forcedeth: fix irq clearing and napi spin lock changes
[linux-2.6.git] / drivers / net / forcedeth.c
1 /*
2  * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
3  *
4  * Note: This driver is a cleanroom reimplementation based on reverse
5  *      engineered documentation written by Carl-Daniel Hailfinger
6  *      and Andrew de Quincey.
7  *
8  * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
9  * trademarks of NVIDIA Corporation in the United States and other
10  * countries.
11  *
12  * Copyright (C) 2003,4,5 Manfred Spraul
13  * Copyright (C) 2004 Andrew de Quincey (wol support)
14  * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
15  *              IRQ rate fixes, bigendian fixes, cleanups, verification)
16  * Copyright (c) 2004,2005,2006,2007,2008,2009 NVIDIA Corporation
17  *
18  * This program is free software; you can redistribute it and/or modify
19  * it under the terms of the GNU General Public License as published by
20  * the Free Software Foundation; either version 2 of the License, or
21  * (at your option) any later version.
22  *
23  * This program is distributed in the hope that it will be useful,
24  * but WITHOUT ANY WARRANTY; without even the implied warranty of
25  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
26  * GNU General Public License for more details.
27  *
28  * You should have received a copy of the GNU General Public License
29  * along with this program; if not, write to the Free Software
30  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
31  *
32  * Known bugs:
33  * We suspect that on some hardware no TX done interrupts are generated.
34  * This means recovery from netif_stop_queue only happens if the hw timer
35  * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
36  * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
37  * If your hardware reliably generates tx done interrupts, then you can remove
38  * DEV_NEED_TIMERIRQ from the driver_data flags.
39  * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
40  * superfluous timer interrupts from the nic.
41  */
42 #define FORCEDETH_VERSION               "0.63"
43 #define DRV_NAME                        "forcedeth"
44
45 #include <linux/module.h>
46 #include <linux/types.h>
47 #include <linux/pci.h>
48 #include <linux/interrupt.h>
49 #include <linux/netdevice.h>
50 #include <linux/etherdevice.h>
51 #include <linux/delay.h>
52 #include <linux/spinlock.h>
53 #include <linux/ethtool.h>
54 #include <linux/timer.h>
55 #include <linux/skbuff.h>
56 #include <linux/mii.h>
57 #include <linux/random.h>
58 #include <linux/init.h>
59 #include <linux/if_vlan.h>
60 #include <linux/dma-mapping.h>
61
62 #include <asm/irq.h>
63 #include <asm/io.h>
64 #include <asm/uaccess.h>
65 #include <asm/system.h>
66
67 #if 0
68 #define dprintk                 printk
69 #else
70 #define dprintk(x...)           do { } while (0)
71 #endif
72
73 #define TX_WORK_PER_LOOP  64
74 #define RX_WORK_PER_LOOP  64
75
76 /*
77  * Hardware access:
78  */
79
80 #define DEV_NEED_TIMERIRQ          0x000001  /* set the timer irq flag in the irq mask */
81 #define DEV_NEED_LINKTIMER         0x000002  /* poll link settings. Relies on the timer irq */
82 #define DEV_HAS_LARGEDESC          0x000004  /* device supports jumbo frames and needs packet format 2 */
83 #define DEV_HAS_HIGH_DMA           0x000008  /* device supports 64bit dma */
84 #define DEV_HAS_CHECKSUM           0x000010  /* device supports tx and rx checksum offloads */
85 #define DEV_HAS_VLAN               0x000020  /* device supports vlan tagging and striping */
86 #define DEV_HAS_MSI                0x000040  /* device supports MSI */
87 #define DEV_HAS_MSI_X              0x000080  /* device supports MSI-X */
88 #define DEV_HAS_POWER_CNTRL        0x000100  /* device supports power savings */
89 #define DEV_HAS_STATISTICS_V1      0x000200  /* device supports hw statistics version 1 */
90 #define DEV_HAS_STATISTICS_V2      0x000600  /* device supports hw statistics version 2 */
91 #define DEV_HAS_STATISTICS_V3      0x000e00  /* device supports hw statistics version 3 */
92 #define DEV_HAS_TEST_EXTENDED      0x001000  /* device supports extended diagnostic test */
93 #define DEV_HAS_MGMT_UNIT          0x002000  /* device supports management unit */
94 #define DEV_HAS_CORRECT_MACADDR    0x004000  /* device supports correct mac address order */
95 #define DEV_HAS_COLLISION_FIX      0x008000  /* device supports tx collision fix */
96 #define DEV_HAS_PAUSEFRAME_TX_V1   0x010000  /* device supports tx pause frames version 1 */
97 #define DEV_HAS_PAUSEFRAME_TX_V2   0x020000  /* device supports tx pause frames version 2 */
98 #define DEV_HAS_PAUSEFRAME_TX_V3   0x040000  /* device supports tx pause frames version 3 */
99 #define DEV_NEED_TX_LIMIT          0x080000  /* device needs to limit tx */
100 #define DEV_HAS_GEAR_MODE          0x100000  /* device supports gear mode */
101
102 enum {
103         NvRegIrqStatus = 0x000,
104 #define NVREG_IRQSTAT_MIIEVENT  0x040
105 #define NVREG_IRQSTAT_MASK              0x83ff
106         NvRegIrqMask = 0x004,
107 #define NVREG_IRQ_RX_ERROR              0x0001
108 #define NVREG_IRQ_RX                    0x0002
109 #define NVREG_IRQ_RX_NOBUF              0x0004
110 #define NVREG_IRQ_TX_ERR                0x0008
111 #define NVREG_IRQ_TX_OK                 0x0010
112 #define NVREG_IRQ_TIMER                 0x0020
113 #define NVREG_IRQ_LINK                  0x0040
114 #define NVREG_IRQ_RX_FORCED             0x0080
115 #define NVREG_IRQ_TX_FORCED             0x0100
116 #define NVREG_IRQ_RECOVER_ERROR         0x8200
117 #define NVREG_IRQMASK_THROUGHPUT        0x00df
118 #define NVREG_IRQMASK_CPU               0x0060
119 #define NVREG_IRQ_TX_ALL                (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
120 #define NVREG_IRQ_RX_ALL                (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
121 #define NVREG_IRQ_OTHER                 (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR)
122
123         NvRegUnknownSetupReg6 = 0x008,
124 #define NVREG_UNKSETUP6_VAL             3
125
126 /*
127  * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
128  * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
129  */
130         NvRegPollingInterval = 0x00c,
131 #define NVREG_POLL_DEFAULT_THROUGHPUT   65535 /* backup tx cleanup if loop max reached */
132 #define NVREG_POLL_DEFAULT_CPU  13
133         NvRegMSIMap0 = 0x020,
134         NvRegMSIMap1 = 0x024,
135         NvRegMSIIrqMask = 0x030,
136 #define NVREG_MSI_VECTOR_0_ENABLED 0x01
137         NvRegMisc1 = 0x080,
138 #define NVREG_MISC1_PAUSE_TX    0x01
139 #define NVREG_MISC1_HD          0x02
140 #define NVREG_MISC1_FORCE       0x3b0f3c
141
142         NvRegMacReset = 0x34,
143 #define NVREG_MAC_RESET_ASSERT  0x0F3
144         NvRegTransmitterControl = 0x084,
145 #define NVREG_XMITCTL_START     0x01
146 #define NVREG_XMITCTL_MGMT_ST   0x40000000
147 #define NVREG_XMITCTL_SYNC_MASK         0x000f0000
148 #define NVREG_XMITCTL_SYNC_NOT_READY    0x0
149 #define NVREG_XMITCTL_SYNC_PHY_INIT     0x00040000
150 #define NVREG_XMITCTL_MGMT_SEMA_MASK    0x00000f00
151 #define NVREG_XMITCTL_MGMT_SEMA_FREE    0x0
152 #define NVREG_XMITCTL_HOST_SEMA_MASK    0x0000f000
153 #define NVREG_XMITCTL_HOST_SEMA_ACQ     0x0000f000
154 #define NVREG_XMITCTL_HOST_LOADED       0x00004000
155 #define NVREG_XMITCTL_TX_PATH_EN        0x01000000
156 #define NVREG_XMITCTL_DATA_START        0x00100000
157 #define NVREG_XMITCTL_DATA_READY        0x00010000
158 #define NVREG_XMITCTL_DATA_ERROR        0x00020000
159         NvRegTransmitterStatus = 0x088,
160 #define NVREG_XMITSTAT_BUSY     0x01
161
162         NvRegPacketFilterFlags = 0x8c,
163 #define NVREG_PFF_PAUSE_RX      0x08
164 #define NVREG_PFF_ALWAYS        0x7F0000
165 #define NVREG_PFF_PROMISC       0x80
166 #define NVREG_PFF_MYADDR        0x20
167 #define NVREG_PFF_LOOPBACK      0x10
168
169         NvRegOffloadConfig = 0x90,
170 #define NVREG_OFFLOAD_HOMEPHY   0x601
171 #define NVREG_OFFLOAD_NORMAL    RX_NIC_BUFSIZE
172         NvRegReceiverControl = 0x094,
173 #define NVREG_RCVCTL_START      0x01
174 #define NVREG_RCVCTL_RX_PATH_EN 0x01000000
175         NvRegReceiverStatus = 0x98,
176 #define NVREG_RCVSTAT_BUSY      0x01
177
178         NvRegSlotTime = 0x9c,
179 #define NVREG_SLOTTIME_LEGBF_ENABLED    0x80000000
180 #define NVREG_SLOTTIME_10_100_FULL      0x00007f00
181 #define NVREG_SLOTTIME_1000_FULL        0x0003ff00
182 #define NVREG_SLOTTIME_HALF             0x0000ff00
183 #define NVREG_SLOTTIME_DEFAULT          0x00007f00
184 #define NVREG_SLOTTIME_MASK             0x000000ff
185
186         NvRegTxDeferral = 0xA0,
187 #define NVREG_TX_DEFERRAL_DEFAULT               0x15050f
188 #define NVREG_TX_DEFERRAL_RGMII_10_100          0x16070f
189 #define NVREG_TX_DEFERRAL_RGMII_1000            0x14050f
190 #define NVREG_TX_DEFERRAL_RGMII_STRETCH_10      0x16190f
191 #define NVREG_TX_DEFERRAL_RGMII_STRETCH_100     0x16300f
192 #define NVREG_TX_DEFERRAL_MII_STRETCH           0x152000
193         NvRegRxDeferral = 0xA4,
194 #define NVREG_RX_DEFERRAL_DEFAULT       0x16
195         NvRegMacAddrA = 0xA8,
196         NvRegMacAddrB = 0xAC,
197         NvRegMulticastAddrA = 0xB0,
198 #define NVREG_MCASTADDRA_FORCE  0x01
199         NvRegMulticastAddrB = 0xB4,
200         NvRegMulticastMaskA = 0xB8,
201 #define NVREG_MCASTMASKA_NONE           0xffffffff
202         NvRegMulticastMaskB = 0xBC,
203 #define NVREG_MCASTMASKB_NONE           0xffff
204
205         NvRegPhyInterface = 0xC0,
206 #define PHY_RGMII               0x10000000
207         NvRegBackOffControl = 0xC4,
208 #define NVREG_BKOFFCTRL_DEFAULT                 0x70000000
209 #define NVREG_BKOFFCTRL_SEED_MASK               0x000003ff
210 #define NVREG_BKOFFCTRL_SELECT                  24
211 #define NVREG_BKOFFCTRL_GEAR                    12
212
213         NvRegTxRingPhysAddr = 0x100,
214         NvRegRxRingPhysAddr = 0x104,
215         NvRegRingSizes = 0x108,
216 #define NVREG_RINGSZ_TXSHIFT 0
217 #define NVREG_RINGSZ_RXSHIFT 16
218         NvRegTransmitPoll = 0x10c,
219 #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
220         NvRegLinkSpeed = 0x110,
221 #define NVREG_LINKSPEED_FORCE 0x10000
222 #define NVREG_LINKSPEED_10      1000
223 #define NVREG_LINKSPEED_100     100
224 #define NVREG_LINKSPEED_1000    50
225 #define NVREG_LINKSPEED_MASK    (0xFFF)
226         NvRegUnknownSetupReg5 = 0x130,
227 #define NVREG_UNKSETUP5_BIT31   (1<<31)
228         NvRegTxWatermark = 0x13c,
229 #define NVREG_TX_WM_DESC1_DEFAULT       0x0200010
230 #define NVREG_TX_WM_DESC2_3_DEFAULT     0x1e08000
231 #define NVREG_TX_WM_DESC2_3_1000        0xfe08000
232         NvRegTxRxControl = 0x144,
233 #define NVREG_TXRXCTL_KICK      0x0001
234 #define NVREG_TXRXCTL_BIT1      0x0002
235 #define NVREG_TXRXCTL_BIT2      0x0004
236 #define NVREG_TXRXCTL_IDLE      0x0008
237 #define NVREG_TXRXCTL_RESET     0x0010
238 #define NVREG_TXRXCTL_RXCHECK   0x0400
239 #define NVREG_TXRXCTL_DESC_1    0
240 #define NVREG_TXRXCTL_DESC_2    0x002100
241 #define NVREG_TXRXCTL_DESC_3    0xc02200
242 #define NVREG_TXRXCTL_VLANSTRIP 0x00040
243 #define NVREG_TXRXCTL_VLANINS   0x00080
244         NvRegTxRingPhysAddrHigh = 0x148,
245         NvRegRxRingPhysAddrHigh = 0x14C,
246         NvRegTxPauseFrame = 0x170,
247 #define NVREG_TX_PAUSEFRAME_DISABLE     0x0fff0080
248 #define NVREG_TX_PAUSEFRAME_ENABLE_V1   0x01800010
249 #define NVREG_TX_PAUSEFRAME_ENABLE_V2   0x056003f0
250 #define NVREG_TX_PAUSEFRAME_ENABLE_V3   0x09f00880
251         NvRegTxPauseFrameLimit = 0x174,
252 #define NVREG_TX_PAUSEFRAMELIMIT_ENABLE 0x00010000
253         NvRegMIIStatus = 0x180,
254 #define NVREG_MIISTAT_ERROR             0x0001
255 #define NVREG_MIISTAT_LINKCHANGE        0x0008
256 #define NVREG_MIISTAT_MASK_RW           0x0007
257 #define NVREG_MIISTAT_MASK_ALL          0x000f
258         NvRegMIIMask = 0x184,
259 #define NVREG_MII_LINKCHANGE            0x0008
260
261         NvRegAdapterControl = 0x188,
262 #define NVREG_ADAPTCTL_START    0x02
263 #define NVREG_ADAPTCTL_LINKUP   0x04
264 #define NVREG_ADAPTCTL_PHYVALID 0x40000
265 #define NVREG_ADAPTCTL_RUNNING  0x100000
266 #define NVREG_ADAPTCTL_PHYSHIFT 24
267         NvRegMIISpeed = 0x18c,
268 #define NVREG_MIISPEED_BIT8     (1<<8)
269 #define NVREG_MIIDELAY  5
270         NvRegMIIControl = 0x190,
271 #define NVREG_MIICTL_INUSE      0x08000
272 #define NVREG_MIICTL_WRITE      0x00400
273 #define NVREG_MIICTL_ADDRSHIFT  5
274         NvRegMIIData = 0x194,
275         NvRegTxUnicast = 0x1a0,
276         NvRegTxMulticast = 0x1a4,
277         NvRegTxBroadcast = 0x1a8,
278         NvRegWakeUpFlags = 0x200,
279 #define NVREG_WAKEUPFLAGS_VAL           0x7770
280 #define NVREG_WAKEUPFLAGS_BUSYSHIFT     24
281 #define NVREG_WAKEUPFLAGS_ENABLESHIFT   16
282 #define NVREG_WAKEUPFLAGS_D3SHIFT       12
283 #define NVREG_WAKEUPFLAGS_D2SHIFT       8
284 #define NVREG_WAKEUPFLAGS_D1SHIFT       4
285 #define NVREG_WAKEUPFLAGS_D0SHIFT       0
286 #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT         0x01
287 #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT      0x02
288 #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE     0x04
289 #define NVREG_WAKEUPFLAGS_ENABLE        0x1111
290
291         NvRegMgmtUnitGetVersion = 0x204,
292 #define NVREG_MGMTUNITGETVERSION        0x01
293         NvRegMgmtUnitVersion = 0x208,
294 #define NVREG_MGMTUNITVERSION           0x08
295         NvRegPowerCap = 0x268,
296 #define NVREG_POWERCAP_D3SUPP   (1<<30)
297 #define NVREG_POWERCAP_D2SUPP   (1<<26)
298 #define NVREG_POWERCAP_D1SUPP   (1<<25)
299         NvRegPowerState = 0x26c,
300 #define NVREG_POWERSTATE_POWEREDUP      0x8000
301 #define NVREG_POWERSTATE_VALID          0x0100
302 #define NVREG_POWERSTATE_MASK           0x0003
303 #define NVREG_POWERSTATE_D0             0x0000
304 #define NVREG_POWERSTATE_D1             0x0001
305 #define NVREG_POWERSTATE_D2             0x0002
306 #define NVREG_POWERSTATE_D3             0x0003
307         NvRegMgmtUnitControl = 0x278,
308 #define NVREG_MGMTUNITCONTROL_INUSE     0x20000
309         NvRegTxCnt = 0x280,
310         NvRegTxZeroReXmt = 0x284,
311         NvRegTxOneReXmt = 0x288,
312         NvRegTxManyReXmt = 0x28c,
313         NvRegTxLateCol = 0x290,
314         NvRegTxUnderflow = 0x294,
315         NvRegTxLossCarrier = 0x298,
316         NvRegTxExcessDef = 0x29c,
317         NvRegTxRetryErr = 0x2a0,
318         NvRegRxFrameErr = 0x2a4,
319         NvRegRxExtraByte = 0x2a8,
320         NvRegRxLateCol = 0x2ac,
321         NvRegRxRunt = 0x2b0,
322         NvRegRxFrameTooLong = 0x2b4,
323         NvRegRxOverflow = 0x2b8,
324         NvRegRxFCSErr = 0x2bc,
325         NvRegRxFrameAlignErr = 0x2c0,
326         NvRegRxLenErr = 0x2c4,
327         NvRegRxUnicast = 0x2c8,
328         NvRegRxMulticast = 0x2cc,
329         NvRegRxBroadcast = 0x2d0,
330         NvRegTxDef = 0x2d4,
331         NvRegTxFrame = 0x2d8,
332         NvRegRxCnt = 0x2dc,
333         NvRegTxPause = 0x2e0,
334         NvRegRxPause = 0x2e4,
335         NvRegRxDropFrame = 0x2e8,
336         NvRegVlanControl = 0x300,
337 #define NVREG_VLANCONTROL_ENABLE        0x2000
338         NvRegMSIXMap0 = 0x3e0,
339         NvRegMSIXMap1 = 0x3e4,
340         NvRegMSIXIrqStatus = 0x3f0,
341
342         NvRegPowerState2 = 0x600,
343 #define NVREG_POWERSTATE2_POWERUP_MASK          0x0F15
344 #define NVREG_POWERSTATE2_POWERUP_REV_A3        0x0001
345 #define NVREG_POWERSTATE2_PHY_RESET             0x0004
346 };
347
348 /* Big endian: should work, but is untested */
349 struct ring_desc {
350         __le32 buf;
351         __le32 flaglen;
352 };
353
354 struct ring_desc_ex {
355         __le32 bufhigh;
356         __le32 buflow;
357         __le32 txvlan;
358         __le32 flaglen;
359 };
360
361 union ring_type {
362         struct ring_desc* orig;
363         struct ring_desc_ex* ex;
364 };
365
366 #define FLAG_MASK_V1 0xffff0000
367 #define FLAG_MASK_V2 0xffffc000
368 #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
369 #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
370
371 #define NV_TX_LASTPACKET        (1<<16)
372 #define NV_TX_RETRYERROR        (1<<19)
373 #define NV_TX_RETRYCOUNT_MASK   (0xF<<20)
374 #define NV_TX_FORCED_INTERRUPT  (1<<24)
375 #define NV_TX_DEFERRED          (1<<26)
376 #define NV_TX_CARRIERLOST       (1<<27)
377 #define NV_TX_LATECOLLISION     (1<<28)
378 #define NV_TX_UNDERFLOW         (1<<29)
379 #define NV_TX_ERROR             (1<<30)
380 #define NV_TX_VALID             (1<<31)
381
382 #define NV_TX2_LASTPACKET       (1<<29)
383 #define NV_TX2_RETRYERROR       (1<<18)
384 #define NV_TX2_RETRYCOUNT_MASK  (0xF<<19)
385 #define NV_TX2_FORCED_INTERRUPT (1<<30)
386 #define NV_TX2_DEFERRED         (1<<25)
387 #define NV_TX2_CARRIERLOST      (1<<26)
388 #define NV_TX2_LATECOLLISION    (1<<27)
389 #define NV_TX2_UNDERFLOW        (1<<28)
390 /* error and valid are the same for both */
391 #define NV_TX2_ERROR            (1<<30)
392 #define NV_TX2_VALID            (1<<31)
393 #define NV_TX2_TSO              (1<<28)
394 #define NV_TX2_TSO_SHIFT        14
395 #define NV_TX2_TSO_MAX_SHIFT    14
396 #define NV_TX2_TSO_MAX_SIZE     (1<<NV_TX2_TSO_MAX_SHIFT)
397 #define NV_TX2_CHECKSUM_L3      (1<<27)
398 #define NV_TX2_CHECKSUM_L4      (1<<26)
399
400 #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
401
402 #define NV_RX_DESCRIPTORVALID   (1<<16)
403 #define NV_RX_MISSEDFRAME       (1<<17)
404 #define NV_RX_SUBSTRACT1        (1<<18)
405 #define NV_RX_ERROR1            (1<<23)
406 #define NV_RX_ERROR2            (1<<24)
407 #define NV_RX_ERROR3            (1<<25)
408 #define NV_RX_ERROR4            (1<<26)
409 #define NV_RX_CRCERR            (1<<27)
410 #define NV_RX_OVERFLOW          (1<<28)
411 #define NV_RX_FRAMINGERR        (1<<29)
412 #define NV_RX_ERROR             (1<<30)
413 #define NV_RX_AVAIL             (1<<31)
414 #define NV_RX_ERROR_MASK        (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3|NV_RX_ERROR4|NV_RX_CRCERR|NV_RX_OVERFLOW|NV_RX_FRAMINGERR)
415
416 #define NV_RX2_CHECKSUMMASK     (0x1C000000)
417 #define NV_RX2_CHECKSUM_IP      (0x10000000)
418 #define NV_RX2_CHECKSUM_IP_TCP  (0x14000000)
419 #define NV_RX2_CHECKSUM_IP_UDP  (0x18000000)
420 #define NV_RX2_DESCRIPTORVALID  (1<<29)
421 #define NV_RX2_SUBSTRACT1       (1<<25)
422 #define NV_RX2_ERROR1           (1<<18)
423 #define NV_RX2_ERROR2           (1<<19)
424 #define NV_RX2_ERROR3           (1<<20)
425 #define NV_RX2_ERROR4           (1<<21)
426 #define NV_RX2_CRCERR           (1<<22)
427 #define NV_RX2_OVERFLOW         (1<<23)
428 #define NV_RX2_FRAMINGERR       (1<<24)
429 /* error and avail are the same for both */
430 #define NV_RX2_ERROR            (1<<30)
431 #define NV_RX2_AVAIL            (1<<31)
432 #define NV_RX2_ERROR_MASK       (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3|NV_RX2_ERROR4|NV_RX2_CRCERR|NV_RX2_OVERFLOW|NV_RX2_FRAMINGERR)
433
434 #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
435 #define NV_RX3_VLAN_TAG_MASK    (0x0000FFFF)
436
437 /* Miscelaneous hardware related defines: */
438 #define NV_PCI_REGSZ_VER1       0x270
439 #define NV_PCI_REGSZ_VER2       0x2d4
440 #define NV_PCI_REGSZ_VER3       0x604
441 #define NV_PCI_REGSZ_MAX        0x604
442
443 /* various timeout delays: all in usec */
444 #define NV_TXRX_RESET_DELAY     4
445 #define NV_TXSTOP_DELAY1        10
446 #define NV_TXSTOP_DELAY1MAX     500000
447 #define NV_TXSTOP_DELAY2        100
448 #define NV_RXSTOP_DELAY1        10
449 #define NV_RXSTOP_DELAY1MAX     500000
450 #define NV_RXSTOP_DELAY2        100
451 #define NV_SETUP5_DELAY         5
452 #define NV_SETUP5_DELAYMAX      50000
453 #define NV_POWERUP_DELAY        5
454 #define NV_POWERUP_DELAYMAX     5000
455 #define NV_MIIBUSY_DELAY        50
456 #define NV_MIIPHY_DELAY 10
457 #define NV_MIIPHY_DELAYMAX      10000
458 #define NV_MAC_RESET_DELAY      64
459
460 #define NV_WAKEUPPATTERNS       5
461 #define NV_WAKEUPMASKENTRIES    4
462
463 /* General driver defaults */
464 #define NV_WATCHDOG_TIMEO       (5*HZ)
465
466 #define RX_RING_DEFAULT         512
467 #define TX_RING_DEFAULT         256
468 #define RX_RING_MIN             128
469 #define TX_RING_MIN             64
470 #define RING_MAX_DESC_VER_1     1024
471 #define RING_MAX_DESC_VER_2_3   16384
472
473 /* rx/tx mac addr + type + vlan + align + slack*/
474 #define NV_RX_HEADERS           (64)
475 /* even more slack. */
476 #define NV_RX_ALLOC_PAD         (64)
477
478 /* maximum mtu size */
479 #define NV_PKTLIMIT_1   ETH_DATA_LEN    /* hard limit not known */
480 #define NV_PKTLIMIT_2   9100    /* Actual limit according to NVidia: 9202 */
481
482 #define OOM_REFILL      (1+HZ/20)
483 #define POLL_WAIT       (1+HZ/100)
484 #define LINK_TIMEOUT    (3*HZ)
485 #define STATS_INTERVAL  (10*HZ)
486
487 /*
488  * desc_ver values:
489  * The nic supports three different descriptor types:
490  * - DESC_VER_1: Original
491  * - DESC_VER_2: support for jumbo frames.
492  * - DESC_VER_3: 64-bit format.
493  */
494 #define DESC_VER_1      1
495 #define DESC_VER_2      2
496 #define DESC_VER_3      3
497
498 /* PHY defines */
499 #define PHY_OUI_MARVELL         0x5043
500 #define PHY_OUI_CICADA          0x03f1
501 #define PHY_OUI_VITESSE         0x01c1
502 #define PHY_OUI_REALTEK         0x0732
503 #define PHY_OUI_REALTEK2        0x0020
504 #define PHYID1_OUI_MASK 0x03ff
505 #define PHYID1_OUI_SHFT 6
506 #define PHYID2_OUI_MASK 0xfc00
507 #define PHYID2_OUI_SHFT 10
508 #define PHYID2_MODEL_MASK               0x03f0
509 #define PHY_MODEL_REALTEK_8211          0x0110
510 #define PHY_REV_MASK                    0x0001
511 #define PHY_REV_REALTEK_8211B           0x0000
512 #define PHY_REV_REALTEK_8211C           0x0001
513 #define PHY_MODEL_REALTEK_8201          0x0200
514 #define PHY_MODEL_MARVELL_E3016         0x0220
515 #define PHY_MARVELL_E3016_INITMASK      0x0300
516 #define PHY_CICADA_INIT1        0x0f000
517 #define PHY_CICADA_INIT2        0x0e00
518 #define PHY_CICADA_INIT3        0x01000
519 #define PHY_CICADA_INIT4        0x0200
520 #define PHY_CICADA_INIT5        0x0004
521 #define PHY_CICADA_INIT6        0x02000
522 #define PHY_VITESSE_INIT_REG1   0x1f
523 #define PHY_VITESSE_INIT_REG2   0x10
524 #define PHY_VITESSE_INIT_REG3   0x11
525 #define PHY_VITESSE_INIT_REG4   0x12
526 #define PHY_VITESSE_INIT_MSK1   0xc
527 #define PHY_VITESSE_INIT_MSK2   0x0180
528 #define PHY_VITESSE_INIT1       0x52b5
529 #define PHY_VITESSE_INIT2       0xaf8a
530 #define PHY_VITESSE_INIT3       0x8
531 #define PHY_VITESSE_INIT4       0x8f8a
532 #define PHY_VITESSE_INIT5       0xaf86
533 #define PHY_VITESSE_INIT6       0x8f86
534 #define PHY_VITESSE_INIT7       0xaf82
535 #define PHY_VITESSE_INIT8       0x0100
536 #define PHY_VITESSE_INIT9       0x8f82
537 #define PHY_VITESSE_INIT10      0x0
538 #define PHY_REALTEK_INIT_REG1   0x1f
539 #define PHY_REALTEK_INIT_REG2   0x19
540 #define PHY_REALTEK_INIT_REG3   0x13
541 #define PHY_REALTEK_INIT_REG4   0x14
542 #define PHY_REALTEK_INIT_REG5   0x18
543 #define PHY_REALTEK_INIT_REG6   0x11
544 #define PHY_REALTEK_INIT_REG7   0x01
545 #define PHY_REALTEK_INIT1       0x0000
546 #define PHY_REALTEK_INIT2       0x8e00
547 #define PHY_REALTEK_INIT3       0x0001
548 #define PHY_REALTEK_INIT4       0xad17
549 #define PHY_REALTEK_INIT5       0xfb54
550 #define PHY_REALTEK_INIT6       0xf5c7
551 #define PHY_REALTEK_INIT7       0x1000
552 #define PHY_REALTEK_INIT8       0x0003
553 #define PHY_REALTEK_INIT9       0x0008
554 #define PHY_REALTEK_INIT10      0x0005
555 #define PHY_REALTEK_INIT11      0x0200
556 #define PHY_REALTEK_INIT_MSK1   0x0003
557
558 #define PHY_GIGABIT     0x0100
559
560 #define PHY_TIMEOUT     0x1
561 #define PHY_ERROR       0x2
562
563 #define PHY_100 0x1
564 #define PHY_1000        0x2
565 #define PHY_HALF        0x100
566
567 #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
568 #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
569 #define NV_PAUSEFRAME_RX_ENABLE  0x0004
570 #define NV_PAUSEFRAME_TX_ENABLE  0x0008
571 #define NV_PAUSEFRAME_RX_REQ     0x0010
572 #define NV_PAUSEFRAME_TX_REQ     0x0020
573 #define NV_PAUSEFRAME_AUTONEG    0x0040
574
575 /* MSI/MSI-X defines */
576 #define NV_MSI_X_MAX_VECTORS  8
577 #define NV_MSI_X_VECTORS_MASK 0x000f
578 #define NV_MSI_CAPABLE        0x0010
579 #define NV_MSI_X_CAPABLE      0x0020
580 #define NV_MSI_ENABLED        0x0040
581 #define NV_MSI_X_ENABLED      0x0080
582
583 #define NV_MSI_X_VECTOR_ALL   0x0
584 #define NV_MSI_X_VECTOR_RX    0x0
585 #define NV_MSI_X_VECTOR_TX    0x1
586 #define NV_MSI_X_VECTOR_OTHER 0x2
587
588 #define NV_MSI_PRIV_OFFSET 0x68
589 #define NV_MSI_PRIV_VALUE  0xffffffff
590
591 #define NV_RESTART_TX         0x1
592 #define NV_RESTART_RX         0x2
593
594 #define NV_TX_LIMIT_COUNT     16
595
596 #define NV_DYNAMIC_THRESHOLD        4
597 #define NV_DYNAMIC_MAX_QUIET_COUNT  2048
598
599 /* statistics */
600 struct nv_ethtool_str {
601         char name[ETH_GSTRING_LEN];
602 };
603
604 static const struct nv_ethtool_str nv_estats_str[] = {
605         { "tx_bytes" },
606         { "tx_zero_rexmt" },
607         { "tx_one_rexmt" },
608         { "tx_many_rexmt" },
609         { "tx_late_collision" },
610         { "tx_fifo_errors" },
611         { "tx_carrier_errors" },
612         { "tx_excess_deferral" },
613         { "tx_retry_error" },
614         { "rx_frame_error" },
615         { "rx_extra_byte" },
616         { "rx_late_collision" },
617         { "rx_runt" },
618         { "rx_frame_too_long" },
619         { "rx_over_errors" },
620         { "rx_crc_errors" },
621         { "rx_frame_align_error" },
622         { "rx_length_error" },
623         { "rx_unicast" },
624         { "rx_multicast" },
625         { "rx_broadcast" },
626         { "rx_packets" },
627         { "rx_errors_total" },
628         { "tx_errors_total" },
629
630         /* version 2 stats */
631         { "tx_deferral" },
632         { "tx_packets" },
633         { "rx_bytes" },
634         { "tx_pause" },
635         { "rx_pause" },
636         { "rx_drop_frame" },
637
638         /* version 3 stats */
639         { "tx_unicast" },
640         { "tx_multicast" },
641         { "tx_broadcast" }
642 };
643
644 struct nv_ethtool_stats {
645         u64 tx_bytes;
646         u64 tx_zero_rexmt;
647         u64 tx_one_rexmt;
648         u64 tx_many_rexmt;
649         u64 tx_late_collision;
650         u64 tx_fifo_errors;
651         u64 tx_carrier_errors;
652         u64 tx_excess_deferral;
653         u64 tx_retry_error;
654         u64 rx_frame_error;
655         u64 rx_extra_byte;
656         u64 rx_late_collision;
657         u64 rx_runt;
658         u64 rx_frame_too_long;
659         u64 rx_over_errors;
660         u64 rx_crc_errors;
661         u64 rx_frame_align_error;
662         u64 rx_length_error;
663         u64 rx_unicast;
664         u64 rx_multicast;
665         u64 rx_broadcast;
666         u64 rx_packets;
667         u64 rx_errors_total;
668         u64 tx_errors_total;
669
670         /* version 2 stats */
671         u64 tx_deferral;
672         u64 tx_packets;
673         u64 rx_bytes;
674         u64 tx_pause;
675         u64 rx_pause;
676         u64 rx_drop_frame;
677
678         /* version 3 stats */
679         u64 tx_unicast;
680         u64 tx_multicast;
681         u64 tx_broadcast;
682 };
683
684 #define NV_DEV_STATISTICS_V3_COUNT (sizeof(struct nv_ethtool_stats)/sizeof(u64))
685 #define NV_DEV_STATISTICS_V2_COUNT (NV_DEV_STATISTICS_V3_COUNT - 3)
686 #define NV_DEV_STATISTICS_V1_COUNT (NV_DEV_STATISTICS_V2_COUNT - 6)
687
688 /* diagnostics */
689 #define NV_TEST_COUNT_BASE 3
690 #define NV_TEST_COUNT_EXTENDED 4
691
692 static const struct nv_ethtool_str nv_etests_str[] = {
693         { "link      (online/offline)" },
694         { "register  (offline)       " },
695         { "interrupt (offline)       " },
696         { "loopback  (offline)       " }
697 };
698
699 struct register_test {
700         __u32 reg;
701         __u32 mask;
702 };
703
704 static const struct register_test nv_registers_test[] = {
705         { NvRegUnknownSetupReg6, 0x01 },
706         { NvRegMisc1, 0x03c },
707         { NvRegOffloadConfig, 0x03ff },
708         { NvRegMulticastAddrA, 0xffffffff },
709         { NvRegTxWatermark, 0x0ff },
710         { NvRegWakeUpFlags, 0x07777 },
711         { 0,0 }
712 };
713
714 struct nv_skb_map {
715         struct sk_buff *skb;
716         dma_addr_t dma;
717         unsigned int dma_len;
718         struct ring_desc_ex *first_tx_desc;
719         struct nv_skb_map *next_tx_ctx;
720 };
721
722 /*
723  * SMP locking:
724  * All hardware access under netdev_priv(dev)->lock, except the performance
725  * critical parts:
726  * - rx is (pseudo-) lockless: it relies on the single-threading provided
727  *      by the arch code for interrupts.
728  * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
729  *      needs netdev_priv(dev)->lock :-(
730  * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
731  */
732
733 /* in dev: base, irq */
734 struct fe_priv {
735         spinlock_t lock;
736
737         struct net_device *dev;
738         struct napi_struct napi;
739
740         /* General data:
741          * Locking: spin_lock(&np->lock); */
742         struct nv_ethtool_stats estats;
743         int in_shutdown;
744         u32 linkspeed;
745         int duplex;
746         int autoneg;
747         int fixed_mode;
748         int phyaddr;
749         int wolenabled;
750         unsigned int phy_oui;
751         unsigned int phy_model;
752         unsigned int phy_rev;
753         u16 gigabit;
754         int intr_test;
755         int recover_error;
756         int quiet_count;
757
758         /* General data: RO fields */
759         dma_addr_t ring_addr;
760         struct pci_dev *pci_dev;
761         u32 orig_mac[2];
762         u32 events;
763         u32 irqmask;
764         u32 desc_ver;
765         u32 txrxctl_bits;
766         u32 vlanctl_bits;
767         u32 driver_data;
768         u32 device_id;
769         u32 register_size;
770         int rx_csum;
771         u32 mac_in_use;
772         int mgmt_version;
773         int mgmt_sema;
774
775         void __iomem *base;
776
777         /* rx specific fields.
778          * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
779          */
780         union ring_type get_rx, put_rx, first_rx, last_rx;
781         struct nv_skb_map *get_rx_ctx, *put_rx_ctx;
782         struct nv_skb_map *first_rx_ctx, *last_rx_ctx;
783         struct nv_skb_map *rx_skb;
784
785         union ring_type rx_ring;
786         unsigned int rx_buf_sz;
787         unsigned int pkt_limit;
788         struct timer_list oom_kick;
789         struct timer_list nic_poll;
790         struct timer_list stats_poll;
791         u32 nic_poll_irq;
792         int rx_ring_size;
793
794         /* media detection workaround.
795          * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
796          */
797         int need_linktimer;
798         unsigned long link_timeout;
799         /*
800          * tx specific fields.
801          */
802         union ring_type get_tx, put_tx, first_tx, last_tx;
803         struct nv_skb_map *get_tx_ctx, *put_tx_ctx;
804         struct nv_skb_map *first_tx_ctx, *last_tx_ctx;
805         struct nv_skb_map *tx_skb;
806
807         union ring_type tx_ring;
808         u32 tx_flags;
809         int tx_ring_size;
810         int tx_limit;
811         u32 tx_pkts_in_progress;
812         struct nv_skb_map *tx_change_owner;
813         struct nv_skb_map *tx_end_flip;
814         int tx_stop;
815
816         /* vlan fields */
817         struct vlan_group *vlangrp;
818
819         /* msi/msi-x fields */
820         u32 msi_flags;
821         struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
822
823         /* flow control */
824         u32 pause_flags;
825
826         /* power saved state */
827         u32 saved_config_space[NV_PCI_REGSZ_MAX/4];
828
829         /* for different msi-x irq type */
830         char name_rx[IFNAMSIZ + 3];       /* -rx    */
831         char name_tx[IFNAMSIZ + 3];       /* -tx    */
832         char name_other[IFNAMSIZ + 6];    /* -other */
833 };
834
835 /*
836  * Maximum number of loops until we assume that a bit in the irq mask
837  * is stuck. Overridable with module param.
838  */
839 static int max_interrupt_work = 4;
840
841 /*
842  * Optimization can be either throuput mode or cpu mode
843  *
844  * Throughput Mode: Every tx and rx packet will generate an interrupt.
845  * CPU Mode: Interrupts are controlled by a timer.
846  */
847 enum {
848         NV_OPTIMIZATION_MODE_THROUGHPUT,
849         NV_OPTIMIZATION_MODE_CPU,
850         NV_OPTIMIZATION_MODE_DYNAMIC
851 };
852 static int optimization_mode = NV_OPTIMIZATION_MODE_DYNAMIC;
853
854 /*
855  * Poll interval for timer irq
856  *
857  * This interval determines how frequent an interrupt is generated.
858  * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
859  * Min = 0, and Max = 65535
860  */
861 static int poll_interval = -1;
862
863 /*
864  * MSI interrupts
865  */
866 enum {
867         NV_MSI_INT_DISABLED,
868         NV_MSI_INT_ENABLED
869 };
870 static int msi = NV_MSI_INT_ENABLED;
871
872 /*
873  * MSIX interrupts
874  */
875 enum {
876         NV_MSIX_INT_DISABLED,
877         NV_MSIX_INT_ENABLED
878 };
879 static int msix = NV_MSIX_INT_ENABLED;
880
881 /*
882  * DMA 64bit
883  */
884 enum {
885         NV_DMA_64BIT_DISABLED,
886         NV_DMA_64BIT_ENABLED
887 };
888 static int dma_64bit = NV_DMA_64BIT_ENABLED;
889
890 /*
891  * Crossover Detection
892  * Realtek 8201 phy + some OEM boards do not work properly.
893  */
894 enum {
895         NV_CROSSOVER_DETECTION_DISABLED,
896         NV_CROSSOVER_DETECTION_ENABLED
897 };
898 static int phy_cross = NV_CROSSOVER_DETECTION_DISABLED;
899
900 static inline struct fe_priv *get_nvpriv(struct net_device *dev)
901 {
902         return netdev_priv(dev);
903 }
904
905 static inline u8 __iomem *get_hwbase(struct net_device *dev)
906 {
907         return ((struct fe_priv *)netdev_priv(dev))->base;
908 }
909
910 static inline void pci_push(u8 __iomem *base)
911 {
912         /* force out pending posted writes */
913         readl(base);
914 }
915
916 static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
917 {
918         return le32_to_cpu(prd->flaglen)
919                 & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
920 }
921
922 static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
923 {
924         return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
925 }
926
927 static bool nv_optimized(struct fe_priv *np)
928 {
929         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
930                 return false;
931         return true;
932 }
933
934 static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
935                                 int delay, int delaymax, const char *msg)
936 {
937         u8 __iomem *base = get_hwbase(dev);
938
939         pci_push(base);
940         do {
941                 udelay(delay);
942                 delaymax -= delay;
943                 if (delaymax < 0) {
944                         if (msg)
945                                 printk("%s", msg);
946                         return 1;
947                 }
948         } while ((readl(base + offset) & mask) != target);
949         return 0;
950 }
951
952 #define NV_SETUP_RX_RING 0x01
953 #define NV_SETUP_TX_RING 0x02
954
955 static inline u32 dma_low(dma_addr_t addr)
956 {
957         return addr;
958 }
959
960 static inline u32 dma_high(dma_addr_t addr)
961 {
962         return addr>>31>>1;     /* 0 if 32bit, shift down by 32 if 64bit */
963 }
964
965 static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
966 {
967         struct fe_priv *np = get_nvpriv(dev);
968         u8 __iomem *base = get_hwbase(dev);
969
970         if (!nv_optimized(np)) {
971                 if (rxtx_flags & NV_SETUP_RX_RING) {
972                         writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
973                 }
974                 if (rxtx_flags & NV_SETUP_TX_RING) {
975                         writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
976                 }
977         } else {
978                 if (rxtx_flags & NV_SETUP_RX_RING) {
979                         writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
980                         writel(dma_high(np->ring_addr), base + NvRegRxRingPhysAddrHigh);
981                 }
982                 if (rxtx_flags & NV_SETUP_TX_RING) {
983                         writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
984                         writel(dma_high(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddrHigh);
985                 }
986         }
987 }
988
989 static void free_rings(struct net_device *dev)
990 {
991         struct fe_priv *np = get_nvpriv(dev);
992
993         if (!nv_optimized(np)) {
994                 if (np->rx_ring.orig)
995                         pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
996                                             np->rx_ring.orig, np->ring_addr);
997         } else {
998                 if (np->rx_ring.ex)
999                         pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
1000                                             np->rx_ring.ex, np->ring_addr);
1001         }
1002         if (np->rx_skb)
1003                 kfree(np->rx_skb);
1004         if (np->tx_skb)
1005                 kfree(np->tx_skb);
1006 }
1007
1008 static int using_multi_irqs(struct net_device *dev)
1009 {
1010         struct fe_priv *np = get_nvpriv(dev);
1011
1012         if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
1013             ((np->msi_flags & NV_MSI_X_ENABLED) &&
1014              ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
1015                 return 0;
1016         else
1017                 return 1;
1018 }
1019
1020 static void nv_enable_irq(struct net_device *dev)
1021 {
1022         struct fe_priv *np = get_nvpriv(dev);
1023
1024         if (!using_multi_irqs(dev)) {
1025                 if (np->msi_flags & NV_MSI_X_ENABLED)
1026                         enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1027                 else
1028                         enable_irq(np->pci_dev->irq);
1029         } else {
1030                 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1031                 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
1032                 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
1033         }
1034 }
1035
1036 static void nv_disable_irq(struct net_device *dev)
1037 {
1038         struct fe_priv *np = get_nvpriv(dev);
1039
1040         if (!using_multi_irqs(dev)) {
1041                 if (np->msi_flags & NV_MSI_X_ENABLED)
1042                         disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1043                 else
1044                         disable_irq(np->pci_dev->irq);
1045         } else {
1046                 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1047                 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
1048                 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
1049         }
1050 }
1051
1052 /* In MSIX mode, a write to irqmask behaves as XOR */
1053 static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
1054 {
1055         u8 __iomem *base = get_hwbase(dev);
1056
1057         writel(mask, base + NvRegIrqMask);
1058 }
1059
1060 static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
1061 {
1062         struct fe_priv *np = get_nvpriv(dev);
1063         u8 __iomem *base = get_hwbase(dev);
1064
1065         if (np->msi_flags & NV_MSI_X_ENABLED) {
1066                 writel(mask, base + NvRegIrqMask);
1067         } else {
1068                 if (np->msi_flags & NV_MSI_ENABLED)
1069                         writel(0, base + NvRegMSIIrqMask);
1070                 writel(0, base + NvRegIrqMask);
1071         }
1072 }
1073
1074 static void nv_napi_enable(struct net_device *dev)
1075 {
1076 #ifdef CONFIG_FORCEDETH_NAPI
1077         struct fe_priv *np = get_nvpriv(dev);
1078
1079         napi_enable(&np->napi);
1080 #endif
1081 }
1082
1083 static void nv_napi_disable(struct net_device *dev)
1084 {
1085 #ifdef CONFIG_FORCEDETH_NAPI
1086         struct fe_priv *np = get_nvpriv(dev);
1087
1088         napi_disable(&np->napi);
1089 #endif
1090 }
1091
1092 #define MII_READ        (-1)
1093 /* mii_rw: read/write a register on the PHY.
1094  *
1095  * Caller must guarantee serialization
1096  */
1097 static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
1098 {
1099         u8 __iomem *base = get_hwbase(dev);
1100         u32 reg;
1101         int retval;
1102
1103         writel(NVREG_MIISTAT_MASK_RW, base + NvRegMIIStatus);
1104
1105         reg = readl(base + NvRegMIIControl);
1106         if (reg & NVREG_MIICTL_INUSE) {
1107                 writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
1108                 udelay(NV_MIIBUSY_DELAY);
1109         }
1110
1111         reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
1112         if (value != MII_READ) {
1113                 writel(value, base + NvRegMIIData);
1114                 reg |= NVREG_MIICTL_WRITE;
1115         }
1116         writel(reg, base + NvRegMIIControl);
1117
1118         if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
1119                         NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
1120                 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
1121                                 dev->name, miireg, addr);
1122                 retval = -1;
1123         } else if (value != MII_READ) {
1124                 /* it was a write operation - fewer failures are detectable */
1125                 dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
1126                                 dev->name, value, miireg, addr);
1127                 retval = 0;
1128         } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
1129                 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
1130                                 dev->name, miireg, addr);
1131                 retval = -1;
1132         } else {
1133                 retval = readl(base + NvRegMIIData);
1134                 dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
1135                                 dev->name, miireg, addr, retval);
1136         }
1137
1138         return retval;
1139 }
1140
1141 static int phy_reset(struct net_device *dev, u32 bmcr_setup)
1142 {
1143         struct fe_priv *np = netdev_priv(dev);
1144         u32 miicontrol;
1145         unsigned int tries = 0;
1146
1147         miicontrol = BMCR_RESET | bmcr_setup;
1148         if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
1149                 return -1;
1150         }
1151
1152         /* wait for 500ms */
1153         msleep(500);
1154
1155         /* must wait till reset is deasserted */
1156         while (miicontrol & BMCR_RESET) {
1157                 msleep(10);
1158                 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1159                 /* FIXME: 100 tries seem excessive */
1160                 if (tries++ > 100)
1161                         return -1;
1162         }
1163         return 0;
1164 }
1165
1166 static int phy_init(struct net_device *dev)
1167 {
1168         struct fe_priv *np = get_nvpriv(dev);
1169         u8 __iomem *base = get_hwbase(dev);
1170         u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
1171
1172         /* phy errata for E3016 phy */
1173         if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
1174                 reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
1175                 reg &= ~PHY_MARVELL_E3016_INITMASK;
1176                 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
1177                         printk(KERN_INFO "%s: phy write to errata reg failed.\n", pci_name(np->pci_dev));
1178                         return PHY_ERROR;
1179                 }
1180         }
1181         if (np->phy_oui == PHY_OUI_REALTEK) {
1182                 if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
1183                     np->phy_rev == PHY_REV_REALTEK_8211B) {
1184                         if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1185                                 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1186                                 return PHY_ERROR;
1187                         }
1188                         if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
1189                                 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1190                                 return PHY_ERROR;
1191                         }
1192                         if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
1193                                 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1194                                 return PHY_ERROR;
1195                         }
1196                         if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
1197                                 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1198                                 return PHY_ERROR;
1199                         }
1200                         if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5)) {
1201                                 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1202                                 return PHY_ERROR;
1203                         }
1204                         if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6)) {
1205                                 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1206                                 return PHY_ERROR;
1207                         }
1208                         if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1209                                 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1210                                 return PHY_ERROR;
1211                         }
1212                 }
1213                 if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
1214                     np->phy_rev == PHY_REV_REALTEK_8211C) {
1215                         u32 powerstate = readl(base + NvRegPowerState2);
1216
1217                         /* need to perform hw phy reset */
1218                         powerstate |= NVREG_POWERSTATE2_PHY_RESET;
1219                         writel(powerstate, base + NvRegPowerState2);
1220                         msleep(25);
1221
1222                         powerstate &= ~NVREG_POWERSTATE2_PHY_RESET;
1223                         writel(powerstate, base + NvRegPowerState2);
1224                         msleep(25);
1225
1226                         reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
1227                         reg |= PHY_REALTEK_INIT9;
1228                         if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, reg)) {
1229                                 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1230                                 return PHY_ERROR;
1231                         }
1232                         if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT10)) {
1233                                 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1234                                 return PHY_ERROR;
1235                         }
1236                         reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, MII_READ);
1237                         if (!(reg & PHY_REALTEK_INIT11)) {
1238                                 reg |= PHY_REALTEK_INIT11;
1239                                 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, reg)) {
1240                                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1241                                         return PHY_ERROR;
1242                                 }
1243                         }
1244                         if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1245                                 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1246                                 return PHY_ERROR;
1247                         }
1248                 }
1249                 if (np->phy_model == PHY_MODEL_REALTEK_8201) {
1250                         if (np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_32 ||
1251                             np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_33 ||
1252                             np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_34 ||
1253                             np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_35 ||
1254                             np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_36 ||
1255                             np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_37 ||
1256                             np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_38 ||
1257                             np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_39) {
1258                                 phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
1259                                 phy_reserved |= PHY_REALTEK_INIT7;
1260                                 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, phy_reserved)) {
1261                                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1262                                         return PHY_ERROR;
1263                                 }
1264                         }
1265                 }
1266         }
1267
1268         /* set advertise register */
1269         reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
1270         reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
1271         if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
1272                 printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
1273                 return PHY_ERROR;
1274         }
1275
1276         /* get phy interface type */
1277         phyinterface = readl(base + NvRegPhyInterface);
1278
1279         /* see if gigabit phy */
1280         mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
1281         if (mii_status & PHY_GIGABIT) {
1282                 np->gigabit = PHY_GIGABIT;
1283                 mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
1284                 mii_control_1000 &= ~ADVERTISE_1000HALF;
1285                 if (phyinterface & PHY_RGMII)
1286                         mii_control_1000 |= ADVERTISE_1000FULL;
1287                 else
1288                         mii_control_1000 &= ~ADVERTISE_1000FULL;
1289
1290                 if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
1291                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1292                         return PHY_ERROR;
1293                 }
1294         }
1295         else
1296                 np->gigabit = 0;
1297
1298         mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1299         mii_control |= BMCR_ANENABLE;
1300
1301         if (np->phy_oui == PHY_OUI_REALTEK &&
1302             np->phy_model == PHY_MODEL_REALTEK_8211 &&
1303             np->phy_rev == PHY_REV_REALTEK_8211C) {
1304                 /* start autoneg since we already performed hw reset above */
1305                 mii_control |= BMCR_ANRESTART;
1306                 if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
1307                         printk(KERN_INFO "%s: phy init failed\n", pci_name(np->pci_dev));
1308                         return PHY_ERROR;
1309                 }
1310         } else {
1311                 /* reset the phy
1312                  * (certain phys need bmcr to be setup with reset)
1313                  */
1314                 if (phy_reset(dev, mii_control)) {
1315                         printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
1316                         return PHY_ERROR;
1317                 }
1318         }
1319
1320         /* phy vendor specific configuration */
1321         if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
1322                 phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
1323                 phy_reserved &= ~(PHY_CICADA_INIT1 | PHY_CICADA_INIT2);
1324                 phy_reserved |= (PHY_CICADA_INIT3 | PHY_CICADA_INIT4);
1325                 if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
1326                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1327                         return PHY_ERROR;
1328                 }
1329                 phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
1330                 phy_reserved |= PHY_CICADA_INIT5;
1331                 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
1332                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1333                         return PHY_ERROR;
1334                 }
1335         }
1336         if (np->phy_oui == PHY_OUI_CICADA) {
1337                 phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
1338                 phy_reserved |= PHY_CICADA_INIT6;
1339                 if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
1340                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1341                         return PHY_ERROR;
1342                 }
1343         }
1344         if (np->phy_oui == PHY_OUI_VITESSE) {
1345                 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT1)) {
1346                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1347                         return PHY_ERROR;
1348                 }
1349                 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT2)) {
1350                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1351                         return PHY_ERROR;
1352                 }
1353                 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
1354                 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
1355                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1356                         return PHY_ERROR;
1357                 }
1358                 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
1359                 phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
1360                 phy_reserved |= PHY_VITESSE_INIT3;
1361                 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
1362                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1363                         return PHY_ERROR;
1364                 }
1365                 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT4)) {
1366                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1367                         return PHY_ERROR;
1368                 }
1369                 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT5)) {
1370                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1371                         return PHY_ERROR;
1372                 }
1373                 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
1374                 phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
1375                 phy_reserved |= PHY_VITESSE_INIT3;
1376                 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
1377                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1378                         return PHY_ERROR;
1379                 }
1380                 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
1381                 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
1382                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1383                         return PHY_ERROR;
1384                 }
1385                 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT6)) {
1386                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1387                         return PHY_ERROR;
1388                 }
1389                 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT7)) {
1390                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1391                         return PHY_ERROR;
1392                 }
1393                 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
1394                 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
1395                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1396                         return PHY_ERROR;
1397                 }
1398                 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
1399                 phy_reserved &= ~PHY_VITESSE_INIT_MSK2;
1400                 phy_reserved |= PHY_VITESSE_INIT8;
1401                 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
1402                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1403                         return PHY_ERROR;
1404                 }
1405                 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT9)) {
1406                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1407                         return PHY_ERROR;
1408                 }
1409                 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT10)) {
1410                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1411                         return PHY_ERROR;
1412                 }
1413         }
1414         if (np->phy_oui == PHY_OUI_REALTEK) {
1415                 if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
1416                     np->phy_rev == PHY_REV_REALTEK_8211B) {
1417                         /* reset could have cleared these out, set them back */
1418                         if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1419                                 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1420                                 return PHY_ERROR;
1421                         }
1422                         if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
1423                                 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1424                                 return PHY_ERROR;
1425                         }
1426                         if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
1427                                 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1428                                 return PHY_ERROR;
1429                         }
1430                         if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
1431                                 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1432                                 return PHY_ERROR;
1433                         }
1434                         if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5)) {
1435                                 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1436                                 return PHY_ERROR;
1437                         }
1438                         if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6)) {
1439                                 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1440                                 return PHY_ERROR;
1441                         }
1442                         if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1443                                 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1444                                 return PHY_ERROR;
1445                         }
1446                 }
1447                 if (np->phy_model == PHY_MODEL_REALTEK_8201) {
1448                         if (np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_32 ||
1449                             np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_33 ||
1450                             np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_34 ||
1451                             np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_35 ||
1452                             np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_36 ||
1453                             np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_37 ||
1454                             np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_38 ||
1455                             np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_39) {
1456                                 phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
1457                                 phy_reserved |= PHY_REALTEK_INIT7;
1458                                 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, phy_reserved)) {
1459                                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1460                                         return PHY_ERROR;
1461                                 }
1462                         }
1463                         if (phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
1464                                 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
1465                                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1466                                         return PHY_ERROR;
1467                                 }
1468                                 phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ);
1469                                 phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
1470                                 phy_reserved |= PHY_REALTEK_INIT3;
1471                                 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved)) {
1472                                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1473                                         return PHY_ERROR;
1474                                 }
1475                                 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1476                                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1477                                         return PHY_ERROR;
1478                                 }
1479                         }
1480                 }
1481         }
1482
1483         /* some phys clear out pause advertisment on reset, set it back */
1484         mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
1485
1486         /* restart auto negotiation, power down phy */
1487         mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1488         mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE | BMCR_PDOWN);
1489         if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
1490                 return PHY_ERROR;
1491         }
1492
1493         return 0;
1494 }
1495
1496 static void nv_start_rx(struct net_device *dev)
1497 {
1498         struct fe_priv *np = netdev_priv(dev);
1499         u8 __iomem *base = get_hwbase(dev);
1500         u32 rx_ctrl = readl(base + NvRegReceiverControl);
1501
1502         dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
1503         /* Already running? Stop it. */
1504         if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) {
1505                 rx_ctrl &= ~NVREG_RCVCTL_START;
1506                 writel(rx_ctrl, base + NvRegReceiverControl);
1507                 pci_push(base);
1508         }
1509         writel(np->linkspeed, base + NvRegLinkSpeed);
1510         pci_push(base);
1511         rx_ctrl |= NVREG_RCVCTL_START;
1512         if (np->mac_in_use)
1513                 rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN;
1514         writel(rx_ctrl, base + NvRegReceiverControl);
1515         dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
1516                                 dev->name, np->duplex, np->linkspeed);
1517         pci_push(base);
1518 }
1519
1520 static void nv_stop_rx(struct net_device *dev)
1521 {
1522         struct fe_priv *np = netdev_priv(dev);
1523         u8 __iomem *base = get_hwbase(dev);
1524         u32 rx_ctrl = readl(base + NvRegReceiverControl);
1525
1526         dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
1527         if (!np->mac_in_use)
1528                 rx_ctrl &= ~NVREG_RCVCTL_START;
1529         else
1530                 rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN;
1531         writel(rx_ctrl, base + NvRegReceiverControl);
1532         reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
1533                         NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
1534                         KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
1535
1536         udelay(NV_RXSTOP_DELAY2);
1537         if (!np->mac_in_use)
1538                 writel(0, base + NvRegLinkSpeed);
1539 }
1540
1541 static void nv_start_tx(struct net_device *dev)
1542 {
1543         struct fe_priv *np = netdev_priv(dev);
1544         u8 __iomem *base = get_hwbase(dev);
1545         u32 tx_ctrl = readl(base + NvRegTransmitterControl);
1546
1547         dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
1548         tx_ctrl |= NVREG_XMITCTL_START;
1549         if (np->mac_in_use)
1550                 tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN;
1551         writel(tx_ctrl, base + NvRegTransmitterControl);
1552         pci_push(base);
1553 }
1554
1555 static void nv_stop_tx(struct net_device *dev)
1556 {
1557         struct fe_priv *np = netdev_priv(dev);
1558         u8 __iomem *base = get_hwbase(dev);
1559         u32 tx_ctrl = readl(base + NvRegTransmitterControl);
1560
1561         dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
1562         if (!np->mac_in_use)
1563                 tx_ctrl &= ~NVREG_XMITCTL_START;
1564         else
1565                 tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN;
1566         writel(tx_ctrl, base + NvRegTransmitterControl);
1567         reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
1568                         NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
1569                         KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
1570
1571         udelay(NV_TXSTOP_DELAY2);
1572         if (!np->mac_in_use)
1573                 writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV,
1574                        base + NvRegTransmitPoll);
1575 }
1576
1577 static void nv_start_rxtx(struct net_device *dev)
1578 {
1579         nv_start_rx(dev);
1580         nv_start_tx(dev);
1581 }
1582
1583 static void nv_stop_rxtx(struct net_device *dev)
1584 {
1585         nv_stop_rx(dev);
1586         nv_stop_tx(dev);
1587 }
1588
1589 static void nv_txrx_reset(struct net_device *dev)
1590 {
1591         struct fe_priv *np = netdev_priv(dev);
1592         u8 __iomem *base = get_hwbase(dev);
1593
1594         dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
1595         writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1596         pci_push(base);
1597         udelay(NV_TXRX_RESET_DELAY);
1598         writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1599         pci_push(base);
1600 }
1601
1602 static void nv_mac_reset(struct net_device *dev)
1603 {
1604         struct fe_priv *np = netdev_priv(dev);
1605         u8 __iomem *base = get_hwbase(dev);
1606         u32 temp1, temp2, temp3;
1607
1608         dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
1609
1610         writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1611         pci_push(base);
1612
1613         /* save registers since they will be cleared on reset */
1614         temp1 = readl(base + NvRegMacAddrA);
1615         temp2 = readl(base + NvRegMacAddrB);
1616         temp3 = readl(base + NvRegTransmitPoll);
1617
1618         writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
1619         pci_push(base);
1620         udelay(NV_MAC_RESET_DELAY);
1621         writel(0, base + NvRegMacReset);
1622         pci_push(base);
1623         udelay(NV_MAC_RESET_DELAY);
1624
1625         /* restore saved registers */
1626         writel(temp1, base + NvRegMacAddrA);
1627         writel(temp2, base + NvRegMacAddrB);
1628         writel(temp3, base + NvRegTransmitPoll);
1629
1630         writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1631         pci_push(base);
1632 }
1633
1634 static void nv_get_hw_stats(struct net_device *dev)
1635 {
1636         struct fe_priv *np = netdev_priv(dev);
1637         u8 __iomem *base = get_hwbase(dev);
1638
1639         np->estats.tx_bytes += readl(base + NvRegTxCnt);
1640         np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
1641         np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
1642         np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
1643         np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
1644         np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
1645         np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
1646         np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
1647         np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
1648         np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
1649         np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
1650         np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
1651         np->estats.rx_runt += readl(base + NvRegRxRunt);
1652         np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
1653         np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
1654         np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
1655         np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
1656         np->estats.rx_length_error += readl(base + NvRegRxLenErr);
1657         np->estats.rx_unicast += readl(base + NvRegRxUnicast);
1658         np->estats.rx_multicast += readl(base + NvRegRxMulticast);
1659         np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
1660         np->estats.rx_packets =
1661                 np->estats.rx_unicast +
1662                 np->estats.rx_multicast +
1663                 np->estats.rx_broadcast;
1664         np->estats.rx_errors_total =
1665                 np->estats.rx_crc_errors +
1666                 np->estats.rx_over_errors +
1667                 np->estats.rx_frame_error +
1668                 (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
1669                 np->estats.rx_late_collision +
1670                 np->estats.rx_runt +
1671                 np->estats.rx_frame_too_long;
1672         np->estats.tx_errors_total =
1673                 np->estats.tx_late_collision +
1674                 np->estats.tx_fifo_errors +
1675                 np->estats.tx_carrier_errors +
1676                 np->estats.tx_excess_deferral +
1677                 np->estats.tx_retry_error;
1678
1679         if (np->driver_data & DEV_HAS_STATISTICS_V2) {
1680                 np->estats.tx_deferral += readl(base + NvRegTxDef);
1681                 np->estats.tx_packets += readl(base + NvRegTxFrame);
1682                 np->estats.rx_bytes += readl(base + NvRegRxCnt);
1683                 np->estats.tx_pause += readl(base + NvRegTxPause);
1684                 np->estats.rx_pause += readl(base + NvRegRxPause);
1685                 np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
1686         }
1687
1688         if (np->driver_data & DEV_HAS_STATISTICS_V3) {
1689                 np->estats.tx_unicast += readl(base + NvRegTxUnicast);
1690                 np->estats.tx_multicast += readl(base + NvRegTxMulticast);
1691                 np->estats.tx_broadcast += readl(base + NvRegTxBroadcast);
1692         }
1693 }
1694
1695 /*
1696  * nv_get_stats: dev->get_stats function
1697  * Get latest stats value from the nic.
1698  * Called with read_lock(&dev_base_lock) held for read -
1699  * only synchronized against unregister_netdevice.
1700  */
1701 static struct net_device_stats *nv_get_stats(struct net_device *dev)
1702 {
1703         struct fe_priv *np = netdev_priv(dev);
1704
1705         /* If the nic supports hw counters then retrieve latest values */
1706         if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3)) {
1707                 nv_get_hw_stats(dev);
1708
1709                 /* copy to net_device stats */
1710                 dev->stats.tx_bytes = np->estats.tx_bytes;
1711                 dev->stats.tx_fifo_errors = np->estats.tx_fifo_errors;
1712                 dev->stats.tx_carrier_errors = np->estats.tx_carrier_errors;
1713                 dev->stats.rx_crc_errors = np->estats.rx_crc_errors;
1714                 dev->stats.rx_over_errors = np->estats.rx_over_errors;
1715                 dev->stats.rx_errors = np->estats.rx_errors_total;
1716                 dev->stats.tx_errors = np->estats.tx_errors_total;
1717         }
1718
1719         return &dev->stats;
1720 }
1721
1722 /*
1723  * nv_alloc_rx: fill rx ring entries.
1724  * Return 1 if the allocations for the skbs failed and the
1725  * rx engine is without Available descriptors
1726  */
1727 static int nv_alloc_rx(struct net_device *dev)
1728 {
1729         struct fe_priv *np = netdev_priv(dev);
1730         struct ring_desc* less_rx;
1731
1732         less_rx = np->get_rx.orig;
1733         if (less_rx-- == np->first_rx.orig)
1734                 less_rx = np->last_rx.orig;
1735
1736         while (np->put_rx.orig != less_rx) {
1737                 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
1738                 if (skb) {
1739                         np->put_rx_ctx->skb = skb;
1740                         np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
1741                                                              skb->data,
1742                                                              skb_tailroom(skb),
1743                                                              PCI_DMA_FROMDEVICE);
1744                         np->put_rx_ctx->dma_len = skb_tailroom(skb);
1745                         np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma);
1746                         wmb();
1747                         np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
1748                         if (unlikely(np->put_rx.orig++ == np->last_rx.orig))
1749                                 np->put_rx.orig = np->first_rx.orig;
1750                         if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
1751                                 np->put_rx_ctx = np->first_rx_ctx;
1752                 } else {
1753                         return 1;
1754                 }
1755         }
1756         return 0;
1757 }
1758
1759 static int nv_alloc_rx_optimized(struct net_device *dev)
1760 {
1761         struct fe_priv *np = netdev_priv(dev);
1762         struct ring_desc_ex* less_rx;
1763
1764         less_rx = np->get_rx.ex;
1765         if (less_rx-- == np->first_rx.ex)
1766                 less_rx = np->last_rx.ex;
1767
1768         while (np->put_rx.ex != less_rx) {
1769                 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
1770                 if (skb) {
1771                         np->put_rx_ctx->skb = skb;
1772                         np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
1773                                                              skb->data,
1774                                                              skb_tailroom(skb),
1775                                                              PCI_DMA_FROMDEVICE);
1776                         np->put_rx_ctx->dma_len = skb_tailroom(skb);
1777                         np->put_rx.ex->bufhigh = cpu_to_le32(dma_high(np->put_rx_ctx->dma));
1778                         np->put_rx.ex->buflow = cpu_to_le32(dma_low(np->put_rx_ctx->dma));
1779                         wmb();
1780                         np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
1781                         if (unlikely(np->put_rx.ex++ == np->last_rx.ex))
1782                                 np->put_rx.ex = np->first_rx.ex;
1783                         if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
1784                                 np->put_rx_ctx = np->first_rx_ctx;
1785                 } else {
1786                         return 1;
1787                 }
1788         }
1789         return 0;
1790 }
1791
1792 /* If rx bufs are exhausted called after 50ms to attempt to refresh */
1793 #ifdef CONFIG_FORCEDETH_NAPI
1794 static void nv_do_rx_refill(unsigned long data)
1795 {
1796         struct net_device *dev = (struct net_device *) data;
1797         struct fe_priv *np = netdev_priv(dev);
1798
1799         /* Just reschedule NAPI rx processing */
1800         napi_schedule(&np->napi);
1801 }
1802 #else
1803 static void nv_do_rx_refill(unsigned long data)
1804 {
1805         struct net_device *dev = (struct net_device *) data;
1806         struct fe_priv *np = netdev_priv(dev);
1807         int retcode;
1808
1809         if (!using_multi_irqs(dev)) {
1810                 if (np->msi_flags & NV_MSI_X_ENABLED)
1811                         disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1812                 else
1813                         disable_irq(np->pci_dev->irq);
1814         } else {
1815                 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1816         }
1817         if (!nv_optimized(np))
1818                 retcode = nv_alloc_rx(dev);
1819         else
1820                 retcode = nv_alloc_rx_optimized(dev);
1821         if (retcode) {
1822                 spin_lock_irq(&np->lock);
1823                 if (!np->in_shutdown)
1824                         mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1825                 spin_unlock_irq(&np->lock);
1826         }
1827         if (!using_multi_irqs(dev)) {
1828                 if (np->msi_flags & NV_MSI_X_ENABLED)
1829                         enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1830                 else
1831                         enable_irq(np->pci_dev->irq);
1832         } else {
1833                 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1834         }
1835 }
1836 #endif
1837
1838 static void nv_init_rx(struct net_device *dev)
1839 {
1840         struct fe_priv *np = netdev_priv(dev);
1841         int i;
1842
1843         np->get_rx = np->put_rx = np->first_rx = np->rx_ring;
1844
1845         if (!nv_optimized(np))
1846                 np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1];
1847         else
1848                 np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1];
1849         np->get_rx_ctx = np->put_rx_ctx = np->first_rx_ctx = np->rx_skb;
1850         np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1];
1851
1852         for (i = 0; i < np->rx_ring_size; i++) {
1853                 if (!nv_optimized(np)) {
1854                         np->rx_ring.orig[i].flaglen = 0;
1855                         np->rx_ring.orig[i].buf = 0;
1856                 } else {
1857                         np->rx_ring.ex[i].flaglen = 0;
1858                         np->rx_ring.ex[i].txvlan = 0;
1859                         np->rx_ring.ex[i].bufhigh = 0;
1860                         np->rx_ring.ex[i].buflow = 0;
1861                 }
1862                 np->rx_skb[i].skb = NULL;
1863                 np->rx_skb[i].dma = 0;
1864         }
1865 }
1866
1867 static void nv_init_tx(struct net_device *dev)
1868 {
1869         struct fe_priv *np = netdev_priv(dev);
1870         int i;
1871
1872         np->get_tx = np->put_tx = np->first_tx = np->tx_ring;
1873
1874         if (!nv_optimized(np))
1875                 np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1];
1876         else
1877                 np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1];
1878         np->get_tx_ctx = np->put_tx_ctx = np->first_tx_ctx = np->tx_skb;
1879         np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1];
1880         np->tx_pkts_in_progress = 0;
1881         np->tx_change_owner = NULL;
1882         np->tx_end_flip = NULL;
1883
1884         for (i = 0; i < np->tx_ring_size; i++) {
1885                 if (!nv_optimized(np)) {
1886                         np->tx_ring.orig[i].flaglen = 0;
1887                         np->tx_ring.orig[i].buf = 0;
1888                 } else {
1889                         np->tx_ring.ex[i].flaglen = 0;
1890                         np->tx_ring.ex[i].txvlan = 0;
1891                         np->tx_ring.ex[i].bufhigh = 0;
1892                         np->tx_ring.ex[i].buflow = 0;
1893                 }
1894                 np->tx_skb[i].skb = NULL;
1895                 np->tx_skb[i].dma = 0;
1896                 np->tx_skb[i].dma_len = 0;
1897                 np->tx_skb[i].first_tx_desc = NULL;
1898                 np->tx_skb[i].next_tx_ctx = NULL;
1899         }
1900 }
1901
1902 static int nv_init_ring(struct net_device *dev)
1903 {
1904         struct fe_priv *np = netdev_priv(dev);
1905
1906         nv_init_tx(dev);
1907         nv_init_rx(dev);
1908
1909         if (!nv_optimized(np))
1910                 return nv_alloc_rx(dev);
1911         else
1912                 return nv_alloc_rx_optimized(dev);
1913 }
1914
1915 static int nv_release_txskb(struct net_device *dev, struct nv_skb_map* tx_skb)
1916 {
1917         struct fe_priv *np = netdev_priv(dev);
1918
1919         if (tx_skb->dma) {
1920                 pci_unmap_page(np->pci_dev, tx_skb->dma,
1921                                tx_skb->dma_len,
1922                                PCI_DMA_TODEVICE);
1923                 tx_skb->dma = 0;
1924         }
1925         if (tx_skb->skb) {
1926                 dev_kfree_skb_any(tx_skb->skb);
1927                 tx_skb->skb = NULL;
1928                 return 1;
1929         } else {
1930                 return 0;
1931         }
1932 }
1933
1934 static void nv_drain_tx(struct net_device *dev)
1935 {
1936         struct fe_priv *np = netdev_priv(dev);
1937         unsigned int i;
1938
1939         for (i = 0; i < np->tx_ring_size; i++) {
1940                 if (!nv_optimized(np)) {
1941                         np->tx_ring.orig[i].flaglen = 0;
1942                         np->tx_ring.orig[i].buf = 0;
1943                 } else {
1944                         np->tx_ring.ex[i].flaglen = 0;
1945                         np->tx_ring.ex[i].txvlan = 0;
1946                         np->tx_ring.ex[i].bufhigh = 0;
1947                         np->tx_ring.ex[i].buflow = 0;
1948                 }
1949                 if (nv_release_txskb(dev, &np->tx_skb[i]))
1950                         dev->stats.tx_dropped++;
1951                 np->tx_skb[i].dma = 0;
1952                 np->tx_skb[i].dma_len = 0;
1953                 np->tx_skb[i].first_tx_desc = NULL;
1954                 np->tx_skb[i].next_tx_ctx = NULL;
1955         }
1956         np->tx_pkts_in_progress = 0;
1957         np->tx_change_owner = NULL;
1958         np->tx_end_flip = NULL;
1959 }
1960
1961 static void nv_drain_rx(struct net_device *dev)
1962 {
1963         struct fe_priv *np = netdev_priv(dev);
1964         int i;
1965
1966         for (i = 0; i < np->rx_ring_size; i++) {
1967                 if (!nv_optimized(np)) {
1968                         np->rx_ring.orig[i].flaglen = 0;
1969                         np->rx_ring.orig[i].buf = 0;
1970                 } else {
1971                         np->rx_ring.ex[i].flaglen = 0;
1972                         np->rx_ring.ex[i].txvlan = 0;
1973                         np->rx_ring.ex[i].bufhigh = 0;
1974                         np->rx_ring.ex[i].buflow = 0;
1975                 }
1976                 wmb();
1977                 if (np->rx_skb[i].skb) {
1978                         pci_unmap_single(np->pci_dev, np->rx_skb[i].dma,
1979                                          (skb_end_pointer(np->rx_skb[i].skb) -
1980                                           np->rx_skb[i].skb->data),
1981                                          PCI_DMA_FROMDEVICE);
1982                         dev_kfree_skb(np->rx_skb[i].skb);
1983                         np->rx_skb[i].skb = NULL;
1984                 }
1985         }
1986 }
1987
1988 static void nv_drain_rxtx(struct net_device *dev)
1989 {
1990         nv_drain_tx(dev);
1991         nv_drain_rx(dev);
1992 }
1993
1994 static inline u32 nv_get_empty_tx_slots(struct fe_priv *np)
1995 {
1996         return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size));
1997 }
1998
1999 static void nv_legacybackoff_reseed(struct net_device *dev)
2000 {
2001         u8 __iomem *base = get_hwbase(dev);
2002         u32 reg;
2003         u32 low;
2004         int tx_status = 0;
2005
2006         reg = readl(base + NvRegSlotTime) & ~NVREG_SLOTTIME_MASK;
2007         get_random_bytes(&low, sizeof(low));
2008         reg |= low & NVREG_SLOTTIME_MASK;
2009
2010         /* Need to stop tx before change takes effect.
2011          * Caller has already gained np->lock.
2012          */
2013         tx_status = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START;
2014         if (tx_status)
2015                 nv_stop_tx(dev);
2016         nv_stop_rx(dev);
2017         writel(reg, base + NvRegSlotTime);
2018         if (tx_status)
2019                 nv_start_tx(dev);
2020         nv_start_rx(dev);
2021 }
2022
2023 /* Gear Backoff Seeds */
2024 #define BACKOFF_SEEDSET_ROWS    8
2025 #define BACKOFF_SEEDSET_LFSRS   15
2026
2027 /* Known Good seed sets */
2028 static const u32 main_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
2029     {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
2030     {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 385, 761, 790, 974},
2031     {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
2032     {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 386, 761, 790, 974},
2033     {266, 265, 276, 585, 397, 208, 345, 355, 365, 376, 385, 396, 771, 700, 984},
2034     {266, 265, 276, 586, 397, 208, 346, 355, 365, 376, 285, 396, 771, 700, 984},
2035     {366, 365, 376, 686, 497, 308, 447, 455, 466, 476, 485, 496, 871, 800,  84},
2036     {466, 465, 476, 786, 597, 408, 547, 555, 566, 576, 585, 597, 971, 900, 184}};
2037
2038 static const u32 gear_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
2039     {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375,  30, 295},
2040     {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
2041     {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 397},
2042     {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375,  30, 295},
2043     {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375,  30, 295},
2044     {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
2045     {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
2046     {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395}};
2047
2048 static void nv_gear_backoff_reseed(struct net_device *dev)
2049 {
2050         u8 __iomem *base = get_hwbase(dev);
2051         u32 miniseed1, miniseed2, miniseed2_reversed, miniseed3, miniseed3_reversed;
2052         u32 temp, seedset, combinedSeed;
2053         int i;
2054
2055         /* Setup seed for free running LFSR */
2056         /* We are going to read the time stamp counter 3 times
2057            and swizzle bits around to increase randomness */
2058         get_random_bytes(&miniseed1, sizeof(miniseed1));
2059         miniseed1 &= 0x0fff;
2060         if (miniseed1 == 0)
2061                 miniseed1 = 0xabc;
2062
2063         get_random_bytes(&miniseed2, sizeof(miniseed2));
2064         miniseed2 &= 0x0fff;
2065         if (miniseed2 == 0)
2066                 miniseed2 = 0xabc;
2067         miniseed2_reversed =
2068                 ((miniseed2 & 0xF00) >> 8) |
2069                  (miniseed2 & 0x0F0) |
2070                  ((miniseed2 & 0x00F) << 8);
2071
2072         get_random_bytes(&miniseed3, sizeof(miniseed3));
2073         miniseed3 &= 0x0fff;
2074         if (miniseed3 == 0)
2075                 miniseed3 = 0xabc;
2076         miniseed3_reversed =
2077                 ((miniseed3 & 0xF00) >> 8) |
2078                  (miniseed3 & 0x0F0) |
2079                  ((miniseed3 & 0x00F) << 8);
2080
2081         combinedSeed = ((miniseed1 ^ miniseed2_reversed) << 12) |
2082                        (miniseed2 ^ miniseed3_reversed);
2083
2084         /* Seeds can not be zero */
2085         if ((combinedSeed & NVREG_BKOFFCTRL_SEED_MASK) == 0)
2086                 combinedSeed |= 0x08;
2087         if ((combinedSeed & (NVREG_BKOFFCTRL_SEED_MASK << NVREG_BKOFFCTRL_GEAR)) == 0)
2088                 combinedSeed |= 0x8000;
2089
2090         /* No need to disable tx here */
2091         temp = NVREG_BKOFFCTRL_DEFAULT | (0 << NVREG_BKOFFCTRL_SELECT);
2092         temp |= combinedSeed & NVREG_BKOFFCTRL_SEED_MASK;
2093         temp |= combinedSeed >> NVREG_BKOFFCTRL_GEAR;
2094         writel(temp,base + NvRegBackOffControl);
2095
2096         /* Setup seeds for all gear LFSRs. */
2097         get_random_bytes(&seedset, sizeof(seedset));
2098         seedset = seedset % BACKOFF_SEEDSET_ROWS;
2099         for (i = 1; i <= BACKOFF_SEEDSET_LFSRS; i++)
2100         {
2101                 temp = NVREG_BKOFFCTRL_DEFAULT | (i << NVREG_BKOFFCTRL_SELECT);
2102                 temp |= main_seedset[seedset][i-1] & 0x3ff;
2103                 temp |= ((gear_seedset[seedset][i-1] & 0x3ff) << NVREG_BKOFFCTRL_GEAR);
2104                 writel(temp, base + NvRegBackOffControl);
2105         }
2106 }
2107
2108 /*
2109  * nv_start_xmit: dev->hard_start_xmit function
2110  * Called with netif_tx_lock held.
2111  */
2112 static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
2113 {
2114         struct fe_priv *np = netdev_priv(dev);
2115         u32 tx_flags = 0;
2116         u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
2117         unsigned int fragments = skb_shinfo(skb)->nr_frags;
2118         unsigned int i;
2119         u32 offset = 0;
2120         u32 bcnt;
2121         u32 size = skb->len-skb->data_len;
2122         u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
2123         u32 empty_slots;
2124         struct ring_desc* put_tx;
2125         struct ring_desc* start_tx;
2126         struct ring_desc* prev_tx;
2127         struct nv_skb_map* prev_tx_ctx;
2128         unsigned long flags;
2129
2130         /* add fragments to entries count */
2131         for (i = 0; i < fragments; i++) {
2132                 entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
2133                            ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
2134         }
2135
2136         spin_lock_irqsave(&np->lock, flags);
2137         empty_slots = nv_get_empty_tx_slots(np);
2138         if (unlikely(empty_slots <= entries)) {
2139                 netif_stop_queue(dev);
2140                 np->tx_stop = 1;
2141                 spin_unlock_irqrestore(&np->lock, flags);
2142                 return NETDEV_TX_BUSY;
2143         }
2144         spin_unlock_irqrestore(&np->lock, flags);
2145
2146         start_tx = put_tx = np->put_tx.orig;
2147
2148         /* setup the header buffer */
2149         do {
2150                 prev_tx = put_tx;
2151                 prev_tx_ctx = np->put_tx_ctx;
2152                 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
2153                 np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
2154                                                 PCI_DMA_TODEVICE);
2155                 np->put_tx_ctx->dma_len = bcnt;
2156                 put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
2157                 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
2158
2159                 tx_flags = np->tx_flags;
2160                 offset += bcnt;
2161                 size -= bcnt;
2162                 if (unlikely(put_tx++ == np->last_tx.orig))
2163                         put_tx = np->first_tx.orig;
2164                 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
2165                         np->put_tx_ctx = np->first_tx_ctx;
2166         } while (size);
2167
2168         /* setup the fragments */
2169         for (i = 0; i < fragments; i++) {
2170                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2171                 u32 size = frag->size;
2172                 offset = 0;
2173
2174                 do {
2175                         prev_tx = put_tx;
2176                         prev_tx_ctx = np->put_tx_ctx;
2177                         bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
2178                         np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
2179                                                            PCI_DMA_TODEVICE);
2180                         np->put_tx_ctx->dma_len = bcnt;
2181                         put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
2182                         put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
2183
2184                         offset += bcnt;
2185                         size -= bcnt;
2186                         if (unlikely(put_tx++ == np->last_tx.orig))
2187                                 put_tx = np->first_tx.orig;
2188                         if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
2189                                 np->put_tx_ctx = np->first_tx_ctx;
2190                 } while (size);
2191         }
2192
2193         /* set last fragment flag  */
2194         prev_tx->flaglen |= cpu_to_le32(tx_flags_extra);
2195
2196         /* save skb in this slot's context area */
2197         prev_tx_ctx->skb = skb;
2198
2199         if (skb_is_gso(skb))
2200                 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
2201         else
2202                 tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
2203                          NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
2204
2205         spin_lock_irqsave(&np->lock, flags);
2206
2207         /* set tx flags */
2208         start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
2209         np->put_tx.orig = put_tx;
2210
2211         spin_unlock_irqrestore(&np->lock, flags);
2212
2213         dprintk(KERN_DEBUG "%s: nv_start_xmit: entries %d queued for transmission. tx_flags_extra: %x\n",
2214                 dev->name, entries, tx_flags_extra);
2215         {
2216                 int j;
2217                 for (j=0; j<64; j++) {
2218                         if ((j%16) == 0)
2219                                 dprintk("\n%03x:", j);
2220                         dprintk(" %02x", ((unsigned char*)skb->data)[j]);
2221                 }
2222                 dprintk("\n");
2223         }
2224
2225         dev->trans_start = jiffies;
2226         writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2227         return NETDEV_TX_OK;
2228 }
2229
2230 static int nv_start_xmit_optimized(struct sk_buff *skb, struct net_device *dev)
2231 {
2232         struct fe_priv *np = netdev_priv(dev);
2233         u32 tx_flags = 0;
2234         u32 tx_flags_extra;
2235         unsigned int fragments = skb_shinfo(skb)->nr_frags;
2236         unsigned int i;
2237         u32 offset = 0;
2238         u32 bcnt;
2239         u32 size = skb->len-skb->data_len;
2240         u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
2241         u32 empty_slots;
2242         struct ring_desc_ex* put_tx;
2243         struct ring_desc_ex* start_tx;
2244         struct ring_desc_ex* prev_tx;
2245         struct nv_skb_map* prev_tx_ctx;
2246         struct nv_skb_map* start_tx_ctx;
2247         unsigned long flags;
2248
2249         /* add fragments to entries count */
2250         for (i = 0; i < fragments; i++) {
2251                 entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
2252                            ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
2253         }
2254
2255         spin_lock_irqsave(&np->lock, flags);
2256         empty_slots = nv_get_empty_tx_slots(np);
2257         if (unlikely(empty_slots <= entries)) {
2258                 netif_stop_queue(dev);
2259                 np->tx_stop = 1;
2260                 spin_unlock_irqrestore(&np->lock, flags);
2261                 return NETDEV_TX_BUSY;
2262         }
2263         spin_unlock_irqrestore(&np->lock, flags);
2264
2265         start_tx = put_tx = np->put_tx.ex;
2266         start_tx_ctx = np->put_tx_ctx;
2267
2268         /* setup the header buffer */
2269         do {
2270                 prev_tx = put_tx;
2271                 prev_tx_ctx = np->put_tx_ctx;
2272                 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
2273                 np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
2274                                                 PCI_DMA_TODEVICE);
2275                 np->put_tx_ctx->dma_len = bcnt;
2276                 put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
2277                 put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
2278                 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
2279
2280                 tx_flags = NV_TX2_VALID;
2281                 offset += bcnt;
2282                 size -= bcnt;
2283                 if (unlikely(put_tx++ == np->last_tx.ex))
2284                         put_tx = np->first_tx.ex;
2285                 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
2286                         np->put_tx_ctx = np->first_tx_ctx;
2287         } while (size);
2288
2289         /* setup the fragments */
2290         for (i = 0; i < fragments; i++) {
2291                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2292                 u32 size = frag->size;
2293                 offset = 0;
2294
2295                 do {
2296                         prev_tx = put_tx;
2297                         prev_tx_ctx = np->put_tx_ctx;
2298                         bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
2299                         np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
2300                                                            PCI_DMA_TODEVICE);
2301                         np->put_tx_ctx->dma_len = bcnt;
2302                         put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
2303                         put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
2304                         put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
2305
2306                         offset += bcnt;
2307                         size -= bcnt;
2308                         if (unlikely(put_tx++ == np->last_tx.ex))
2309                                 put_tx = np->first_tx.ex;
2310                         if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
2311                                 np->put_tx_ctx = np->first_tx_ctx;
2312                 } while (size);
2313         }
2314
2315         /* set last fragment flag  */
2316         prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET);
2317
2318         /* save skb in this slot's context area */
2319         prev_tx_ctx->skb = skb;
2320
2321         if (skb_is_gso(skb))
2322                 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
2323         else
2324                 tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
2325                          NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
2326
2327         /* vlan tag */
2328         if (likely(!np->vlangrp)) {
2329                 start_tx->txvlan = 0;
2330         } else {
2331                 if (vlan_tx_tag_present(skb))
2332                         start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb));
2333                 else
2334                         start_tx->txvlan = 0;
2335         }
2336
2337         spin_lock_irqsave(&np->lock, flags);
2338
2339         if (np->tx_limit) {
2340                 /* Limit the number of outstanding tx. Setup all fragments, but
2341                  * do not set the VALID bit on the first descriptor. Save a pointer
2342                  * to that descriptor and also for next skb_map element.
2343                  */
2344
2345                 if (np->tx_pkts_in_progress == NV_TX_LIMIT_COUNT) {
2346                         if (!np->tx_change_owner)
2347                                 np->tx_change_owner = start_tx_ctx;
2348
2349                         /* remove VALID bit */
2350                         tx_flags &= ~NV_TX2_VALID;
2351                         start_tx_ctx->first_tx_desc = start_tx;
2352                         start_tx_ctx->next_tx_ctx = np->put_tx_ctx;
2353                         np->tx_end_flip = np->put_tx_ctx;
2354                 } else {
2355                         np->tx_pkts_in_progress++;
2356                 }
2357         }
2358
2359         /* set tx flags */
2360         start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
2361         np->put_tx.ex = put_tx;
2362
2363         spin_unlock_irqrestore(&np->lock, flags);
2364
2365         dprintk(KERN_DEBUG "%s: nv_start_xmit_optimized: entries %d queued for transmission. tx_flags_extra: %x\n",
2366                 dev->name, entries, tx_flags_extra);
2367         {
2368                 int j;
2369                 for (j=0; j<64; j++) {
2370                         if ((j%16) == 0)
2371                                 dprintk("\n%03x:", j);
2372                         dprintk(" %02x", ((unsigned char*)skb->data)[j]);
2373                 }
2374                 dprintk("\n");
2375         }
2376
2377         dev->trans_start = jiffies;
2378         writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2379         return NETDEV_TX_OK;
2380 }
2381
2382 static inline void nv_tx_flip_ownership(struct net_device *dev)
2383 {
2384         struct fe_priv *np = netdev_priv(dev);
2385
2386         np->tx_pkts_in_progress--;
2387         if (np->tx_change_owner) {
2388                 np->tx_change_owner->first_tx_desc->flaglen |=
2389                         cpu_to_le32(NV_TX2_VALID);
2390                 np->tx_pkts_in_progress++;
2391
2392                 np->tx_change_owner = np->tx_change_owner->next_tx_ctx;
2393                 if (np->tx_change_owner == np->tx_end_flip)
2394                         np->tx_change_owner = NULL;
2395
2396                 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2397         }
2398 }
2399
2400 /*
2401  * nv_tx_done: check for completed packets, release the skbs.
2402  *
2403  * Caller must own np->lock.
2404  */
2405 static int nv_tx_done(struct net_device *dev, int limit)
2406 {
2407         struct fe_priv *np = netdev_priv(dev);
2408         u32 flags;
2409         int tx_work = 0;
2410         struct ring_desc* orig_get_tx = np->get_tx.orig;
2411
2412         while ((np->get_tx.orig != np->put_tx.orig) &&
2413                !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID) &&
2414                (tx_work < limit)) {
2415
2416                 dprintk(KERN_DEBUG "%s: nv_tx_done: flags 0x%x.\n",
2417                                         dev->name, flags);
2418
2419                 pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
2420                                np->get_tx_ctx->dma_len,
2421                                PCI_DMA_TODEVICE);
2422                 np->get_tx_ctx->dma = 0;
2423
2424                 if (np->desc_ver == DESC_VER_1) {
2425                         if (flags & NV_TX_LASTPACKET) {
2426                                 if (flags & NV_TX_ERROR) {
2427                                         if (flags & NV_TX_UNDERFLOW)
2428                                                 dev->stats.tx_fifo_errors++;
2429                                         if (flags & NV_TX_CARRIERLOST)
2430                                                 dev->stats.tx_carrier_errors++;
2431                                         if ((flags & NV_TX_RETRYERROR) && !(flags & NV_TX_RETRYCOUNT_MASK))
2432                                                 nv_legacybackoff_reseed(dev);
2433                                         dev->stats.tx_errors++;
2434                                 } else {
2435                                         dev->stats.tx_packets++;
2436                                         dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
2437                                 }
2438                                 dev_kfree_skb_any(np->get_tx_ctx->skb);
2439                                 np->get_tx_ctx->skb = NULL;
2440                                 tx_work++;
2441                         }
2442                 } else {
2443                         if (flags & NV_TX2_LASTPACKET) {
2444                                 if (flags & NV_TX2_ERROR) {
2445                                         if (flags & NV_TX2_UNDERFLOW)
2446                                                 dev->stats.tx_fifo_errors++;
2447                                         if (flags & NV_TX2_CARRIERLOST)
2448                                                 dev->stats.tx_carrier_errors++;
2449                                         if ((flags & NV_TX2_RETRYERROR) && !(flags & NV_TX2_RETRYCOUNT_MASK))
2450                                                 nv_legacybackoff_reseed(dev);
2451                                         dev->stats.tx_errors++;
2452                                 } else {
2453                                         dev->stats.tx_packets++;
2454                                         dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
2455                                 }
2456                                 dev_kfree_skb_any(np->get_tx_ctx->skb);
2457                                 np->get_tx_ctx->skb = NULL;
2458                                 tx_work++;
2459                         }
2460                 }
2461                 if (unlikely(np->get_tx.orig++ == np->last_tx.orig))
2462                         np->get_tx.orig = np->first_tx.orig;
2463                 if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
2464                         np->get_tx_ctx = np->first_tx_ctx;
2465         }
2466         if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) {
2467                 np->tx_stop = 0;
2468                 netif_wake_queue(dev);
2469         }
2470         return tx_work;
2471 }
2472
2473 static int nv_tx_done_optimized(struct net_device *dev, int limit)
2474 {
2475         struct fe_priv *np = netdev_priv(dev);
2476         u32 flags;
2477         int tx_work = 0;
2478         struct ring_desc_ex* orig_get_tx = np->get_tx.ex;
2479
2480         while ((np->get_tx.ex != np->put_tx.ex) &&
2481                !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX_VALID) &&
2482                (tx_work < limit)) {
2483
2484                 dprintk(KERN_DEBUG "%s: nv_tx_done_optimized: flags 0x%x.\n",
2485                                         dev->name, flags);
2486
2487                 pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
2488                                np->get_tx_ctx->dma_len,
2489                                PCI_DMA_TODEVICE);
2490                 np->get_tx_ctx->dma = 0;
2491
2492                 if (flags & NV_TX2_LASTPACKET) {
2493                         if (!(flags & NV_TX2_ERROR))
2494                                 dev->stats.tx_packets++;
2495                         else {
2496                                 if ((flags & NV_TX2_RETRYERROR) && !(flags & NV_TX2_RETRYCOUNT_MASK)) {
2497                                         if (np->driver_data & DEV_HAS_GEAR_MODE)
2498                                                 nv_gear_backoff_reseed(dev);
2499                                         else
2500                                                 nv_legacybackoff_reseed(dev);
2501                                 }
2502                         }
2503
2504                         dev_kfree_skb_any(np->get_tx_ctx->skb);
2505                         np->get_tx_ctx->skb = NULL;
2506                         tx_work++;
2507
2508                         if (np->tx_limit) {
2509                                 nv_tx_flip_ownership(dev);
2510                         }
2511                 }
2512                 if (unlikely(np->get_tx.ex++ == np->last_tx.ex))
2513                         np->get_tx.ex = np->first_tx.ex;
2514                 if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
2515                         np->get_tx_ctx = np->first_tx_ctx;
2516         }
2517         if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) {
2518                 np->tx_stop = 0;
2519                 netif_wake_queue(dev);
2520         }
2521         return tx_work;
2522 }
2523
2524 /*
2525  * nv_tx_timeout: dev->tx_timeout function
2526  * Called with netif_tx_lock held.
2527  */
2528 static void nv_tx_timeout(struct net_device *dev)
2529 {
2530         struct fe_priv *np = netdev_priv(dev);
2531         u8 __iomem *base = get_hwbase(dev);
2532         u32 status;
2533
2534         if (np->msi_flags & NV_MSI_X_ENABLED)
2535                 status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
2536         else
2537                 status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
2538
2539         printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
2540
2541         {
2542                 int i;
2543
2544                 printk(KERN_INFO "%s: Ring at %lx\n",
2545                        dev->name, (unsigned long)np->ring_addr);
2546                 printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
2547                 for (i=0;i<=np->register_size;i+= 32) {
2548                         printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
2549                                         i,
2550                                         readl(base + i + 0), readl(base + i + 4),
2551                                         readl(base + i + 8), readl(base + i + 12),
2552                                         readl(base + i + 16), readl(base + i + 20),
2553                                         readl(base + i + 24), readl(base + i + 28));
2554                 }
2555                 printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
2556                 for (i=0;i<np->tx_ring_size;i+= 4) {
2557                         if (!nv_optimized(np)) {
2558                                 printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
2559                                        i,
2560                                        le32_to_cpu(np->tx_ring.orig[i].buf),
2561                                        le32_to_cpu(np->tx_ring.orig[i].flaglen),
2562                                        le32_to_cpu(np->tx_ring.orig[i+1].buf),
2563                                        le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
2564                                        le32_to_cpu(np->tx_ring.orig[i+2].buf),
2565                                        le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
2566                                        le32_to_cpu(np->tx_ring.orig[i+3].buf),
2567                                        le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
2568                         } else {
2569                                 printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
2570                                        i,
2571                                        le32_to_cpu(np->tx_ring.ex[i].bufhigh),
2572                                        le32_to_cpu(np->tx_ring.ex[i].buflow),
2573                                        le32_to_cpu(np->tx_ring.ex[i].flaglen),
2574                                        le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
2575                                        le32_to_cpu(np->tx_ring.ex[i+1].buflow),
2576                                        le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
2577                                        le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
2578                                        le32_to_cpu(np->tx_ring.ex[i+2].buflow),
2579                                        le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
2580                                        le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
2581                                        le32_to_cpu(np->tx_ring.ex[i+3].buflow),
2582                                        le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
2583                         }
2584                 }
2585         }
2586
2587         spin_lock_irq(&np->lock);
2588
2589         /* 1) stop tx engine */
2590         nv_stop_tx(dev);
2591
2592         /* 2) check that the packets were not sent already: */
2593         if (!nv_optimized(np))
2594                 nv_tx_done(dev, np->tx_ring_size);
2595         else
2596                 nv_tx_done_optimized(dev, np->tx_ring_size);
2597
2598         /* 3) if there are dead entries: clear everything */
2599         if (np->get_tx_ctx != np->put_tx_ctx) {
2600                 printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
2601                 nv_drain_tx(dev);
2602                 nv_init_tx(dev);
2603                 setup_hw_rings(dev, NV_SETUP_TX_RING);
2604         }
2605
2606         netif_wake_queue(dev);
2607
2608         /* 4) restart tx engine */
2609         nv_start_tx(dev);
2610         spin_unlock_irq(&np->lock);
2611 }
2612
2613 /*
2614  * Called when the nic notices a mismatch between the actual data len on the
2615  * wire and the len indicated in the 802 header
2616  */
2617 static int nv_getlen(struct net_device *dev, void *packet, int datalen)
2618 {
2619         int hdrlen;     /* length of the 802 header */
2620         int protolen;   /* length as stored in the proto field */
2621
2622         /* 1) calculate len according to header */
2623         if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
2624                 protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
2625                 hdrlen = VLAN_HLEN;
2626         } else {
2627                 protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
2628                 hdrlen = ETH_HLEN;
2629         }
2630         dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
2631                                 dev->name, datalen, protolen, hdrlen);
2632         if (protolen > ETH_DATA_LEN)
2633                 return datalen; /* Value in proto field not a len, no checks possible */
2634
2635         protolen += hdrlen;
2636         /* consistency checks: */
2637         if (datalen > ETH_ZLEN) {
2638                 if (datalen >= protolen) {
2639                         /* more data on wire than in 802 header, trim of
2640                          * additional data.
2641                          */
2642                         dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
2643                                         dev->name, protolen);
2644                         return protolen;
2645                 } else {
2646                         /* less data on wire than mentioned in header.
2647                          * Discard the packet.
2648                          */
2649                         dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
2650                                         dev->name);
2651                         return -1;
2652                 }
2653         } else {
2654                 /* short packet. Accept only if 802 values are also short */
2655                 if (protolen > ETH_ZLEN) {
2656                         dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
2657                                         dev->name);
2658                         return -1;
2659                 }
2660                 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
2661                                 dev->name, datalen);
2662                 return datalen;
2663         }
2664 }
2665
2666 static int nv_rx_process(struct net_device *dev, int limit)
2667 {
2668         struct fe_priv *np = netdev_priv(dev);
2669         u32 flags;
2670         int rx_work = 0;
2671         struct sk_buff *skb;
2672         int len;
2673
2674         while((np->get_rx.orig != np->put_rx.orig) &&
2675               !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) &&
2676                 (rx_work < limit)) {
2677
2678                 dprintk(KERN_DEBUG "%s: nv_rx_process: flags 0x%x.\n",
2679                                         dev->name, flags);
2680
2681                 /*
2682                  * the packet is for us - immediately tear down the pci mapping.
2683                  * TODO: check if a prefetch of the first cacheline improves
2684                  * the performance.
2685                  */
2686                 pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
2687                                 np->get_rx_ctx->dma_len,
2688                                 PCI_DMA_FROMDEVICE);
2689                 skb = np->get_rx_ctx->skb;
2690                 np->get_rx_ctx->skb = NULL;
2691
2692                 {
2693                         int j;
2694                         dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
2695                         for (j=0; j<64; j++) {
2696                                 if ((j%16) == 0)
2697                                         dprintk("\n%03x:", j);
2698                                 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
2699                         }
2700                         dprintk("\n");
2701                 }
2702                 /* look at what we actually got: */
2703                 if (np->desc_ver == DESC_VER_1) {
2704                         if (likely(flags & NV_RX_DESCRIPTORVALID)) {
2705                                 len = flags & LEN_MASK_V1;
2706                                 if (unlikely(flags & NV_RX_ERROR)) {
2707                                         if ((flags & NV_RX_ERROR_MASK) == NV_RX_ERROR4) {
2708                                                 len = nv_getlen(dev, skb->data, len);
2709                                                 if (len < 0) {
2710                                                         dev->stats.rx_errors++;
2711                                                         dev_kfree_skb(skb);
2712                                                         goto next_pkt;
2713                                                 }
2714                                         }
2715                                         /* framing errors are soft errors */
2716                                         else if ((flags & NV_RX_ERROR_MASK) == NV_RX_FRAMINGERR) {
2717                                                 if (flags & NV_RX_SUBSTRACT1) {
2718                                                         len--;
2719                                                 }
2720                                         }
2721                                         /* the rest are hard errors */
2722                                         else {
2723                                                 if (flags & NV_RX_MISSEDFRAME)
2724                                                         dev->stats.rx_missed_errors++;
2725                                                 if (flags & NV_RX_CRCERR)
2726                                                         dev->stats.rx_crc_errors++;
2727                                                 if (flags & NV_RX_OVERFLOW)
2728                                                         dev->stats.rx_over_errors++;
2729                                                 dev->stats.rx_errors++;
2730                                                 dev_kfree_skb(skb);
2731                                                 goto next_pkt;
2732                                         }
2733                                 }
2734                         } else {
2735                                 dev_kfree_skb(skb);
2736                                 goto next_pkt;
2737                         }
2738                 } else {
2739                         if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
2740                                 len = flags & LEN_MASK_V2;
2741                                 if (unlikely(flags & NV_RX2_ERROR)) {
2742                                         if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
2743                                                 len = nv_getlen(dev, skb->data, len);
2744                                                 if (len < 0) {
2745                                                         dev->stats.rx_errors++;
2746                                                         dev_kfree_skb(skb);
2747                                                         goto next_pkt;
2748                                                 }
2749                                         }
2750                                         /* framing errors are soft errors */
2751                                         else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
2752                                                 if (flags & NV_RX2_SUBSTRACT1) {
2753                                                         len--;
2754                                                 }
2755                                         }
2756                                         /* the rest are hard errors */
2757                                         else {
2758                                                 if (flags & NV_RX2_CRCERR)
2759                                                         dev->stats.rx_crc_errors++;
2760                                                 if (flags & NV_RX2_OVERFLOW)
2761                                                         dev->stats.rx_over_errors++;
2762                                                 dev->stats.rx_errors++;
2763                                                 dev_kfree_skb(skb);
2764                                                 goto next_pkt;
2765                                         }
2766                                 }
2767                                 if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
2768                                     ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP))   /*ip and udp */
2769                                         skb->ip_summed = CHECKSUM_UNNECESSARY;
2770                         } else {
2771                                 dev_kfree_skb(skb);
2772                                 goto next_pkt;
2773                         }
2774                 }
2775                 /* got a valid packet - forward it to the network core */
2776                 skb_put(skb, len);
2777                 skb->protocol = eth_type_trans(skb, dev);
2778                 dprintk(KERN_DEBUG "%s: nv_rx_process: %d bytes, proto %d accepted.\n",
2779                                         dev->name, len, skb->protocol);
2780 #ifdef CONFIG_FORCEDETH_NAPI
2781                 netif_receive_skb(skb);
2782 #else
2783                 netif_rx(skb);
2784 #endif
2785                 dev->stats.rx_packets++;
2786                 dev->stats.rx_bytes += len;
2787 next_pkt:
2788                 if (unlikely(np->get_rx.orig++ == np->last_rx.orig))
2789                         np->get_rx.orig = np->first_rx.orig;
2790                 if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
2791                         np->get_rx_ctx = np->first_rx_ctx;
2792
2793                 rx_work++;
2794         }
2795
2796         return rx_work;
2797 }
2798
2799 static int nv_rx_process_optimized(struct net_device *dev, int limit)
2800 {
2801         struct fe_priv *np = netdev_priv(dev);
2802         u32 flags;
2803         u32 vlanflags = 0;
2804         int rx_work = 0;
2805         struct sk_buff *skb;
2806         int len;
2807
2808         while((np->get_rx.ex != np->put_rx.ex) &&
2809               !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) &&
2810               (rx_work < limit)) {
2811
2812                 dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: flags 0x%x.\n",
2813                                         dev->name, flags);
2814
2815                 /*
2816                  * the packet is for us - immediately tear down the pci mapping.
2817                  * TODO: check if a prefetch of the first cacheline improves
2818                  * the performance.
2819                  */
2820                 pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
2821                                 np->get_rx_ctx->dma_len,
2822                                 PCI_DMA_FROMDEVICE);
2823                 skb = np->get_rx_ctx->skb;
2824                 np->get_rx_ctx->skb = NULL;
2825
2826                 {
2827                         int j;
2828                         dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
2829                         for (j=0; j<64; j++) {
2830                                 if ((j%16) == 0)
2831                                         dprintk("\n%03x:", j);
2832                                 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
2833                         }
2834                         dprintk("\n");
2835                 }
2836                 /* look at what we actually got: */
2837                 if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
2838                         len = flags & LEN_MASK_V2;
2839                         if (unlikely(flags & NV_RX2_ERROR)) {
2840                                 if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
2841                                         len = nv_getlen(dev, skb->data, len);
2842                                         if (len < 0) {
2843                                                 dev_kfree_skb(skb);
2844                                                 goto next_pkt;
2845                                         }
2846                                 }
2847                                 /* framing errors are soft errors */
2848                                 else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
2849                                         if (flags & NV_RX2_SUBSTRACT1) {
2850                                                 len--;
2851                                         }
2852                                 }
2853                                 /* the rest are hard errors */
2854                                 else {
2855                                         dev_kfree_skb(skb);
2856                                         goto next_pkt;
2857                                 }
2858                         }
2859
2860                         if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
2861                             ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP))   /*ip and udp */
2862                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2863
2864                         /* got a valid packet - forward it to the network core */
2865                         skb_put(skb, len);
2866                         skb->protocol = eth_type_trans(skb, dev);
2867                         prefetch(skb->data);
2868
2869                         dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: %d bytes, proto %d accepted.\n",
2870                                 dev->name, len, skb->protocol);
2871
2872                         if (likely(!np->vlangrp)) {
2873 #ifdef CONFIG_FORCEDETH_NAPI
2874                                 netif_receive_skb(skb);
2875 #else
2876                                 netif_rx(skb);
2877 #endif
2878                         } else {
2879                                 vlanflags = le32_to_cpu(np->get_rx.ex->buflow);
2880                                 if (vlanflags & NV_RX3_VLAN_TAG_PRESENT) {
2881 #ifdef CONFIG_FORCEDETH_NAPI
2882                                         vlan_hwaccel_receive_skb(skb, np->vlangrp,
2883                                                                  vlanflags & NV_RX3_VLAN_TAG_MASK);
2884 #else
2885                                         vlan_hwaccel_rx(skb, np->vlangrp,
2886                                                         vlanflags & NV_RX3_VLAN_TAG_MASK);
2887 #endif
2888                                 } else {
2889 #ifdef CONFIG_FORCEDETH_NAPI
2890                                         netif_receive_skb(skb);
2891 #else
2892                                         netif_rx(skb);
2893 #endif
2894                                 }
2895                         }
2896
2897                         dev->stats.rx_packets++;
2898                         dev->stats.rx_bytes += len;
2899                 } else {
2900                         dev_kfree_skb(skb);
2901                 }
2902 next_pkt:
2903                 if (unlikely(np->get_rx.ex++ == np->last_rx.ex))
2904                         np->get_rx.ex = np->first_rx.ex;
2905                 if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
2906                         np->get_rx_ctx = np->first_rx_ctx;
2907
2908                 rx_work++;
2909         }
2910
2911         return rx_work;
2912 }
2913
2914 static void set_bufsize(struct net_device *dev)
2915 {
2916         struct fe_priv *np = netdev_priv(dev);
2917
2918         if (dev->mtu <= ETH_DATA_LEN)
2919                 np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
2920         else
2921                 np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
2922 }
2923
2924 /*
2925  * nv_change_mtu: dev->change_mtu function
2926  * Called with dev_base_lock held for read.
2927  */
2928 static int nv_change_mtu(struct net_device *dev, int new_mtu)
2929 {
2930         struct fe_priv *np = netdev_priv(dev);
2931         int old_mtu;
2932
2933         if (new_mtu < 64 || new_mtu > np->pkt_limit)
2934                 return -EINVAL;
2935
2936         old_mtu = dev->mtu;
2937         dev->mtu = new_mtu;
2938
2939         /* return early if the buffer sizes will not change */
2940         if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
2941                 return 0;
2942         if (old_mtu == new_mtu)
2943                 return 0;
2944
2945         /* synchronized against open : rtnl_lock() held by caller */
2946         if (netif_running(dev)) {
2947                 u8 __iomem *base = get_hwbase(dev);
2948                 /*
2949                  * It seems that the nic preloads valid ring entries into an
2950                  * internal buffer. The procedure for flushing everything is
2951                  * guessed, there is probably a simpler approach.
2952                  * Changing the MTU is a rare event, it shouldn't matter.
2953                  */
2954                 nv_disable_irq(dev);
2955                 nv_napi_disable(dev);
2956                 netif_tx_lock_bh(dev);
2957                 netif_addr_lock(dev);
2958                 spin_lock(&np->lock);
2959                 /* stop engines */
2960                 nv_stop_rxtx(dev);
2961                 nv_txrx_reset(dev);
2962                 /* drain rx queue */
2963                 nv_drain_rxtx(dev);
2964                 /* reinit driver view of the rx queue */
2965                 set_bufsize(dev);
2966                 if (nv_init_ring(dev)) {
2967                         if (!np->in_shutdown)
2968                                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2969                 }
2970                 /* reinit nic view of the rx queue */
2971                 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
2972                 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
2973                 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
2974                         base + NvRegRingSizes);
2975                 pci_push(base);
2976                 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2977                 pci_push(base);
2978
2979                 /* restart rx engine */
2980                 nv_start_rxtx(dev);
2981                 spin_unlock(&np->lock);
2982                 netif_addr_unlock(dev);
2983                 netif_tx_unlock_bh(dev);
2984                 nv_napi_enable(dev);
2985                 nv_enable_irq(dev);
2986         }
2987         return 0;
2988 }
2989
2990 static void nv_copy_mac_to_hw(struct net_device *dev)
2991 {
2992         u8 __iomem *base = get_hwbase(dev);
2993         u32 mac[2];
2994
2995         mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
2996                         (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
2997         mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
2998
2999         writel(mac[0], base + NvRegMacAddrA);
3000         writel(mac[1], base + NvRegMacAddrB);
3001 }
3002
3003 /*
3004  * nv_set_mac_address: dev->set_mac_address function
3005  * Called with rtnl_lock() held.
3006  */
3007 static int nv_set_mac_address(struct net_device *dev, void *addr)
3008 {
3009         struct fe_priv *np = netdev_priv(dev);
3010         struct sockaddr *macaddr = (struct sockaddr*)addr;
3011
3012         if (!is_valid_ether_addr(macaddr->sa_data))
3013                 return -EADDRNOTAVAIL;
3014
3015         /* synchronized against open : rtnl_lock() held by caller */
3016         memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
3017
3018         if (netif_running(dev)) {
3019                 netif_tx_lock_bh(dev);
3020                 netif_addr_lock(dev);
3021                 spin_lock_irq(&np->lock);
3022
3023                 /* stop rx engine */
3024                 nv_stop_rx(dev);
3025
3026                 /* set mac address */
3027                 nv_copy_mac_to_hw(dev);
3028
3029                 /* restart rx engine */
3030                 nv_start_rx(dev);
3031                 spin_unlock_irq(&np->lock);
3032                 netif_addr_unlock(dev);
3033                 netif_tx_unlock_bh(dev);
3034         } else {
3035                 nv_copy_mac_to_hw(dev);
3036         }
3037         return 0;
3038 }
3039
3040 /*
3041  * nv_set_multicast: dev->set_multicast function
3042  * Called with netif_tx_lock held.
3043  */
3044 static void nv_set_multicast(struct net_device *dev)
3045 {
3046         struct fe_priv *np = netdev_priv(dev);
3047         u8 __iomem *base = get_hwbase(dev);
3048         u32 addr[2];
3049         u32 mask[2];
3050         u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
3051
3052         memset(addr, 0, sizeof(addr));
3053         memset(mask, 0, sizeof(mask));
3054
3055         if (dev->flags & IFF_PROMISC) {
3056                 pff |= NVREG_PFF_PROMISC;
3057         } else {
3058                 pff |= NVREG_PFF_MYADDR;
3059
3060                 if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
3061                         u32 alwaysOff[2];
3062                         u32 alwaysOn[2];
3063
3064                         alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
3065                         if (dev->flags & IFF_ALLMULTI) {
3066                                 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
3067                         } else {
3068                                 struct dev_mc_list *walk;
3069
3070                                 walk = dev->mc_list;
3071                                 while (walk != NULL) {
3072                                         u32 a, b;
3073                                         a = le32_to_cpu(*(__le32 *) walk->dmi_addr);
3074                                         b = le16_to_cpu(*(__le16 *) (&walk->dmi_addr[4]));
3075                                         alwaysOn[0] &= a;
3076                                         alwaysOff[0] &= ~a;
3077                                         alwaysOn[1] &= b;
3078                                         alwaysOff[1] &= ~b;
3079                                         walk = walk->next;
3080                                 }
3081                         }
3082                         addr[0] = alwaysOn[0];
3083                         addr[1] = alwaysOn[1];
3084                         mask[0] = alwaysOn[0] | alwaysOff[0];
3085                         mask[1] = alwaysOn[1] | alwaysOff[1];
3086                 } else {
3087                         mask[0] = NVREG_MCASTMASKA_NONE;
3088                         mask[1] = NVREG_MCASTMASKB_NONE;
3089                 }
3090         }
3091         addr[0] |= NVREG_MCASTADDRA_FORCE;
3092         pff |= NVREG_PFF_ALWAYS;
3093         spin_lock_irq(&np->lock);
3094         nv_stop_rx(dev);
3095         writel(addr[0], base + NvRegMulticastAddrA);
3096         writel(addr[1], base + NvRegMulticastAddrB);
3097         writel(mask[0], base + NvRegMulticastMaskA);
3098         writel(mask[1], base + NvRegMulticastMaskB);
3099         writel(pff, base + NvRegPacketFilterFlags);
3100         dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
3101                 dev->name);
3102         nv_start_rx(dev);
3103         spin_unlock_irq(&np->lock);
3104 }
3105
3106 static void nv_update_pause(struct net_device *dev, u32 pause_flags)
3107 {
3108         struct fe_priv *np = netdev_priv(dev);
3109         u8 __iomem *base = get_hwbase(dev);
3110
3111         np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
3112
3113         if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
3114                 u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
3115                 if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
3116                         writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
3117                         np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3118                 } else {
3119                         writel(pff, base + NvRegPacketFilterFlags);
3120                 }
3121         }
3122         if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
3123                 u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
3124                 if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
3125                         u32 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V1;
3126                         if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V2)
3127                                 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V2;
3128                         if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V3) {
3129                                 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V3;
3130                                 /* limit the number of tx pause frames to a default of 8 */
3131                                 writel(readl(base + NvRegTxPauseFrameLimit)|NVREG_TX_PAUSEFRAMELIMIT_ENABLE, base + NvRegTxPauseFrameLimit);
3132                         }
3133                         writel(pause_enable,  base + NvRegTxPauseFrame);
3134                         writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
3135                         np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3136                 } else {
3137                         writel(NVREG_TX_PAUSEFRAME_DISABLE,  base + NvRegTxPauseFrame);
3138                         writel(regmisc, base + NvRegMisc1);
3139                 }
3140         }
3141 }
3142
3143 /**
3144  * nv_update_linkspeed: Setup the MAC according to the link partner
3145  * @dev: Network device to be configured
3146  *
3147  * The function queries the PHY and checks if there is a link partner.
3148  * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
3149  * set to 10 MBit HD.
3150  *
3151  * The function returns 0 if there is no link partner and 1 if there is
3152  * a good link partner.
3153  */
3154 static int nv_update_linkspeed(struct net_device *dev)
3155 {
3156         struct fe_priv *np = netdev_priv(dev);
3157         u8 __iomem *base = get_hwbase(dev);
3158         int adv = 0;
3159         int lpa = 0;
3160         int adv_lpa, adv_pause, lpa_pause;
3161         int newls = np->linkspeed;
3162         int newdup = np->duplex;
3163         int mii_status;
3164         int retval = 0;
3165         u32 control_1000, status_1000, phyreg, pause_flags, txreg;
3166         u32 txrxFlags = 0;
3167         u32 phy_exp;
3168
3169         /* BMSR_LSTATUS is latched, read it twice:
3170          * we want the current value.
3171          */
3172         mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
3173         mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
3174
3175         if (!(mii_status & BMSR_LSTATUS)) {
3176                 dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
3177                                 dev->name);
3178                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3179                 newdup = 0;
3180                 retval = 0;
3181                 goto set_speed;
3182         }
3183
3184         if (np->autoneg == 0) {
3185                 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
3186                                 dev->name, np->fixed_mode);
3187                 if (np->fixed_mode & LPA_100FULL) {
3188                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
3189                         newdup = 1;
3190                 } else if (np->fixed_mode & LPA_100HALF) {
3191                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
3192                         newdup = 0;
3193                 } else if (np->fixed_mode & LPA_10FULL) {
3194                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3195                         newdup = 1;
3196                 } else {
3197                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3198                         newdup = 0;
3199                 }
3200                 retval = 1;
3201                 goto set_speed;
3202         }
3203         /* check auto negotiation is complete */
3204         if (!(mii_status & BMSR_ANEGCOMPLETE)) {
3205                 /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
3206                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3207                 newdup = 0;
3208                 retval = 0;
3209                 dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
3210                 goto set_speed;
3211         }
3212
3213         adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3214         lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
3215         dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
3216                                 dev->name, adv, lpa);
3217
3218         retval = 1;
3219         if (np->gigabit == PHY_GIGABIT) {
3220                 control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
3221                 status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
3222
3223                 if ((control_1000 & ADVERTISE_1000FULL) &&
3224                         (status_1000 & LPA_1000FULL)) {
3225                         dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
3226                                 dev->name);
3227                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
3228                         newdup = 1;
3229                         goto set_speed;
3230                 }
3231         }
3232
3233         /* FIXME: handle parallel detection properly */
3234         adv_lpa = lpa & adv;
3235         if (adv_lpa & LPA_100FULL) {
3236                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
3237                 newdup = 1;
3238         } else if (adv_lpa & LPA_100HALF) {
3239                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
3240                 newdup = 0;
3241         } else if (adv_lpa & LPA_10FULL) {
3242                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3243                 newdup = 1;
3244         } else if (adv_lpa & LPA_10HALF) {
3245                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3246                 newdup = 0;
3247         } else {
3248                 dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
3249                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3250                 newdup = 0;
3251         }
3252
3253 set_speed:
3254         if (np->duplex == newdup && np->linkspeed == newls)
3255                 return retval;
3256
3257         dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
3258                         dev->name, np->linkspeed, np->duplex, newls, newdup);
3259
3260         np->duplex = newdup;
3261         np->linkspeed = newls;
3262
3263         /* The transmitter and receiver must be restarted for safe update */
3264         if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START) {
3265                 txrxFlags |= NV_RESTART_TX;
3266                 nv_stop_tx(dev);
3267         }
3268         if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
3269                 txrxFlags |= NV_RESTART_RX;
3270                 nv_stop_rx(dev);
3271         }
3272
3273         if (np->gigabit == PHY_GIGABIT) {
3274                 phyreg = readl(base + NvRegSlotTime);
3275                 phyreg &= ~(0x3FF00);
3276                 if (((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10) ||
3277                     ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100))
3278                         phyreg |= NVREG_SLOTTIME_10_100_FULL;
3279                 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
3280                         phyreg |= NVREG_SLOTTIME_1000_FULL;
3281                 writel(phyreg, base + NvRegSlotTime);
3282         }
3283
3284         phyreg = readl(base + NvRegPhyInterface);
3285         phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
3286         if (np->duplex == 0)
3287                 phyreg |= PHY_HALF;
3288         if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
3289                 phyreg |= PHY_100;
3290         else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
3291                 phyreg |= PHY_1000;
3292         writel(phyreg, base + NvRegPhyInterface);
3293
3294         phy_exp = mii_rw(dev, np->phyaddr, MII_EXPANSION, MII_READ) & EXPANSION_NWAY; /* autoneg capable */
3295         if (phyreg & PHY_RGMII) {
3296                 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) {
3297                         txreg = NVREG_TX_DEFERRAL_RGMII_1000;
3298                 } else {
3299                         if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX)) {
3300                                 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_10)
3301                                         txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_10;
3302                                 else
3303                                         txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_100;
3304                         } else {
3305                                 txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
3306                         }
3307                 }
3308         } else {
3309                 if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX))
3310                         txreg = NVREG_TX_DEFERRAL_MII_STRETCH;
3311                 else
3312                         txreg = NVREG_TX_DEFERRAL_DEFAULT;
3313         }
3314         writel(txreg, base + NvRegTxDeferral);
3315
3316         if (np->desc_ver == DESC_VER_1) {
3317                 txreg = NVREG_TX_WM_DESC1_DEFAULT;
3318         } else {
3319                 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
3320                         txreg = NVREG_TX_WM_DESC2_3_1000;
3321                 else
3322                         txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
3323         }
3324         writel(txreg, base + NvRegTxWatermark);
3325
3326         writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
3327                 base + NvRegMisc1);
3328         pci_push(base);
3329         writel(np->linkspeed, base + NvRegLinkSpeed);
3330         pci_push(base);
3331
3332         pause_flags = 0;
3333         /* setup pause frame */
3334         if (np->duplex != 0) {
3335                 if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
3336                         adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
3337                         lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
3338
3339                         switch (adv_pause) {
3340                         case ADVERTISE_PAUSE_CAP:
3341                                 if (lpa_pause & LPA_PAUSE_CAP) {
3342                                         pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3343                                         if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
3344                                                 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3345                                 }
3346                                 break;
3347                         case ADVERTISE_PAUSE_ASYM:
3348                                 if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
3349                                 {
3350                                         pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3351                                 }
3352                                 break;
3353                         case ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM:
3354                                 if (lpa_pause & LPA_PAUSE_CAP)
3355                                 {
3356                                         pause_flags |=  NV_PAUSEFRAME_RX_ENABLE;
3357                                         if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
3358                                                 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3359                                 }
3360                                 if (lpa_pause == LPA_PAUSE_ASYM)
3361                                 {
3362                                         pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3363                                 }
3364                                 break;
3365                         }
3366                 } else {
3367                         pause_flags = np->pause_flags;
3368                 }
3369         }
3370         nv_update_pause(dev, pause_flags);
3371
3372         if (txrxFlags & NV_RESTART_TX)
3373                 nv_start_tx(dev);
3374         if (txrxFlags & NV_RESTART_RX)
3375                 nv_start_rx(dev);
3376
3377         return retval;
3378 }
3379
3380 static void nv_linkchange(struct net_device *dev)
3381 {
3382         if (nv_update_linkspeed(dev)) {
3383                 if (!netif_carrier_ok(dev)) {
3384                         netif_carrier_on(dev);
3385                         printk(KERN_INFO "%s: link up.\n", dev->name);
3386                         nv_start_rx(dev);
3387                 }
3388         } else {
3389                 if (netif_carrier_ok(dev)) {
3390                         netif_carrier_off(dev);
3391                         printk(KERN_INFO "%s: link down.\n", dev->name);
3392                         nv_stop_rx(dev);
3393                 }
3394         }
3395 }
3396
3397 static void nv_link_irq(struct net_device *dev)
3398 {
3399         u8 __iomem *base = get_hwbase(dev);
3400         u32 miistat;
3401
3402         miistat = readl(base + NvRegMIIStatus);
3403         writel(NVREG_MIISTAT_LINKCHANGE, base + NvRegMIIStatus);
3404         dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
3405
3406         if (miistat & (NVREG_MIISTAT_LINKCHANGE))
3407                 nv_linkchange(dev);
3408         dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
3409 }
3410
3411 static void nv_msi_workaround(struct fe_priv *np)
3412 {
3413
3414         /* Need to toggle the msi irq mask within the ethernet device,
3415          * otherwise, future interrupts will not be detected.
3416          */
3417         if (np->msi_flags & NV_MSI_ENABLED) {
3418                 u8 __iomem *base = np->base;
3419
3420                 writel(0, base + NvRegMSIIrqMask);
3421                 writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
3422         }
3423 }
3424
3425 static inline int nv_change_interrupt_mode(struct net_device *dev, int total_work)
3426 {
3427         struct fe_priv *np = netdev_priv(dev);
3428
3429         if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC) {
3430                 if (total_work > NV_DYNAMIC_THRESHOLD) {
3431                         /* transition to poll based interrupts */
3432                         np->quiet_count = 0;
3433                         if (np->irqmask != NVREG_IRQMASK_CPU) {
3434                                 np->irqmask = NVREG_IRQMASK_CPU;
3435                                 return 1;
3436                         }
3437                 } else {
3438                         if (np->quiet_count < NV_DYNAMIC_MAX_QUIET_COUNT) {
3439                                 np->quiet_count++;
3440                         } else {
3441                                 /* reached a period of low activity, switch
3442                                    to per tx/rx packet interrupts */
3443                                 if (np->irqmask != NVREG_IRQMASK_THROUGHPUT) {
3444                                         np->irqmask = NVREG_IRQMASK_THROUGHPUT;
3445                                         return 1;
3446                                 }
3447                         }
3448                 }
3449         }
3450         return 0;
3451 }
3452
3453 static irqreturn_t nv_nic_irq(int foo, void *data)
3454 {
3455         struct net_device *dev = (struct net_device *) data;
3456         struct fe_priv *np = netdev_priv(dev);
3457         u8 __iomem *base = get_hwbase(dev);
3458 #ifndef CONFIG_FORCEDETH_NAPI
3459         int total_work = 0;
3460         int loop_count = 0;
3461 #endif
3462
3463         dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
3464
3465         if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3466                 np->events = readl(base + NvRegIrqStatus);
3467                 writel(np->events, base + NvRegIrqStatus);
3468         } else {
3469                 np->events = readl(base + NvRegMSIXIrqStatus);
3470                 writel(np->events, base + NvRegMSIXIrqStatus);
3471         }
3472         dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, np->events);
3473         if (!(np->events & np->irqmask))
3474                 return IRQ_NONE;
3475
3476         nv_msi_workaround(np);
3477
3478 #ifdef CONFIG_FORCEDETH_NAPI
3479         napi_schedule(&np->napi);
3480
3481         /* Disable furthur irq's
3482            (msix not enabled with napi) */
3483         writel(0, base + NvRegIrqMask);
3484
3485 #else
3486         do
3487         {
3488                 int work = 0;
3489                 if ((work = nv_rx_process(dev, RX_WORK_PER_LOOP))) {
3490                         if (unlikely(nv_alloc_rx(dev))) {
3491                                 spin_lock(&np->lock);
3492                                 if (!np->in_shutdown)
3493                                         mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3494                                 spin_unlock(&np->lock);
3495                         }
3496                 }
3497
3498                 spin_lock(&np->lock);
3499                 work += nv_tx_done(dev, TX_WORK_PER_LOOP);
3500                 spin_unlock(&np->lock);
3501
3502                 if (!work)
3503                         break;
3504
3505                 total_work += work;
3506
3507                 loop_count++;
3508         }
3509         while (loop_count < max_interrupt_work);
3510
3511         if (nv_change_interrupt_mode(dev, total_work)) {
3512                 /* setup new irq mask */
3513                 writel(np->irqmask, base + NvRegIrqMask);
3514         }
3515
3516         if (unlikely(np->events & NVREG_IRQ_LINK)) {
3517                 spin_lock(&np->lock);
3518                 nv_link_irq(dev);
3519                 spin_unlock(&np->lock);
3520         }
3521         if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
3522                 spin_lock(&np->lock);
3523                 nv_linkchange(dev);
3524                 spin_unlock(&np->lock);
3525                 np->link_timeout = jiffies + LINK_TIMEOUT;
3526         }
3527         if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) {
3528                 spin_lock(&np->lock);
3529                 /* disable interrupts on the nic */
3530                 if (!(np->msi_flags & NV_MSI_X_ENABLED))
3531                         writel(0, base + NvRegIrqMask);
3532                 else
3533                         writel(np->irqmask, base + NvRegIrqMask);
3534                 pci_push(base);
3535
3536                 if (!np->in_shutdown) {
3537                         np->nic_poll_irq = np->irqmask;
3538                         np->recover_error = 1;
3539                         mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3540                 }
3541                 spin_unlock(&np->lock);
3542         }
3543 #endif
3544         dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
3545
3546         return IRQ_HANDLED;
3547 }
3548
3549 /**
3550  * All _optimized functions are used to help increase performance
3551  * (reduce CPU and increase throughput). They use descripter version 3,
3552  * compiler directives, and reduce memory accesses.
3553  */
3554 static irqreturn_t nv_nic_irq_optimized(int foo, void *data)
3555 {
3556         struct net_device *dev = (struct net_device *) data;
3557         struct fe_priv *np = netdev_priv(dev);
3558         u8 __iomem *base = get_hwbase(dev);
3559 #ifndef CONFIG_FORCEDETH_NAPI
3560         int total_work = 0;
3561         int loop_count = 0;
3562 #endif
3563
3564         dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized\n", dev->name);
3565
3566         if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3567                 np->events = readl(base + NvRegIrqStatus);
3568                 writel(np->events, base + NvRegIrqStatus);
3569         } else {
3570                 np->events = readl(base + NvRegMSIXIrqStatus);
3571                 writel(np->events, base + NvRegMSIXIrqStatus);
3572         }
3573         dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, np->events);
3574         if (!(np->events & np->irqmask))
3575                 return IRQ_NONE;
3576
3577         nv_msi_workaround(np);
3578
3579 #ifdef CONFIG_FORCEDETH_NAPI
3580         napi_schedule(&np->napi);
3581
3582         /* Disable furthur irq's
3583            (msix not enabled with napi) */
3584         writel(0, base + NvRegIrqMask);
3585
3586 #else
3587         do
3588         {
3589                 int work = 0;
3590                 if ((work = nv_rx_process_optimized(dev, RX_WORK_PER_LOOP))) {
3591                         if (unlikely(nv_alloc_rx_optimized(dev))) {
3592                                 spin_lock(&np->lock);
3593                                 if (!np->in_shutdown)
3594                                         mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3595                                 spin_unlock(&np->lock);
3596                         }
3597                 }
3598
3599                 spin_lock(&np->lock);
3600                 work += nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
3601                 spin_unlock(&np->lock);
3602
3603                 if (!work)
3604                         break;
3605
3606                 total_work += work;
3607
3608                 loop_count++;
3609         }
3610         while (loop_count < max_interrupt_work);
3611
3612         if (nv_change_interrupt_mode(dev, total_work)) {
3613                 /* setup new irq mask */
3614                 writel(np->irqmask, base + NvRegIrqMask);
3615         }
3616
3617         if (unlikely(np->events & NVREG_IRQ_LINK)) {
3618                 spin_lock(&np->lock);
3619                 nv_link_irq(dev);
3620                 spin_unlock(&np->lock);
3621         }
3622         if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
3623                 spin_lock(&np->lock);
3624                 nv_linkchange(dev);
3625                 spin_unlock(&np->lock);
3626                 np->link_timeout = jiffies + LINK_TIMEOUT;
3627         }
3628         if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) {
3629                 spin_lock(&np->lock);
3630                 /* disable interrupts on the nic */
3631                 if (!(np->msi_flags & NV_MSI_X_ENABLED))
3632                         writel(0, base + NvRegIrqMask);
3633                 else
3634                         writel(np->irqmask, base + NvRegIrqMask);
3635                 pci_push(base);
3636
3637                 if (!np->in_shutdown) {
3638                         np->nic_poll_irq = np->irqmask;
3639                         np->recover_error = 1;
3640                         mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3641                 }
3642                 spin_unlock(&np->lock);
3643         }
3644
3645 #endif
3646         dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized completed\n", dev->name);
3647
3648         return IRQ_HANDLED;
3649 }
3650
3651 static irqreturn_t nv_nic_irq_tx(int foo, void *data)
3652 {
3653         struct net_device *dev = (struct net_device *) data;
3654         struct fe_priv *np = netdev_priv(dev);
3655         u8 __iomem *base = get_hwbase(dev);
3656         u32 events;
3657         int i;
3658         unsigned long flags;
3659
3660         dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
3661
3662         for (i=0; ; i++) {
3663                 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
3664                 writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
3665                 dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
3666                 if (!(events & np->irqmask))
3667                         break;
3668
3669                 spin_lock_irqsave(&np->lock, flags);
3670                 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
3671                 spin_unlock_irqrestore(&np->lock, flags);
3672
3673                 if (unlikely(i > max_interrupt_work)) {
3674                         spin_lock_irqsave(&np->lock, flags);
3675                         /* disable interrupts on the nic */
3676                         writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
3677                         pci_push(base);
3678
3679                         if (!np->in_shutdown) {
3680                                 np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
3681                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3682                         }
3683                         spin_unlock_irqrestore(&np->lock, flags);
3684                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
3685                         break;
3686                 }
3687
3688         }
3689         dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
3690
3691         return IRQ_RETVAL(i);
3692 }
3693
3694 #ifdef CONFIG_FORCEDETH_NAPI
3695 static int nv_napi_poll(struct napi_struct *napi, int budget)
3696 {
3697         struct fe_priv *np = container_of(napi, struct fe_priv, napi);
3698         struct net_device *dev = np->dev;
3699         u8 __iomem *base = get_hwbase(dev);
3700         unsigned long flags;
3701         int retcode;
3702         int tx_work, rx_work;
3703
3704         if (!nv_optimized(np)) {
3705                 spin_lock_irqsave(&np->lock, flags);
3706                 tx_work = nv_tx_done(dev, np->tx_ring_size);
3707                 spin_unlock_irqrestore(&np->lock, flags);
3708
3709                 rx_work = nv_rx_process(dev, budget);
3710                 retcode = nv_alloc_rx(dev);
3711         } else {
3712                 spin_lock_irqsave(&np->lock, flags);
3713                 tx_work = nv_tx_done_optimized(dev, np->tx_ring_size);
3714                 spin_unlock_irqrestore(&np->lock, flags);
3715
3716                 rx_work = nv_rx_process_optimized(dev, budget);
3717                 retcode = nv_alloc_rx_optimized(dev);
3718         }
3719
3720         if (retcode) {
3721                 spin_lock_irqsave(&np->lock, flags);
3722                 if (!np->in_shutdown)
3723                         mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3724                 spin_unlock_irqrestore(&np->lock, flags);
3725         }
3726
3727         nv_change_interrupt_mode(dev, tx_work + rx_work);
3728
3729         if (unlikely(np->events & NVREG_IRQ_LINK)) {
3730                 spin_lock_irqsave(&np->lock, flags);
3731                 nv_link_irq(dev);
3732                 spin_unlock_irqrestore(&np->lock, flags);
3733         }
3734         if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
3735                 spin_lock_irqsave(&np->lock, flags);
3736                 nv_linkchange(dev);
3737                 spin_unlock_irqrestore(&np->lock, flags);
3738                 np->link_timeout = jiffies + LINK_TIMEOUT;
3739         }
3740         if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) {
3741                 spin_lock_irqsave(&np->lock, flags);
3742                 if (!np->in_shutdown) {
3743                         np->nic_poll_irq = np->irqmask;
3744                         np->recover_error = 1;
3745                         mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3746                 }
3747                 spin_unlock_irqrestore(&np->lock, flags);
3748                 __napi_complete(napi);
3749                 return rx_work;
3750         }
3751
3752         if (rx_work < budget) {
3753                 /* re-enable interrupts
3754                    (msix not enabled in napi) */
3755                 __napi_complete(napi);
3756
3757                 writel(np->irqmask, base + NvRegIrqMask);
3758         }
3759         return rx_work;
3760 }
3761 #endif
3762
3763 static irqreturn_t nv_nic_irq_rx(int foo, void *data)
3764 {
3765         struct net_device *dev = (struct net_device *) data;
3766         struct fe_priv *np = netdev_priv(dev);
3767         u8 __iomem *base = get_hwbase(dev);
3768         u32 events;
3769         int i;
3770         unsigned long flags;
3771
3772         dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
3773
3774         for (i=0; ; i++) {
3775                 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
3776                 writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
3777                 dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
3778                 if (!(events & np->irqmask))
3779                         break;
3780
3781                 if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
3782                         if (unlikely(nv_alloc_rx_optimized(dev))) {
3783                                 spin_lock_irqsave(&np->lock, flags);
3784                                 if (!np->in_shutdown)
3785                                         mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3786                                 spin_unlock_irqrestore(&np->lock, flags);
3787                         }
3788                 }
3789
3790                 if (unlikely(i > max_interrupt_work)) {
3791                         spin_lock_irqsave(&np->lock, flags);
3792                         /* disable interrupts on the nic */
3793                         writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
3794                         pci_push(base);
3795
3796                         if (!np->in_shutdown) {
3797                                 np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
3798                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3799                         }
3800                         spin_unlock_irqrestore(&np->lock, flags);
3801                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
3802                         break;
3803                 }
3804         }
3805         dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
3806
3807         return IRQ_RETVAL(i);
3808 }
3809
3810 static irqreturn_t nv_nic_irq_other(int foo, void *data)
3811 {
3812         struct net_device *dev = (struct net_device *) data;
3813         struct fe_priv *np = netdev_priv(dev);
3814         u8 __iomem *base = get_hwbase(dev);
3815         u32 events;
3816         int i;
3817         unsigned long flags;
3818
3819         dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
3820
3821         for (i=0; ; i++) {
3822                 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
3823                 writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
3824                 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
3825                 if (!(events & np->irqmask))
3826                         break;
3827
3828                 /* check tx in case we reached max loop limit in tx isr */
3829                 spin_lock_irqsave(&np->lock, flags);
3830                 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
3831                 spin_unlock_irqrestore(&np->lock, flags);
3832
3833                 if (events & NVREG_IRQ_LINK) {
3834                         spin_lock_irqsave(&np->lock, flags);
3835                         nv_link_irq(dev);
3836                         spin_unlock_irqrestore(&np->lock, flags);
3837                 }
3838                 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
3839                         spin_lock_irqsave(&np->lock, flags);
3840                         nv_linkchange(dev);
3841                         spin_unlock_irqrestore(&np->lock, flags);
3842                         np->link_timeout = jiffies + LINK_TIMEOUT;
3843                 }
3844                 if (events & NVREG_IRQ_RECOVER_ERROR) {
3845                         spin_lock_irq(&np->lock);
3846                         /* disable interrupts on the nic */
3847                         writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
3848                         pci_push(base);
3849
3850                         if (!np->in_shutdown) {
3851                                 np->nic_poll_irq |= NVREG_IRQ_OTHER;
3852                                 np->recover_error = 1;
3853                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3854                         }
3855                         spin_unlock_irq(&np->lock);
3856                         break;
3857                 }
3858                 if (unlikely(i > max_interrupt_work)) {
3859                         spin_lock_irqsave(&np->lock, flags);
3860                         /* disable interrupts on the nic */
3861                         writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
3862                         pci_push(base);
3863
3864                         if (!np->in_shutdown) {
3865                                 np->nic_poll_irq |= NVREG_IRQ_OTHER;
3866                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3867                         }
3868                         spin_unlock_irqrestore(&np->lock, flags);
3869                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
3870                         break;
3871                 }
3872
3873         }
3874         dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
3875
3876         return IRQ_RETVAL(i);
3877 }
3878
3879 static irqreturn_t nv_nic_irq_test(int foo, void *data)
3880 {
3881         struct net_device *dev = (struct net_device *) data;
3882         struct fe_priv *np = netdev_priv(dev);
3883         u8 __iomem *base = get_hwbase(dev);
3884         u32 events;
3885
3886         dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name);
3887
3888         if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3889                 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
3890                 writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
3891         } else {
3892                 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
3893                 writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
3894         }
3895         pci_push(base);
3896         dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
3897         if (!(events & NVREG_IRQ_TIMER))
3898                 return IRQ_RETVAL(0);
3899
3900         nv_msi_workaround(np);
3901
3902         spin_lock(&np->lock);
3903         np->intr_test = 1;
3904         spin_unlock(&np->lock);
3905
3906         dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name);
3907
3908         return IRQ_RETVAL(1);
3909 }
3910
3911 static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
3912 {
3913         u8 __iomem *base = get_hwbase(dev);
3914         int i;
3915         u32 msixmap = 0;
3916
3917         /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
3918          * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
3919          * the remaining 8 interrupts.
3920          */
3921         for (i = 0; i < 8; i++) {
3922                 if ((irqmask >> i) & 0x1) {
3923                         msixmap |= vector << (i << 2);
3924                 }
3925         }
3926         writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
3927
3928         msixmap = 0;
3929         for (i = 0; i < 8; i++) {
3930                 if ((irqmask >> (i + 8)) & 0x1) {
3931                         msixmap |= vector << (i << 2);
3932                 }
3933         }
3934         writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
3935 }
3936
3937 static int nv_request_irq(struct net_device *dev, int intr_test)
3938 {
3939         struct fe_priv *np = get_nvpriv(dev);
3940         u8 __iomem *base = get_hwbase(dev);
3941         int ret = 1;
3942         int i;
3943         irqreturn_t (*handler)(int foo, void *data);
3944
3945         if (intr_test) {
3946                 handler = nv_nic_irq_test;
3947         } else {
3948                 if (nv_optimized(np))
3949                         handler = nv_nic_irq_optimized;
3950                 else
3951                         handler = nv_nic_irq;
3952         }
3953
3954         if (np->msi_flags & NV_MSI_X_CAPABLE) {
3955                 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
3956                         np->msi_x_entry[i].entry = i;
3957                 }
3958                 if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
3959                         np->msi_flags |= NV_MSI_X_ENABLED;
3960                         if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
3961                                 /* Request irq for rx handling */
3962                                 sprintf(np->name_rx, "%s-rx", dev->name);
3963                                 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector,
3964                                                 &nv_nic_irq_rx, IRQF_SHARED, np->name_rx, dev) != 0) {
3965                                         printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
3966                                         pci_disable_msix(np->pci_dev);
3967                                         np->msi_flags &= ~NV_MSI_X_ENABLED;
3968                                         goto out_err;
3969                                 }
3970                                 /* Request irq for tx handling */
3971                                 sprintf(np->name_tx, "%s-tx", dev->name);
3972                                 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector,
3973                                                 &nv_nic_irq_tx, IRQF_SHARED, np->name_tx, dev) != 0) {
3974                                         printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
3975                                         pci_disable_msix(np->pci_dev);
3976                                         np->msi_flags &= ~NV_MSI_X_ENABLED;
3977                                         goto out_free_rx;
3978                                 }
3979                                 /* Request irq for link and timer handling */
3980                                 sprintf(np->name_other, "%s-other", dev->name);
3981                                 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector,
3982                                                 &nv_nic_irq_other, IRQF_SHARED, np->name_other, dev) != 0) {
3983                                         printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
3984                                         pci_disable_msix(np->pci_dev);
3985                                         np->msi_flags &= ~NV_MSI_X_ENABLED;
3986                                         goto out_free_tx;
3987                                 }
3988                                 /* map interrupts to their respective vector */
3989                                 writel(0, base + NvRegMSIXMap0);
3990                                 writel(0, base + NvRegMSIXMap1);
3991                                 set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
3992                                 set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
3993                                 set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
3994                         } else {
3995                                 /* Request irq for all interrupts */
3996                                 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, handler, IRQF_SHARED, dev->name, dev) != 0) {
3997                                         printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
3998                                         pci_disable_msix(np->pci_dev);
3999                                         np->msi_flags &= ~NV_MSI_X_ENABLED;
4000                                         goto out_err;
4001                                 }
4002
4003                                 /* map interrupts to vector 0 */
4004                                 writel(0, base + NvRegMSIXMap0);
4005                                 writel(0, base + NvRegMSIXMap1);
4006                         }
4007                 }
4008         }
4009         if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
4010                 if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
4011                         np->msi_flags |= NV_MSI_ENABLED;
4012                         dev->irq = np->pci_dev->irq;
4013                         if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0) {
4014                                 printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
4015                                 pci_disable_msi(np->pci_dev);
4016                                 np->msi_flags &= ~NV_MSI_ENABLED;
4017                                 dev->irq = np->pci_dev->irq;
4018                                 goto out_err;
4019                         }
4020
4021                         /* map interrupts to vector 0 */
4022                         writel(0, base + NvRegMSIMap0);
4023                         writel(0, base + NvRegMSIMap1);
4024                         /* enable msi vector 0 */
4025                         writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
4026                 }
4027         }
4028         if (ret != 0) {
4029                 if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0)
4030                         goto out_err;
4031
4032         }
4033
4034         return 0;
4035 out_free_tx:
4036         free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
4037 out_free_rx:
4038         free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
4039 out_err:
4040         return 1;
4041 }
4042
4043 static void nv_free_irq(struct net_device *dev)
4044 {
4045         struct fe_priv *np = get_nvpriv(dev);
4046         int i;
4047
4048         if (np->msi_flags & NV_MSI_X_ENABLED) {
4049                 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
4050                         free_irq(np->msi_x_entry[i].vector, dev);
4051                 }
4052                 pci_disable_msix(np->pci_dev);
4053                 np->msi_flags &= ~NV_MSI_X_ENABLED;
4054         } else {
4055                 free_irq(np->pci_dev->irq, dev);
4056                 if (np->msi_flags & NV_MSI_ENABLED) {
4057                         pci_disable_msi(np->pci_dev);
4058                         np->msi_flags &= ~NV_MSI_ENABLED;
4059                 }
4060         }
4061 }
4062
4063 static void nv_do_nic_poll(unsigned long data)
4064 {
4065         struct net_device *dev = (struct net_device *) data;
4066         struct fe_priv *np = netdev_priv(dev);
4067         u8 __iomem *base = get_hwbase(dev);
4068         u32 mask = 0;
4069
4070         /*
4071          * First disable irq(s) and then
4072          * reenable interrupts on the nic, we have to do this before calling
4073          * nv_nic_irq because that may decide to do otherwise
4074          */
4075
4076         if (!using_multi_irqs(dev)) {
4077                 if (np->msi_flags & NV_MSI_X_ENABLED)
4078                         disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
4079                 else
4080                         disable_irq_lockdep(np->pci_dev->irq);
4081                 mask = np->irqmask;
4082         } else {
4083                 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
4084                         disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
4085                         mask |= NVREG_IRQ_RX_ALL;
4086                 }
4087                 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
4088                         disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
4089                         mask |= NVREG_IRQ_TX_ALL;
4090                 }
4091                 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
4092                         disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
4093                         mask |= NVREG_IRQ_OTHER;
4094                 }
4095         }
4096         /* disable_irq() contains synchronize_irq, thus no irq handler can run now */
4097
4098         if (np->recover_error) {
4099                 np->recover_error = 0;
4100                 printk(KERN_INFO "%s: MAC in recoverable error state\n", dev->name);
4101                 if (netif_running(dev)) {
4102                         netif_tx_lock_bh(dev);
4103                         netif_addr_lock(dev);
4104                         spin_lock(&np->lock);
4105                         /* stop engines */
4106                         nv_stop_rxtx(dev);
4107                         if (np->driver_data & DEV_HAS_POWER_CNTRL)
4108                                 nv_mac_reset(dev);
4109                         nv_txrx_reset(dev);
4110                         /* drain rx queue */
4111                         nv_drain_rxtx(dev);
4112                         /* reinit driver view of the rx queue */
4113                         set_bufsize(dev);
4114                         if (nv_init_ring(dev)) {
4115                                 if (!np->in_shutdown)
4116                                         mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
4117                         }
4118                         /* reinit nic view of the rx queue */
4119                         writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4120                         setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4121                         writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4122                                 base + NvRegRingSizes);
4123                         pci_push(base);
4124                         writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4125                         pci_push(base);
4126                         /* clear interrupts */
4127                         if (!(np->msi_flags & NV_MSI_X_ENABLED))
4128                                 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
4129                         else
4130                                 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
4131
4132                         /* restart rx engine */
4133                         nv_start_rxtx(dev);
4134                         spin_unlock(&np->lock);
4135                         netif_addr_unlock(dev);
4136                         netif_tx_unlock_bh(dev);
4137                 }
4138         }
4139
4140         writel(mask, base + NvRegIrqMask);
4141         pci_push(base);
4142
4143         if (!using_multi_irqs(dev)) {
4144                 np->nic_poll_irq = 0;
4145                 if (nv_optimized(np))
4146                         nv_nic_irq_optimized(0, dev);
4147                 else
4148                         nv_nic_irq(0, dev);
4149                 if (np->msi_flags & NV_MSI_X_ENABLED)
4150                         enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
4151                 else
4152                         enable_irq_lockdep(np->pci_dev->irq);
4153         } else {
4154                 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
4155                         np->nic_poll_irq &= ~NVREG_IRQ_RX_ALL;
4156                         nv_nic_irq_rx(0, dev);
4157                         enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
4158                 }
4159                 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
4160                         np->nic_poll_irq &= ~NVREG_IRQ_TX_ALL;
4161                         nv_nic_irq_tx(0, dev);
4162                         enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
4163                 }
4164                 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
4165                         np->nic_poll_irq &= ~NVREG_IRQ_OTHER;
4166                         nv_nic_irq_other(0, dev);
4167                         enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
4168                 }
4169         }
4170
4171 }
4172
4173 #ifdef CONFIG_NET_POLL_CONTROLLER
4174 static void nv_poll_controller(struct net_device *dev)
4175 {
4176         nv_do_nic_poll((unsigned long) dev);
4177 }
4178 #endif
4179
4180 static void nv_do_stats_poll(unsigned long data)
4181 {
4182         struct net_device *dev = (struct net_device *) data;
4183         struct fe_priv *np = netdev_priv(dev);
4184
4185         nv_get_hw_stats(dev);
4186
4187         if (!np->in_shutdown)
4188                 mod_timer(&np->stats_poll,
4189                         round_jiffies(jiffies + STATS_INTERVAL));
4190 }
4191
4192 static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4193 {
4194         struct fe_priv *np = netdev_priv(dev);
4195         strcpy(info->driver, DRV_NAME);
4196         strcpy(info->version, FORCEDETH_VERSION);
4197         strcpy(info->bus_info, pci_name(np->pci_dev));
4198 }
4199
4200 static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
4201 {
4202         struct fe_priv *np = netdev_priv(dev);
4203         wolinfo->supported = WAKE_MAGIC;
4204
4205         spin_lock_irq(&np->lock);
4206         if (np->wolenabled)
4207                 wolinfo->wolopts = WAKE_MAGIC;
4208         spin_unlock_irq(&np->lock);
4209 }
4210
4211 static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
4212 {
4213         struct fe_priv *np = netdev_priv(dev);
4214         u8 __iomem *base = get_hwbase(dev);
4215         u32 flags = 0;
4216
4217         if (wolinfo->wolopts == 0) {
4218                 np->wolenabled = 0;
4219         } else if (wolinfo->wolopts & WAKE_MAGIC) {
4220                 np->wolenabled = 1;
4221                 flags = NVREG_WAKEUPFLAGS_ENABLE;
4222         }
4223         if (netif_running(dev)) {
4224                 spin_lock_irq(&np->lock);
4225                 writel(flags, base + NvRegWakeUpFlags);
4226                 spin_unlock_irq(&np->lock);
4227         }
4228         return 0;
4229 }
4230
4231 static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
4232 {
4233         struct fe_priv *np = netdev_priv(dev);
4234         int adv;
4235
4236         spin_lock_irq(&np->lock);
4237         ecmd->port = PORT_MII;
4238         if (!netif_running(dev)) {
4239                 /* We do not track link speed / duplex setting if the
4240                  * interface is disabled. Force a link check */
4241                 if (nv_update_linkspeed(dev)) {
4242                         if (!netif_carrier_ok(dev))
4243                                 netif_carrier_on(dev);
4244                 } else {
4245                         if (netif_carrier_ok(dev))
4246                                 netif_carrier_off(dev);
4247                 }
4248         }
4249
4250         if (netif_carrier_ok(dev)) {
4251                 switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
4252                 case NVREG_LINKSPEED_10:
4253                         ecmd->speed = SPEED_10;
4254                         break;
4255                 case NVREG_LINKSPEED_100:
4256                         ecmd->speed = SPEED_100;
4257                         break;
4258                 case NVREG_LINKSPEED_1000:
4259                         ecmd->speed = SPEED_1000;
4260                         break;
4261                 }
4262                 ecmd->duplex = DUPLEX_HALF;
4263                 if (np->duplex)
4264                         ecmd->duplex = DUPLEX_FULL;
4265         } else {
4266                 ecmd->speed = -1;
4267                 ecmd->duplex = -1;
4268         }
4269
4270         ecmd->autoneg = np->autoneg;
4271
4272         ecmd->advertising = ADVERTISED_MII;
4273         if (np->autoneg) {
4274                 ecmd->advertising |= ADVERTISED_Autoneg;
4275                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4276                 if (adv & ADVERTISE_10HALF)
4277                         ecmd->advertising |= ADVERTISED_10baseT_Half;
4278                 if (adv & ADVERTISE_10FULL)
4279                         ecmd->advertising |= ADVERTISED_10baseT_Full;
4280                 if (adv & ADVERTISE_100HALF)
4281                         ecmd->advertising |= ADVERTISED_100baseT_Half;
4282                 if (adv & ADVERTISE_100FULL)
4283                         ecmd->advertising |= ADVERTISED_100baseT_Full;
4284                 if (np->gigabit == PHY_GIGABIT) {
4285                         adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
4286                         if (adv & ADVERTISE_1000FULL)
4287                                 ecmd->advertising |= ADVERTISED_1000baseT_Full;
4288                 }
4289         }
4290         ecmd->supported = (SUPPORTED_Autoneg |
4291                 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
4292                 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
4293                 SUPPORTED_MII);
4294         if (np->gigabit == PHY_GIGABIT)
4295                 ecmd->supported |= SUPPORTED_1000baseT_Full;
4296
4297         ecmd->phy_address = np->phyaddr;
4298         ecmd->transceiver = XCVR_EXTERNAL;
4299
4300         /* ignore maxtxpkt, maxrxpkt for now */
4301         spin_unlock_irq(&np->lock);
4302         return 0;
4303 }
4304
4305 static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
4306 {
4307         struct fe_priv *np = netdev_priv(dev);
4308
4309         if (ecmd->port != PORT_MII)
4310                 return -EINVAL;
4311         if (ecmd->transceiver != XCVR_EXTERNAL)
4312                 return -EINVAL;
4313         if (ecmd->phy_address != np->phyaddr) {
4314                 /* TODO: support switching between multiple phys. Should be
4315                  * trivial, but not enabled due to lack of test hardware. */
4316                 return -EINVAL;
4317         }
4318         if (ecmd->autoneg == AUTONEG_ENABLE) {
4319                 u32 mask;
4320
4321                 mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
4322                           ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
4323                 if (np->gigabit == PHY_GIGABIT)
4324                         mask |= ADVERTISED_1000baseT_Full;
4325
4326                 if ((ecmd->advertising & mask) == 0)
4327                         return -EINVAL;
4328
4329         } else if (ecmd->autoneg == AUTONEG_DISABLE) {
4330                 /* Note: autonegotiation disable, speed 1000 intentionally
4331                  * forbidden - noone should need that. */
4332
4333                 if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
4334                         return -EINVAL;
4335                 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
4336                         return -EINVAL;
4337         } else {
4338                 return -EINVAL;
4339         }
4340
4341         netif_carrier_off(dev);
4342         if (netif_running(dev)) {
4343                 unsigned long flags;
4344
4345                 nv_disable_irq(dev);
4346                 netif_tx_lock_bh(dev);
4347                 netif_addr_lock(dev);
4348                 /* with plain spinlock lockdep complains */
4349                 spin_lock_irqsave(&np->lock, flags);
4350                 /* stop engines */
4351                 /* FIXME:
4352                  * this can take some time, and interrupts are disabled
4353                  * due to spin_lock_irqsave, but let's hope no daemon
4354                  * is going to change the settings very often...
4355                  * Worst case:
4356                  * NV_RXSTOP_DELAY1MAX + NV_TXSTOP_DELAY1MAX
4357                  * + some minor delays, which is up to a second approximately
4358                  */
4359                 nv_stop_rxtx(dev);
4360                 spin_unlock_irqrestore(&np->lock, flags);
4361                 netif_addr_unlock(dev);
4362                 netif_tx_unlock_bh(dev);
4363         }
4364
4365         if (ecmd->autoneg == AUTONEG_ENABLE) {
4366                 int adv, bmcr;
4367
4368                 np->autoneg = 1;
4369
4370                 /* advertise only what has been requested */
4371                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4372                 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
4373                 if (ecmd->advertising & ADVERTISED_10baseT_Half)
4374                         adv |= ADVERTISE_10HALF;
4375                 if (ecmd->advertising & ADVERTISED_10baseT_Full)
4376                         adv |= ADVERTISE_10FULL;
4377                 if (ecmd->advertising & ADVERTISED_100baseT_Half)
4378                         adv |= ADVERTISE_100HALF;
4379                 if (ecmd->advertising & ADVERTISED_100baseT_Full)
4380                         adv |= ADVERTISE_100FULL;
4381                 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ)  /* for rx we set both advertisments but disable tx pause */
4382                         adv |=  ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
4383                 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
4384                         adv |=  ADVERTISE_PAUSE_ASYM;
4385                 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
4386
4387                 if (np->gigabit == PHY_GIGABIT) {
4388                         adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
4389                         adv &= ~ADVERTISE_1000FULL;
4390                         if (ecmd->advertising & ADVERTISED_1000baseT_Full)
4391                                 adv |= ADVERTISE_1000FULL;
4392                         mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
4393                 }
4394
4395                 if (netif_running(dev))
4396                         printk(KERN_INFO "%s: link down.\n", dev->name);
4397                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4398                 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
4399                         bmcr |= BMCR_ANENABLE;
4400                         /* reset the phy in order for settings to stick,
4401                          * and cause autoneg to start */
4402                         if (phy_reset(dev, bmcr)) {
4403                                 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
4404                                 return -EINVAL;
4405                         }
4406                 } else {
4407                         bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
4408                         mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4409                 }
4410         } else {
4411                 int adv, bmcr;
4412
4413                 np->autoneg = 0;
4414
4415                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4416                 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
4417                 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
4418                         adv |= ADVERTISE_10HALF;
4419                 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
4420                         adv |= ADVERTISE_10FULL;
4421                 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
4422                         adv |= ADVERTISE_100HALF;
4423                 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
4424                         adv |= ADVERTISE_100FULL;
4425                 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
4426                 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
4427                         adv |=  ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
4428                         np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
4429                 }
4430                 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
4431                         adv |=  ADVERTISE_PAUSE_ASYM;
4432                         np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
4433                 }
4434                 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
4435                 np->fixed_mode = adv;
4436
4437                 if (np->gigabit == PHY_GIGABIT) {
4438                         adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
4439                         adv &= ~ADVERTISE_1000FULL;
4440                         mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
4441                 }
4442
4443                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4444                 bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
4445                 if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
4446                         bmcr |= BMCR_FULLDPLX;
4447                 if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
4448                         bmcr |= BMCR_SPEED100;
4449                 if (np->phy_oui == PHY_OUI_MARVELL) {
4450                         /* reset the phy in order for forced mode settings to stick */
4451                         if (phy_reset(dev, bmcr)) {
4452                                 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
4453                                 return -EINVAL;
4454                         }
4455                 } else {
4456                         mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4457                         if (netif_running(dev)) {
4458                                 /* Wait a bit and then reconfigure the nic. */
4459                                 udelay(10);
4460                                 nv_linkchange(dev);
4461                         }
4462                 }
4463         }
4464
4465         if (netif_running(dev)) {
4466                 nv_start_rxtx(dev);
4467                 nv_enable_irq(dev);
4468         }
4469
4470         return 0;
4471 }
4472
4473 #define FORCEDETH_REGS_VER      1
4474
4475 static int nv_get_regs_len(struct net_device *dev)
4476 {
4477         struct fe_priv *np = netdev_priv(dev);
4478         return np->register_size;
4479 }
4480
4481 static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
4482 {
4483         struct fe_priv *np = netdev_priv(dev);
4484         u8 __iomem *base = get_hwbase(dev);
4485         u32 *rbuf = buf;
4486         int i;
4487
4488         regs->version = FORCEDETH_REGS_VER;
4489         spin_lock_irq(&np->lock);
4490         for (i = 0;i <= np->register_size/sizeof(u32); i++)
4491                 rbuf[i] = readl(base + i*sizeof(u32));
4492         spin_unlock_irq(&np->lock);
4493 }
4494
4495 static int nv_nway_reset(struct net_device *dev)
4496 {
4497         struct fe_priv *np = netdev_priv(dev);
4498         int ret;
4499
4500         if (np->autoneg) {
4501                 int bmcr;
4502
4503                 netif_carrier_off(dev);
4504                 if (netif_running(dev)) {
4505                         nv_disable_irq(dev);
4506                         netif_tx_lock_bh(dev);
4507                         netif_addr_lock(dev);
4508                         spin_lock(&np->lock);
4509                         /* stop engines */
4510                         nv_stop_rxtx(dev);
4511                         spin_unlock(&np->lock);
4512                         netif_addr_unlock(dev);
4513                         netif_tx_unlock_bh(dev);
4514                         printk(KERN_INFO "%s: link down.\n", dev->name);
4515                 }
4516
4517                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4518                 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
4519                         bmcr |= BMCR_ANENABLE;
4520                         /* reset the phy in order for settings to stick*/
4521                         if (phy_reset(dev, bmcr)) {
4522                                 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
4523                                 return -EINVAL;
4524                         }
4525                 } else {
4526                         bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
4527                         mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4528                 }
4529
4530                 if (netif_running(dev)) {
4531                         nv_start_rxtx(dev);
4532                         nv_enable_irq(dev);
4533                 }
4534                 ret = 0;
4535         } else {
4536                 ret = -EINVAL;
4537         }
4538
4539         return ret;
4540 }
4541
4542 static int nv_set_tso(struct net_device *dev, u32 value)
4543 {
4544         struct fe_priv *np = netdev_priv(dev);
4545
4546         if ((np->driver_data & DEV_HAS_CHECKSUM))
4547                 return ethtool_op_set_tso(dev, value);
4548         else
4549                 return -EOPNOTSUPP;
4550 }
4551
4552 static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
4553 {
4554         struct fe_priv *np = netdev_priv(dev);
4555
4556         ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
4557         ring->rx_mini_max_pending = 0;
4558         ring->rx_jumbo_max_pending = 0;
4559         ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
4560
4561         ring->rx_pending = np->rx_ring_size;
4562         ring->rx_mini_pending = 0;
4563         ring->rx_jumbo_pending = 0;
4564         ring->tx_pending = np->tx_ring_size;
4565 }
4566
4567 static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
4568 {
4569         struct fe_priv *np = netdev_priv(dev);
4570         u8 __iomem *base = get_hwbase(dev);
4571         u8 *rxtx_ring, *rx_skbuff, *tx_skbuff;
4572         dma_addr_t ring_addr;
4573
4574         if (ring->rx_pending < RX_RING_MIN ||
4575             ring->tx_pending < TX_RING_MIN ||
4576             ring->rx_mini_pending != 0 ||
4577             ring->rx_jumbo_pending != 0 ||
4578             (np->desc_ver == DESC_VER_1 &&
4579              (ring->rx_pending > RING_MAX_DESC_VER_1 ||
4580               ring->tx_pending > RING_MAX_DESC_VER_1)) ||
4581             (np->desc_ver != DESC_VER_1 &&
4582              (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
4583               ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
4584                 return -EINVAL;
4585         }
4586
4587         /* allocate new rings */
4588         if (!nv_optimized(np)) {
4589                 rxtx_ring = pci_alloc_consistent(np->pci_dev,
4590                                             sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
4591                                             &ring_addr);
4592         } else {
4593                 rxtx_ring = pci_alloc_consistent(np->pci_dev,
4594                                             sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
4595                                             &ring_addr);
4596         }
4597         rx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->rx_pending, GFP_KERNEL);
4598         tx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->tx_pending, GFP_KERNEL);
4599         if (!rxtx_ring || !rx_skbuff || !tx_skbuff) {
4600                 /* fall back to old rings */
4601                 if (!nv_optimized(np)) {
4602                         if (rxtx_ring)
4603                                 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
4604                                                     rxtx_ring, ring_addr);
4605                 } else {
4606                         if (rxtx_ring)
4607                                 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
4608                                                     rxtx_ring, ring_addr);
4609                 }
4610                 if (rx_skbuff)
4611                         kfree(rx_skbuff);
4612                 if (tx_skbuff)
4613                         kfree(tx_skbuff);
4614                 goto exit;
4615         }
4616
4617         if (netif_running(dev)) {
4618                 nv_disable_irq(dev);
4619                 nv_napi_disable(dev);
4620                 netif_tx_lock_bh(dev);
4621                 netif_addr_lock(dev);
4622                 spin_lock(&np->lock);
4623                 /* stop engines */
4624                 nv_stop_rxtx(dev);
4625                 nv_txrx_reset(dev);
4626                 /* drain queues */
4627                 nv_drain_rxtx(dev);
4628                 /* delete queues */
4629                 free_rings(dev);
4630         }
4631
4632         /* set new values */
4633         np->rx_ring_size = ring->rx_pending;
4634         np->tx_ring_size = ring->tx_pending;
4635
4636         if (!nv_optimized(np)) {
4637                 np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
4638                 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
4639         } else {
4640                 np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
4641                 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
4642         }
4643         np->rx_skb = (struct nv_skb_map*)rx_skbuff;
4644         np->tx_skb = (struct nv_skb_map*)tx_skbuff;
4645         np->ring_addr = ring_addr;
4646
4647         memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
4648         memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);
4649
4650         if (netif_running(dev)) {
4651                 /* reinit driver view of the queues */
4652                 set_bufsize(dev);
4653                 if (nv_init_ring(dev)) {
4654                         if (!np->in_shutdown)
4655                                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
4656                 }
4657
4658                 /* reinit nic view of the queues */
4659                 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4660                 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4661                 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4662                         base + NvRegRingSizes);
4663                 pci_push(base);
4664                 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4665                 pci_push(base);
4666
4667                 /* restart engines */
4668                 nv_start_rxtx(dev);
4669                 spin_unlock(&np->lock);
4670                 netif_addr_unlock(dev);
4671                 netif_tx_unlock_bh(dev);
4672                 nv_napi_enable(dev);
4673                 nv_enable_irq(dev);
4674         }
4675         return 0;
4676 exit:
4677         return -ENOMEM;
4678 }
4679
4680 static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
4681 {
4682         struct fe_priv *np = netdev_priv(dev);
4683
4684         pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
4685         pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
4686         pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
4687 }
4688
4689 static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
4690 {
4691         struct fe_priv *np = netdev_priv(dev);
4692         int adv, bmcr;
4693
4694         if ((!np->autoneg && np->duplex == 0) ||
4695             (np->autoneg && !pause->autoneg && np->duplex == 0)) {
4696                 printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
4697                        dev->name);
4698                 return -EINVAL;
4699         }
4700         if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
4701                 printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
4702                 return -EINVAL;
4703         }
4704
4705         netif_carrier_off(dev);
4706         if (netif_running(dev)) {
4707                 nv_disable_irq(dev);
4708                 netif_tx_lock_bh(dev);
4709                 netif_addr_lock(dev);
4710                 spin_lock(&np->lock);
4711                 /* stop engines */
4712                 nv_stop_rxtx(dev);
4713                 spin_unlock(&np->lock);
4714                 netif_addr_unlock(dev);
4715                 netif_tx_unlock_bh(dev);
4716         }
4717
4718         np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
4719         if (pause->rx_pause)
4720                 np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
4721         if (pause->tx_pause)
4722                 np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
4723
4724         if (np->autoneg && pause->autoneg) {
4725                 np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
4726
4727                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4728                 adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
4729                 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
4730                         adv |=  ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
4731                 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
4732                         adv |=  ADVERTISE_PAUSE_ASYM;
4733                 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
4734
4735                 if (netif_running(dev))
4736                         printk(KERN_INFO "%s: link down.\n", dev->name);
4737                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4738                 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
4739                 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4740         } else {
4741                 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
4742                 if (pause->rx_pause)
4743                         np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
4744                 if (pause->tx_pause)
4745                         np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
4746
4747                 if (!netif_running(dev))
4748                         nv_update_linkspeed(dev);
4749                 else
4750                         nv_update_pause(dev, np->pause_flags);
4751         }
4752
4753         if (netif_running(dev)) {
4754                 nv_start_rxtx(dev);
4755                 nv_enable_irq(dev);
4756         }
4757         return 0;
4758 }
4759
4760 static u32 nv_get_rx_csum(struct net_device *dev)
4761 {
4762         struct fe_priv *np = netdev_priv(dev);
4763         return (np->rx_csum) != 0;
4764 }
4765
4766 static int nv_set_rx_csum(struct net_device *dev, u32 data)
4767 {
4768         struct fe_priv *np = netdev_priv(dev);
4769         u8 __iomem *base = get_hwbase(dev);
4770         int retcode = 0;
4771
4772         if (np->driver_data & DEV_HAS_CHECKSUM) {
4773                 if (data) {
4774                         np->rx_csum = 1;
4775                         np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
4776                 } else {
4777                         np->rx_csum = 0;
4778                         /* vlan is dependent on rx checksum offload */
4779                         if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE))
4780                                 np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
4781                 }
4782                 if (netif_running(dev)) {
4783                         spin_lock_irq(&np->lock);
4784                         writel(np->txrxctl_bits, base + NvRegTxRxControl);
4785                         spin_unlock_irq(&np->lock);
4786                 }
4787         } else {
4788                 return -EINVAL;
4789         }
4790
4791         return retcode;
4792 }
4793
4794 static int nv_set_tx_csum(struct net_device *dev, u32 data)
4795 {
4796         struct fe_priv *np = netdev_priv(dev);
4797
4798         if (np->driver_data & DEV_HAS_CHECKSUM)
4799                 return ethtool_op_set_tx_csum(dev, data);
4800         else
4801                 return -EOPNOTSUPP;
4802 }
4803
4804 static int nv_set_sg(struct net_device *dev, u32 data)
4805 {
4806         struct fe_priv *np = netdev_priv(dev);
4807
4808         if (np->driver_data & DEV_HAS_CHECKSUM)
4809                 return ethtool_op_set_sg(dev, data);
4810         else
4811                 return -EOPNOTSUPP;
4812 }
4813
4814 static int nv_get_sset_count(struct net_device *dev, int sset)
4815 {
4816         struct fe_priv *np = netdev_priv(dev);
4817
4818         switch (sset) {
4819         case ETH_SS_TEST:
4820                 if (np->driver_data & DEV_HAS_TEST_EXTENDED)
4821                         return NV_TEST_COUNT_EXTENDED;
4822                 else
4823                         return NV_TEST_COUNT_BASE;
4824         case ETH_SS_STATS:
4825                 if (np->driver_data & DEV_HAS_STATISTICS_V3)
4826                         return NV_DEV_STATISTICS_V3_COUNT;
4827                 else if (np->driver_data & DEV_HAS_STATISTICS_V2)
4828                         return NV_DEV_STATISTICS_V2_COUNT;
4829                 else if (np->driver_data & DEV_HAS_STATISTICS_V1)
4830                         return NV_DEV_STATISTICS_V1_COUNT;
4831                 else
4832                         return 0;
4833         default:
4834                 return -EOPNOTSUPP;
4835         }
4836 }
4837
4838 static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
4839 {
4840         struct fe_priv *np = netdev_priv(dev);
4841
4842         /* update stats */
4843         nv_do_stats_poll((unsigned long)dev);
4844
4845         memcpy(buffer, &np->estats, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(u64));
4846 }
4847
4848 static int nv_link_test(struct net_device *dev)
4849 {
4850         struct fe_priv *np = netdev_priv(dev);
4851         int mii_status;
4852
4853         mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
4854         mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
4855
4856         /* check phy link status */
4857         if (!(mii_status & BMSR_LSTATUS))
4858                 return 0;
4859         else
4860                 return 1;
4861 }
4862
4863 static int nv_register_test(struct net_device *dev)
4864 {
4865         u8 __iomem *base = get_hwbase(dev);
4866         int i = 0;
4867         u32 orig_read, new_read;
4868
4869         do {
4870                 orig_read = readl(base + nv_registers_test[i].reg);
4871
4872                 /* xor with mask to toggle bits */
4873                 orig_read ^= nv_registers_test[i].mask;
4874
4875                 writel(orig_read, base + nv_registers_test[i].reg);
4876
4877                 new_read = readl(base + nv_registers_test[i].reg);
4878
4879                 if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
4880                         return 0;
4881
4882                 /* restore original value */
4883                 orig_read ^= nv_registers_test[i].mask;
4884                 writel(orig_read, base + nv_registers_test[i].reg);
4885
4886         } while (nv_registers_test[++i].reg != 0);
4887
4888         return 1;
4889 }
4890
4891 static int nv_interrupt_test(struct net_device *dev)
4892 {
4893         struct fe_priv *np = netdev_priv(dev);
4894         u8 __iomem *base = get_hwbase(dev);
4895         int ret = 1;
4896         int testcnt;
4897         u32 save_msi_flags, save_poll_interval = 0;
4898
4899         if (netif_running(dev)) {
4900                 /* free current irq */
4901                 nv_free_irq(dev);
4902                 save_poll_interval = readl(base+NvRegPollingInterval);
4903         }
4904
4905         /* flag to test interrupt handler */
4906         np->intr_test = 0;
4907
4908         /* setup test irq */
4909         save_msi_flags = np->msi_flags;
4910         np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
4911         np->msi_flags |= 0x001; /* setup 1 vector */
4912         if (nv_request_irq(dev, 1))
4913                 return 0;
4914
4915         /* setup timer interrupt */
4916         writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
4917         writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
4918
4919         nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
4920
4921         /* wait for at least one interrupt */
4922         msleep(100);
4923
4924         spin_lock_irq(&np->lock);
4925
4926         /* flag should be set within ISR */
4927         testcnt = np->intr_test;
4928         if (!testcnt)
4929                 ret = 2;
4930
4931         nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
4932         if (!(np->msi_flags & NV_MSI_X_ENABLED))
4933                 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
4934         else
4935                 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
4936
4937         spin_unlock_irq(&np->lock);
4938
4939         nv_free_irq(dev);
4940
4941         np->msi_flags = save_msi_flags;
4942
4943         if (netif_running(dev)) {
4944                 writel(save_poll_interval, base + NvRegPollingInterval);
4945                 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
4946                 /* restore original irq */
4947                 if (nv_request_irq(dev, 0))
4948                         return 0;
4949         }
4950
4951         return ret;
4952 }
4953
4954 static int nv_loopback_test(struct net_device *dev)
4955 {
4956         struct fe_priv *np = netdev_priv(dev);
4957         u8 __iomem *base = get_hwbase(dev);
4958         struct sk_buff *tx_skb, *rx_skb;
4959         dma_addr_t test_dma_addr;
4960         u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
4961         u32 flags;
4962         int len, i, pkt_len;
4963         u8 *pkt_data;
4964         u32 filter_flags = 0;
4965         u32 misc1_flags = 0;
4966         int ret = 1;
4967
4968         if (netif_running(dev)) {
4969                 nv_disable_irq(dev);
4970                 filter_flags = readl(base + NvRegPacketFilterFlags);
4971                 misc1_flags = readl(base + NvRegMisc1);
4972         } else {
4973                 nv_txrx_reset(dev);
4974         }
4975
4976         /* reinit driver view of the rx queue */
4977         set_bufsize(dev);
4978         nv_init_ring(dev);
4979
4980         /* setup hardware for loopback */
4981         writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
4982         writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
4983
4984         /* reinit nic view of the rx queue */
4985         writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4986         setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4987         writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4988                 base + NvRegRingSizes);
4989         pci_push(base);
4990
4991         /* restart rx engine */
4992         nv_start_rxtx(dev);
4993
4994         /* setup packet for tx */
4995         pkt_len = ETH_DATA_LEN;
4996         tx_skb = dev_alloc_skb(pkt_len);
4997         if (!tx_skb) {
4998                 printk(KERN_ERR "dev_alloc_skb() failed during loopback test"
4999                          " of %s\n", dev->name);
5000                 ret = 0;
5001                 goto out;
5002         }
5003         test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
5004                                        skb_tailroom(tx_skb),
5005                                        PCI_DMA_FROMDEVICE);
5006         pkt_data = skb_put(tx_skb, pkt_len);
5007         for (i = 0; i < pkt_len; i++)
5008                 pkt_data[i] = (u8)(i & 0xff);
5009
5010         if (!nv_optimized(np)) {
5011                 np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
5012                 np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
5013         } else {
5014                 np->tx_ring.ex[0].bufhigh = cpu_to_le32(dma_high(test_dma_addr));
5015                 np->tx_ring.ex[0].buflow = cpu_to_le32(dma_low(test_dma_addr));
5016                 np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
5017         }
5018         writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
5019         pci_push(get_hwbase(dev));
5020
5021         msleep(500);
5022
5023         /* check for rx of the packet */
5024         if (!nv_optimized(np)) {
5025                 flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
5026                 len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
5027
5028         } else {
5029                 flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
5030                 len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
5031         }
5032
5033         if (flags & NV_RX_AVAIL) {
5034                 ret = 0;
5035         } else if (np->desc_ver == DESC_VER_1) {
5036                 if (flags & NV_RX_ERROR)
5037                         ret = 0;
5038         } else {
5039                 if (flags & NV_RX2_ERROR) {
5040                         ret = 0;
5041                 }
5042         }
5043
5044         if (ret) {
5045                 if (len != pkt_len) {
5046                         ret = 0;
5047                         dprintk(KERN_DEBUG "%s: loopback len mismatch %d vs %d\n",
5048                                 dev->name, len, pkt_len);
5049                 } else {
5050                         rx_skb = np->rx_skb[0].skb;
5051                         for (i = 0; i < pkt_len; i++) {
5052                                 if (rx_skb->data[i] != (u8)(i & 0xff)) {
5053                                         ret = 0;
5054                                         dprintk(KERN_DEBUG "%s: loopback pattern check failed on byte %d\n",
5055                                                 dev->name, i);
5056                                         break;
5057                                 }
5058                         }
5059                 }
5060         } else {
5061                 dprintk(KERN_DEBUG "%s: loopback - did not receive test packet\n", dev->name);
5062         }
5063
5064         pci_unmap_page(np->pci_dev, test_dma_addr,
5065                        (skb_end_pointer(tx_skb) - tx_skb->data),
5066                        PCI_DMA_TODEVICE);
5067         dev_kfree_skb_any(tx_skb);
5068  out:
5069         /* stop engines */
5070         nv_stop_rxtx(dev);
5071         nv_txrx_reset(dev);
5072         /* drain rx queue */
5073         nv_drain_rxtx(dev);
5074
5075         if (netif_running(dev)) {
5076                 writel(misc1_flags, base + NvRegMisc1);
5077                 writel(filter_flags, base + NvRegPacketFilterFlags);
5078                 nv_enable_irq(dev);
5079         }
5080
5081         return ret;
5082 }
5083
5084 static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
5085 {
5086         struct fe_priv *np = netdev_priv(dev);
5087         u8 __iomem *base = get_hwbase(dev);
5088         int result;
5089         memset(buffer, 0, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(u64));
5090
5091         if (!nv_link_test(dev)) {
5092                 test->flags |= ETH_TEST_FL_FAILED;
5093                 buffer[0] = 1;
5094         }
5095
5096         if (test->flags & ETH_TEST_FL_OFFLINE) {
5097                 if (netif_running(dev)) {
5098                         netif_stop_queue(dev);
5099                         nv_napi_disable(dev);
5100                         netif_tx_lock_bh(dev);
5101                         netif_addr_lock(dev);
5102                         spin_lock_irq(&np->lock);
5103                         nv_disable_hw_interrupts(dev, np->irqmask);
5104                         if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
5105                                 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
5106                         } else {
5107                                 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
5108                         }
5109                         /* stop engines */
5110                         nv_stop_rxtx(dev);
5111                         nv_txrx_reset(dev);
5112                         /* drain rx queue */
5113                         nv_drain_rxtx(dev);
5114                         spin_unlock_irq(&np->lock);
5115                         netif_addr_unlock(dev);
5116                         netif_tx_unlock_bh(dev);
5117                 }
5118
5119                 if (!nv_register_test(dev)) {
5120                         test->flags |= ETH_TEST_FL_FAILED;
5121                         buffer[1] = 1;
5122                 }
5123
5124                 result = nv_interrupt_test(dev);
5125                 if (result != 1) {
5126                         test->flags |= ETH_TEST_FL_FAILED;
5127                         buffer[2] = 1;
5128                 }
5129                 if (result == 0) {
5130                         /* bail out */
5131                         return;
5132                 }
5133
5134                 if (!nv_loopback_test(dev)) {
5135                         test->flags |= ETH_TEST_FL_FAILED;
5136                         buffer[3] = 1;
5137                 }
5138
5139                 if (netif_running(dev)) {
5140                         /* reinit driver view of the rx queue */
5141                         set_bufsize(dev);
5142                         if (nv_init_ring(dev)) {
5143                                 if (!np->in_shutdown)
5144                                         mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
5145                         }
5146                         /* reinit nic view of the rx queue */
5147                         writel(np->rx_buf_sz, base + NvRegOffloadConfig);
5148                         setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
5149                         writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
5150                                 base + NvRegRingSizes);
5151                         pci_push(base);
5152                         writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
5153                         pci_push(base);
5154                         /* restart rx engine */
5155                         nv_start_rxtx(dev);
5156                         netif_start_queue(dev);
5157                         nv_napi_enable(dev);
5158                         nv_enable_hw_interrupts(dev, np->irqmask);
5159                 }
5160         }
5161 }
5162
5163 static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
5164 {
5165         switch (stringset) {
5166         case ETH_SS_STATS:
5167                 memcpy(buffer, &nv_estats_str, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(struct nv_ethtool_str));
5168                 break;
5169         case ETH_SS_TEST:
5170                 memcpy(buffer, &nv_etests_str, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(struct nv_ethtool_str));
5171                 break;
5172         }
5173 }
5174
5175 static const struct ethtool_ops ops = {
5176         .get_drvinfo = nv_get_drvinfo,
5177         .get_link = ethtool_op_get_link,
5178         .get_wol = nv_get_wol,
5179         .set_wol = nv_set_wol,
5180         .get_settings = nv_get_settings,
5181         .set_settings = nv_set_settings,
5182         .get_regs_len = nv_get_regs_len,
5183         .get_regs = nv_get_regs,
5184         .nway_reset = nv_nway_reset,
5185         .set_tso = nv_set_tso,
5186         .get_ringparam = nv_get_ringparam,
5187         .set_ringparam = nv_set_ringparam,
5188         .get_pauseparam = nv_get_pauseparam,
5189         .set_pauseparam = nv_set_pauseparam,
5190         .get_rx_csum = nv_get_rx_csum,
5191         .set_rx_csum = nv_set_rx_csum,
5192         .set_tx_csum = nv_set_tx_csum,
5193         .set_sg = nv_set_sg,
5194         .get_strings = nv_get_strings,
5195         .get_ethtool_stats = nv_get_ethtool_stats,
5196         .get_sset_count = nv_get_sset_count,
5197         .self_test = nv_self_test,
5198 };
5199
5200 static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
5201 {
5202         struct fe_priv *np = get_nvpriv(dev);
5203
5204         spin_lock_irq(&np->lock);
5205
5206         /* save vlan group */
5207         np->vlangrp = grp;
5208
5209         if (grp) {
5210                 /* enable vlan on MAC */
5211                 np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
5212         } else {
5213                 /* disable vlan on MAC */
5214                 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
5215                 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
5216         }
5217
5218         writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
5219
5220         spin_unlock_irq(&np->lock);
5221 }
5222
5223 /* The mgmt unit and driver use a semaphore to access the phy during init */
5224 static int nv_mgmt_acquire_sema(struct net_device *dev)
5225 {
5226         struct fe_priv *np = netdev_priv(dev);
5227         u8 __iomem *base = get_hwbase(dev);
5228         int i;
5229         u32 tx_ctrl, mgmt_sema;
5230
5231         for (i = 0; i < 10; i++) {
5232                 mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK;
5233                 if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE)
5234                         break;
5235                 msleep(500);
5236         }
5237
5238         if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE)
5239                 return 0;
5240
5241         for (i = 0; i < 2; i++) {
5242                 tx_ctrl = readl(base + NvRegTransmitterControl);
5243                 tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ;
5244                 writel(tx_ctrl, base + NvRegTransmitterControl);
5245
5246                 /* verify that semaphore was acquired */
5247                 tx_ctrl = readl(base + NvRegTransmitterControl);
5248                 if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) &&
5249                     ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE)) {
5250                         np->mgmt_sema = 1;
5251                         return 1;
5252                 }
5253                 else
5254                         udelay(50);
5255         }
5256
5257         return 0;
5258 }
5259
5260 static void nv_mgmt_release_sema(struct net_device *dev)
5261 {
5262         struct fe_priv *np = netdev_priv(dev);
5263         u8 __iomem *base = get_hwbase(dev);
5264         u32 tx_ctrl;
5265
5266         if (np->driver_data & DEV_HAS_MGMT_UNIT) {
5267                 if (np->mgmt_sema) {
5268                         tx_ctrl = readl(base + NvRegTransmitterControl);
5269                         tx_ctrl &= ~NVREG_XMITCTL_HOST_SEMA_ACQ;
5270                         writel(tx_ctrl, base + NvRegTransmitterControl);
5271                 }
5272         }
5273 }
5274
5275
5276 static int nv_mgmt_get_version(struct net_device *dev)
5277 {
5278         struct fe_priv *np = netdev_priv(dev);
5279         u8 __iomem *base = get_hwbase(dev);
5280         u32 data_ready = readl(base + NvRegTransmitterControl);
5281         u32 data_ready2 = 0;
5282         unsigned long start;
5283         int ready = 0;
5284
5285         writel(NVREG_MGMTUNITGETVERSION, base + NvRegMgmtUnitGetVersion);
5286         writel(data_ready ^ NVREG_XMITCTL_DATA_START, base + NvRegTransmitterControl);
5287         start = jiffies;
5288         while (time_before(jiffies, start + 5*HZ)) {
5289                 data_ready2 = readl(base + NvRegTransmitterControl);
5290                 if ((data_ready & NVREG_XMITCTL_DATA_READY) != (data_ready2 & NVREG_XMITCTL_DATA_READY)) {
5291                         ready = 1;
5292                         break;
5293                 }
5294                 schedule_timeout_uninterruptible(1);
5295         }
5296
5297         if (!ready || (data_ready2 & NVREG_XMITCTL_DATA_ERROR))
5298                 return 0;
5299
5300         np->mgmt_version = readl(base + NvRegMgmtUnitVersion) & NVREG_MGMTUNITVERSION;
5301
5302         return 1;
5303 }
5304
5305 static int nv_open(struct net_device *dev)
5306 {
5307         struct fe_priv *np = netdev_priv(dev);
5308         u8 __iomem *base = get_hwbase(dev);
5309         int ret = 1;
5310         int oom, i;
5311         u32 low;
5312
5313         dprintk(KERN_DEBUG "nv_open: begin\n");
5314
5315         /* power up phy */
5316         mii_rw(dev, np->phyaddr, MII_BMCR,
5317                mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ) & ~BMCR_PDOWN);
5318
5319         /* erase previous misconfiguration */
5320         if (np->driver_data & DEV_HAS_POWER_CNTRL)
5321                 nv_mac_reset(dev);
5322         writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
5323         writel(0, base + NvRegMulticastAddrB);
5324         writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
5325         writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
5326         writel(0, base + NvRegPacketFilterFlags);
5327
5328         writel(0, base + NvRegTransmitterControl);
5329         writel(0, base + NvRegReceiverControl);
5330
5331         writel(0, base + NvRegAdapterControl);
5332
5333         if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
5334                 writel(NVREG_TX_PAUSEFRAME_DISABLE,  base + NvRegTxPauseFrame);
5335
5336         /* initialize descriptor rings */
5337         set_bufsize(dev);
5338         oom = nv_init_ring(dev);
5339
5340         writel(0, base + NvRegLinkSpeed);
5341         writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
5342         nv_txrx_reset(dev);
5343         writel(0, base + NvRegUnknownSetupReg6);
5344
5345         np->in_shutdown = 0;
5346
5347         /* give hw rings */
5348         setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
5349         writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
5350                 base + NvRegRingSizes);
5351
5352         writel(np->linkspeed, base + NvRegLinkSpeed);
5353         if (np->desc_ver == DESC_VER_1)
5354                 writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
5355         else
5356                 writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
5357         writel(np->txrxctl_bits, base + NvRegTxRxControl);
5358         writel(np->vlanctl_bits, base + NvRegVlanControl);
5359         pci_push(base);
5360         writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
5361         reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
5362                         NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
5363                         KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
5364
5365         writel(0, base + NvRegMIIMask);
5366         writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
5367         writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
5368
5369         writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
5370         writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
5371         writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
5372         writel(np->rx_buf_sz, base + NvRegOffloadConfig);
5373
5374         writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
5375
5376         get_random_bytes(&low, sizeof(low));
5377         low &= NVREG_SLOTTIME_MASK;
5378         if (np->desc_ver == DESC_VER_1) {
5379                 writel(low|NVREG_SLOTTIME_DEFAULT, base + NvRegSlotTime);
5380         } else {
5381                 if (!(np->driver_data & DEV_HAS_GEAR_MODE)) {
5382                         /* setup legacy backoff */
5383                         writel(NVREG_SLOTTIME_LEGBF_ENABLED|NVREG_SLOTTIME_10_100_FULL|low, base + NvRegSlotTime);
5384                 } else {
5385                         writel(NVREG_SLOTTIME_10_100_FULL, base + NvRegSlotTime);
5386                         nv_gear_backoff_reseed(dev);
5387                 }
5388         }
5389         writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
5390         writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
5391         if (poll_interval == -1) {
5392                 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
5393                         writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
5394                 else
5395                         writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
5396         }
5397         else
5398                 writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
5399         writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
5400         writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
5401                         base + NvRegAdapterControl);
5402         writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
5403         writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask);
5404         if (np->wolenabled)
5405                 writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
5406
5407         i = readl(base + NvRegPowerState);
5408         if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
5409                 writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
5410
5411         pci_push(base);
5412         udelay(10);
5413         writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
5414
5415         nv_disable_hw_interrupts(dev, np->irqmask);
5416         pci_push(base);
5417         writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
5418         writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
5419         pci_push(base);
5420
5421         if (nv_request_irq(dev, 0)) {
5422                 goto out_drain;
5423         }
5424
5425         /* ask for interrupts */
5426         nv_enable_hw_interrupts(dev, np->irqmask);
5427
5428         spin_lock_irq(&np->lock);
5429         writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
5430         writel(0, base + NvRegMulticastAddrB);
5431         writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
5432         writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
5433         writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
5434         /* One manual link speed update: Interrupts are enabled, future link
5435          * speed changes cause interrupts and are handled by nv_link_irq().
5436          */
5437         {
5438                 u32 miistat;
5439                 miistat = readl(base + NvRegMIIStatus);
5440                 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
5441                 dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
5442         }
5443         /* set linkspeed to invalid value, thus force nv_update_linkspeed
5444          * to init hw */
5445         np->linkspeed = 0;
5446         ret = nv_update_linkspeed(dev);
5447         nv_start_rxtx(dev);
5448         netif_start_queue(dev);
5449         nv_napi_enable(dev);
5450
5451         if (ret) {
5452                 netif_carrier_on(dev);
5453         } else {
5454                 printk(KERN_INFO "%s: no link during initialization.\n", dev->name);
5455                 netif_carrier_off(dev);
5456         }
5457         if (oom)
5458                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
5459
5460         /* start statistics timer */
5461         if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
5462                 mod_timer(&np->stats_poll,
5463                         round_jiffies(jiffies + STATS_INTERVAL));
5464
5465         spin_unlock_irq(&np->lock);
5466
5467         return 0;
5468 out_drain:
5469         nv_drain_rxtx(dev);
5470         return ret;
5471 }
5472
5473 static int nv_close(struct net_device *dev)
5474 {
5475         struct fe_priv *np = netdev_priv(dev);
5476         u8 __iomem *base;
5477
5478         spin_lock_irq(&np->lock);
5479         np->in_shutdown = 1;
5480         spin_unlock_irq(&np->lock);
5481         nv_napi_disable(dev);
5482         synchronize_irq(np->pci_dev->irq);
5483
5484         del_timer_sync(&np->oom_kick);
5485         del_timer_sync(&np->nic_poll);
5486         del_timer_sync(&np->stats_poll);
5487
5488         netif_stop_queue(dev);
5489         spin_lock_irq(&np->lock);
5490         nv_stop_rxtx(dev);
5491         nv_txrx_reset(dev);
5492
5493         /* disable interrupts on the nic or we will lock up */
5494         base = get_hwbase(dev);
5495         nv_disable_hw_interrupts(dev, np->irqmask);
5496         pci_push(base);
5497         dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
5498
5499         spin_unlock_irq(&np->lock);
5500
5501         nv_free_irq(dev);
5502
5503         nv_drain_rxtx(dev);
5504
5505         if (np->wolenabled) {
5506                 writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
5507                 nv_start_rx(dev);
5508         } else {
5509                 /* power down phy */
5510                 mii_rw(dev, np->phyaddr, MII_BMCR,
5511                        mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ)|BMCR_PDOWN);
5512         }
5513
5514         /* FIXME: power down nic */
5515
5516         return 0;
5517 }
5518
5519 static const struct net_device_ops nv_netdev_ops = {
5520         .ndo_open               = nv_open,
5521         .ndo_stop               = nv_close,
5522         .ndo_get_stats          = nv_get_stats,
5523         .ndo_start_xmit         = nv_start_xmit,
5524         .ndo_tx_timeout         = nv_tx_timeout,
5525         .ndo_change_mtu         = nv_change_mtu,
5526         .ndo_validate_addr      = eth_validate_addr,
5527         .ndo_set_mac_address    = nv_set_mac_address,
5528         .ndo_set_multicast_list = nv_set_multicast,
5529         .ndo_vlan_rx_register   = nv_vlan_rx_register,
5530 #ifdef CONFIG_NET_POLL_CONTROLLER
5531         .ndo_poll_controller    = nv_poll_controller,
5532 #endif
5533 };
5534
5535 static const struct net_device_ops nv_netdev_ops_optimized = {
5536         .ndo_open               = nv_open,
5537         .ndo_stop               = nv_close,
5538         .ndo_get_stats          = nv_get_stats,
5539         .ndo_start_xmit         = nv_start_xmit_optimized,
5540         .ndo_tx_timeout         = nv_tx_timeout,
5541         .ndo_change_mtu         = nv_change_mtu,
5542         .ndo_validate_addr      = eth_validate_addr,
5543         .ndo_set_mac_address    = nv_set_mac_address,
5544         .ndo_set_multicast_list = nv_set_multicast,
5545         .ndo_vlan_rx_register   = nv_vlan_rx_register,
5546 #ifdef CONFIG_NET_POLL_CONTROLLER
5547         .ndo_poll_controller    = nv_poll_controller,
5548 #endif
5549 };
5550
5551 static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
5552 {
5553      &n