e1000e: set pm_qos DMA latency requirement per interface when needed
[linux-2.6.git] / drivers / net / e1000e / netdev.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2009 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/delay.h>
36 #include <linux/netdevice.h>
37 #include <linux/tcp.h>
38 #include <linux/ipv6.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/mii.h>
42 #include <linux/ethtool.h>
43 #include <linux/if_vlan.h>
44 #include <linux/cpu.h>
45 #include <linux/smp.h>
46 #include <linux/pm_qos_params.h>
47 #include <linux/aer.h>
48
49 #include "e1000.h"
50
51 #define DRV_VERSION "1.0.2-k2"
52 char e1000e_driver_name[] = "e1000e";
53 const char e1000e_driver_version[] = DRV_VERSION;
54
55 static const struct e1000_info *e1000_info_tbl[] = {
56         [board_82571]           = &e1000_82571_info,
57         [board_82572]           = &e1000_82572_info,
58         [board_82573]           = &e1000_82573_info,
59         [board_82574]           = &e1000_82574_info,
60         [board_82583]           = &e1000_82583_info,
61         [board_80003es2lan]     = &e1000_es2_info,
62         [board_ich8lan]         = &e1000_ich8_info,
63         [board_ich9lan]         = &e1000_ich9_info,
64         [board_ich10lan]        = &e1000_ich10_info,
65         [board_pchlan]          = &e1000_pch_info,
66 };
67
68 /**
69  * e1000_desc_unused - calculate if we have unused descriptors
70  **/
71 static int e1000_desc_unused(struct e1000_ring *ring)
72 {
73         if (ring->next_to_clean > ring->next_to_use)
74                 return ring->next_to_clean - ring->next_to_use - 1;
75
76         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
77 }
78
79 /**
80  * e1000_receive_skb - helper function to handle Rx indications
81  * @adapter: board private structure
82  * @status: descriptor status field as written by hardware
83  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
84  * @skb: pointer to sk_buff to be indicated to stack
85  **/
86 static void e1000_receive_skb(struct e1000_adapter *adapter,
87                               struct net_device *netdev,
88                               struct sk_buff *skb,
89                               u8 status, __le16 vlan)
90 {
91         skb->protocol = eth_type_trans(skb, netdev);
92
93         if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
94                 vlan_gro_receive(&adapter->napi, adapter->vlgrp,
95                                  le16_to_cpu(vlan), skb);
96         else
97                 napi_gro_receive(&adapter->napi, skb);
98 }
99
100 /**
101  * e1000_rx_checksum - Receive Checksum Offload for 82543
102  * @adapter:     board private structure
103  * @status_err:  receive descriptor status and error fields
104  * @csum:       receive descriptor csum field
105  * @sk_buff:     socket buffer with received data
106  **/
107 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
108                               u32 csum, struct sk_buff *skb)
109 {
110         u16 status = (u16)status_err;
111         u8 errors = (u8)(status_err >> 24);
112         skb->ip_summed = CHECKSUM_NONE;
113
114         /* Ignore Checksum bit is set */
115         if (status & E1000_RXD_STAT_IXSM)
116                 return;
117         /* TCP/UDP checksum error bit is set */
118         if (errors & E1000_RXD_ERR_TCPE) {
119                 /* let the stack verify checksum errors */
120                 adapter->hw_csum_err++;
121                 return;
122         }
123
124         /* TCP/UDP Checksum has not been calculated */
125         if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
126                 return;
127
128         /* It must be a TCP or UDP packet with a valid checksum */
129         if (status & E1000_RXD_STAT_TCPCS) {
130                 /* TCP checksum is good */
131                 skb->ip_summed = CHECKSUM_UNNECESSARY;
132         } else {
133                 /*
134                  * IP fragment with UDP payload
135                  * Hardware complements the payload checksum, so we undo it
136                  * and then put the value in host order for further stack use.
137                  */
138                 __sum16 sum = (__force __sum16)htons(csum);
139                 skb->csum = csum_unfold(~sum);
140                 skb->ip_summed = CHECKSUM_COMPLETE;
141         }
142         adapter->hw_csum_good++;
143 }
144
145 /**
146  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
147  * @adapter: address of board private structure
148  **/
149 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
150                                    int cleaned_count)
151 {
152         struct net_device *netdev = adapter->netdev;
153         struct pci_dev *pdev = adapter->pdev;
154         struct e1000_ring *rx_ring = adapter->rx_ring;
155         struct e1000_rx_desc *rx_desc;
156         struct e1000_buffer *buffer_info;
157         struct sk_buff *skb;
158         unsigned int i;
159         unsigned int bufsz = adapter->rx_buffer_len;
160
161         i = rx_ring->next_to_use;
162         buffer_info = &rx_ring->buffer_info[i];
163
164         while (cleaned_count--) {
165                 skb = buffer_info->skb;
166                 if (skb) {
167                         skb_trim(skb, 0);
168                         goto map_skb;
169                 }
170
171                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
172                 if (!skb) {
173                         /* Better luck next round */
174                         adapter->alloc_rx_buff_failed++;
175                         break;
176                 }
177
178                 buffer_info->skb = skb;
179 map_skb:
180                 buffer_info->dma = pci_map_single(pdev, skb->data,
181                                                   adapter->rx_buffer_len,
182                                                   PCI_DMA_FROMDEVICE);
183                 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
184                         dev_err(&pdev->dev, "RX DMA map failed\n");
185                         adapter->rx_dma_failed++;
186                         break;
187                 }
188
189                 rx_desc = E1000_RX_DESC(*rx_ring, i);
190                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
191
192                 i++;
193                 if (i == rx_ring->count)
194                         i = 0;
195                 buffer_info = &rx_ring->buffer_info[i];
196         }
197
198         if (rx_ring->next_to_use != i) {
199                 rx_ring->next_to_use = i;
200                 if (i-- == 0)
201                         i = (rx_ring->count - 1);
202
203                 /*
204                  * Force memory writes to complete before letting h/w
205                  * know there are new descriptors to fetch.  (Only
206                  * applicable for weak-ordered memory model archs,
207                  * such as IA-64).
208                  */
209                 wmb();
210                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
211         }
212 }
213
214 /**
215  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
216  * @adapter: address of board private structure
217  **/
218 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
219                                       int cleaned_count)
220 {
221         struct net_device *netdev = adapter->netdev;
222         struct pci_dev *pdev = adapter->pdev;
223         union e1000_rx_desc_packet_split *rx_desc;
224         struct e1000_ring *rx_ring = adapter->rx_ring;
225         struct e1000_buffer *buffer_info;
226         struct e1000_ps_page *ps_page;
227         struct sk_buff *skb;
228         unsigned int i, j;
229
230         i = rx_ring->next_to_use;
231         buffer_info = &rx_ring->buffer_info[i];
232
233         while (cleaned_count--) {
234                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
235
236                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
237                         ps_page = &buffer_info->ps_pages[j];
238                         if (j >= adapter->rx_ps_pages) {
239                                 /* all unused desc entries get hw null ptr */
240                                 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
241                                 continue;
242                         }
243                         if (!ps_page->page) {
244                                 ps_page->page = alloc_page(GFP_ATOMIC);
245                                 if (!ps_page->page) {
246                                         adapter->alloc_rx_buff_failed++;
247                                         goto no_buffers;
248                                 }
249                                 ps_page->dma = pci_map_page(pdev,
250                                                    ps_page->page,
251                                                    0, PAGE_SIZE,
252                                                    PCI_DMA_FROMDEVICE);
253                                 if (pci_dma_mapping_error(pdev, ps_page->dma)) {
254                                         dev_err(&adapter->pdev->dev,
255                                           "RX DMA page map failed\n");
256                                         adapter->rx_dma_failed++;
257                                         goto no_buffers;
258                                 }
259                         }
260                         /*
261                          * Refresh the desc even if buffer_addrs
262                          * didn't change because each write-back
263                          * erases this info.
264                          */
265                         rx_desc->read.buffer_addr[j+1] =
266                              cpu_to_le64(ps_page->dma);
267                 }
268
269                 skb = netdev_alloc_skb_ip_align(netdev,
270                                                 adapter->rx_ps_bsize0);
271
272                 if (!skb) {
273                         adapter->alloc_rx_buff_failed++;
274                         break;
275                 }
276
277                 buffer_info->skb = skb;
278                 buffer_info->dma = pci_map_single(pdev, skb->data,
279                                                   adapter->rx_ps_bsize0,
280                                                   PCI_DMA_FROMDEVICE);
281                 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
282                         dev_err(&pdev->dev, "RX DMA map failed\n");
283                         adapter->rx_dma_failed++;
284                         /* cleanup skb */
285                         dev_kfree_skb_any(skb);
286                         buffer_info->skb = NULL;
287                         break;
288                 }
289
290                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
291
292                 i++;
293                 if (i == rx_ring->count)
294                         i = 0;
295                 buffer_info = &rx_ring->buffer_info[i];
296         }
297
298 no_buffers:
299         if (rx_ring->next_to_use != i) {
300                 rx_ring->next_to_use = i;
301
302                 if (!(i--))
303                         i = (rx_ring->count - 1);
304
305                 /*
306                  * Force memory writes to complete before letting h/w
307                  * know there are new descriptors to fetch.  (Only
308                  * applicable for weak-ordered memory model archs,
309                  * such as IA-64).
310                  */
311                 wmb();
312                 /*
313                  * Hardware increments by 16 bytes, but packet split
314                  * descriptors are 32 bytes...so we increment tail
315                  * twice as much.
316                  */
317                 writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
318         }
319 }
320
321 /**
322  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
323  * @adapter: address of board private structure
324  * @cleaned_count: number of buffers to allocate this pass
325  **/
326
327 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
328                                          int cleaned_count)
329 {
330         struct net_device *netdev = adapter->netdev;
331         struct pci_dev *pdev = adapter->pdev;
332         struct e1000_rx_desc *rx_desc;
333         struct e1000_ring *rx_ring = adapter->rx_ring;
334         struct e1000_buffer *buffer_info;
335         struct sk_buff *skb;
336         unsigned int i;
337         unsigned int bufsz = 256 - 16 /* for skb_reserve */;
338
339         i = rx_ring->next_to_use;
340         buffer_info = &rx_ring->buffer_info[i];
341
342         while (cleaned_count--) {
343                 skb = buffer_info->skb;
344                 if (skb) {
345                         skb_trim(skb, 0);
346                         goto check_page;
347                 }
348
349                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
350                 if (unlikely(!skb)) {
351                         /* Better luck next round */
352                         adapter->alloc_rx_buff_failed++;
353                         break;
354                 }
355
356                 buffer_info->skb = skb;
357 check_page:
358                 /* allocate a new page if necessary */
359                 if (!buffer_info->page) {
360                         buffer_info->page = alloc_page(GFP_ATOMIC);
361                         if (unlikely(!buffer_info->page)) {
362                                 adapter->alloc_rx_buff_failed++;
363                                 break;
364                         }
365                 }
366
367                 if (!buffer_info->dma)
368                         buffer_info->dma = pci_map_page(pdev,
369                                                         buffer_info->page, 0,
370                                                         PAGE_SIZE,
371                                                         PCI_DMA_FROMDEVICE);
372
373                 rx_desc = E1000_RX_DESC(*rx_ring, i);
374                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
375
376                 if (unlikely(++i == rx_ring->count))
377                         i = 0;
378                 buffer_info = &rx_ring->buffer_info[i];
379         }
380
381         if (likely(rx_ring->next_to_use != i)) {
382                 rx_ring->next_to_use = i;
383                 if (unlikely(i-- == 0))
384                         i = (rx_ring->count - 1);
385
386                 /* Force memory writes to complete before letting h/w
387                  * know there are new descriptors to fetch.  (Only
388                  * applicable for weak-ordered memory model archs,
389                  * such as IA-64). */
390                 wmb();
391                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
392         }
393 }
394
395 /**
396  * e1000_clean_rx_irq - Send received data up the network stack; legacy
397  * @adapter: board private structure
398  *
399  * the return value indicates whether actual cleaning was done, there
400  * is no guarantee that everything was cleaned
401  **/
402 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
403                                int *work_done, int work_to_do)
404 {
405         struct net_device *netdev = adapter->netdev;
406         struct pci_dev *pdev = adapter->pdev;
407         struct e1000_hw *hw = &adapter->hw;
408         struct e1000_ring *rx_ring = adapter->rx_ring;
409         struct e1000_rx_desc *rx_desc, *next_rxd;
410         struct e1000_buffer *buffer_info, *next_buffer;
411         u32 length;
412         unsigned int i;
413         int cleaned_count = 0;
414         bool cleaned = 0;
415         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
416
417         i = rx_ring->next_to_clean;
418         rx_desc = E1000_RX_DESC(*rx_ring, i);
419         buffer_info = &rx_ring->buffer_info[i];
420
421         while (rx_desc->status & E1000_RXD_STAT_DD) {
422                 struct sk_buff *skb;
423                 u8 status;
424
425                 if (*work_done >= work_to_do)
426                         break;
427                 (*work_done)++;
428
429                 status = rx_desc->status;
430                 skb = buffer_info->skb;
431                 buffer_info->skb = NULL;
432
433                 prefetch(skb->data - NET_IP_ALIGN);
434
435                 i++;
436                 if (i == rx_ring->count)
437                         i = 0;
438                 next_rxd = E1000_RX_DESC(*rx_ring, i);
439                 prefetch(next_rxd);
440
441                 next_buffer = &rx_ring->buffer_info[i];
442
443                 cleaned = 1;
444                 cleaned_count++;
445                 pci_unmap_single(pdev,
446                                  buffer_info->dma,
447                                  adapter->rx_buffer_len,
448                                  PCI_DMA_FROMDEVICE);
449                 buffer_info->dma = 0;
450
451                 length = le16_to_cpu(rx_desc->length);
452
453                 /* !EOP means multiple descriptors were used to store a single
454                  * packet, also make sure the frame isn't just CRC only */
455                 if (!(status & E1000_RXD_STAT_EOP) || (length <= 4)) {
456                         /* All receives must fit into a single buffer */
457                         e_dbg("Receive packet consumed multiple buffers\n");
458                         /* recycle */
459                         buffer_info->skb = skb;
460                         goto next_desc;
461                 }
462
463                 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
464                         /* recycle */
465                         buffer_info->skb = skb;
466                         goto next_desc;
467                 }
468
469                 /* adjust length to remove Ethernet CRC */
470                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
471                         length -= 4;
472
473                 total_rx_bytes += length;
474                 total_rx_packets++;
475
476                 /*
477                  * code added for copybreak, this should improve
478                  * performance for small packets with large amounts
479                  * of reassembly being done in the stack
480                  */
481                 if (length < copybreak) {
482                         struct sk_buff *new_skb =
483                             netdev_alloc_skb_ip_align(netdev, length);
484                         if (new_skb) {
485                                 skb_copy_to_linear_data_offset(new_skb,
486                                                                -NET_IP_ALIGN,
487                                                                (skb->data -
488                                                                 NET_IP_ALIGN),
489                                                                (length +
490                                                                 NET_IP_ALIGN));
491                                 /* save the skb in buffer_info as good */
492                                 buffer_info->skb = skb;
493                                 skb = new_skb;
494                         }
495                         /* else just continue with the old one */
496                 }
497                 /* end copybreak code */
498                 skb_put(skb, length);
499
500                 /* Receive Checksum Offload */
501                 e1000_rx_checksum(adapter,
502                                   (u32)(status) |
503                                   ((u32)(rx_desc->errors) << 24),
504                                   le16_to_cpu(rx_desc->csum), skb);
505
506                 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
507
508 next_desc:
509                 rx_desc->status = 0;
510
511                 /* return some buffers to hardware, one at a time is too slow */
512                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
513                         adapter->alloc_rx_buf(adapter, cleaned_count);
514                         cleaned_count = 0;
515                 }
516
517                 /* use prefetched values */
518                 rx_desc = next_rxd;
519                 buffer_info = next_buffer;
520         }
521         rx_ring->next_to_clean = i;
522
523         cleaned_count = e1000_desc_unused(rx_ring);
524         if (cleaned_count)
525                 adapter->alloc_rx_buf(adapter, cleaned_count);
526
527         adapter->total_rx_bytes += total_rx_bytes;
528         adapter->total_rx_packets += total_rx_packets;
529         netdev->stats.rx_bytes += total_rx_bytes;
530         netdev->stats.rx_packets += total_rx_packets;
531         return cleaned;
532 }
533
534 static void e1000_put_txbuf(struct e1000_adapter *adapter,
535                              struct e1000_buffer *buffer_info)
536 {
537         buffer_info->dma = 0;
538         if (buffer_info->skb) {
539                 skb_dma_unmap(&adapter->pdev->dev, buffer_info->skb,
540                               DMA_TO_DEVICE);
541                 dev_kfree_skb_any(buffer_info->skb);
542                 buffer_info->skb = NULL;
543         }
544         buffer_info->time_stamp = 0;
545 }
546
547 static void e1000_print_tx_hang(struct e1000_adapter *adapter)
548 {
549         struct e1000_ring *tx_ring = adapter->tx_ring;
550         unsigned int i = tx_ring->next_to_clean;
551         unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
552         struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
553
554         /* detected Tx unit hang */
555         e_err("Detected Tx Unit Hang:\n"
556               "  TDH                  <%x>\n"
557               "  TDT                  <%x>\n"
558               "  next_to_use          <%x>\n"
559               "  next_to_clean        <%x>\n"
560               "buffer_info[next_to_clean]:\n"
561               "  time_stamp           <%lx>\n"
562               "  next_to_watch        <%x>\n"
563               "  jiffies              <%lx>\n"
564               "  next_to_watch.status <%x>\n",
565               readl(adapter->hw.hw_addr + tx_ring->head),
566               readl(adapter->hw.hw_addr + tx_ring->tail),
567               tx_ring->next_to_use,
568               tx_ring->next_to_clean,
569               tx_ring->buffer_info[eop].time_stamp,
570               eop,
571               jiffies,
572               eop_desc->upper.fields.status);
573 }
574
575 /**
576  * e1000_clean_tx_irq - Reclaim resources after transmit completes
577  * @adapter: board private structure
578  *
579  * the return value indicates whether actual cleaning was done, there
580  * is no guarantee that everything was cleaned
581  **/
582 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
583 {
584         struct net_device *netdev = adapter->netdev;
585         struct e1000_hw *hw = &adapter->hw;
586         struct e1000_ring *tx_ring = adapter->tx_ring;
587         struct e1000_tx_desc *tx_desc, *eop_desc;
588         struct e1000_buffer *buffer_info;
589         unsigned int i, eop;
590         unsigned int count = 0;
591         unsigned int total_tx_bytes = 0, total_tx_packets = 0;
592
593         i = tx_ring->next_to_clean;
594         eop = tx_ring->buffer_info[i].next_to_watch;
595         eop_desc = E1000_TX_DESC(*tx_ring, eop);
596
597         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
598                (count < tx_ring->count)) {
599                 bool cleaned = false;
600                 for (; !cleaned; count++) {
601                         tx_desc = E1000_TX_DESC(*tx_ring, i);
602                         buffer_info = &tx_ring->buffer_info[i];
603                         cleaned = (i == eop);
604
605                         if (cleaned) {
606                                 struct sk_buff *skb = buffer_info->skb;
607                                 unsigned int segs, bytecount;
608                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
609                                 /* multiply data chunks by size of headers */
610                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
611                                             skb->len;
612                                 total_tx_packets += segs;
613                                 total_tx_bytes += bytecount;
614                         }
615
616                         e1000_put_txbuf(adapter, buffer_info);
617                         tx_desc->upper.data = 0;
618
619                         i++;
620                         if (i == tx_ring->count)
621                                 i = 0;
622                 }
623
624                 eop = tx_ring->buffer_info[i].next_to_watch;
625                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
626         }
627
628         tx_ring->next_to_clean = i;
629
630 #define TX_WAKE_THRESHOLD 32
631         if (count && netif_carrier_ok(netdev) &&
632             e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
633                 /* Make sure that anybody stopping the queue after this
634                  * sees the new next_to_clean.
635                  */
636                 smp_mb();
637
638                 if (netif_queue_stopped(netdev) &&
639                     !(test_bit(__E1000_DOWN, &adapter->state))) {
640                         netif_wake_queue(netdev);
641                         ++adapter->restart_queue;
642                 }
643         }
644
645         if (adapter->detect_tx_hung) {
646                 /* Detect a transmit hang in hardware, this serializes the
647                  * check with the clearing of time_stamp and movement of i */
648                 adapter->detect_tx_hung = 0;
649                 if (tx_ring->buffer_info[i].time_stamp &&
650                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp
651                                + (adapter->tx_timeout_factor * HZ))
652                     && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
653                         e1000_print_tx_hang(adapter);
654                         netif_stop_queue(netdev);
655                 }
656         }
657         adapter->total_tx_bytes += total_tx_bytes;
658         adapter->total_tx_packets += total_tx_packets;
659         netdev->stats.tx_bytes += total_tx_bytes;
660         netdev->stats.tx_packets += total_tx_packets;
661         return (count < tx_ring->count);
662 }
663
664 /**
665  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
666  * @adapter: board private structure
667  *
668  * the return value indicates whether actual cleaning was done, there
669  * is no guarantee that everything was cleaned
670  **/
671 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
672                                   int *work_done, int work_to_do)
673 {
674         struct e1000_hw *hw = &adapter->hw;
675         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
676         struct net_device *netdev = adapter->netdev;
677         struct pci_dev *pdev = adapter->pdev;
678         struct e1000_ring *rx_ring = adapter->rx_ring;
679         struct e1000_buffer *buffer_info, *next_buffer;
680         struct e1000_ps_page *ps_page;
681         struct sk_buff *skb;
682         unsigned int i, j;
683         u32 length, staterr;
684         int cleaned_count = 0;
685         bool cleaned = 0;
686         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
687
688         i = rx_ring->next_to_clean;
689         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
690         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
691         buffer_info = &rx_ring->buffer_info[i];
692
693         while (staterr & E1000_RXD_STAT_DD) {
694                 if (*work_done >= work_to_do)
695                         break;
696                 (*work_done)++;
697                 skb = buffer_info->skb;
698
699                 /* in the packet split case this is header only */
700                 prefetch(skb->data - NET_IP_ALIGN);
701
702                 i++;
703                 if (i == rx_ring->count)
704                         i = 0;
705                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
706                 prefetch(next_rxd);
707
708                 next_buffer = &rx_ring->buffer_info[i];
709
710                 cleaned = 1;
711                 cleaned_count++;
712                 pci_unmap_single(pdev, buffer_info->dma,
713                                  adapter->rx_ps_bsize0,
714                                  PCI_DMA_FROMDEVICE);
715                 buffer_info->dma = 0;
716
717                 if (!(staterr & E1000_RXD_STAT_EOP)) {
718                         e_dbg("Packet Split buffers didn't pick up the full "
719                               "packet\n");
720                         dev_kfree_skb_irq(skb);
721                         goto next_desc;
722                 }
723
724                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
725                         dev_kfree_skb_irq(skb);
726                         goto next_desc;
727                 }
728
729                 length = le16_to_cpu(rx_desc->wb.middle.length0);
730
731                 if (!length) {
732                         e_dbg("Last part of the packet spanning multiple "
733                               "descriptors\n");
734                         dev_kfree_skb_irq(skb);
735                         goto next_desc;
736                 }
737
738                 /* Good Receive */
739                 skb_put(skb, length);
740
741                 {
742                 /*
743                  * this looks ugly, but it seems compiler issues make it
744                  * more efficient than reusing j
745                  */
746                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
747
748                 /*
749                  * page alloc/put takes too long and effects small packet
750                  * throughput, so unsplit small packets and save the alloc/put
751                  * only valid in softirq (napi) context to call kmap_*
752                  */
753                 if (l1 && (l1 <= copybreak) &&
754                     ((length + l1) <= adapter->rx_ps_bsize0)) {
755                         u8 *vaddr;
756
757                         ps_page = &buffer_info->ps_pages[0];
758
759                         /*
760                          * there is no documentation about how to call
761                          * kmap_atomic, so we can't hold the mapping
762                          * very long
763                          */
764                         pci_dma_sync_single_for_cpu(pdev, ps_page->dma,
765                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
766                         vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
767                         memcpy(skb_tail_pointer(skb), vaddr, l1);
768                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
769                         pci_dma_sync_single_for_device(pdev, ps_page->dma,
770                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
771
772                         /* remove the CRC */
773                         if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
774                                 l1 -= 4;
775
776                         skb_put(skb, l1);
777                         goto copydone;
778                 } /* if */
779                 }
780
781                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
782                         length = le16_to_cpu(rx_desc->wb.upper.length[j]);
783                         if (!length)
784                                 break;
785
786                         ps_page = &buffer_info->ps_pages[j];
787                         pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
788                                        PCI_DMA_FROMDEVICE);
789                         ps_page->dma = 0;
790                         skb_fill_page_desc(skb, j, ps_page->page, 0, length);
791                         ps_page->page = NULL;
792                         skb->len += length;
793                         skb->data_len += length;
794                         skb->truesize += length;
795                 }
796
797                 /* strip the ethernet crc, problem is we're using pages now so
798                  * this whole operation can get a little cpu intensive
799                  */
800                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
801                         pskb_trim(skb, skb->len - 4);
802
803 copydone:
804                 total_rx_bytes += skb->len;
805                 total_rx_packets++;
806
807                 e1000_rx_checksum(adapter, staterr, le16_to_cpu(
808                         rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
809
810                 if (rx_desc->wb.upper.header_status &
811                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
812                         adapter->rx_hdr_split++;
813
814                 e1000_receive_skb(adapter, netdev, skb,
815                                   staterr, rx_desc->wb.middle.vlan);
816
817 next_desc:
818                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
819                 buffer_info->skb = NULL;
820
821                 /* return some buffers to hardware, one at a time is too slow */
822                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
823                         adapter->alloc_rx_buf(adapter, cleaned_count);
824                         cleaned_count = 0;
825                 }
826
827                 /* use prefetched values */
828                 rx_desc = next_rxd;
829                 buffer_info = next_buffer;
830
831                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
832         }
833         rx_ring->next_to_clean = i;
834
835         cleaned_count = e1000_desc_unused(rx_ring);
836         if (cleaned_count)
837                 adapter->alloc_rx_buf(adapter, cleaned_count);
838
839         adapter->total_rx_bytes += total_rx_bytes;
840         adapter->total_rx_packets += total_rx_packets;
841         netdev->stats.rx_bytes += total_rx_bytes;
842         netdev->stats.rx_packets += total_rx_packets;
843         return cleaned;
844 }
845
846 /**
847  * e1000_consume_page - helper function
848  **/
849 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
850                                u16 length)
851 {
852         bi->page = NULL;
853         skb->len += length;
854         skb->data_len += length;
855         skb->truesize += length;
856 }
857
858 /**
859  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
860  * @adapter: board private structure
861  *
862  * the return value indicates whether actual cleaning was done, there
863  * is no guarantee that everything was cleaned
864  **/
865
866 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
867                                      int *work_done, int work_to_do)
868 {
869         struct net_device *netdev = adapter->netdev;
870         struct pci_dev *pdev = adapter->pdev;
871         struct e1000_ring *rx_ring = adapter->rx_ring;
872         struct e1000_rx_desc *rx_desc, *next_rxd;
873         struct e1000_buffer *buffer_info, *next_buffer;
874         u32 length;
875         unsigned int i;
876         int cleaned_count = 0;
877         bool cleaned = false;
878         unsigned int total_rx_bytes=0, total_rx_packets=0;
879
880         i = rx_ring->next_to_clean;
881         rx_desc = E1000_RX_DESC(*rx_ring, i);
882         buffer_info = &rx_ring->buffer_info[i];
883
884         while (rx_desc->status & E1000_RXD_STAT_DD) {
885                 struct sk_buff *skb;
886                 u8 status;
887
888                 if (*work_done >= work_to_do)
889                         break;
890                 (*work_done)++;
891
892                 status = rx_desc->status;
893                 skb = buffer_info->skb;
894                 buffer_info->skb = NULL;
895
896                 ++i;
897                 if (i == rx_ring->count)
898                         i = 0;
899                 next_rxd = E1000_RX_DESC(*rx_ring, i);
900                 prefetch(next_rxd);
901
902                 next_buffer = &rx_ring->buffer_info[i];
903
904                 cleaned = true;
905                 cleaned_count++;
906                 pci_unmap_page(pdev, buffer_info->dma, PAGE_SIZE,
907                                PCI_DMA_FROMDEVICE);
908                 buffer_info->dma = 0;
909
910                 length = le16_to_cpu(rx_desc->length);
911
912                 /* errors is only valid for DD + EOP descriptors */
913                 if (unlikely((status & E1000_RXD_STAT_EOP) &&
914                     (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
915                                 /* recycle both page and skb */
916                                 buffer_info->skb = skb;
917                                 /* an error means any chain goes out the window
918                                  * too */
919                                 if (rx_ring->rx_skb_top)
920                                         dev_kfree_skb(rx_ring->rx_skb_top);
921                                 rx_ring->rx_skb_top = NULL;
922                                 goto next_desc;
923                 }
924
925 #define rxtop rx_ring->rx_skb_top
926                 if (!(status & E1000_RXD_STAT_EOP)) {
927                         /* this descriptor is only the beginning (or middle) */
928                         if (!rxtop) {
929                                 /* this is the beginning of a chain */
930                                 rxtop = skb;
931                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
932                                                    0, length);
933                         } else {
934                                 /* this is the middle of a chain */
935                                 skb_fill_page_desc(rxtop,
936                                     skb_shinfo(rxtop)->nr_frags,
937                                     buffer_info->page, 0, length);
938                                 /* re-use the skb, only consumed the page */
939                                 buffer_info->skb = skb;
940                         }
941                         e1000_consume_page(buffer_info, rxtop, length);
942                         goto next_desc;
943                 } else {
944                         if (rxtop) {
945                                 /* end of the chain */
946                                 skb_fill_page_desc(rxtop,
947                                     skb_shinfo(rxtop)->nr_frags,
948                                     buffer_info->page, 0, length);
949                                 /* re-use the current skb, we only consumed the
950                                  * page */
951                                 buffer_info->skb = skb;
952                                 skb = rxtop;
953                                 rxtop = NULL;
954                                 e1000_consume_page(buffer_info, skb, length);
955                         } else {
956                                 /* no chain, got EOP, this buf is the packet
957                                  * copybreak to save the put_page/alloc_page */
958                                 if (length <= copybreak &&
959                                     skb_tailroom(skb) >= length) {
960                                         u8 *vaddr;
961                                         vaddr = kmap_atomic(buffer_info->page,
962                                                            KM_SKB_DATA_SOFTIRQ);
963                                         memcpy(skb_tail_pointer(skb), vaddr,
964                                                length);
965                                         kunmap_atomic(vaddr,
966                                                       KM_SKB_DATA_SOFTIRQ);
967                                         /* re-use the page, so don't erase
968                                          * buffer_info->page */
969                                         skb_put(skb, length);
970                                 } else {
971                                         skb_fill_page_desc(skb, 0,
972                                                            buffer_info->page, 0,
973                                                            length);
974                                         e1000_consume_page(buffer_info, skb,
975                                                            length);
976                                 }
977                         }
978                 }
979
980                 /* Receive Checksum Offload XXX recompute due to CRC strip? */
981                 e1000_rx_checksum(adapter,
982                                   (u32)(status) |
983                                   ((u32)(rx_desc->errors) << 24),
984                                   le16_to_cpu(rx_desc->csum), skb);
985
986                 /* probably a little skewed due to removing CRC */
987                 total_rx_bytes += skb->len;
988                 total_rx_packets++;
989
990                 /* eth type trans needs skb->data to point to something */
991                 if (!pskb_may_pull(skb, ETH_HLEN)) {
992                         e_err("pskb_may_pull failed.\n");
993                         dev_kfree_skb(skb);
994                         goto next_desc;
995                 }
996
997                 e1000_receive_skb(adapter, netdev, skb, status,
998                                   rx_desc->special);
999
1000 next_desc:
1001                 rx_desc->status = 0;
1002
1003                 /* return some buffers to hardware, one at a time is too slow */
1004                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1005                         adapter->alloc_rx_buf(adapter, cleaned_count);
1006                         cleaned_count = 0;
1007                 }
1008
1009                 /* use prefetched values */
1010                 rx_desc = next_rxd;
1011                 buffer_info = next_buffer;
1012         }
1013         rx_ring->next_to_clean = i;
1014
1015         cleaned_count = e1000_desc_unused(rx_ring);
1016         if (cleaned_count)
1017                 adapter->alloc_rx_buf(adapter, cleaned_count);
1018
1019         adapter->total_rx_bytes += total_rx_bytes;
1020         adapter->total_rx_packets += total_rx_packets;
1021         netdev->stats.rx_bytes += total_rx_bytes;
1022         netdev->stats.rx_packets += total_rx_packets;
1023         return cleaned;
1024 }
1025
1026 /**
1027  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1028  * @adapter: board private structure
1029  **/
1030 static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
1031 {
1032         struct e1000_ring *rx_ring = adapter->rx_ring;
1033         struct e1000_buffer *buffer_info;
1034         struct e1000_ps_page *ps_page;
1035         struct pci_dev *pdev = adapter->pdev;
1036         unsigned int i, j;
1037
1038         /* Free all the Rx ring sk_buffs */
1039         for (i = 0; i < rx_ring->count; i++) {
1040                 buffer_info = &rx_ring->buffer_info[i];
1041                 if (buffer_info->dma) {
1042                         if (adapter->clean_rx == e1000_clean_rx_irq)
1043                                 pci_unmap_single(pdev, buffer_info->dma,
1044                                                  adapter->rx_buffer_len,
1045                                                  PCI_DMA_FROMDEVICE);
1046                         else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1047                                 pci_unmap_page(pdev, buffer_info->dma,
1048                                                PAGE_SIZE,
1049                                                PCI_DMA_FROMDEVICE);
1050                         else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1051                                 pci_unmap_single(pdev, buffer_info->dma,
1052                                                  adapter->rx_ps_bsize0,
1053                                                  PCI_DMA_FROMDEVICE);
1054                         buffer_info->dma = 0;
1055                 }
1056
1057                 if (buffer_info->page) {
1058                         put_page(buffer_info->page);
1059                         buffer_info->page = NULL;
1060                 }
1061
1062                 if (buffer_info->skb) {
1063                         dev_kfree_skb(buffer_info->skb);
1064                         buffer_info->skb = NULL;
1065                 }
1066
1067                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1068                         ps_page = &buffer_info->ps_pages[j];
1069                         if (!ps_page->page)
1070                                 break;
1071                         pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
1072                                        PCI_DMA_FROMDEVICE);
1073                         ps_page->dma = 0;
1074                         put_page(ps_page->page);
1075                         ps_page->page = NULL;
1076                 }
1077         }
1078
1079         /* there also may be some cached data from a chained receive */
1080         if (rx_ring->rx_skb_top) {
1081                 dev_kfree_skb(rx_ring->rx_skb_top);
1082                 rx_ring->rx_skb_top = NULL;
1083         }
1084
1085         /* Zero out the descriptor ring */
1086         memset(rx_ring->desc, 0, rx_ring->size);
1087
1088         rx_ring->next_to_clean = 0;
1089         rx_ring->next_to_use = 0;
1090
1091         writel(0, adapter->hw.hw_addr + rx_ring->head);
1092         writel(0, adapter->hw.hw_addr + rx_ring->tail);
1093 }
1094
1095 static void e1000e_downshift_workaround(struct work_struct *work)
1096 {
1097         struct e1000_adapter *adapter = container_of(work,
1098                                         struct e1000_adapter, downshift_task);
1099
1100         e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1101 }
1102
1103 /**
1104  * e1000_intr_msi - Interrupt Handler
1105  * @irq: interrupt number
1106  * @data: pointer to a network interface device structure
1107  **/
1108 static irqreturn_t e1000_intr_msi(int irq, void *data)
1109 {
1110         struct net_device *netdev = data;
1111         struct e1000_adapter *adapter = netdev_priv(netdev);
1112         struct e1000_hw *hw = &adapter->hw;
1113         u32 icr = er32(ICR);
1114
1115         /*
1116          * read ICR disables interrupts using IAM
1117          */
1118
1119         if (icr & E1000_ICR_LSC) {
1120                 hw->mac.get_link_status = 1;
1121                 /*
1122                  * ICH8 workaround-- Call gig speed drop workaround on cable
1123                  * disconnect (LSC) before accessing any PHY registers
1124                  */
1125                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1126                     (!(er32(STATUS) & E1000_STATUS_LU)))
1127                         schedule_work(&adapter->downshift_task);
1128
1129                 /*
1130                  * 80003ES2LAN workaround-- For packet buffer work-around on
1131                  * link down event; disable receives here in the ISR and reset
1132                  * adapter in watchdog
1133                  */
1134                 if (netif_carrier_ok(netdev) &&
1135                     adapter->flags & FLAG_RX_NEEDS_RESTART) {
1136                         /* disable receives */
1137                         u32 rctl = er32(RCTL);
1138                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1139                         adapter->flags |= FLAG_RX_RESTART_NOW;
1140                 }
1141                 /* guard against interrupt when we're going down */
1142                 if (!test_bit(__E1000_DOWN, &adapter->state))
1143                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1144         }
1145
1146         if (napi_schedule_prep(&adapter->napi)) {
1147                 adapter->total_tx_bytes = 0;
1148                 adapter->total_tx_packets = 0;
1149                 adapter->total_rx_bytes = 0;
1150                 adapter->total_rx_packets = 0;
1151                 __napi_schedule(&adapter->napi);
1152         }
1153
1154         return IRQ_HANDLED;
1155 }
1156
1157 /**
1158  * e1000_intr - Interrupt Handler
1159  * @irq: interrupt number
1160  * @data: pointer to a network interface device structure
1161  **/
1162 static irqreturn_t e1000_intr(int irq, void *data)
1163 {
1164         struct net_device *netdev = data;
1165         struct e1000_adapter *adapter = netdev_priv(netdev);
1166         struct e1000_hw *hw = &adapter->hw;
1167         u32 rctl, icr = er32(ICR);
1168
1169         if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1170                 return IRQ_NONE;  /* Not our interrupt */
1171
1172         /*
1173          * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1174          * not set, then the adapter didn't send an interrupt
1175          */
1176         if (!(icr & E1000_ICR_INT_ASSERTED))
1177                 return IRQ_NONE;
1178
1179         /*
1180          * Interrupt Auto-Mask...upon reading ICR,
1181          * interrupts are masked.  No need for the
1182          * IMC write
1183          */
1184
1185         if (icr & E1000_ICR_LSC) {
1186                 hw->mac.get_link_status = 1;
1187                 /*
1188                  * ICH8 workaround-- Call gig speed drop workaround on cable
1189                  * disconnect (LSC) before accessing any PHY registers
1190                  */
1191                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1192                     (!(er32(STATUS) & E1000_STATUS_LU)))
1193                         schedule_work(&adapter->downshift_task);
1194
1195                 /*
1196                  * 80003ES2LAN workaround--
1197                  * For packet buffer work-around on link down event;
1198                  * disable receives here in the ISR and
1199                  * reset adapter in watchdog
1200                  */
1201                 if (netif_carrier_ok(netdev) &&
1202                     (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1203                         /* disable receives */
1204                         rctl = er32(RCTL);
1205                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1206                         adapter->flags |= FLAG_RX_RESTART_NOW;
1207                 }
1208                 /* guard against interrupt when we're going down */
1209                 if (!test_bit(__E1000_DOWN, &adapter->state))
1210                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1211         }
1212
1213         if (napi_schedule_prep(&adapter->napi)) {
1214                 adapter->total_tx_bytes = 0;
1215                 adapter->total_tx_packets = 0;
1216                 adapter->total_rx_bytes = 0;
1217                 adapter->total_rx_packets = 0;
1218                 __napi_schedule(&adapter->napi);
1219         }
1220
1221         return IRQ_HANDLED;
1222 }
1223
1224 static irqreturn_t e1000_msix_other(int irq, void *data)
1225 {
1226         struct net_device *netdev = data;
1227         struct e1000_adapter *adapter = netdev_priv(netdev);
1228         struct e1000_hw *hw = &adapter->hw;
1229         u32 icr = er32(ICR);
1230
1231         if (!(icr & E1000_ICR_INT_ASSERTED)) {
1232                 if (!test_bit(__E1000_DOWN, &adapter->state))
1233                         ew32(IMS, E1000_IMS_OTHER);
1234                 return IRQ_NONE;
1235         }
1236
1237         if (icr & adapter->eiac_mask)
1238                 ew32(ICS, (icr & adapter->eiac_mask));
1239
1240         if (icr & E1000_ICR_OTHER) {
1241                 if (!(icr & E1000_ICR_LSC))
1242                         goto no_link_interrupt;
1243                 hw->mac.get_link_status = 1;
1244                 /* guard against interrupt when we're going down */
1245                 if (!test_bit(__E1000_DOWN, &adapter->state))
1246                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1247         }
1248
1249 no_link_interrupt:
1250         if (!test_bit(__E1000_DOWN, &adapter->state))
1251                 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1252
1253         return IRQ_HANDLED;
1254 }
1255
1256
1257 static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
1258 {
1259         struct net_device *netdev = data;
1260         struct e1000_adapter *adapter = netdev_priv(netdev);
1261         struct e1000_hw *hw = &adapter->hw;
1262         struct e1000_ring *tx_ring = adapter->tx_ring;
1263
1264
1265         adapter->total_tx_bytes = 0;
1266         adapter->total_tx_packets = 0;
1267
1268         if (!e1000_clean_tx_irq(adapter))
1269                 /* Ring was not completely cleaned, so fire another interrupt */
1270                 ew32(ICS, tx_ring->ims_val);
1271
1272         return IRQ_HANDLED;
1273 }
1274
1275 static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
1276 {
1277         struct net_device *netdev = data;
1278         struct e1000_adapter *adapter = netdev_priv(netdev);
1279
1280         /* Write the ITR value calculated at the end of the
1281          * previous interrupt.
1282          */
1283         if (adapter->rx_ring->set_itr) {
1284                 writel(1000000000 / (adapter->rx_ring->itr_val * 256),
1285                        adapter->hw.hw_addr + adapter->rx_ring->itr_register);
1286                 adapter->rx_ring->set_itr = 0;
1287         }
1288
1289         if (napi_schedule_prep(&adapter->napi)) {
1290                 adapter->total_rx_bytes = 0;
1291                 adapter->total_rx_packets = 0;
1292                 __napi_schedule(&adapter->napi);
1293         }
1294         return IRQ_HANDLED;
1295 }
1296
1297 /**
1298  * e1000_configure_msix - Configure MSI-X hardware
1299  *
1300  * e1000_configure_msix sets up the hardware to properly
1301  * generate MSI-X interrupts.
1302  **/
1303 static void e1000_configure_msix(struct e1000_adapter *adapter)
1304 {
1305         struct e1000_hw *hw = &adapter->hw;
1306         struct e1000_ring *rx_ring = adapter->rx_ring;
1307         struct e1000_ring *tx_ring = adapter->tx_ring;
1308         int vector = 0;
1309         u32 ctrl_ext, ivar = 0;
1310
1311         adapter->eiac_mask = 0;
1312
1313         /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1314         if (hw->mac.type == e1000_82574) {
1315                 u32 rfctl = er32(RFCTL);
1316                 rfctl |= E1000_RFCTL_ACK_DIS;
1317                 ew32(RFCTL, rfctl);
1318         }
1319
1320 #define E1000_IVAR_INT_ALLOC_VALID      0x8
1321         /* Configure Rx vector */
1322         rx_ring->ims_val = E1000_IMS_RXQ0;
1323         adapter->eiac_mask |= rx_ring->ims_val;
1324         if (rx_ring->itr_val)
1325                 writel(1000000000 / (rx_ring->itr_val * 256),
1326                        hw->hw_addr + rx_ring->itr_register);
1327         else
1328                 writel(1, hw->hw_addr + rx_ring->itr_register);
1329         ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1330
1331         /* Configure Tx vector */
1332         tx_ring->ims_val = E1000_IMS_TXQ0;
1333         vector++;
1334         if (tx_ring->itr_val)
1335                 writel(1000000000 / (tx_ring->itr_val * 256),
1336                        hw->hw_addr + tx_ring->itr_register);
1337         else
1338                 writel(1, hw->hw_addr + tx_ring->itr_register);
1339         adapter->eiac_mask |= tx_ring->ims_val;
1340         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1341
1342         /* set vector for Other Causes, e.g. link changes */
1343         vector++;
1344         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1345         if (rx_ring->itr_val)
1346                 writel(1000000000 / (rx_ring->itr_val * 256),
1347                        hw->hw_addr + E1000_EITR_82574(vector));
1348         else
1349                 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1350
1351         /* Cause Tx interrupts on every write back */
1352         ivar |= (1 << 31);
1353
1354         ew32(IVAR, ivar);
1355
1356         /* enable MSI-X PBA support */
1357         ctrl_ext = er32(CTRL_EXT);
1358         ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
1359
1360         /* Auto-Mask Other interrupts upon ICR read */
1361 #define E1000_EIAC_MASK_82574   0x01F00000
1362         ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
1363         ctrl_ext |= E1000_CTRL_EXT_EIAME;
1364         ew32(CTRL_EXT, ctrl_ext);
1365         e1e_flush();
1366 }
1367
1368 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
1369 {
1370         if (adapter->msix_entries) {
1371                 pci_disable_msix(adapter->pdev);
1372                 kfree(adapter->msix_entries);
1373                 adapter->msix_entries = NULL;
1374         } else if (adapter->flags & FLAG_MSI_ENABLED) {
1375                 pci_disable_msi(adapter->pdev);
1376                 adapter->flags &= ~FLAG_MSI_ENABLED;
1377         }
1378
1379         return;
1380 }
1381
1382 /**
1383  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1384  *
1385  * Attempt to configure interrupts using the best available
1386  * capabilities of the hardware and kernel.
1387  **/
1388 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
1389 {
1390         int err;
1391         int numvecs, i;
1392
1393
1394         switch (adapter->int_mode) {
1395         case E1000E_INT_MODE_MSIX:
1396                 if (adapter->flags & FLAG_HAS_MSIX) {
1397                         numvecs = 3; /* RxQ0, TxQ0 and other */
1398                         adapter->msix_entries = kcalloc(numvecs,
1399                                                       sizeof(struct msix_entry),
1400                                                       GFP_KERNEL);
1401                         if (adapter->msix_entries) {
1402                                 for (i = 0; i < numvecs; i++)
1403                                         adapter->msix_entries[i].entry = i;
1404
1405                                 err = pci_enable_msix(adapter->pdev,
1406                                                       adapter->msix_entries,
1407                                                       numvecs);
1408                                 if (err == 0)
1409                                         return;
1410                         }
1411                         /* MSI-X failed, so fall through and try MSI */
1412                         e_err("Failed to initialize MSI-X interrupts.  "
1413                               "Falling back to MSI interrupts.\n");
1414                         e1000e_reset_interrupt_capability(adapter);
1415                 }
1416                 adapter->int_mode = E1000E_INT_MODE_MSI;
1417                 /* Fall through */
1418         case E1000E_INT_MODE_MSI:
1419                 if (!pci_enable_msi(adapter->pdev)) {
1420                         adapter->flags |= FLAG_MSI_ENABLED;
1421                 } else {
1422                         adapter->int_mode = E1000E_INT_MODE_LEGACY;
1423                         e_err("Failed to initialize MSI interrupts.  Falling "
1424                               "back to legacy interrupts.\n");
1425                 }
1426                 /* Fall through */
1427         case E1000E_INT_MODE_LEGACY:
1428                 /* Don't do anything; this is the system default */
1429                 break;
1430         }
1431
1432         return;
1433 }
1434
1435 /**
1436  * e1000_request_msix - Initialize MSI-X interrupts
1437  *
1438  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1439  * kernel.
1440  **/
1441 static int e1000_request_msix(struct e1000_adapter *adapter)
1442 {
1443         struct net_device *netdev = adapter->netdev;
1444         int err = 0, vector = 0;
1445
1446         if (strlen(netdev->name) < (IFNAMSIZ - 5))
1447                 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1448         else
1449                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1450         err = request_irq(adapter->msix_entries[vector].vector,
1451                           e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1452                           netdev);
1453         if (err)
1454                 goto out;
1455         adapter->rx_ring->itr_register = E1000_EITR_82574(vector);
1456         adapter->rx_ring->itr_val = adapter->itr;
1457         vector++;
1458
1459         if (strlen(netdev->name) < (IFNAMSIZ - 5))
1460                 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1461         else
1462                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1463         err = request_irq(adapter->msix_entries[vector].vector,
1464                           e1000_intr_msix_tx, 0, adapter->tx_ring->name,
1465                           netdev);
1466         if (err)
1467                 goto out;
1468         adapter->tx_ring->itr_register = E1000_EITR_82574(vector);
1469         adapter->tx_ring->itr_val = adapter->itr;
1470         vector++;
1471
1472         err = request_irq(adapter->msix_entries[vector].vector,
1473                           e1000_msix_other, 0, netdev->name, netdev);
1474         if (err)
1475                 goto out;
1476
1477         e1000_configure_msix(adapter);
1478         return 0;
1479 out:
1480         return err;
1481 }
1482
1483 /**
1484  * e1000_request_irq - initialize interrupts
1485  *
1486  * Attempts to configure interrupts using the best available
1487  * capabilities of the hardware and kernel.
1488  **/
1489 static int e1000_request_irq(struct e1000_adapter *adapter)
1490 {
1491         struct net_device *netdev = adapter->netdev;
1492         int err;
1493
1494         if (adapter->msix_entries) {
1495                 err = e1000_request_msix(adapter);
1496                 if (!err)
1497                         return err;
1498                 /* fall back to MSI */
1499                 e1000e_reset_interrupt_capability(adapter);
1500                 adapter->int_mode = E1000E_INT_MODE_MSI;
1501                 e1000e_set_interrupt_capability(adapter);
1502         }
1503         if (adapter->flags & FLAG_MSI_ENABLED) {
1504                 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
1505                                   netdev->name, netdev);
1506                 if (!err)
1507                         return err;
1508
1509                 /* fall back to legacy interrupt */
1510                 e1000e_reset_interrupt_capability(adapter);
1511                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1512         }
1513
1514         err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
1515                           netdev->name, netdev);
1516         if (err)
1517                 e_err("Unable to allocate interrupt, Error: %d\n", err);
1518
1519         return err;
1520 }
1521
1522 static void e1000_free_irq(struct e1000_adapter *adapter)
1523 {
1524         struct net_device *netdev = adapter->netdev;
1525
1526         if (adapter->msix_entries) {
1527                 int vector = 0;
1528
1529                 free_irq(adapter->msix_entries[vector].vector, netdev);
1530                 vector++;
1531
1532                 free_irq(adapter->msix_entries[vector].vector, netdev);
1533                 vector++;
1534
1535                 /* Other Causes interrupt vector */
1536                 free_irq(adapter->msix_entries[vector].vector, netdev);
1537                 return;
1538         }
1539
1540         free_irq(adapter->pdev->irq, netdev);
1541 }
1542
1543 /**
1544  * e1000_irq_disable - Mask off interrupt generation on the NIC
1545  **/
1546 static void e1000_irq_disable(struct e1000_adapter *adapter)
1547 {
1548         struct e1000_hw *hw = &adapter->hw;
1549
1550         ew32(IMC, ~0);
1551         if (adapter->msix_entries)
1552                 ew32(EIAC_82574, 0);
1553         e1e_flush();
1554         synchronize_irq(adapter->pdev->irq);
1555 }
1556
1557 /**
1558  * e1000_irq_enable - Enable default interrupt generation settings
1559  **/
1560 static void e1000_irq_enable(struct e1000_adapter *adapter)
1561 {
1562         struct e1000_hw *hw = &adapter->hw;
1563
1564         if (adapter->msix_entries) {
1565                 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
1566                 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
1567         } else {
1568                 ew32(IMS, IMS_ENABLE_MASK);
1569         }
1570         e1e_flush();
1571 }
1572
1573 /**
1574  * e1000_get_hw_control - get control of the h/w from f/w
1575  * @adapter: address of board private structure
1576  *
1577  * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1578  * For ASF and Pass Through versions of f/w this means that
1579  * the driver is loaded. For AMT version (only with 82573)
1580  * of the f/w this means that the network i/f is open.
1581  **/
1582 static void e1000_get_hw_control(struct e1000_adapter *adapter)
1583 {
1584         struct e1000_hw *hw = &adapter->hw;
1585         u32 ctrl_ext;
1586         u32 swsm;
1587
1588         /* Let firmware know the driver has taken over */
1589         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1590                 swsm = er32(SWSM);
1591                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
1592         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1593                 ctrl_ext = er32(CTRL_EXT);
1594                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1595         }
1596 }
1597
1598 /**
1599  * e1000_release_hw_control - release control of the h/w to f/w
1600  * @adapter: address of board private structure
1601  *
1602  * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1603  * For ASF and Pass Through versions of f/w this means that the
1604  * driver is no longer loaded. For AMT version (only with 82573) i
1605  * of the f/w this means that the network i/f is closed.
1606  *
1607  **/
1608 static void e1000_release_hw_control(struct e1000_adapter *adapter)
1609 {
1610         struct e1000_hw *hw = &adapter->hw;
1611         u32 ctrl_ext;
1612         u32 swsm;
1613
1614         /* Let firmware taken over control of h/w */
1615         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1616                 swsm = er32(SWSM);
1617                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1618         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1619                 ctrl_ext = er32(CTRL_EXT);
1620                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1621         }
1622 }
1623
1624 /**
1625  * @e1000_alloc_ring - allocate memory for a ring structure
1626  **/
1627 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
1628                                 struct e1000_ring *ring)
1629 {
1630         struct pci_dev *pdev = adapter->pdev;
1631
1632         ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
1633                                         GFP_KERNEL);
1634         if (!ring->desc)
1635                 return -ENOMEM;
1636
1637         return 0;
1638 }
1639
1640 /**
1641  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
1642  * @adapter: board private structure
1643  *
1644  * Return 0 on success, negative on failure
1645  **/
1646 int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
1647 {
1648         struct e1000_ring *tx_ring = adapter->tx_ring;
1649         int err = -ENOMEM, size;
1650
1651         size = sizeof(struct e1000_buffer) * tx_ring->count;
1652         tx_ring->buffer_info = vmalloc(size);
1653         if (!tx_ring->buffer_info)
1654                 goto err;
1655         memset(tx_ring->buffer_info, 0, size);
1656
1657         /* round up to nearest 4K */
1658         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1659         tx_ring->size = ALIGN(tx_ring->size, 4096);
1660
1661         err = e1000_alloc_ring_dma(adapter, tx_ring);
1662         if (err)
1663                 goto err;
1664
1665         tx_ring->next_to_use = 0;
1666         tx_ring->next_to_clean = 0;
1667
1668         return 0;
1669 err:
1670         vfree(tx_ring->buffer_info);
1671         e_err("Unable to allocate memory for the transmit descriptor ring\n");
1672         return err;
1673 }
1674
1675 /**
1676  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
1677  * @adapter: board private structure
1678  *
1679  * Returns 0 on success, negative on failure
1680  **/
1681 int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
1682 {
1683         struct e1000_ring *rx_ring = adapter->rx_ring;
1684         struct e1000_buffer *buffer_info;
1685         int i, size, desc_len, err = -ENOMEM;
1686
1687         size = sizeof(struct e1000_buffer) * rx_ring->count;
1688         rx_ring->buffer_info = vmalloc(size);
1689         if (!rx_ring->buffer_info)
1690                 goto err;
1691         memset(rx_ring->buffer_info, 0, size);
1692
1693         for (i = 0; i < rx_ring->count; i++) {
1694                 buffer_info = &rx_ring->buffer_info[i];
1695                 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
1696                                                 sizeof(struct e1000_ps_page),
1697                                                 GFP_KERNEL);
1698                 if (!buffer_info->ps_pages)
1699                         goto err_pages;
1700         }
1701
1702         desc_len = sizeof(union e1000_rx_desc_packet_split);
1703
1704         /* Round up to nearest 4K */
1705         rx_ring->size = rx_ring->count * desc_len;
1706         rx_ring->size = ALIGN(rx_ring->size, 4096);
1707
1708         err = e1000_alloc_ring_dma(adapter, rx_ring);
1709         if (err)
1710                 goto err_pages;
1711
1712         rx_ring->next_to_clean = 0;
1713         rx_ring->next_to_use = 0;
1714         rx_ring->rx_skb_top = NULL;
1715
1716         return 0;
1717
1718 err_pages:
1719         for (i = 0; i < rx_ring->count; i++) {
1720                 buffer_info = &rx_ring->buffer_info[i];
1721                 kfree(buffer_info->ps_pages);
1722         }
1723 err:
1724         vfree(rx_ring->buffer_info);
1725         e_err("Unable to allocate memory for the transmit descriptor ring\n");
1726         return err;
1727 }
1728
1729 /**
1730  * e1000_clean_tx_ring - Free Tx Buffers
1731  * @adapter: board private structure
1732  **/
1733 static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
1734 {
1735         struct e1000_ring *tx_ring = adapter->tx_ring;
1736         struct e1000_buffer *buffer_info;
1737         unsigned long size;
1738         unsigned int i;
1739
1740         for (i = 0; i < tx_ring->count; i++) {
1741                 buffer_info = &tx_ring->buffer_info[i];
1742                 e1000_put_txbuf(adapter, buffer_info);
1743         }
1744
1745         size = sizeof(struct e1000_buffer) * tx_ring->count;
1746         memset(tx_ring->buffer_info, 0, size);
1747
1748         memset(tx_ring->desc, 0, tx_ring->size);
1749
1750         tx_ring->next_to_use = 0;
1751         tx_ring->next_to_clean = 0;
1752
1753         writel(0, adapter->hw.hw_addr + tx_ring->head);
1754         writel(0, adapter->hw.hw_addr + tx_ring->tail);
1755 }
1756
1757 /**
1758  * e1000e_free_tx_resources - Free Tx Resources per Queue
1759  * @adapter: board private structure
1760  *
1761  * Free all transmit software resources
1762  **/
1763 void e1000e_free_tx_resources(struct e1000_adapter *adapter)
1764 {
1765         struct pci_dev *pdev = adapter->pdev;
1766         struct e1000_ring *tx_ring = adapter->tx_ring;
1767
1768         e1000_clean_tx_ring(adapter);
1769
1770         vfree(tx_ring->buffer_info);
1771         tx_ring->buffer_info = NULL;
1772
1773         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1774                           tx_ring->dma);
1775         tx_ring->desc = NULL;
1776 }
1777
1778 /**
1779  * e1000e_free_rx_resources - Free Rx Resources
1780  * @adapter: board private structure
1781  *
1782  * Free all receive software resources
1783  **/
1784
1785 void e1000e_free_rx_resources(struct e1000_adapter *adapter)
1786 {
1787         struct pci_dev *pdev = adapter->pdev;
1788         struct e1000_ring *rx_ring = adapter->rx_ring;
1789         int i;
1790
1791         e1000_clean_rx_ring(adapter);
1792
1793         for (i = 0; i < rx_ring->count; i++) {
1794                 kfree(rx_ring->buffer_info[i].ps_pages);
1795         }
1796
1797         vfree(rx_ring->buffer_info);
1798         rx_ring->buffer_info = NULL;
1799
1800         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1801                           rx_ring->dma);
1802         rx_ring->desc = NULL;
1803 }
1804
1805 /**
1806  * e1000_update_itr - update the dynamic ITR value based on statistics
1807  * @adapter: pointer to adapter
1808  * @itr_setting: current adapter->itr
1809  * @packets: the number of packets during this measurement interval
1810  * @bytes: the number of bytes during this measurement interval
1811  *
1812  *      Stores a new ITR value based on packets and byte
1813  *      counts during the last interrupt.  The advantage of per interrupt
1814  *      computation is faster updates and more accurate ITR for the current
1815  *      traffic pattern.  Constants in this function were computed
1816  *      based on theoretical maximum wire speed and thresholds were set based
1817  *      on testing data as well as attempting to minimize response time
1818  *      while increasing bulk throughput.  This functionality is controlled
1819  *      by the InterruptThrottleRate module parameter.
1820  **/
1821 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
1822                                      u16 itr_setting, int packets,
1823                                      int bytes)
1824 {
1825         unsigned int retval = itr_setting;
1826
1827         if (packets == 0)
1828                 goto update_itr_done;
1829
1830         switch (itr_setting) {
1831         case lowest_latency:
1832                 /* handle TSO and jumbo frames */
1833                 if (bytes/packets > 8000)
1834                         retval = bulk_latency;
1835                 else if ((packets < 5) && (bytes > 512)) {
1836                         retval = low_latency;
1837                 }
1838                 break;
1839         case low_latency:  /* 50 usec aka 20000 ints/s */
1840                 if (bytes > 10000) {
1841                         /* this if handles the TSO accounting */
1842                         if (bytes/packets > 8000) {
1843                                 retval = bulk_latency;
1844                         } else if ((packets < 10) || ((bytes/packets) > 1200)) {
1845                                 retval = bulk_latency;
1846                         } else if ((packets > 35)) {
1847                                 retval = lowest_latency;
1848                         }
1849                 } else if (bytes/packets > 2000) {
1850                         retval = bulk_latency;
1851                 } else if (packets <= 2 && bytes < 512) {
1852                         retval = lowest_latency;
1853                 }
1854                 break;
1855         case bulk_latency: /* 250 usec aka 4000 ints/s */
1856                 if (bytes > 25000) {
1857                         if (packets > 35) {
1858                                 retval = low_latency;
1859                         }
1860                 } else if (bytes < 6000) {
1861                         retval = low_latency;
1862                 }
1863                 break;
1864         }
1865
1866 update_itr_done:
1867         return retval;
1868 }
1869
1870 static void e1000_set_itr(struct e1000_adapter *adapter)
1871 {
1872         struct e1000_hw *hw = &adapter->hw;
1873         u16 current_itr;
1874         u32 new_itr = adapter->itr;
1875
1876         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
1877         if (adapter->link_speed != SPEED_1000) {
1878                 current_itr = 0;
1879                 new_itr = 4000;
1880                 goto set_itr_now;
1881         }
1882
1883         adapter->tx_itr = e1000_update_itr(adapter,
1884                                     adapter->tx_itr,
1885                                     adapter->total_tx_packets,
1886                                     adapter->total_tx_bytes);
1887         /* conservative mode (itr 3) eliminates the lowest_latency setting */
1888         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
1889                 adapter->tx_itr = low_latency;
1890
1891         adapter->rx_itr = e1000_update_itr(adapter,
1892                                     adapter->rx_itr,
1893                                     adapter->total_rx_packets,
1894                                     adapter->total_rx_bytes);
1895         /* conservative mode (itr 3) eliminates the lowest_latency setting */
1896         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
1897                 adapter->rx_itr = low_latency;
1898
1899         current_itr = max(adapter->rx_itr, adapter->tx_itr);
1900
1901         switch (current_itr) {
1902         /* counts and packets in update_itr are dependent on these numbers */
1903         case lowest_latency:
1904                 new_itr = 70000;
1905                 break;
1906         case low_latency:
1907                 new_itr = 20000; /* aka hwitr = ~200 */
1908                 break;
1909         case bulk_latency:
1910                 new_itr = 4000;
1911                 break;
1912         default:
1913                 break;
1914         }
1915
1916 set_itr_now:
1917         if (new_itr != adapter->itr) {
1918                 /*
1919                  * this attempts to bias the interrupt rate towards Bulk
1920                  * by adding intermediate steps when interrupt rate is
1921                  * increasing
1922                  */
1923                 new_itr = new_itr > adapter->itr ?
1924                              min(adapter->itr + (new_itr >> 2), new_itr) :
1925                              new_itr;
1926                 adapter->itr = new_itr;
1927                 adapter->rx_ring->itr_val = new_itr;
1928                 if (adapter->msix_entries)
1929                         adapter->rx_ring->set_itr = 1;
1930                 else
1931                         ew32(ITR, 1000000000 / (new_itr * 256));
1932         }
1933 }
1934
1935 /**
1936  * e1000_alloc_queues - Allocate memory for all rings
1937  * @adapter: board private structure to initialize
1938  **/
1939 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1940 {
1941         adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
1942         if (!adapter->tx_ring)
1943                 goto err;
1944
1945         adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
1946         if (!adapter->rx_ring)
1947                 goto err;
1948
1949         return 0;
1950 err:
1951         e_err("Unable to allocate memory for queues\n");
1952         kfree(adapter->rx_ring);
1953         kfree(adapter->tx_ring);
1954         return -ENOMEM;
1955 }
1956
1957 /**
1958  * e1000_clean - NAPI Rx polling callback
1959  * @napi: struct associated with this polling callback
1960  * @budget: amount of packets driver is allowed to process this poll
1961  **/
1962 static int e1000_clean(struct napi_struct *napi, int budget)
1963 {
1964         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
1965         struct e1000_hw *hw = &adapter->hw;
1966         struct net_device *poll_dev = adapter->netdev;
1967         int tx_cleaned = 1, work_done = 0;
1968
1969         adapter = netdev_priv(poll_dev);
1970
1971         if (adapter->msix_entries &&
1972             !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
1973                 goto clean_rx;
1974
1975         tx_cleaned = e1000_clean_tx_irq(adapter);
1976
1977 clean_rx:
1978         adapter->clean_rx(adapter, &work_done, budget);
1979
1980         if (!tx_cleaned)
1981                 work_done = budget;
1982
1983         /* If budget not fully consumed, exit the polling mode */
1984         if (work_done < budget) {
1985                 if (adapter->itr_setting & 3)
1986                         e1000_set_itr(adapter);
1987                 napi_complete(napi);
1988                 if (!test_bit(__E1000_DOWN, &adapter->state)) {
1989                         if (adapter->msix_entries)
1990                                 ew32(IMS, adapter->rx_ring->ims_val);
1991                         else
1992                                 e1000_irq_enable(adapter);
1993                 }
1994         }
1995
1996         return work_done;
1997 }
1998
1999 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2000 {
2001         struct e1000_adapter *adapter = netdev_priv(netdev);
2002         struct e1000_hw *hw = &adapter->hw;
2003         u32 vfta, index;
2004
2005         /* don't update vlan cookie if already programmed */
2006         if ((adapter->hw.mng_cookie.status &
2007              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2008             (vid == adapter->mng_vlan_id))
2009                 return;
2010         /* add VID to filter table */
2011         index = (vid >> 5) & 0x7F;
2012         vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2013         vfta |= (1 << (vid & 0x1F));
2014         e1000e_write_vfta(hw, index, vfta);
2015 }
2016
2017 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2018 {
2019         struct e1000_adapter *adapter = netdev_priv(netdev);
2020         struct e1000_hw *hw = &adapter->hw;
2021         u32 vfta, index;
2022
2023         if (!test_bit(__E1000_DOWN, &adapter->state))
2024                 e1000_irq_disable(adapter);
2025         vlan_group_set_device(adapter->vlgrp, vid, NULL);
2026
2027         if (!test_bit(__E1000_DOWN, &adapter->state))
2028                 e1000_irq_enable(adapter);
2029
2030         if ((adapter->hw.mng_cookie.status &
2031              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2032             (vid == adapter->mng_vlan_id)) {
2033                 /* release control to f/w */
2034                 e1000_release_hw_control(adapter);
2035                 return;
2036         }
2037
2038         /* remove VID from filter table */
2039         index = (vid >> 5) & 0x7F;
2040         vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2041         vfta &= ~(1 << (vid & 0x1F));
2042         e1000e_write_vfta(hw, index, vfta);
2043 }
2044
2045 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2046 {
2047         struct net_device *netdev = adapter->netdev;
2048         u16 vid = adapter->hw.mng_cookie.vlan_id;
2049         u16 old_vid = adapter->mng_vlan_id;
2050
2051         if (!adapter->vlgrp)
2052                 return;
2053
2054         if (!vlan_group_get_device(adapter->vlgrp, vid)) {
2055                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2056                 if (adapter->hw.mng_cookie.status &
2057                         E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2058                         e1000_vlan_rx_add_vid(netdev, vid);
2059                         adapter->mng_vlan_id = vid;
2060                 }
2061
2062                 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
2063                                 (vid != old_vid) &&
2064                     !vlan_group_get_device(adapter->vlgrp, old_vid))
2065                         e1000_vlan_rx_kill_vid(netdev, old_vid);
2066         } else {
2067                 adapter->mng_vlan_id = vid;
2068         }
2069 }
2070
2071
2072 static void e1000_vlan_rx_register(struct net_device *netdev,
2073                                    struct vlan_group *grp)
2074 {
2075         struct e1000_adapter *adapter = netdev_priv(netdev);
2076         struct e1000_hw *hw = &adapter->hw;
2077         u32 ctrl, rctl;
2078
2079         if (!test_bit(__E1000_DOWN, &adapter->state))
2080                 e1000_irq_disable(adapter);
2081         adapter->vlgrp = grp;
2082
2083         if (grp) {
2084                 /* enable VLAN tag insert/strip */
2085                 ctrl = er32(CTRL);
2086                 ctrl |= E1000_CTRL_VME;
2087                 ew32(CTRL, ctrl);
2088
2089                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2090                         /* enable VLAN receive filtering */
2091                         rctl = er32(RCTL);
2092                         rctl &= ~E1000_RCTL_CFIEN;
2093                         ew32(RCTL, rctl);
2094                         e1000_update_mng_vlan(adapter);
2095                 }
2096         } else {
2097                 /* disable VLAN tag insert/strip */
2098                 ctrl = er32(CTRL);
2099                 ctrl &= ~E1000_CTRL_VME;
2100                 ew32(CTRL, ctrl);
2101
2102                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2103                         if (adapter->mng_vlan_id !=
2104                             (u16)E1000_MNG_VLAN_NONE) {
2105                                 e1000_vlan_rx_kill_vid(netdev,
2106                                                        adapter->mng_vlan_id);
2107                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2108                         }
2109                 }
2110         }
2111
2112         if (!test_bit(__E1000_DOWN, &adapter->state))
2113                 e1000_irq_enable(adapter);
2114 }
2115
2116 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2117 {
2118         u16 vid;
2119
2120         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
2121
2122         if (!adapter->vlgrp)
2123                 return;
2124
2125         for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
2126                 if (!vlan_group_get_device(adapter->vlgrp, vid))
2127                         continue;
2128                 e1000_vlan_rx_add_vid(adapter->netdev, vid);
2129         }
2130 }
2131
2132 static void e1000_init_manageability(struct e1000_adapter *adapter)
2133 {
2134         struct e1000_hw *hw = &adapter->hw;
2135         u32 manc, manc2h;
2136
2137         if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2138                 return;
2139
2140         manc = er32(MANC);
2141
2142         /*
2143          * enable receiving management packets to the host. this will probably
2144          * generate destination unreachable messages from the host OS, but
2145          * the packets will be handled on SMBUS
2146          */
2147         manc |= E1000_MANC_EN_MNG2HOST;
2148         manc2h = er32(MANC2H);
2149 #define E1000_MNG2HOST_PORT_623 (1 << 5)
2150 #define E1000_MNG2HOST_PORT_664 (1 << 6)
2151         manc2h |= E1000_MNG2HOST_PORT_623;
2152         manc2h |= E1000_MNG2HOST_PORT_664;
2153         ew32(MANC2H, manc2h);
2154         ew32(MANC, manc);
2155 }
2156
2157 /**
2158  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
2159  * @adapter: board private structure
2160  *
2161  * Configure the Tx unit of the MAC after a reset.
2162  **/
2163 static void e1000_configure_tx(struct e1000_adapter *adapter)
2164 {
2165         struct e1000_hw *hw = &adapter->hw;
2166         struct e1000_ring *tx_ring = adapter->tx_ring;
2167         u64 tdba;
2168         u32 tdlen, tctl, tipg, tarc;
2169         u32 ipgr1, ipgr2;
2170
2171         /* Setup the HW Tx Head and Tail descriptor pointers */
2172         tdba = tx_ring->dma;
2173         tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2174         ew32(TDBAL, (tdba & DMA_BIT_MASK(32)));
2175         ew32(TDBAH, (tdba >> 32));
2176         ew32(TDLEN, tdlen);
2177         ew32(TDH, 0);
2178         ew32(TDT, 0);
2179         tx_ring->head = E1000_TDH;
2180         tx_ring->tail = E1000_TDT;
2181
2182         /* Set the default values for the Tx Inter Packet Gap timer */
2183         tipg = DEFAULT_82543_TIPG_IPGT_COPPER;          /*  8  */
2184         ipgr1 = DEFAULT_82543_TIPG_IPGR1;               /*  8  */
2185         ipgr2 = DEFAULT_82543_TIPG_IPGR2;               /*  6  */
2186
2187         if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
2188                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /*  7  */
2189
2190         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
2191         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
2192         ew32(TIPG, tipg);
2193
2194         /* Set the Tx Interrupt Delay register */
2195         ew32(TIDV, adapter->tx_int_delay);
2196         /* Tx irq moderation */
2197         ew32(TADV, adapter->tx_abs_int_delay);
2198
2199         /* Program the Transmit Control Register */
2200         tctl = er32(TCTL);
2201         tctl &= ~E1000_TCTL_CT;
2202         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2203                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2204
2205         if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2206                 tarc = er32(TARC(0));
2207                 /*
2208                  * set the speed mode bit, we'll clear it if we're not at
2209                  * gigabit link later
2210                  */
2211 #define SPEED_MODE_BIT (1 << 21)
2212                 tarc |= SPEED_MODE_BIT;
2213                 ew32(TARC(0), tarc);
2214         }
2215
2216         /* errata: program both queues to unweighted RR */
2217         if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2218                 tarc = er32(TARC(0));
2219                 tarc |= 1;
2220                 ew32(TARC(0), tarc);
2221                 tarc = er32(TARC(1));
2222                 tarc |= 1;
2223                 ew32(TARC(1), tarc);
2224         }
2225
2226         /* Setup Transmit Descriptor Settings for eop descriptor */
2227         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2228
2229         /* only set IDE if we are delaying interrupts using the timers */
2230         if (adapter->tx_int_delay)
2231                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2232
2233         /* enable Report Status bit */
2234         adapter->txd_cmd |= E1000_TXD_CMD_RS;
2235
2236         ew32(TCTL, tctl);
2237
2238         e1000e_config_collision_dist(hw);
2239
2240         adapter->tx_queue_len = adapter->netdev->tx_queue_len;
2241 }
2242
2243 /**
2244  * e1000_setup_rctl - configure the receive control registers
2245  * @adapter: Board private structure
2246  **/
2247 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2248                            (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2249 static void e1000_setup_rctl(struct e1000_adapter *adapter)
2250 {
2251         struct e1000_hw *hw = &adapter->hw;
2252         u32 rctl, rfctl;
2253         u32 psrctl = 0;
2254         u32 pages = 0;
2255
2256         /* Program MC offset vector base */
2257         rctl = er32(RCTL);
2258         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2259         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2260                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2261                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2262
2263         /* Do not Store bad packets */
2264         rctl &= ~E1000_RCTL_SBP;
2265
2266         /* Enable Long Packet receive */
2267         if (adapter->netdev->mtu <= ETH_DATA_LEN)
2268                 rctl &= ~E1000_RCTL_LPE;
2269         else
2270                 rctl |= E1000_RCTL_LPE;
2271
2272         /* Some systems expect that the CRC is included in SMBUS traffic. The
2273          * hardware strips the CRC before sending to both SMBUS (BMC) and to
2274          * host memory when this is enabled
2275          */
2276         if (adapter->flags2 & FLAG2_CRC_STRIPPING)
2277                 rctl |= E1000_RCTL_SECRC;
2278
2279         /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
2280         if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
2281                 u16 phy_data;
2282
2283                 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
2284                 phy_data &= 0xfff8;
2285                 phy_data |= (1 << 2);
2286                 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
2287
2288                 e1e_rphy(hw, 22, &phy_data);
2289                 phy_data &= 0x0fff;
2290                 phy_data |= (1 << 14);
2291                 e1e_wphy(hw, 0x10, 0x2823);
2292                 e1e_wphy(hw, 0x11, 0x0003);
2293                 e1e_wphy(hw, 22, phy_data);
2294         }
2295
2296         /* Setup buffer sizes */
2297         rctl &= ~E1000_RCTL_SZ_4096;
2298         rctl |= E1000_RCTL_BSEX;
2299         switch (adapter->rx_buffer_len) {
2300         case 256:
2301                 rctl |= E1000_RCTL_SZ_256;
2302                 rctl &= ~E1000_RCTL_BSEX;
2303                 break;
2304         case 512:
2305                 rctl |= E1000_RCTL_SZ_512;
2306                 rctl &= ~E1000_RCTL_BSEX;
2307                 break;
2308         case 1024:
2309                 rctl |= E1000_RCTL_SZ_1024;
2310                 rctl &= ~E1000_RCTL_BSEX;
2311                 break;
2312         case 2048:
2313         default:
2314                 rctl |= E1000_RCTL_SZ_2048;
2315                 rctl &= ~E1000_RCTL_BSEX;
2316                 break;
2317         case 4096:
2318                 rctl |= E1000_RCTL_SZ_4096;
2319                 break;
2320         case 8192:
2321                 rctl |= E1000_RCTL_SZ_8192;
2322                 break;
2323         case 16384:
2324                 rctl |= E1000_RCTL_SZ_16384;
2325                 break;
2326         }
2327
2328         /*
2329          * 82571 and greater support packet-split where the protocol
2330          * header is placed in skb->data and the packet data is
2331          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2332          * In the case of a non-split, skb->data is linearly filled,
2333          * followed by the page buffers.  Therefore, skb->data is
2334          * sized to hold the largest protocol header.
2335          *
2336          * allocations using alloc_page take too long for regular MTU
2337          * so only enable packet split for jumbo frames
2338          *
2339          * Using pages when the page size is greater than 16k wastes
2340          * a lot of memory, since we allocate 3 pages at all times
2341          * per packet.
2342          */
2343         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2344         if (!(adapter->flags & FLAG_IS_ICH) && (pages <= 3) &&
2345             (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2346                 adapter->rx_ps_pages = pages;
2347         else
2348                 adapter->rx_ps_pages = 0;
2349
2350         if (adapter->rx_ps_pages) {
2351                 /* Configure extra packet-split registers */
2352                 rfctl = er32(RFCTL);
2353                 rfctl |= E1000_RFCTL_EXTEN;
2354                 /*
2355                  * disable packet split support for IPv6 extension headers,
2356                  * because some malformed IPv6 headers can hang the Rx
2357                  */
2358                 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
2359                           E1000_RFCTL_NEW_IPV6_EXT_DIS);
2360
2361                 ew32(RFCTL, rfctl);
2362
2363                 /* Enable Packet split descriptors */
2364                 rctl |= E1000_RCTL_DTYP_PS;
2365
2366                 psrctl |= adapter->rx_ps_bsize0 >>
2367                         E1000_PSRCTL_BSIZE0_SHIFT;
2368
2369                 switch (adapter->rx_ps_pages) {
2370                 case 3:
2371                         psrctl |= PAGE_SIZE <<
2372                                 E1000_PSRCTL_BSIZE3_SHIFT;
2373                 case 2:
2374                         psrctl |= PAGE_SIZE <<
2375                                 E1000_PSRCTL_BSIZE2_SHIFT;
2376                 case 1:
2377                         psrctl |= PAGE_SIZE >>
2378                                 E1000_PSRCTL_BSIZE1_SHIFT;
2379                         break;
2380                 }
2381
2382                 ew32(PSRCTL, psrctl);
2383         }
2384
2385         ew32(RCTL, rctl);
2386         /* just started the receive unit, no need to restart */
2387         adapter->flags &= ~FLAG_RX_RESTART_NOW;
2388 }
2389
2390 /**
2391  * e1000_configure_rx - Configure Receive Unit after Reset
2392  * @adapter: board private structure
2393  *
2394  * Configure the Rx unit of the MAC after a reset.
2395  **/
2396 static void e1000_configure_rx(struct e1000_adapter *adapter)
2397 {
2398         struct e1000_hw *hw = &adapter->hw;
2399         struct e1000_ring *rx_ring = adapter->rx_ring;
2400         u64 rdba;
2401         u32 rdlen, rctl, rxcsum, ctrl_ext;
2402
2403         if (adapter->rx_ps_pages) {
2404                 /* this is a 32 byte descriptor */
2405                 rdlen = rx_ring->count *
2406                         sizeof(union e1000_rx_desc_packet_split);
2407                 adapter->clean_rx = e1000_clean_rx_irq_ps;
2408                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2409         } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
2410                 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2411                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
2412                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
2413         } else {
2414                 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2415                 adapter->clean_rx = e1000_clean_rx_irq;
2416                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2417         }
2418
2419         /* disable receives while setting up the descriptors */
2420         rctl = er32(RCTL);
2421         ew32(RCTL, rctl & ~E1000_RCTL_EN);
2422         e1e_flush();
2423         msleep(10);
2424
2425         /* set the Receive Delay Timer Register */
2426         ew32(RDTR, adapter->rx_int_delay);
2427
2428         /* irq moderation */
2429         ew32(RADV, adapter->rx_abs_int_delay);
2430         if (adapter->itr_setting != 0)
2431                 ew32(ITR, 1000000000 / (adapter->itr * 256));
2432
2433         ctrl_ext = er32(CTRL_EXT);
2434         /* Auto-Mask interrupts upon ICR access */
2435         ctrl_ext |= E1000_CTRL_EXT_IAME;
2436         ew32(IAM, 0xffffffff);
2437         ew32(CTRL_EXT, ctrl_ext);
2438         e1e_flush();
2439
2440         /*
2441          * Setup the HW Rx Head and Tail Descriptor Pointers and
2442          * the Base and Length of the Rx Descriptor Ring
2443          */
2444         rdba = rx_ring->dma;
2445         ew32(RDBAL, (rdba & DMA_BIT_MASK(32)));
2446         ew32(RDBAH, (rdba >> 32));
2447         ew32(RDLEN, rdlen);
2448         ew32(RDH, 0);
2449         ew32(RDT, 0);
2450         rx_ring->head = E1000_RDH;
2451         rx_ring->tail = E1000_RDT;
2452
2453         /* Enable Receive Checksum Offload for TCP and UDP */
2454         rxcsum = er32(RXCSUM);
2455         if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
2456                 rxcsum |= E1000_RXCSUM_TUOFL;
2457
2458                 /*
2459                  * IPv4 payload checksum for UDP fragments must be
2460                  * used in conjunction with packet-split.
2461                  */
2462                 if (adapter->rx_ps_pages)
2463                         rxcsum |= E1000_RXCSUM_IPPCSE;
2464         } else {
2465                 rxcsum &= ~E1000_RXCSUM_TUOFL;
2466                 /* no need to clear IPPCSE as it defaults to 0 */
2467         }
2468         ew32(RXCSUM, rxcsum);
2469
2470         /*
2471          * Enable early receives on supported devices, only takes effect when
2472          * packet size is equal or larger than the specified value (in 8 byte
2473          * units), e.g. using jumbo frames when setting to E1000_ERT_2048
2474          */
2475         if (adapter->flags & FLAG_HAS_ERT) {
2476                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
2477                         u32 rxdctl = er32(RXDCTL(0));
2478                         ew32(RXDCTL(0), rxdctl | 0x3);
2479                         ew32(ERT, E1000_ERT_2048 | (1 << 13));
2480                         /*
2481                          * With jumbo frames and early-receive enabled,
2482                          * excessive C-state transition latencies result in
2483                          * dropped transactions.
2484                          */
2485                         pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2486                                                   adapter->netdev->name, 55);
2487                 } else {
2488                         pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2489                                                   adapter->netdev->name,
2490                                                   PM_QOS_DEFAULT_VALUE);
2491                 }
2492         }
2493
2494         /* Enable Receives */
2495         ew32(RCTL, rctl);
2496 }
2497
2498 /**
2499  *  e1000_update_mc_addr_list - Update Multicast addresses
2500  *  @hw: pointer to the HW structure
2501  *  @mc_addr_list: array of multicast addresses to program
2502  *  @mc_addr_count: number of multicast addresses to program
2503  *  @rar_used_count: the first RAR register free to program
2504  *  @rar_count: total number of supported Receive Address Registers
2505  *
2506  *  Updates the Receive Address Registers and Multicast Table Array.
2507  *  The caller must have a packed mc_addr_list of multicast addresses.
2508  *  The parameter rar_count will usually be hw->mac.rar_entry_count
2509  *  unless there are workarounds that change this.  Currently no func pointer
2510  *  exists and all implementations are handled in the generic version of this
2511  *  function.
2512  **/
2513 static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
2514                                       u32 mc_addr_count, u32 rar_used_count,
2515                                       u32 rar_count)
2516 {
2517         hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count,
2518                                         rar_used_count, rar_count);
2519 }
2520
2521 /**
2522  * e1000_set_multi - Multicast and Promiscuous mode set
2523  * @netdev: network interface device structure
2524  *
2525  * The set_multi entry point is called whenever the multicast address
2526  * list or the network interface flags are updated.  This routine is
2527  * responsible for configuring the hardware for proper multicast,
2528  * promiscuous mode, and all-multi behavior.
2529  **/
2530 static void e1000_set_multi(struct net_device *netdev)
2531 {
2532         struct e1000_adapter *adapter = netdev_priv(netdev);
2533         struct e1000_hw *hw = &adapter->hw;
2534         struct e1000_mac_info *mac = &hw->mac;
2535         struct dev_mc_list *mc_ptr;
2536         u8  *mta_list;
2537         u32 rctl;
2538         int i;
2539
2540         /* Check for Promiscuous and All Multicast modes */
2541
2542         rctl = er32(RCTL);
2543
2544         if (netdev->flags & IFF_PROMISC) {
2545                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2546                 rctl &= ~E1000_RCTL_VFE;
2547         } else {
2548                 if (netdev->flags & IFF_ALLMULTI) {
2549                         rctl |= E1000_RCTL_MPE;
2550                         rctl &= ~E1000_RCTL_UPE;
2551                 } else {
2552                         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2553                 }
2554                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
2555                         rctl |= E1000_RCTL_VFE;
2556         }
2557
2558         ew32(RCTL, rctl);
2559
2560         if (netdev->mc_count) {
2561                 mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC);
2562                 if (!mta_list)
2563                         return;
2564
2565                 /* prepare a packed array of only addresses. */
2566                 mc_ptr = netdev->mc_list;
2567
2568                 for (i = 0; i < netdev->mc_count; i++) {
2569                         if (!mc_ptr)
2570                                 break;
2571                         memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr,
2572                                ETH_ALEN);
2573                         mc_ptr = mc_ptr->next;
2574                 }
2575
2576                 e1000_update_mc_addr_list(hw, mta_list, i, 1,
2577                                           mac->rar_entry_count);
2578                 kfree(mta_list);
2579         } else {
2580                 /*
2581                  * if we're called from probe, we might not have
2582                  * anything to do here, so clear out the list
2583                  */
2584                 e1000_update_mc_addr_list(hw, NULL, 0, 1, mac->rar_entry_count);
2585         }
2586 }
2587
2588 /**
2589  * e1000_configure - configure the hardware for Rx and Tx
2590  * @adapter: private board structure
2591  **/
2592 static void e1000_configure(struct e1000_adapter *adapter)
2593 {
2594         e1000_set_multi(adapter->netdev);
2595
2596         e1000_restore_vlan(adapter);
2597         e1000_init_manageability(adapter);
2598
2599         e1000_configure_tx(adapter);
2600         e1000_setup_rctl(adapter);
2601         e1000_configure_rx(adapter);
2602         adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring));
2603 }
2604
2605 /**
2606  * e1000e_power_up_phy - restore link in case the phy was powered down
2607  * @adapter: address of board private structure
2608  *
2609  * The phy may be powered down to save power and turn off link when the
2610  * driver is unloaded and wake on lan is not enabled (among others)
2611  * *** this routine MUST be followed by a call to e1000e_reset ***
2612  **/
2613 void e1000e_power_up_phy(struct e1000_adapter *adapter)
2614 {
2615         u16 mii_reg = 0;
2616
2617         /* Just clear the power down bit to wake the phy back up */
2618         if (adapter->hw.phy.media_type == e1000_media_type_copper) {
2619                 /*
2620                  * According to the manual, the phy will retain its
2621                  * settings across a power-down/up cycle
2622                  */
2623                 e1e_rphy(&adapter->hw, PHY_CONTROL, &mii_reg);
2624                 mii_reg &= ~MII_CR_POWER_DOWN;
2625                 e1e_wphy(&adapter->hw, PHY_CONTROL, mii_reg);
2626         }
2627
2628         adapter->hw.mac.ops.setup_link(&adapter->hw);
2629 }
2630
2631 /**
2632  * e1000_power_down_phy - Power down the PHY
2633  *
2634  * Power down the PHY so no link is implied when interface is down
2635  * The PHY cannot be powered down is management or WoL is active
2636  */
2637 static void e1000_power_down_phy(struct e1000_adapter *adapter)
2638 {
2639         struct e1000_hw *hw = &adapter->hw;
2640         u16 mii_reg;
2641
2642         /* WoL is enabled */
2643         if (adapter->wol)
2644                 return;
2645
2646         /* non-copper PHY? */
2647         if (adapter->hw.phy.media_type != e1000_media_type_copper)
2648                 return;
2649
2650         /* reset is blocked because of a SoL/IDER session */
2651         if (e1000e_check_mng_mode(hw) || e1000_check_reset_block(hw))
2652                 return;
2653
2654         /* manageability (AMT) is enabled */
2655         if (er32(MANC) & E1000_MANC_SMBUS_EN)
2656                 return;
2657
2658         /* power down the PHY */
2659         e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2660         mii_reg |= MII_CR_POWER_DOWN;
2661         e1e_wphy(hw, PHY_CONTROL, mii_reg);
2662         mdelay(1);
2663 }
2664
2665 /**
2666  * e1000e_reset - bring the hardware into a known good state
2667  *
2668  * This function boots the hardware and enables some settings that
2669  * require a configuration cycle of the hardware - those cannot be
2670  * set/changed during runtime. After reset the device needs to be
2671  * properly configured for Rx, Tx etc.
2672  */
2673 void e1000e_reset(struct e1000_adapter *adapter)
2674 {
2675         struct e1000_mac_info *mac = &adapter->hw.mac;
2676         struct e1000_fc_info *fc = &adapter->hw.fc;
2677         struct e1000_hw *hw = &adapter->hw;
2678         u32 tx_space, min_tx_space, min_rx_space;
2679         u32 pba = adapter->pba;
2680         u16 hwm;
2681
2682         /* reset Packet Buffer Allocation to default */
2683         ew32(PBA, pba);
2684
2685         if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
2686                 /*
2687                  * To maintain wire speed transmits, the Tx FIFO should be
2688                  * large enough to accommodate two full transmit packets,
2689                  * rounded up to the next 1KB and expressed in KB.  Likewise,
2690                  * the Rx FIFO should be large enough to accommodate at least
2691                  * one full receive packet and is similarly rounded up and
2692                  * expressed in KB.
2693                  */
2694                 pba = er32(PBA);
2695                 /* upper 16 bits has Tx packet buffer allocation size in KB */
2696                 tx_space = pba >> 16;
2697                 /* lower 16 bits has Rx packet buffer allocation size in KB */
2698                 pba &= 0xffff;
2699                 /*
2700                  * the Tx fifo also stores 16 bytes of information about the tx
2701                  * but don't include ethernet FCS because hardware appends it
2702                  */
2703                 min_tx_space = (adapter->max_frame_size +
2704                                 sizeof(struct e1000_tx_desc) -
2705                                 ETH_FCS_LEN) * 2;
2706                 min_tx_space = ALIGN(min_tx_space, 1024);
2707                 min_tx_space >>= 10;
2708                 /* software strips receive CRC, so leave room for it */
2709                 min_rx_space = adapter->max_frame_size;
2710                 min_rx_space = ALIGN(min_rx_space, 1024);
2711                 min_rx_space >>= 10;
2712
2713                 /*
2714                  * If current Tx allocation is less than the min Tx FIFO size,
2715                  * and the min Tx FIFO size is less than the current Rx FIFO
2716                  * allocation, take space away from current Rx allocation
2717                  */
2718                 if ((tx_space < min_tx_space) &&
2719                     ((min_tx_space - tx_space) < pba)) {
2720                         pba -= min_tx_space - tx_space;
2721
2722                         /*
2723                          * if short on Rx space, Rx wins and must trump tx
2724                          * adjustment or use Early Receive if available
2725                          */
2726                         if ((pba < min_rx_space) &&
2727                             (!(adapter->flags & FLAG_HAS_ERT)))
2728                                 /* ERT enabled in e1000_configure_rx */
2729                                 pba = min_rx_space;
2730                 }
2731
2732                 ew32(PBA, pba);
2733         }
2734
2735
2736         /*
2737          * flow control settings
2738          *
2739          * The high water mark must be low enough to fit two full frame
2740          * (or the size used for early receive) above it in the Rx FIFO.
2741          * Set it to the lower of:
2742          * - 90% of the Rx FIFO size, and
2743          * - the full Rx FIFO size minus the early receive size (for parts
2744          *   with ERT support assuming ERT set to E1000_ERT_2048), or
2745          * - the full Rx FIFO size minus two full frames
2746          */
2747         if ((adapter->flags & FLAG_HAS_ERT) &&
2748             (adapter->netdev->mtu > ETH_DATA_LEN))
2749                 hwm = min(((pba << 10) * 9 / 10),
2750                           ((pba << 10) - (E1000_ERT_2048 << 3)));
2751         else
2752                 hwm = min(((pba << 10) * 9 / 10),
2753                           ((pba << 10) - (2 * adapter->max_frame_size)));
2754
2755         fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
2756         fc->low_water = (fc->high_water - (2 * adapter->max_frame_size));
2757         fc->low_water &= E1000_FCRTL_RTL; /* 8-byte granularity */
2758
2759         if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
2760                 fc->pause_time = 0xFFFF;
2761         else
2762                 fc->pause_time = E1000_FC_PAUSE_TIME;
2763         fc->send_xon = 1;
2764         fc->current_mode = fc->requested_mode;
2765
2766         /* Allow time for pending master requests to run */
2767         mac->ops.reset_hw(hw);
2768
2769         /*
2770          * For parts with AMT enabled, let the firmware know
2771          * that the network interface is in control
2772          */
2773         if (adapter->flags & FLAG_HAS_AMT)
2774                 e1000_get_hw_control(adapter);
2775
2776         ew32(WUC, 0);
2777         if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP)
2778                 e1e_wphy(&adapter->hw, BM_WUC, 0);
2779
2780         if (mac->ops.init_hw(hw))
2781                 e_err("Hardware Error\n");
2782
2783         e1000_update_mng_vlan(adapter);
2784
2785         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2786         ew32(VET, ETH_P_8021Q);
2787
2788         e1000e_reset_adaptive(hw);
2789         e1000_get_phy_info(hw);
2790
2791         if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
2792             !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
2793                 u16 phy_data = 0;
2794                 /*
2795                  * speed up time to link by disabling smart power down, ignore
2796                  * the return value of this function because there is nothing
2797                  * different we would do if it failed
2798                  */
2799                 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
2800                 phy_data &= ~IGP02E1000_PM_SPD;
2801                 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
2802         }
2803 }
2804
2805 int e1000e_up(struct e1000_adapter *adapter)
2806 {
2807         struct e1000_hw *hw = &adapter->hw;
2808
2809         /* DMA latency requirement to workaround early-receive/jumbo issue */
2810         if (adapter->flags & FLAG_HAS_ERT)
2811                 pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY,
2812                                        adapter->netdev->name,
2813                                        PM_QOS_DEFAULT_VALUE);
2814
2815         /* hardware has been reset, we need to reload some things */
2816         e1000_configure(adapter);
2817
2818         clear_bit(__E1000_DOWN, &adapter->state);
2819
2820         napi_enable(&adapter->napi);
2821         if (adapter->msix_entries)
2822                 e1000_configure_msix(adapter);
2823         e1000_irq_enable(adapter);
2824
2825         netif_wake_queue(adapter->netdev);
2826
2827         /* fire a link change interrupt to start the watchdog */
2828         ew32(ICS, E1000_ICS_LSC);
2829         return 0;
2830 }
2831
2832 void e1000e_down(struct e1000_adapter *adapter)
2833 {
2834         struct net_device *netdev = adapter->netdev;
2835         struct e1000_hw *hw = &adapter->hw;
2836         u32 tctl, rctl;
2837
2838         /*
2839          * signal that we're down so the interrupt handler does not
2840          * reschedule our watchdog timer
2841          */
2842         set_bit(__E1000_DOWN, &adapter->state);
2843
2844         /* disable receives in the hardware */
2845         rctl = er32(RCTL);
2846         ew32(RCTL, rctl & ~E1000_RCTL_EN);
2847         /* flush and sleep below */
2848
2849         netif_stop_queue(netdev);
2850
2851         /* disable transmits in the hardware */
2852         tctl = er32(TCTL);
2853         tctl &= ~E1000_TCTL_EN;
2854         ew32(TCTL, tctl);
2855         /* flush both disables and wait for them to finish */
2856         e1e_flush();
2857         msleep(10);
2858
2859         napi_disable(&adapter->napi);
2860         e1000_irq_disable(adapter);
2861
2862         del_timer_sync(&adapter->watchdog_timer);
2863         del_timer_sync(&adapter->phy_info_timer);
2864
2865         netdev->tx_queue_len = adapter->tx_queue_len;
2866         netif_carrier_off(netdev);
2867         adapter->link_speed = 0;
2868         adapter->link_duplex = 0;
2869
2870         if (!pci_channel_offline(adapter->pdev))
2871                 e1000e_reset(adapter);
2872         e1000_clean_tx_ring(adapter);
2873         e1000_clean_rx_ring(adapter);
2874
2875         if (adapter->flags & FLAG_HAS_ERT)
2876                 pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY,
2877                                           adapter->netdev->name);
2878
2879         /*
2880          * TODO: for power management, we could drop the link and
2881          * pci_disable_device here.
2882          */
2883 }
2884
2885 void e1000e_reinit_locked(struct e1000_adapter *adapter)
2886 {
2887         might_sleep();
2888         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
2889                 msleep(1);
2890         e1000e_down(adapter);
2891         e1000e_up(adapter);
2892         clear_bit(__E1000_RESETTING, &adapter->state);
2893 }
2894
2895 /**
2896  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
2897  * @adapter: board private structure to initialize
2898  *
2899  * e1000_sw_init initializes the Adapter private data structure.
2900  * Fields are initialized based on PCI device information and
2901  * OS network device settings (MTU size).
2902  **/
2903 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
2904 {
2905         struct net_device *netdev = adapter->netdev;
2906
2907         adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
2908         adapter->rx_ps_bsize0 = 128;
2909         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
2910         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2911
2912         e1000e_set_interrupt_capability(adapter);
2913
2914         if (e1000_alloc_queues(adapter))
2915                 return -ENOMEM;
2916
2917         /* Explicitly disable IRQ since the NIC can be in any state. */
2918         e1000_irq_disable(adapter);
2919
2920         set_bit(__E1000_DOWN, &adapter->state);
2921         return 0;
2922 }
2923
2924 /**
2925  * e1000_intr_msi_test - Interrupt Handler
2926  * @irq: interrupt number
2927  * @data: pointer to a network interface device structure
2928  **/
2929 static irqreturn_t e1000_intr_msi_test(int irq, void *data)
2930 {
2931         struct net_device *netdev = data;
2932         struct e1000_adapter *adapter = netdev_priv(netdev);
2933         struct e1000_hw *hw = &adapter->hw;
2934         u32 icr = er32(ICR);
2935
2936         e_dbg("icr is %08X\n", icr);
2937         if (icr & E1000_ICR_RXSEQ) {
2938                 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
2939                 wmb();
2940         }
2941
2942         return IRQ_HANDLED;
2943 }
2944
2945 /**
2946  * e1000_test_msi_interrupt - Returns 0 for successful test
2947  * @adapter: board private struct
2948  *
2949  * code flow taken from tg3.c
2950  **/
2951 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
2952 {
2953         struct net_device *netdev = adapter->netdev;
2954         struct e1000_hw *hw = &adapter->hw;
2955         int err;
2956
2957         /* poll_enable hasn't been called yet, so don't need disable */
2958         /* clear any pending events */
2959         er32(ICR);
2960
2961         /* free the real vector and request a test handler */
2962         e1000_free_irq(adapter);
2963         e1000e_reset_interrupt_capability(adapter);
2964
2965         /* Assume that the test fails, if it succeeds then the test
2966          * MSI irq handler will unset this flag */
2967         adapter->flags |= FLAG_MSI_TEST_FAILED;
2968
2969         err = pci_enable_msi(adapter->pdev);
2970         if (err)
2971                 goto msi_test_failed;
2972
2973         err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
2974                           netdev->name, netdev);
2975         if (err) {
2976                 pci_disable_msi(adapter->pdev);
2977                 goto msi_test_failed;
2978         }
2979
2980         wmb();
2981
2982         e1000_irq_enable(adapter);
2983
2984         /* fire an unusual interrupt on the test handler */
2985         ew32(ICS, E1000_ICS_RXSEQ);
2986         e1e_flush();
2987         msleep(50);
2988
2989         e1000_irq_disable(adapter);
2990
2991         rmb();
2992
2993         if (adapter->flags & FLAG_MSI_TEST_FAILED) {
2994                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2995                 err = -EIO;
2996                 e_info("MSI interrupt test failed!\n");
2997         }
2998
2999         free_irq(adapter->pdev->irq, netdev);
3000         pci_disable_msi(adapter->pdev);
3001
3002         if (err == -EIO)
3003                 goto msi_test_failed;
3004
3005         /* okay so the test worked, restore settings */
3006         e_dbg("MSI interrupt test succeeded!\n");
3007 msi_test_failed:
3008         e1000e_set_interrupt_capability(adapter);
3009         e1000_request_irq(adapter);
3010         return err;
3011 }
3012
3013 /**
3014  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3015  * @adapter: board private struct
3016  *
3017  * code flow taken from tg3.c, called with e1000 interrupts disabled.
3018  **/
3019 static int e1000_test_msi(struct e1000_adapter *adapter)
3020 {
3021         int err;
3022         u16 pci_cmd;
3023
3024         if (!(adapter->flags & FLAG_MSI_ENABLED))
3025                 return 0;
3026
3027         /* disable SERR in case the MSI write causes a master abort */
3028         pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3029         pci_write_config_word(adapter->pdev, PCI_COMMAND,
3030                               pci_cmd & ~PCI_COMMAND_SERR);
3031
3032         err = e1000_test_msi_interrupt(adapter);
3033
3034         /* restore previous setting of command word */
3035         pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
3036
3037         /* success ! */
3038         if (!err)
3039                 return 0;
3040
3041         /* EIO means MSI test failed */
3042         if (err != -EIO)
3043                 return err;
3044
3045         /* back to INTx mode */
3046         e_warn("MSI interrupt test failed, using legacy interrupt.\n");
3047
3048         e1000_free_irq(adapter);
3049
3050         err = e1000_request_irq(adapter);
3051
3052         return err;
3053 }
3054
3055 /**
3056  * e1000_open - Called when a network interface is made active
3057  * @netdev: network interface device structure
3058  *
3059  * Returns 0 on success, negative value on failure
3060  *
3061  * The open entry point is called when a network interface is made
3062  * active by the system (IFF_UP).  At this point all resources needed
3063  * for transmit and receive operations are allocated, the interrupt
3064  * handler is registered with the OS, the watchdog timer is started,
3065  * and the stack is notified that the interface is ready.
3066  **/
3067 static int e1000_open(struct net_device *netdev)
3068 {
3069         struct e1000_adapter *adapter = netdev_priv(netdev);
3070         struct e1000_hw *hw = &adapter->hw;
3071         int err;
3072
3073         /* disallow open during test */
3074         if (test_bit(__E1000_TESTING, &adapter->state))
3075                 return -EBUSY;
3076
3077         netif_carrier_off(netdev);
3078
3079         /* allocate transmit descriptors */
3080         err = e1000e_setup_tx_resources(adapter);
3081         if (err)
3082                 goto err_setup_tx;
3083
3084         /* allocate receive descriptors */
3085         err = e1000e_setup_rx_resources(adapter);
3086         if (err)
3087                 goto err_setup_rx;
3088
3089         e1000e_power_up_phy(adapter);
3090
3091         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3092         if ((adapter->hw.mng_cookie.status &
3093              E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
3094                 e1000_update_mng_vlan(adapter);
3095
3096         /*
3097          * If AMT is enabled, let the firmware know that the network
3098          * interface is now open
3099          */
3100         if (adapter->flags & FLAG_HAS_AMT)
3101                 e1000_get_hw_control(adapter);
3102
3103         /*
3104          * before we allocate an interrupt, we must be ready to handle it.
3105          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3106          * as soon as we call pci_request_irq, so we have to setup our
3107          * clean_rx handler before we do so.
3108          */
3109         e1000_configure(adapter);
3110
3111         err = e1000_request_irq(adapter);
3112         if (err)
3113                 goto err_req_irq;
3114
3115         /*
3116          * Work around PCIe errata with MSI interrupts causing some chipsets to
3117          * ignore e1000e MSI messages, which means we need to test our MSI
3118          * interrupt now
3119          */
3120         if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3121                 err = e1000_test_msi(adapter);
3122                 if (err) {
3123                         e_err("Interrupt allocation failed\n");
3124                         goto err_req_irq;
3125                 }
3126         }
3127
3128         /* From here on the code is the same as e1000e_up() */
3129         clear_bit(__E1000_DOWN, &adapter->state);
3130
3131         napi_enable(&adapter->napi);
3132
3133         e1000_irq_enable(adapter);
3134
3135         netif_start_queue(netdev);
3136
3137         /* fire a link status change interrupt to start the watchdog */
3138         ew32(ICS, E1000_ICS_LSC);
3139
3140         return 0;
3141
3142 err_req_irq:
3143         e1000_release_hw_control(adapter);
3144         e1000_power_down_phy(adapter);
3145         e1000e_free_rx_resources(adapter);
3146 err_setup_rx:
3147         e1000e_free_tx_resources(adapter);
3148 err_setup_tx:
3149         e1000e_reset(adapter);
3150
3151         return err;
3152 }
3153
3154 /**
3155  * e1000_close - Disables a network interface
3156  * @netdev: network interface device structure
3157  *
3158  * Returns 0, this is not allowed to fail
3159  *
3160  * The close entry point is called when an interface is de-activated
3161  * by the OS.  The hardware is still under the drivers control, but
3162  * needs to be disabled.  A global MAC reset is issued to stop the
3163  * hardware, and all transmit and receive resources are freed.
3164  **/
3165 static int e1000_close(struct net_device *netdev)
3166 {
3167         struct e1000_adapter *adapter = netdev_priv(netdev);
3168
3169         WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3170         e1000e_down(adapter);
3171         e1000_power_down_phy(adapter);
3172         e1000_free_irq(adapter);
3173
3174         e1000e_free_tx_resources(adapter);
3175         e1000e_free_rx_resources(adapter);
3176
3177         /*
3178          * kill manageability vlan ID if supported, but not if a vlan with
3179          * the same ID is registered on the host OS (let 8021q kill it)
3180          */
3181         if ((adapter->hw.mng_cookie.status &
3182                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
3183              !(adapter->vlgrp &&
3184                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
3185                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3186
3187         /*
3188          * If AMT is enabled, let the firmware know that the network
3189          * interface is now closed
3190          */
3191         if (adapter->flags & FLAG_HAS_AMT)
3192                 e1000_release_hw_control(adapter);
3193
3194         return 0;
3195 }
3196 /**
3197  * e1000_set_mac - Change the Ethernet Address of the NIC
3198  * @netdev: network interface device structure
3199  * @p: pointer to an address structure
3200  *
3201  * Returns 0 on success, negative on failure
3202  **/
3203 static int e1000_set_mac(struct net_device *netdev, void *p)
3204 {
3205         struct e1000_adapter *adapter = netdev_priv(netdev);
3206         struct sockaddr *addr = p;
3207
3208         if (!is_valid_ether_addr(addr->sa_data))
3209                 return -EADDRNOTAVAIL;
3210
3211         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3212         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
3213
3214         e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
3215
3216         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
3217                 /* activate the work around */
3218                 e1000e_set_laa_state_82571(&adapter->hw, 1);
3219
3220                 /*
3221                  * Hold a copy of the LAA in RAR[14] This is done so that
3222                  * between the time RAR[0] gets clobbered  and the time it
3223                  * gets fixed (in e1000_watchdog), the actual LAA is in one
3224                  * of the RARs and no incoming packets directed to this port
3225                  * are dropped. Eventually the LAA will be in RAR[0] and
3226                  * RAR[14]
3227                  */
3228                 e1000e_rar_set(&adapter->hw,
3229                               adapter->hw.mac.addr,
3230                               adapter->hw.mac.rar_entry_count - 1);
3231         }
3232
3233         return 0;
3234 }
3235
3236 /**
3237  * e1000e_update_phy_task - work thread to update phy
3238  * @work: pointer to our work struct
3239  *
3240  * this worker thread exists because we must acquire a
3241  * semaphore to read the phy, which we could msleep while
3242  * waiting for it, and we can't msleep in a timer.
3243  **/
3244 static void e1000e_update_phy_task(struct work_struct *work)
3245 {
3246         struct e1000_adapter *adapter = container_of(work,
3247                                         struct e1000_adapter, update_phy_task);
3248         e1000_get_phy_info(&adapter->hw);
3249 }
3250
3251 /*
3252  * Need to wait a few seconds after link up to get diagnostic information from
3253  * the phy
3254  */
3255 static void e1000_update_phy_info(unsigned long data)
3256 {
3257         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3258         schedule_work(&adapter->update_phy_task);
3259 }
3260
3261 /**
3262  * e1000e_update_stats - Update the board statistics counters
3263  * @adapter: board private structure
3264  **/
3265 void e1000e_update_stats(struct e1000_adapter *adapter)
3266 {
3267         struct net_device *netdev = adapter->netdev;
3268         struct e1000_hw *hw = &adapter->hw;
3269         struct pci_dev *pdev = adapter->pdev;
3270         u16 phy_data;
3271
3272         /*
3273          * Prevent stats update while adapter is being reset, or if the pci
3274          * connection is down.
3275          */
3276         if (adapter->link_speed == 0)
3277                 return;
3278         if (pci_channel_offline(pdev))
3279                 return;
3280
3281         adapter->stats.crcerrs += er32(CRCERRS);
3282         adapter->stats.gprc += er32(GPRC);
3283         adapter->stats.gorc += er32(GORCL);
3284         er32(GORCH); /* Clear gorc */
3285         adapter->stats.bprc += er32(BPRC);
3286         adapter->stats.mprc += er32(MPRC);
3287         adapter->stats.roc += er32(ROC);
3288
3289         adapter->stats.mpc += er32(MPC);
3290         if ((hw->phy.type == e1000_phy_82578) ||
3291             (hw->phy.type == e1000_phy_82577)) {
3292                 e1e_rphy(hw, HV_SCC_UPPER, &phy_data);
3293                 e1e_rphy(hw, HV_SCC_LOWER, &phy_data);
3294                 adapter->stats.scc += phy_data;
3295
3296                 e1e_rphy(hw, HV_ECOL_UPPER, &phy_data);
3297                 e1e_rphy(hw, HV_ECOL_LOWER, &phy_data);
3298                 adapter->stats.ecol += phy_data;
3299
3300                 e1e_rphy(hw, HV_MCC_UPPER, &phy_data);
3301                 e1e_rphy(hw, HV_MCC_LOWER, &phy_data);
3302                 adapter->stats.mcc += phy_data;
3303
3304                 e1e_rphy(hw, HV_LATECOL_UPPER, &phy_data);
3305                 e1e_rphy(hw, HV_LATECOL_LOWER, &phy_data);
3306                 adapter->stats.latecol += phy_data;
3307
3308                 e1e_rphy(hw, HV_DC_UPPER, &phy_data);
3309                 e1e_rphy(hw, HV_DC_LOWER, &phy_data);
3310                 adapter->stats.dc += phy_data;
3311         } else {
3312                 adapter->stats.scc += er32(SCC);
3313                 adapter->stats.ecol += er32(ECOL);
3314                 adapter->stats.mcc += er32(MCC);
3315                 adapter->stats.latecol += er32(LATECOL);
3316                 adapter->stats.dc += er32(DC);
3317         }
3318         adapter->stats.xonrxc += er32(XONRXC);
3319         adapter->stats.xontxc += er32(XONTXC);
3320         adapter->stats.xoffrxc += er32(XOFFRXC);
3321         adapter->stats.xofftxc += er32(XOFFTXC);
3322         adapter->stats.gptc += er32(GPTC);
3323         adapter->stats.gotc += er32(GOTCL);
3324         er32(GOTCH); /* Clear gotc */
3325         adapter->stats.rnbc += er32(RNBC);
3326         adapter->stats.ruc += er32(RUC);
3327
3328         adapter->stats.mptc += er32(MPTC);
3329         adapter->stats.bptc += er32(BPTC);
3330
3331         /* used for adaptive IFS */
3332
3333         hw->mac.tx_packet_delta = er32(TPT);
3334         adapter->stats.tpt += hw->mac.tx_packet_delta;
3335         if ((hw->phy.type == e1000_phy_82578) ||
3336             (hw->phy.type == e1000_phy_82577)) {
3337                 e1e_rphy(hw, HV_COLC_UPPER, &phy_data);
3338                 e1e_rphy(hw, HV_COLC_LOWER, &phy_data);
3339                 hw->mac.collision_delta = phy_data;
3340         } else {
3341                 hw->mac.collision_delta = er32(COLC);
3342         }
3343         adapter->stats.colc += hw->mac.collision_delta;
3344
3345         adapter->stats.algnerrc += er32(ALGNERRC);
3346         adapter->stats.rxerrc += er32(RXERRC);
3347         if ((hw->phy.type == e1000_phy_82578) ||
3348             (hw->phy.type == e1000_phy_82577)) {
3349                 e1e_rphy(hw, HV_TNCRS_UPPER, &phy_data);
3350                 e1e_rphy(hw, HV_TNCRS_LOWER, &phy_data);
3351                 adapter->stats.tncrs += phy_data;
3352         } else {
3353                 if ((hw->mac.type != e1000_82574) &&
3354                     (hw->mac.type != e1000_82583))
3355                         adapter->stats.tncrs += er32(TNCRS);
3356         }
3357         adapter->stats.cexterr += er32(CEXTERR);
3358         adapter->stats.tsctc += er32(TSCTC);
3359         adapter->stats.tsctfc += er32(TSCTFC);
3360
3361         /* Fill out the OS statistics structure */
3362         netdev->stats.multicast = adapter->stats.mprc;
3363         netdev->stats.collisions = adapter->stats.colc;
3364
3365         /* Rx Errors */
3366
3367         /*
3368          * RLEC on some newer hardware can be incorrect so build
3369          * our own version based on RUC and ROC
3370          */
3371         netdev->stats.rx_errors = adapter->stats.rxerrc +
3372                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3373                 adapter->stats.ruc + adapter->stats.roc +
3374                 adapter->stats.cexterr;
3375         netdev->stats.rx_length_errors = adapter->stats.ruc +
3376                                               adapter->stats.roc;
3377         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3378         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3379         netdev->stats.rx_missed_errors = adapter->stats.mpc;
3380
3381         /* Tx Errors */
3382         netdev->stats.tx_errors = adapter->stats.ecol +
3383                                        adapter->stats.latecol;
3384         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3385         netdev->stats.tx_window_errors = adapter->stats.latecol;
3386         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3387
3388         /* Tx Dropped needs to be maintained elsewhere */
3389
3390         /* Management Stats */
3391         adapter->stats.mgptc += er32(MGTPTC);
3392         adapter->stats.mgprc += er32(MGTPRC);
3393         adapter->stats.mgpdc += er32(MGTPDC);
3394 }
3395
3396 /**
3397  * e1000_phy_read_status - Update the PHY register status snapshot
3398  * @adapter: board private structure
3399  **/
3400 static void e1000_phy_read_status(struct e1000_adapter *adapter)
3401 {
3402         struct e1000_hw *hw = &adapter->hw;
3403         struct e1000_phy_regs *phy = &adapter->phy_regs;
3404         int ret_val;
3405
3406         if ((er32(STATUS) & E1000_STATUS_LU) &&
3407             (adapter->hw.phy.media_type == e1000_media_type_copper)) {
3408                 ret_val  = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
3409                 ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
3410                 ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
3411                 ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
3412                 ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
3413                 ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
3414                 ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
3415                 ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
3416                 if (ret_val)
3417                         e_warn("Error reading PHY register\n");
3418         } else {
3419                 /*
3420                  * Do not read PHY registers if link is not up
3421                  * Set values to typical power-on defaults
3422                  */
3423                 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
3424                 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
3425                              BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
3426                              BMSR_ERCAP);
3427                 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
3428                                   ADVERTISE_ALL | ADVERTISE_CSMA);
3429                 phy->lpa = 0;
3430                 phy->expansion = EXPANSION_ENABLENPAGE;
3431                 phy->ctrl1000 = ADVERTISE_1000FULL;
3432                 phy->stat1000 = 0;
3433                 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
3434         }
3435 }
3436
3437 static void e1000_print_link_info(struct e1000_adapter *adapter)
3438 {
3439         struct e1000_hw *hw = &adapter->hw;
3440         u32 ctrl = er32(CTRL);
3441
3442         /* Link status message must follow this format for user tools */
3443         printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s, "
3444                "Flow Control: %s\n",
3445                adapter->netdev->name,
3446                adapter->link_speed,
3447                (adapter->link_duplex == FULL_DUPLEX) ?
3448                                 "Full Duplex" : "Half Duplex",
3449                ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
3450                                 "RX/TX" :
3451                ((ctrl & E1000_CTRL_RFCE) ? "RX" :
3452                ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
3453 }
3454
3455 bool e1000_has_link(struct e1000_adapter *adapter)
3456 {
3457         struct e1000_hw *hw = &adapter->hw;
3458         bool link_active = 0;
3459         s32 ret_val = 0;
3460
3461         /*
3462          * get_link_status is set on LSC (link status) interrupt or
3463          * Rx sequence error interrupt.  get_link_status will stay
3464          * false until the check_for_link establishes link
3465          * for copper adapters ONLY
3466          */
3467         switch (hw->phy.media_type) {
3468         case e1000_media_type_copper:
3469                 if (hw->mac.get_link_status) {
3470                         ret_val = hw->mac.ops.check_for_link(hw);
3471                         link_active = !hw->mac.get_link_status;
3472                 } else {
3473                         link_active = 1;
3474                 }
3475                 break;
3476         case e1000_media_type_fiber:
3477                 ret_val = hw->mac.ops.check_for_link(hw);
3478                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
3479                 break;
3480         case e1000_media_type_internal_serdes:
3481                 ret_val = hw->mac.ops.check_for_link(hw);
3482                 link_active = adapter->hw.mac.serdes_has_link;
3483                 break;
3484         default:
3485         case e1000_media_type_unknown:
3486                 break;
3487         }
3488
3489         if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
3490             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
3491                 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
3492                 e_info("Gigabit has been disabled, downgrading speed\n");
3493         }
3494
3495         return link_active;
3496 }
3497
3498 static void e1000e_enable_receives(struct e1000_adapter *adapter)
3499 {
3500         /* make sure the receive unit is started */
3501         if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
3502             (adapter->flags & FLAG_RX_RESTART_NOW)) {
3503                 struct e1000_hw *hw = &adapter->hw;
3504                 u32 rctl = er32(RCTL);
3505                 ew32(RCTL, rctl | E1000_RCTL_EN);
3506                 adapter->flags &= ~FLAG_RX_RESTART_NOW;
3507         }
3508 }
3509
3510 /**
3511  * e1000_watchdog - Timer Call-back
3512  * @data: pointer to adapter cast into an unsigned long
3513  **/
3514 static void e1000_watchdog(unsigned long data)
3515 {
3516         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3517
3518         /* Do the rest outside of interrupt context */
3519         schedule_work(&adapter->watchdog_task);
3520
3521         /* TODO: make this use queue_delayed_work() */
3522 }
3523
3524 static void e1000_watchdog_task(struct work_struct *work)
3525 {
3526         struct e1000_adapter *adapter = container_of(work,
3527                                         struct e1000_adapter, watchdog_task);
3528         struct net_device *netdev = adapter->netdev;
3529         struct e1000_mac_info *mac = &adapter->hw.mac;
3530         struct e1000_phy_info *phy = &adapter->hw.phy;
3531         struct e1000_ring *tx_ring = adapter->tx_ring;
3532         struct e1000_hw *hw = &adapter->hw;
3533         u32 link, tctl;
3534         int tx_pending = 0;
3535
3536         link = e1000_has_link(adapter);
3537         if ((netif_carrier_ok(netdev)) && link) {
3538                 e1000e_enable_receives(adapter);
3539                 goto link_up;
3540         }
3541
3542         if ((e1000e_enable_tx_pkt_filtering(hw)) &&
3543             (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
3544                 e1000_update_mng_vlan(adapter);
3545
3546         if (link) {
3547                 if (!netif_carrier_ok(netdev)) {
3548                         bool txb2b = 1;
3549                         /* update snapshot of PHY registers on LSC */
3550                         e1000_phy_read_status(adapter);
3551                         mac->ops.get_link_up_info(&adapter->hw,
3552                                                    &adapter->link_speed,
3553                                                    &adapter->link_duplex);
3554                         e1000_print_link_info(adapter);
3555                         /*
3556                          * On supported PHYs, check for duplex mismatch only
3557                          * if link has autonegotiated at 10/100 half
3558                          */
3559                         if ((hw->phy.type == e1000_phy_igp_3 ||
3560                              hw->phy.type == e1000_phy_bm) &&
3561                             (hw->mac.autoneg == true) &&
3562                             (adapter->link_speed == SPEED_10 ||
3563                              adapter->link_speed == SPEED_100) &&
3564                             (adapter->link_duplex == HALF_DUPLEX)) {
3565                                 u16 autoneg_exp;
3566
3567                                 e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
3568
3569                                 if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
3570                                         e_info("Autonegotiated half duplex but"
3571                                                " link partner cannot autoneg. "
3572                                                " Try forcing full duplex if "
3573                                                "link gets many collisions.\n");
3574                         }
3575
3576                         /*
3577                          * tweak tx_queue_len according to speed/duplex
3578                          * and adjust the timeout factor
3579                          */
3580                         netdev->tx_queue_len = adapter->tx_queue_len;
3581                         adapter->tx_timeout_factor = 1;
3582                         switch (adapter->link_speed) {
3583                         case SPEED_10:
3584                                 txb2b = 0;
3585                                 netdev->tx_queue_len = 10;
3586                                 adapter->tx_timeout_factor = 16;
3587                                 break;
3588                         case SPEED_100:
3589                                 txb2b = 0;
3590                                 netdev->tx_queue_len = 100;
3591                                 /* maybe add some timeout factor ? */
3592                                 break;
3593                         }
3594
3595                         /*
3596                          * workaround: re-program speed mode bit after
3597                          * link-up event
3598                          */
3599                         if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
3600                             !txb2b) {
3601                                 u32 tarc0;
3602                                 tarc0 = er32(TARC(0));
3603                                 tarc0 &= ~SPEED_MODE_BIT;
3604                                 ew32(TARC(0), tarc0);
3605                         }
3606
3607                         /*
3608                          * disable TSO for pcie and 10/100 speeds, to avoid
3609                          * some hardware issues
3610                          */
3611                         if (!(adapter->flags & FLAG_TSO_FORCE)) {
3612                                 switch (adapter->link_speed) {
3613                                 case SPEED_10:
3614                                 case SPEED_100:
3615                                         e_info("10/100 speed: disabling TSO\n");
3616                                         netdev->features &= ~NETIF_F_TSO;
3617                                         netdev->features &= ~NETIF_F_TSO6;
3618                                         break;
3619                                 case SPEED_1000:
3620                                         netdev->features |= NETIF_F_TSO;
3621                                         netdev->features |= NETIF_F_TSO6;
3622                                         break;
3623                                 default:
3624                                         /* oops */
3625                                         break;
3626                                 }
3627                         }
3628
3629                         /*
3630                          * enable transmits in the hardware, need to do this
3631                          * after setting TARC(0)
3632                          */
3633                         tctl = er32(TCTL);
3634                         tctl |= E1000_TCTL_EN;
3635                         ew32(TCTL, tctl);
3636
3637                         /*
3638                          * Perform any post-link-up configuration before
3639                          * reporting link up.
3640                          */
3641                         if (phy->ops.cfg_on_link_up)
3642                                 phy->ops.cfg_on_link_up(hw);
3643
3644                         netif_carrier_on(netdev);
3645
3646                         if (!test_bit(__E1000_DOWN, &adapter->state))
3647                                 mod_timer(&adapter->phy_info_timer,
3648                                           round_jiffies(jiffies + 2 * HZ));
3649                 }
3650         } else {
3651                 if (netif_carrier_ok(netdev)) {
3652                         adapter->link_speed = 0;
3653                         adapter->link_duplex = 0;
3654                         /* Link status message must follow this format */
3655                         printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
3656                                adapter->netdev->name);
3657                         netif_carrier_off(netdev);
3658                         if (!test_bit(__E1000_DOWN, &adapter->state))
3659                                 mod_timer(&adapter->phy_info_timer,
3660                                           round_jiffies(jiffies + 2 * HZ));
3661
3662                         if (adapter->flags & FLAG_RX_NEEDS_RESTART)
3663                                 schedule_work(&adapter->reset_task);
3664                 }
3665         }
3666
3667 link_up:
3668         e1000e_update_stats(adapter);
3669
3670         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
3671         adapter->tpt_old = adapter->stats.tpt;
3672         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
3673         adapter->colc_old = adapter->stats.colc;
3674
3675         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
3676         adapter->gorc_old = adapter->stats.gorc;
3677         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
3678         adapter->gotc_old = adapter->stats.gotc;
3679
3680         e1000e_update_adaptive(&adapter->hw);
3681
3682         if (!netif_carrier_ok(netdev)) {
3683                 tx_pending = (e1000_desc_unused(tx_ring) + 1 <
3684                                tx_ring->count);
3685                 if (tx_pending) {
3686                         /*
3687                          * We've lost link, so the controller stops DMA,
3688                          * but we've got queued Tx work that's never going
3689                          * to get done, so reset controller to flush Tx.
3690                          * (Do the reset outside of interrupt context).
3691                          */
3692                         adapter->tx_timeout_count++;
3693                         schedule_work(&adapter->reset_task);
3694                         /* return immediately since reset is imminent */
3695                         return;
3696                 }
3697         }
3698
3699         /* Cause software interrupt to ensure Rx ring is cleaned */
3700         if (adapter->msix_entries)
3701                 ew32(ICS, adapter->rx_ring->ims_val);
3702         else
3703                 ew32(ICS, E1000_ICS_RXDMT0);
3704
3705         /* Force detection of hung controller every watchdog period */
3706         adapter->detect_tx_hung = 1;
3707
3708         /*
3709          * With 82571 controllers, LAA may be overwritten due to controller
3710          * reset from the other port. Set the appropriate LAA in RAR[0]
3711          */
3712         if (e1000e_get_laa_state_82571(hw))
3713                 e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
3714
3715         /* Reset the timer */
3716         if (!test_bit(__E1000_DOWN, &adapter->state))
3717                 mod_timer(&adapter->watchdog_timer,
3718                           round_jiffies(jiffies + 2 * HZ));
3719 }
3720
3721 #define E1000_TX_FLAGS_CSUM             0x00000001
3722 #define E1000_TX_FLAGS_VLAN             0x00000002
3723 #define E1000_TX_FLAGS_TSO              0x00000004
3724 #define E1000_TX_FLAGS_IPV4             0x00000008
3725 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
3726 #define E1000_TX_FLAGS_VLAN_SHIFT       16
3727
3728 static int e1000_tso(struct e1000_adapter *adapter,
3729                      struct sk_buff *skb)
3730 {
3731         struct e1000_ring *tx_ring = adapter->tx_ring;
3732         struct e1000_context_desc *context_desc;
3733         struct e1000_buffer *buffer_info;
3734         unsigned int i;
3735         u32 cmd_length = 0;
3736         u16 ipcse = 0, tucse, mss;
3737         u8 ipcss, ipcso, tucss, tucso, hdr_len;
3738         int err;
3739
3740         if (!skb_is_gso(skb))
3741                 return 0;
3742
3743         if (skb_header_cloned(skb)) {
3744                 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3745                 if (err)
3746                         return err;
3747         }
3748
3749         hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3750         mss = skb_shinfo(skb)->gso_size;
3751         if (skb->protocol == htons(ETH_P_IP)) {
3752                 struct iphdr *iph = ip_hdr(skb);
3753                 iph->tot_len = 0;
3754                 iph->check = 0;
3755                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
3756                                                          0, IPPROTO_TCP, 0);
3757                 cmd_length = E1000_TXD_CMD_IP;
3758                 ipcse = skb_transport_offset(skb) - 1;
3759         } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
3760                 ipv6_hdr(skb)->payload_len = 0;
3761                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3762                                                        &ipv6_hdr(skb)->daddr,
3763                                                        0, IPPROTO_TCP, 0);
3764                 ipcse = 0;
3765         }
3766         ipcss = skb_network_offset(skb);
3767         ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
3768         tucss = skb_transport_offset(skb);
3769         tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
3770         tucse = 0;
3771
3772         cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
3773                        E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
3774
3775         i = tx_ring->next_to_use;
3776         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3777         buffer_info = &tx_ring->buffer_info[i];
3778
3779         context_desc->lower_setup.ip_fields.ipcss  = ipcss;
3780         context_desc->lower_setup.ip_fields.ipcso  = ipcso;
3781         context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
3782         context_desc->upper_setup.tcp_fields.tucss = tucss;
3783         context_desc->upper_setup.tcp_fields.tucso = tucso;
3784         context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
3785         context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
3786         context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
3787         context_desc->cmd_and_length = cpu_to_le32(cmd_length);
3788
3789         buffer_info->time_stamp = jiffies;
3790         buffer_info->next_to_watch = i;
3791
3792         i++;
3793         if (i == tx_ring->count)
3794                 i = 0;
3795         tx_ring->next_to_use = i;
3796
3797         return 1;
3798 }
3799
3800 static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
3801 {
3802         struct e1000_ring *tx_ring = adapter->tx_ring;
3803         struct e1000_context_desc *context_desc;
3804         struct e1000_buffer *buffer_info;
3805         unsigned int i;
3806         u8 css;
3807         u32 cmd_len = E1000_TXD_CMD_DEXT;
3808         __be16 protocol;
3809
3810         if (skb->ip_summed != CHECKSUM_PARTIAL)
3811                 return 0;
3812
3813         if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
3814                 protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
3815         else
3816                 protocol = skb->protocol;
3817
3818         switch (protocol) {
3819         case cpu_to_be16(ETH_P_IP):
3820                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3821                         cmd_len |= E1000_TXD_CMD_TCP;
3822                 break;
3823         case cpu_to_be16(ETH_P_IPV6):
3824                 /* XXX not handling all IPV6 headers */
3825                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3826                         cmd_len |= E1000_TXD_CMD_TCP;
3827                 break;
3828         default:
3829                 if (unlikely(net_ratelimit()))
3830                         e_warn("checksum_partial proto=%x!\n",
3831                                be16_to_cpu(protocol));
3832                 break;
3833         }
3834
3835         css = skb_transport_offset(skb);
3836
3837         i = tx_ring->next_to_use;
3838         buffer_info = &tx_ring->buffer_info[i];
3839         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3840
3841         context_desc->lower_setup.ip_config = 0;
3842         context_desc->upper_setup.tcp_fields.tucss = css;
3843         context_desc->upper_setup.tcp_fields.tucso =
3844                                 css + skb->csum_offset;
3845         context_desc->upper_setup.tcp_fields.tucse = 0;
3846         context_desc->tcp_seg_setup.data = 0;
3847         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
3848
3849         buffer_info->time_stamp = jiffies;
3850         buffer_info->next_to_watch = i;
3851
3852         i++;
3853         if (i == tx_ring->count)
3854                 i = 0;
3855         tx_ring->next_to_use = i;
3856
3857         return 1;
3858 }
3859
3860 #define E1000_MAX_PER_TXD       8192
3861 #define E1000_MAX_TXD_PWR       12
3862
3863 static int e1000_tx_map(struct e1000_adapter *adapter,
3864                         struct sk_buff *skb, unsigned int first,
3865                         unsigned int max_per_txd, unsigned int nr_frags,
3866                         unsigned int mss)
3867 {
3868         struct e1000_ring *tx_ring = adapter->tx_ring;
3869         struct e1000_buffer *buffer_info;
3870         unsigned int len = skb_headlen(skb);
3871         unsigned int offset, size, count = 0, i;
3872         unsigned int f;
3873         dma_addr_t *map;
3874
3875         i = tx_ring->next_to_use;
3876
3877         if (skb_dma_map(&adapter->pdev->dev, skb, DMA_TO_DEVICE)) {
3878                 dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
3879                 adapter->tx_dma_failed++;
3880                 return 0;
3881         }
3882
3883         map = skb_shinfo(skb)->dma_maps;
3884         offset = 0;
3885
3886         while (len) {
3887                 buffer_info = &tx_ring->buffer_info[i];
3888                 size = min(len, max_per_txd);
3889
3890                 buffer_info->length = size;
3891                 buffer_info->time_stamp = jiffies;
3892                 buffer_info->next_to_watch = i;
3893                 buffer_info->dma = skb_shinfo(skb)->dma_head + offset;
3894                 count++;
3895
3896                 len -= size;
3897                 offset += size;
3898
3899                 if (len) {
3900                         i++;
3901                         if (i == tx_ring->count)
3902                                 i = 0;
3903                 }
3904         }
3905
3906         for (f = 0; f < nr_frags; f++) {
3907                 struct skb_frag_struct *frag;
3908
3909                 frag = &skb_shinfo(skb)->frags[f];
3910                 len = frag->size;
3911                 offset = 0;
3912
3913                 while (len) {
3914                         i++;
3915                         if (i == tx_ring->count)
3916                                 i = 0;
3917
3918                         buffer_info = &tx_ring->buffer_info[i];
3919                         size = min(len, max_per_txd);
3920
3921                         buffer_info->length = size;
3922                         buffer_info->time_stamp = jiffies;
3923                         buffer_info->next_to_watch = i;
3924                         buffer_info->dma = map[f] + offset;
3925
3926                         len -= size;
3927                         offset += size;
3928                         count++;
3929                 }
3930         }
3931
3932         tx_ring->buffer_info[i].skb = skb;
3933         tx_ring->buffer_info[first].next_to_watch = i;
3934
3935         return count;
3936 }
3937
3938 static void e1000_tx_queue(struct e1000_adapter *adapter,
3939                            int tx_flags, int count)
3940 {
3941         struct e1000_ring *tx_ring = adapter->tx_ring;
3942         struct e1000_tx_desc *tx_desc = NULL;
3943         struct e1000_buffer *buffer_info;
3944         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3945         unsigned int i;
3946
3947         if (tx_flags & E1000_TX_FLAGS_TSO) {
3948                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3949                              E1000_TXD_CMD_TSE;
3950                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3951
3952                 if (tx_flags & E1000_TX_FLAGS_IPV4)
3953                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3954         }
3955
3956         if (tx_flags & E1000_TX_FLAGS_CSUM) {
3957                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3958                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3959         }
3960
3961         if (tx_flags & E1000_TX_FLAGS_VLAN) {
3962                 txd_lower |= E1000_TXD_CMD_VLE;
3963                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3964         }
3965
3966         i = tx_ring->next_to_use;
3967
3968         while (count--) {
3969                 buffer_info = &tx_ring->buffer_info[i];
3970                 tx_desc = E1000_TX_DESC(*tx_ring, i);
3971                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3972                 tx_desc->lower.data =
3973                         cpu_to_le32(txd_lower | buffer_info->length);
3974                 tx_desc->upper.data = cpu_to_le32(txd_upper);
3975
3976                 i++;
3977                 if (i == tx_ring->count)
3978                         i = 0;
3979         }
3980
3981         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3982
3983         /*
3984          * Force memory writes to complete before letting h/w
3985          * know there are new descriptors to fetch.  (Only
3986          * applicable for weak-ordered memory model archs,
3987          * such as IA-64).
3988          */
3989         wmb();
3990
3991         tx_ring->next_to_use = i;
3992         writel(i, adapter->hw.hw_addr + tx_ring->tail);
3993         /*
3994          * we need this if more than one processor can write to our tail
3995          * at a time, it synchronizes IO on IA64/Altix systems
3996          */
3997         mmiowb();
3998 }
3999
4000 #define MINIMUM_DHCP_PACKET_SIZE 282
4001 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
4002                                     struct sk_buff *skb)
4003 {
4004         struct e1000_hw *hw =  &adapter->hw;
4005         u16 length, offset;
4006
4007         if (vlan_tx_tag_present(skb)) {
4008                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id)
4009                     && (adapter->hw.mng_cookie.status &
4010                         E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
4011                         return 0;
4012         }
4013
4014         if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
4015                 return 0;
4016
4017         if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
4018                 return 0;
4019
4020         {
4021                 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
4022                 struct udphdr *udp;
4023
4024                 if (ip->protocol != IPPROTO_UDP)
4025                         return 0;
4026
4027                 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
4028                 if (ntohs(udp->dest) != 67)
4029                         return 0;
4030
4031                 offset = (u8 *)udp + 8 - skb->data;
4032                 length = skb->len - offset;
4033                 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
4034         }
4035
4036         return 0;
4037 }
4038
4039 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
4040 {
4041         struct e1000_adapter *adapter = netdev_priv(netdev);
4042
4043         netif_stop_queue(netdev);
4044         /*
4045          * Herbert's original patch had:
4046          *  smp_mb__after_netif_stop_queue();
4047          * but since that doesn't exist yet, just open code it.
4048          */
4049         smp_mb();
4050
4051         /*
4052          * We need to check again in a case another CPU has just
4053          * made room available.
4054          */
4055         if (e1000_desc_unused(adapter->tx_ring) < size)
4056                 return -EBUSY;
4057
4058         /* A reprieve! */
4059         netif_start_queue(netdev);
4060         ++adapter->restart_queue;
4061         return 0;
4062 }
4063
4064 static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
4065 {
4066         struct e1000_adapter *adapter = netdev_priv(netdev);
4067
4068         if (e1000_desc_unused(adapter->tx_ring) >= size)
4069                 return 0;
4070         return __e1000_maybe_stop_tx(netdev, size);
4071 }
4072
4073 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
4074 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
4075                                     struct net_device *netdev)
4076 {
4077         struct e1000_adapter *adapter = netdev_priv(netdev);
4078         struct e1000_ring *tx_ring = adapter->tx_ring;
4079         unsigned int first;
4080         unsigned int max_per_txd = E1000_MAX_PER_TXD;
4081         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
4082         unsigned int tx_flags = 0;
4083         unsigned int len = skb->len - skb->data_len;
4084         unsigned int nr_frags;
4085         unsigned int mss;
4086         int count = 0;
4087         int tso;
4088         unsigned int f;
4089
4090         if (test_bit(__E1000_DOWN, &adapter->state)) {
4091                 dev_kfree_skb_any(skb);
4092                 return NETDEV_TX_OK;
4093         }
4094
4095         if (skb->len <= 0) {
4096                 dev_kfree_skb_any(skb);
4097                 return NETDEV_TX_OK;
4098         }
4099
4100         mss = skb_shinfo(skb)->gso_size;
4101         /*
4102          * The controller does a simple calculation to
4103          * make sure there is enough room in the FIFO before
4104          * initiating the DMA for each buffer.  The calc is:
4105          * 4 = ceil(buffer len/mss).  To make sure we don't
4106          * overrun the FIFO, adjust the max buffer len if mss
4107          * drops.
4108          */
4109         if (mss) {
4110                 u8 hdr_len;
4111                 max_per_txd = min(mss << 2, max_per_txd);
4112                 max_txd_pwr = fls(max_per_txd) - 1;
4113
4114                 /*
4115                  * TSO Workaround for 82571/2/3 Controllers -- if skb->data
4116                  * points to just header, pull a few bytes of payload from
4117                  * frags into skb->data
4118                  */
4119                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4120                 /*
4121                  * we do this workaround for ES2LAN, but it is un-necessary,
4122                  * avoiding it could save a lot of cycles
4123                  */
4124                 if (skb->data_len && (hdr_len == len)) {
4125                         unsigned int pull_size;
4126
4127                         pull_size = min((unsigned int)4, skb->data_len);
4128                         if (!__pskb_pull_tail(skb, pull_size)) {
4129                                 e_err("__pskb_pull_tail failed.\n");
4130                                 dev_kfree_skb_any(skb);
4131                                 return NETDEV_TX_OK;
4132                         }
4133                         len = skb->len - skb->data_len;
4134                 }
4135         }
4136
4137         /* reserve a descriptor for the offload context */
4138         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
4139                 count++;
4140         count++;
4141
4142         count += TXD_USE_COUNT(len, max_txd_pwr);
4143
4144         nr_frags = skb_shinfo(skb)->nr_frags;
4145         for (f = 0; f < nr_frags; f++)
4146                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
4147                                        max_txd_pwr);
4148
4149         if (adapter->hw.mac.tx_pkt_filtering)
4150                 e1000_transfer_dhcp_info(adapter, skb);
4151
4152         /*
4153          * need: count + 2 desc gap to keep tail from touching
4154          * head, otherwise try next time
4155          */
4156         if (e1000_maybe_stop_tx(netdev, count + 2))
4157                 return NETDEV_TX_BUSY;
4158
4159         if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
4160                 tx_flags |= E1000_TX_FLAGS_VLAN;
4161                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
4162         }
4163
4164         first = tx_ring->next_to_use;
4165
4166         tso = e1000_tso(adapter, skb);
4167         if (tso < 0) {
4168                 dev_kfree_skb_any(skb);
4169                 return NETDEV_TX_OK;
4170         }
4171
4172         if (tso)
4173                 tx_flags |= E1000_TX_FLAGS_TSO;
4174         else if (e1000_tx_csum(adapter, skb))
4175                 tx_flags |= E1000_TX_FLAGS_CSUM;
4176
4177         /*
4178          * Old method was to assume IPv4 packet by default if TSO was enabled.
4179          * 82571 hardware supports TSO capabilities for IPv6 as well...
4180          * no longer assume, we must.
4181          */
4182         if (skb->protocol == htons(ETH_P_IP))
4183                 tx_flags |= E1000_TX_FLAGS_IPV4;
4184
4185         /* if count is 0 then mapping error has occured */
4186         count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
4187         if (count) {
4188                 e1000_tx_queue(adapter, tx_flags, count);
4189                 /* Make sure there is space in the ring for the next send. */
4190                 e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
4191
4192         } else {
4193                 dev_kfree_skb_any(skb);
4194                 tx_ring->buffer_info[first].time_stamp = 0;
4195                 tx_ring->next_to_use = first;
4196         }
4197
4198         return NETDEV_TX_OK;
4199 }
4200
4201 /**
4202  * e1000_tx_timeout - Respond to a Tx Hang
4203  * @netdev: network interface device structure
4204  **/
4205 static void e1000_tx_timeout(struct net_device *netdev)
4206 {
4207         struct e1000_adapter *adapter = netdev_priv(netdev);
4208
4209         /* Do the reset outside of interrupt context */
4210         adapter->tx_timeout_count++;
4211         schedule_work(&adapter->reset_task);
4212 }
4213
4214 static void e1000_reset_task(struct work_struct *work)
4215 {
4216         struct e1000_adapter *adapter;
4217         adapter = container_of(work, struct e1000_adapter, reset_task);
4218
4219         e1000e_reinit_locked(adapter);
4220 }
4221
4222 /**
4223  * e1000_get_stats - Get System Network Statistics
4224  * @netdev: network interface device structure
4225  *
4226  * Returns the address of the device statistics structure.
4227  * The statistics are actually updated from the timer callback.
4228  **/
4229 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
4230 {
4231         /* only return the current stats */
4232         return &netdev->stats;
4233 }
4234
4235 /**
4236  * e1000_change_mtu - Change the Maximum Transfer Unit
4237  * @netdev: network interface device structure
4238  * @new_mtu: new value for maximum frame size
4239  *
4240  * Returns 0 on success, negative on failure
4241  **/
4242 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
4243 {
4244         struct e1000_adapter *adapter = netdev_priv(netdev);
4245         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4246
4247         /* Jumbo frame support */
4248         if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
4249             !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
4250                 e_err("Jumbo Frames not supported.\n");
4251                 return -EINVAL;
4252         }
4253
4254         /* Supported frame sizes */
4255         if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
4256             (max_frame > adapter->max_hw_frame_size)) {
4257                 e_err("Unsupported MTU setting\n");
4258                 return -EINVAL;
4259         }
4260
4261         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4262                 msleep(1);
4263         /* e1000e_down has a dependency on max_frame_size */
4264         adapter->max_frame_size = max_frame;
4265         if (netif_running(netdev))
4266                 e1000e_down(adapter);
4267
4268         /*
4269          * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
4270          * means we reserve 2 more, this pushes us to allocate from the next
4271          * larger slab size.
4272          * i.e. RXBUFFER_2048 --> size-4096 slab
4273          * However with the new *_jumbo_rx* routines, jumbo receives will use
4274          * fragmented skbs
4275          */
4276
4277         if (max_frame <= 256)
4278                 adapter->rx_buffer_len = 256;
4279         else if (max_frame <= 512)
4280                 adapter->rx_buffer_len = 512;
4281         else if (max_frame <= 1024)
4282                 adapter->rx_buffer_len = 1024;
4283         else if (max_frame <= 2048)
4284                 adapter->rx_buffer_len = 2048;
4285         else
4286                 adapter->rx_buffer_len = 4096;
4287
4288         /* adjust allocation if LPE protects us, and we aren't using SBP */
4289         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
4290              (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
4291                 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
4292                                          + ETH_FCS_LEN;
4293
4294         e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
4295         netdev->mtu = new_mtu;
4296
4297         if (netif_running(netdev))
4298                 e1000e_up(adapter);
4299         else
4300                 e1000e_reset(adapter);
4301
4302         clear_bit(__E1000_RESETTING, &adapter->state);
4303
4304         return 0;
4305 }
4306
4307 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4308                            int cmd)
4309 {
4310         struct e1000_adapter *adapter = netdev_priv(netdev);
4311         struct mii_ioctl_data *data = if_mii(ifr);
4312
4313         if (adapter->hw.phy.media_type != e1000_media_type_copper)
4314                 return -EOPNOTSUPP;
4315
4316         switch (cmd) {
4317         case SIOCGMIIPHY:
4318                 data->phy_id = adapter->hw.phy.addr;
4319                 break;
4320         case SIOCGMIIREG:
4321                 e1000_phy_read_status(adapter);
4322
4323                 switch (data->reg_num & 0x1F) {
4324                 case MII_BMCR:
4325                         data->val_out = adapter->phy_regs.bmcr;
4326                         break;
4327                 case MII_BMSR:
4328                         data->val_out = adapter->phy_regs.bmsr;
4329                         break;
4330                 case MII_PHYSID1:
4331                         data->val_out = (adapter->hw.phy.id >> 16);
4332                         break;
4333                 case MII_PHYSID2:
4334                         data->val_out = (adapter->hw.phy.id & 0xFFFF);
4335                         break;
4336                 case MII_ADVERTISE:
4337                         data->val_out = adapter->phy_regs.advertise;
4338                         break;
4339                 case MII_LPA:
4340                         data->val_out = adapter->phy_regs.lpa;
4341                         break;
4342                 case MII_EXPANSION:
4343                         data->val_out = adapter->phy_regs.expansion;
4344                         break;
4345                 case MII_CTRL1000:
4346                         data->val_out = adapter->phy_regs.ctrl1000;
4347                         break;
4348                 case MII_STAT1000:
4349                         data->val_out = adapter->phy_regs.stat1000;
4350                         break;
4351                 case MII_ESTATUS:
4352                         data->val_out = adapter->phy_regs.estatus;
4353                         break;
4354                 default:
4355                         return -EIO;
4356                 }
4357                 break;
4358         case SIOCSMIIREG:
4359         default:
4360                 return -EOPNOTSUPP;
4361         }
4362         return 0;
4363 }
4364
4365 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4366 {
4367         switch (cmd) {
4368         case SIOCGMIIPHY:
4369         case SIOCGMIIREG:
4370         case SIOCSMIIREG:
4371                 return e1000_mii_ioctl(netdev, ifr, cmd);
4372         default:
4373                 return -EOPNOTSUPP;
4374         }
4375 }
4376
4377 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
4378 {
4379         struct e1000_hw *hw = &adapter->hw;
4380         u32 i, mac_reg;
4381         u16 phy_reg;
4382         int retval = 0;
4383
4384         /* copy MAC RARs to PHY RARs */
4385         for (i = 0; i < adapter->hw.mac.rar_entry_count; i++) {
4386                 mac_reg = er32(RAL(i));
4387                 e1e_wphy(hw, BM_RAR_L(i), (u16)(mac_reg & 0xFFFF));
4388                 e1e_wphy(hw, BM_RAR_M(i), (u16)((mac_reg >> 16) & 0xFFFF));
4389                 mac_reg = er32(RAH(i));
4390                 e1e_wphy(hw, BM_RAR_H(i), (u16)(mac_reg & 0xFFFF));
4391                 e1e_wphy(hw, BM_RAR_CTRL(i), (u16)((mac_reg >> 16) & 0xFFFF));
4392         }
4393
4394         /* copy MAC MTA to PHY MTA */
4395         for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
4396                 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
4397                 e1e_wphy(hw, BM_MTA(i), (u16)(mac_reg & 0xFFFF));
4398                 e1e_wphy(hw, BM_MTA(i) + 1, (u16)((mac_reg >> 16) & 0xFFFF));
4399         }
4400
4401         /* configure PHY Rx Control register */
4402         e1e_rphy(&adapter->hw, BM_RCTL, &phy_reg);
4403         mac_reg = er32(RCTL);
4404         if (mac_reg & E1000_RCTL_UPE)
4405                 phy_reg |= BM_RCTL_UPE;
4406         if (mac_reg & E1000_RCTL_MPE)
4407                 phy_reg |= BM_RCTL_MPE;
4408         phy_reg &= ~(BM_RCTL_MO_MASK);
4409         if (mac_reg & E1000_RCTL_MO_3)
4410                 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
4411                                 << BM_RCTL_MO_SHIFT);
4412         if (mac_reg & E1000_RCTL_BAM)
4413                 phy_reg |= BM_RCTL_BAM;
4414         if (mac_reg & E1000_RCTL_PMCF)
4415                 phy_reg |= BM_RCTL_PMCF;
4416         mac_reg = er32(CTRL);
4417         if (mac_reg & E1000_CTRL_RFCE)
4418                 phy_reg |= BM_RCTL_RFCE;
4419         e1e_wphy(&adapter->hw, BM_RCTL, phy_reg);
4420
4421         /* enable PHY wakeup in MAC register */
4422         ew32(WUFC, wufc);
4423         ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
4424
4425         /* configure and enable PHY wakeup in PHY registers */
4426         e1e_wphy(&adapter->hw, BM_WUFC, wufc);
4427         e1e_wphy(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
4428
4429         /* activate PHY wakeup */
4430         retval = hw->phy.ops.acquire(hw);
4431         if (retval) {
4432                 e_err("Could not acquire PHY\n");
4433                 return retval;
4434         }
4435         e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4436                                  (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
4437         retval = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &phy_reg);
4438         if (retval) {
4439                 e_err("Could not read PHY page 769\n");
4440                 goto out;
4441         }
4442         phy_reg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
4443         retval = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
4444         if (retval)
4445                 e_err("Could not set PHY Host Wakeup bit\n");
4446 out:
4447         hw->phy.ops.release(hw);
4448
4449         return retval;
4450 }
4451
4452 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4453 {
4454         struct net_device *netdev = pci_get_drvdata(pdev);
4455         struct e1000_adapter *adapter = netdev_priv(netdev);
4456         struct e1000_hw *hw = &adapter->hw;
4457         u32 ctrl, ctrl_ext, rctl, status;
4458         u32 wufc = adapter->wol;
4459         int retval = 0;
4460
4461         netif_device_detach(netdev);
4462
4463         if (netif_running(netdev)) {
4464                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4465                 e1000e_down(adapter);
4466                 e1000_free_irq(adapter);
4467         }
4468         e1000e_reset_interrupt_capability(adapter);
4469
4470         retval = pci_save_state(pdev);
4471         if (retval)
4472                 return retval;
4473
4474         status = er32(STATUS);
4475         if (status & E1000_STATUS_LU)
4476                 wufc &= ~E1000_WUFC_LNKC;
4477
4478         if (wufc) {
4479                 e1000_setup_rctl(adapter);
4480                 e1000_set_multi(netdev);
4481
4482                 /* turn on all-multi mode if wake on multicast is enabled */
4483                 if (wufc & E1000_WUFC_MC) {
4484                         rctl = er32(RCTL);
4485                         rctl |= E1000_RCTL_MPE;
4486                         ew32(RCTL, rctl);
4487                 }
4488
4489                 ctrl = er32(CTRL);
4490                 /* advertise wake from D3Cold */
4491                 #define E1000_CTRL_ADVD3WUC 0x00100000
4492                 /* phy power management enable */
4493                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4494                 ctrl |= E1000_CTRL_ADVD3WUC;
4495                 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
4496                         ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
4497                 ew32(CTRL, ctrl);
4498
4499                 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
4500                     adapter->hw.phy.media_type ==
4501                     e1000_media_type_internal_serdes) {
4502                         /* keep the laser running in D3 */
4503                         ctrl_ext = er32(CTRL_EXT);
4504                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4505                         ew32(CTRL_EXT, ctrl_ext);
4506                 }
4507
4508                 if (adapter->flags & FLAG_IS_ICH)
4509                         e1000e_disable_gig_wol_ich8lan(&adapter->hw);
4510
4511                 /* Allow time for pending master requests to run */
4512                 e1000e_disable_pcie_master(&adapter->hw);
4513
4514                 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
4515                         /* enable wakeup by the PHY */
4516                         retval = e1000_init_phy_wakeup(adapter, wufc);
4517                         if (retval)
4518                                 return retval;
4519                 } else {
4520                         /* enable wakeup by the MAC */
4521                         ew32(WUFC, wufc);
4522                         ew32(WUC, E1000_WUC_PME_EN);
4523                 }
4524         } else {
4525                 ew32(WUC, 0);
4526                 ew32(WUFC, 0);
4527         }
4528
4529         *enable_wake = !!wufc;
4530
4531         /* make sure adapter isn't asleep if manageability is enabled */
4532         if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
4533             (hw->mac.ops.check_mng_mode(hw)))
4534                 *enable_wake = true;
4535
4536         if (adapter->hw.phy.type == e1000_phy_igp_3)
4537                 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
4538
4539         /*
4540          * Release control of h/w to f/w.  If f/w is AMT enabled, this
4541          * would have already happened in close and is redundant.
4542          */
4543         e1000_release_hw_control(adapter);
4544
4545         pci_disable_device(pdev);
4546
4547         return 0;
4548 }
4549
4550 static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
4551 {
4552         if (sleep && wake) {
4553                 pci_prepare_to_sleep(pdev);
4554                 return;
4555         }
4556
4557         pci_wake_from_d3(pdev, wake);
4558         pci_set_power_state(pdev, PCI_D3hot);
4559 }
4560
4561 static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
4562                                     bool wake)
4563 {
4564         struct net_device *netdev = pci_get_drvdata(pdev);
4565         struct e1000_adapter *adapter = netdev_priv(netdev);
4566
4567         /*
4568          * The pci-e switch on some quad port adapters will report a
4569          * correctable error when the MAC transitions from D0 to D3.  To
4570          * prevent this we need to mask off the correctable errors on the
4571          * downstream port of the pci-e switch.
4572          */
4573         if (adapter->flags & FLAG_IS_QUAD_PORT) {
4574                 struct pci_dev *us_dev = pdev->bus->self;
4575                 int pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
4576                 u16 devctl;
4577
4578                 pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
4579                 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
4580                                       (devctl & ~PCI_EXP_DEVCTL_CERE));
4581
4582                 e1000_power_off(pdev, sleep, wake);
4583
4584                 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
4585         } else {
4586                 e1000_power_off(pdev, sleep, wake);
4587         }
4588 }
4589
4590 static void e1000e_disable_l1aspm(struct pci_dev *pdev)
4591 {
4592         int pos;
4593         u16 val;
4594
4595         /*
4596          * 82573 workaround - disable L1 ASPM on mobile chipsets
4597          *
4598          * L1 ASPM on various mobile (ich7) chipsets do not behave properly
4599          * resulting in lost data or garbage information on the pci-e link
4600          * level. This could result in (false) bad EEPROM checksum errors,
4601          * long ping times (up to 2s) or even a system freeze/hang.
4602          *
4603          * Unfortunately this feature saves about 1W power consumption when
4604          * active.
4605          */
4606         pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
4607         pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &val);
4608         if (val & 0x2) {
4609                 dev_warn(&pdev->dev, "Disabling L1 ASPM\n");
4610                 val &= ~0x2;
4611                 pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, val);
4612         }
4613 }
4614
4615 #ifdef CONFIG_PM
4616 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4617 {
4618         int retval;
4619         bool wake;
4620
4621         retval = __e1000_shutdown(pdev, &wake);
4622         if (!retval)
4623                 e1000_complete_shutdown(pdev, true, wake);
4624
4625         return retval;
4626 }
4627
4628 static int e1000_resume(struct pci_dev *pdev)
4629 {
4630         struct net_device *netdev = pci_get_drvdata(pdev);
4631         struct e1000_adapter *adapter = netdev_priv(netdev);
4632         struct e1000_hw *hw = &adapter->hw;
4633         u32 err;
4634
4635         pci_set_power_state(pdev, PCI_D0);
4636         pci_restore_state(pdev);
4637         e1000e_disable_l1aspm(pdev);
4638
4639         err = pci_enable_device_mem(pdev);
4640         if (err) {
4641                 dev_err(&pdev->dev,
4642                         "Cannot enable PCI device from suspend\n");
4643                 return err;
4644         }
4645
4646         pci_set_master(pdev);
4647
4648         pci_enable_wake(pdev, PCI_D3hot, 0);
4649         pci_enable_wake(pdev, PCI_D3cold, 0);
4650
4651         e1000e_set_interrupt_capability(adapter);
4652         if (netif_running(netdev)) {
4653                 err = e1000_request_irq(adapter);
4654                 if (err)
4655                         return err;
4656         }
4657
4658         e1000e_power_up_phy(adapter);
4659
4660         /* report the system wakeup cause from S3/S4 */
4661         if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
4662                 u16 phy_data;
4663
4664                 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
4665                 if (phy_data) {
4666                         e_info("PHY Wakeup cause - %s\n",
4667                                 phy_data & E1000_WUS_EX ? "Unicast Packet" :
4668                                 phy_data & E1000_WUS_MC ? "Multicast Packet" :
4669                                 phy_data & E1000_WUS_BC ? "Broadcast Packet" :
4670                                 phy_data & E1000_WUS_MAG ? "Magic Packet" :
4671                                 phy_data & E1000_WUS_LNKC ? "Link Status "
4672                                 " Change" : "other");
4673                 }
4674                 e1e_wphy(&adapter->hw, BM_WUS, ~0);
4675         } else {
4676                 u32 wus = er32(WUS);
4677                 if (wus) {
4678                         e_info("MAC Wakeup cause - %s\n",
4679                                 wus & E1000_WUS_EX ? "Unicast Packet" :
4680                                 wus & E1000_WUS_MC ? "Multicast Packet" :
4681                                 wus & E1000_WUS_BC ? "Broadcast Packet" :
4682                                 wus & E1000_WUS_MAG ? "Magic Packet" :
4683                                 wus & E1000_WUS_LNKC ? "Link Status Change" :
4684                                 "other");
4685                 }
4686                 ew32(WUS, ~0);
4687         }
4688
4689         e1000e_reset(adapter);
4690
4691         e1000_init_manageability(adapter);
4692
4693         if (netif_running(netdev))
4694                 e1000e_up(adapter);
4695
4696         netif_device_attach(netdev);
4697
4698         /*
4699          * If the controller has AMT, do not set DRV_LOAD until the interface
4700          * is up.  For all other cases, let the f/w know that the h/w is now
4701          * under the control of the driver.
4702          */
4703         if (!(adapter->flags & FLAG_HAS_AMT))
4704                 e1000_get_hw_control(adapter);
4705
4706         return 0;
4707 }
4708 #endif
4709
4710 static void e1000_shutdown(struct pci_dev *pdev)
4711 {
4712         bool wake = false;
4713
4714         __e1000_shutdown(pdev, &wake);
4715
4716         if (system_state == SYSTEM_POWER_OFF)
4717                 e1000_complete_shutdown(pdev, false, wake);
4718 }
4719
4720 #ifdef CONFIG_NET_POLL_CONTROLLER
4721 /*
4722  * Polling 'interrupt' - used by things like netconsole to send skbs
4723  * without having to re-enable interrupts. It's not called while
4724  * the interrupt routine is executing.
4725  */
4726 static void e1000_netpoll(struct net_device *netdev)
4727 {
4728         struct e1000_adapter *adapter = netdev_priv(netdev);
4729
4730         disable_irq(adapter->pdev->irq);
4731         e1000_intr(adapter->pdev->irq, netdev);
4732
4733         enable_irq(adapter->pdev->irq);
4734 }
4735 #endif
4736
4737 /**
4738  * e1000_io_error_detected - called when PCI error is detected
4739  * @pdev: Pointer to PCI device
4740  * @state: The current pci connection state
4741  *
4742  * This function is called after a PCI bus error affecting
4743  * this device has been detected.
4744  */
4745 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4746                                                 pci_channel_state_t state)
4747 {
4748         struct net_device *netdev = pci_get_drvdata(pdev);
4749         struct e1000_adapter *adapter = netdev_priv(netdev);
4750
4751         netif_device_detach(netdev);
4752
4753         if (state == pci_channel_io_perm_failure)
4754                 return PCI_ERS_RESULT_DISCONNECT;
4755
4756         if (netif_running(netdev))
4757                 e1000e_down(adapter);
4758         pci_disable_device(pdev);
4759
4760         /* Request a slot slot reset. */
4761         return PCI_ERS_RESULT_NEED_RESET;
4762 }
4763
4764 /**
4765  * e1000_io_slot_reset - called after the pci bus has been reset.
4766  * @pdev: Pointer to PCI device
4767  *
4768  * Restart the card from scratch, as if from a cold-boot. Implementation
4769  * resembles the first-half of the e1000_resume routine.
4770  */
4771 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4772 {
4773         struct net_device *netdev = pci_get_drvdata(pdev);
4774         struct e1000_adapter *adapter = netdev_priv(netdev);
4775         struct e1000_hw *hw = &adapter->hw;
4776         int err;
4777         pci_ers_result_t result;
4778
4779         e1000e_disable_l1aspm(pdev);
4780         err = pci_enable_device_mem(pdev);
4781         if (err) {
4782                 dev_err(&pdev->dev,
4783                         "Cannot re-enable PCI device after reset.\n");
4784                 result = PCI_ERS_RESULT_DISCONNECT;
4785         } else {
4786                 pci_set_master(pdev);
4787                 pci_restore_state(pdev);
4788
4789                 pci_enable_wake(pdev, PCI_D3hot, 0);
4790                 pci_enable_wake(pdev, PCI_D3cold, 0);
4791
4792                 e1000e_reset(adapter);
4793                 ew32(WUS, ~0);
4794                 result = PCI_ERS_RESULT_RECOVERED;
4795         }
4796
4797         pci_cleanup_aer_uncorrect_error_status(pdev);
4798
4799         return result;
4800 }
4801
4802 /**
4803  * e1000_io_resume - called when traffic can start flowing again.
4804  * @pdev: Pointer to PCI device
4805  *
4806  * This callback is called when the error recovery driver tells us that
4807  * its OK to resume normal operation. Implementation resembles the
4808  * second-half of the e1000_resume routine.
4809  */
4810 static void e1000_io_resume(struct pci_dev *pdev)
4811 {
4812         struct net_device *netdev = pci_get_drvdata(pdev);
4813         struct e1000_adapter *adapter = netdev_priv(netdev);
4814
4815         e1000_init_manageability(adapter);
4816
4817         if (netif_running(netdev)) {
4818                 if (e1000e_up(adapter)) {
4819                         dev_err(&pdev->dev,
4820                                 "can't bring device back up after reset\n");
4821                         return;
4822                 }
4823         }
4824
4825         netif_device_attach(netdev);
4826
4827         /*
4828          * If the controller has AMT, do not set DRV_LOAD until the interface
4829          * is up.  For all other cases, let the f/w know that the h/w is now
4830          * under the control of the driver.
4831          */
4832         if (!(adapter->flags & FLAG_HAS_AMT))
4833                 e1000_get_hw_control(adapter);
4834
4835 }
4836
4837 static void e1000_print_device_info(struct e1000_adapter *adapter)
4838 {
4839         struct e1000_hw *hw = &adapter->hw;
4840         struct net_device *netdev = adapter->netdev;
4841         u32 pba_num;
4842
4843         /* print bus type/speed/width info */
4844         e_info("(PCI Express:2.5GB/s:%s) %pM\n",
4845                /* bus width */
4846                ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
4847                 "Width x1"),
4848                /* MAC address */
4849                netdev->dev_addr);
4850         e_info("Intel(R) PRO/%s Network Connection\n",
4851                (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
4852         e1000e_read_pba_num(hw, &pba_num);
4853         e_info("MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
4854                hw->mac.type, hw->phy.type, (pba_num >> 8), (pba_num & 0xff));
4855 }
4856
4857 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
4858 {
4859         struct e1000_hw *hw = &adapter->hw;
4860         int ret_val;
4861         u16 buf = 0;
4862
4863         if (hw->mac.type != e1000_82573)
4864                 return;
4865
4866         ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
4867         if (!ret_val && (!(le16_to_cpu(buf) & (1 << 0)))) {
4868                 /* Deep Smart Power Down (DSPD) */
4869                 dev_warn(&adapter->pdev->dev,
4870                          "Warning: detected DSPD enabled in EEPROM\n");
4871         }
4872
4873         ret_val = e1000_read_nvm(hw, NVM_INIT_3GIO_3, 1, &buf);
4874         if (!ret_val && (le16_to_cpu(buf) & (3 << 2))) {
4875                 /* ASPM enable */
4876                 dev_warn(&adapter->pdev->dev,
4877                          "Warning: detected ASPM enabled in EEPROM\n");
4878         }
4879 }
4880
4881 static const struct net_device_ops e1000e_netdev_ops = {
4882         .ndo_open               = e1000_open,
4883         .ndo_stop               = e1000_close,
4884         .ndo_start_xmit         = e1000_xmit_frame,
4885         .ndo_get_stats          = e1000_get_stats,
4886         .ndo_set_multicast_list = e1000_set_multi,
4887         .ndo_set_mac_address    = e1000_set_mac,
4888         .ndo_change_mtu         = e1000_change_mtu,
4889         .ndo_do_ioctl           = e1000_ioctl,
4890         .ndo_tx_timeout         = e1000_tx_timeout,
4891         .ndo_validate_addr      = eth_validate_addr,
4892
4893         .ndo_vlan_rx_register   = e1000_vlan_rx_register,
4894         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
4895         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
4896 #ifdef CONFIG_NET_POLL_CONTROLLER
4897         .ndo_poll_controller    = e1000_netpoll,
4898 #endif
4899 };
4900
4901 /**
4902  * e1000_probe - Device Initialization Routine
4903  * @pdev: PCI device information struct
4904  * @ent: entry in e1000_pci_tbl
4905  *
4906  * Returns 0 on success, negative on failure
4907  *
4908  * e1000_probe initializes an adapter identified by a pci_dev structure.
4909  * The OS initialization, configuring of the adapter private structure,
4910  * and a hardware reset occur.
4911  **/
4912 static int __devinit e1000_probe(struct pci_dev *pdev,
4913                                  const struct pci_device_id *ent)
4914 {
4915         struct net_device *netdev;
4916         struct e1000_adapter *adapter;
4917         struct e1000_hw *hw;
4918         const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
4919         resource_size_t mmio_start, mmio_len;
4920         resource_size_t flash_start, flash_len;
4921
4922         static int cards_found;
4923         int i, err, pci_using_dac;
4924         u16 eeprom_data = 0;
4925         u16 eeprom_apme_mask = E1000_EEPROM_APME;
4926
4927         e1000e_disable_l1aspm(pdev);
4928
4929         err = pci_enable_device_mem(pdev);
4930         if (err)
4931                 return err;
4932
4933         pci_using_dac = 0;
4934         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4935         if (!err) {
4936                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4937                 if (!err)
4938                         pci_using_dac = 1;
4939         } else {
4940                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4941                 if (err) {
4942                         err = pci_set_consistent_dma_mask(pdev,
4943                                                           DMA_BIT_MASK(32));
4944                         if (err) {
4945                                 dev_err(&pdev->dev, "No usable DMA "
4946                                         "configuration, aborting\n");
4947                                 goto err_dma;
4948                         }
4949                 }
4950         }
4951
4952         err = pci_request_selected_regions_exclusive(pdev,
4953                                           pci_select_bars(pdev, IORESOURCE_MEM),
4954                                           e1000e_driver_name);
4955         if (err)
4956                 goto err_pci_reg;
4957
4958         /* AER (Advanced Error Reporting) hooks */
4959         pci_enable_pcie_error_reporting(pdev);
4960
4961         pci_set_master(pdev);
4962         /* PCI config space info */
4963         err = pci_save_state(pdev);
4964         if (err)
4965                 goto err_alloc_etherdev;
4966
4967         err = -ENOMEM;
4968         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
4969         if (!netdev)
4970                 goto err_alloc_etherdev;
4971
4972         SET_NETDEV_DEV(netdev, &pdev->dev);
4973
4974         pci_set_drvdata(pdev, netdev);
4975         adapter = netdev_priv(netdev);
4976         hw = &adapter->hw;
4977         adapter->netdev = netdev;
4978         adapter->pdev = pdev;
4979         adapter->ei = ei;
4980         adapter->pba = ei->pba;
4981         adapter->flags = ei->flags;
4982         adapter->flags2 = ei->flags2;
4983         adapter->hw.adapter = adapter;
4984         adapter->hw.mac.type = ei->mac;
4985         adapter->max_hw_frame_size = ei->max_hw_frame_size;
4986         adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
4987
4988         mmio_start = pci_resource_start(pdev, 0);
4989         mmio_len = pci_resource_len(pdev, 0);
4990
4991         err = -EIO;
4992         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
4993         if (!adapter->hw.hw_addr)
4994                 goto err_ioremap;
4995
4996         if ((adapter->flags & FLAG_HAS_FLASH) &&
4997             (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
4998                 flash_start = pci_resource_start(pdev, 1);
4999                 flash_len = pci_resource_len(pdev, 1);
5000                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
5001                 if (!adapter->hw.flash_address)
5002                         goto err_flashmap;
5003         }
5004
5005         /* construct the net_device struct */
5006         netdev->netdev_ops              = &e1000e_netdev_ops;
5007         e1000e_set_ethtool_ops(netdev);
5008         netdev->watchdog_timeo          = 5 * HZ;
5009         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
5010         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
5011
5012         netdev->mem_start = mmio_start;
5013         netdev->mem_end = mmio_start + mmio_len;
5014
5015         adapter->bd_number = cards_found++;
5016
5017         e1000e_check_options(adapter);
5018
5019         /* setup adapter struct */
5020         err = e1000_sw_init(adapter);
5021         if (err)
5022                 goto err_sw_init;
5023
5024         err = -EIO;
5025
5026         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
5027         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
5028         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
5029
5030         err = ei->get_variants(adapter);
5031         if (err)
5032                 goto err_hw_init;
5033
5034         if ((adapter->flags & FLAG_IS_ICH) &&
5035             (adapter->flags & FLAG_READ_ONLY_NVM))
5036                 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
5037
5038         hw->mac.ops.get_bus_info(&adapter->hw);
5039
5040         adapter->hw.phy.autoneg_wait_to_complete = 0;
5041
5042         /* Copper options */
5043         if (adapter->hw.phy.media_type == e1000_media_type_copper) {
5044                 adapter->hw.phy.mdix = AUTO_ALL_MODES;
5045                 adapter->hw.phy.disable_polarity_correction = 0;
5046                 adapter->hw.phy.ms_type = e1000_ms_hw_default;
5047         }
5048
5049         if (e1000_check_reset_block(&adapter->hw))
5050                 e_info("PHY reset is blocked due to SOL/IDER session.\n");
5051
5052         netdev->features = NETIF_F_SG |
5053                            NETIF_F_HW_CSUM |
5054                            NETIF_F_HW_VLAN_TX |
5055                            NETIF_F_HW_VLAN_RX;
5056
5057         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
5058                 netdev->features |= NETIF_F_HW_VLAN_FILTER;
5059
5060         netdev->features |= NETIF_F_TSO;
5061         netdev->features |= NETIF_F_TSO6;
5062
5063         netdev->vlan_features |= NETIF_F_TSO;
5064         netdev->vlan_features |= NETIF_F_TSO6;
5065         netdev->vlan_features |= NETIF_F_HW_CSUM;
5066         netdev->vlan_features |= NETIF_F_SG;
5067
5068         if (pci_using_dac)
5069                 netdev->features |= NETIF_F_HIGHDMA;
5070
5071         if (e1000e_enable_mng_pass_thru(&adapter->hw))
5072                 adapter->flags |= FLAG_MNG_PT_ENABLED;
5073
5074         /*
5075          * before reading the NVM, reset the controller to
5076          * put the device in a known good starting state
5077          */
5078         adapter->hw.mac.ops.reset_hw(&adapter->hw);
5079
5080         /*
5081          * systems with ASPM and others may see the checksum fail on the first
5082          * attempt. Let's give it a few tries
5083          */
5084         for (i = 0;; i++) {
5085                 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
5086                         break;
5087                 if (i == 2) {
5088                         e_err("The NVM Checksum Is Not Valid\n");
5089                         err = -EIO;
5090                         goto err_eeprom;
5091                 }
5092         }
5093
5094         e1000_eeprom_checks(adapter);
5095
5096         /* copy the MAC address out of the NVM */
5097         if (e1000e_read_mac_addr(&adapter->hw))
5098                 e_err("NVM Read Error while reading MAC address\n");
5099
5100         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
5101         memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
5102
5103         if (!is_valid_ether_addr(netdev->perm_addr)) {
5104                 e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
5105                 err = -EIO;
5106                 goto err_eeprom;
5107         }
5108
5109         init_timer(&adapter->watchdog_timer);
5110         adapter->watchdog_timer.function = &e1000_watchdog;
5111         adapter->watchdog_timer.data = (unsigned long) adapter;
5112
5113         init_timer(&adapter->phy_info_timer);
5114         adapter->phy_info_timer.function = &e1000_update_phy_info;
5115         adapter->phy_info_timer.data = (unsigned long) adapter;
5116
5117         INIT_WORK(&adapter->reset_task, e1000_reset_task);
5118         INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
5119         INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
5120         INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
5121
5122         /* Initialize link parameters. User can change them with ethtool */
5123         adapter->hw.mac.autoneg = 1;
5124         adapter->fc_autoneg = 1;
5125         adapter->hw.fc.requested_mode = e1000_fc_default;
5126         adapter->hw.fc.current_mode = e1000_fc_default;
5127         adapter->hw.phy.autoneg_advertised = 0x2f;
5128
5129         /* ring size defaults */
5130         adapter->rx_ring->count = 256;
5131         adapter->tx_ring->count = 256;
5132
5133         /*
5134          * Initial Wake on LAN setting - If APM wake is enabled in
5135          * the EEPROM, enable the ACPI Magic Packet filter
5136          */
5137         if (adapter->flags & FLAG_APME_IN_WUC) {
5138                 /* APME bit in EEPROM is mapped to WUC.APME */
5139                 eeprom_data = er32(WUC);
5140                 eeprom_apme_mask = E1000_WUC_APME;
5141                 if (eeprom_data & E1000_WUC_PHY_WAKE)
5142                         adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
5143         } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
5144                 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
5145                     (adapter->hw.bus.func == 1))
5146                         e1000_read_nvm(&adapter->hw,
5147                                 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
5148                 else
5149                         e1000_read_nvm(&adapter->hw,
5150                                 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
5151         }
5152
5153         /* fetch WoL from EEPROM */
5154         if (eeprom_data & eeprom_apme_mask)
5155                 adapter->eeprom_wol |= E1000_WUFC_MAG;
5156
5157         /*
5158          * now that we have the eeprom settings, apply the special cases
5159          * where the eeprom may be wrong or the board simply won't support
5160          * wake on lan on a particular port
5161          */
5162         if (!(adapter->flags & FLAG_HAS_WOL))
5163                 adapter->eeprom_wol = 0;
5164
5165         /* initialize the wol settings based on the eeprom settings */
5166         adapter->wol = adapter->eeprom_wol;
5167         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
5168
5169         /* save off EEPROM version number */
5170         e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
5171
5172         /* reset the hardware with the new settings */
5173         e1000e_reset(adapter);
5174
5175         /*
5176          * If the controller has AMT, do not set DRV_LOAD until the interface
5177          * is up.  For all other cases, let the f/w know that the h/w is now
5178          * under the control of the driver.
5179          */
5180         if (!(adapter->flags & FLAG_HAS_AMT))
5181                 e1000_get_hw_control(adapter);
5182
5183         strcpy(netdev->name, "eth%d");
5184         err = register_netdev(netdev);
5185         if (err)
5186                 goto err_register;
5187
5188         /* carrier off reporting is important to ethtool even BEFORE open */
5189         netif_carrier_off(netdev);
5190
5191         e1000_print_device_info(adapter);
5192
5193         return 0;
5194
5195 err_register:
5196         if (!(adapter->flags & FLAG_HAS_AMT))
5197                 e1000_release_hw_control(adapter);
5198 err_eeprom:
5199         if (!e1000_check_reset_block(&adapter->hw))
5200                 e1000_phy_hw_reset(&adapter->hw);
5201 err_hw_init:
5202
5203         kfree(adapter->tx_ring);
5204         kfree(adapter->rx_ring);
5205 err_sw_init:
5206         if (adapter->hw.flash_address)
5207                 iounmap(adapter->hw.flash_address);
5208         e1000e_reset_interrupt_capability(adapter);
5209 err_flashmap:
5210         iounmap(adapter->hw.hw_addr);
5211 err_ioremap:
5212         free_netdev(netdev);
5213 err_alloc_etherdev:
5214         pci_release_selected_regions(pdev,
5215                                      pci_select_bars(pdev, IORESOURCE_MEM));
5216 err_pci_reg:
5217 err_dma:
5218         pci_disable_device(pdev);
5219         return err;
5220 }
5221
5222 /**
5223  * e1000_remove - Device Removal Routine
5224  * @pdev: PCI device information struct
5225  *
5226  * e1000_remove is called by the PCI subsystem to alert the driver
5227  * that it should release a PCI device.  The could be caused by a
5228  * Hot-Plug event, or because the driver is going to be removed from
5229  * memory.
5230  **/
5231 static void __devexit e1000_remove(struct pci_dev *pdev)
5232 {
5233         struct net_device *netdev = pci_get_drvdata(pdev);
5234         struct e1000_adapter *adapter = netdev_priv(netdev);
5235
5236         /*
5237          * flush_scheduled work may reschedule our watchdog task, so
5238          * explicitly disable watchdog tasks from being rescheduled
5239          */
5240         set_bit(__E1000_DOWN, &adapter->state);
5241         del_timer_sync(&adapter->watchdog_timer);
5242         del_timer_sync(&adapter->phy_info_timer);
5243
5244         flush_scheduled_work();
5245
5246         /*
5247          * Release control of h/w to f/w.  If f/w is AMT enabled, this
5248          * would have already happened in close and is redundant.
5249          */
5250         e1000_release_hw_control(adapter);
5251
5252         unregister_netdev(netdev);
5253
5254         if (!e1000_check_reset_block(&adapter->hw))
5255                 e1000_phy_hw_reset(&adapter->hw);
5256
5257         e1000e_reset_interrupt_capability(adapter);
5258         kfree(adapter->tx_ring);
5259         kfree(adapter->rx_ring);
5260
5261         iounmap(adapter->hw.hw_addr);
5262         if (adapter->hw.flash_address)
5263                 iounmap(adapter->hw.flash_address);
5264         pci_release_selected_regions(pdev,
5265                                      pci_select_bars(pdev, IORESOURCE_MEM));
5266
5267         free_netdev(netdev);
5268
5269         /* AER disable */
5270         pci_disable_pcie_error_reporting(pdev);
5271
5272         pci_disable_device(pdev);
5273 }
5274
5275 /* PCI Error Recovery (ERS) */
5276 static struct pci_error_handlers e1000_err_handler = {
5277         .error_detected = e1000_io_error_detected,
5278         .slot_reset = e1000_io_slot_reset,
5279         .resume = e1000_io_resume,
5280 };
5281
5282 static struct pci_device_id e1000_pci_tbl[] = {
5283         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
5284         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
5285         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
5286         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
5287         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
5288         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
5289         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
5290         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
5291         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
5292
5293         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
5294         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
5295         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
5296         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
5297
5298         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
5299         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
5300         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
5301
5302         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
5303         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
5304         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
5305
5306         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
5307           board_80003es2lan },
5308         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
5309           board_80003es2lan },
5310         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
5311           board_80003es2lan },
5312         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
5313           board_80003es2lan },
5314
5315         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
5316         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
5317         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
5318         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
5319         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
5320         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
5321         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
5322
5323         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
5324         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
5325         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
5326         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
5327         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
5328         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
5329         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
5330         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
5331         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
5332
5333         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
5334         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
5335         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
5336
5337         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
5338         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
5339
5340         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
5341         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
5342         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
5343         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
5344
5345         { }     /* terminate list */
5346 };
5347 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
5348
5349 /* PCI Device API Driver */
5350 static struct pci_driver e1000_driver = {
5351         .name     = e1000e_driver_name,
5352         .id_table = e1000_pci_tbl,
5353         .probe    = e1000_probe,
5354         .remove   = __devexit_p(e1000_remove),
5355 #ifdef CONFIG_PM
5356         /* Power Management Hooks */
5357         .suspend  = e1000_suspend,
5358         .resume   = e1000_resume,
5359 #endif
5360         .shutdown = e1000_shutdown,
5361         .err_handler = &e1000_err_handler
5362 };
5363
5364 /**
5365  * e1000_init_module - Driver Registration Routine
5366  *
5367  * e1000_init_module is the first routine called when the driver is
5368  * loaded. All it does is register with the PCI subsystem.
5369  **/
5370 static int __init e1000_init_module(void)
5371 {
5372         int ret;
5373         printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n",
5374                e1000e_driver_name, e1000e_driver_version);
5375         printk(KERN_INFO "%s: Copyright (c) 1999 - 2009 Intel Corporation.\n",
5376                e1000e_driver_name);
5377         ret = pci_register_driver(&e1000_driver);
5378
5379         return ret;
5380 }
5381 module_init(e1000_init_module);
5382
5383 /**
5384  * e1000_exit_module - Driver Exit Cleanup Routine
5385  *
5386  * e1000_exit_module is called just before the driver is removed
5387  * from memory.
5388  **/
5389 static void __exit e1000_exit_module(void)
5390 {
5391         pci_unregister_driver(&e1000_driver);
5392 }
5393 module_exit(e1000_exit_module);
5394
5395
5396 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
5397 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
5398 MODULE_LICENSE("GPL");
5399 MODULE_VERSION(DRV_VERSION);
5400
5401 /* e1000_main.c */