e1000e: use alternate MAC address on ESB2 if available
[linux-2.6.git] / drivers / net / e1000e / netdev.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2009 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/delay.h>
36 #include <linux/netdevice.h>
37 #include <linux/tcp.h>
38 #include <linux/ipv6.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/mii.h>
42 #include <linux/ethtool.h>
43 #include <linux/if_vlan.h>
44 #include <linux/cpu.h>
45 #include <linux/smp.h>
46 #include <linux/pm_qos_params.h>
47 #include <linux/aer.h>
48
49 #include "e1000.h"
50
51 #define DRV_VERSION "1.0.2-k2"
52 char e1000e_driver_name[] = "e1000e";
53 const char e1000e_driver_version[] = DRV_VERSION;
54
55 static const struct e1000_info *e1000_info_tbl[] = {
56         [board_82571]           = &e1000_82571_info,
57         [board_82572]           = &e1000_82572_info,
58         [board_82573]           = &e1000_82573_info,
59         [board_82574]           = &e1000_82574_info,
60         [board_82583]           = &e1000_82583_info,
61         [board_80003es2lan]     = &e1000_es2_info,
62         [board_ich8lan]         = &e1000_ich8_info,
63         [board_ich9lan]         = &e1000_ich9_info,
64         [board_ich10lan]        = &e1000_ich10_info,
65         [board_pchlan]          = &e1000_pch_info,
66 };
67
68 /**
69  * e1000_desc_unused - calculate if we have unused descriptors
70  **/
71 static int e1000_desc_unused(struct e1000_ring *ring)
72 {
73         if (ring->next_to_clean > ring->next_to_use)
74                 return ring->next_to_clean - ring->next_to_use - 1;
75
76         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
77 }
78
79 /**
80  * e1000_receive_skb - helper function to handle Rx indications
81  * @adapter: board private structure
82  * @status: descriptor status field as written by hardware
83  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
84  * @skb: pointer to sk_buff to be indicated to stack
85  **/
86 static void e1000_receive_skb(struct e1000_adapter *adapter,
87                               struct net_device *netdev,
88                               struct sk_buff *skb,
89                               u8 status, __le16 vlan)
90 {
91         skb->protocol = eth_type_trans(skb, netdev);
92
93         if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
94                 vlan_gro_receive(&adapter->napi, adapter->vlgrp,
95                                  le16_to_cpu(vlan), skb);
96         else
97                 napi_gro_receive(&adapter->napi, skb);
98 }
99
100 /**
101  * e1000_rx_checksum - Receive Checksum Offload for 82543
102  * @adapter:     board private structure
103  * @status_err:  receive descriptor status and error fields
104  * @csum:       receive descriptor csum field
105  * @sk_buff:     socket buffer with received data
106  **/
107 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
108                               u32 csum, struct sk_buff *skb)
109 {
110         u16 status = (u16)status_err;
111         u8 errors = (u8)(status_err >> 24);
112         skb->ip_summed = CHECKSUM_NONE;
113
114         /* Ignore Checksum bit is set */
115         if (status & E1000_RXD_STAT_IXSM)
116                 return;
117         /* TCP/UDP checksum error bit is set */
118         if (errors & E1000_RXD_ERR_TCPE) {
119                 /* let the stack verify checksum errors */
120                 adapter->hw_csum_err++;
121                 return;
122         }
123
124         /* TCP/UDP Checksum has not been calculated */
125         if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
126                 return;
127
128         /* It must be a TCP or UDP packet with a valid checksum */
129         if (status & E1000_RXD_STAT_TCPCS) {
130                 /* TCP checksum is good */
131                 skb->ip_summed = CHECKSUM_UNNECESSARY;
132         } else {
133                 /*
134                  * IP fragment with UDP payload
135                  * Hardware complements the payload checksum, so we undo it
136                  * and then put the value in host order for further stack use.
137                  */
138                 __sum16 sum = (__force __sum16)htons(csum);
139                 skb->csum = csum_unfold(~sum);
140                 skb->ip_summed = CHECKSUM_COMPLETE;
141         }
142         adapter->hw_csum_good++;
143 }
144
145 /**
146  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
147  * @adapter: address of board private structure
148  **/
149 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
150                                    int cleaned_count)
151 {
152         struct net_device *netdev = adapter->netdev;
153         struct pci_dev *pdev = adapter->pdev;
154         struct e1000_ring *rx_ring = adapter->rx_ring;
155         struct e1000_rx_desc *rx_desc;
156         struct e1000_buffer *buffer_info;
157         struct sk_buff *skb;
158         unsigned int i;
159         unsigned int bufsz = adapter->rx_buffer_len;
160
161         i = rx_ring->next_to_use;
162         buffer_info = &rx_ring->buffer_info[i];
163
164         while (cleaned_count--) {
165                 skb = buffer_info->skb;
166                 if (skb) {
167                         skb_trim(skb, 0);
168                         goto map_skb;
169                 }
170
171                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
172                 if (!skb) {
173                         /* Better luck next round */
174                         adapter->alloc_rx_buff_failed++;
175                         break;
176                 }
177
178                 buffer_info->skb = skb;
179 map_skb:
180                 buffer_info->dma = pci_map_single(pdev, skb->data,
181                                                   adapter->rx_buffer_len,
182                                                   PCI_DMA_FROMDEVICE);
183                 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
184                         dev_err(&pdev->dev, "RX DMA map failed\n");
185                         adapter->rx_dma_failed++;
186                         break;
187                 }
188
189                 rx_desc = E1000_RX_DESC(*rx_ring, i);
190                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
191
192                 i++;
193                 if (i == rx_ring->count)
194                         i = 0;
195                 buffer_info = &rx_ring->buffer_info[i];
196         }
197
198         if (rx_ring->next_to_use != i) {
199                 rx_ring->next_to_use = i;
200                 if (i-- == 0)
201                         i = (rx_ring->count - 1);
202
203                 /*
204                  * Force memory writes to complete before letting h/w
205                  * know there are new descriptors to fetch.  (Only
206                  * applicable for weak-ordered memory model archs,
207                  * such as IA-64).
208                  */
209                 wmb();
210                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
211         }
212 }
213
214 /**
215  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
216  * @adapter: address of board private structure
217  **/
218 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
219                                       int cleaned_count)
220 {
221         struct net_device *netdev = adapter->netdev;
222         struct pci_dev *pdev = adapter->pdev;
223         union e1000_rx_desc_packet_split *rx_desc;
224         struct e1000_ring *rx_ring = adapter->rx_ring;
225         struct e1000_buffer *buffer_info;
226         struct e1000_ps_page *ps_page;
227         struct sk_buff *skb;
228         unsigned int i, j;
229
230         i = rx_ring->next_to_use;
231         buffer_info = &rx_ring->buffer_info[i];
232
233         while (cleaned_count--) {
234                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
235
236                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
237                         ps_page = &buffer_info->ps_pages[j];
238                         if (j >= adapter->rx_ps_pages) {
239                                 /* all unused desc entries get hw null ptr */
240                                 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
241                                 continue;
242                         }
243                         if (!ps_page->page) {
244                                 ps_page->page = alloc_page(GFP_ATOMIC);
245                                 if (!ps_page->page) {
246                                         adapter->alloc_rx_buff_failed++;
247                                         goto no_buffers;
248                                 }
249                                 ps_page->dma = pci_map_page(pdev,
250                                                    ps_page->page,
251                                                    0, PAGE_SIZE,
252                                                    PCI_DMA_FROMDEVICE);
253                                 if (pci_dma_mapping_error(pdev, ps_page->dma)) {
254                                         dev_err(&adapter->pdev->dev,
255                                           "RX DMA page map failed\n");
256                                         adapter->rx_dma_failed++;
257                                         goto no_buffers;
258                                 }
259                         }
260                         /*
261                          * Refresh the desc even if buffer_addrs
262                          * didn't change because each write-back
263                          * erases this info.
264                          */
265                         rx_desc->read.buffer_addr[j+1] =
266                              cpu_to_le64(ps_page->dma);
267                 }
268
269                 skb = netdev_alloc_skb_ip_align(netdev,
270                                                 adapter->rx_ps_bsize0);
271
272                 if (!skb) {
273                         adapter->alloc_rx_buff_failed++;
274                         break;
275                 }
276
277                 buffer_info->skb = skb;
278                 buffer_info->dma = pci_map_single(pdev, skb->data,
279                                                   adapter->rx_ps_bsize0,
280                                                   PCI_DMA_FROMDEVICE);
281                 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
282                         dev_err(&pdev->dev, "RX DMA map failed\n");
283                         adapter->rx_dma_failed++;
284                         /* cleanup skb */
285                         dev_kfree_skb_any(skb);
286                         buffer_info->skb = NULL;
287                         break;
288                 }
289
290                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
291
292                 i++;
293                 if (i == rx_ring->count)
294                         i = 0;
295                 buffer_info = &rx_ring->buffer_info[i];
296         }
297
298 no_buffers:
299         if (rx_ring->next_to_use != i) {
300                 rx_ring->next_to_use = i;
301
302                 if (!(i--))
303                         i = (rx_ring->count - 1);
304
305                 /*
306                  * Force memory writes to complete before letting h/w
307                  * know there are new descriptors to fetch.  (Only
308                  * applicable for weak-ordered memory model archs,
309                  * such as IA-64).
310                  */
311                 wmb();
312                 /*
313                  * Hardware increments by 16 bytes, but packet split
314                  * descriptors are 32 bytes...so we increment tail
315                  * twice as much.
316                  */
317                 writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
318         }
319 }
320
321 /**
322  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
323  * @adapter: address of board private structure
324  * @cleaned_count: number of buffers to allocate this pass
325  **/
326
327 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
328                                          int cleaned_count)
329 {
330         struct net_device *netdev = adapter->netdev;
331         struct pci_dev *pdev = adapter->pdev;
332         struct e1000_rx_desc *rx_desc;
333         struct e1000_ring *rx_ring = adapter->rx_ring;
334         struct e1000_buffer *buffer_info;
335         struct sk_buff *skb;
336         unsigned int i;
337         unsigned int bufsz = 256 - 16 /* for skb_reserve */;
338
339         i = rx_ring->next_to_use;
340         buffer_info = &rx_ring->buffer_info[i];
341
342         while (cleaned_count--) {
343                 skb = buffer_info->skb;
344                 if (skb) {
345                         skb_trim(skb, 0);
346                         goto check_page;
347                 }
348
349                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
350                 if (unlikely(!skb)) {
351                         /* Better luck next round */
352                         adapter->alloc_rx_buff_failed++;
353                         break;
354                 }
355
356                 buffer_info->skb = skb;
357 check_page:
358                 /* allocate a new page if necessary */
359                 if (!buffer_info->page) {
360                         buffer_info->page = alloc_page(GFP_ATOMIC);
361                         if (unlikely(!buffer_info->page)) {
362                                 adapter->alloc_rx_buff_failed++;
363                                 break;
364                         }
365                 }
366
367                 if (!buffer_info->dma)
368                         buffer_info->dma = pci_map_page(pdev,
369                                                         buffer_info->page, 0,
370                                                         PAGE_SIZE,
371                                                         PCI_DMA_FROMDEVICE);
372
373                 rx_desc = E1000_RX_DESC(*rx_ring, i);
374                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
375
376                 if (unlikely(++i == rx_ring->count))
377                         i = 0;
378                 buffer_info = &rx_ring->buffer_info[i];
379         }
380
381         if (likely(rx_ring->next_to_use != i)) {
382                 rx_ring->next_to_use = i;
383                 if (unlikely(i-- == 0))
384                         i = (rx_ring->count - 1);
385
386                 /* Force memory writes to complete before letting h/w
387                  * know there are new descriptors to fetch.  (Only
388                  * applicable for weak-ordered memory model archs,
389                  * such as IA-64). */
390                 wmb();
391                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
392         }
393 }
394
395 /**
396  * e1000_clean_rx_irq - Send received data up the network stack; legacy
397  * @adapter: board private structure
398  *
399  * the return value indicates whether actual cleaning was done, there
400  * is no guarantee that everything was cleaned
401  **/
402 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
403                                int *work_done, int work_to_do)
404 {
405         struct net_device *netdev = adapter->netdev;
406         struct pci_dev *pdev = adapter->pdev;
407         struct e1000_hw *hw = &adapter->hw;
408         struct e1000_ring *rx_ring = adapter->rx_ring;
409         struct e1000_rx_desc *rx_desc, *next_rxd;
410         struct e1000_buffer *buffer_info, *next_buffer;
411         u32 length;
412         unsigned int i;
413         int cleaned_count = 0;
414         bool cleaned = 0;
415         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
416
417         i = rx_ring->next_to_clean;
418         rx_desc = E1000_RX_DESC(*rx_ring, i);
419         buffer_info = &rx_ring->buffer_info[i];
420
421         while (rx_desc->status & E1000_RXD_STAT_DD) {
422                 struct sk_buff *skb;
423                 u8 status;
424
425                 if (*work_done >= work_to_do)
426                         break;
427                 (*work_done)++;
428
429                 status = rx_desc->status;
430                 skb = buffer_info->skb;
431                 buffer_info->skb = NULL;
432
433                 prefetch(skb->data - NET_IP_ALIGN);
434
435                 i++;
436                 if (i == rx_ring->count)
437                         i = 0;
438                 next_rxd = E1000_RX_DESC(*rx_ring, i);
439                 prefetch(next_rxd);
440
441                 next_buffer = &rx_ring->buffer_info[i];
442
443                 cleaned = 1;
444                 cleaned_count++;
445                 pci_unmap_single(pdev,
446                                  buffer_info->dma,
447                                  adapter->rx_buffer_len,
448                                  PCI_DMA_FROMDEVICE);
449                 buffer_info->dma = 0;
450
451                 length = le16_to_cpu(rx_desc->length);
452
453                 /* !EOP means multiple descriptors were used to store a single
454                  * packet, also make sure the frame isn't just CRC only */
455                 if (!(status & E1000_RXD_STAT_EOP) || (length <= 4)) {
456                         /* All receives must fit into a single buffer */
457                         e_dbg("Receive packet consumed multiple buffers\n");
458                         /* recycle */
459                         buffer_info->skb = skb;
460                         goto next_desc;
461                 }
462
463                 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
464                         /* recycle */
465                         buffer_info->skb = skb;
466                         goto next_desc;
467                 }
468
469                 /* adjust length to remove Ethernet CRC */
470                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
471                         length -= 4;
472
473                 total_rx_bytes += length;
474                 total_rx_packets++;
475
476                 /*
477                  * code added for copybreak, this should improve
478                  * performance for small packets with large amounts
479                  * of reassembly being done in the stack
480                  */
481                 if (length < copybreak) {
482                         struct sk_buff *new_skb =
483                             netdev_alloc_skb_ip_align(netdev, length);
484                         if (new_skb) {
485                                 skb_copy_to_linear_data_offset(new_skb,
486                                                                -NET_IP_ALIGN,
487                                                                (skb->data -
488                                                                 NET_IP_ALIGN),
489                                                                (length +
490                                                                 NET_IP_ALIGN));
491                                 /* save the skb in buffer_info as good */
492                                 buffer_info->skb = skb;
493                                 skb = new_skb;
494                         }
495                         /* else just continue with the old one */
496                 }
497                 /* end copybreak code */
498                 skb_put(skb, length);
499
500                 /* Receive Checksum Offload */
501                 e1000_rx_checksum(adapter,
502                                   (u32)(status) |
503                                   ((u32)(rx_desc->errors) << 24),
504                                   le16_to_cpu(rx_desc->csum), skb);
505
506                 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
507
508 next_desc:
509                 rx_desc->status = 0;
510
511                 /* return some buffers to hardware, one at a time is too slow */
512                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
513                         adapter->alloc_rx_buf(adapter, cleaned_count);
514                         cleaned_count = 0;
515                 }
516
517                 /* use prefetched values */
518                 rx_desc = next_rxd;
519                 buffer_info = next_buffer;
520         }
521         rx_ring->next_to_clean = i;
522
523         cleaned_count = e1000_desc_unused(rx_ring);
524         if (cleaned_count)
525                 adapter->alloc_rx_buf(adapter, cleaned_count);
526
527         adapter->total_rx_bytes += total_rx_bytes;
528         adapter->total_rx_packets += total_rx_packets;
529         netdev->stats.rx_bytes += total_rx_bytes;
530         netdev->stats.rx_packets += total_rx_packets;
531         return cleaned;
532 }
533
534 static void e1000_put_txbuf(struct e1000_adapter *adapter,
535                              struct e1000_buffer *buffer_info)
536 {
537         if (buffer_info->dma) {
538                 if (buffer_info->mapped_as_page)
539                         pci_unmap_page(adapter->pdev, buffer_info->dma,
540                                        buffer_info->length, PCI_DMA_TODEVICE);
541                 else
542                         pci_unmap_single(adapter->pdev, buffer_info->dma,
543                                          buffer_info->length,
544                                          PCI_DMA_TODEVICE);
545                 buffer_info->dma = 0;
546         }
547         if (buffer_info->skb) {
548                 dev_kfree_skb_any(buffer_info->skb);
549                 buffer_info->skb = NULL;
550         }
551         buffer_info->time_stamp = 0;
552 }
553
554 static void e1000_print_hw_hang(struct work_struct *work)
555 {
556         struct e1000_adapter *adapter = container_of(work,
557                                                      struct e1000_adapter,
558                                                      print_hang_task);
559         struct e1000_ring *tx_ring = adapter->tx_ring;
560         unsigned int i = tx_ring->next_to_clean;
561         unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
562         struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
563         struct e1000_hw *hw = &adapter->hw;
564         u16 phy_status, phy_1000t_status, phy_ext_status;
565         u16 pci_status;
566
567         e1e_rphy(hw, PHY_STATUS, &phy_status);
568         e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
569         e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
570
571         pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
572
573         /* detected Hardware unit hang */
574         e_err("Detected Hardware Unit Hang:\n"
575               "  TDH                  <%x>\n"
576               "  TDT                  <%x>\n"
577               "  next_to_use          <%x>\n"
578               "  next_to_clean        <%x>\n"
579               "buffer_info[next_to_clean]:\n"
580               "  time_stamp           <%lx>\n"
581               "  next_to_watch        <%x>\n"
582               "  jiffies              <%lx>\n"
583               "  next_to_watch.status <%x>\n"
584               "MAC Status             <%x>\n"
585               "PHY Status             <%x>\n"
586               "PHY 1000BASE-T Status  <%x>\n"
587               "PHY Extended Status    <%x>\n"
588               "PCI Status             <%x>\n",
589               readl(adapter->hw.hw_addr + tx_ring->head),
590               readl(adapter->hw.hw_addr + tx_ring->tail),
591               tx_ring->next_to_use,
592               tx_ring->next_to_clean,
593               tx_ring->buffer_info[eop].time_stamp,
594               eop,
595               jiffies,
596               eop_desc->upper.fields.status,
597               er32(STATUS),
598               phy_status,
599               phy_1000t_status,
600               phy_ext_status,
601               pci_status);
602 }
603
604 /**
605  * e1000_clean_tx_irq - Reclaim resources after transmit completes
606  * @adapter: board private structure
607  *
608  * the return value indicates whether actual cleaning was done, there
609  * is no guarantee that everything was cleaned
610  **/
611 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
612 {
613         struct net_device *netdev = adapter->netdev;
614         struct e1000_hw *hw = &adapter->hw;
615         struct e1000_ring *tx_ring = adapter->tx_ring;
616         struct e1000_tx_desc *tx_desc, *eop_desc;
617         struct e1000_buffer *buffer_info;
618         unsigned int i, eop;
619         unsigned int count = 0;
620         unsigned int total_tx_bytes = 0, total_tx_packets = 0;
621
622         i = tx_ring->next_to_clean;
623         eop = tx_ring->buffer_info[i].next_to_watch;
624         eop_desc = E1000_TX_DESC(*tx_ring, eop);
625
626         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
627                (count < tx_ring->count)) {
628                 bool cleaned = false;
629                 for (; !cleaned; count++) {
630                         tx_desc = E1000_TX_DESC(*tx_ring, i);
631                         buffer_info = &tx_ring->buffer_info[i];
632                         cleaned = (i == eop);
633
634                         if (cleaned) {
635                                 struct sk_buff *skb = buffer_info->skb;
636                                 unsigned int segs, bytecount;
637                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
638                                 /* multiply data chunks by size of headers */
639                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
640                                             skb->len;
641                                 total_tx_packets += segs;
642                                 total_tx_bytes += bytecount;
643                         }
644
645                         e1000_put_txbuf(adapter, buffer_info);
646                         tx_desc->upper.data = 0;
647
648                         i++;
649                         if (i == tx_ring->count)
650                                 i = 0;
651                 }
652
653                 eop = tx_ring->buffer_info[i].next_to_watch;
654                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
655         }
656
657         tx_ring->next_to_clean = i;
658
659 #define TX_WAKE_THRESHOLD 32
660         if (count && netif_carrier_ok(netdev) &&
661             e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
662                 /* Make sure that anybody stopping the queue after this
663                  * sees the new next_to_clean.
664                  */
665                 smp_mb();
666
667                 if (netif_queue_stopped(netdev) &&
668                     !(test_bit(__E1000_DOWN, &adapter->state))) {
669                         netif_wake_queue(netdev);
670                         ++adapter->restart_queue;
671                 }
672         }
673
674         if (adapter->detect_tx_hung) {
675                 /*
676                  * Detect a transmit hang in hardware, this serializes the
677                  * check with the clearing of time_stamp and movement of i
678                  */
679                 adapter->detect_tx_hung = 0;
680                 if (tx_ring->buffer_info[i].time_stamp &&
681                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp
682                                + (adapter->tx_timeout_factor * HZ)) &&
683                     !(er32(STATUS) & E1000_STATUS_TXOFF)) {
684                         schedule_work(&adapter->print_hang_task);
685                         netif_stop_queue(netdev);
686                 }
687         }
688         adapter->total_tx_bytes += total_tx_bytes;
689         adapter->total_tx_packets += total_tx_packets;
690         netdev->stats.tx_bytes += total_tx_bytes;
691         netdev->stats.tx_packets += total_tx_packets;
692         return (count < tx_ring->count);
693 }
694
695 /**
696  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
697  * @adapter: board private structure
698  *
699  * the return value indicates whether actual cleaning was done, there
700  * is no guarantee that everything was cleaned
701  **/
702 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
703                                   int *work_done, int work_to_do)
704 {
705         struct e1000_hw *hw = &adapter->hw;
706         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
707         struct net_device *netdev = adapter->netdev;
708         struct pci_dev *pdev = adapter->pdev;
709         struct e1000_ring *rx_ring = adapter->rx_ring;
710         struct e1000_buffer *buffer_info, *next_buffer;
711         struct e1000_ps_page *ps_page;
712         struct sk_buff *skb;
713         unsigned int i, j;
714         u32 length, staterr;
715         int cleaned_count = 0;
716         bool cleaned = 0;
717         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
718
719         i = rx_ring->next_to_clean;
720         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
721         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
722         buffer_info = &rx_ring->buffer_info[i];
723
724         while (staterr & E1000_RXD_STAT_DD) {
725                 if (*work_done >= work_to_do)
726                         break;
727                 (*work_done)++;
728                 skb = buffer_info->skb;
729
730                 /* in the packet split case this is header only */
731                 prefetch(skb->data - NET_IP_ALIGN);
732
733                 i++;
734                 if (i == rx_ring->count)
735                         i = 0;
736                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
737                 prefetch(next_rxd);
738
739                 next_buffer = &rx_ring->buffer_info[i];
740
741                 cleaned = 1;
742                 cleaned_count++;
743                 pci_unmap_single(pdev, buffer_info->dma,
744                                  adapter->rx_ps_bsize0,
745                                  PCI_DMA_FROMDEVICE);
746                 buffer_info->dma = 0;
747
748                 if (!(staterr & E1000_RXD_STAT_EOP)) {
749                         e_dbg("Packet Split buffers didn't pick up the full "
750                               "packet\n");
751                         dev_kfree_skb_irq(skb);
752                         goto next_desc;
753                 }
754
755                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
756                         dev_kfree_skb_irq(skb);
757                         goto next_desc;
758                 }
759
760                 length = le16_to_cpu(rx_desc->wb.middle.length0);
761
762                 if (!length) {
763                         e_dbg("Last part of the packet spanning multiple "
764                               "descriptors\n");
765                         dev_kfree_skb_irq(skb);
766                         goto next_desc;
767                 }
768
769                 /* Good Receive */
770                 skb_put(skb, length);
771
772                 {
773                 /*
774                  * this looks ugly, but it seems compiler issues make it
775                  * more efficient than reusing j
776                  */
777                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
778
779                 /*
780                  * page alloc/put takes too long and effects small packet
781                  * throughput, so unsplit small packets and save the alloc/put
782                  * only valid in softirq (napi) context to call kmap_*
783                  */
784                 if (l1 && (l1 <= copybreak) &&
785                     ((length + l1) <= adapter->rx_ps_bsize0)) {
786                         u8 *vaddr;
787
788                         ps_page = &buffer_info->ps_pages[0];
789
790                         /*
791                          * there is no documentation about how to call
792                          * kmap_atomic, so we can't hold the mapping
793                          * very long
794                          */
795                         pci_dma_sync_single_for_cpu(pdev, ps_page->dma,
796                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
797                         vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
798                         memcpy(skb_tail_pointer(skb), vaddr, l1);
799                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
800                         pci_dma_sync_single_for_device(pdev, ps_page->dma,
801                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
802
803                         /* remove the CRC */
804                         if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
805                                 l1 -= 4;
806
807                         skb_put(skb, l1);
808                         goto copydone;
809                 } /* if */
810                 }
811
812                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
813                         length = le16_to_cpu(rx_desc->wb.upper.length[j]);
814                         if (!length)
815                                 break;
816
817                         ps_page = &buffer_info->ps_pages[j];
818                         pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
819                                        PCI_DMA_FROMDEVICE);
820                         ps_page->dma = 0;
821                         skb_fill_page_desc(skb, j, ps_page->page, 0, length);
822                         ps_page->page = NULL;
823                         skb->len += length;
824                         skb->data_len += length;
825                         skb->truesize += length;
826                 }
827
828                 /* strip the ethernet crc, problem is we're using pages now so
829                  * this whole operation can get a little cpu intensive
830                  */
831                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
832                         pskb_trim(skb, skb->len - 4);
833
834 copydone:
835                 total_rx_bytes += skb->len;
836                 total_rx_packets++;
837
838                 e1000_rx_checksum(adapter, staterr, le16_to_cpu(
839                         rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
840
841                 if (rx_desc->wb.upper.header_status &
842                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
843                         adapter->rx_hdr_split++;
844
845                 e1000_receive_skb(adapter, netdev, skb,
846                                   staterr, rx_desc->wb.middle.vlan);
847
848 next_desc:
849                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
850                 buffer_info->skb = NULL;
851
852                 /* return some buffers to hardware, one at a time is too slow */
853                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
854                         adapter->alloc_rx_buf(adapter, cleaned_count);
855                         cleaned_count = 0;
856                 }
857
858                 /* use prefetched values */
859                 rx_desc = next_rxd;
860                 buffer_info = next_buffer;
861
862                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
863         }
864         rx_ring->next_to_clean = i;
865
866         cleaned_count = e1000_desc_unused(rx_ring);
867         if (cleaned_count)
868                 adapter->alloc_rx_buf(adapter, cleaned_count);
869
870         adapter->total_rx_bytes += total_rx_bytes;
871         adapter->total_rx_packets += total_rx_packets;
872         netdev->stats.rx_bytes += total_rx_bytes;
873         netdev->stats.rx_packets += total_rx_packets;
874         return cleaned;
875 }
876
877 /**
878  * e1000_consume_page - helper function
879  **/
880 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
881                                u16 length)
882 {
883         bi->page = NULL;
884         skb->len += length;
885         skb->data_len += length;
886         skb->truesize += length;
887 }
888
889 /**
890  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
891  * @adapter: board private structure
892  *
893  * the return value indicates whether actual cleaning was done, there
894  * is no guarantee that everything was cleaned
895  **/
896
897 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
898                                      int *work_done, int work_to_do)
899 {
900         struct net_device *netdev = adapter->netdev;
901         struct pci_dev *pdev = adapter->pdev;
902         struct e1000_ring *rx_ring = adapter->rx_ring;
903         struct e1000_rx_desc *rx_desc, *next_rxd;
904         struct e1000_buffer *buffer_info, *next_buffer;
905         u32 length;
906         unsigned int i;
907         int cleaned_count = 0;
908         bool cleaned = false;
909         unsigned int total_rx_bytes=0, total_rx_packets=0;
910
911         i = rx_ring->next_to_clean;
912         rx_desc = E1000_RX_DESC(*rx_ring, i);
913         buffer_info = &rx_ring->buffer_info[i];
914
915         while (rx_desc->status & E1000_RXD_STAT_DD) {
916                 struct sk_buff *skb;
917                 u8 status;
918
919                 if (*work_done >= work_to_do)
920                         break;
921                 (*work_done)++;
922
923                 status = rx_desc->status;
924                 skb = buffer_info->skb;
925                 buffer_info->skb = NULL;
926
927                 ++i;
928                 if (i == rx_ring->count)
929                         i = 0;
930                 next_rxd = E1000_RX_DESC(*rx_ring, i);
931                 prefetch(next_rxd);
932
933                 next_buffer = &rx_ring->buffer_info[i];
934
935                 cleaned = true;
936                 cleaned_count++;
937                 pci_unmap_page(pdev, buffer_info->dma, PAGE_SIZE,
938                                PCI_DMA_FROMDEVICE);
939                 buffer_info->dma = 0;
940
941                 length = le16_to_cpu(rx_desc->length);
942
943                 /* errors is only valid for DD + EOP descriptors */
944                 if (unlikely((status & E1000_RXD_STAT_EOP) &&
945                     (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
946                                 /* recycle both page and skb */
947                                 buffer_info->skb = skb;
948                                 /* an error means any chain goes out the window
949                                  * too */
950                                 if (rx_ring->rx_skb_top)
951                                         dev_kfree_skb(rx_ring->rx_skb_top);
952                                 rx_ring->rx_skb_top = NULL;
953                                 goto next_desc;
954                 }
955
956 #define rxtop rx_ring->rx_skb_top
957                 if (!(status & E1000_RXD_STAT_EOP)) {
958                         /* this descriptor is only the beginning (or middle) */
959                         if (!rxtop) {
960                                 /* this is the beginning of a chain */
961                                 rxtop = skb;
962                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
963                                                    0, length);
964                         } else {
965                                 /* this is the middle of a chain */
966                                 skb_fill_page_desc(rxtop,
967                                     skb_shinfo(rxtop)->nr_frags,
968                                     buffer_info->page, 0, length);
969                                 /* re-use the skb, only consumed the page */
970                                 buffer_info->skb = skb;
971                         }
972                         e1000_consume_page(buffer_info, rxtop, length);
973                         goto next_desc;
974                 } else {
975                         if (rxtop) {
976                                 /* end of the chain */
977                                 skb_fill_page_desc(rxtop,
978                                     skb_shinfo(rxtop)->nr_frags,
979                                     buffer_info->page, 0, length);
980                                 /* re-use the current skb, we only consumed the
981                                  * page */
982                                 buffer_info->skb = skb;
983                                 skb = rxtop;
984                                 rxtop = NULL;
985                                 e1000_consume_page(buffer_info, skb, length);
986                         } else {
987                                 /* no chain, got EOP, this buf is the packet
988                                  * copybreak to save the put_page/alloc_page */
989                                 if (length <= copybreak &&
990                                     skb_tailroom(skb) >= length) {
991                                         u8 *vaddr;
992                                         vaddr = kmap_atomic(buffer_info->page,
993                                                            KM_SKB_DATA_SOFTIRQ);
994                                         memcpy(skb_tail_pointer(skb), vaddr,
995                                                length);
996                                         kunmap_atomic(vaddr,
997                                                       KM_SKB_DATA_SOFTIRQ);
998                                         /* re-use the page, so don't erase
999                                          * buffer_info->page */
1000                                         skb_put(skb, length);
1001                                 } else {
1002                                         skb_fill_page_desc(skb, 0,
1003                                                            buffer_info->page, 0,
1004                                                            length);
1005                                         e1000_consume_page(buffer_info, skb,
1006                                                            length);
1007                                 }
1008                         }
1009                 }
1010
1011                 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1012                 e1000_rx_checksum(adapter,
1013                                   (u32)(status) |
1014                                   ((u32)(rx_desc->errors) << 24),
1015                                   le16_to_cpu(rx_desc->csum), skb);
1016
1017                 /* probably a little skewed due to removing CRC */
1018                 total_rx_bytes += skb->len;
1019                 total_rx_packets++;
1020
1021                 /* eth type trans needs skb->data to point to something */
1022                 if (!pskb_may_pull(skb, ETH_HLEN)) {
1023                         e_err("pskb_may_pull failed.\n");
1024                         dev_kfree_skb(skb);
1025                         goto next_desc;
1026                 }
1027
1028                 e1000_receive_skb(adapter, netdev, skb, status,
1029                                   rx_desc->special);
1030
1031 next_desc:
1032                 rx_desc->status = 0;
1033
1034                 /* return some buffers to hardware, one at a time is too slow */
1035                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1036                         adapter->alloc_rx_buf(adapter, cleaned_count);
1037                         cleaned_count = 0;
1038                 }
1039
1040                 /* use prefetched values */
1041                 rx_desc = next_rxd;
1042                 buffer_info = next_buffer;
1043         }
1044         rx_ring->next_to_clean = i;
1045
1046         cleaned_count = e1000_desc_unused(rx_ring);
1047         if (cleaned_count)
1048                 adapter->alloc_rx_buf(adapter, cleaned_count);
1049
1050         adapter->total_rx_bytes += total_rx_bytes;
1051         adapter->total_rx_packets += total_rx_packets;
1052         netdev->stats.rx_bytes += total_rx_bytes;
1053         netdev->stats.rx_packets += total_rx_packets;
1054         return cleaned;
1055 }
1056
1057 /**
1058  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1059  * @adapter: board private structure
1060  **/
1061 static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
1062 {
1063         struct e1000_ring *rx_ring = adapter->rx_ring;
1064         struct e1000_buffer *buffer_info;
1065         struct e1000_ps_page *ps_page;
1066         struct pci_dev *pdev = adapter->pdev;
1067         unsigned int i, j;
1068
1069         /* Free all the Rx ring sk_buffs */
1070         for (i = 0; i < rx_ring->count; i++) {
1071                 buffer_info = &rx_ring->buffer_info[i];
1072                 if (buffer_info->dma) {
1073                         if (adapter->clean_rx == e1000_clean_rx_irq)
1074                                 pci_unmap_single(pdev, buffer_info->dma,
1075                                                  adapter->rx_buffer_len,
1076                                                  PCI_DMA_FROMDEVICE);
1077                         else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1078                                 pci_unmap_page(pdev, buffer_info->dma,
1079                                                PAGE_SIZE,
1080                                                PCI_DMA_FROMDEVICE);
1081                         else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1082                                 pci_unmap_single(pdev, buffer_info->dma,
1083                                                  adapter->rx_ps_bsize0,
1084                                                  PCI_DMA_FROMDEVICE);
1085                         buffer_info->dma = 0;
1086                 }
1087
1088                 if (buffer_info->page) {
1089                         put_page(buffer_info->page);
1090                         buffer_info->page = NULL;
1091                 }
1092
1093                 if (buffer_info->skb) {
1094                         dev_kfree_skb(buffer_info->skb);
1095                         buffer_info->skb = NULL;
1096                 }
1097
1098                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1099                         ps_page = &buffer_info->ps_pages[j];
1100                         if (!ps_page->page)
1101                                 break;
1102                         pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
1103                                        PCI_DMA_FROMDEVICE);
1104                         ps_page->dma = 0;
1105                         put_page(ps_page->page);
1106                         ps_page->page = NULL;
1107                 }
1108         }
1109
1110         /* there also may be some cached data from a chained receive */
1111         if (rx_ring->rx_skb_top) {
1112                 dev_kfree_skb(rx_ring->rx_skb_top);
1113                 rx_ring->rx_skb_top = NULL;
1114         }
1115
1116         /* Zero out the descriptor ring */
1117         memset(rx_ring->desc, 0, rx_ring->size);
1118
1119         rx_ring->next_to_clean = 0;
1120         rx_ring->next_to_use = 0;
1121
1122         writel(0, adapter->hw.hw_addr + rx_ring->head);
1123         writel(0, adapter->hw.hw_addr + rx_ring->tail);
1124 }
1125
1126 static void e1000e_downshift_workaround(struct work_struct *work)
1127 {
1128         struct e1000_adapter *adapter = container_of(work,
1129                                         struct e1000_adapter, downshift_task);
1130
1131         e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1132 }
1133
1134 /**
1135  * e1000_intr_msi - Interrupt Handler
1136  * @irq: interrupt number
1137  * @data: pointer to a network interface device structure
1138  **/
1139 static irqreturn_t e1000_intr_msi(int irq, void *data)
1140 {
1141         struct net_device *netdev = data;
1142         struct e1000_adapter *adapter = netdev_priv(netdev);
1143         struct e1000_hw *hw = &adapter->hw;
1144         u32 icr = er32(ICR);
1145
1146         /*
1147          * read ICR disables interrupts using IAM
1148          */
1149
1150         if (icr & E1000_ICR_LSC) {
1151                 hw->mac.get_link_status = 1;
1152                 /*
1153                  * ICH8 workaround-- Call gig speed drop workaround on cable
1154                  * disconnect (LSC) before accessing any PHY registers
1155                  */
1156                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1157                     (!(er32(STATUS) & E1000_STATUS_LU)))
1158                         schedule_work(&adapter->downshift_task);
1159
1160                 /*
1161                  * 80003ES2LAN workaround-- For packet buffer work-around on
1162                  * link down event; disable receives here in the ISR and reset
1163                  * adapter in watchdog
1164                  */
1165                 if (netif_carrier_ok(netdev) &&
1166                     adapter->flags & FLAG_RX_NEEDS_RESTART) {
1167                         /* disable receives */
1168                         u32 rctl = er32(RCTL);
1169                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1170                         adapter->flags |= FLAG_RX_RESTART_NOW;
1171                 }
1172                 /* guard against interrupt when we're going down */
1173                 if (!test_bit(__E1000_DOWN, &adapter->state))
1174                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1175         }
1176
1177         if (napi_schedule_prep(&adapter->napi)) {
1178                 adapter->total_tx_bytes = 0;
1179                 adapter->total_tx_packets = 0;
1180                 adapter->total_rx_bytes = 0;
1181                 adapter->total_rx_packets = 0;
1182                 __napi_schedule(&adapter->napi);
1183         }
1184
1185         return IRQ_HANDLED;
1186 }
1187
1188 /**
1189  * e1000_intr - Interrupt Handler
1190  * @irq: interrupt number
1191  * @data: pointer to a network interface device structure
1192  **/
1193 static irqreturn_t e1000_intr(int irq, void *data)
1194 {
1195         struct net_device *netdev = data;
1196         struct e1000_adapter *adapter = netdev_priv(netdev);
1197         struct e1000_hw *hw = &adapter->hw;
1198         u32 rctl, icr = er32(ICR);
1199
1200         if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1201                 return IRQ_NONE;  /* Not our interrupt */
1202
1203         /*
1204          * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1205          * not set, then the adapter didn't send an interrupt
1206          */
1207         if (!(icr & E1000_ICR_INT_ASSERTED))
1208                 return IRQ_NONE;
1209
1210         /*
1211          * Interrupt Auto-Mask...upon reading ICR,
1212          * interrupts are masked.  No need for the
1213          * IMC write
1214          */
1215
1216         if (icr & E1000_ICR_LSC) {
1217                 hw->mac.get_link_status = 1;
1218                 /*
1219                  * ICH8 workaround-- Call gig speed drop workaround on cable
1220                  * disconnect (LSC) before accessing any PHY registers
1221                  */
1222                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1223                     (!(er32(STATUS) & E1000_STATUS_LU)))
1224                         schedule_work(&adapter->downshift_task);
1225
1226                 /*
1227                  * 80003ES2LAN workaround--
1228                  * For packet buffer work-around on link down event;
1229                  * disable receives here in the ISR and
1230                  * reset adapter in watchdog
1231                  */
1232                 if (netif_carrier_ok(netdev) &&
1233                     (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1234                         /* disable receives */
1235                         rctl = er32(RCTL);
1236                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1237                         adapter->flags |= FLAG_RX_RESTART_NOW;
1238                 }
1239                 /* guard against interrupt when we're going down */
1240                 if (!test_bit(__E1000_DOWN, &adapter->state))
1241                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1242         }
1243
1244         if (napi_schedule_prep(&adapter->napi)) {
1245                 adapter->total_tx_bytes = 0;
1246                 adapter->total_tx_packets = 0;
1247                 adapter->total_rx_bytes = 0;
1248                 adapter->total_rx_packets = 0;
1249                 __napi_schedule(&adapter->napi);
1250         }
1251
1252         return IRQ_HANDLED;
1253 }
1254
1255 static irqreturn_t e1000_msix_other(int irq, void *data)
1256 {
1257         struct net_device *netdev = data;
1258         struct e1000_adapter *adapter = netdev_priv(netdev);
1259         struct e1000_hw *hw = &adapter->hw;
1260         u32 icr = er32(ICR);
1261
1262         if (!(icr & E1000_ICR_INT_ASSERTED)) {
1263                 if (!test_bit(__E1000_DOWN, &adapter->state))
1264                         ew32(IMS, E1000_IMS_OTHER);
1265                 return IRQ_NONE;
1266         }
1267
1268         if (icr & adapter->eiac_mask)
1269                 ew32(ICS, (icr & adapter->eiac_mask));
1270
1271         if (icr & E1000_ICR_OTHER) {
1272                 if (!(icr & E1000_ICR_LSC))
1273                         goto no_link_interrupt;
1274                 hw->mac.get_link_status = 1;
1275                 /* guard against interrupt when we're going down */
1276                 if (!test_bit(__E1000_DOWN, &adapter->state))
1277                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1278         }
1279
1280 no_link_interrupt:
1281         if (!test_bit(__E1000_DOWN, &adapter->state))
1282                 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1283
1284         return IRQ_HANDLED;
1285 }
1286
1287
1288 static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
1289 {
1290         struct net_device *netdev = data;
1291         struct e1000_adapter *adapter = netdev_priv(netdev);
1292         struct e1000_hw *hw = &adapter->hw;
1293         struct e1000_ring *tx_ring = adapter->tx_ring;
1294
1295
1296         adapter->total_tx_bytes = 0;
1297         adapter->total_tx_packets = 0;
1298
1299         if (!e1000_clean_tx_irq(adapter))
1300                 /* Ring was not completely cleaned, so fire another interrupt */
1301                 ew32(ICS, tx_ring->ims_val);
1302
1303         return IRQ_HANDLED;
1304 }
1305
1306 static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
1307 {
1308         struct net_device *netdev = data;
1309         struct e1000_adapter *adapter = netdev_priv(netdev);
1310
1311         /* Write the ITR value calculated at the end of the
1312          * previous interrupt.
1313          */
1314         if (adapter->rx_ring->set_itr) {
1315                 writel(1000000000 / (adapter->rx_ring->itr_val * 256),
1316                        adapter->hw.hw_addr + adapter->rx_ring->itr_register);
1317                 adapter->rx_ring->set_itr = 0;
1318         }
1319
1320         if (napi_schedule_prep(&adapter->napi)) {
1321                 adapter->total_rx_bytes = 0;
1322                 adapter->total_rx_packets = 0;
1323                 __napi_schedule(&adapter->napi);
1324         }
1325         return IRQ_HANDLED;
1326 }
1327
1328 /**
1329  * e1000_configure_msix - Configure MSI-X hardware
1330  *
1331  * e1000_configure_msix sets up the hardware to properly
1332  * generate MSI-X interrupts.
1333  **/
1334 static void e1000_configure_msix(struct e1000_adapter *adapter)
1335 {
1336         struct e1000_hw *hw = &adapter->hw;
1337         struct e1000_ring *rx_ring = adapter->rx_ring;
1338         struct e1000_ring *tx_ring = adapter->tx_ring;
1339         int vector = 0;
1340         u32 ctrl_ext, ivar = 0;
1341
1342         adapter->eiac_mask = 0;
1343
1344         /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1345         if (hw->mac.type == e1000_82574) {
1346                 u32 rfctl = er32(RFCTL);
1347                 rfctl |= E1000_RFCTL_ACK_DIS;
1348                 ew32(RFCTL, rfctl);
1349         }
1350
1351 #define E1000_IVAR_INT_ALLOC_VALID      0x8
1352         /* Configure Rx vector */
1353         rx_ring->ims_val = E1000_IMS_RXQ0;
1354         adapter->eiac_mask |= rx_ring->ims_val;
1355         if (rx_ring->itr_val)
1356                 writel(1000000000 / (rx_ring->itr_val * 256),
1357                        hw->hw_addr + rx_ring->itr_register);
1358         else
1359                 writel(1, hw->hw_addr + rx_ring->itr_register);
1360         ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1361
1362         /* Configure Tx vector */
1363         tx_ring->ims_val = E1000_IMS_TXQ0;
1364         vector++;
1365         if (tx_ring->itr_val)
1366                 writel(1000000000 / (tx_ring->itr_val * 256),
1367                        hw->hw_addr + tx_ring->itr_register);
1368         else
1369                 writel(1, hw->hw_addr + tx_ring->itr_register);
1370         adapter->eiac_mask |= tx_ring->ims_val;
1371         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1372
1373         /* set vector for Other Causes, e.g. link changes */
1374         vector++;
1375         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1376         if (rx_ring->itr_val)
1377                 writel(1000000000 / (rx_ring->itr_val * 256),
1378                        hw->hw_addr + E1000_EITR_82574(vector));
1379         else
1380                 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1381
1382         /* Cause Tx interrupts on every write back */
1383         ivar |= (1 << 31);
1384
1385         ew32(IVAR, ivar);
1386
1387         /* enable MSI-X PBA support */
1388         ctrl_ext = er32(CTRL_EXT);
1389         ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
1390
1391         /* Auto-Mask Other interrupts upon ICR read */
1392 #define E1000_EIAC_MASK_82574   0x01F00000
1393         ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
1394         ctrl_ext |= E1000_CTRL_EXT_EIAME;
1395         ew32(CTRL_EXT, ctrl_ext);
1396         e1e_flush();
1397 }
1398
1399 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
1400 {
1401         if (adapter->msix_entries) {
1402                 pci_disable_msix(adapter->pdev);
1403                 kfree(adapter->msix_entries);
1404                 adapter->msix_entries = NULL;
1405         } else if (adapter->flags & FLAG_MSI_ENABLED) {
1406                 pci_disable_msi(adapter->pdev);
1407                 adapter->flags &= ~FLAG_MSI_ENABLED;
1408         }
1409
1410         return;
1411 }
1412
1413 /**
1414  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1415  *
1416  * Attempt to configure interrupts using the best available
1417  * capabilities of the hardware and kernel.
1418  **/
1419 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
1420 {
1421         int err;
1422         int numvecs, i;
1423
1424
1425         switch (adapter->int_mode) {
1426         case E1000E_INT_MODE_MSIX:
1427                 if (adapter->flags & FLAG_HAS_MSIX) {
1428                         numvecs = 3; /* RxQ0, TxQ0 and other */
1429                         adapter->msix_entries = kcalloc(numvecs,
1430                                                       sizeof(struct msix_entry),
1431                                                       GFP_KERNEL);
1432                         if (adapter->msix_entries) {
1433                                 for (i = 0; i < numvecs; i++)
1434                                         adapter->msix_entries[i].entry = i;
1435
1436                                 err = pci_enable_msix(adapter->pdev,
1437                                                       adapter->msix_entries,
1438                                                       numvecs);
1439                                 if (err == 0)
1440                                         return;
1441                         }
1442                         /* MSI-X failed, so fall through and try MSI */
1443                         e_err("Failed to initialize MSI-X interrupts.  "
1444                               "Falling back to MSI interrupts.\n");
1445                         e1000e_reset_interrupt_capability(adapter);
1446                 }
1447                 adapter->int_mode = E1000E_INT_MODE_MSI;
1448                 /* Fall through */
1449         case E1000E_INT_MODE_MSI:
1450                 if (!pci_enable_msi(adapter->pdev)) {
1451                         adapter->flags |= FLAG_MSI_ENABLED;
1452                 } else {
1453                         adapter->int_mode = E1000E_INT_MODE_LEGACY;
1454                         e_err("Failed to initialize MSI interrupts.  Falling "
1455                               "back to legacy interrupts.\n");
1456                 }
1457                 /* Fall through */
1458         case E1000E_INT_MODE_LEGACY:
1459                 /* Don't do anything; this is the system default */
1460                 break;
1461         }
1462
1463         return;
1464 }
1465
1466 /**
1467  * e1000_request_msix - Initialize MSI-X interrupts
1468  *
1469  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1470  * kernel.
1471  **/
1472 static int e1000_request_msix(struct e1000_adapter *adapter)
1473 {
1474         struct net_device *netdev = adapter->netdev;
1475         int err = 0, vector = 0;
1476
1477         if (strlen(netdev->name) < (IFNAMSIZ - 5))
1478                 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1479         else
1480                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1481         err = request_irq(adapter->msix_entries[vector].vector,
1482                           e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1483                           netdev);
1484         if (err)
1485                 goto out;
1486         adapter->rx_ring->itr_register = E1000_EITR_82574(vector);
1487         adapter->rx_ring->itr_val = adapter->itr;
1488         vector++;
1489
1490         if (strlen(netdev->name) < (IFNAMSIZ - 5))
1491                 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1492         else
1493                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1494         err = request_irq(adapter->msix_entries[vector].vector,
1495                           e1000_intr_msix_tx, 0, adapter->tx_ring->name,
1496                           netdev);
1497         if (err)
1498                 goto out;
1499         adapter->tx_ring->itr_register = E1000_EITR_82574(vector);
1500         adapter->tx_ring->itr_val = adapter->itr;
1501         vector++;
1502
1503         err = request_irq(adapter->msix_entries[vector].vector,
1504                           e1000_msix_other, 0, netdev->name, netdev);
1505         if (err)
1506                 goto out;
1507
1508         e1000_configure_msix(adapter);
1509         return 0;
1510 out:
1511         return err;
1512 }
1513
1514 /**
1515  * e1000_request_irq - initialize interrupts
1516  *
1517  * Attempts to configure interrupts using the best available
1518  * capabilities of the hardware and kernel.
1519  **/
1520 static int e1000_request_irq(struct e1000_adapter *adapter)
1521 {
1522         struct net_device *netdev = adapter->netdev;
1523         int err;
1524
1525         if (adapter->msix_entries) {
1526                 err = e1000_request_msix(adapter);
1527                 if (!err)
1528                         return err;
1529                 /* fall back to MSI */
1530                 e1000e_reset_interrupt_capability(adapter);
1531                 adapter->int_mode = E1000E_INT_MODE_MSI;
1532                 e1000e_set_interrupt_capability(adapter);
1533         }
1534         if (adapter->flags & FLAG_MSI_ENABLED) {
1535                 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
1536                                   netdev->name, netdev);
1537                 if (!err)
1538                         return err;
1539
1540                 /* fall back to legacy interrupt */
1541                 e1000e_reset_interrupt_capability(adapter);
1542                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1543         }
1544
1545         err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
1546                           netdev->name, netdev);
1547         if (err)
1548                 e_err("Unable to allocate interrupt, Error: %d\n", err);
1549
1550         return err;
1551 }
1552
1553 static void e1000_free_irq(struct e1000_adapter *adapter)
1554 {
1555         struct net_device *netdev = adapter->netdev;
1556
1557         if (adapter->msix_entries) {
1558                 int vector = 0;
1559
1560                 free_irq(adapter->msix_entries[vector].vector, netdev);
1561                 vector++;
1562
1563                 free_irq(adapter->msix_entries[vector].vector, netdev);
1564                 vector++;
1565
1566                 /* Other Causes interrupt vector */
1567                 free_irq(adapter->msix_entries[vector].vector, netdev);
1568                 return;
1569         }
1570
1571         free_irq(adapter->pdev->irq, netdev);
1572 }
1573
1574 /**
1575  * e1000_irq_disable - Mask off interrupt generation on the NIC
1576  **/
1577 static void e1000_irq_disable(struct e1000_adapter *adapter)
1578 {
1579         struct e1000_hw *hw = &adapter->hw;
1580
1581         ew32(IMC, ~0);
1582         if (adapter->msix_entries)
1583                 ew32(EIAC_82574, 0);
1584         e1e_flush();
1585         synchronize_irq(adapter->pdev->irq);
1586 }
1587
1588 /**
1589  * e1000_irq_enable - Enable default interrupt generation settings
1590  **/
1591 static void e1000_irq_enable(struct e1000_adapter *adapter)
1592 {
1593         struct e1000_hw *hw = &adapter->hw;
1594
1595         if (adapter->msix_entries) {
1596                 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
1597                 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
1598         } else {
1599                 ew32(IMS, IMS_ENABLE_MASK);
1600         }
1601         e1e_flush();
1602 }
1603
1604 /**
1605  * e1000_get_hw_control - get control of the h/w from f/w
1606  * @adapter: address of board private structure
1607  *
1608  * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1609  * For ASF and Pass Through versions of f/w this means that
1610  * the driver is loaded. For AMT version (only with 82573)
1611  * of the f/w this means that the network i/f is open.
1612  **/
1613 static void e1000_get_hw_control(struct e1000_adapter *adapter)
1614 {
1615         struct e1000_hw *hw = &adapter->hw;
1616         u32 ctrl_ext;
1617         u32 swsm;
1618
1619         /* Let firmware know the driver has taken over */
1620         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1621                 swsm = er32(SWSM);
1622                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
1623         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1624                 ctrl_ext = er32(CTRL_EXT);
1625                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1626         }
1627 }
1628
1629 /**
1630  * e1000_release_hw_control - release control of the h/w to f/w
1631  * @adapter: address of board private structure
1632  *
1633  * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1634  * For ASF and Pass Through versions of f/w this means that the
1635  * driver is no longer loaded. For AMT version (only with 82573) i
1636  * of the f/w this means that the network i/f is closed.
1637  *
1638  **/
1639 static void e1000_release_hw_control(struct e1000_adapter *adapter)
1640 {
1641         struct e1000_hw *hw = &adapter->hw;
1642         u32 ctrl_ext;
1643         u32 swsm;
1644
1645         /* Let firmware taken over control of h/w */
1646         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1647                 swsm = er32(SWSM);
1648                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1649         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1650                 ctrl_ext = er32(CTRL_EXT);
1651                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1652         }
1653 }
1654
1655 /**
1656  * @e1000_alloc_ring - allocate memory for a ring structure
1657  **/
1658 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
1659                                 struct e1000_ring *ring)
1660 {
1661         struct pci_dev *pdev = adapter->pdev;
1662
1663         ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
1664                                         GFP_KERNEL);
1665         if (!ring->desc)
1666                 return -ENOMEM;
1667
1668         return 0;
1669 }
1670
1671 /**
1672  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
1673  * @adapter: board private structure
1674  *
1675  * Return 0 on success, negative on failure
1676  **/
1677 int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
1678 {
1679         struct e1000_ring *tx_ring = adapter->tx_ring;
1680         int err = -ENOMEM, size;
1681
1682         size = sizeof(struct e1000_buffer) * tx_ring->count;
1683         tx_ring->buffer_info = vmalloc(size);
1684         if (!tx_ring->buffer_info)
1685                 goto err;
1686         memset(tx_ring->buffer_info, 0, size);
1687
1688         /* round up to nearest 4K */
1689         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1690         tx_ring->size = ALIGN(tx_ring->size, 4096);
1691
1692         err = e1000_alloc_ring_dma(adapter, tx_ring);
1693         if (err)
1694                 goto err;
1695
1696         tx_ring->next_to_use = 0;
1697         tx_ring->next_to_clean = 0;
1698
1699         return 0;
1700 err:
1701         vfree(tx_ring->buffer_info);
1702         e_err("Unable to allocate memory for the transmit descriptor ring\n");
1703         return err;
1704 }
1705
1706 /**
1707  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
1708  * @adapter: board private structure
1709  *
1710  * Returns 0 on success, negative on failure
1711  **/
1712 int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
1713 {
1714         struct e1000_ring *rx_ring = adapter->rx_ring;
1715         struct e1000_buffer *buffer_info;
1716         int i, size, desc_len, err = -ENOMEM;
1717
1718         size = sizeof(struct e1000_buffer) * rx_ring->count;
1719         rx_ring->buffer_info = vmalloc(size);
1720         if (!rx_ring->buffer_info)
1721                 goto err;
1722         memset(rx_ring->buffer_info, 0, size);
1723
1724         for (i = 0; i < rx_ring->count; i++) {
1725                 buffer_info = &rx_ring->buffer_info[i];
1726                 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
1727                                                 sizeof(struct e1000_ps_page),
1728                                                 GFP_KERNEL);
1729                 if (!buffer_info->ps_pages)
1730                         goto err_pages;
1731         }
1732
1733         desc_len = sizeof(union e1000_rx_desc_packet_split);
1734
1735         /* Round up to nearest 4K */
1736         rx_ring->size = rx_ring->count * desc_len;
1737         rx_ring->size = ALIGN(rx_ring->size, 4096);
1738
1739         err = e1000_alloc_ring_dma(adapter, rx_ring);
1740         if (err)
1741                 goto err_pages;
1742
1743         rx_ring->next_to_clean = 0;
1744         rx_ring->next_to_use = 0;
1745         rx_ring->rx_skb_top = NULL;
1746
1747         return 0;
1748
1749 err_pages:
1750         for (i = 0; i < rx_ring->count; i++) {
1751                 buffer_info = &rx_ring->buffer_info[i];
1752                 kfree(buffer_info->ps_pages);
1753         }
1754 err:
1755         vfree(rx_ring->buffer_info);
1756         e_err("Unable to allocate memory for the transmit descriptor ring\n");
1757         return err;
1758 }
1759
1760 /**
1761  * e1000_clean_tx_ring - Free Tx Buffers
1762  * @adapter: board private structure
1763  **/
1764 static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
1765 {
1766         struct e1000_ring *tx_ring = adapter->tx_ring;
1767         struct e1000_buffer *buffer_info;
1768         unsigned long size;
1769         unsigned int i;
1770
1771         for (i = 0; i < tx_ring->count; i++) {
1772                 buffer_info = &tx_ring->buffer_info[i];
1773                 e1000_put_txbuf(adapter, buffer_info);
1774         }
1775
1776         size = sizeof(struct e1000_buffer) * tx_ring->count;
1777         memset(tx_ring->buffer_info, 0, size);
1778
1779         memset(tx_ring->desc, 0, tx_ring->size);
1780
1781         tx_ring->next_to_use = 0;
1782         tx_ring->next_to_clean = 0;
1783
1784         writel(0, adapter->hw.hw_addr + tx_ring->head);
1785         writel(0, adapter->hw.hw_addr + tx_ring->tail);
1786 }
1787
1788 /**
1789  * e1000e_free_tx_resources - Free Tx Resources per Queue
1790  * @adapter: board private structure
1791  *
1792  * Free all transmit software resources
1793  **/
1794 void e1000e_free_tx_resources(struct e1000_adapter *adapter)
1795 {
1796         struct pci_dev *pdev = adapter->pdev;
1797         struct e1000_ring *tx_ring = adapter->tx_ring;
1798
1799         e1000_clean_tx_ring(adapter);
1800
1801         vfree(tx_ring->buffer_info);
1802         tx_ring->buffer_info = NULL;
1803
1804         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1805                           tx_ring->dma);
1806         tx_ring->desc = NULL;
1807 }
1808
1809 /**
1810  * e1000e_free_rx_resources - Free Rx Resources
1811  * @adapter: board private structure
1812  *
1813  * Free all receive software resources
1814  **/
1815
1816 void e1000e_free_rx_resources(struct e1000_adapter *adapter)
1817 {
1818         struct pci_dev *pdev = adapter->pdev;
1819         struct e1000_ring *rx_ring = adapter->rx_ring;
1820         int i;
1821
1822         e1000_clean_rx_ring(adapter);
1823
1824         for (i = 0; i < rx_ring->count; i++) {
1825                 kfree(rx_ring->buffer_info[i].ps_pages);
1826         }
1827
1828         vfree(rx_ring->buffer_info);
1829         rx_ring->buffer_info = NULL;
1830
1831         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1832                           rx_ring->dma);
1833         rx_ring->desc = NULL;
1834 }
1835
1836 /**
1837  * e1000_update_itr - update the dynamic ITR value based on statistics
1838  * @adapter: pointer to adapter
1839  * @itr_setting: current adapter->itr
1840  * @packets: the number of packets during this measurement interval
1841  * @bytes: the number of bytes during this measurement interval
1842  *
1843  *      Stores a new ITR value based on packets and byte
1844  *      counts during the last interrupt.  The advantage of per interrupt
1845  *      computation is faster updates and more accurate ITR for the current
1846  *      traffic pattern.  Constants in this function were computed
1847  *      based on theoretical maximum wire speed and thresholds were set based
1848  *      on testing data as well as attempting to minimize response time
1849  *      while increasing bulk throughput.  This functionality is controlled
1850  *      by the InterruptThrottleRate module parameter.
1851  **/
1852 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
1853                                      u16 itr_setting, int packets,
1854                                      int bytes)
1855 {
1856         unsigned int retval = itr_setting;
1857
1858         if (packets == 0)
1859                 goto update_itr_done;
1860
1861         switch (itr_setting) {
1862         case lowest_latency:
1863                 /* handle TSO and jumbo frames */
1864                 if (bytes/packets > 8000)
1865                         retval = bulk_latency;
1866                 else if ((packets < 5) && (bytes > 512)) {
1867                         retval = low_latency;
1868                 }
1869                 break;
1870         case low_latency:  /* 50 usec aka 20000 ints/s */
1871                 if (bytes > 10000) {
1872                         /* this if handles the TSO accounting */
1873                         if (bytes/packets > 8000) {
1874                                 retval = bulk_latency;
1875                         } else if ((packets < 10) || ((bytes/packets) > 1200)) {
1876                                 retval = bulk_latency;
1877                         } else if ((packets > 35)) {
1878                                 retval = lowest_latency;
1879                         }
1880                 } else if (bytes/packets > 2000) {
1881                         retval = bulk_latency;
1882                 } else if (packets <= 2 && bytes < 512) {
1883                         retval = lowest_latency;
1884                 }
1885                 break;
1886         case bulk_latency: /* 250 usec aka 4000 ints/s */
1887                 if (bytes > 25000) {
1888                         if (packets > 35) {
1889                                 retval = low_latency;
1890                         }
1891                 } else if (bytes < 6000) {
1892                         retval = low_latency;
1893                 }
1894                 break;
1895         }
1896
1897 update_itr_done:
1898         return retval;
1899 }
1900
1901 static void e1000_set_itr(struct e1000_adapter *adapter)
1902 {
1903         struct e1000_hw *hw = &adapter->hw;
1904         u16 current_itr;
1905         u32 new_itr = adapter->itr;
1906
1907         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
1908         if (adapter->link_speed != SPEED_1000) {
1909                 current_itr = 0;
1910                 new_itr = 4000;
1911                 goto set_itr_now;
1912         }
1913
1914         adapter->tx_itr = e1000_update_itr(adapter,
1915                                     adapter->tx_itr,
1916                                     adapter->total_tx_packets,
1917                                     adapter->total_tx_bytes);
1918         /* conservative mode (itr 3) eliminates the lowest_latency setting */
1919         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
1920                 adapter->tx_itr = low_latency;
1921
1922         adapter->rx_itr = e1000_update_itr(adapter,
1923                                     adapter->rx_itr,
1924                                     adapter->total_rx_packets,
1925                                     adapter->total_rx_bytes);
1926         /* conservative mode (itr 3) eliminates the lowest_latency setting */
1927         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
1928                 adapter->rx_itr = low_latency;
1929
1930         current_itr = max(adapter->rx_itr, adapter->tx_itr);
1931
1932         switch (current_itr) {
1933         /* counts and packets in update_itr are dependent on these numbers */
1934         case lowest_latency:
1935                 new_itr = 70000;
1936                 break;
1937         case low_latency:
1938                 new_itr = 20000; /* aka hwitr = ~200 */
1939                 break;
1940         case bulk_latency:
1941                 new_itr = 4000;
1942                 break;
1943         default:
1944                 break;
1945         }
1946
1947 set_itr_now:
1948         if (new_itr != adapter->itr) {
1949                 /*
1950                  * this attempts to bias the interrupt rate towards Bulk
1951                  * by adding intermediate steps when interrupt rate is
1952                  * increasing
1953                  */
1954                 new_itr = new_itr > adapter->itr ?
1955                              min(adapter->itr + (new_itr >> 2), new_itr) :
1956                              new_itr;
1957                 adapter->itr = new_itr;
1958                 adapter->rx_ring->itr_val = new_itr;
1959                 if (adapter->msix_entries)
1960                         adapter->rx_ring->set_itr = 1;
1961                 else
1962                         ew32(ITR, 1000000000 / (new_itr * 256));
1963         }
1964 }
1965
1966 /**
1967  * e1000_alloc_queues - Allocate memory for all rings
1968  * @adapter: board private structure to initialize
1969  **/
1970 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1971 {
1972         adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
1973         if (!adapter->tx_ring)
1974                 goto err;
1975
1976         adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
1977         if (!adapter->rx_ring)
1978                 goto err;
1979
1980         return 0;
1981 err:
1982         e_err("Unable to allocate memory for queues\n");
1983         kfree(adapter->rx_ring);
1984         kfree(adapter->tx_ring);
1985         return -ENOMEM;
1986 }
1987
1988 /**
1989  * e1000_clean - NAPI Rx polling callback
1990  * @napi: struct associated with this polling callback
1991  * @budget: amount of packets driver is allowed to process this poll
1992  **/
1993 static int e1000_clean(struct napi_struct *napi, int budget)
1994 {
1995         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
1996         struct e1000_hw *hw = &adapter->hw;
1997         struct net_device *poll_dev = adapter->netdev;
1998         int tx_cleaned = 1, work_done = 0;
1999
2000         adapter = netdev_priv(poll_dev);
2001
2002         if (adapter->msix_entries &&
2003             !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2004                 goto clean_rx;
2005
2006         tx_cleaned = e1000_clean_tx_irq(adapter);
2007
2008 clean_rx:
2009         adapter->clean_rx(adapter, &work_done, budget);
2010
2011         if (!tx_cleaned)
2012                 work_done = budget;
2013
2014         /* If budget not fully consumed, exit the polling mode */
2015         if (work_done < budget) {
2016                 if (adapter->itr_setting & 3)
2017                         e1000_set_itr(adapter);
2018                 napi_complete(napi);
2019                 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2020                         if (adapter->msix_entries)
2021                                 ew32(IMS, adapter->rx_ring->ims_val);
2022                         else
2023                                 e1000_irq_enable(adapter);
2024                 }
2025         }
2026
2027         return work_done;
2028 }
2029
2030 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2031 {
2032         struct e1000_adapter *adapter = netdev_priv(netdev);
2033         struct e1000_hw *hw = &adapter->hw;
2034         u32 vfta, index;
2035
2036         /* don't update vlan cookie if already programmed */
2037         if ((adapter->hw.mng_cookie.status &
2038              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2039             (vid == adapter->mng_vlan_id))
2040                 return;
2041
2042         /* add VID to filter table */
2043         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2044                 index = (vid >> 5) & 0x7F;
2045                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2046                 vfta |= (1 << (vid & 0x1F));
2047                 hw->mac.ops.write_vfta(hw, index, vfta);
2048         }
2049 }
2050
2051 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2052 {
2053         struct e1000_adapter *adapter = netdev_priv(netdev);
2054         struct e1000_hw *hw = &adapter->hw;
2055         u32 vfta, index;
2056
2057         if (!test_bit(__E1000_DOWN, &adapter->state))
2058                 e1000_irq_disable(adapter);
2059         vlan_group_set_device(adapter->vlgrp, vid, NULL);
2060
2061         if (!test_bit(__E1000_DOWN, &adapter->state))
2062                 e1000_irq_enable(adapter);
2063
2064         if ((adapter->hw.mng_cookie.status &
2065              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2066             (vid == adapter->mng_vlan_id)) {
2067                 /* release control to f/w */
2068                 e1000_release_hw_control(adapter);
2069                 return;
2070         }
2071
2072         /* remove VID from filter table */
2073         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2074                 index = (vid >> 5) & 0x7F;
2075                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2076                 vfta &= ~(1 << (vid & 0x1F));
2077                 hw->mac.ops.write_vfta(hw, index, vfta);
2078         }
2079 }
2080
2081 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2082 {
2083         struct net_device *netdev = adapter->netdev;
2084         u16 vid = adapter->hw.mng_cookie.vlan_id;
2085         u16 old_vid = adapter->mng_vlan_id;
2086
2087         if (!adapter->vlgrp)
2088                 return;
2089
2090         if (!vlan_group_get_device(adapter->vlgrp, vid)) {
2091                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2092                 if (adapter->hw.mng_cookie.status &
2093                         E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2094                         e1000_vlan_rx_add_vid(netdev, vid);
2095                         adapter->mng_vlan_id = vid;
2096                 }
2097
2098                 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
2099                                 (vid != old_vid) &&
2100                     !vlan_group_get_device(adapter->vlgrp, old_vid))
2101                         e1000_vlan_rx_kill_vid(netdev, old_vid);
2102         } else {
2103                 adapter->mng_vlan_id = vid;
2104         }
2105 }
2106
2107
2108 static void e1000_vlan_rx_register(struct net_device *netdev,
2109                                    struct vlan_group *grp)
2110 {
2111         struct e1000_adapter *adapter = netdev_priv(netdev);
2112         struct e1000_hw *hw = &adapter->hw;
2113         u32 ctrl, rctl;
2114
2115         if (!test_bit(__E1000_DOWN, &adapter->state))
2116                 e1000_irq_disable(adapter);
2117         adapter->vlgrp = grp;
2118
2119         if (grp) {
2120                 /* enable VLAN tag insert/strip */
2121                 ctrl = er32(CTRL);
2122                 ctrl |= E1000_CTRL_VME;
2123                 ew32(CTRL, ctrl);
2124
2125                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2126                         /* enable VLAN receive filtering */
2127                         rctl = er32(RCTL);
2128                         rctl &= ~E1000_RCTL_CFIEN;
2129                         ew32(RCTL, rctl);
2130                         e1000_update_mng_vlan(adapter);
2131                 }
2132         } else {
2133                 /* disable VLAN tag insert/strip */
2134                 ctrl = er32(CTRL);
2135                 ctrl &= ~E1000_CTRL_VME;
2136                 ew32(CTRL, ctrl);
2137
2138                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2139                         if (adapter->mng_vlan_id !=
2140                             (u16)E1000_MNG_VLAN_NONE) {
2141                                 e1000_vlan_rx_kill_vid(netdev,
2142                                                        adapter->mng_vlan_id);
2143                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2144                         }
2145                 }
2146         }
2147
2148         if (!test_bit(__E1000_DOWN, &adapter->state))
2149                 e1000_irq_enable(adapter);
2150 }
2151
2152 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2153 {
2154         u16 vid;
2155
2156         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
2157
2158         if (!adapter->vlgrp)
2159                 return;
2160
2161         for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
2162                 if (!vlan_group_get_device(adapter->vlgrp, vid))
2163                         continue;
2164                 e1000_vlan_rx_add_vid(adapter->netdev, vid);
2165         }
2166 }
2167
2168 static void e1000_init_manageability(struct e1000_adapter *adapter)
2169 {
2170         struct e1000_hw *hw = &adapter->hw;
2171         u32 manc, manc2h;
2172
2173         if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2174                 return;
2175
2176         manc = er32(MANC);
2177
2178         /*
2179          * enable receiving management packets to the host. this will probably
2180          * generate destination unreachable messages from the host OS, but
2181          * the packets will be handled on SMBUS
2182          */
2183         manc |= E1000_MANC_EN_MNG2HOST;
2184         manc2h = er32(MANC2H);
2185 #define E1000_MNG2HOST_PORT_623 (1 << 5)
2186 #define E1000_MNG2HOST_PORT_664 (1 << 6)
2187         manc2h |= E1000_MNG2HOST_PORT_623;
2188         manc2h |= E1000_MNG2HOST_PORT_664;
2189         ew32(MANC2H, manc2h);
2190         ew32(MANC, manc);
2191 }
2192
2193 /**
2194  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
2195  * @adapter: board private structure
2196  *
2197  * Configure the Tx unit of the MAC after a reset.
2198  **/
2199 static void e1000_configure_tx(struct e1000_adapter *adapter)
2200 {
2201         struct e1000_hw *hw = &adapter->hw;
2202         struct e1000_ring *tx_ring = adapter->tx_ring;
2203         u64 tdba;
2204         u32 tdlen, tctl, tipg, tarc;
2205         u32 ipgr1, ipgr2;
2206
2207         /* Setup the HW Tx Head and Tail descriptor pointers */
2208         tdba = tx_ring->dma;
2209         tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2210         ew32(TDBAL, (tdba & DMA_BIT_MASK(32)));
2211         ew32(TDBAH, (tdba >> 32));
2212         ew32(TDLEN, tdlen);
2213         ew32(TDH, 0);
2214         ew32(TDT, 0);
2215         tx_ring->head = E1000_TDH;
2216         tx_ring->tail = E1000_TDT;
2217
2218         /* Set the default values for the Tx Inter Packet Gap timer */
2219         tipg = DEFAULT_82543_TIPG_IPGT_COPPER;          /*  8  */
2220         ipgr1 = DEFAULT_82543_TIPG_IPGR1;               /*  8  */
2221         ipgr2 = DEFAULT_82543_TIPG_IPGR2;               /*  6  */
2222
2223         if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
2224                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /*  7  */
2225
2226         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
2227         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
2228         ew32(TIPG, tipg);
2229
2230         /* Set the Tx Interrupt Delay register */
2231         ew32(TIDV, adapter->tx_int_delay);
2232         /* Tx irq moderation */
2233         ew32(TADV, adapter->tx_abs_int_delay);
2234
2235         /* Program the Transmit Control Register */
2236         tctl = er32(TCTL);
2237         tctl &= ~E1000_TCTL_CT;
2238         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2239                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2240
2241         if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2242                 tarc = er32(TARC(0));
2243                 /*
2244                  * set the speed mode bit, we'll clear it if we're not at
2245                  * gigabit link later
2246                  */
2247 #define SPEED_MODE_BIT (1 << 21)
2248                 tarc |= SPEED_MODE_BIT;
2249                 ew32(TARC(0), tarc);
2250         }
2251
2252         /* errata: program both queues to unweighted RR */
2253         if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2254                 tarc = er32(TARC(0));
2255                 tarc |= 1;
2256                 ew32(TARC(0), tarc);
2257                 tarc = er32(TARC(1));
2258                 tarc |= 1;
2259                 ew32(TARC(1), tarc);
2260         }
2261
2262         /* Setup Transmit Descriptor Settings for eop descriptor */
2263         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2264
2265         /* only set IDE if we are delaying interrupts using the timers */
2266         if (adapter->tx_int_delay)
2267                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2268
2269         /* enable Report Status bit */
2270         adapter->txd_cmd |= E1000_TXD_CMD_RS;
2271
2272         ew32(TCTL, tctl);
2273
2274         e1000e_config_collision_dist(hw);
2275
2276         adapter->tx_queue_len = adapter->netdev->tx_queue_len;
2277 }
2278
2279 /**
2280  * e1000_setup_rctl - configure the receive control registers
2281  * @adapter: Board private structure
2282  **/
2283 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2284                            (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2285 static void e1000_setup_rctl(struct e1000_adapter *adapter)
2286 {
2287         struct e1000_hw *hw = &adapter->hw;
2288         u32 rctl, rfctl;
2289         u32 psrctl = 0;
2290         u32 pages = 0;
2291
2292         /* Program MC offset vector base */
2293         rctl = er32(RCTL);
2294         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2295         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2296                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2297                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2298
2299         /* Do not Store bad packets */
2300         rctl &= ~E1000_RCTL_SBP;
2301
2302         /* Enable Long Packet receive */
2303         if (adapter->netdev->mtu <= ETH_DATA_LEN)
2304                 rctl &= ~E1000_RCTL_LPE;
2305         else
2306                 rctl |= E1000_RCTL_LPE;
2307
2308         /* Some systems expect that the CRC is included in SMBUS traffic. The
2309          * hardware strips the CRC before sending to both SMBUS (BMC) and to
2310          * host memory when this is enabled
2311          */
2312         if (adapter->flags2 & FLAG2_CRC_STRIPPING)
2313                 rctl |= E1000_RCTL_SECRC;
2314
2315         /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
2316         if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
2317                 u16 phy_data;
2318
2319                 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
2320                 phy_data &= 0xfff8;
2321                 phy_data |= (1 << 2);
2322                 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
2323
2324                 e1e_rphy(hw, 22, &phy_data);
2325                 phy_data &= 0x0fff;
2326                 phy_data |= (1 << 14);
2327                 e1e_wphy(hw, 0x10, 0x2823);
2328                 e1e_wphy(hw, 0x11, 0x0003);
2329                 e1e_wphy(hw, 22, phy_data);
2330         }
2331
2332         /* Setup buffer sizes */
2333         rctl &= ~E1000_RCTL_SZ_4096;
2334         rctl |= E1000_RCTL_BSEX;
2335         switch (adapter->rx_buffer_len) {
2336         case 256:
2337                 rctl |= E1000_RCTL_SZ_256;
2338                 rctl &= ~E1000_RCTL_BSEX;
2339                 break;
2340         case 512:
2341                 rctl |= E1000_RCTL_SZ_512;
2342                 rctl &= ~E1000_RCTL_BSEX;
2343                 break;
2344         case 1024:
2345                 rctl |= E1000_RCTL_SZ_1024;
2346                 rctl &= ~E1000_RCTL_BSEX;
2347                 break;
2348         case 2048:
2349         default:
2350                 rctl |= E1000_RCTL_SZ_2048;
2351                 rctl &= ~E1000_RCTL_BSEX;
2352                 break;
2353         case 4096:
2354                 rctl |= E1000_RCTL_SZ_4096;
2355                 break;
2356         case 8192:
2357                 rctl |= E1000_RCTL_SZ_8192;
2358                 break;
2359         case 16384:
2360                 rctl |= E1000_RCTL_SZ_16384;
2361                 break;
2362         }
2363
2364         /*
2365          * 82571 and greater support packet-split where the protocol
2366          * header is placed in skb->data and the packet data is
2367          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2368          * In the case of a non-split, skb->data is linearly filled,
2369          * followed by the page buffers.  Therefore, skb->data is
2370          * sized to hold the largest protocol header.
2371          *
2372          * allocations using alloc_page take too long for regular MTU
2373          * so only enable packet split for jumbo frames
2374          *
2375          * Using pages when the page size is greater than 16k wastes
2376          * a lot of memory, since we allocate 3 pages at all times
2377          * per packet.
2378          */
2379         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2380         if (!(adapter->flags & FLAG_IS_ICH) && (pages <= 3) &&
2381             (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2382                 adapter->rx_ps_pages = pages;
2383         else
2384                 adapter->rx_ps_pages = 0;
2385
2386         if (adapter->rx_ps_pages) {
2387                 /* Configure extra packet-split registers */
2388                 rfctl = er32(RFCTL);
2389                 rfctl |= E1000_RFCTL_EXTEN;
2390                 /*
2391                  * disable packet split support for IPv6 extension headers,
2392                  * because some malformed IPv6 headers can hang the Rx
2393                  */
2394                 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
2395                           E1000_RFCTL_NEW_IPV6_EXT_DIS);
2396
2397                 ew32(RFCTL, rfctl);
2398
2399                 /* Enable Packet split descriptors */
2400                 rctl |= E1000_RCTL_DTYP_PS;
2401
2402                 psrctl |= adapter->rx_ps_bsize0 >>
2403                         E1000_PSRCTL_BSIZE0_SHIFT;
2404
2405                 switch (adapter->rx_ps_pages) {
2406                 case 3:
2407                         psrctl |= PAGE_SIZE <<
2408                                 E1000_PSRCTL_BSIZE3_SHIFT;
2409                 case 2:
2410                         psrctl |= PAGE_SIZE <<
2411                                 E1000_PSRCTL_BSIZE2_SHIFT;
2412                 case 1:
2413                         psrctl |= PAGE_SIZE >>
2414                                 E1000_PSRCTL_BSIZE1_SHIFT;
2415                         break;
2416                 }
2417
2418                 ew32(PSRCTL, psrctl);
2419         }
2420
2421         ew32(RCTL, rctl);
2422         /* just started the receive unit, no need to restart */
2423         adapter->flags &= ~FLAG_RX_RESTART_NOW;
2424 }
2425
2426 /**
2427  * e1000_configure_rx - Configure Receive Unit after Reset
2428  * @adapter: board private structure
2429  *
2430  * Configure the Rx unit of the MAC after a reset.
2431  **/
2432 static void e1000_configure_rx(struct e1000_adapter *adapter)
2433 {
2434         struct e1000_hw *hw = &adapter->hw;
2435         struct e1000_ring *rx_ring = adapter->rx_ring;
2436         u64 rdba;
2437         u32 rdlen, rctl, rxcsum, ctrl_ext;
2438
2439         if (adapter->rx_ps_pages) {
2440                 /* this is a 32 byte descriptor */
2441                 rdlen = rx_ring->count *
2442                         sizeof(union e1000_rx_desc_packet_split);
2443                 adapter->clean_rx = e1000_clean_rx_irq_ps;
2444                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2445         } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
2446                 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2447                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
2448                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
2449         } else {
2450                 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2451                 adapter->clean_rx = e1000_clean_rx_irq;
2452                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2453         }
2454
2455         /* disable receives while setting up the descriptors */
2456         rctl = er32(RCTL);
2457         ew32(RCTL, rctl & ~E1000_RCTL_EN);
2458         e1e_flush();
2459         msleep(10);
2460
2461         /* set the Receive Delay Timer Register */
2462         ew32(RDTR, adapter->rx_int_delay);
2463
2464         /* irq moderation */
2465         ew32(RADV, adapter->rx_abs_int_delay);
2466         if (adapter->itr_setting != 0)
2467                 ew32(ITR, 1000000000 / (adapter->itr * 256));
2468
2469         ctrl_ext = er32(CTRL_EXT);
2470         /* Auto-Mask interrupts upon ICR access */
2471         ctrl_ext |= E1000_CTRL_EXT_IAME;
2472         ew32(IAM, 0xffffffff);
2473         ew32(CTRL_EXT, ctrl_ext);
2474         e1e_flush();
2475
2476         /*
2477          * Setup the HW Rx Head and Tail Descriptor Pointers and
2478          * the Base and Length of the Rx Descriptor Ring
2479          */
2480         rdba = rx_ring->dma;
2481         ew32(RDBAL, (rdba & DMA_BIT_MASK(32)));
2482         ew32(RDBAH, (rdba >> 32));
2483         ew32(RDLEN, rdlen);
2484         ew32(RDH, 0);
2485         ew32(RDT, 0);
2486         rx_ring->head = E1000_RDH;
2487         rx_ring->tail = E1000_RDT;
2488
2489         /* Enable Receive Checksum Offload for TCP and UDP */
2490         rxcsum = er32(RXCSUM);
2491         if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
2492                 rxcsum |= E1000_RXCSUM_TUOFL;
2493
2494                 /*
2495                  * IPv4 payload checksum for UDP fragments must be
2496                  * used in conjunction with packet-split.
2497                  */
2498                 if (adapter->rx_ps_pages)
2499                         rxcsum |= E1000_RXCSUM_IPPCSE;
2500         } else {
2501                 rxcsum &= ~E1000_RXCSUM_TUOFL;
2502                 /* no need to clear IPPCSE as it defaults to 0 */
2503         }
2504         ew32(RXCSUM, rxcsum);
2505
2506         /*
2507          * Enable early receives on supported devices, only takes effect when
2508          * packet size is equal or larger than the specified value (in 8 byte
2509          * units), e.g. using jumbo frames when setting to E1000_ERT_2048
2510          */
2511         if (adapter->flags & FLAG_HAS_ERT) {
2512                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
2513                         u32 rxdctl = er32(RXDCTL(0));
2514                         ew32(RXDCTL(0), rxdctl | 0x3);
2515                         ew32(ERT, E1000_ERT_2048 | (1 << 13));
2516                         /*
2517                          * With jumbo frames and early-receive enabled,
2518                          * excessive C-state transition latencies result in
2519                          * dropped transactions.
2520                          */
2521                         pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2522                                                   adapter->netdev->name, 55);
2523                 } else {
2524                         pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2525                                                   adapter->netdev->name,
2526                                                   PM_QOS_DEFAULT_VALUE);
2527                 }
2528         }
2529
2530         /* Enable Receives */
2531         ew32(RCTL, rctl);
2532 }
2533
2534 /**
2535  *  e1000_update_mc_addr_list - Update Multicast addresses
2536  *  @hw: pointer to the HW structure
2537  *  @mc_addr_list: array of multicast addresses to program
2538  *  @mc_addr_count: number of multicast addresses to program
2539  *  @rar_used_count: the first RAR register free to program
2540  *  @rar_count: total number of supported Receive Address Registers
2541  *
2542  *  Updates the Receive Address Registers and Multicast Table Array.
2543  *  The caller must have a packed mc_addr_list of multicast addresses.
2544  *  The parameter rar_count will usually be hw->mac.rar_entry_count
2545  *  unless there are workarounds that change this.  Currently no func pointer
2546  *  exists and all implementations are handled in the generic version of this
2547  *  function.
2548  **/
2549 static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
2550                                       u32 mc_addr_count, u32 rar_used_count,
2551                                       u32 rar_count)
2552 {
2553         hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count,
2554                                         rar_used_count, rar_count);
2555 }
2556
2557 /**
2558  * e1000_set_multi - Multicast and Promiscuous mode set
2559  * @netdev: network interface device structure
2560  *
2561  * The set_multi entry point is called whenever the multicast address
2562  * list or the network interface flags are updated.  This routine is
2563  * responsible for configuring the hardware for proper multicast,
2564  * promiscuous mode, and all-multi behavior.
2565  **/
2566 static void e1000_set_multi(struct net_device *netdev)
2567 {
2568         struct e1000_adapter *adapter = netdev_priv(netdev);
2569         struct e1000_hw *hw = &adapter->hw;
2570         struct e1000_mac_info *mac = &hw->mac;
2571         struct dev_mc_list *mc_ptr;
2572         u8  *mta_list;
2573         u32 rctl;
2574         int i;
2575
2576         /* Check for Promiscuous and All Multicast modes */
2577
2578         rctl = er32(RCTL);
2579
2580         if (netdev->flags & IFF_PROMISC) {
2581                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2582                 rctl &= ~E1000_RCTL_VFE;
2583         } else {
2584                 if (netdev->flags & IFF_ALLMULTI) {
2585                         rctl |= E1000_RCTL_MPE;
2586                         rctl &= ~E1000_RCTL_UPE;
2587                 } else {
2588                         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2589                 }
2590                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
2591                         rctl |= E1000_RCTL_VFE;
2592         }
2593
2594         ew32(RCTL, rctl);
2595
2596         if (netdev->mc_count) {
2597                 mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC);
2598                 if (!mta_list)
2599                         return;
2600
2601                 /* prepare a packed array of only addresses. */
2602                 mc_ptr = netdev->mc_list;
2603
2604                 for (i = 0; i < netdev->mc_count; i++) {
2605                         if (!mc_ptr)
2606                                 break;
2607                         memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr,
2608                                ETH_ALEN);
2609                         mc_ptr = mc_ptr->next;
2610                 }
2611
2612                 e1000_update_mc_addr_list(hw, mta_list, i, 1,
2613                                           mac->rar_entry_count);
2614                 kfree(mta_list);
2615         } else {
2616                 /*
2617                  * if we're called from probe, we might not have
2618                  * anything to do here, so clear out the list
2619                  */
2620                 e1000_update_mc_addr_list(hw, NULL, 0, 1, mac->rar_entry_count);
2621         }
2622 }
2623
2624 /**
2625  * e1000_configure - configure the hardware for Rx and Tx
2626  * @adapter: private board structure
2627  **/
2628 static void e1000_configure(struct e1000_adapter *adapter)
2629 {
2630         e1000_set_multi(adapter->netdev);
2631
2632         e1000_restore_vlan(adapter);
2633         e1000_init_manageability(adapter);
2634
2635         e1000_configure_tx(adapter);
2636         e1000_setup_rctl(adapter);
2637         e1000_configure_rx(adapter);
2638         adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring));
2639 }
2640
2641 /**
2642  * e1000e_power_up_phy - restore link in case the phy was powered down
2643  * @adapter: address of board private structure
2644  *
2645  * The phy may be powered down to save power and turn off link when the
2646  * driver is unloaded and wake on lan is not enabled (among others)
2647  * *** this routine MUST be followed by a call to e1000e_reset ***
2648  **/
2649 void e1000e_power_up_phy(struct e1000_adapter *adapter)
2650 {
2651         if (adapter->hw.phy.ops.power_up)
2652                 adapter->hw.phy.ops.power_up(&adapter->hw);
2653
2654         adapter->hw.mac.ops.setup_link(&adapter->hw);
2655 }
2656
2657 /**
2658  * e1000_power_down_phy - Power down the PHY
2659  *
2660  * Power down the PHY so no link is implied when interface is down.
2661  * The PHY cannot be powered down if management or WoL is active.
2662  */
2663 static void e1000_power_down_phy(struct e1000_adapter *adapter)
2664 {
2665         /* WoL is enabled */
2666         if (adapter->wol)
2667                 return;
2668
2669         if (adapter->hw.phy.ops.power_down)
2670                 adapter->hw.phy.ops.power_down(&adapter->hw);
2671 }
2672
2673 /**
2674  * e1000e_reset - bring the hardware into a known good state
2675  *
2676  * This function boots the hardware and enables some settings that
2677  * require a configuration cycle of the hardware - those cannot be
2678  * set/changed during runtime. After reset the device needs to be
2679  * properly configured for Rx, Tx etc.
2680  */
2681 void e1000e_reset(struct e1000_adapter *adapter)
2682 {
2683         struct e1000_mac_info *mac = &adapter->hw.mac;
2684         struct e1000_fc_info *fc = &adapter->hw.fc;
2685         struct e1000_hw *hw = &adapter->hw;
2686         u32 tx_space, min_tx_space, min_rx_space;
2687         u32 pba = adapter->pba;
2688         u16 hwm;
2689
2690         /* reset Packet Buffer Allocation to default */
2691         ew32(PBA, pba);
2692
2693         if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
2694                 /*
2695                  * To maintain wire speed transmits, the Tx FIFO should be
2696                  * large enough to accommodate two full transmit packets,
2697                  * rounded up to the next 1KB and expressed in KB.  Likewise,
2698                  * the Rx FIFO should be large enough to accommodate at least
2699                  * one full receive packet and is similarly rounded up and
2700                  * expressed in KB.
2701                  */
2702                 pba = er32(PBA);
2703                 /* upper 16 bits has Tx packet buffer allocation size in KB */
2704                 tx_space = pba >> 16;
2705                 /* lower 16 bits has Rx packet buffer allocation size in KB */
2706                 pba &= 0xffff;
2707                 /*
2708                  * the Tx fifo also stores 16 bytes of information about the tx
2709                  * but don't include ethernet FCS because hardware appends it
2710                  */
2711                 min_tx_space = (adapter->max_frame_size +
2712                                 sizeof(struct e1000_tx_desc) -
2713                                 ETH_FCS_LEN) * 2;
2714                 min_tx_space = ALIGN(min_tx_space, 1024);
2715                 min_tx_space >>= 10;
2716                 /* software strips receive CRC, so leave room for it */
2717                 min_rx_space = adapter->max_frame_size;
2718                 min_rx_space = ALIGN(min_rx_space, 1024);
2719                 min_rx_space >>= 10;
2720
2721                 /*
2722                  * If current Tx allocation is less than the min Tx FIFO size,
2723                  * and the min Tx FIFO size is less than the current Rx FIFO
2724                  * allocation, take space away from current Rx allocation
2725                  */
2726                 if ((tx_space < min_tx_space) &&
2727                     ((min_tx_space - tx_space) < pba)) {
2728                         pba -= min_tx_space - tx_space;
2729
2730                         /*
2731                          * if short on Rx space, Rx wins and must trump tx
2732                          * adjustment or use Early Receive if available
2733                          */
2734                         if ((pba < min_rx_space) &&
2735                             (!(adapter->flags & FLAG_HAS_ERT)))
2736                                 /* ERT enabled in e1000_configure_rx */
2737                                 pba = min_rx_space;
2738                 }
2739
2740                 ew32(PBA, pba);
2741         }
2742
2743
2744         /*
2745          * flow control settings
2746          *
2747          * The high water mark must be low enough to fit one full frame
2748          * (or the size used for early receive) above it in the Rx FIFO.
2749          * Set it to the lower of:
2750          * - 90% of the Rx FIFO size, and
2751          * - the full Rx FIFO size minus the early receive size (for parts
2752          *   with ERT support assuming ERT set to E1000_ERT_2048), or
2753          * - the full Rx FIFO size minus one full frame
2754          */
2755         if (hw->mac.type == e1000_pchlan) {
2756                 /*
2757                  * Workaround PCH LOM adapter hangs with certain network
2758                  * loads.  If hangs persist, try disabling Tx flow control.
2759                  */
2760                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
2761                         fc->high_water = 0x3500;
2762                         fc->low_water  = 0x1500;
2763                 } else {
2764                         fc->high_water = 0x5000;
2765                         fc->low_water  = 0x3000;
2766                 }
2767         } else {
2768                 if ((adapter->flags & FLAG_HAS_ERT) &&
2769                     (adapter->netdev->mtu > ETH_DATA_LEN))
2770                         hwm = min(((pba << 10) * 9 / 10),
2771                                   ((pba << 10) - (E1000_ERT_2048 << 3)));
2772                 else
2773                         hwm = min(((pba << 10) * 9 / 10),
2774                                   ((pba << 10) - adapter->max_frame_size));
2775
2776                 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
2777                 fc->low_water = fc->high_water - 8;
2778         }
2779
2780         if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
2781                 fc->pause_time = 0xFFFF;
2782         else
2783                 fc->pause_time = E1000_FC_PAUSE_TIME;
2784         fc->send_xon = 1;
2785         fc->current_mode = fc->requested_mode;
2786
2787         /* Allow time for pending master requests to run */
2788         mac->ops.reset_hw(hw);
2789
2790         /*
2791          * For parts with AMT enabled, let the firmware know
2792          * that the network interface is in control
2793          */
2794         if (adapter->flags & FLAG_HAS_AMT)
2795                 e1000_get_hw_control(adapter);
2796
2797         ew32(WUC, 0);
2798         if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP)
2799                 e1e_wphy(&adapter->hw, BM_WUC, 0);
2800
2801         if (mac->ops.init_hw(hw))
2802                 e_err("Hardware Error\n");
2803
2804         /* additional part of the flow-control workaround above */
2805         if (hw->mac.type == e1000_pchlan)
2806                 ew32(FCRTV_PCH, 0x1000);
2807
2808         e1000_update_mng_vlan(adapter);
2809
2810         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2811         ew32(VET, ETH_P_8021Q);
2812
2813         e1000e_reset_adaptive(hw);
2814         e1000_get_phy_info(hw);
2815
2816         if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
2817             !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
2818                 u16 phy_data = 0;
2819                 /*
2820                  * speed up time to link by disabling smart power down, ignore
2821                  * the return value of this function because there is nothing
2822                  * different we would do if it failed
2823                  */
2824                 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
2825                 phy_data &= ~IGP02E1000_PM_SPD;
2826                 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
2827         }
2828 }
2829
2830 int e1000e_up(struct e1000_adapter *adapter)
2831 {
2832         struct e1000_hw *hw = &adapter->hw;
2833
2834         /* DMA latency requirement to workaround early-receive/jumbo issue */
2835         if (adapter->flags & FLAG_HAS_ERT)
2836                 pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY,
2837                                        adapter->netdev->name,
2838                                        PM_QOS_DEFAULT_VALUE);
2839
2840         /* hardware has been reset, we need to reload some things */
2841         e1000_configure(adapter);
2842
2843         clear_bit(__E1000_DOWN, &adapter->state);
2844
2845         napi_enable(&adapter->napi);
2846         if (adapter->msix_entries)
2847                 e1000_configure_msix(adapter);
2848         e1000_irq_enable(adapter);
2849
2850         netif_wake_queue(adapter->netdev);
2851
2852         /* fire a link change interrupt to start the watchdog */
2853         ew32(ICS, E1000_ICS_LSC);
2854         return 0;
2855 }
2856
2857 void e1000e_down(struct e1000_adapter *adapter)
2858 {
2859         struct net_device *netdev = adapter->netdev;
2860         struct e1000_hw *hw = &adapter->hw;
2861         u32 tctl, rctl;
2862
2863         /*
2864          * signal that we're down so the interrupt handler does not
2865          * reschedule our watchdog timer
2866          */
2867         set_bit(__E1000_DOWN, &adapter->state);
2868
2869         /* disable receives in the hardware */
2870         rctl = er32(RCTL);
2871         ew32(RCTL, rctl & ~E1000_RCTL_EN);
2872         /* flush and sleep below */
2873
2874         netif_stop_queue(netdev);
2875
2876         /* disable transmits in the hardware */
2877         tctl = er32(TCTL);
2878         tctl &= ~E1000_TCTL_EN;
2879         ew32(TCTL, tctl);
2880         /* flush both disables and wait for them to finish */
2881         e1e_flush();
2882         msleep(10);
2883
2884         napi_disable(&adapter->napi);
2885         e1000_irq_disable(adapter);
2886
2887         del_timer_sync(&adapter->watchdog_timer);
2888         del_timer_sync(&adapter->phy_info_timer);
2889
2890         netdev->tx_queue_len = adapter->tx_queue_len;
2891         netif_carrier_off(netdev);
2892         adapter->link_speed = 0;
2893         adapter->link_duplex = 0;
2894
2895         if (!pci_channel_offline(adapter->pdev))
2896                 e1000e_reset(adapter);
2897         e1000_clean_tx_ring(adapter);
2898         e1000_clean_rx_ring(adapter);
2899
2900         if (adapter->flags & FLAG_HAS_ERT)
2901                 pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY,
2902                                           adapter->netdev->name);
2903
2904         /*
2905          * TODO: for power management, we could drop the link and
2906          * pci_disable_device here.
2907          */
2908 }
2909
2910 void e1000e_reinit_locked(struct e1000_adapter *adapter)
2911 {
2912         might_sleep();
2913         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
2914                 msleep(1);
2915         e1000e_down(adapter);
2916         e1000e_up(adapter);
2917         clear_bit(__E1000_RESETTING, &adapter->state);
2918 }
2919
2920 /**
2921  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
2922  * @adapter: board private structure to initialize
2923  *
2924  * e1000_sw_init initializes the Adapter private data structure.
2925  * Fields are initialized based on PCI device information and
2926  * OS network device settings (MTU size).
2927  **/
2928 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
2929 {
2930         struct net_device *netdev = adapter->netdev;
2931
2932         adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
2933         adapter->rx_ps_bsize0 = 128;
2934         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
2935         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2936
2937         e1000e_set_interrupt_capability(adapter);
2938
2939         if (e1000_alloc_queues(adapter))
2940                 return -ENOMEM;
2941
2942         /* Explicitly disable IRQ since the NIC can be in any state. */
2943         e1000_irq_disable(adapter);
2944
2945         set_bit(__E1000_DOWN, &adapter->state);
2946         return 0;
2947 }
2948
2949 /**
2950  * e1000_intr_msi_test - Interrupt Handler
2951  * @irq: interrupt number
2952  * @data: pointer to a network interface device structure
2953  **/
2954 static irqreturn_t e1000_intr_msi_test(int irq, void *data)
2955 {
2956         struct net_device *netdev = data;
2957         struct e1000_adapter *adapter = netdev_priv(netdev);
2958         struct e1000_hw *hw = &adapter->hw;
2959         u32 icr = er32(ICR);
2960
2961         e_dbg("icr is %08X\n", icr);
2962         if (icr & E1000_ICR_RXSEQ) {
2963                 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
2964                 wmb();
2965         }
2966
2967         return IRQ_HANDLED;
2968 }
2969
2970 /**
2971  * e1000_test_msi_interrupt - Returns 0 for successful test
2972  * @adapter: board private struct
2973  *
2974  * code flow taken from tg3.c
2975  **/
2976 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
2977 {
2978         struct net_device *netdev = adapter->netdev;
2979         struct e1000_hw *hw = &adapter->hw;
2980         int err;
2981
2982         /* poll_enable hasn't been called yet, so don't need disable */
2983         /* clear any pending events */
2984         er32(ICR);
2985
2986         /* free the real vector and request a test handler */
2987         e1000_free_irq(adapter);
2988         e1000e_reset_interrupt_capability(adapter);
2989
2990         /* Assume that the test fails, if it succeeds then the test
2991          * MSI irq handler will unset this flag */
2992         adapter->flags |= FLAG_MSI_TEST_FAILED;
2993
2994         err = pci_enable_msi(adapter->pdev);
2995         if (err)
2996                 goto msi_test_failed;
2997
2998         err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
2999                           netdev->name, netdev);
3000         if (err) {
3001                 pci_disable_msi(adapter->pdev);
3002                 goto msi_test_failed;
3003         }
3004
3005         wmb();
3006
3007         e1000_irq_enable(adapter);
3008
3009         /* fire an unusual interrupt on the test handler */
3010         ew32(ICS, E1000_ICS_RXSEQ);
3011         e1e_flush();
3012         msleep(50);
3013
3014         e1000_irq_disable(adapter);
3015
3016         rmb();
3017
3018         if (adapter->flags & FLAG_MSI_TEST_FAILED) {
3019                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
3020                 err = -EIO;
3021                 e_info("MSI interrupt test failed!\n");
3022         }
3023
3024         free_irq(adapter->pdev->irq, netdev);
3025         pci_disable_msi(adapter->pdev);
3026
3027         if (err == -EIO)
3028                 goto msi_test_failed;
3029
3030         /* okay so the test worked, restore settings */
3031         e_dbg("MSI interrupt test succeeded!\n");
3032 msi_test_failed:
3033         e1000e_set_interrupt_capability(adapter);
3034         e1000_request_irq(adapter);
3035         return err;
3036 }
3037
3038 /**
3039  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3040  * @adapter: board private struct
3041  *
3042  * code flow taken from tg3.c, called with e1000 interrupts disabled.
3043  **/
3044 static int e1000_test_msi(struct e1000_adapter *adapter)
3045 {
3046         int err;
3047         u16 pci_cmd;
3048
3049         if (!(adapter->flags & FLAG_MSI_ENABLED))
3050                 return 0;
3051
3052         /* disable SERR in case the MSI write causes a master abort */
3053         pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3054         pci_write_config_word(adapter->pdev, PCI_COMMAND,
3055                               pci_cmd & ~PCI_COMMAND_SERR);
3056
3057         err = e1000_test_msi_interrupt(adapter);
3058
3059         /* restore previous setting of command word */
3060         pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
3061
3062         /* success ! */
3063         if (!err)
3064                 return 0;
3065
3066         /* EIO means MSI test failed */
3067         if (err != -EIO)
3068                 return err;
3069
3070         /* back to INTx mode */
3071         e_warn("MSI interrupt test failed, using legacy interrupt.\n");
3072
3073         e1000_free_irq(adapter);
3074
3075         err = e1000_request_irq(adapter);
3076
3077         return err;
3078 }
3079
3080 /**
3081  * e1000_open - Called when a network interface is made active
3082  * @netdev: network interface device structure
3083  *
3084  * Returns 0 on success, negative value on failure
3085  *
3086  * The open entry point is called when a network interface is made
3087  * active by the system (IFF_UP).  At this point all resources needed
3088  * for transmit and receive operations are allocated, the interrupt
3089  * handler is registered with the OS, the watchdog timer is started,
3090  * and the stack is notified that the interface is ready.
3091  **/
3092 static int e1000_open(struct net_device *netdev)
3093 {
3094         struct e1000_adapter *adapter = netdev_priv(netdev);
3095         struct e1000_hw *hw = &adapter->hw;
3096         int err;
3097
3098         /* disallow open during test */
3099         if (test_bit(__E1000_TESTING, &adapter->state))
3100                 return -EBUSY;
3101
3102         netif_carrier_off(netdev);
3103
3104         /* allocate transmit descriptors */
3105         err = e1000e_setup_tx_resources(adapter);
3106         if (err)
3107                 goto err_setup_tx;
3108
3109         /* allocate receive descriptors */
3110         err = e1000e_setup_rx_resources(adapter);
3111         if (err)
3112                 goto err_setup_rx;
3113
3114         e1000e_power_up_phy(adapter);
3115
3116         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3117         if ((adapter->hw.mng_cookie.status &
3118              E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
3119                 e1000_update_mng_vlan(adapter);
3120
3121         /*
3122          * If AMT is enabled, let the firmware know that the network
3123          * interface is now open
3124          */
3125         if (adapter->flags & FLAG_HAS_AMT)
3126                 e1000_get_hw_control(adapter);
3127
3128         /*
3129          * before we allocate an interrupt, we must be ready to handle it.
3130          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3131          * as soon as we call pci_request_irq, so we have to setup our
3132          * clean_rx handler before we do so.
3133          */
3134         e1000_configure(adapter);
3135
3136         err = e1000_request_irq(adapter);
3137         if (err)
3138                 goto err_req_irq;
3139
3140         /*
3141          * Work around PCIe errata with MSI interrupts causing some chipsets to
3142          * ignore e1000e MSI messages, which means we need to test our MSI
3143          * interrupt now
3144          */
3145         if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3146                 err = e1000_test_msi(adapter);
3147                 if (err) {
3148                         e_err("Interrupt allocation failed\n");
3149                         goto err_req_irq;
3150                 }
3151         }
3152
3153         /* From here on the code is the same as e1000e_up() */
3154         clear_bit(__E1000_DOWN, &adapter->state);
3155
3156         napi_enable(&adapter->napi);
3157
3158         e1000_irq_enable(adapter);
3159
3160         netif_start_queue(netdev);
3161
3162         /* fire a link status change interrupt to start the watchdog */
3163         ew32(ICS, E1000_ICS_LSC);
3164
3165         return 0;
3166
3167 err_req_irq:
3168         e1000_release_hw_control(adapter);
3169         e1000_power_down_phy(adapter);
3170         e1000e_free_rx_resources(adapter);
3171 err_setup_rx:
3172         e1000e_free_tx_resources(adapter);
3173 err_setup_tx:
3174         e1000e_reset(adapter);
3175
3176         return err;
3177 }
3178
3179 /**
3180  * e1000_close - Disables a network interface
3181  * @netdev: network interface device structure
3182  *
3183  * Returns 0, this is not allowed to fail
3184  *
3185  * The close entry point is called when an interface is de-activated
3186  * by the OS.  The hardware is still under the drivers control, but
3187  * needs to be disabled.  A global MAC reset is issued to stop the
3188  * hardware, and all transmit and receive resources are freed.
3189  **/
3190 static int e1000_close(struct net_device *netdev)
3191 {
3192         struct e1000_adapter *adapter = netdev_priv(netdev);
3193
3194         WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3195         e1000e_down(adapter);
3196         e1000_power_down_phy(adapter);
3197         e1000_free_irq(adapter);
3198
3199         e1000e_free_tx_resources(adapter);
3200         e1000e_free_rx_resources(adapter);
3201
3202         /*
3203          * kill manageability vlan ID if supported, but not if a vlan with
3204          * the same ID is registered on the host OS (let 8021q kill it)
3205          */
3206         if ((adapter->hw.mng_cookie.status &
3207                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
3208              !(adapter->vlgrp &&
3209                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
3210                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3211
3212         /*
3213          * If AMT is enabled, let the firmware know that the network
3214          * interface is now closed
3215          */
3216         if (adapter->flags & FLAG_HAS_AMT)
3217                 e1000_release_hw_control(adapter);
3218
3219         return 0;
3220 }
3221 /**
3222  * e1000_set_mac - Change the Ethernet Address of the NIC
3223  * @netdev: network interface device structure
3224  * @p: pointer to an address structure
3225  *
3226  * Returns 0 on success, negative on failure
3227  **/
3228 static int e1000_set_mac(struct net_device *netdev, void *p)
3229 {
3230         struct e1000_adapter *adapter = netdev_priv(netdev);
3231         struct sockaddr *addr = p;
3232
3233         if (!is_valid_ether_addr(addr->sa_data))
3234                 return -EADDRNOTAVAIL;
3235
3236         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3237         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
3238
3239         e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
3240
3241         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
3242                 /* activate the work around */
3243                 e1000e_set_laa_state_82571(&adapter->hw, 1);
3244
3245                 /*
3246                  * Hold a copy of the LAA in RAR[14] This is done so that
3247                  * between the time RAR[0] gets clobbered  and the time it
3248                  * gets fixed (in e1000_watchdog), the actual LAA is in one
3249                  * of the RARs and no incoming packets directed to this port
3250                  * are dropped. Eventually the LAA will be in RAR[0] and
3251                  * RAR[14]
3252                  */
3253                 e1000e_rar_set(&adapter->hw,
3254                               adapter->hw.mac.addr,
3255                               adapter->hw.mac.rar_entry_count - 1);
3256         }
3257
3258         return 0;
3259 }
3260
3261 /**
3262  * e1000e_update_phy_task - work thread to update phy
3263  * @work: pointer to our work struct
3264  *
3265  * this worker thread exists because we must acquire a
3266  * semaphore to read the phy, which we could msleep while
3267  * waiting for it, and we can't msleep in a timer.
3268  **/
3269 static void e1000e_update_phy_task(struct work_struct *work)
3270 {
3271         struct e1000_adapter *adapter = container_of(work,
3272                                         struct e1000_adapter, update_phy_task);
3273         e1000_get_phy_info(&adapter->hw);
3274 }
3275
3276 /*
3277  * Need to wait a few seconds after link up to get diagnostic information from
3278  * the phy
3279  */
3280 static void e1000_update_phy_info(unsigned long data)
3281 {
3282         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3283         schedule_work(&adapter->update_phy_task);
3284 }
3285
3286 /**
3287  * e1000e_update_stats - Update the board statistics counters
3288  * @adapter: board private structure
3289  **/
3290 void e1000e_update_stats(struct e1000_adapter *adapter)
3291 {
3292         struct net_device *netdev = adapter->netdev;
3293         struct e1000_hw *hw = &adapter->hw;
3294         struct pci_dev *pdev = adapter->pdev;
3295         u16 phy_data;
3296
3297         /*
3298          * Prevent stats update while adapter is being reset, or if the pci
3299          * connection is down.
3300          */
3301         if (adapter->link_speed == 0)
3302                 return;
3303         if (pci_channel_offline(pdev))
3304                 return;
3305
3306         adapter->stats.crcerrs += er32(CRCERRS);
3307         adapter->stats.gprc += er32(GPRC);
3308         adapter->stats.gorc += er32(GORCL);
3309         er32(GORCH); /* Clear gorc */
3310         adapter->stats.bprc += er32(BPRC);
3311         adapter->stats.mprc += er32(MPRC);
3312         adapter->stats.roc += er32(ROC);
3313
3314         adapter->stats.mpc += er32(MPC);
3315         if ((hw->phy.type == e1000_phy_82578) ||
3316             (hw->phy.type == e1000_phy_82577)) {
3317                 e1e_rphy(hw, HV_SCC_UPPER, &phy_data);
3318                 if (!e1e_rphy(hw, HV_SCC_LOWER, &phy_data))
3319                         adapter->stats.scc += phy_data;
3320
3321                 e1e_rphy(hw, HV_ECOL_UPPER, &phy_data);
3322                 if (!e1e_rphy(hw, HV_ECOL_LOWER, &phy_data))
3323                         adapter->stats.ecol += phy_data;
3324
3325                 e1e_rphy(hw, HV_MCC_UPPER, &phy_data);
3326                 if (!e1e_rphy(hw, HV_MCC_LOWER, &phy_data))
3327                         adapter->stats.mcc += phy_data;
3328
3329                 e1e_rphy(hw, HV_LATECOL_UPPER, &phy_data);
3330                 if (!e1e_rphy(hw, HV_LATECOL_LOWER, &phy_data))
3331                         adapter->stats.latecol += phy_data;
3332
3333                 e1e_rphy(hw, HV_DC_UPPER, &phy_data);
3334                 if (!e1e_rphy(hw, HV_DC_LOWER, &phy_data))
3335                         adapter->stats.dc += phy_data;
3336         } else {
3337                 adapter->stats.scc += er32(SCC);
3338                 adapter->stats.ecol += er32(ECOL);
3339                 adapter->stats.mcc += er32(MCC);
3340                 adapter->stats.latecol += er32(LATECOL);
3341                 adapter->stats.dc += er32(DC);
3342         }
3343         adapter->stats.xonrxc += er32(XONRXC);
3344         adapter->stats.xontxc += er32(XONTXC);
3345         adapter->stats.xoffrxc += er32(XOFFRXC);
3346         adapter->stats.xofftxc += er32(XOFFTXC);
3347         adapter->stats.gptc += er32(GPTC);
3348         adapter->stats.gotc += er32(GOTCL);
3349         er32(GOTCH); /* Clear gotc */
3350         adapter->stats.rnbc += er32(RNBC);
3351         adapter->stats.ruc += er32(RUC);
3352
3353         adapter->stats.mptc += er32(MPTC);
3354         adapter->stats.bptc += er32(BPTC);
3355
3356         /* used for adaptive IFS */
3357
3358         hw->mac.tx_packet_delta = er32(TPT);
3359         adapter->stats.tpt += hw->mac.tx_packet_delta;
3360         if ((hw->phy.type == e1000_phy_82578) ||
3361             (hw->phy.type == e1000_phy_82577)) {
3362                 e1e_rphy(hw, HV_COLC_UPPER, &phy_data);
3363                 if (!e1e_rphy(hw, HV_COLC_LOWER, &phy_data))
3364                         hw->mac.collision_delta = phy_data;
3365         } else {
3366                 hw->mac.collision_delta = er32(COLC);
3367         }
3368         adapter->stats.colc += hw->mac.collision_delta;
3369
3370         adapter->stats.algnerrc += er32(ALGNERRC);
3371         adapter->stats.rxerrc += er32(RXERRC);
3372         if ((hw->phy.type == e1000_phy_82578) ||
3373             (hw->phy.type == e1000_phy_82577)) {
3374                 e1e_rphy(hw, HV_TNCRS_UPPER, &phy_data);
3375                 if (!e1e_rphy(hw, HV_TNCRS_LOWER, &phy_data))
3376                         adapter->stats.tncrs += phy_data;
3377         } else {
3378                 if ((hw->mac.type != e1000_82574) &&
3379                     (hw->mac.type != e1000_82583))
3380                         adapter->stats.tncrs += er32(TNCRS);
3381         }
3382         adapter->stats.cexterr += er32(CEXTERR);
3383         adapter->stats.tsctc += er32(TSCTC);
3384         adapter->stats.tsctfc += er32(TSCTFC);
3385
3386         /* Fill out the OS statistics structure */
3387         netdev->stats.multicast = adapter->stats.mprc;
3388         netdev->stats.collisions = adapter->stats.colc;
3389
3390         /* Rx Errors */
3391
3392         /*
3393          * RLEC on some newer hardware can be incorrect so build
3394          * our own version based on RUC and ROC
3395          */
3396         netdev->stats.rx_errors = adapter->stats.rxerrc +
3397                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3398                 adapter->stats.ruc + adapter->stats.roc +
3399                 adapter->stats.cexterr;
3400         netdev->stats.rx_length_errors = adapter->stats.ruc +
3401                                               adapter->stats.roc;
3402         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3403         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3404         netdev->stats.rx_missed_errors = adapter->stats.mpc;
3405
3406         /* Tx Errors */
3407         netdev->stats.tx_errors = adapter->stats.ecol +
3408                                        adapter->stats.latecol;
3409         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3410         netdev->stats.tx_window_errors = adapter->stats.latecol;
3411         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3412
3413         /* Tx Dropped needs to be maintained elsewhere */
3414
3415         /* Management Stats */
3416         adapter->stats.mgptc += er32(MGTPTC);
3417         adapter->stats.mgprc += er32(MGTPRC);
3418         adapter->stats.mgpdc += er32(MGTPDC);
3419 }
3420
3421 /**
3422  * e1000_phy_read_status - Update the PHY register status snapshot
3423  * @adapter: board private structure
3424  **/
3425 static void e1000_phy_read_status(struct e1000_adapter *adapter)
3426 {
3427         struct e1000_hw *hw = &adapter->hw;
3428         struct e1000_phy_regs *phy = &adapter->phy_regs;
3429         int ret_val;
3430
3431         if ((er32(STATUS) & E1000_STATUS_LU) &&
3432             (adapter->hw.phy.media_type == e1000_media_type_copper)) {
3433                 ret_val  = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
3434                 ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
3435                 ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
3436                 ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
3437                 ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
3438                 ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
3439                 ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
3440                 ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
3441                 if (ret_val)
3442                         e_warn("Error reading PHY register\n");
3443         } else {
3444                 /*
3445                  * Do not read PHY registers if link is not up
3446                  * Set values to typical power-on defaults
3447                  */
3448                 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
3449                 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
3450                              BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
3451                              BMSR_ERCAP);
3452                 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
3453                                   ADVERTISE_ALL | ADVERTISE_CSMA);
3454                 phy->lpa = 0;
3455                 phy->expansion = EXPANSION_ENABLENPAGE;
3456                 phy->ctrl1000 = ADVERTISE_1000FULL;
3457                 phy->stat1000 = 0;
3458                 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
3459         }
3460 }
3461
3462 static void e1000_print_link_info(struct e1000_adapter *adapter)
3463 {
3464         struct e1000_hw *hw = &adapter->hw;
3465         u32 ctrl = er32(CTRL);
3466
3467         /* Link status message must follow this format for user tools */
3468         printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s, "
3469                "Flow Control: %s\n",
3470                adapter->netdev->name,
3471                adapter->link_speed,
3472                (adapter->link_duplex == FULL_DUPLEX) ?
3473                                 "Full Duplex" : "Half Duplex",
3474                ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
3475                                 "RX/TX" :
3476                ((ctrl & E1000_CTRL_RFCE) ? "RX" :
3477                ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
3478 }
3479
3480 bool e1000_has_link(struct e1000_adapter *adapter)
3481 {
3482         struct e1000_hw *hw = &adapter->hw;
3483         bool link_active = 0;
3484         s32 ret_val = 0;
3485
3486         /*
3487          * get_link_status is set on LSC (link status) interrupt or
3488          * Rx sequence error interrupt.  get_link_status will stay
3489          * false until the check_for_link establishes link
3490          * for copper adapters ONLY
3491          */
3492         switch (hw->phy.media_type) {
3493         case e1000_media_type_copper:
3494                 if (hw->mac.get_link_status) {
3495                         ret_val = hw->mac.ops.check_for_link(hw);
3496                         link_active = !hw->mac.get_link_status;
3497                 } else {
3498                         link_active = 1;
3499                 }
3500                 break;
3501         case e1000_media_type_fiber:
3502                 ret_val = hw->mac.ops.check_for_link(hw);
3503                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
3504                 break;
3505         case e1000_media_type_internal_serdes:
3506                 ret_val = hw->mac.ops.check_for_link(hw);
3507                 link_active = adapter->hw.mac.serdes_has_link;
3508                 break;
3509         default:
3510         case e1000_media_type_unknown:
3511                 break;
3512         }
3513
3514         if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
3515             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
3516                 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
3517                 e_info("Gigabit has been disabled, downgrading speed\n");
3518         }
3519
3520         return link_active;
3521 }
3522
3523 static void e1000e_enable_receives(struct e1000_adapter *adapter)
3524 {
3525         /* make sure the receive unit is started */
3526         if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
3527             (adapter->flags & FLAG_RX_RESTART_NOW)) {
3528                 struct e1000_hw *hw = &adapter->hw;
3529                 u32 rctl = er32(RCTL);
3530                 ew32(RCTL, rctl | E1000_RCTL_EN);
3531                 adapter->flags &= ~FLAG_RX_RESTART_NOW;
3532         }
3533 }
3534
3535 /**
3536  * e1000_watchdog - Timer Call-back
3537  * @data: pointer to adapter cast into an unsigned long
3538  **/
3539 static void e1000_watchdog(unsigned long data)
3540 {
3541         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3542
3543         /* Do the rest outside of interrupt context */
3544         schedule_work(&adapter->watchdog_task);
3545
3546         /* TODO: make this use queue_delayed_work() */
3547 }
3548
3549 static void e1000_watchdog_task(struct work_struct *work)
3550 {
3551         struct e1000_adapter *adapter = container_of(work,
3552                                         struct e1000_adapter, watchdog_task);
3553         struct net_device *netdev = adapter->netdev;
3554         struct e1000_mac_info *mac = &adapter->hw.mac;
3555         struct e1000_phy_info *phy = &adapter->hw.phy;
3556         struct e1000_ring *tx_ring = adapter->tx_ring;
3557         struct e1000_hw *hw = &adapter->hw;
3558         u32 link, tctl;
3559         int tx_pending = 0;
3560
3561         link = e1000_has_link(adapter);
3562         if ((netif_carrier_ok(netdev)) && link) {
3563                 e1000e_enable_receives(adapter);
3564                 goto link_up;
3565         }
3566
3567         if ((e1000e_enable_tx_pkt_filtering(hw)) &&
3568             (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
3569                 e1000_update_mng_vlan(adapter);
3570
3571         if (link) {
3572                 if (!netif_carrier_ok(netdev)) {
3573                         bool txb2b = 1;
3574                         /* update snapshot of PHY registers on LSC */
3575                         e1000_phy_read_status(adapter);
3576                         mac->ops.get_link_up_info(&adapter->hw,
3577                                                    &adapter->link_speed,
3578                                                    &adapter->link_duplex);
3579                         e1000_print_link_info(adapter);
3580                         /*
3581                          * On supported PHYs, check for duplex mismatch only
3582                          * if link has autonegotiated at 10/100 half
3583                          */
3584                         if ((hw->phy.type == e1000_phy_igp_3 ||
3585                              hw->phy.type == e1000_phy_bm) &&
3586                             (hw->mac.autoneg == true) &&
3587                             (adapter->link_speed == SPEED_10 ||
3588                              adapter->link_speed == SPEED_100) &&
3589                             (adapter->link_duplex == HALF_DUPLEX)) {
3590                                 u16 autoneg_exp;
3591
3592                                 e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
3593
3594                                 if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
3595                                         e_info("Autonegotiated half duplex but"
3596                                                " link partner cannot autoneg. "
3597                                                " Try forcing full duplex if "
3598                                                "link gets many collisions.\n");
3599                         }
3600
3601                         /*
3602                          * tweak tx_queue_len according to speed/duplex
3603                          * and adjust the timeout factor
3604                          */
3605                         netdev->tx_queue_len = adapter->tx_queue_len;
3606                         adapter->tx_timeout_factor = 1;
3607                         switch (adapter->link_speed) {
3608                         case SPEED_10:
3609                                 txb2b = 0;
3610                                 netdev->tx_queue_len = 10;
3611                                 adapter->tx_timeout_factor = 16;
3612                                 break;
3613                         case SPEED_100:
3614                                 txb2b = 0;
3615                                 netdev->tx_queue_len = 100;
3616                                 adapter->tx_timeout_factor = 10;
3617                                 break;
3618                         }
3619
3620                         /*
3621                          * workaround: re-program speed mode bit after
3622                          * link-up event
3623                          */
3624                         if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
3625                             !txb2b) {
3626                                 u32 tarc0;
3627                                 tarc0 = er32(TARC(0));
3628                                 tarc0 &= ~SPEED_MODE_BIT;
3629                                 ew32(TARC(0), tarc0);
3630                         }
3631
3632                         /*
3633                          * disable TSO for pcie and 10/100 speeds, to avoid
3634                          * some hardware issues
3635                          */
3636                         if (!(adapter->flags & FLAG_TSO_FORCE)) {
3637                                 switch (adapter->link_speed) {
3638                                 case SPEED_10:
3639                                 case SPEED_100:
3640                                         e_info("10/100 speed: disabling TSO\n");
3641                                         netdev->features &= ~NETIF_F_TSO;
3642                                         netdev->features &= ~NETIF_F_TSO6;
3643                                         break;
3644                                 case SPEED_1000:
3645                                         netdev->features |= NETIF_F_TSO;
3646                                         netdev->features |= NETIF_F_TSO6;
3647                                         break;
3648                                 default:
3649                                         /* oops */
3650                                         break;
3651                                 }
3652                         }
3653
3654                         /*
3655                          * enable transmits in the hardware, need to do this
3656                          * after setting TARC(0)
3657                          */
3658                         tctl = er32(TCTL);
3659                         tctl |= E1000_TCTL_EN;
3660                         ew32(TCTL, tctl);
3661
3662                         /*
3663                          * Perform any post-link-up configuration before
3664                          * reporting link up.
3665                          */
3666                         if (phy->ops.cfg_on_link_up)
3667                                 phy->ops.cfg_on_link_up(hw);
3668
3669                         netif_carrier_on(netdev);
3670
3671                         if (!test_bit(__E1000_DOWN, &adapter->state))
3672                                 mod_timer(&adapter->phy_info_timer,
3673                                           round_jiffies(jiffies + 2 * HZ));
3674                 }
3675         } else {
3676                 if (netif_carrier_ok(netdev)) {
3677                         adapter->link_speed = 0;
3678                         adapter->link_duplex = 0;
3679                         /* Link status message must follow this format */
3680                         printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
3681                                adapter->netdev->name);
3682                         netif_carrier_off(netdev);
3683                         if (!test_bit(__E1000_DOWN, &adapter->state))
3684                                 mod_timer(&adapter->phy_info_timer,
3685                                           round_jiffies(jiffies + 2 * HZ));
3686
3687                         if (adapter->flags & FLAG_RX_NEEDS_RESTART)
3688                                 schedule_work(&adapter->reset_task);
3689                 }
3690         }
3691
3692 link_up:
3693         e1000e_update_stats(adapter);
3694
3695         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
3696         adapter->tpt_old = adapter->stats.tpt;
3697         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
3698         adapter->colc_old = adapter->stats.colc;
3699
3700         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
3701         adapter->gorc_old = adapter->stats.gorc;
3702         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
3703         adapter->gotc_old = adapter->stats.gotc;
3704
3705         e1000e_update_adaptive(&adapter->hw);
3706
3707         if (!netif_carrier_ok(netdev)) {
3708                 tx_pending = (e1000_desc_unused(tx_ring) + 1 <
3709                                tx_ring->count);
3710                 if (tx_pending) {
3711                         /*
3712                          * We've lost link, so the controller stops DMA,
3713                          * but we've got queued Tx work that's never going
3714                          * to get done, so reset controller to flush Tx.
3715                          * (Do the reset outside of interrupt context).
3716                          */
3717                         adapter->tx_timeout_count++;
3718                         schedule_work(&adapter->reset_task);
3719                         /* return immediately since reset is imminent */
3720                         return;
3721                 }
3722         }
3723
3724         /* Cause software interrupt to ensure Rx ring is cleaned */
3725         if (adapter->msix_entries)
3726                 ew32(ICS, adapter->rx_ring->ims_val);
3727         else
3728                 ew32(ICS, E1000_ICS_RXDMT0);
3729
3730         /* Force detection of hung controller every watchdog period */
3731         adapter->detect_tx_hung = 1;
3732
3733         /*
3734          * With 82571 controllers, LAA may be overwritten due to controller
3735          * reset from the other port. Set the appropriate LAA in RAR[0]
3736          */
3737         if (e1000e_get_laa_state_82571(hw))
3738                 e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
3739
3740         /* Reset the timer */
3741         if (!test_bit(__E1000_DOWN, &adapter->state))
3742                 mod_timer(&adapter->watchdog_timer,
3743                           round_jiffies(jiffies + 2 * HZ));
3744 }
3745
3746 #define E1000_TX_FLAGS_CSUM             0x00000001
3747 #define E1000_TX_FLAGS_VLAN             0x00000002
3748 #define E1000_TX_FLAGS_TSO              0x00000004
3749 #define E1000_TX_FLAGS_IPV4             0x00000008
3750 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
3751 #define E1000_TX_FLAGS_VLAN_SHIFT       16
3752
3753 static int e1000_tso(struct e1000_adapter *adapter,
3754                      struct sk_buff *skb)
3755 {
3756         struct e1000_ring *tx_ring = adapter->tx_ring;
3757         struct e1000_context_desc *context_desc;
3758         struct e1000_buffer *buffer_info;
3759         unsigned int i;
3760         u32 cmd_length = 0;
3761         u16 ipcse = 0, tucse, mss;
3762         u8 ipcss, ipcso, tucss, tucso, hdr_len;
3763         int err;
3764
3765         if (!skb_is_gso(skb))
3766                 return 0;
3767
3768         if (skb_header_cloned(skb)) {
3769                 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3770                 if (err)
3771                         return err;
3772         }
3773
3774         hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3775         mss = skb_shinfo(skb)->gso_size;
3776         if (skb->protocol == htons(ETH_P_IP)) {
3777                 struct iphdr *iph = ip_hdr(skb);
3778                 iph->tot_len = 0;
3779                 iph->check = 0;
3780                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
3781                                                          0, IPPROTO_TCP, 0);
3782                 cmd_length = E1000_TXD_CMD_IP;
3783                 ipcse = skb_transport_offset(skb) - 1;
3784         } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
3785                 ipv6_hdr(skb)->payload_len = 0;
3786                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3787                                                        &ipv6_hdr(skb)->daddr,
3788                                                        0, IPPROTO_TCP, 0);
3789                 ipcse = 0;
3790         }
3791         ipcss = skb_network_offset(skb);
3792         ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
3793         tucss = skb_transport_offset(skb);
3794         tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
3795         tucse = 0;
3796
3797         cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
3798                        E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
3799
3800         i = tx_ring->next_to_use;
3801         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3802         buffer_info = &tx_ring->buffer_info[i];
3803
3804         context_desc->lower_setup.ip_fields.ipcss  = ipcss;
3805         context_desc->lower_setup.ip_fields.ipcso  = ipcso;
3806         context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
3807         context_desc->upper_setup.tcp_fields.tucss = tucss;
3808         context_desc->upper_setup.tcp_fields.tucso = tucso;
3809         context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
3810         context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
3811         context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
3812         context_desc->cmd_and_length = cpu_to_le32(cmd_length);
3813
3814         buffer_info->time_stamp = jiffies;
3815         buffer_info->next_to_watch = i;
3816
3817         i++;
3818         if (i == tx_ring->count)
3819                 i = 0;
3820         tx_ring->next_to_use = i;
3821
3822         return 1;
3823 }
3824
3825 static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
3826 {
3827         struct e1000_ring *tx_ring = adapter->tx_ring;
3828         struct e1000_context_desc *context_desc;
3829         struct e1000_buffer *buffer_info;
3830         unsigned int i;
3831         u8 css;
3832         u32 cmd_len = E1000_TXD_CMD_DEXT;
3833         __be16 protocol;
3834
3835         if (skb->ip_summed != CHECKSUM_PARTIAL)
3836                 return 0;
3837
3838         if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
3839                 protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
3840         else
3841                 protocol = skb->protocol;
3842
3843         switch (protocol) {
3844         case cpu_to_be16(ETH_P_IP):
3845                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3846                         cmd_len |= E1000_TXD_CMD_TCP;
3847                 break;
3848         case cpu_to_be16(ETH_P_IPV6):
3849                 /* XXX not handling all IPV6 headers */
3850                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3851                         cmd_len |= E1000_TXD_CMD_TCP;
3852                 break;
3853         default:
3854                 if (unlikely(net_ratelimit()))
3855                         e_warn("checksum_partial proto=%x!\n",
3856                                be16_to_cpu(protocol));
3857                 break;
3858         }
3859
3860         css = skb_transport_offset(skb);
3861
3862         i = tx_ring->next_to_use;
3863         buffer_info = &tx_ring->buffer_info[i];
3864         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3865
3866         context_desc->lower_setup.ip_config = 0;
3867         context_desc->upper_setup.tcp_fields.tucss = css;
3868         context_desc->upper_setup.tcp_fields.tucso =
3869                                 css + skb->csum_offset;
3870         context_desc->upper_setup.tcp_fields.tucse = 0;
3871         context_desc->tcp_seg_setup.data = 0;
3872         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
3873
3874         buffer_info->time_stamp = jiffies;
3875         buffer_info->next_to_watch = i;
3876
3877         i++;
3878         if (i == tx_ring->count)
3879                 i = 0;
3880         tx_ring->next_to_use = i;
3881
3882         return 1;
3883 }
3884
3885 #define E1000_MAX_PER_TXD       8192
3886 #define E1000_MAX_TXD_PWR       12
3887
3888 static int e1000_tx_map(struct e1000_adapter *adapter,
3889                         struct sk_buff *skb, unsigned int first,
3890                         unsigned int max_per_txd, unsigned int nr_frags,
3891                         unsigned int mss)
3892 {
3893         struct e1000_ring *tx_ring = adapter->tx_ring;
3894         struct pci_dev *pdev = adapter->pdev;
3895         struct e1000_buffer *buffer_info;
3896         unsigned int len = skb_headlen(skb);
3897         unsigned int offset = 0, size, count = 0, i;
3898         unsigned int f;
3899
3900         i = tx_ring->next_to_use;
3901
3902         while (len) {
3903                 buffer_info = &tx_ring->buffer_info[i];
3904                 size = min(len, max_per_txd);
3905
3906                 buffer_info->length = size;
3907                 buffer_info->time_stamp = jiffies;
3908                 buffer_info->next_to_watch = i;
3909                 buffer_info->dma = pci_map_single(pdev, skb->data + offset,
3910                                                   size, PCI_DMA_TODEVICE);
3911                 buffer_info->mapped_as_page = false;
3912                 if (pci_dma_mapping_error(pdev, buffer_info->dma))
3913                         goto dma_error;
3914
3915                 len -= size;
3916                 offset += size;
3917                 count++;
3918
3919                 if (len) {
3920                         i++;
3921                         if (i == tx_ring->count)
3922                                 i = 0;
3923                 }
3924         }
3925
3926         for (f = 0; f < nr_frags; f++) {
3927                 struct skb_frag_struct *frag;
3928
3929                 frag = &skb_shinfo(skb)->frags[f];
3930                 len = frag->size;
3931                 offset = frag->page_offset;
3932
3933                 while (len) {
3934                         i++;
3935                         if (i == tx_ring->count)
3936                                 i = 0;
3937
3938                         buffer_info = &tx_ring->buffer_info[i];
3939                         size = min(len, max_per_txd);
3940
3941                         buffer_info->length = size;
3942                         buffer_info->time_stamp = jiffies;
3943                         buffer_info->next_to_watch = i;
3944                         buffer_info->dma = pci_map_page(pdev, frag->page,
3945                                                         offset, size,
3946                                                         PCI_DMA_TODEVICE);
3947                         buffer_info->mapped_as_page = true;
3948                         if (pci_dma_mapping_error(pdev, buffer_info->dma))
3949                                 goto dma_error;
3950
3951                         len -= size;
3952                         offset += size;
3953                         count++;
3954                 }
3955         }
3956
3957         tx_ring->buffer_info[i].skb = skb;
3958         tx_ring->buffer_info[first].next_to_watch = i;
3959
3960         return count;
3961
3962 dma_error:
3963         dev_err(&pdev->dev, "TX DMA map failed\n");
3964         buffer_info->dma = 0;
3965         count--;
3966
3967         while (count >= 0) {
3968                 count--;
3969                 i--;
3970                 if (i < 0)
3971                         i += tx_ring->count;
3972                 buffer_info = &tx_ring->buffer_info[i];
3973                 e1000_put_txbuf(adapter, buffer_info);;
3974         }
3975
3976         return 0;
3977 }
3978
3979 static void e1000_tx_queue(struct e1000_adapter *adapter,
3980                            int tx_flags, int count)
3981 {
3982         struct e1000_ring *tx_ring = adapter->tx_ring;
3983         struct e1000_tx_desc *tx_desc = NULL;
3984         struct e1000_buffer *buffer_info;
3985         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3986         unsigned int i;
3987
3988         if (tx_flags & E1000_TX_FLAGS_TSO) {
3989                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3990                              E1000_TXD_CMD_TSE;
3991                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3992
3993                 if (tx_flags & E1000_TX_FLAGS_IPV4)
3994                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3995         }
3996
3997         if (tx_flags & E1000_TX_FLAGS_CSUM) {
3998                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3999                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4000         }
4001
4002         if (tx_flags & E1000_TX_FLAGS_VLAN) {
4003                 txd_lower |= E1000_TXD_CMD_VLE;
4004                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
4005         }
4006
4007         i = tx_ring->next_to_use;
4008
4009         while (count--) {
4010                 buffer_info = &tx_ring->buffer_info[i];
4011                 tx_desc = E1000_TX_DESC(*tx_ring, i);
4012                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4013                 tx_desc->lower.data =
4014                         cpu_to_le32(txd_lower | buffer_info->length);
4015                 tx_desc->upper.data = cpu_to_le32(txd_upper);
4016
4017                 i++;
4018                 if (i == tx_ring->count)
4019                         i = 0;
4020         }
4021
4022         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
4023
4024         /*
4025          * Force memory writes to complete before letting h/w
4026          * know there are new descriptors to fetch.  (Only
4027          * applicable for weak-ordered memory model archs,
4028          * such as IA-64).
4029          */
4030         wmb();
4031
4032         tx_ring->next_to_use = i;
4033         writel(i, adapter->hw.hw_addr + tx_ring->tail);
4034         /*
4035          * we need this if more than one processor can write to our tail
4036          * at a time, it synchronizes IO on IA64/Altix systems
4037          */
4038         mmiowb();
4039 }
4040
4041 #define MINIMUM_DHCP_PACKET_SIZE 282
4042 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
4043                                     struct sk_buff *skb)
4044 {
4045         struct e1000_hw *hw =  &adapter->hw;
4046         u16 length, offset;
4047
4048         if (vlan_tx_tag_present(skb)) {
4049                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
4050                     (adapter->hw.mng_cookie.status &
4051                         E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
4052                         return 0;
4053         }
4054
4055         if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
4056                 return 0;
4057
4058         if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
4059                 return 0;
4060
4061         {
4062                 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
4063                 struct udphdr *udp;
4064
4065                 if (ip->protocol != IPPROTO_UDP)
4066                         return 0;
4067
4068                 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
4069                 if (ntohs(udp->dest) != 67)
4070                         return 0;
4071
4072                 offset = (u8 *)udp + 8 - skb->data;
4073                 length = skb->len - offset;
4074                 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
4075         }
4076
4077         return 0;
4078 }
4079
4080 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
4081 {
4082         struct e1000_adapter *adapter = netdev_priv(netdev);
4083
4084         netif_stop_queue(netdev);
4085         /*
4086          * Herbert's original patch had:
4087          *  smp_mb__after_netif_stop_queue();
4088          * but since that doesn't exist yet, just open code it.
4089          */
4090         smp_mb();
4091
4092         /*
4093          * We need to check again in a case another CPU has just
4094          * made room available.
4095          */
4096         if (e1000_desc_unused(adapter->tx_ring) < size)
4097                 return -EBUSY;
4098
4099         /* A reprieve! */
4100         netif_start_queue(netdev);
4101         ++adapter->restart_queue;
4102         return 0;
4103 }
4104
4105 static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
4106 {
4107         struct e1000_adapter *adapter = netdev_priv(netdev);
4108
4109         if (e1000_desc_unused(adapter->tx_ring) >= size)
4110                 return 0;
4111         return __e1000_maybe_stop_tx(netdev, size);
4112 }
4113
4114 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
4115 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
4116                                     struct net_device *netdev)
4117 {
4118         struct e1000_adapter *adapter = netdev_priv(netdev);
4119         struct e1000_ring *tx_ring = adapter->tx_ring;
4120         unsigned int first;
4121         unsigned int max_per_txd = E1000_MAX_PER_TXD;
4122         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
4123         unsigned int tx_flags = 0;
4124         unsigned int len = skb->len - skb->data_len;
4125         unsigned int nr_frags;
4126         unsigned int mss;
4127         int count = 0;
4128         int tso;
4129         unsigned int f;
4130
4131         if (test_bit(__E1000_DOWN, &adapter->state)) {
4132                 dev_kfree_skb_any(skb);
4133                 return NETDEV_TX_OK;
4134         }
4135
4136         if (skb->len <= 0) {
4137                 dev_kfree_skb_any(skb);
4138                 return NETDEV_TX_OK;
4139         }
4140
4141         mss = skb_shinfo(skb)->gso_size;
4142         /*
4143          * The controller does a simple calculation to
4144          * make sure there is enough room in the FIFO before
4145          * initiating the DMA for each buffer.  The calc is:
4146          * 4 = ceil(buffer len/mss).  To make sure we don't
4147          * overrun the FIFO, adjust the max buffer len if mss
4148          * drops.
4149          */
4150         if (mss) {
4151                 u8 hdr_len;
4152                 max_per_txd = min(mss << 2, max_per_txd);
4153                 max_txd_pwr = fls(max_per_txd) - 1;
4154
4155                 /*
4156                  * TSO Workaround for 82571/2/3 Controllers -- if skb->data
4157                  * points to just header, pull a few bytes of payload from
4158                  * frags into skb->data
4159                  */
4160                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4161                 /*
4162                  * we do this workaround for ES2LAN, but it is un-necessary,
4163                  * avoiding it could save a lot of cycles
4164                  */
4165                 if (skb->data_len && (hdr_len == len)) {
4166                         unsigned int pull_size;
4167
4168                         pull_size = min((unsigned int)4, skb->data_len);
4169                         if (!__pskb_pull_tail(skb, pull_size)) {
4170                                 e_err("__pskb_pull_tail failed.\n");
4171                                 dev_kfree_skb_any(skb);
4172                                 return NETDEV_TX_OK;
4173                         }
4174                         len = skb->len - skb->data_len;
4175                 }
4176         }
4177
4178         /* reserve a descriptor for the offload context */
4179         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
4180                 count++;
4181         count++;
4182
4183         count += TXD_USE_COUNT(len, max_txd_pwr);
4184
4185         nr_frags = skb_shinfo(skb)->nr_frags;
4186         for (f = 0; f < nr_frags; f++)
4187                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
4188                                        max_txd_pwr);
4189
4190         if (adapter->hw.mac.tx_pkt_filtering)
4191                 e1000_transfer_dhcp_info(adapter, skb);
4192
4193         /*
4194          * need: count + 2 desc gap to keep tail from touching
4195          * head, otherwise try next time
4196          */
4197         if (e1000_maybe_stop_tx(netdev, count + 2))
4198                 return NETDEV_TX_BUSY;
4199
4200         if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
4201                 tx_flags |= E1000_TX_FLAGS_VLAN;
4202                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
4203         }
4204
4205         first = tx_ring->next_to_use;
4206
4207         tso = e1000_tso(adapter, skb);
4208         if (tso < 0) {
4209                 dev_kfree_skb_any(skb);
4210                 return NETDEV_TX_OK;
4211         }
4212
4213         if (tso)
4214                 tx_flags |= E1000_TX_FLAGS_TSO;
4215         else if (e1000_tx_csum(adapter, skb))
4216                 tx_flags |= E1000_TX_FLAGS_CSUM;
4217
4218         /*
4219          * Old method was to assume IPv4 packet by default if TSO was enabled.
4220          * 82571 hardware supports TSO capabilities for IPv6 as well...
4221          * no longer assume, we must.
4222          */
4223         if (skb->protocol == htons(ETH_P_IP))
4224                 tx_flags |= E1000_TX_FLAGS_IPV4;
4225
4226         /* if count is 0 then mapping error has occured */
4227         count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
4228         if (count) {
4229                 e1000_tx_queue(adapter, tx_flags, count);
4230                 /* Make sure there is space in the ring for the next send. */
4231                 e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
4232
4233         } else {
4234                 dev_kfree_skb_any(skb);
4235                 tx_ring->buffer_info[first].time_stamp = 0;
4236                 tx_ring->next_to_use = first;
4237         }
4238
4239         return NETDEV_TX_OK;
4240 }
4241
4242 /**
4243  * e1000_tx_timeout - Respond to a Tx Hang
4244  * @netdev: network interface device structure
4245  **/
4246 static void e1000_tx_timeout(struct net_device *netdev)
4247 {
4248         struct e1000_adapter *adapter = netdev_priv(netdev);
4249
4250         /* Do the reset outside of interrupt context */
4251         adapter->tx_timeout_count++;
4252         schedule_work(&adapter->reset_task);
4253 }
4254
4255 static void e1000_reset_task(struct work_struct *work)
4256 {
4257         struct e1000_adapter *adapter;
4258         adapter = container_of(work, struct e1000_adapter, reset_task);
4259
4260         e1000e_reinit_locked(adapter);
4261 }
4262
4263 /**
4264  * e1000_get_stats - Get System Network Statistics
4265  * @netdev: network interface device structure
4266  *
4267  * Returns the address of the device statistics structure.
4268  * The statistics are actually updated from the timer callback.
4269  **/
4270 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
4271 {
4272         /* only return the current stats */
4273         return &netdev->stats;
4274 }
4275
4276 /**
4277  * e1000_change_mtu - Change the Maximum Transfer Unit
4278  * @netdev: network interface device structure
4279  * @new_mtu: new value for maximum frame size
4280  *
4281  * Returns 0 on success, negative on failure
4282  **/
4283 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
4284 {
4285         struct e1000_adapter *adapter = netdev_priv(netdev);
4286         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4287
4288         /* Jumbo frame support */
4289         if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
4290             !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
4291                 e_err("Jumbo Frames not supported.\n");
4292                 return -EINVAL;
4293         }
4294
4295         /* Supported frame sizes */
4296         if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
4297             (max_frame > adapter->max_hw_frame_size)) {
4298                 e_err("Unsupported MTU setting\n");
4299                 return -EINVAL;
4300         }
4301
4302         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4303                 msleep(1);
4304         /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
4305         adapter->max_frame_size = max_frame;
4306         e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
4307         netdev->mtu = new_mtu;
4308         if (netif_running(netdev))
4309                 e1000e_down(adapter);
4310
4311         /*
4312          * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
4313          * means we reserve 2 more, this pushes us to allocate from the next
4314          * larger slab size.
4315          * i.e. RXBUFFER_2048 --> size-4096 slab
4316          * However with the new *_jumbo_rx* routines, jumbo receives will use
4317          * fragmented skbs
4318          */
4319
4320         if (max_frame <= 256)
4321                 adapter->rx_buffer_len = 256;
4322         else if (max_frame <= 512)
4323                 adapter->rx_buffer_len = 512;
4324         else if (max_frame <= 1024)
4325                 adapter->rx_buffer_len = 1024;
4326         else if (max_frame <= 2048)
4327                 adapter->rx_buffer_len = 2048;
4328         else
4329                 adapter->rx_buffer_len = 4096;
4330
4331         /* adjust allocation if LPE protects us, and we aren't using SBP */
4332         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
4333              (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
4334                 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
4335                                          + ETH_FCS_LEN;
4336
4337         if (netif_running(netdev))
4338                 e1000e_up(adapter);
4339         else
4340                 e1000e_reset(adapter);
4341
4342         clear_bit(__E1000_RESETTING, &adapter->state);
4343
4344         return 0;
4345 }
4346
4347 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4348                            int cmd)
4349 {
4350         struct e1000_adapter *adapter = netdev_priv(netdev);
4351         struct mii_ioctl_data *data = if_mii(ifr);
4352
4353         if (adapter->hw.phy.media_type != e1000_media_type_copper)
4354                 return -EOPNOTSUPP;
4355
4356         switch (cmd) {
4357         case SIOCGMIIPHY:
4358                 data->phy_id = adapter->hw.phy.addr;
4359                 break;
4360         case SIOCGMIIREG:
4361                 e1000_phy_read_status(adapter);
4362
4363                 switch (data->reg_num & 0x1F) {
4364                 case MII_BMCR:
4365                         data->val_out = adapter->phy_regs.bmcr;
4366                         break;
4367                 case MII_BMSR:
4368                         data->val_out = adapter->phy_regs.bmsr;
4369                         break;
4370                 case MII_PHYSID1:
4371                         data->val_out = (adapter->hw.phy.id >> 16);
4372                         break;
4373                 case MII_PHYSID2:
4374                         data->val_out = (adapter->hw.phy.id & 0xFFFF);
4375                         break;
4376                 case MII_ADVERTISE:
4377                         data->val_out = adapter->phy_regs.advertise;
4378                         break;
4379                 case MII_LPA:
4380                         data->val_out = adapter->phy_regs.lpa;
4381                         break;
4382                 case MII_EXPANSION:
4383                         data->val_out = adapter->phy_regs.expansion;
4384                         break;
4385                 case MII_CTRL1000:
4386                         data->val_out = adapter->phy_regs.ctrl1000;
4387                         break;
4388                 case MII_STAT1000:
4389                         data->val_out = adapter->phy_regs.stat1000;
4390                         break;
4391                 case MII_ESTATUS:
4392                         data->val_out = adapter->phy_regs.estatus;
4393                         break;
4394                 default:
4395                         return -EIO;
4396                 }
4397                 break;
4398         case SIOCSMIIREG:
4399         default:
4400                 return -EOPNOTSUPP;
4401         }
4402         return 0;
4403 }
4404
4405 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4406 {
4407         switch (cmd) {
4408         case SIOCGMIIPHY:
4409         case SIOCGMIIREG:
4410         case SIOCSMIIREG:
4411                 return e1000_mii_ioctl(netdev, ifr, cmd);
4412         default:
4413                 return -EOPNOTSUPP;
4414         }
4415 }
4416
4417 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
4418 {
4419         struct e1000_hw *hw = &adapter->hw;
4420         u32 i, mac_reg;
4421         u16 phy_reg;
4422         int retval = 0;
4423
4424         /* copy MAC RARs to PHY RARs */
4425         for (i = 0; i < adapter->hw.mac.rar_entry_count; i++) {
4426                 mac_reg = er32(RAL(i));
4427                 e1e_wphy(hw, BM_RAR_L(i), (u16)(mac_reg & 0xFFFF));
4428                 e1e_wphy(hw, BM_RAR_M(i), (u16)((mac_reg >> 16) & 0xFFFF));
4429                 mac_reg = er32(RAH(i));
4430                 e1e_wphy(hw, BM_RAR_H(i), (u16)(mac_reg & 0xFFFF));
4431                 e1e_wphy(hw, BM_RAR_CTRL(i), (u16)((mac_reg >> 16) & 0xFFFF));
4432         }
4433
4434         /* copy MAC MTA to PHY MTA */
4435         for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
4436                 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
4437                 e1e_wphy(hw, BM_MTA(i), (u16)(mac_reg & 0xFFFF));
4438                 e1e_wphy(hw, BM_MTA(i) + 1, (u16)((mac_reg >> 16) & 0xFFFF));
4439         }
4440
4441         /* configure PHY Rx Control register */
4442         e1e_rphy(&adapter->hw, BM_RCTL, &phy_reg);
4443         mac_reg = er32(RCTL);
4444         if (mac_reg & E1000_RCTL_UPE)
4445                 phy_reg |= BM_RCTL_UPE;
4446         if (mac_reg & E1000_RCTL_MPE)
4447                 phy_reg |= BM_RCTL_MPE;
4448         phy_reg &= ~(BM_RCTL_MO_MASK);
4449         if (mac_reg & E1000_RCTL_MO_3)
4450                 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
4451                                 << BM_RCTL_MO_SHIFT);
4452         if (mac_reg & E1000_RCTL_BAM)
4453                 phy_reg |= BM_RCTL_BAM;
4454         if (mac_reg & E1000_RCTL_PMCF)
4455                 phy_reg |= BM_RCTL_PMCF;
4456         mac_reg = er32(CTRL);
4457         if (mac_reg & E1000_CTRL_RFCE)
4458                 phy_reg |= BM_RCTL_RFCE;
4459         e1e_wphy(&adapter->hw, BM_RCTL, phy_reg);
4460
4461         /* enable PHY wakeup in MAC register */
4462         ew32(WUFC, wufc);
4463         ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
4464
4465         /* configure and enable PHY wakeup in PHY registers */
4466         e1e_wphy(&adapter->hw, BM_WUFC, wufc);
4467         e1e_wphy(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
4468
4469         /* activate PHY wakeup */
4470         retval = hw->phy.ops.acquire(hw);
4471         if (retval) {
4472                 e_err("Could not acquire PHY\n");
4473                 return retval;
4474         }
4475         e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4476                                  (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
4477         retval = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &phy_reg);
4478         if (retval) {
4479                 e_err("Could not read PHY page 769\n");
4480                 goto out;
4481         }
4482         phy_reg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
4483         retval = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
4484         if (retval)
4485                 e_err("Could not set PHY Host Wakeup bit\n");
4486 out:
4487         hw->phy.ops.release(hw);
4488
4489         return retval;
4490 }
4491
4492 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4493 {
4494         struct net_device *netdev = pci_get_drvdata(pdev);
4495         struct e1000_adapter *adapter = netdev_priv(netdev);
4496         struct e1000_hw *hw = &adapter->hw;
4497         u32 ctrl, ctrl_ext, rctl, status;
4498         u32 wufc = adapter->wol;
4499         int retval = 0;
4500
4501         netif_device_detach(netdev);
4502
4503         if (netif_running(netdev)) {
4504                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4505                 e1000e_down(adapter);
4506                 e1000_free_irq(adapter);
4507         }
4508         e1000e_reset_interrupt_capability(adapter);
4509
4510         retval = pci_save_state(pdev);
4511         if (retval)
4512                 return retval;
4513
4514         status = er32(STATUS);
4515         if (status & E1000_STATUS_LU)
4516                 wufc &= ~E1000_WUFC_LNKC;
4517
4518         if (wufc) {
4519                 e1000_setup_rctl(adapter);
4520                 e1000_set_multi(netdev);
4521
4522                 /* turn on all-multi mode if wake on multicast is enabled */
4523                 if (wufc & E1000_WUFC_MC) {
4524                         rctl = er32(RCTL);
4525                         rctl |= E1000_RCTL_MPE;
4526                         ew32(RCTL, rctl);
4527                 }
4528
4529                 ctrl = er32(CTRL);
4530                 /* advertise wake from D3Cold */
4531                 #define E1000_CTRL_ADVD3WUC 0x00100000
4532                 /* phy power management enable */
4533                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4534                 ctrl |= E1000_CTRL_ADVD3WUC;
4535                 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
4536                         ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
4537                 ew32(CTRL, ctrl);
4538
4539                 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
4540                     adapter->hw.phy.media_type ==
4541                     e1000_media_type_internal_serdes) {
4542                         /* keep the laser running in D3 */
4543                         ctrl_ext = er32(CTRL_EXT);
4544                         ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
4545                         ew32(CTRL_EXT, ctrl_ext);
4546                 }
4547
4548                 if (adapter->flags & FLAG_IS_ICH)
4549                         e1000e_disable_gig_wol_ich8lan(&adapter->hw);
4550
4551                 /* Allow time for pending master requests to run */
4552                 e1000e_disable_pcie_master(&adapter->hw);
4553
4554                 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
4555                         /* enable wakeup by the PHY */
4556                         retval = e1000_init_phy_wakeup(adapter, wufc);
4557                         if (retval)
4558                                 return retval;
4559                 } else {
4560                         /* enable wakeup by the MAC */
4561                         ew32(WUFC, wufc);
4562                         ew32(WUC, E1000_WUC_PME_EN);
4563                 }
4564         } else {
4565                 ew32(WUC, 0);
4566                 ew32(WUFC, 0);
4567         }
4568
4569         *enable_wake = !!wufc;
4570
4571         /* make sure adapter isn't asleep if manageability is enabled */
4572         if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
4573             (hw->mac.ops.check_mng_mode(hw)))
4574                 *enable_wake = true;
4575
4576         if (adapter->hw.phy.type == e1000_phy_igp_3)
4577                 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
4578
4579         /*
4580          * Release control of h/w to f/w.  If f/w is AMT enabled, this
4581          * would have already happened in close and is redundant.
4582          */
4583         e1000_release_hw_control(adapter);
4584
4585         pci_disable_device(pdev);
4586
4587         return 0;
4588 }
4589
4590 static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
4591 {
4592         if (sleep && wake) {
4593                 pci_prepare_to_sleep(pdev);
4594                 return;
4595         }
4596
4597         pci_wake_from_d3(pdev, wake);
4598         pci_set_power_state(pdev, PCI_D3hot);
4599 }
4600
4601 static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
4602                                     bool wake)
4603 {
4604         struct net_device *netdev = pci_get_drvdata(pdev);
4605         struct e1000_adapter *adapter = netdev_priv(netdev);
4606
4607         /*
4608          * The pci-e switch on some quad port adapters will report a
4609          * correctable error when the MAC transitions from D0 to D3.  To
4610          * prevent this we need to mask off the correctable errors on the
4611          * downstream port of the pci-e switch.
4612          */
4613         if (adapter->flags & FLAG_IS_QUAD_PORT) {
4614                 struct pci_dev *us_dev = pdev->bus->self;
4615                 int pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
4616                 u16 devctl;
4617
4618                 pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
4619                 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
4620                                       (devctl & ~PCI_EXP_DEVCTL_CERE));
4621
4622                 e1000_power_off(pdev, sleep, wake);
4623
4624                 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
4625         } else {
4626                 e1000_power_off(pdev, sleep, wake);
4627         }
4628 }
4629
4630 static void e1000e_disable_l1aspm(struct pci_dev *pdev)
4631 {
4632         int pos;
4633         u16 val;
4634
4635         /*
4636          * 82573 workaround - disable L1 ASPM on mobile chipsets
4637          *
4638          * L1 ASPM on various mobile (ich7) chipsets do not behave properly
4639          * resulting in lost data or garbage information on the pci-e link
4640          * level. This could result in (false) bad EEPROM checksum errors,
4641          * long ping times (up to 2s) or even a system freeze/hang.
4642          *
4643          * Unfortunately this feature saves about 1W power consumption when
4644          * active.
4645          */
4646         pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
4647         pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &val);
4648         if (val & 0x2) {
4649                 dev_warn(&pdev->dev, "Disabling L1 ASPM\n");
4650                 val &= ~0x2;
4651                 pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, val);
4652         }
4653 }
4654
4655 #ifdef CONFIG_PM
4656 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4657 {
4658         int retval;
4659         bool wake;
4660
4661         retval = __e1000_shutdown(pdev, &wake);
4662         if (!retval)
4663                 e1000_complete_shutdown(pdev, true, wake);
4664
4665         return retval;
4666 }
4667
4668 static int e1000_resume(struct pci_dev *pdev)
4669 {
4670         struct net_device *netdev = pci_get_drvdata(pdev);
4671         struct e1000_adapter *adapter = netdev_priv(netdev);
4672         struct e1000_hw *hw = &adapter->hw;
4673         u32 err;
4674
4675         pci_set_power_state(pdev, PCI_D0);
4676         pci_restore_state(pdev);
4677         pci_save_state(pdev);
4678         e1000e_disable_l1aspm(pdev);
4679
4680         err = pci_enable_device_mem(pdev);
4681         if (err) {
4682                 dev_err(&pdev->dev,
4683                         "Cannot enable PCI device from suspend\n");
4684                 return err;
4685         }
4686
4687         pci_set_master(pdev);
4688
4689         pci_enable_wake(pdev, PCI_D3hot, 0);
4690         pci_enable_wake(pdev, PCI_D3cold, 0);
4691
4692         e1000e_set_interrupt_capability(adapter);
4693         if (netif_running(netdev)) {
4694                 err = e1000_request_irq(adapter);
4695                 if (err)
4696                         return err;
4697         }
4698
4699         e1000e_power_up_phy(adapter);
4700
4701         /* report the system wakeup cause from S3/S4 */
4702         if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
4703                 u16 phy_data;
4704
4705                 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
4706                 if (phy_data) {
4707                         e_info("PHY Wakeup cause - %s\n",
4708                                 phy_data & E1000_WUS_EX ? "Unicast Packet" :
4709                                 phy_data & E1000_WUS_MC ? "Multicast Packet" :
4710                                 phy_data & E1000_WUS_BC ? "Broadcast Packet" :
4711                                 phy_data & E1000_WUS_MAG ? "Magic Packet" :
4712                                 phy_data & E1000_WUS_LNKC ? "Link Status "
4713                                 " Change" : "other");
4714                 }
4715                 e1e_wphy(&adapter->hw, BM_WUS, ~0);
4716         } else {
4717                 u32 wus = er32(WUS);
4718                 if (wus) {
4719                         e_info("MAC Wakeup cause - %s\n",
4720                                 wus & E1000_WUS_EX ? "Unicast Packet" :
4721                                 wus & E1000_WUS_MC ? "Multicast Packet" :
4722                                 wus & E1000_WUS_BC ? "Broadcast Packet" :
4723                                 wus & E1000_WUS_MAG ? "Magic Packet" :
4724                                 wus & E1000_WUS_LNKC ? "Link Status Change" :
4725                                 "other");
4726                 }
4727                 ew32(WUS, ~0);
4728         }
4729
4730         e1000e_reset(adapter);
4731
4732         e1000_init_manageability(adapter);
4733
4734         if (netif_running(netdev))
4735                 e1000e_up(adapter);
4736
4737         netif_device_attach(netdev);
4738
4739         /*
4740          * If the controller has AMT, do not set DRV_LOAD until the interface
4741          * is up.  For all other cases, let the f/w know that the h/w is now
4742          * under the control of the driver.
4743          */
4744         if (!(adapter->flags & FLAG_HAS_AMT))
4745                 e1000_get_hw_control(adapter);
4746
4747         return 0;
4748 }
4749 #endif
4750
4751 static void e1000_shutdown(struct pci_dev *pdev)
4752 {
4753         bool wake = false;
4754
4755         __e1000_shutdown(pdev, &wake);
4756
4757         if (system_state == SYSTEM_POWER_OFF)
4758                 e1000_complete_shutdown(pdev, false, wake);
4759 }
4760
4761 #ifdef CONFIG_NET_POLL_CONTROLLER
4762 /*
4763  * Polling 'interrupt' - used by things like netconsole to send skbs
4764  * without having to re-enable interrupts. It's not called while
4765  * the interrupt routine is executing.
4766  */
4767 static void e1000_netpoll(struct net_device *netdev)
4768 {
4769         struct e1000_adapter *adapter = netdev_priv(netdev);
4770
4771         disable_irq(adapter->pdev->irq);
4772         e1000_intr(adapter->pdev->irq, netdev);
4773
4774         enable_irq(adapter->pdev->irq);
4775 }
4776 #endif
4777
4778 /**
4779  * e1000_io_error_detected - called when PCI error is detected
4780  * @pdev: Pointer to PCI device
4781  * @state: The current pci connection state
4782  *
4783  * This function is called after a PCI bus error affecting
4784  * this device has been detected.
4785  */
4786 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4787                                                 pci_channel_state_t state)
4788 {
4789         struct net_device *netdev = pci_get_drvdata(pdev);
4790         struct e1000_adapter *adapter = netdev_priv(netdev);
4791
4792         netif_device_detach(netdev);
4793
4794         if (state == pci_channel_io_perm_failure)
4795                 return PCI_ERS_RESULT_DISCONNECT;
4796
4797         if (netif_running(netdev))
4798                 e1000e_down(adapter);
4799         pci_disable_device(pdev);
4800
4801         /* Request a slot slot reset. */
4802         return PCI_ERS_RESULT_NEED_RESET;
4803 }
4804
4805 /**
4806  * e1000_io_slot_reset - called after the pci bus has been reset.
4807  * @pdev: Pointer to PCI device
4808  *
4809  * Restart the card from scratch, as if from a cold-boot. Implementation
4810  * resembles the first-half of the e1000_resume routine.
4811  */
4812 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4813 {
4814         struct net_device *netdev = pci_get_drvdata(pdev);
4815         struct e1000_adapter *adapter = netdev_priv(netdev);
4816         struct e1000_hw *hw = &adapter->hw;
4817         int err;
4818         pci_ers_result_t result;
4819
4820         e1000e_disable_l1aspm(pdev);
4821         err = pci_enable_device_mem(pdev);
4822         if (err) {
4823                 dev_err(&pdev->dev,
4824                         "Cannot re-enable PCI device after reset.\n");
4825                 result = PCI_ERS_RESULT_DISCONNECT;
4826         } else {
4827                 pci_set_master(pdev);
4828                 pci_restore_state(pdev);
4829                 pci_save_state(pdev);
4830
4831                 pci_enable_wake(pdev, PCI_D3hot, 0);
4832                 pci_enable_wake(pdev, PCI_D3cold, 0);
4833
4834                 e1000e_reset(adapter);
4835                 ew32(WUS, ~0);
4836                 result = PCI_ERS_RESULT_RECOVERED;
4837         }
4838
4839         pci_cleanup_aer_uncorrect_error_status(pdev);
4840
4841         return result;
4842 }
4843
4844 /**
4845  * e1000_io_resume - called when traffic can start flowing again.
4846  * @pdev: Pointer to PCI device
4847  *
4848  * This callback is called when the error recovery driver tells us that
4849  * its OK to resume normal operation. Implementation resembles the
4850  * second-half of the e1000_resume routine.
4851  */
4852 static void e1000_io_resume(struct pci_dev *pdev)
4853 {
4854         struct net_device *netdev = pci_get_drvdata(pdev);
4855         struct e1000_adapter *adapter = netdev_priv(netdev);
4856
4857         e1000_init_manageability(adapter);
4858
4859         if (netif_running(netdev)) {
4860                 if (e1000e_up(adapter)) {
4861                         dev_err(&pdev->dev,
4862                                 "can't bring device back up after reset\n");
4863                         return;
4864                 }
4865         }
4866
4867         netif_device_attach(netdev);
4868
4869         /*
4870          * If the controller has AMT, do not set DRV_LOAD until the interface
4871          * is up.  For all other cases, let the f/w know that the h/w is now
4872          * under the control of the driver.
4873          */
4874         if (!(adapter->flags & FLAG_HAS_AMT))
4875                 e1000_get_hw_control(adapter);
4876
4877 }
4878
4879 static void e1000_print_device_info(struct e1000_adapter *adapter)
4880 {
4881         struct e1000_hw *hw = &adapter->hw;
4882         struct net_device *netdev = adapter->netdev;
4883         u32 pba_num;
4884
4885         /* print bus type/speed/width info */
4886         e_info("(PCI Express:2.5GB/s:%s) %pM\n",
4887                /* bus width */
4888                ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
4889                 "Width x1"),
4890                /* MAC address */
4891                netdev->dev_addr);
4892         e_info("Intel(R) PRO/%s Network Connection\n",
4893                (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
4894         e1000e_read_pba_num(hw, &pba_num);
4895         e_info("MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
4896                hw->mac.type, hw->phy.type, (pba_num >> 8), (pba_num & 0xff));
4897 }
4898
4899 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
4900 {
4901         struct e1000_hw *hw = &adapter->hw;
4902         int ret_val;
4903         u16 buf = 0;
4904
4905         if (hw->mac.type != e1000_82573)
4906                 return;
4907
4908         ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
4909         if (!ret_val && (!(le16_to_cpu(buf) & (1 << 0)))) {
4910                 /* Deep Smart Power Down (DSPD) */
4911                 dev_warn(&adapter->pdev->dev,
4912                          "Warning: detected DSPD enabled in EEPROM\n");
4913         }
4914
4915         ret_val = e1000_read_nvm(hw, NVM_INIT_3GIO_3, 1, &buf);
4916         if (!ret_val && (le16_to_cpu(buf) & (3 << 2))) {
4917                 /* ASPM enable */
4918                 dev_warn(&adapter->pdev->dev,
4919                          "Warning: detected ASPM enabled in EEPROM\n");
4920         }
4921 }
4922
4923 static const struct net_device_ops e1000e_netdev_ops = {
4924         .ndo_open               = e1000_open,
4925         .ndo_stop               = e1000_close,
4926         .ndo_start_xmit         = e1000_xmit_frame,
4927         .ndo_get_stats          = e1000_get_stats,
4928         .ndo_set_multicast_list = e1000_set_multi,
4929         .ndo_set_mac_address    = e1000_set_mac,
4930         .ndo_change_mtu         = e1000_change_mtu,
4931         .ndo_do_ioctl           = e1000_ioctl,
4932         .ndo_tx_timeout         = e1000_tx_timeout,
4933         .ndo_validate_addr      = eth_validate_addr,
4934
4935         .ndo_vlan_rx_register   = e1000_vlan_rx_register,
4936         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
4937         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
4938 #ifdef CONFIG_NET_POLL_CONTROLLER
4939         .ndo_poll_controller    = e1000_netpoll,
4940 #endif
4941 };
4942
4943 /**
4944  * e1000_probe - Device Initialization Routine
4945  * @pdev: PCI device information struct
4946  * @ent: entry in e1000_pci_tbl
4947  *
4948  * Returns 0 on success, negative on failure
4949  *
4950  * e1000_probe initializes an adapter identified by a pci_dev structure.
4951  * The OS initialization, configuring of the adapter private structure,
4952  * and a hardware reset occur.
4953  **/
4954 static int __devinit e1000_probe(struct pci_dev *pdev,
4955                                  const struct pci_device_id *ent)
4956 {
4957         struct net_device *netdev;
4958         struct e1000_adapter *adapter;
4959         struct e1000_hw *hw;
4960         const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
4961         resource_size_t mmio_start, mmio_len;
4962         resource_size_t flash_start, flash_len;
4963
4964         static int cards_found;
4965         int i, err, pci_using_dac;
4966         u16 eeprom_data = 0;
4967         u16 eeprom_apme_mask = E1000_EEPROM_APME;
4968
4969         e1000e_disable_l1aspm(pdev);
4970
4971         err = pci_enable_device_mem(pdev);
4972         if (err)
4973                 return err;
4974
4975         pci_using_dac = 0;
4976         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4977         if (!err) {
4978                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4979                 if (!err)
4980                         pci_using_dac = 1;
4981         } else {
4982                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4983                 if (err) {
4984                         err = pci_set_consistent_dma_mask(pdev,
4985                                                           DMA_BIT_MASK(32));
4986                         if (err) {
4987                                 dev_err(&pdev->dev, "No usable DMA "
4988                                         "configuration, aborting\n");
4989                                 goto err_dma;
4990                         }
4991                 }
4992         }
4993
4994         err = pci_request_selected_regions_exclusive(pdev,
4995                                           pci_select_bars(pdev, IORESOURCE_MEM),
4996                                           e1000e_driver_name);
4997         if (err)
4998                 goto err_pci_reg;
4999
5000         /* AER (Advanced Error Reporting) hooks */
5001         pci_enable_pcie_error_reporting(pdev);
5002
5003         pci_set_master(pdev);
5004         /* PCI config space info */
5005         err = pci_save_state(pdev);
5006         if (err)
5007                 goto err_alloc_etherdev;
5008
5009         err = -ENOMEM;
5010         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
5011         if (!netdev)
5012                 goto err_alloc_etherdev;
5013
5014         SET_NETDEV_DEV(netdev, &pdev->dev);
5015
5016         pci_set_drvdata(pdev, netdev);
5017         adapter = netdev_priv(netdev);
5018         hw = &adapter->hw;
5019         adapter->netdev = netdev;
5020         adapter->pdev = pdev;
5021         adapter->ei = ei;
5022         adapter->pba = ei->pba;
5023         adapter->flags = ei->flags;
5024         adapter->flags2 = ei->flags2;
5025         adapter->hw.adapter = adapter;
5026         adapter->hw.mac.type = ei->mac;
5027         adapter->max_hw_frame_size = ei->max_hw_frame_size;
5028         adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
5029
5030         mmio_start = pci_resource_start(pdev, 0);
5031         mmio_len = pci_resource_len(pdev, 0);
5032
5033         err = -EIO;
5034         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
5035         if (!adapter->hw.hw_addr)
5036                 goto err_ioremap;
5037
5038         if ((adapter->flags & FLAG_HAS_FLASH) &&
5039             (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
5040                 flash_start = pci_resource_start(pdev, 1);
5041                 flash_len = pci_resource_len(pdev, 1);
5042                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
5043                 if (!adapter->hw.flash_address)
5044                         goto err_flashmap;
5045         }
5046
5047         /* construct the net_device struct */
5048         netdev->netdev_ops              = &e1000e_netdev_ops;
5049         e1000e_set_ethtool_ops(netdev);
5050         netdev->watchdog_timeo          = 5 * HZ;
5051         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
5052         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
5053
5054         netdev->mem_start = mmio_start;
5055         netdev->mem_end = mmio_start + mmio_len;
5056
5057         adapter->bd_number = cards_found++;
5058
5059         e1000e_check_options(adapter);
5060
5061         /* setup adapter struct */
5062         err = e1000_sw_init(adapter);
5063         if (err)
5064                 goto err_sw_init;
5065
5066         err = -EIO;
5067
5068         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
5069         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
5070         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
5071
5072         err = ei->get_variants(adapter);
5073         if (err)
5074                 goto err_hw_init;
5075
5076         if ((adapter->flags & FLAG_IS_ICH) &&
5077             (adapter->flags & FLAG_READ_ONLY_NVM))
5078                 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
5079
5080         hw->mac.ops.get_bus_info(&adapter->hw);
5081
5082         adapter->hw.phy.autoneg_wait_to_complete = 0;
5083
5084         /* Copper options */
5085         if (adapter->hw.phy.media_type == e1000_media_type_copper) {
5086                 adapter->hw.phy.mdix = AUTO_ALL_MODES;
5087                 adapter->hw.phy.disable_polarity_correction = 0;
5088                 adapter->hw.phy.ms_type = e1000_ms_hw_default;
5089         }
5090
5091         if (e1000_check_reset_block(&adapter->hw))
5092                 e_info("PHY reset is blocked due to SOL/IDER session.\n");
5093
5094         netdev->features = NETIF_F_SG |
5095                            NETIF_F_HW_CSUM |
5096                            NETIF_F_HW_VLAN_TX |
5097                            NETIF_F_HW_VLAN_RX;
5098
5099         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
5100                 netdev->features |= NETIF_F_HW_VLAN_FILTER;
5101
5102         netdev->features |= NETIF_F_TSO;
5103         netdev->features |= NETIF_F_TSO6;
5104
5105         netdev->vlan_features |= NETIF_F_TSO;
5106         netdev->vlan_features |= NETIF_F_TSO6;
5107         netdev->vlan_features |= NETIF_F_HW_CSUM;
5108         netdev->vlan_features |= NETIF_F_SG;
5109
5110         if (pci_using_dac)
5111                 netdev->features |= NETIF_F_HIGHDMA;
5112
5113         if (e1000e_enable_mng_pass_thru(&adapter->hw))
5114                 adapter->flags |= FLAG_MNG_PT_ENABLED;
5115
5116         /*
5117          * before reading the NVM, reset the controller to
5118          * put the device in a known good starting state
5119          */
5120         adapter->hw.mac.ops.reset_hw(&adapter->hw);
5121
5122         /*
5123          * systems with ASPM and others may see the checksum fail on the first
5124          * attempt. Let's give it a few tries
5125          */
5126         for (i = 0;; i++) {
5127                 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
5128                         break;
5129                 if (i == 2) {
5130                         e_err("The NVM Checksum Is Not Valid\n");
5131                         err = -EIO;
5132                         goto err_eeprom;
5133                 }
5134         }
5135
5136         e1000_eeprom_checks(adapter);
5137
5138         /* copy the MAC address */
5139         if (e1000e_read_mac_addr(&adapter->hw))
5140                 e_err("NVM Read Error while reading MAC address\n");
5141
5142         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
5143         memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
5144
5145         if (!is_valid_ether_addr(netdev->perm_addr)) {
5146                 e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
5147                 err = -EIO;
5148                 goto err_eeprom;
5149         }
5150
5151         init_timer(&adapter->watchdog_timer);
5152         adapter->watchdog_timer.function = &e1000_watchdog;
5153         adapter->watchdog_timer.data = (unsigned long) adapter;
5154
5155         init_timer(&adapter->phy_info_timer);
5156         adapter->phy_info_timer.function = &e1000_update_phy_info;
5157         adapter->phy_info_timer.data = (unsigned long) adapter;
5158
5159         INIT_WORK(&adapter->reset_task, e1000_reset_task);
5160         INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
5161         INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
5162         INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
5163         INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
5164
5165         /* Initialize link parameters. User can change them with ethtool */
5166         adapter->hw.mac.autoneg = 1;
5167         adapter->fc_autoneg = 1;
5168         adapter->hw.fc.requested_mode = e1000_fc_default;
5169         adapter->hw.fc.current_mode = e1000_fc_default;
5170         adapter->hw.phy.autoneg_advertised = 0x2f;
5171
5172         /* ring size defaults */
5173         adapter->rx_ring->count = 256;
5174         adapter->tx_ring->count = 256;
5175
5176         /*
5177          * Initial Wake on LAN setting - If APM wake is enabled in
5178          * the EEPROM, enable the ACPI Magic Packet filter
5179          */
5180         if (adapter->flags & FLAG_APME_IN_WUC) {
5181                 /* APME bit in EEPROM is mapped to WUC.APME */
5182                 eeprom_data = er32(WUC);
5183                 eeprom_apme_mask = E1000_WUC_APME;
5184                 if (eeprom_data & E1000_WUC_PHY_WAKE)
5185                         adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
5186         } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
5187                 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
5188                     (adapter->hw.bus.func == 1))
5189                         e1000_read_nvm(&adapter->hw,
5190                                 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
5191                 else
5192                         e1000_read_nvm(&adapter->hw,
5193                                 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
5194         }
5195
5196         /* fetch WoL from EEPROM */
5197         if (eeprom_data & eeprom_apme_mask)
5198                 adapter->eeprom_wol |= E1000_WUFC_MAG;
5199
5200         /*
5201          * now that we have the eeprom settings, apply the special cases
5202          * where the eeprom may be wrong or the board simply won't support
5203          * wake on lan on a particular port
5204          */
5205         if (!(adapter->flags & FLAG_HAS_WOL))
5206                 adapter->eeprom_wol = 0;
5207
5208         /* initialize the wol settings based on the eeprom settings */
5209         adapter->wol = adapter->eeprom_wol;
5210         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
5211
5212         /* save off EEPROM version number */
5213         e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
5214
5215         /* reset the hardware with the new settings */
5216         e1000e_reset(adapter);
5217
5218         /*
5219          * If the controller has AMT, do not set DRV_LOAD until the interface
5220          * is up.  For all other cases, let the f/w know that the h/w is now
5221          * under the control of the driver.
5222          */
5223         if (!(adapter->flags & FLAG_HAS_AMT))
5224                 e1000_get_hw_control(adapter);
5225
5226         strcpy(netdev->name, "eth%d");
5227         err = register_netdev(netdev);
5228         if (err)
5229                 goto err_register;
5230
5231         /* carrier off reporting is important to ethtool even BEFORE open */
5232         netif_carrier_off(netdev);
5233
5234         e1000_print_device_info(adapter);
5235
5236         return 0;
5237
5238 err_register:
5239         if (!(adapter->flags & FLAG_HAS_AMT))
5240                 e1000_release_hw_control(adapter);
5241 err_eeprom:
5242         if (!e1000_check_reset_block(&adapter->hw))
5243                 e1000_phy_hw_reset(&adapter->hw);
5244 err_hw_init:
5245
5246         kfree(adapter->tx_ring);
5247         kfree(adapter->rx_ring);
5248 err_sw_init:
5249         if (adapter->hw.flash_address)
5250                 iounmap(adapter->hw.flash_address);
5251         e1000e_reset_interrupt_capability(adapter);
5252 err_flashmap:
5253         iounmap(adapter->hw.hw_addr);
5254 err_ioremap:
5255         free_netdev(netdev);
5256 err_alloc_etherdev:
5257         pci_release_selected_regions(pdev,
5258                                      pci_select_bars(pdev, IORESOURCE_MEM));
5259 err_pci_reg:
5260 err_dma:
5261         pci_disable_device(pdev);
5262         return err;
5263 }
5264
5265 /**
5266  * e1000_remove - Device Removal Routine
5267  * @pdev: PCI device information struct
5268  *
5269  * e1000_remove is called by the PCI subsystem to alert the driver
5270  * that it should release a PCI device.  The could be caused by a
5271  * Hot-Plug event, or because the driver is going to be removed from
5272  * memory.
5273  **/
5274 static void __devexit e1000_remove(struct pci_dev *pdev)
5275 {
5276         struct net_device *netdev = pci_get_drvdata(pdev);
5277         struct e1000_adapter *adapter = netdev_priv(netdev);
5278
5279         /*
5280          * flush_scheduled work may reschedule our watchdog task, so
5281          * explicitly disable watchdog tasks from being rescheduled
5282          */
5283         set_bit(__E1000_DOWN, &adapter->state);
5284         del_timer_sync(&adapter->watchdog_timer);
5285         del_timer_sync(&adapter->phy_info_timer);
5286
5287         cancel_work_sync(&adapter->reset_task);
5288         cancel_work_sync(&adapter->watchdog_task);
5289         cancel_work_sync(&adapter->downshift_task);
5290         cancel_work_sync(&adapter->update_phy_task);
5291         cancel_work_sync(&adapter->print_hang_task);
5292         flush_scheduled_work();
5293
5294         if (!(netdev->flags & IFF_UP))
5295                 e1000_power_down_phy(adapter);
5296
5297         unregister_netdev(netdev);
5298
5299         /*
5300          * Release control of h/w to f/w.  If f/w is AMT enabled, this
5301          * would have already happened in close and is redundant.
5302          */
5303         e1000_release_hw_control(adapter);
5304
5305         e1000e_reset_interrupt_capability(adapter);
5306         kfree(adapter->tx_ring);
5307         kfree(adapter->rx_ring);
5308
5309         iounmap(adapter->hw.hw_addr);
5310         if (adapter->hw.flash_address)
5311                 iounmap(adapter->hw.flash_address);
5312         pci_release_selected_regions(pdev,
5313                                      pci_select_bars(pdev, IORESOURCE_MEM));
5314
5315         free_netdev(netdev);
5316
5317         /* AER disable */
5318         pci_disable_pcie_error_reporting(pdev);
5319
5320         pci_disable_device(pdev);
5321 }
5322
5323 /* PCI Error Recovery (ERS) */
5324 static struct pci_error_handlers e1000_err_handler = {
5325         .error_detected = e1000_io_error_detected,
5326         .slot_reset = e1000_io_slot_reset,
5327         .resume = e1000_io_resume,
5328 };
5329
5330 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
5331         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
5332         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
5333         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
5334         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
5335         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
5336         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
5337         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
5338         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
5339         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
5340
5341         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
5342         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
5343         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
5344         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
5345
5346         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
5347         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
5348         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
5349
5350         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
5351         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
5352         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
5353
5354         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
5355           board_80003es2lan },
5356         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
5357           board_80003es2lan },
5358         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
5359           board_80003es2lan },
5360         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
5361           board_80003es2lan },
5362
5363         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
5364         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
5365         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
5366         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
5367         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
5368         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
5369         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
5370         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
5371
5372         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
5373         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
5374         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
5375         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
5376         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
5377         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
5378         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
5379         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
5380         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
5381
5382         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
5383         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
5384         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
5385
5386         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
5387         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
5388
5389         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
5390         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
5391         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
5392         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
5393
5394         { }     /* terminate list */
5395 };
5396 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
5397
5398 /* PCI Device API Driver */
5399 static struct pci_driver e1000_driver = {
5400         .name     = e1000e_driver_name,
5401         .id_table = e1000_pci_tbl,
5402         .probe    = e1000_probe,
5403         .remove   = __devexit_p(e1000_remove),
5404 #ifdef CONFIG_PM
5405         /* Power Management Hooks */
5406         .suspend  = e1000_suspend,
5407         .resume   = e1000_resume,
5408 #endif
5409         .shutdown = e1000_shutdown,
5410         .err_handler = &e1000_err_handler
5411 };
5412
5413 /**
5414  * e1000_init_module - Driver Registration Routine
5415  *
5416  * e1000_init_module is the first routine called when the driver is
5417  * loaded. All it does is register with the PCI subsystem.
5418  **/
5419 static int __init e1000_init_module(void)
5420 {
5421         int ret;
5422         printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n",
5423                e1000e_driver_name, e1000e_driver_version);
5424         printk(KERN_INFO "%s: Copyright (c) 1999 - 2009 Intel Corporation.\n",
5425                e1000e_driver_name);
5426         ret = pci_register_driver(&e1000_driver);
5427
5428         return ret;
5429 }
5430 module_init(e1000_init_module);
5431
5432 /**
5433  * e1000_exit_module - Driver Exit Cleanup Routine
5434  *
5435  * e1000_exit_module is called just before the driver is removed
5436  * from memory.
5437  **/
5438 static void __exit e1000_exit_module(void)
5439 {
5440         pci_unregister_driver(&e1000_driver);
5441 }
5442 module_exit(e1000_exit_module);
5443
5444
5445 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
5446 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
5447 MODULE_LICENSE("GPL");
5448 MODULE_VERSION(DRV_VERSION);
5449
5450 /* e1000_main.c */