < 0 || id1 == 0xffff)
5474                         continue;
5475                 spin_lock_irq(&np->lock);
5476                 id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
5477                 spin_unlock_irq(&np->lock);
5478                 if (id2 < 0 || id2 == 0xffff)
5479                         continue;
5480
5481                 np->phy_model = id2 & PHYID2_MODEL_MASK;
5482                 id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
5483                 id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
5484                 dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
5485                         pci_name(pci_dev), id1, id2, phyaddr);
5486                 np->phyaddr = phyaddr;
5487                 np->phy_oui = id1 | id2;
5488                 break;
5489         }
5490         if (i == 33) {
5491                 dev_printk(KERN_INFO, &pci_dev->dev,
5492                         "open: Could not find a valid PHY.\n");
5493                 goto out_error;
5494         }
5495
5496         if (!phyinitialized) {
5497                 /* reset it */
5498                 phy_init(dev);
5499         } else {
5500                 /* see if it is a gigabit phy */
5501                 u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
5502                 if (mii_status & PHY_GIGABIT) {
5503                         np->gigabit = PHY_GIGABIT;
5504                 }
5505         }
5506
5507         /* set default