e1000e: provide family-specific PHY power up/down operations
[linux-2.6.git] / drivers / net / e1000e / netdev.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2009 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/delay.h>
36 #include <linux/netdevice.h>
37 #include <linux/tcp.h>
38 #include <linux/ipv6.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/mii.h>
42 #include <linux/ethtool.h>
43 #include <linux/if_vlan.h>
44 #include <linux/cpu.h>
45 #include <linux/smp.h>
46 #include <linux/pm_qos_params.h>
47 #include <linux/aer.h>
48
49 #include "e1000.h"
50
51 #define DRV_VERSION "1.0.2-k2"
52 char e1000e_driver_name[] = "e1000e";
53 const char e1000e_driver_version[] = DRV_VERSION;
54
55 static const struct e1000_info *e1000_info_tbl[] = {
56         [board_82571]           = &e1000_82571_info,
57         [board_82572]           = &e1000_82572_info,
58         [board_82573]           = &e1000_82573_info,
59         [board_82574]           = &e1000_82574_info,
60         [board_82583]           = &e1000_82583_info,
61         [board_80003es2lan]     = &e1000_es2_info,
62         [board_ich8lan]         = &e1000_ich8_info,
63         [board_ich9lan]         = &e1000_ich9_info,
64         [board_ich10lan]        = &e1000_ich10_info,
65         [board_pchlan]          = &e1000_pch_info,
66 };
67
68 /**
69  * e1000_desc_unused - calculate if we have unused descriptors
70  **/
71 static int e1000_desc_unused(struct e1000_ring *ring)
72 {
73         if (ring->next_to_clean > ring->next_to_use)
74                 return ring->next_to_clean - ring->next_to_use - 1;
75
76         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
77 }
78
79 /**
80  * e1000_receive_skb - helper function to handle Rx indications
81  * @adapter: board private structure
82  * @status: descriptor status field as written by hardware
83  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
84  * @skb: pointer to sk_buff to be indicated to stack
85  **/
86 static void e1000_receive_skb(struct e1000_adapter *adapter,
87                               struct net_device *netdev,
88                               struct sk_buff *skb,
89                               u8 status, __le16 vlan)
90 {
91         skb->protocol = eth_type_trans(skb, netdev);
92
93         if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
94                 vlan_gro_receive(&adapter->napi, adapter->vlgrp,
95                                  le16_to_cpu(vlan), skb);
96         else
97                 napi_gro_receive(&adapter->napi, skb);
98 }
99
100 /**
101  * e1000_rx_checksum - Receive Checksum Offload for 82543
102  * @adapter:     board private structure
103  * @status_err:  receive descriptor status and error fields
104  * @csum:       receive descriptor csum field
105  * @sk_buff:     socket buffer with received data
106  **/
107 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
108                               u32 csum, struct sk_buff *skb)
109 {
110         u16 status = (u16)status_err;
111         u8 errors = (u8)(status_err >> 24);
112         skb->ip_summed = CHECKSUM_NONE;
113
114         /* Ignore Checksum bit is set */
115         if (status & E1000_RXD_STAT_IXSM)
116                 return;
117         /* TCP/UDP checksum error bit is set */
118         if (errors & E1000_RXD_ERR_TCPE) {
119                 /* let the stack verify checksum errors */
120                 adapter->hw_csum_err++;
121                 return;
122         }
123
124         /* TCP/UDP Checksum has not been calculated */
125         if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
126                 return;
127
128         /* It must be a TCP or UDP packet with a valid checksum */
129         if (status & E1000_RXD_STAT_TCPCS) {
130                 /* TCP checksum is good */
131                 skb->ip_summed = CHECKSUM_UNNECESSARY;
132         } else {
133                 /*
134                  * IP fragment with UDP payload
135                  * Hardware complements the payload checksum, so we undo it
136                  * and then put the value in host order for further stack use.
137                  */
138                 __sum16 sum = (__force __sum16)htons(csum);
139                 skb->csum = csum_unfold(~sum);
140                 skb->ip_summed = CHECKSUM_COMPLETE;
141         }
142         adapter->hw_csum_good++;
143 }
144
145 /**
146  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
147  * @adapter: address of board private structure
148  **/
149 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
150                                    int cleaned_count)
151 {
152         struct net_device *netdev = adapter->netdev;
153         struct pci_dev *pdev = adapter->pdev;
154         struct e1000_ring *rx_ring = adapter->rx_ring;
155         struct e1000_rx_desc *rx_desc;
156         struct e1000_buffer *buffer_info;
157         struct sk_buff *skb;
158         unsigned int i;
159         unsigned int bufsz = adapter->rx_buffer_len;
160
161         i = rx_ring->next_to_use;
162         buffer_info = &rx_ring->buffer_info[i];
163
164         while (cleaned_count--) {
165                 skb = buffer_info->skb;
166                 if (skb) {
167                         skb_trim(skb, 0);
168                         goto map_skb;
169                 }
170
171                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
172                 if (!skb) {
173                         /* Better luck next round */
174                         adapter->alloc_rx_buff_failed++;
175                         break;
176                 }
177
178                 buffer_info->skb = skb;
179 map_skb:
180                 buffer_info->dma = pci_map_single(pdev, skb->data,
181                                                   adapter->rx_buffer_len,
182                                                   PCI_DMA_FROMDEVICE);
183                 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
184                         dev_err(&pdev->dev, "RX DMA map failed\n");
185                         adapter->rx_dma_failed++;
186                         break;
187                 }
188
189                 rx_desc = E1000_RX_DESC(*rx_ring, i);
190                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
191
192                 i++;
193                 if (i == rx_ring->count)
194                         i = 0;
195                 buffer_info = &rx_ring->buffer_info[i];
196         }
197
198         if (rx_ring->next_to_use != i) {
199                 rx_ring->next_to_use = i;
200                 if (i-- == 0)
201                         i = (rx_ring->count - 1);
202
203                 /*
204                  * Force memory writes to complete before letting h/w
205                  * know there are new descriptors to fetch.  (Only
206                  * applicable for weak-ordered memory model archs,
207                  * such as IA-64).
208                  */
209                 wmb();
210                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
211         }
212 }
213
214 /**
215  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
216  * @adapter: address of board private structure
217  **/
218 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
219                                       int cleaned_count)
220 {
221         struct net_device *netdev = adapter->netdev;
222         struct pci_dev *pdev = adapter->pdev;
223         union e1000_rx_desc_packet_split *rx_desc;
224         struct e1000_ring *rx_ring = adapter->rx_ring;
225         struct e1000_buffer *buffer_info;
226         struct e1000_ps_page *ps_page;
227         struct sk_buff *skb;
228         unsigned int i, j;
229
230         i = rx_ring->next_to_use;
231         buffer_info = &rx_ring->buffer_info[i];
232
233         while (cleaned_count--) {
234                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
235
236                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
237                         ps_page = &buffer_info->ps_pages[j];
238                         if (j >= adapter->rx_ps_pages) {
239                                 /* all unused desc entries get hw null ptr */
240                                 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
241                                 continue;
242                         }
243                         if (!ps_page->page) {
244                                 ps_page->page = alloc_page(GFP_ATOMIC);
245                                 if (!ps_page->page) {
246                                         adapter->alloc_rx_buff_failed++;
247                                         goto no_buffers;
248                                 }
249                                 ps_page->dma = pci_map_page(pdev,
250                                                    ps_page->page,
251                                                    0, PAGE_SIZE,
252                                                    PCI_DMA_FROMDEVICE);
253                                 if (pci_dma_mapping_error(pdev, ps_page->dma)) {
254                                         dev_err(&adapter->pdev->dev,
255                                           "RX DMA page map failed\n");
256                                         adapter->rx_dma_failed++;
257                                         goto no_buffers;
258                                 }
259                         }
260                         /*
261                          * Refresh the desc even if buffer_addrs
262                          * didn't change because each write-back
263                          * erases this info.
264                          */
265                         rx_desc->read.buffer_addr[j+1] =
266                              cpu_to_le64(ps_page->dma);
267                 }
268
269                 skb = netdev_alloc_skb_ip_align(netdev,
270                                                 adapter->rx_ps_bsize0);
271
272                 if (!skb) {
273                         adapter->alloc_rx_buff_failed++;
274                         break;
275                 }
276
277                 buffer_info->skb = skb;
278                 buffer_info->dma = pci_map_single(pdev, skb->data,
279                                                   adapter->rx_ps_bsize0,
280                                                   PCI_DMA_FROMDEVICE);
281                 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
282                         dev_err(&pdev->dev, "RX DMA map failed\n");
283                         adapter->rx_dma_failed++;
284                         /* cleanup skb */
285                         dev_kfree_skb_any(skb);
286                         buffer_info->skb = NULL;
287                         break;
288                 }
289
290                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
291
292                 i++;
293                 if (i == rx_ring->count)
294                         i = 0;
295                 buffer_info = &rx_ring->buffer_info[i];
296         }
297
298 no_buffers:
299         if (rx_ring->next_to_use != i) {
300                 rx_ring->next_to_use = i;
301
302                 if (!(i--))
303                         i = (rx_ring->count - 1);
304
305                 /*
306                  * Force memory writes to complete before letting h/w
307                  * know there are new descriptors to fetch.  (Only
308                  * applicable for weak-ordered memory model archs,
309                  * such as IA-64).
310                  */
311                 wmb();
312                 /*
313                  * Hardware increments by 16 bytes, but packet split
314                  * descriptors are 32 bytes...so we increment tail
315                  * twice as much.
316                  */
317                 writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
318         }
319 }
320
321 /**
322  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
323  * @adapter: address of board private structure
324  * @cleaned_count: number of buffers to allocate this pass
325  **/
326
327 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
328                                          int cleaned_count)
329 {
330         struct net_device *netdev = adapter->netdev;
331         struct pci_dev *pdev = adapter->pdev;
332         struct e1000_rx_desc *rx_desc;
333         struct e1000_ring *rx_ring = adapter->rx_ring;
334         struct e1000_buffer *buffer_info;
335         struct sk_buff *skb;
336         unsigned int i;
337         unsigned int bufsz = 256 - 16 /* for skb_reserve */;
338
339         i = rx_ring->next_to_use;
340         buffer_info = &rx_ring->buffer_info[i];
341
342         while (cleaned_count--) {
343                 skb = buffer_info->skb;
344                 if (skb) {
345                         skb_trim(skb, 0);
346                         goto check_page;
347                 }
348
349                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
350                 if (unlikely(!skb)) {
351                         /* Better luck next round */
352                         adapter->alloc_rx_buff_failed++;
353                         break;
354                 }
355
356                 buffer_info->skb = skb;
357 check_page:
358                 /* allocate a new page if necessary */
359                 if (!buffer_info->page) {
360                         buffer_info->page = alloc_page(GFP_ATOMIC);
361                         if (unlikely(!buffer_info->page)) {
362                                 adapter->alloc_rx_buff_failed++;
363                                 break;
364                         }
365                 }
366
367                 if (!buffer_info->dma)
368                         buffer_info->dma = pci_map_page(pdev,
369                                                         buffer_info->page, 0,
370                                                         PAGE_SIZE,
371                                                         PCI_DMA_FROMDEVICE);
372
373                 rx_desc = E1000_RX_DESC(*rx_ring, i);
374                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
375
376                 if (unlikely(++i == rx_ring->count))
377                         i = 0;
378                 buffer_info = &rx_ring->buffer_info[i];
379         }
380
381         if (likely(rx_ring->next_to_use != i)) {
382                 rx_ring->next_to_use = i;
383                 if (unlikely(i-- == 0))
384                         i = (rx_ring->count - 1);
385
386                 /* Force memory writes to complete before letting h/w
387                  * know there are new descriptors to fetch.  (Only
388                  * applicable for weak-ordered memory model archs,
389                  * such as IA-64). */
390                 wmb();
391                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
392         }
393 }
394
395 /**
396  * e1000_clean_rx_irq - Send received data up the network stack; legacy
397  * @adapter: board private structure
398  *
399  * the return value indicates whether actual cleaning was done, there
400  * is no guarantee that everything was cleaned
401  **/
402 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
403                                int *work_done, int work_to_do)
404 {
405         struct net_device *netdev = adapter->netdev;
406         struct pci_dev *pdev = adapter->pdev;
407         struct e1000_hw *hw = &adapter->hw;
408         struct e1000_ring *rx_ring = adapter->rx_ring;
409         struct e1000_rx_desc *rx_desc, *next_rxd;
410         struct e1000_buffer *buffer_info, *next_buffer;
411         u32 length;
412         unsigned int i;
413         int cleaned_count = 0;
414         bool cleaned = 0;
415         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
416
417         i = rx_ring->next_to_clean;
418         rx_desc = E1000_RX_DESC(*rx_ring, i);
419         buffer_info = &rx_ring->buffer_info[i];
420
421         while (rx_desc->status & E1000_RXD_STAT_DD) {
422                 struct sk_buff *skb;
423                 u8 status;
424
425                 if (*work_done >= work_to_do)
426                         break;
427                 (*work_done)++;
428
429                 status = rx_desc->status;
430                 skb = buffer_info->skb;
431                 buffer_info->skb = NULL;
432
433                 prefetch(skb->data - NET_IP_ALIGN);
434
435                 i++;
436                 if (i == rx_ring->count)
437                         i = 0;
438                 next_rxd = E1000_RX_DESC(*rx_ring, i);
439                 prefetch(next_rxd);
440
441                 next_buffer = &rx_ring->buffer_info[i];
442
443                 cleaned = 1;
444                 cleaned_count++;
445                 pci_unmap_single(pdev,
446                                  buffer_info->dma,
447                                  adapter->rx_buffer_len,
448                                  PCI_DMA_FROMDEVICE);
449                 buffer_info->dma = 0;
450
451                 length = le16_to_cpu(rx_desc->length);
452
453                 /* !EOP means multiple descriptors were used to store a single
454                  * packet, also make sure the frame isn't just CRC only */
455                 if (!(status & E1000_RXD_STAT_EOP) || (length <= 4)) {
456                         /* All receives must fit into a single buffer */
457                         e_dbg("Receive packet consumed multiple buffers\n");
458                         /* recycle */
459                         buffer_info->skb = skb;
460                         goto next_desc;
461                 }
462
463                 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
464                         /* recycle */
465                         buffer_info->skb = skb;
466                         goto next_desc;
467                 }
468
469                 /* adjust length to remove Ethernet CRC */
470                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
471                         length -= 4;
472
473                 total_rx_bytes += length;
474                 total_rx_packets++;
475
476                 /*
477                  * code added for copybreak, this should improve
478                  * performance for small packets with large amounts
479                  * of reassembly being done in the stack
480                  */
481                 if (length < copybreak) {
482                         struct sk_buff *new_skb =
483                             netdev_alloc_skb_ip_align(netdev, length);
484                         if (new_skb) {
485                                 skb_copy_to_linear_data_offset(new_skb,
486                                                                -NET_IP_ALIGN,
487                                                                (skb->data -
488                                                                 NET_IP_ALIGN),
489                                                                (length +
490                                                                 NET_IP_ALIGN));
491                                 /* save the skb in buffer_info as good */
492                                 buffer_info->skb = skb;
493                                 skb = new_skb;
494                         }
495                         /* else just continue with the old one */
496                 }
497                 /* end copybreak code */
498                 skb_put(skb, length);
499
500                 /* Receive Checksum Offload */
501                 e1000_rx_checksum(adapter,
502                                   (u32)(status) |
503                                   ((u32)(rx_desc->errors) << 24),
504                                   le16_to_cpu(rx_desc->csum), skb);
505
506                 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
507
508 next_desc:
509                 rx_desc->status = 0;
510
511                 /* return some buffers to hardware, one at a time is too slow */
512                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
513                         adapter->alloc_rx_buf(adapter, cleaned_count);
514                         cleaned_count = 0;
515                 }
516
517                 /* use prefetched values */
518                 rx_desc = next_rxd;
519                 buffer_info = next_buffer;
520         }
521         rx_ring->next_to_clean = i;
522
523         cleaned_count = e1000_desc_unused(rx_ring);
524         if (cleaned_count)
525                 adapter->alloc_rx_buf(adapter, cleaned_count);
526
527         adapter->total_rx_bytes += total_rx_bytes;
528         adapter->total_rx_packets += total_rx_packets;
529         netdev->stats.rx_bytes += total_rx_bytes;
530         netdev->stats.rx_packets += total_rx_packets;
531         return cleaned;
532 }
533
534 static void e1000_put_txbuf(struct e1000_adapter *adapter,
535                              struct e1000_buffer *buffer_info)
536 {
537         buffer_info->dma = 0;
538         if (buffer_info->skb) {
539                 skb_dma_unmap(&adapter->pdev->dev, buffer_info->skb,
540                               DMA_TO_DEVICE);
541                 dev_kfree_skb_any(buffer_info->skb);
542                 buffer_info->skb = NULL;
543         }
544         buffer_info->time_stamp = 0;
545 }
546
547 static void e1000_print_hw_hang(struct work_struct *work)
548 {
549         struct e1000_adapter *adapter = container_of(work,
550                                                      struct e1000_adapter,
551                                                      print_hang_task);
552         struct e1000_ring *tx_ring = adapter->tx_ring;
553         unsigned int i = tx_ring->next_to_clean;
554         unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
555         struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
556         struct e1000_hw *hw = &adapter->hw;
557         u16 phy_status, phy_1000t_status, phy_ext_status;
558         u16 pci_status;
559
560         e1e_rphy(hw, PHY_STATUS, &phy_status);
561         e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
562         e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
563
564         pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
565
566         /* detected Hardware unit hang */
567         e_err("Detected Hardware Unit Hang:\n"
568               "  TDH                  <%x>\n"
569               "  TDT                  <%x>\n"
570               "  next_to_use          <%x>\n"
571               "  next_to_clean        <%x>\n"
572               "buffer_info[next_to_clean]:\n"
573               "  time_stamp           <%lx>\n"
574               "  next_to_watch        <%x>\n"
575               "  jiffies              <%lx>\n"
576               "  next_to_watch.status <%x>\n"
577               "MAC Status             <%x>\n"
578               "PHY Status             <%x>\n"
579               "PHY 1000BASE-T Status  <%x>\n"
580               "PHY Extended Status    <%x>\n"
581               "PCI Status             <%x>\n",
582               readl(adapter->hw.hw_addr + tx_ring->head),
583               readl(adapter->hw.hw_addr + tx_ring->tail),
584               tx_ring->next_to_use,
585               tx_ring->next_to_clean,
586               tx_ring->buffer_info[eop].time_stamp,
587               eop,
588               jiffies,
589               eop_desc->upper.fields.status,
590               er32(STATUS),
591               phy_status,
592               phy_1000t_status,
593               phy_ext_status,
594               pci_status);
595 }
596
597 /**
598  * e1000_clean_tx_irq - Reclaim resources after transmit completes
599  * @adapter: board private structure
600  *
601  * the return value indicates whether actual cleaning was done, there
602  * is no guarantee that everything was cleaned
603  **/
604 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
605 {
606         struct net_device *netdev = adapter->netdev;
607         struct e1000_hw *hw = &adapter->hw;
608         struct e1000_ring *tx_ring = adapter->tx_ring;
609         struct e1000_tx_desc *tx_desc, *eop_desc;
610         struct e1000_buffer *buffer_info;
611         unsigned int i, eop;
612         unsigned int count = 0;
613         unsigned int total_tx_bytes = 0, total_tx_packets = 0;
614
615         i = tx_ring->next_to_clean;
616         eop = tx_ring->buffer_info[i].next_to_watch;
617         eop_desc = E1000_TX_DESC(*tx_ring, eop);
618
619         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
620                (count < tx_ring->count)) {
621                 bool cleaned = false;
622                 for (; !cleaned; count++) {
623                         tx_desc = E1000_TX_DESC(*tx_ring, i);
624                         buffer_info = &tx_ring->buffer_info[i];
625                         cleaned = (i == eop);
626
627                         if (cleaned) {
628                                 struct sk_buff *skb = buffer_info->skb;
629                                 unsigned int segs, bytecount;
630                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
631                                 /* multiply data chunks by size of headers */
632                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
633                                             skb->len;
634                                 total_tx_packets += segs;
635                                 total_tx_bytes += bytecount;
636                         }
637
638                         e1000_put_txbuf(adapter, buffer_info);
639                         tx_desc->upper.data = 0;
640
641                         i++;
642                         if (i == tx_ring->count)
643                                 i = 0;
644                 }
645
646                 eop = tx_ring->buffer_info[i].next_to_watch;
647                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
648         }
649
650         tx_ring->next_to_clean = i;
651
652 #define TX_WAKE_THRESHOLD 32
653         if (count && netif_carrier_ok(netdev) &&
654             e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
655                 /* Make sure that anybody stopping the queue after this
656                  * sees the new next_to_clean.
657                  */
658                 smp_mb();
659
660                 if (netif_queue_stopped(netdev) &&
661                     !(test_bit(__E1000_DOWN, &adapter->state))) {
662                         netif_wake_queue(netdev);
663                         ++adapter->restart_queue;
664                 }
665         }
666
667         if (adapter->detect_tx_hung) {
668                 /*
669                  * Detect a transmit hang in hardware, this serializes the
670                  * check with the clearing of time_stamp and movement of i
671                  */
672                 adapter->detect_tx_hung = 0;
673                 if (tx_ring->buffer_info[i].time_stamp &&
674                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp
675                                + (adapter->tx_timeout_factor * HZ))
676                     && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
677                         schedule_work(&adapter->print_hang_task);
678                         netif_stop_queue(netdev);
679                 }
680         }
681         adapter->total_tx_bytes += total_tx_bytes;
682         adapter->total_tx_packets += total_tx_packets;
683         netdev->stats.tx_bytes += total_tx_bytes;
684         netdev->stats.tx_packets += total_tx_packets;
685         return (count < tx_ring->count);
686 }
687
688 /**
689  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
690  * @adapter: board private structure
691  *
692  * the return value indicates whether actual cleaning was done, there
693  * is no guarantee that everything was cleaned
694  **/
695 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
696                                   int *work_done, int work_to_do)
697 {
698         struct e1000_hw *hw = &adapter->hw;
699         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
700         struct net_device *netdev = adapter->netdev;
701         struct pci_dev *pdev = adapter->pdev;
702         struct e1000_ring *rx_ring = adapter->rx_ring;
703         struct e1000_buffer *buffer_info, *next_buffer;
704         struct e1000_ps_page *ps_page;
705         struct sk_buff *skb;
706         unsigned int i, j;
707         u32 length, staterr;
708         int cleaned_count = 0;
709         bool cleaned = 0;
710         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
711
712         i = rx_ring->next_to_clean;
713         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
714         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
715         buffer_info = &rx_ring->buffer_info[i];
716
717         while (staterr & E1000_RXD_STAT_DD) {
718                 if (*work_done >= work_to_do)
719                         break;
720                 (*work_done)++;
721                 skb = buffer_info->skb;
722
723                 /* in the packet split case this is header only */
724                 prefetch(skb->data - NET_IP_ALIGN);
725
726                 i++;
727                 if (i == rx_ring->count)
728                         i = 0;
729                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
730                 prefetch(next_rxd);
731
732                 next_buffer = &rx_ring->buffer_info[i];
733
734                 cleaned = 1;
735                 cleaned_count++;
736                 pci_unmap_single(pdev, buffer_info->dma,
737                                  adapter->rx_ps_bsize0,
738                                  PCI_DMA_FROMDEVICE);
739                 buffer_info->dma = 0;
740
741                 if (!(staterr & E1000_RXD_STAT_EOP)) {
742                         e_dbg("Packet Split buffers didn't pick up the full "
743                               "packet\n");
744                         dev_kfree_skb_irq(skb);
745                         goto next_desc;
746                 }
747
748                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
749                         dev_kfree_skb_irq(skb);
750                         goto next_desc;
751                 }
752
753                 length = le16_to_cpu(rx_desc->wb.middle.length0);
754
755                 if (!length) {
756                         e_dbg("Last part of the packet spanning multiple "
757                               "descriptors\n");
758                         dev_kfree_skb_irq(skb);
759                         goto next_desc;
760                 }
761
762                 /* Good Receive */
763                 skb_put(skb, length);
764
765                 {
766                 /*
767                  * this looks ugly, but it seems compiler issues make it
768                  * more efficient than reusing j
769                  */
770                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
771
772                 /*
773                  * page alloc/put takes too long and effects small packet
774                  * throughput, so unsplit small packets and save the alloc/put
775                  * only valid in softirq (napi) context to call kmap_*
776                  */
777                 if (l1 && (l1 <= copybreak) &&
778                     ((length + l1) <= adapter->rx_ps_bsize0)) {
779                         u8 *vaddr;
780
781                         ps_page = &buffer_info->ps_pages[0];
782
783                         /*
784                          * there is no documentation about how to call
785                          * kmap_atomic, so we can't hold the mapping
786                          * very long
787                          */
788                         pci_dma_sync_single_for_cpu(pdev, ps_page->dma,
789                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
790                         vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
791                         memcpy(skb_tail_pointer(skb), vaddr, l1);
792                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
793                         pci_dma_sync_single_for_device(pdev, ps_page->dma,
794                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
795
796                         /* remove the CRC */
797                         if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
798                                 l1 -= 4;
799
800                         skb_put(skb, l1);
801                         goto copydone;
802                 } /* if */
803                 }
804
805                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
806                         length = le16_to_cpu(rx_desc->wb.upper.length[j]);
807                         if (!length)
808                                 break;
809
810                         ps_page = &buffer_info->ps_pages[j];
811                         pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
812                                        PCI_DMA_FROMDEVICE);
813                         ps_page->dma = 0;
814                         skb_fill_page_desc(skb, j, ps_page->page, 0, length);
815                         ps_page->page = NULL;
816                         skb->len += length;
817                         skb->data_len += length;
818                         skb->truesize += length;
819                 }
820
821                 /* strip the ethernet crc, problem is we're using pages now so
822                  * this whole operation can get a little cpu intensive
823                  */
824                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
825                         pskb_trim(skb, skb->len - 4);
826
827 copydone:
828                 total_rx_bytes += skb->len;
829                 total_rx_packets++;
830
831                 e1000_rx_checksum(adapter, staterr, le16_to_cpu(
832                         rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
833
834                 if (rx_desc->wb.upper.header_status &
835                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
836                         adapter->rx_hdr_split++;
837
838                 e1000_receive_skb(adapter, netdev, skb,
839                                   staterr, rx_desc->wb.middle.vlan);
840
841 next_desc:
842                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
843                 buffer_info->skb = NULL;
844
845                 /* return some buffers to hardware, one at a time is too slow */
846                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
847                         adapter->alloc_rx_buf(adapter, cleaned_count);
848                         cleaned_count = 0;
849                 }
850
851                 /* use prefetched values */
852                 rx_desc = next_rxd;
853                 buffer_info = next_buffer;
854
855                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
856         }
857         rx_ring->next_to_clean = i;
858
859         cleaned_count = e1000_desc_unused(rx_ring);
860         if (cleaned_count)
861                 adapter->alloc_rx_buf(adapter, cleaned_count);
862
863         adapter->total_rx_bytes += total_rx_bytes;
864         adapter->total_rx_packets += total_rx_packets;
865         netdev->stats.rx_bytes += total_rx_bytes;
866         netdev->stats.rx_packets += total_rx_packets;
867         return cleaned;
868 }
869
870 /**
871  * e1000_consume_page - helper function
872  **/
873 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
874                                u16 length)
875 {
876         bi->page = NULL;
877         skb->len += length;
878         skb->data_len += length;
879         skb->truesize += length;
880 }
881
882 /**
883  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
884  * @adapter: board private structure
885  *
886  * the return value indicates whether actual cleaning was done, there
887  * is no guarantee that everything was cleaned
888  **/
889
890 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
891                                      int *work_done, int work_to_do)
892 {
893         struct net_device *netdev = adapter->netdev;
894         struct pci_dev *pdev = adapter->pdev;
895         struct e1000_ring *rx_ring = adapter->rx_ring;
896         struct e1000_rx_desc *rx_desc, *next_rxd;
897         struct e1000_buffer *buffer_info, *next_buffer;
898         u32 length;
899         unsigned int i;
900         int cleaned_count = 0;
901         bool cleaned = false;
902         unsigned int total_rx_bytes=0, total_rx_packets=0;
903
904         i = rx_ring->next_to_clean;
905         rx_desc = E1000_RX_DESC(*rx_ring, i);
906         buffer_info = &rx_ring->buffer_info[i];
907
908         while (rx_desc->status & E1000_RXD_STAT_DD) {
909                 struct sk_buff *skb;
910                 u8 status;
911
912                 if (*work_done >= work_to_do)
913                         break;
914                 (*work_done)++;
915
916                 status = rx_desc->status;
917                 skb = buffer_info->skb;
918                 buffer_info->skb = NULL;
919
920                 ++i;
921                 if (i == rx_ring->count)
922                         i = 0;
923                 next_rxd = E1000_RX_DESC(*rx_ring, i);
924                 prefetch(next_rxd);
925
926                 next_buffer = &rx_ring->buffer_info[i];
927
928                 cleaned = true;
929                 cleaned_count++;
930                 pci_unmap_page(pdev, buffer_info->dma, PAGE_SIZE,
931                                PCI_DMA_FROMDEVICE);
932                 buffer_info->dma = 0;
933
934                 length = le16_to_cpu(rx_desc->length);
935
936                 /* errors is only valid for DD + EOP descriptors */
937                 if (unlikely((status & E1000_RXD_STAT_EOP) &&
938                     (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
939                                 /* recycle both page and skb */
940                                 buffer_info->skb = skb;
941                                 /* an error means any chain goes out the window
942                                  * too */
943                                 if (rx_ring->rx_skb_top)
944                                         dev_kfree_skb(rx_ring->rx_skb_top);
945                                 rx_ring->rx_skb_top = NULL;
946                                 goto next_desc;
947                 }
948
949 #define rxtop rx_ring->rx_skb_top
950                 if (!(status & E1000_RXD_STAT_EOP)) {
951                         /* this descriptor is only the beginning (or middle) */
952                         if (!rxtop) {
953                                 /* this is the beginning of a chain */
954                                 rxtop = skb;
955                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
956                                                    0, length);
957                         } else {
958                                 /* this is the middle of a chain */
959                                 skb_fill_page_desc(rxtop,
960                                     skb_shinfo(rxtop)->nr_frags,
961                                     buffer_info->page, 0, length);
962                                 /* re-use the skb, only consumed the page */
963                                 buffer_info->skb = skb;
964                         }
965                         e1000_consume_page(buffer_info, rxtop, length);
966                         goto next_desc;
967                 } else {
968                         if (rxtop) {
969                                 /* end of the chain */
970                                 skb_fill_page_desc(rxtop,
971                                     skb_shinfo(rxtop)->nr_frags,
972                                     buffer_info->page, 0, length);
973                                 /* re-use the current skb, we only consumed the
974                                  * page */
975                                 buffer_info->skb = skb;
976                                 skb = rxtop;
977                                 rxtop = NULL;
978                                 e1000_consume_page(buffer_info, skb, length);
979                         } else {
980                                 /* no chain, got EOP, this buf is the packet
981                                  * copybreak to save the put_page/alloc_page */
982                                 if (length <= copybreak &&
983                                     skb_tailroom(skb) >= length) {
984                                         u8 *vaddr;
985                                         vaddr = kmap_atomic(buffer_info->page,
986                                                            KM_SKB_DATA_SOFTIRQ);
987                                         memcpy(skb_tail_pointer(skb), vaddr,
988                                                length);
989                                         kunmap_atomic(vaddr,
990                                                       KM_SKB_DATA_SOFTIRQ);
991                                         /* re-use the page, so don't erase
992                                          * buffer_info->page */
993                                         skb_put(skb, length);
994                                 } else {
995                                         skb_fill_page_desc(skb, 0,
996                                                            buffer_info->page, 0,
997                                                            length);
998                                         e1000_consume_page(buffer_info, skb,
999                                                            length);
1000                                 }
1001                         }
1002                 }
1003
1004                 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1005                 e1000_rx_checksum(adapter,
1006                                   (u32)(status) |
1007                                   ((u32)(rx_desc->errors) << 24),
1008                                   le16_to_cpu(rx_desc->csum), skb);
1009
1010                 /* probably a little skewed due to removing CRC */
1011                 total_rx_bytes += skb->len;
1012                 total_rx_packets++;
1013
1014                 /* eth type trans needs skb->data to point to something */
1015                 if (!pskb_may_pull(skb, ETH_HLEN)) {
1016                         e_err("pskb_may_pull failed.\n");
1017                         dev_kfree_skb(skb);
1018                         goto next_desc;
1019                 }
1020
1021                 e1000_receive_skb(adapter, netdev, skb, status,
1022                                   rx_desc->special);
1023
1024 next_desc:
1025                 rx_desc->status = 0;
1026
1027                 /* return some buffers to hardware, one at a time is too slow */
1028                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1029                         adapter->alloc_rx_buf(adapter, cleaned_count);
1030                         cleaned_count = 0;
1031                 }
1032
1033                 /* use prefetched values */
1034                 rx_desc = next_rxd;
1035                 buffer_info = next_buffer;
1036         }
1037         rx_ring->next_to_clean = i;
1038
1039         cleaned_count = e1000_desc_unused(rx_ring);
1040         if (cleaned_count)
1041                 adapter->alloc_rx_buf(adapter, cleaned_count);
1042
1043         adapter->total_rx_bytes += total_rx_bytes;
1044         adapter->total_rx_packets += total_rx_packets;
1045         netdev->stats.rx_bytes += total_rx_bytes;
1046         netdev->stats.rx_packets += total_rx_packets;
1047         return cleaned;
1048 }
1049
1050 /**
1051  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1052  * @adapter: board private structure
1053  **/
1054 static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
1055 {
1056         struct e1000_ring *rx_ring = adapter->rx_ring;
1057         struct e1000_buffer *buffer_info;
1058         struct e1000_ps_page *ps_page;
1059         struct pci_dev *pdev = adapter->pdev;
1060         unsigned int i, j;
1061
1062         /* Free all the Rx ring sk_buffs */
1063         for (i = 0; i < rx_ring->count; i++) {
1064                 buffer_info = &rx_ring->buffer_info[i];
1065                 if (buffer_info->dma) {
1066                         if (adapter->clean_rx == e1000_clean_rx_irq)
1067                                 pci_unmap_single(pdev, buffer_info->dma,
1068                                                  adapter->rx_buffer_len,
1069                                                  PCI_DMA_FROMDEVICE);
1070                         else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1071                                 pci_unmap_page(pdev, buffer_info->dma,
1072                                                PAGE_SIZE,
1073                                                PCI_DMA_FROMDEVICE);
1074                         else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1075                                 pci_unmap_single(pdev, buffer_info->dma,
1076                                                  adapter->rx_ps_bsize0,
1077                                                  PCI_DMA_FROMDEVICE);
1078                         buffer_info->dma = 0;
1079                 }
1080
1081                 if (buffer_info->page) {
1082                         put_page(buffer_info->page);
1083                         buffer_info->page = NULL;
1084                 }
1085
1086                 if (buffer_info->skb) {
1087                         dev_kfree_skb(buffer_info->skb);
1088                         buffer_info->skb = NULL;
1089                 }
1090
1091                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1092                         ps_page = &buffer_info->ps_pages[j];
1093                         if (!ps_page->page)
1094                                 break;
1095                         pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
1096                                        PCI_DMA_FROMDEVICE);
1097                         ps_page->dma = 0;
1098                         put_page(ps_page->page);
1099                         ps_page->page = NULL;
1100                 }
1101         }
1102
1103         /* there also may be some cached data from a chained receive */
1104         if (rx_ring->rx_skb_top) {
1105                 dev_kfree_skb(rx_ring->rx_skb_top);
1106                 rx_ring->rx_skb_top = NULL;
1107         }
1108
1109         /* Zero out the descriptor ring */
1110         memset(rx_ring->desc, 0, rx_ring->size);
1111
1112         rx_ring->next_to_clean = 0;
1113         rx_ring->next_to_use = 0;
1114
1115         writel(0, adapter->hw.hw_addr + rx_ring->head);
1116         writel(0, adapter->hw.hw_addr + rx_ring->tail);
1117 }
1118
1119 static void e1000e_downshift_workaround(struct work_struct *work)
1120 {
1121         struct e1000_adapter *adapter = container_of(work,
1122                                         struct e1000_adapter, downshift_task);
1123
1124         e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1125 }
1126
1127 /**
1128  * e1000_intr_msi - Interrupt Handler
1129  * @irq: interrupt number
1130  * @data: pointer to a network interface device structure
1131  **/
1132 static irqreturn_t e1000_intr_msi(int irq, void *data)
1133 {
1134         struct net_device *netdev = data;
1135         struct e1000_adapter *adapter = netdev_priv(netdev);
1136         struct e1000_hw *hw = &adapter->hw;
1137         u32 icr = er32(ICR);
1138
1139         /*
1140          * read ICR disables interrupts using IAM
1141          */
1142
1143         if (icr & E1000_ICR_LSC) {
1144                 hw->mac.get_link_status = 1;
1145                 /*
1146                  * ICH8 workaround-- Call gig speed drop workaround on cable
1147                  * disconnect (LSC) before accessing any PHY registers
1148                  */
1149                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1150                     (!(er32(STATUS) & E1000_STATUS_LU)))
1151                         schedule_work(&adapter->downshift_task);
1152
1153                 /*
1154                  * 80003ES2LAN workaround-- For packet buffer work-around on
1155                  * link down event; disable receives here in the ISR and reset
1156                  * adapter in watchdog
1157                  */
1158                 if (netif_carrier_ok(netdev) &&
1159                     adapter->flags & FLAG_RX_NEEDS_RESTART) {
1160                         /* disable receives */
1161                         u32 rctl = er32(RCTL);
1162                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1163                         adapter->flags |= FLAG_RX_RESTART_NOW;
1164                 }
1165                 /* guard against interrupt when we're going down */
1166                 if (!test_bit(__E1000_DOWN, &adapter->state))
1167                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1168         }
1169
1170         if (napi_schedule_prep(&adapter->napi)) {
1171                 adapter->total_tx_bytes = 0;
1172                 adapter->total_tx_packets = 0;
1173                 adapter->total_rx_bytes = 0;
1174                 adapter->total_rx_packets = 0;
1175                 __napi_schedule(&adapter->napi);
1176         }
1177
1178         return IRQ_HANDLED;
1179 }
1180
1181 /**
1182  * e1000_intr - Interrupt Handler
1183  * @irq: interrupt number
1184  * @data: pointer to a network interface device structure
1185  **/
1186 static irqreturn_t e1000_intr(int irq, void *data)
1187 {
1188         struct net_device *netdev = data;
1189         struct e1000_adapter *adapter = netdev_priv(netdev);
1190         struct e1000_hw *hw = &adapter->hw;
1191         u32 rctl, icr = er32(ICR);
1192
1193         if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1194                 return IRQ_NONE;  /* Not our interrupt */
1195
1196         /*
1197          * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1198          * not set, then the adapter didn't send an interrupt
1199          */
1200         if (!(icr & E1000_ICR_INT_ASSERTED))
1201                 return IRQ_NONE;
1202
1203         /*
1204          * Interrupt Auto-Mask...upon reading ICR,
1205          * interrupts are masked.  No need for the
1206          * IMC write
1207          */
1208
1209         if (icr & E1000_ICR_LSC) {
1210                 hw->mac.get_link_status = 1;
1211                 /*
1212                  * ICH8 workaround-- Call gig speed drop workaround on cable
1213                  * disconnect (LSC) before accessing any PHY registers
1214                  */
1215                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1216                     (!(er32(STATUS) & E1000_STATUS_LU)))
1217                         schedule_work(&adapter->downshift_task);
1218
1219                 /*
1220                  * 80003ES2LAN workaround--
1221                  * For packet buffer work-around on link down event;
1222                  * disable receives here in the ISR and
1223                  * reset adapter in watchdog
1224                  */
1225                 if (netif_carrier_ok(netdev) &&
1226                     (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1227                         /* disable receives */
1228                         rctl = er32(RCTL);
1229                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1230                         adapter->flags |= FLAG_RX_RESTART_NOW;
1231                 }
1232                 /* guard against interrupt when we're going down */
1233                 if (!test_bit(__E1000_DOWN, &adapter->state))
1234                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1235         }
1236
1237         if (napi_schedule_prep(&adapter->napi)) {
1238                 adapter->total_tx_bytes = 0;
1239                 adapter->total_tx_packets = 0;
1240                 adapter->total_rx_bytes = 0;
1241                 adapter->total_rx_packets = 0;
1242                 __napi_schedule(&adapter->napi);
1243         }
1244
1245         return IRQ_HANDLED;
1246 }
1247
1248 static irqreturn_t e1000_msix_other(int irq, void *data)
1249 {
1250         struct net_device *netdev = data;
1251         struct e1000_adapter *adapter = netdev_priv(netdev);
1252         struct e1000_hw *hw = &adapter->hw;
1253         u32 icr = er32(ICR);
1254
1255         if (!(icr & E1000_ICR_INT_ASSERTED)) {
1256                 if (!test_bit(__E1000_DOWN, &adapter->state))
1257                         ew32(IMS, E1000_IMS_OTHER);
1258                 return IRQ_NONE;
1259         }
1260
1261         if (icr & adapter->eiac_mask)
1262                 ew32(ICS, (icr & adapter->eiac_mask));
1263
1264         if (icr & E1000_ICR_OTHER) {
1265                 if (!(icr & E1000_ICR_LSC))
1266                         goto no_link_interrupt;
1267                 hw->mac.get_link_status = 1;
1268                 /* guard against interrupt when we're going down */
1269                 if (!test_bit(__E1000_DOWN, &adapter->state))
1270                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1271         }
1272
1273 no_link_interrupt:
1274         if (!test_bit(__E1000_DOWN, &adapter->state))
1275                 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1276
1277         return IRQ_HANDLED;
1278 }
1279
1280
1281 static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
1282 {
1283         struct net_device *netdev = data;
1284         struct e1000_adapter *adapter = netdev_priv(netdev);
1285         struct e1000_hw *hw = &adapter->hw;
1286         struct e1000_ring *tx_ring = adapter->tx_ring;
1287
1288
1289         adapter->total_tx_bytes = 0;
1290         adapter->total_tx_packets = 0;
1291
1292         if (!e1000_clean_tx_irq(adapter))
1293                 /* Ring was not completely cleaned, so fire another interrupt */
1294                 ew32(ICS, tx_ring->ims_val);
1295
1296         return IRQ_HANDLED;
1297 }
1298
1299 static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
1300 {
1301         struct net_device *netdev = data;
1302         struct e1000_adapter *adapter = netdev_priv(netdev);
1303
1304         /* Write the ITR value calculated at the end of the
1305          * previous interrupt.
1306          */
1307         if (adapter->rx_ring->set_itr) {
1308                 writel(1000000000 / (adapter->rx_ring->itr_val * 256),
1309                        adapter->hw.hw_addr + adapter->rx_ring->itr_register);
1310                 adapter->rx_ring->set_itr = 0;
1311         }
1312
1313         if (napi_schedule_prep(&adapter->napi)) {
1314                 adapter->total_rx_bytes = 0;
1315                 adapter->total_rx_packets = 0;
1316                 __napi_schedule(&adapter->napi);
1317         }
1318         return IRQ_HANDLED;
1319 }
1320
1321 /**
1322  * e1000_configure_msix - Configure MSI-X hardware
1323  *
1324  * e1000_configure_msix sets up the hardware to properly
1325  * generate MSI-X interrupts.
1326  **/
1327 static void e1000_configure_msix(struct e1000_adapter *adapter)
1328 {
1329         struct e1000_hw *hw = &adapter->hw;
1330         struct e1000_ring *rx_ring = adapter->rx_ring;
1331         struct e1000_ring *tx_ring = adapter->tx_ring;
1332         int vector = 0;
1333         u32 ctrl_ext, ivar = 0;
1334
1335         adapter->eiac_mask = 0;
1336
1337         /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1338         if (hw->mac.type == e1000_82574) {
1339                 u32 rfctl = er32(RFCTL);
1340                 rfctl |= E1000_RFCTL_ACK_DIS;
1341                 ew32(RFCTL, rfctl);
1342         }
1343
1344 #define E1000_IVAR_INT_ALLOC_VALID      0x8
1345         /* Configure Rx vector */
1346         rx_ring->ims_val = E1000_IMS_RXQ0;
1347         adapter->eiac_mask |= rx_ring->ims_val;
1348         if (rx_ring->itr_val)
1349                 writel(1000000000 / (rx_ring->itr_val * 256),
1350                        hw->hw_addr + rx_ring->itr_register);
1351         else
1352                 writel(1, hw->hw_addr + rx_ring->itr_register);
1353         ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1354
1355         /* Configure Tx vector */
1356         tx_ring->ims_val = E1000_IMS_TXQ0;
1357         vector++;
1358         if (tx_ring->itr_val)
1359                 writel(1000000000 / (tx_ring->itr_val * 256),
1360                        hw->hw_addr + tx_ring->itr_register);
1361         else
1362                 writel(1, hw->hw_addr + tx_ring->itr_register);
1363         adapter->eiac_mask |= tx_ring->ims_val;
1364         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1365
1366         /* set vector for Other Causes, e.g. link changes */
1367         vector++;
1368         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1369         if (rx_ring->itr_val)
1370                 writel(1000000000 / (rx_ring->itr_val * 256),
1371                        hw->hw_addr + E1000_EITR_82574(vector));
1372         else
1373                 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1374
1375         /* Cause Tx interrupts on every write back */
1376         ivar |= (1 << 31);
1377
1378         ew32(IVAR, ivar);
1379
1380         /* enable MSI-X PBA support */
1381         ctrl_ext = er32(CTRL_EXT);
1382         ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
1383
1384         /* Auto-Mask Other interrupts upon ICR read */
1385 #define E1000_EIAC_MASK_82574   0x01F00000
1386         ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
1387         ctrl_ext |= E1000_CTRL_EXT_EIAME;
1388         ew32(CTRL_EXT, ctrl_ext);
1389         e1e_flush();
1390 }
1391
1392 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
1393 {
1394         if (adapter->msix_entries) {
1395                 pci_disable_msix(adapter->pdev);
1396                 kfree(adapter->msix_entries);
1397                 adapter->msix_entries = NULL;
1398         } else if (adapter->flags & FLAG_MSI_ENABLED) {
1399                 pci_disable_msi(adapter->pdev);
1400                 adapter->flags &= ~FLAG_MSI_ENABLED;
1401         }
1402
1403         return;
1404 }
1405
1406 /**
1407  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1408  *
1409  * Attempt to configure interrupts using the best available
1410  * capabilities of the hardware and kernel.
1411  **/
1412 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
1413 {
1414         int err;
1415         int numvecs, i;
1416
1417
1418         switch (adapter->int_mode) {
1419         case E1000E_INT_MODE_MSIX:
1420                 if (adapter->flags & FLAG_HAS_MSIX) {
1421                         numvecs = 3; /* RxQ0, TxQ0 and other */
1422                         adapter->msix_entries = kcalloc(numvecs,
1423                                                       sizeof(struct msix_entry),
1424                                                       GFP_KERNEL);
1425                         if (adapter->msix_entries) {
1426                                 for (i = 0; i < numvecs; i++)
1427                                         adapter->msix_entries[i].entry = i;
1428
1429                                 err = pci_enable_msix(adapter->pdev,
1430                                                       adapter->msix_entries,
1431                                                       numvecs);
1432                                 if (err == 0)
1433                                         return;
1434                         }
1435                         /* MSI-X failed, so fall through and try MSI */
1436                         e_err("Failed to initialize MSI-X interrupts.  "
1437                               "Falling back to MSI interrupts.\n");
1438                         e1000e_reset_interrupt_capability(adapter);
1439                 }
1440                 adapter->int_mode = E1000E_INT_MODE_MSI;
1441                 /* Fall through */
1442         case E1000E_INT_MODE_MSI:
1443                 if (!pci_enable_msi(adapter->pdev)) {
1444                         adapter->flags |= FLAG_MSI_ENABLED;
1445                 } else {
1446                         adapter->int_mode = E1000E_INT_MODE_LEGACY;
1447                         e_err("Failed to initialize MSI interrupts.  Falling "
1448                               "back to legacy interrupts.\n");
1449                 }
1450                 /* Fall through */
1451         case E1000E_INT_MODE_LEGACY:
1452                 /* Don't do anything; this is the system default */
1453                 break;
1454         }
1455
1456         return;
1457 }
1458
1459 /**
1460  * e1000_request_msix - Initialize MSI-X interrupts
1461  *
1462  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1463  * kernel.
1464  **/
1465 static int e1000_request_msix(struct e1000_adapter *adapter)
1466 {
1467         struct net_device *netdev = adapter->netdev;
1468         int err = 0, vector = 0;
1469
1470         if (strlen(netdev->name) < (IFNAMSIZ - 5))
1471                 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1472         else
1473                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1474         err = request_irq(adapter->msix_entries[vector].vector,
1475                           e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1476                           netdev);
1477         if (err)
1478                 goto out;
1479         adapter->rx_ring->itr_register = E1000_EITR_82574(vector);
1480         adapter->rx_ring->itr_val = adapter->itr;
1481         vector++;
1482
1483         if (strlen(netdev->name) < (IFNAMSIZ - 5))
1484                 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1485         else
1486                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1487         err = request_irq(adapter->msix_entries[vector].vector,
1488                           e1000_intr_msix_tx, 0, adapter->tx_ring->name,
1489                           netdev);
1490         if (err)
1491                 goto out;
1492         adapter->tx_ring->itr_register = E1000_EITR_82574(vector);
1493         adapter->tx_ring->itr_val = adapter->itr;
1494         vector++;
1495
1496         err = request_irq(adapter->msix_entries[vector].vector,
1497                           e1000_msix_other, 0, netdev->name, netdev);
1498         if (err)
1499                 goto out;
1500
1501         e1000_configure_msix(adapter);
1502         return 0;
1503 out:
1504         return err;
1505 }
1506
1507 /**
1508  * e1000_request_irq - initialize interrupts
1509  *
1510  * Attempts to configure interrupts using the best available
1511  * capabilities of the hardware and kernel.
1512  **/
1513 static int e1000_request_irq(struct e1000_adapter *adapter)
1514 {
1515         struct net_device *netdev = adapter->netdev;
1516         int err;
1517
1518         if (adapter->msix_entries) {
1519                 err = e1000_request_msix(adapter);
1520                 if (!err)
1521                         return err;
1522                 /* fall back to MSI */
1523                 e1000e_reset_interrupt_capability(adapter);
1524                 adapter->int_mode = E1000E_INT_MODE_MSI;
1525                 e1000e_set_interrupt_capability(adapter);
1526         }
1527         if (adapter->flags & FLAG_MSI_ENABLED) {
1528                 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
1529                                   netdev->name, netdev);
1530                 if (!err)
1531                         return err;
1532
1533                 /* fall back to legacy interrupt */
1534                 e1000e_reset_interrupt_capability(adapter);
1535                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1536         }
1537
1538         err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
1539                           netdev->name, netdev);
1540         if (err)
1541                 e_err("Unable to allocate interrupt, Error: %d\n", err);
1542
1543         return err;
1544 }
1545
1546 static void e1000_free_irq(struct e1000_adapter *adapter)
1547 {
1548         struct net_device *netdev = adapter->netdev;
1549
1550         if (adapter->msix_entries) {
1551                 int vector = 0;
1552
1553                 free_irq(adapter->msix_entries[vector].vector, netdev);
1554                 vector++;
1555
1556                 free_irq(adapter->msix_entries[vector].vector, netdev);
1557                 vector++;
1558
1559                 /* Other Causes interrupt vector */
1560                 free_irq(adapter->msix_entries[vector].vector, netdev);
1561                 return;
1562         }
1563
1564         free_irq(adapter->pdev->irq, netdev);
1565 }
1566
1567 /**
1568  * e1000_irq_disable - Mask off interrupt generation on the NIC
1569  **/
1570 static void e1000_irq_disable(struct e1000_adapter *adapter)
1571 {
1572         struct e1000_hw *hw = &adapter->hw;
1573
1574         ew32(IMC, ~0);
1575         if (adapter->msix_entries)
1576                 ew32(EIAC_82574, 0);
1577         e1e_flush();
1578         synchronize_irq(adapter->pdev->irq);
1579 }
1580
1581 /**
1582  * e1000_irq_enable - Enable default interrupt generation settings
1583  **/
1584 static void e1000_irq_enable(struct e1000_adapter *adapter)
1585 {
1586         struct e1000_hw *hw = &adapter->hw;
1587
1588         if (adapter->msix_entries) {
1589                 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
1590                 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
1591         } else {
1592                 ew32(IMS, IMS_ENABLE_MASK);
1593         }
1594         e1e_flush();
1595 }
1596
1597 /**
1598  * e1000_get_hw_control - get control of the h/w from f/w
1599  * @adapter: address of board private structure
1600  *
1601  * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1602  * For ASF and Pass Through versions of f/w this means that
1603  * the driver is loaded. For AMT version (only with 82573)
1604  * of the f/w this means that the network i/f is open.
1605  **/
1606 static void e1000_get_hw_control(struct e1000_adapter *adapter)
1607 {
1608         struct e1000_hw *hw = &adapter->hw;
1609         u32 ctrl_ext;
1610         u32 swsm;
1611
1612         /* Let firmware know the driver has taken over */
1613         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1614                 swsm = er32(SWSM);
1615                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
1616         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1617                 ctrl_ext = er32(CTRL_EXT);
1618                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1619         }
1620 }
1621
1622 /**
1623  * e1000_release_hw_control - release control of the h/w to f/w
1624  * @adapter: address of board private structure
1625  *
1626  * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1627  * For ASF and Pass Through versions of f/w this means that the
1628  * driver is no longer loaded. For AMT version (only with 82573) i
1629  * of the f/w this means that the network i/f is closed.
1630  *
1631  **/
1632 static void e1000_release_hw_control(struct e1000_adapter *adapter)
1633 {
1634         struct e1000_hw *hw = &adapter->hw;
1635         u32 ctrl_ext;
1636         u32 swsm;
1637
1638         /* Let firmware taken over control of h/w */
1639         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1640                 swsm = er32(SWSM);
1641                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1642         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1643                 ctrl_ext = er32(CTRL_EXT);
1644                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1645         }
1646 }
1647
1648 /**
1649  * @e1000_alloc_ring - allocate memory for a ring structure
1650  **/
1651 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
1652                                 struct e1000_ring *ring)
1653 {
1654         struct pci_dev *pdev = adapter->pdev;
1655
1656         ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
1657                                         GFP_KERNEL);
1658         if (!ring->desc)
1659                 return -ENOMEM;
1660
1661         return 0;
1662 }
1663
1664 /**
1665  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
1666  * @adapter: board private structure
1667  *
1668  * Return 0 on success, negative on failure
1669  **/
1670 int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
1671 {
1672         struct e1000_ring *tx_ring = adapter->tx_ring;
1673         int err = -ENOMEM, size;
1674
1675         size = sizeof(struct e1000_buffer) * tx_ring->count;
1676         tx_ring->buffer_info = vmalloc(size);
1677         if (!tx_ring->buffer_info)
1678                 goto err;
1679         memset(tx_ring->buffer_info, 0, size);
1680
1681         /* round up to nearest 4K */
1682         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1683         tx_ring->size = ALIGN(tx_ring->size, 4096);
1684
1685         err = e1000_alloc_ring_dma(adapter, tx_ring);
1686         if (err)
1687                 goto err;
1688
1689         tx_ring->next_to_use = 0;
1690         tx_ring->next_to_clean = 0;
1691
1692         return 0;
1693 err:
1694         vfree(tx_ring->buffer_info);
1695         e_err("Unable to allocate memory for the transmit descriptor ring\n");
1696         return err;
1697 }
1698
1699 /**
1700  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
1701  * @adapter: board private structure
1702  *
1703  * Returns 0 on success, negative on failure
1704  **/
1705 int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
1706 {
1707         struct e1000_ring *rx_ring = adapter->rx_ring;
1708         struct e1000_buffer *buffer_info;
1709         int i, size, desc_len, err = -ENOMEM;
1710
1711         size = sizeof(struct e1000_buffer) * rx_ring->count;
1712         rx_ring->buffer_info = vmalloc(size);
1713         if (!rx_ring->buffer_info)
1714                 goto err;
1715         memset(rx_ring->buffer_info, 0, size);
1716
1717         for (i = 0; i < rx_ring->count; i++) {
1718                 buffer_info = &rx_ring->buffer_info[i];
1719                 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
1720                                                 sizeof(struct e1000_ps_page),
1721                                                 GFP_KERNEL);
1722                 if (!buffer_info->ps_pages)
1723                         goto err_pages;
1724         }
1725
1726         desc_len = sizeof(union e1000_rx_desc_packet_split);
1727
1728         /* Round up to nearest 4K */
1729         rx_ring->size = rx_ring->count * desc_len;
1730         rx_ring->size = ALIGN(rx_ring->size, 4096);
1731
1732         err = e1000_alloc_ring_dma(adapter, rx_ring);
1733         if (err)
1734                 goto err_pages;
1735
1736         rx_ring->next_to_clean = 0;
1737         rx_ring->next_to_use = 0;
1738         rx_ring->rx_skb_top = NULL;
1739
1740         return 0;
1741
1742 err_pages:
1743         for (i = 0; i < rx_ring->count; i++) {
1744                 buffer_info = &rx_ring->buffer_info[i];
1745                 kfree(buffer_info->ps_pages);
1746         }
1747 err:
1748         vfree(rx_ring->buffer_info);
1749         e_err("Unable to allocate memory for the transmit descriptor ring\n");
1750         return err;
1751 }
1752
1753 /**
1754  * e1000_clean_tx_ring - Free Tx Buffers
1755  * @adapter: board private structure
1756  **/
1757 static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
1758 {
1759         struct e1000_ring *tx_ring = adapter->tx_ring;
1760         struct e1000_buffer *buffer_info;
1761         unsigned long size;
1762         unsigned int i;
1763
1764         for (i = 0; i < tx_ring->count; i++) {
1765                 buffer_info = &tx_ring->buffer_info[i];
1766                 e1000_put_txbuf(adapter, buffer_info);
1767         }
1768
1769         size = sizeof(struct e1000_buffer) * tx_ring->count;
1770         memset(tx_ring->buffer_info, 0, size);
1771
1772         memset(tx_ring->desc, 0, tx_ring->size);
1773
1774         tx_ring->next_to_use = 0;
1775         tx_ring->next_to_clean = 0;
1776
1777         writel(0, adapter->hw.hw_addr + tx_ring->head);
1778         writel(0, adapter->hw.hw_addr + tx_ring->tail);
1779 }
1780
1781 /**
1782  * e1000e_free_tx_resources - Free Tx Resources per Queue
1783  * @adapter: board private structure
1784  *
1785  * Free all transmit software resources
1786  **/
1787 void e1000e_free_tx_resources(struct e1000_adapter *adapter)
1788 {
1789         struct pci_dev *pdev = adapter->pdev;
1790         struct e1000_ring *tx_ring = adapter->tx_ring;
1791
1792         e1000_clean_tx_ring(adapter);
1793
1794         vfree(tx_ring->buffer_info);
1795         tx_ring->buffer_info = NULL;
1796
1797         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1798                           tx_ring->dma);
1799         tx_ring->desc = NULL;
1800 }
1801
1802 /**
1803  * e1000e_free_rx_resources - Free Rx Resources
1804  * @adapter: board private structure
1805  *
1806  * Free all receive software resources
1807  **/
1808
1809 void e1000e_free_rx_resources(struct e1000_adapter *adapter)
1810 {
1811         struct pci_dev *pdev = adapter->pdev;
1812         struct e1000_ring *rx_ring = adapter->rx_ring;
1813         int i;
1814
1815         e1000_clean_rx_ring(adapter);
1816
1817         for (i = 0; i < rx_ring->count; i++) {
1818                 kfree(rx_ring->buffer_info[i].ps_pages);
1819         }
1820
1821         vfree(rx_ring->buffer_info);
1822         rx_ring->buffer_info = NULL;
1823
1824         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1825                           rx_ring->dma);
1826         rx_ring->desc = NULL;
1827 }
1828
1829 /**
1830  * e1000_update_itr - update the dynamic ITR value based on statistics
1831  * @adapter: pointer to adapter
1832  * @itr_setting: current adapter->itr
1833  * @packets: the number of packets during this measurement interval
1834  * @bytes: the number of bytes during this measurement interval
1835  *
1836  *      Stores a new ITR value based on packets and byte
1837  *      counts during the last interrupt.  The advantage of per interrupt
1838  *      computation is faster updates and more accurate ITR for the current
1839  *      traffic pattern.  Constants in this function were computed
1840  *      based on theoretical maximum wire speed and thresholds were set based
1841  *      on testing data as well as attempting to minimize response time
1842  *      while increasing bulk throughput.  This functionality is controlled
1843  *      by the InterruptThrottleRate module parameter.
1844  **/
1845 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
1846                                      u16 itr_setting, int packets,
1847                                      int bytes)
1848 {
1849         unsigned int retval = itr_setting;
1850
1851         if (packets == 0)
1852                 goto update_itr_done;
1853
1854         switch (itr_setting) {
1855         case lowest_latency:
1856                 /* handle TSO and jumbo frames */
1857                 if (bytes/packets > 8000)
1858                         retval = bulk_latency;
1859                 else if ((packets < 5) && (bytes > 512)) {
1860                         retval = low_latency;
1861                 }
1862                 break;
1863         case low_latency:  /* 50 usec aka 20000 ints/s */
1864                 if (bytes > 10000) {
1865                         /* this if handles the TSO accounting */
1866                         if (bytes/packets > 8000) {
1867                                 retval = bulk_latency;
1868                         } else if ((packets < 10) || ((bytes/packets) > 1200)) {
1869                                 retval = bulk_latency;
1870                         } else if ((packets > 35)) {
1871                                 retval = lowest_latency;
1872                         }
1873                 } else if (bytes/packets > 2000) {
1874                         retval = bulk_latency;
1875                 } else if (packets <= 2 && bytes < 512) {
1876                         retval = lowest_latency;
1877                 }
1878                 break;
1879         case bulk_latency: /* 250 usec aka 4000 ints/s */
1880                 if (bytes > 25000) {
1881                         if (packets > 35) {
1882                                 retval = low_latency;
1883                         }
1884                 } else if (bytes < 6000) {
1885                         retval = low_latency;
1886                 }
1887                 break;
1888         }
1889
1890 update_itr_done:
1891         return retval;
1892 }
1893
1894 static void e1000_set_itr(struct e1000_adapter *adapter)
1895 {
1896         struct e1000_hw *hw = &adapter->hw;
1897         u16 current_itr;
1898         u32 new_itr = adapter->itr;
1899
1900         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
1901         if (adapter->link_speed != SPEED_1000) {
1902                 current_itr = 0;
1903                 new_itr = 4000;
1904                 goto set_itr_now;
1905         }
1906
1907         adapter->tx_itr = e1000_update_itr(adapter,
1908                                     adapter->tx_itr,
1909                                     adapter->total_tx_packets,
1910                                     adapter->total_tx_bytes);
1911         /* conservative mode (itr 3) eliminates the lowest_latency setting */
1912         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
1913                 adapter->tx_itr = low_latency;
1914
1915         adapter->rx_itr = e1000_update_itr(adapter,
1916                                     adapter->rx_itr,
1917                                     adapter->total_rx_packets,
1918                                     adapter->total_rx_bytes);
1919         /* conservative mode (itr 3) eliminates the lowest_latency setting */
1920         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
1921                 adapter->rx_itr = low_latency;
1922
1923         current_itr = max(adapter->rx_itr, adapter->tx_itr);
1924
1925         switch (current_itr) {
1926         /* counts and packets in update_itr are dependent on these numbers */
1927         case lowest_latency:
1928                 new_itr = 70000;
1929                 break;
1930         case low_latency:
1931                 new_itr = 20000; /* aka hwitr = ~200 */
1932                 break;
1933         case bulk_latency:
1934                 new_itr = 4000;
1935                 break;
1936         default:
1937                 break;
1938         }
1939
1940 set_itr_now:
1941         if (new_itr != adapter->itr) {
1942                 /*
1943                  * this attempts to bias the interrupt rate towards Bulk
1944                  * by adding intermediate steps when interrupt rate is
1945                  * increasing
1946                  */
1947                 new_itr = new_itr > adapter->itr ?
1948                              min(adapter->itr + (new_itr >> 2), new_itr) :
1949                              new_itr;
1950                 adapter->itr = new_itr;
1951                 adapter->rx_ring->itr_val = new_itr;
1952                 if (adapter->msix_entries)
1953                         adapter->rx_ring->set_itr = 1;
1954                 else
1955                         ew32(ITR, 1000000000 / (new_itr * 256));
1956         }
1957 }
1958
1959 /**
1960  * e1000_alloc_queues - Allocate memory for all rings
1961  * @adapter: board private structure to initialize
1962  **/
1963 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1964 {
1965         adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
1966         if (!adapter->tx_ring)
1967                 goto err;
1968
1969         adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
1970         if (!adapter->rx_ring)
1971                 goto err;
1972
1973         return 0;
1974 err:
1975         e_err("Unable to allocate memory for queues\n");
1976         kfree(adapter->rx_ring);
1977         kfree(adapter->tx_ring);
1978         return -ENOMEM;
1979 }
1980
1981 /**
1982  * e1000_clean - NAPI Rx polling callback
1983  * @napi: struct associated with this polling callback
1984  * @budget: amount of packets driver is allowed to process this poll
1985  **/
1986 static int e1000_clean(struct napi_struct *napi, int budget)
1987 {
1988         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
1989         struct e1000_hw *hw = &adapter->hw;
1990         struct net_device *poll_dev = adapter->netdev;
1991         int tx_cleaned = 1, work_done = 0;
1992
1993         adapter = netdev_priv(poll_dev);
1994
1995         if (adapter->msix_entries &&
1996             !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
1997                 goto clean_rx;
1998
1999         tx_cleaned = e1000_clean_tx_irq(adapter);
2000
2001 clean_rx:
2002         adapter->clean_rx(adapter, &work_done, budget);
2003
2004         if (!tx_cleaned)
2005                 work_done = budget;
2006
2007         /* If budget not fully consumed, exit the polling mode */
2008         if (work_done < budget) {
2009                 if (adapter->itr_setting & 3)
2010                         e1000_set_itr(adapter);
2011                 napi_complete(napi);
2012                 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2013                         if (adapter->msix_entries)
2014                                 ew32(IMS, adapter->rx_ring->ims_val);
2015                         else
2016                                 e1000_irq_enable(adapter);
2017                 }
2018         }
2019
2020         return work_done;
2021 }
2022
2023 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2024 {
2025         struct e1000_adapter *adapter = netdev_priv(netdev);
2026         struct e1000_hw *hw = &adapter->hw;
2027         u32 vfta, index;
2028
2029         /* don't update vlan cookie if already programmed */
2030         if ((adapter->hw.mng_cookie.status &
2031              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2032             (vid == adapter->mng_vlan_id))
2033                 return;
2034
2035         /* add VID to filter table */
2036         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2037                 index = (vid >> 5) & 0x7F;
2038                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2039                 vfta |= (1 << (vid & 0x1F));
2040                 hw->mac.ops.write_vfta(hw, index, vfta);
2041         }
2042 }
2043
2044 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2045 {
2046         struct e1000_adapter *adapter = netdev_priv(netdev);
2047         struct e1000_hw *hw = &adapter->hw;
2048         u32 vfta, index;
2049
2050         if (!test_bit(__E1000_DOWN, &adapter->state))
2051                 e1000_irq_disable(adapter);
2052         vlan_group_set_device(adapter->vlgrp, vid, NULL);
2053
2054         if (!test_bit(__E1000_DOWN, &adapter->state))
2055                 e1000_irq_enable(adapter);
2056
2057         if ((adapter->hw.mng_cookie.status &
2058              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2059             (vid == adapter->mng_vlan_id)) {
2060                 /* release control to f/w */
2061                 e1000_release_hw_control(adapter);
2062                 return;
2063         }
2064
2065         /* remove VID from filter table */
2066         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2067                 index = (vid >> 5) & 0x7F;
2068                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2069                 vfta &= ~(1 << (vid & 0x1F));
2070                 hw->mac.ops.write_vfta(hw, index, vfta);
2071         }
2072 }
2073
2074 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2075 {
2076         struct net_device *netdev = adapter->netdev;
2077         u16 vid = adapter->hw.mng_cookie.vlan_id;
2078         u16 old_vid = adapter->mng_vlan_id;
2079
2080         if (!adapter->vlgrp)
2081                 return;
2082
2083         if (!vlan_group_get_device(adapter->vlgrp, vid)) {
2084                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2085                 if (adapter->hw.mng_cookie.status &
2086                         E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2087                         e1000_vlan_rx_add_vid(netdev, vid);
2088                         adapter->mng_vlan_id = vid;
2089                 }
2090
2091                 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
2092                                 (vid != old_vid) &&
2093                     !vlan_group_get_device(adapter->vlgrp, old_vid))
2094                         e1000_vlan_rx_kill_vid(netdev, old_vid);
2095         } else {
2096                 adapter->mng_vlan_id = vid;
2097         }
2098 }
2099
2100
2101 static void e1000_vlan_rx_register(struct net_device *netdev,
2102                                    struct vlan_group *grp)
2103 {
2104         struct e1000_adapter *adapter = netdev_priv(netdev);
2105         struct e1000_hw *hw = &adapter->hw;
2106         u32 ctrl, rctl;
2107
2108         if (!test_bit(__E1000_DOWN, &adapter->state))
2109                 e1000_irq_disable(adapter);
2110         adapter->vlgrp = grp;
2111
2112         if (grp) {
2113                 /* enable VLAN tag insert/strip */
2114                 ctrl = er32(CTRL);
2115                 ctrl |= E1000_CTRL_VME;
2116                 ew32(CTRL, ctrl);
2117
2118                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2119                         /* enable VLAN receive filtering */
2120                         rctl = er32(RCTL);
2121                         rctl &= ~E1000_RCTL_CFIEN;
2122                         ew32(RCTL, rctl);
2123                         e1000_update_mng_vlan(adapter);
2124                 }
2125         } else {
2126                 /* disable VLAN tag insert/strip */
2127                 ctrl = er32(CTRL);
2128                 ctrl &= ~E1000_CTRL_VME;
2129                 ew32(CTRL, ctrl);
2130
2131                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2132                         if (adapter->mng_vlan_id !=
2133                             (u16)E1000_MNG_VLAN_NONE) {
2134                                 e1000_vlan_rx_kill_vid(netdev,
2135                                                        adapter->mng_vlan_id);
2136                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2137                         }
2138                 }
2139         }
2140
2141         if (!test_bit(__E1000_DOWN, &adapter->state))
2142                 e1000_irq_enable(adapter);
2143 }
2144
2145 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2146 {
2147         u16 vid;
2148
2149         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
2150
2151         if (!adapter->vlgrp)
2152                 return;
2153
2154         for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
2155                 if (!vlan_group_get_device(adapter->vlgrp, vid))
2156                         continue;
2157                 e1000_vlan_rx_add_vid(adapter->netdev, vid);
2158         }
2159 }
2160
2161 static void e1000_init_manageability(struct e1000_adapter *adapter)
2162 {
2163         struct e1000_hw *hw = &adapter->hw;
2164         u32 manc, manc2h;
2165
2166         if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2167                 return;
2168
2169         manc = er32(MANC);
2170
2171         /*
2172          * enable receiving management packets to the host. this will probably
2173          * generate destination unreachable messages from the host OS, but
2174          * the packets will be handled on SMBUS
2175          */
2176         manc |= E1000_MANC_EN_MNG2HOST;
2177         manc2h = er32(MANC2H);
2178 #define E1000_MNG2HOST_PORT_623 (1 << 5)
2179 #define E1000_MNG2HOST_PORT_664 (1 << 6)
2180         manc2h |= E1000_MNG2HOST_PORT_623;
2181         manc2h |= E1000_MNG2HOST_PORT_664;
2182         ew32(MANC2H, manc2h);
2183         ew32(MANC, manc);
2184 }
2185
2186 /**
2187  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
2188  * @adapter: board private structure
2189  *
2190  * Configure the Tx unit of the MAC after a reset.
2191  **/
2192 static void e1000_configure_tx(struct e1000_adapter *adapter)
2193 {
2194         struct e1000_hw *hw = &adapter->hw;
2195         struct e1000_ring *tx_ring = adapter->tx_ring;
2196         u64 tdba;
2197         u32 tdlen, tctl, tipg, tarc;
2198         u32 ipgr1, ipgr2;
2199
2200         /* Setup the HW Tx Head and Tail descriptor pointers */
2201         tdba = tx_ring->dma;
2202         tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2203         ew32(TDBAL, (tdba & DMA_BIT_MASK(32)));
2204         ew32(TDBAH, (tdba >> 32));
2205         ew32(TDLEN, tdlen);
2206         ew32(TDH, 0);
2207         ew32(TDT, 0);
2208         tx_ring->head = E1000_TDH;
2209         tx_ring->tail = E1000_TDT;
2210
2211         /* Set the default values for the Tx Inter Packet Gap timer */
2212         tipg = DEFAULT_82543_TIPG_IPGT_COPPER;          /*  8  */
2213         ipgr1 = DEFAULT_82543_TIPG_IPGR1;               /*  8  */
2214         ipgr2 = DEFAULT_82543_TIPG_IPGR2;               /*  6  */
2215
2216         if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
2217                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /*  7  */
2218
2219         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
2220         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
2221         ew32(TIPG, tipg);
2222
2223         /* Set the Tx Interrupt Delay register */
2224         ew32(TIDV, adapter->tx_int_delay);
2225         /* Tx irq moderation */
2226         ew32(TADV, adapter->tx_abs_int_delay);
2227
2228         /* Program the Transmit Control Register */
2229         tctl = er32(TCTL);
2230         tctl &= ~E1000_TCTL_CT;
2231         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2232                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2233
2234         if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2235                 tarc = er32(TARC(0));
2236                 /*
2237                  * set the speed mode bit, we'll clear it if we're not at
2238                  * gigabit link later
2239                  */
2240 #define SPEED_MODE_BIT (1 << 21)
2241                 tarc |= SPEED_MODE_BIT;
2242                 ew32(TARC(0), tarc);
2243         }
2244
2245         /* errata: program both queues to unweighted RR */
2246         if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2247                 tarc = er32(TARC(0));
2248                 tarc |= 1;
2249                 ew32(TARC(0), tarc);
2250                 tarc = er32(TARC(1));
2251                 tarc |= 1;
2252                 ew32(TARC(1), tarc);
2253         }
2254
2255         /* Setup Transmit Descriptor Settings for eop descriptor */
2256         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2257
2258         /* only set IDE if we are delaying interrupts using the timers */
2259         if (adapter->tx_int_delay)
2260                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2261
2262         /* enable Report Status bit */
2263         adapter->txd_cmd |= E1000_TXD_CMD_RS;
2264
2265         ew32(TCTL, tctl);
2266
2267         e1000e_config_collision_dist(hw);
2268
2269         adapter->tx_queue_len = adapter->netdev->tx_queue_len;
2270 }
2271
2272 /**
2273  * e1000_setup_rctl - configure the receive control registers
2274  * @adapter: Board private structure
2275  **/
2276 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2277                            (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2278 static void e1000_setup_rctl(struct e1000_adapter *adapter)
2279 {
2280         struct e1000_hw *hw = &adapter->hw;
2281         u32 rctl, rfctl;
2282         u32 psrctl = 0;
2283         u32 pages = 0;
2284
2285         /* Program MC offset vector base */
2286         rctl = er32(RCTL);
2287         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2288         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2289                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2290                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2291
2292         /* Do not Store bad packets */
2293         rctl &= ~E1000_RCTL_SBP;
2294
2295         /* Enable Long Packet receive */
2296         if (adapter->netdev->mtu <= ETH_DATA_LEN)
2297                 rctl &= ~E1000_RCTL_LPE;
2298         else
2299                 rctl |= E1000_RCTL_LPE;
2300
2301         /* Some systems expect that the CRC is included in SMBUS traffic. The
2302          * hardware strips the CRC before sending to both SMBUS (BMC) and to
2303          * host memory when this is enabled
2304          */
2305         if (adapter->flags2 & FLAG2_CRC_STRIPPING)
2306                 rctl |= E1000_RCTL_SECRC;
2307
2308         /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
2309         if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
2310                 u16 phy_data;
2311
2312                 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
2313                 phy_data &= 0xfff8;
2314                 phy_data |= (1 << 2);
2315                 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
2316
2317                 e1e_rphy(hw, 22, &phy_data);
2318                 phy_data &= 0x0fff;
2319                 phy_data |= (1 << 14);
2320                 e1e_wphy(hw, 0x10, 0x2823);
2321                 e1e_wphy(hw, 0x11, 0x0003);
2322                 e1e_wphy(hw, 22, phy_data);
2323         }
2324
2325         /* Setup buffer sizes */
2326         rctl &= ~E1000_RCTL_SZ_4096;
2327         rctl |= E1000_RCTL_BSEX;
2328         switch (adapter->rx_buffer_len) {
2329         case 256:
2330                 rctl |= E1000_RCTL_SZ_256;
2331                 rctl &= ~E1000_RCTL_BSEX;
2332                 break;
2333         case 512:
2334                 rctl |= E1000_RCTL_SZ_512;
2335                 rctl &= ~E1000_RCTL_BSEX;
2336                 break;
2337         case 1024:
2338                 rctl |= E1000_RCTL_SZ_1024;
2339                 rctl &= ~E1000_RCTL_BSEX;
2340                 break;
2341         case 2048:
2342         default:
2343                 rctl |= E1000_RCTL_SZ_2048;
2344                 rctl &= ~E1000_RCTL_BSEX;
2345                 break;
2346         case 4096:
2347                 rctl |= E1000_RCTL_SZ_4096;
2348                 break;
2349         case 8192:
2350                 rctl |= E1000_RCTL_SZ_8192;
2351                 break;
2352         case 16384:
2353                 rctl |= E1000_RCTL_SZ_16384;
2354                 break;
2355         }
2356
2357         /*
2358          * 82571 and greater support packet-split where the protocol
2359          * header is placed in skb->data and the packet data is
2360          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2361          * In the case of a non-split, skb->data is linearly filled,
2362          * followed by the page buffers.  Therefore, skb->data is
2363          * sized to hold the largest protocol header.
2364          *
2365          * allocations using alloc_page take too long for regular MTU
2366          * so only enable packet split for jumbo frames
2367          *
2368          * Using pages when the page size is greater than 16k wastes
2369          * a lot of memory, since we allocate 3 pages at all times
2370          * per packet.
2371          */
2372         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2373         if (!(adapter->flags & FLAG_IS_ICH) && (pages <= 3) &&
2374             (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2375                 adapter->rx_ps_pages = pages;
2376         else
2377                 adapter->rx_ps_pages = 0;
2378
2379         if (adapter->rx_ps_pages) {
2380                 /* Configure extra packet-split registers */
2381                 rfctl = er32(RFCTL);
2382                 rfctl |= E1000_RFCTL_EXTEN;
2383                 /*
2384                  * disable packet split support for IPv6 extension headers,
2385                  * because some malformed IPv6 headers can hang the Rx
2386                  */
2387                 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
2388                           E1000_RFCTL_NEW_IPV6_EXT_DIS);
2389
2390                 ew32(RFCTL, rfctl);
2391
2392                 /* Enable Packet split descriptors */
2393                 rctl |= E1000_RCTL_DTYP_PS;
2394
2395                 psrctl |= adapter->rx_ps_bsize0 >>
2396                         E1000_PSRCTL_BSIZE0_SHIFT;
2397
2398                 switch (adapter->rx_ps_pages) {
2399                 case 3:
2400                         psrctl |= PAGE_SIZE <<
2401                                 E1000_PSRCTL_BSIZE3_SHIFT;
2402                 case 2:
2403                         psrctl |= PAGE_SIZE <<
2404                                 E1000_PSRCTL_BSIZE2_SHIFT;
2405                 case 1:
2406                         psrctl |= PAGE_SIZE >>
2407                                 E1000_PSRCTL_BSIZE1_SHIFT;
2408                         break;
2409                 }
2410
2411                 ew32(PSRCTL, psrctl);
2412         }
2413
2414         ew32(RCTL, rctl);
2415         /* just started the receive unit, no need to restart */
2416         adapter->flags &= ~FLAG_RX_RESTART_NOW;
2417 }
2418
2419 /**
2420  * e1000_configure_rx - Configure Receive Unit after Reset
2421  * @adapter: board private structure
2422  *
2423  * Configure the Rx unit of the MAC after a reset.
2424  **/
2425 static void e1000_configure_rx(struct e1000_adapter *adapter)
2426 {
2427         struct e1000_hw *hw = &adapter->hw;
2428         struct e1000_ring *rx_ring = adapter->rx_ring;
2429         u64 rdba;
2430         u32 rdlen, rctl, rxcsum, ctrl_ext;
2431
2432         if (adapter->rx_ps_pages) {
2433                 /* this is a 32 byte descriptor */
2434                 rdlen = rx_ring->count *
2435                         sizeof(union e1000_rx_desc_packet_split);
2436                 adapter->clean_rx = e1000_clean_rx_irq_ps;
2437                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2438         } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
2439                 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2440                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
2441                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
2442         } else {
2443                 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2444                 adapter->clean_rx = e1000_clean_rx_irq;
2445                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2446         }
2447
2448         /* disable receives while setting up the descriptors */
2449         rctl = er32(RCTL);
2450         ew32(RCTL, rctl & ~E1000_RCTL_EN);
2451         e1e_flush();
2452         msleep(10);
2453
2454         /* set the Receive Delay Timer Register */
2455         ew32(RDTR, adapter->rx_int_delay);
2456
2457         /* irq moderation */
2458         ew32(RADV, adapter->rx_abs_int_delay);
2459         if (adapter->itr_setting != 0)
2460                 ew32(ITR, 1000000000 / (adapter->itr * 256));
2461
2462         ctrl_ext = er32(CTRL_EXT);
2463         /* Auto-Mask interrupts upon ICR access */
2464         ctrl_ext |= E1000_CTRL_EXT_IAME;
2465         ew32(IAM, 0xffffffff);
2466         ew32(CTRL_EXT, ctrl_ext);
2467         e1e_flush();
2468
2469         /*
2470          * Setup the HW Rx Head and Tail Descriptor Pointers and
2471          * the Base and Length of the Rx Descriptor Ring
2472          */
2473         rdba = rx_ring->dma;
2474         ew32(RDBAL, (rdba & DMA_BIT_MASK(32)));
2475         ew32(RDBAH, (rdba >> 32));
2476         ew32(RDLEN, rdlen);
2477         ew32(RDH, 0);
2478         ew32(RDT, 0);
2479         rx_ring->head = E1000_RDH;
2480         rx_ring->tail = E1000_RDT;
2481
2482         /* Enable Receive Checksum Offload for TCP and UDP */
2483         rxcsum = er32(RXCSUM);
2484         if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
2485                 rxcsum |= E1000_RXCSUM_TUOFL;
2486
2487                 /*
2488                  * IPv4 payload checksum for UDP fragments must be
2489                  * used in conjunction with packet-split.
2490                  */
2491                 if (adapter->rx_ps_pages)
2492                         rxcsum |= E1000_RXCSUM_IPPCSE;
2493         } else {
2494                 rxcsum &= ~E1000_RXCSUM_TUOFL;
2495                 /* no need to clear IPPCSE as it defaults to 0 */
2496         }
2497         ew32(RXCSUM, rxcsum);
2498
2499         /*
2500          * Enable early receives on supported devices, only takes effect when
2501          * packet size is equal or larger than the specified value (in 8 byte
2502          * units), e.g. using jumbo frames when setting to E1000_ERT_2048
2503          */
2504         if (adapter->flags & FLAG_HAS_ERT) {
2505                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
2506                         u32 rxdctl = er32(RXDCTL(0));
2507                         ew32(RXDCTL(0), rxdctl | 0x3);
2508                         ew32(ERT, E1000_ERT_2048 | (1 << 13));
2509                         /*
2510                          * With jumbo frames and early-receive enabled,
2511                          * excessive C-state transition latencies result in
2512                          * dropped transactions.
2513                          */
2514                         pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2515                                                   adapter->netdev->name, 55);
2516                 } else {
2517                         pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2518                                                   adapter->netdev->name,
2519                                                   PM_QOS_DEFAULT_VALUE);
2520                 }
2521         }
2522
2523         /* Enable Receives */
2524         ew32(RCTL, rctl);
2525 }
2526
2527 /**
2528  *  e1000_update_mc_addr_list - Update Multicast addresses
2529  *  @hw: pointer to the HW structure
2530  *  @mc_addr_list: array of multicast addresses to program
2531  *  @mc_addr_count: number of multicast addresses to program
2532  *  @rar_used_count: the first RAR register free to program
2533  *  @rar_count: total number of supported Receive Address Registers
2534  *
2535  *  Updates the Receive Address Registers and Multicast Table Array.
2536  *  The caller must have a packed mc_addr_list of multicast addresses.
2537  *  The parameter rar_count will usually be hw->mac.rar_entry_count
2538  *  unless there are workarounds that change this.  Currently no func pointer
2539  *  exists and all implementations are handled in the generic version of this
2540  *  function.
2541  **/
2542 static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
2543                                       u32 mc_addr_count, u32 rar_used_count,
2544                                       u32 rar_count)
2545 {
2546         hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count,
2547                                         rar_used_count, rar_count);
2548 }
2549
2550 /**
2551  * e1000_set_multi - Multicast and Promiscuous mode set
2552  * @netdev: network interface device structure
2553  *
2554  * The set_multi entry point is called whenever the multicast address
2555  * list or the network interface flags are updated.  This routine is
2556  * responsible for configuring the hardware for proper multicast,
2557  * promiscuous mode, and all-multi behavior.
2558  **/
2559 static void e1000_set_multi(struct net_device *netdev)
2560 {
2561         struct e1000_adapter *adapter = netdev_priv(netdev);
2562         struct e1000_hw *hw = &adapter->hw;
2563         struct e1000_mac_info *mac = &hw->mac;
2564         struct dev_mc_list *mc_ptr;
2565         u8  *mta_list;
2566         u32 rctl;
2567         int i;
2568
2569         /* Check for Promiscuous and All Multicast modes */
2570
2571         rctl = er32(RCTL);
2572
2573         if (netdev->flags & IFF_PROMISC) {
2574                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2575                 rctl &= ~E1000_RCTL_VFE;
2576         } else {
2577                 if (netdev->flags & IFF_ALLMULTI) {
2578                         rctl |= E1000_RCTL_MPE;
2579                         rctl &= ~E1000_RCTL_UPE;
2580                 } else {
2581                         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2582                 }
2583                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
2584                         rctl |= E1000_RCTL_VFE;
2585         }
2586
2587         ew32(RCTL, rctl);
2588
2589         if (netdev->mc_count) {
2590                 mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC);
2591                 if (!mta_list)
2592                         return;
2593
2594                 /* prepare a packed array of only addresses. */
2595                 mc_ptr = netdev->mc_list;
2596
2597                 for (i = 0; i < netdev->mc_count; i++) {
2598                         if (!mc_ptr)
2599                                 break;
2600                         memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr,
2601                                ETH_ALEN);
2602                         mc_ptr = mc_ptr->next;
2603                 }
2604
2605                 e1000_update_mc_addr_list(hw, mta_list, i, 1,
2606                                           mac->rar_entry_count);
2607                 kfree(mta_list);
2608         } else {
2609                 /*
2610                  * if we're called from probe, we might not have
2611                  * anything to do here, so clear out the list
2612                  */
2613                 e1000_update_mc_addr_list(hw, NULL, 0, 1, mac->rar_entry_count);
2614         }
2615 }
2616
2617 /**
2618  * e1000_configure - configure the hardware for Rx and Tx
2619  * @adapter: private board structure
2620  **/
2621 static void e1000_configure(struct e1000_adapter *adapter)
2622 {
2623         e1000_set_multi(adapter->netdev);
2624
2625         e1000_restore_vlan(adapter);
2626         e1000_init_manageability(adapter);
2627
2628         e1000_configure_tx(adapter);
2629         e1000_setup_rctl(adapter);
2630         e1000_configure_rx(adapter);
2631         adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring));
2632 }
2633
2634 /**
2635  * e1000e_power_up_phy - restore link in case the phy was powered down
2636  * @adapter: address of board private structure
2637  *
2638  * The phy may be powered down to save power and turn off link when the
2639  * driver is unloaded and wake on lan is not enabled (among others)
2640  * *** this routine MUST be followed by a call to e1000e_reset ***
2641  **/
2642 void e1000e_power_up_phy(struct e1000_adapter *adapter)
2643 {
2644         if (adapter->hw.phy.ops.power_up)
2645                 adapter->hw.phy.ops.power_up(&adapter->hw);
2646
2647         adapter->hw.mac.ops.setup_link(&adapter->hw);
2648 }
2649
2650 /**
2651  * e1000_power_down_phy - Power down the PHY
2652  *
2653  * Power down the PHY so no link is implied when interface is down.
2654  * The PHY cannot be powered down if management or WoL is active.
2655  */
2656 static void e1000_power_down_phy(struct e1000_adapter *adapter)
2657 {
2658         /* WoL is enabled */
2659         if (adapter->wol)
2660                 return;
2661
2662         if (adapter->hw.phy.ops.power_down)
2663                 adapter->hw.phy.ops.power_down(&adapter->hw);
2664 }
2665
2666 /**
2667  * e1000e_reset - bring the hardware into a known good state
2668  *
2669  * This function boots the hardware and enables some settings that
2670  * require a configuration cycle of the hardware - those cannot be
2671  * set/changed during runtime. After reset the device needs to be
2672  * properly configured for Rx, Tx etc.
2673  */
2674 void e1000e_reset(struct e1000_adapter *adapter)
2675 {
2676         struct e1000_mac_info *mac = &adapter->hw.mac;
2677         struct e1000_fc_info *fc = &adapter->hw.fc;
2678         struct e1000_hw *hw = &adapter->hw;
2679         u32 tx_space, min_tx_space, min_rx_space;
2680         u32 pba = adapter->pba;
2681         u16 hwm;
2682
2683         /* reset Packet Buffer Allocation to default */
2684         ew32(PBA, pba);
2685
2686         if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
2687                 /*
2688                  * To maintain wire speed transmits, the Tx FIFO should be
2689                  * large enough to accommodate two full transmit packets,
2690                  * rounded up to the next 1KB and expressed in KB.  Likewise,
2691                  * the Rx FIFO should be large enough to accommodate at least
2692                  * one full receive packet and is similarly rounded up and
2693                  * expressed in KB.
2694                  */
2695                 pba = er32(PBA);
2696                 /* upper 16 bits has Tx packet buffer allocation size in KB */
2697                 tx_space = pba >> 16;
2698                 /* lower 16 bits has Rx packet buffer allocation size in KB */
2699                 pba &= 0xffff;
2700                 /*
2701                  * the Tx fifo also stores 16 bytes of information about the tx
2702                  * but don't include ethernet FCS because hardware appends it
2703                  */
2704                 min_tx_space = (adapter->max_frame_size +
2705                                 sizeof(struct e1000_tx_desc) -
2706                                 ETH_FCS_LEN) * 2;
2707                 min_tx_space = ALIGN(min_tx_space, 1024);
2708                 min_tx_space >>= 10;
2709                 /* software strips receive CRC, so leave room for it */
2710                 min_rx_space = adapter->max_frame_size;
2711                 min_rx_space = ALIGN(min_rx_space, 1024);
2712                 min_rx_space >>= 10;
2713
2714                 /*
2715                  * If current Tx allocation is less than the min Tx FIFO size,
2716                  * and the min Tx FIFO size is less than the current Rx FIFO
2717                  * allocation, take space away from current Rx allocation
2718                  */
2719                 if ((tx_space < min_tx_space) &&
2720                     ((min_tx_space - tx_space) < pba)) {
2721                         pba -= min_tx_space - tx_space;
2722
2723                         /*
2724                          * if short on Rx space, Rx wins and must trump tx
2725                          * adjustment or use Early Receive if available
2726                          */
2727                         if ((pba < min_rx_space) &&
2728                             (!(adapter->flags & FLAG_HAS_ERT)))
2729                                 /* ERT enabled in e1000_configure_rx */
2730                                 pba = min_rx_space;
2731                 }
2732
2733                 ew32(PBA, pba);
2734         }
2735
2736
2737         /*
2738          * flow control settings
2739          *
2740          * The high water mark must be low enough to fit one full frame
2741          * (or the size used for early receive) above it in the Rx FIFO.
2742          * Set it to the lower of:
2743          * - 90% of the Rx FIFO size, and
2744          * - the full Rx FIFO size minus the early receive size (for parts
2745          *   with ERT support assuming ERT set to E1000_ERT_2048), or
2746          * - the full Rx FIFO size minus one full frame
2747          */
2748         if (hw->mac.type == e1000_pchlan) {
2749                 /*
2750                  * Workaround PCH LOM adapter hangs with certain network
2751                  * loads.  If hangs persist, try disabling Tx flow control.
2752                  */
2753                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
2754                         fc->high_water = 0x3500;
2755                         fc->low_water  = 0x1500;
2756                 } else {
2757                         fc->high_water = 0x5000;
2758                         fc->low_water  = 0x3000;
2759                 }
2760         } else {
2761                 if ((adapter->flags & FLAG_HAS_ERT) &&
2762                     (adapter->netdev->mtu > ETH_DATA_LEN))
2763                         hwm = min(((pba << 10) * 9 / 10),
2764                                   ((pba << 10) - (E1000_ERT_2048 << 3)));
2765                 else
2766                         hwm = min(((pba << 10) * 9 / 10),
2767                                   ((pba << 10) - adapter->max_frame_size));
2768
2769                 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
2770                 fc->low_water = fc->high_water - 8;
2771         }
2772
2773         if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
2774                 fc->pause_time = 0xFFFF;
2775         else
2776                 fc->pause_time = E1000_FC_PAUSE_TIME;
2777         fc->send_xon = 1;
2778         fc->current_mode = fc->requested_mode;
2779
2780         /* Allow time for pending master requests to run */
2781         mac->ops.reset_hw(hw);
2782
2783         /*
2784          * For parts with AMT enabled, let the firmware know
2785          * that the network interface is in control
2786          */
2787         if (adapter->flags & FLAG_HAS_AMT)
2788                 e1000_get_hw_control(adapter);
2789
2790         ew32(WUC, 0);
2791         if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP)
2792                 e1e_wphy(&adapter->hw, BM_WUC, 0);
2793
2794         if (mac->ops.init_hw(hw))
2795                 e_err("Hardware Error\n");
2796
2797         /* additional part of the flow-control workaround above */
2798         if (hw->mac.type == e1000_pchlan)
2799                 ew32(FCRTV_PCH, 0x1000);
2800
2801         e1000_update_mng_vlan(adapter);
2802
2803         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2804         ew32(VET, ETH_P_8021Q);
2805
2806         e1000e_reset_adaptive(hw);
2807         e1000_get_phy_info(hw);
2808
2809         if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
2810             !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
2811                 u16 phy_data = 0;
2812                 /*
2813                  * speed up time to link by disabling smart power down, ignore
2814                  * the return value of this function because there is nothing
2815                  * different we would do if it failed
2816                  */
2817                 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
2818                 phy_data &= ~IGP02E1000_PM_SPD;
2819                 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
2820         }
2821 }
2822
2823 int e1000e_up(struct e1000_adapter *adapter)
2824 {
2825         struct e1000_hw *hw = &adapter->hw;
2826
2827         /* DMA latency requirement to workaround early-receive/jumbo issue */
2828         if (adapter->flags & FLAG_HAS_ERT)
2829                 pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY,
2830                                        adapter->netdev->name,
2831                                        PM_QOS_DEFAULT_VALUE);
2832
2833         /* hardware has been reset, we need to reload some things */
2834         e1000_configure(adapter);
2835
2836         clear_bit(__E1000_DOWN, &adapter->state);
2837
2838         napi_enable(&adapter->napi);
2839         if (adapter->msix_entries)
2840                 e1000_configure_msix(adapter);
2841         e1000_irq_enable(adapter);
2842
2843         netif_wake_queue(adapter->netdev);
2844
2845         /* fire a link change interrupt to start the watchdog */
2846         ew32(ICS, E1000_ICS_LSC);
2847         return 0;
2848 }
2849
2850 void e1000e_down(struct e1000_adapter *adapter)
2851 {
2852         struct net_device *netdev = adapter->netdev;
2853         struct e1000_hw *hw = &adapter->hw;
2854         u32 tctl, rctl;
2855
2856         /*
2857          * signal that we're down so the interrupt handler does not
2858          * reschedule our watchdog timer
2859          */
2860         set_bit(__E1000_DOWN, &adapter->state);
2861
2862         /* disable receives in the hardware */
2863         rctl = er32(RCTL);
2864         ew32(RCTL, rctl & ~E1000_RCTL_EN);
2865         /* flush and sleep below */
2866
2867         netif_stop_queue(netdev);
2868
2869         /* disable transmits in the hardware */
2870         tctl = er32(TCTL);
2871         tctl &= ~E1000_TCTL_EN;
2872         ew32(TCTL, tctl);
2873         /* flush both disables and wait for them to finish */
2874         e1e_flush();
2875         msleep(10);
2876
2877         napi_disable(&adapter->napi);
2878         e1000_irq_disable(adapter);
2879
2880         del_timer_sync(&adapter->watchdog_timer);
2881         del_timer_sync(&adapter->phy_info_timer);
2882
2883         netdev->tx_queue_len = adapter->tx_queue_len;
2884         netif_carrier_off(netdev);
2885         adapter->link_speed = 0;
2886         adapter->link_duplex = 0;
2887
2888         if (!pci_channel_offline(adapter->pdev))
2889                 e1000e_reset(adapter);
2890         e1000_clean_tx_ring(adapter);
2891         e1000_clean_rx_ring(adapter);
2892
2893         if (adapter->flags & FLAG_HAS_ERT)
2894                 pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY,
2895                                           adapter->netdev->name);
2896
2897         /*
2898          * TODO: for power management, we could drop the link and
2899          * pci_disable_device here.
2900          */
2901 }
2902
2903 void e1000e_reinit_locked(struct e1000_adapter *adapter)
2904 {
2905         might_sleep();
2906         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
2907                 msleep(1);
2908         e1000e_down(adapter);
2909         e1000e_up(adapter);
2910         clear_bit(__E1000_RESETTING, &adapter->state);
2911 }
2912
2913 /**
2914  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
2915  * @adapter: board private structure to initialize
2916  *
2917  * e1000_sw_init initializes the Adapter private data structure.
2918  * Fields are initialized based on PCI device information and
2919  * OS network device settings (MTU size).
2920  **/
2921 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
2922 {
2923         struct net_device *netdev = adapter->netdev;
2924
2925         adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
2926         adapter->rx_ps_bsize0 = 128;
2927         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
2928         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2929
2930         e1000e_set_interrupt_capability(adapter);
2931
2932         if (e1000_alloc_queues(adapter))
2933                 return -ENOMEM;
2934
2935         /* Explicitly disable IRQ since the NIC can be in any state. */
2936         e1000_irq_disable(adapter);
2937
2938         set_bit(__E1000_DOWN, &adapter->state);
2939         return 0;
2940 }
2941
2942 /**
2943  * e1000_intr_msi_test - Interrupt Handler
2944  * @irq: interrupt number
2945  * @data: pointer to a network interface device structure
2946  **/
2947 static irqreturn_t e1000_intr_msi_test(int irq, void *data)
2948 {
2949         struct net_device *netdev = data;
2950         struct e1000_adapter *adapter = netdev_priv(netdev);
2951         struct e1000_hw *hw = &adapter->hw;
2952         u32 icr = er32(ICR);
2953
2954         e_dbg("icr is %08X\n", icr);
2955         if (icr & E1000_ICR_RXSEQ) {
2956                 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
2957                 wmb();
2958         }
2959
2960         return IRQ_HANDLED;
2961 }
2962
2963 /**
2964  * e1000_test_msi_interrupt - Returns 0 for successful test
2965  * @adapter: board private struct
2966  *
2967  * code flow taken from tg3.c
2968  **/
2969 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
2970 {
2971         struct net_device *netdev = adapter->netdev;
2972         struct e1000_hw *hw = &adapter->hw;
2973         int err;
2974
2975         /* poll_enable hasn't been called yet, so don't need disable */
2976         /* clear any pending events */
2977         er32(ICR);
2978
2979         /* free the real vector and request a test handler */
2980         e1000_free_irq(adapter);
2981         e1000e_reset_interrupt_capability(adapter);
2982
2983         /* Assume that the test fails, if it succeeds then the test
2984          * MSI irq handler will unset this flag */
2985         adapter->flags |= FLAG_MSI_TEST_FAILED;
2986
2987         err = pci_enable_msi(adapter->pdev);
2988         if (err)
2989                 goto msi_test_failed;
2990
2991         err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
2992                           netdev->name, netdev);
2993         if (err) {
2994                 pci_disable_msi(adapter->pdev);
2995                 goto msi_test_failed;
2996         }
2997
2998         wmb();
2999
3000         e1000_irq_enable(adapter);
3001
3002         /* fire an unusual interrupt on the test handler */
3003         ew32(ICS, E1000_ICS_RXSEQ);
3004         e1e_flush();
3005         msleep(50);
3006
3007         e1000_irq_disable(adapter);
3008
3009         rmb();
3010
3011         if (adapter->flags & FLAG_MSI_TEST_FAILED) {
3012                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
3013                 err = -EIO;
3014                 e_info("MSI interrupt test failed!\n");
3015         }
3016
3017         free_irq(adapter->pdev->irq, netdev);
3018         pci_disable_msi(adapter->pdev);
3019
3020         if (err == -EIO)
3021                 goto msi_test_failed;
3022
3023         /* okay so the test worked, restore settings */
3024         e_dbg("MSI interrupt test succeeded!\n");
3025 msi_test_failed:
3026         e1000e_set_interrupt_capability(adapter);
3027         e1000_request_irq(adapter);
3028         return err;
3029 }
3030
3031 /**
3032  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3033  * @adapter: board private struct
3034  *
3035  * code flow taken from tg3.c, called with e1000 interrupts disabled.
3036  **/
3037 static int e1000_test_msi(struct e1000_adapter *adapter)
3038 {
3039         int err;
3040         u16 pci_cmd;
3041
3042         if (!(adapter->flags & FLAG_MSI_ENABLED))
3043                 return 0;
3044
3045         /* disable SERR in case the MSI write causes a master abort */
3046         pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3047         pci_write_config_word(adapter->pdev, PCI_COMMAND,
3048                               pci_cmd & ~PCI_COMMAND_SERR);
3049
3050         err = e1000_test_msi_interrupt(adapter);
3051
3052         /* restore previous setting of command word */
3053         pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
3054
3055         /* success ! */
3056         if (!err)
3057                 return 0;
3058
3059         /* EIO means MSI test failed */
3060         if (err != -EIO)
3061                 return err;
3062
3063         /* back to INTx mode */
3064         e_warn("MSI interrupt test failed, using legacy interrupt.\n");
3065
3066         e1000_free_irq(adapter);
3067
3068         err = e1000_request_irq(adapter);
3069
3070         return err;
3071 }
3072
3073 /**
3074  * e1000_open - Called when a network interface is made active
3075  * @netdev: network interface device structure
3076  *
3077  * Returns 0 on success, negative value on failure
3078  *
3079  * The open entry point is called when a network interface is made
3080  * active by the system (IFF_UP).  At this point all resources needed
3081  * for transmit and receive operations are allocated, the interrupt
3082  * handler is registered with the OS, the watchdog timer is started,
3083  * and the stack is notified that the interface is ready.
3084  **/
3085 static int e1000_open(struct net_device *netdev)
3086 {
3087         struct e1000_adapter *adapter = netdev_priv(netdev);
3088         struct e1000_hw *hw = &adapter->hw;
3089         int err;
3090
3091         /* disallow open during test */
3092         if (test_bit(__E1000_TESTING, &adapter->state))
3093                 return -EBUSY;
3094
3095         netif_carrier_off(netdev);
3096
3097         /* allocate transmit descriptors */
3098         err = e1000e_setup_tx_resources(adapter);
3099         if (err)
3100                 goto err_setup_tx;
3101
3102         /* allocate receive descriptors */
3103         err = e1000e_setup_rx_resources(adapter);
3104         if (err)
3105                 goto err_setup_rx;
3106
3107         e1000e_power_up_phy(adapter);
3108
3109         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3110         if ((adapter->hw.mng_cookie.status &
3111              E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
3112                 e1000_update_mng_vlan(adapter);
3113
3114         /*
3115          * If AMT is enabled, let the firmware know that the network
3116          * interface is now open
3117          */
3118         if (adapter->flags & FLAG_HAS_AMT)
3119                 e1000_get_hw_control(adapter);
3120
3121         /*
3122          * before we allocate an interrupt, we must be ready to handle it.
3123          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3124          * as soon as we call pci_request_irq, so we have to setup our
3125          * clean_rx handler before we do so.
3126          */
3127         e1000_configure(adapter);
3128
3129         err = e1000_request_irq(adapter);
3130         if (err)
3131                 goto err_req_irq;
3132
3133         /*
3134          * Work around PCIe errata with MSI interrupts causing some chipsets to
3135          * ignore e1000e MSI messages, which means we need to test our MSI
3136          * interrupt now
3137          */
3138         if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3139                 err = e1000_test_msi(adapter);
3140                 if (err) {
3141                         e_err("Interrupt allocation failed\n");
3142                         goto err_req_irq;
3143                 }
3144         }
3145
3146         /* From here on the code is the same as e1000e_up() */
3147         clear_bit(__E1000_DOWN, &adapter->state);
3148
3149         napi_enable(&adapter->napi);
3150
3151         e1000_irq_enable(adapter);
3152
3153         netif_start_queue(netdev);
3154
3155         /* fire a link status change interrupt to start the watchdog */
3156         ew32(ICS, E1000_ICS_LSC);
3157
3158         return 0;
3159
3160 err_req_irq:
3161         e1000_release_hw_control(adapter);
3162         e1000_power_down_phy(adapter);
3163         e1000e_free_rx_resources(adapter);
3164 err_setup_rx:
3165         e1000e_free_tx_resources(adapter);
3166 err_setup_tx:
3167         e1000e_reset(adapter);
3168
3169         return err;
3170 }
3171
3172 /**
3173  * e1000_close - Disables a network interface
3174  * @netdev: network interface device structure
3175  *
3176  * Returns 0, this is not allowed to fail
3177  *
3178  * The close entry point is called when an interface is de-activated
3179  * by the OS.  The hardware is still under the drivers control, but
3180  * needs to be disabled.  A global MAC reset is issued to stop the
3181  * hardware, and all transmit and receive resources are freed.
3182  **/
3183 static int e1000_close(struct net_device *netdev)
3184 {
3185         struct e1000_adapter *adapter = netdev_priv(netdev);
3186
3187         WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3188         e1000e_down(adapter);
3189         e1000_power_down_phy(adapter);
3190         e1000_free_irq(adapter);
3191
3192         e1000e_free_tx_resources(adapter);
3193         e1000e_free_rx_resources(adapter);
3194
3195         /*
3196          * kill manageability vlan ID if supported, but not if a vlan with
3197          * the same ID is registered on the host OS (let 8021q kill it)
3198          */
3199         if ((adapter->hw.mng_cookie.status &
3200                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
3201              !(adapter->vlgrp &&
3202                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
3203                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3204
3205         /*
3206          * If AMT is enabled, let the firmware know that the network
3207          * interface is now closed
3208          */
3209         if (adapter->flags & FLAG_HAS_AMT)
3210                 e1000_release_hw_control(adapter);
3211
3212         return 0;
3213 }
3214 /**
3215  * e1000_set_mac - Change the Ethernet Address of the NIC
3216  * @netdev: network interface device structure
3217  * @p: pointer to an address structure
3218  *
3219  * Returns 0 on success, negative on failure
3220  **/
3221 static int e1000_set_mac(struct net_device *netdev, void *p)
3222 {
3223         struct e1000_adapter *adapter = netdev_priv(netdev);
3224         struct sockaddr *addr = p;
3225
3226         if (!is_valid_ether_addr(addr->sa_data))
3227                 return -EADDRNOTAVAIL;
3228
3229         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3230         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
3231
3232         e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
3233
3234         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
3235                 /* activate the work around */
3236                 e1000e_set_laa_state_82571(&adapter->hw, 1);
3237
3238                 /*
3239                  * Hold a copy of the LAA in RAR[14] This is done so that
3240                  * between the time RAR[0] gets clobbered  and the time it
3241                  * gets fixed (in e1000_watchdog), the actual LAA is in one
3242                  * of the RARs and no incoming packets directed to this port
3243                  * are dropped. Eventually the LAA will be in RAR[0] and
3244                  * RAR[14]
3245                  */
3246                 e1000e_rar_set(&adapter->hw,
3247                               adapter->hw.mac.addr,
3248                               adapter->hw.mac.rar_entry_count - 1);
3249         }
3250
3251         return 0;
3252 }
3253
3254 /**
3255  * e1000e_update_phy_task - work thread to update phy
3256  * @work: pointer to our work struct
3257  *
3258  * this worker thread exists because we must acquire a
3259  * semaphore to read the phy, which we could msleep while
3260  * waiting for it, and we can't msleep in a timer.
3261  **/
3262 static void e1000e_update_phy_task(struct work_struct *work)
3263 {
3264         struct e1000_adapter *adapter = container_of(work,
3265                                         struct e1000_adapter, update_phy_task);
3266         e1000_get_phy_info(&adapter->hw);
3267 }
3268
3269 /*
3270  * Need to wait a few seconds after link up to get diagnostic information from
3271  * the phy
3272  */
3273 static void e1000_update_phy_info(unsigned long data)
3274 {
3275         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3276         schedule_work(&adapter->update_phy_task);
3277 }
3278
3279 /**
3280  * e1000e_update_stats - Update the board statistics counters
3281  * @adapter: board private structure
3282  **/
3283 void e1000e_update_stats(struct e1000_adapter *adapter)
3284 {
3285         struct net_device *netdev = adapter->netdev;
3286         struct e1000_hw *hw = &adapter->hw;
3287         struct pci_dev *pdev = adapter->pdev;
3288         u16 phy_data;
3289
3290         /*
3291          * Prevent stats update while adapter is being reset, or if the pci
3292          * connection is down.
3293          */
3294         if (adapter->link_speed == 0)
3295                 return;
3296         if (pci_channel_offline(pdev))
3297                 return;
3298
3299         adapter->stats.crcerrs += er32(CRCERRS);
3300         adapter->stats.gprc += er32(GPRC);
3301         adapter->stats.gorc += er32(GORCL);
3302         er32(GORCH); /* Clear gorc */
3303         adapter->stats.bprc += er32(BPRC);
3304         adapter->stats.mprc += er32(MPRC);
3305         adapter->stats.roc += er32(ROC);
3306
3307         adapter->stats.mpc += er32(MPC);
3308         if ((hw->phy.type == e1000_phy_82578) ||
3309             (hw->phy.type == e1000_phy_82577)) {
3310                 e1e_rphy(hw, HV_SCC_UPPER, &phy_data);
3311                 e1e_rphy(hw, HV_SCC_LOWER, &phy_data);
3312                 adapter->stats.scc += phy_data;
3313
3314                 e1e_rphy(hw, HV_ECOL_UPPER, &phy_data);
3315                 e1e_rphy(hw, HV_ECOL_LOWER, &phy_data);
3316                 adapter->stats.ecol += phy_data;
3317
3318                 e1e_rphy(hw, HV_MCC_UPPER, &phy_data);
3319                 e1e_rphy(hw, HV_MCC_LOWER, &phy_data);
3320                 adapter->stats.mcc += phy_data;
3321
3322                 e1e_rphy(hw, HV_LATECOL_UPPER, &phy_data);
3323                 e1e_rphy(hw, HV_LATECOL_LOWER, &phy_data);
3324                 adapter->stats.latecol += phy_data;
3325
3326                 e1e_rphy(hw, HV_DC_UPPER, &phy_data);
3327                 e1e_rphy(hw, HV_DC_LOWER, &phy_data);
3328                 adapter->stats.dc += phy_data;
3329         } else {
3330                 adapter->stats.scc += er32(SCC);
3331                 adapter->stats.ecol += er32(ECOL);
3332                 adapter->stats.mcc += er32(MCC);
3333                 adapter->stats.latecol += er32(LATECOL);
3334                 adapter->stats.dc += er32(DC);
3335         }
3336         adapter->stats.xonrxc += er32(XONRXC);
3337         adapter->stats.xontxc += er32(XONTXC);
3338         adapter->stats.xoffrxc += er32(XOFFRXC);
3339         adapter->stats.xofftxc += er32(XOFFTXC);
3340         adapter->stats.gptc += er32(GPTC);
3341         adapter->stats.gotc += er32(GOTCL);
3342         er32(GOTCH); /* Clear gotc */
3343         adapter->stats.rnbc += er32(RNBC);
3344         adapter->stats.ruc += er32(RUC);
3345
3346         adapter->stats.mptc += er32(MPTC);
3347         adapter->stats.bptc += er32(BPTC);
3348
3349         /* used for adaptive IFS */
3350
3351         hw->mac.tx_packet_delta = er32(TPT);
3352         adapter->stats.tpt += hw->mac.tx_packet_delta;
3353         if ((hw->phy.type == e1000_phy_82578) ||
3354             (hw->phy.type == e1000_phy_82577)) {
3355                 e1e_rphy(hw, HV_COLC_UPPER, &phy_data);
3356                 e1e_rphy(hw, HV_COLC_LOWER, &phy_data);
3357                 hw->mac.collision_delta = phy_data;
3358         } else {
3359                 hw->mac.collision_delta = er32(COLC);
3360         }
3361         adapter->stats.colc += hw->mac.collision_delta;
3362
3363         adapter->stats.algnerrc += er32(ALGNERRC);
3364         adapter->stats.rxerrc += er32(RXERRC);
3365         if ((hw->phy.type == e1000_phy_82578) ||
3366             (hw->phy.type == e1000_phy_82577)) {
3367                 e1e_rphy(hw, HV_TNCRS_UPPER, &phy_data);
3368                 e1e_rphy(hw, HV_TNCRS_LOWER, &phy_data);
3369                 adapter->stats.tncrs += phy_data;
3370         } else {
3371                 if ((hw->mac.type != e1000_82574) &&
3372                     (hw->mac.type != e1000_82583))
3373                         adapter->stats.tncrs += er32(TNCRS);
3374         }
3375         adapter->stats.cexterr += er32(CEXTERR);
3376         adapter->stats.tsctc += er32(TSCTC);
3377         adapter->stats.tsctfc += er32(TSCTFC);
3378
3379         /* Fill out the OS statistics structure */
3380         netdev->stats.multicast = adapter->stats.mprc;
3381         netdev->stats.collisions = adapter->stats.colc;
3382
3383         /* Rx Errors */
3384
3385         /*
3386          * RLEC on some newer hardware can be incorrect so build
3387          * our own version based on RUC and ROC
3388          */
3389         netdev->stats.rx_errors = adapter->stats.rxerrc +
3390                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3391                 adapter->stats.ruc + adapter->stats.roc +
3392                 adapter->stats.cexterr;
3393         netdev->stats.rx_length_errors = adapter->stats.ruc +
3394                                               adapter->stats.roc;
3395         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3396         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3397         netdev->stats.rx_missed_errors = adapter->stats.mpc;
3398
3399         /* Tx Errors */
3400         netdev->stats.tx_errors = adapter->stats.ecol +
3401                                        adapter->stats.latecol;
3402         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3403         netdev->stats.tx_window_errors = adapter->stats.latecol;
3404         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3405
3406         /* Tx Dropped needs to be maintained elsewhere */
3407
3408         /* Management Stats */
3409         adapter->stats.mgptc += er32(MGTPTC);
3410         adapter->stats.mgprc += er32(MGTPRC);
3411         adapter->stats.mgpdc += er32(MGTPDC);
3412 }
3413
3414 /**
3415  * e1000_phy_read_status - Update the PHY register status snapshot
3416  * @adapter: board private structure
3417  **/
3418 static void e1000_phy_read_status(struct e1000_adapter *adapter)
3419 {
3420         struct e1000_hw *hw = &adapter->hw;
3421         struct e1000_phy_regs *phy = &adapter->phy_regs;
3422         int ret_val;
3423
3424         if ((er32(STATUS) & E1000_STATUS_LU) &&
3425             (adapter->hw.phy.media_type == e1000_media_type_copper)) {
3426                 ret_val  = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
3427                 ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
3428                 ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
3429                 ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
3430                 ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
3431                 ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
3432                 ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
3433                 ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
3434                 if (ret_val)
3435                         e_warn("Error reading PHY register\n");
3436         } else {
3437                 /*
3438                  * Do not read PHY registers if link is not up
3439                  * Set values to typical power-on defaults
3440                  */
3441                 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
3442                 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
3443                              BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
3444                              BMSR_ERCAP);
3445                 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
3446                                   ADVERTISE_ALL | ADVERTISE_CSMA);
3447                 phy->lpa = 0;
3448                 phy->expansion = EXPANSION_ENABLENPAGE;
3449                 phy->ctrl1000 = ADVERTISE_1000FULL;
3450                 phy->stat1000 = 0;
3451                 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
3452         }
3453 }
3454
3455 static void e1000_print_link_info(struct e1000_adapter *adapter)
3456 {
3457         struct e1000_hw *hw = &adapter->hw;
3458         u32 ctrl = er32(CTRL);
3459
3460         /* Link status message must follow this format for user tools */
3461         printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s, "
3462                "Flow Control: %s\n",
3463                adapter->netdev->name,
3464                adapter->link_speed,
3465                (adapter->link_duplex == FULL_DUPLEX) ?
3466                                 "Full Duplex" : "Half Duplex",
3467                ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
3468                                 "RX/TX" :
3469                ((ctrl & E1000_CTRL_RFCE) ? "RX" :
3470                ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
3471 }
3472
3473 bool e1000_has_link(struct e1000_adapter *adapter)
3474 {
3475         struct e1000_hw *hw = &adapter->hw;
3476         bool link_active = 0;
3477         s32 ret_val = 0;
3478
3479         /*
3480          * get_link_status is set on LSC (link status) interrupt or
3481          * Rx sequence error interrupt.  get_link_status will stay
3482          * false until the check_for_link establishes link
3483          * for copper adapters ONLY
3484          */
3485         switch (hw->phy.media_type) {
3486         case e1000_media_type_copper:
3487                 if (hw->mac.get_link_status) {
3488                         ret_val = hw->mac.ops.check_for_link(hw);
3489                         link_active = !hw->mac.get_link_status;
3490                 } else {
3491                         link_active = 1;
3492                 }
3493                 break;
3494         case e1000_media_type_fiber:
3495                 ret_val = hw->mac.ops.check_for_link(hw);
3496                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
3497                 break;
3498         case e1000_media_type_internal_serdes:
3499                 ret_val = hw->mac.ops.check_for_link(hw);
3500                 link_active = adapter->hw.mac.serdes_has_link;
3501                 break;
3502         default:
3503         case e1000_media_type_unknown:
3504                 break;
3505         }
3506
3507         if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
3508             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
3509                 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
3510                 e_info("Gigabit has been disabled, downgrading speed\n");
3511         }
3512
3513         return link_active;
3514 }
3515
3516 static void e1000e_enable_receives(struct e1000_adapter *adapter)
3517 {
3518         /* make sure the receive unit is started */
3519         if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
3520             (adapter->flags & FLAG_RX_RESTART_NOW)) {
3521                 struct e1000_hw *hw = &adapter->hw;
3522                 u32 rctl = er32(RCTL);
3523                 ew32(RCTL, rctl | E1000_RCTL_EN);
3524                 adapter->flags &= ~FLAG_RX_RESTART_NOW;
3525         }
3526 }
3527
3528 /**
3529  * e1000_watchdog - Timer Call-back
3530  * @data: pointer to adapter cast into an unsigned long
3531  **/
3532 static void e1000_watchdog(unsigned long data)
3533 {
3534         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3535
3536         /* Do the rest outside of interrupt context */
3537         schedule_work(&adapter->watchdog_task);
3538
3539         /* TODO: make this use queue_delayed_work() */
3540 }
3541
3542 static void e1000_watchdog_task(struct work_struct *work)
3543 {
3544         struct e1000_adapter *adapter = container_of(work,
3545                                         struct e1000_adapter, watchdog_task);
3546         struct net_device *netdev = adapter->netdev;
3547         struct e1000_mac_info *mac = &adapter->hw.mac;
3548         struct e1000_phy_info *phy = &adapter->hw.phy;
3549         struct e1000_ring *tx_ring = adapter->tx_ring;
3550         struct e1000_hw *hw = &adapter->hw;
3551         u32 link, tctl;
3552         int tx_pending = 0;
3553
3554         link = e1000_has_link(adapter);
3555         if ((netif_carrier_ok(netdev)) && link) {
3556                 e1000e_enable_receives(adapter);
3557                 goto link_up;
3558         }
3559
3560         if ((e1000e_enable_tx_pkt_filtering(hw)) &&
3561             (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
3562                 e1000_update_mng_vlan(adapter);
3563
3564         if (link) {
3565                 if (!netif_carrier_ok(netdev)) {
3566                         bool txb2b = 1;
3567                         /* update snapshot of PHY registers on LSC */
3568                         e1000_phy_read_status(adapter);
3569                         mac->ops.get_link_up_info(&adapter->hw,
3570                                                    &adapter->link_speed,
3571                                                    &adapter->link_duplex);
3572                         e1000_print_link_info(adapter);
3573                         /*
3574                          * On supported PHYs, check for duplex mismatch only
3575                          * if link has autonegotiated at 10/100 half
3576                          */
3577                         if ((hw->phy.type == e1000_phy_igp_3 ||
3578                              hw->phy.type == e1000_phy_bm) &&
3579                             (hw->mac.autoneg == true) &&
3580                             (adapter->link_speed == SPEED_10 ||
3581                              adapter->link_speed == SPEED_100) &&
3582                             (adapter->link_duplex == HALF_DUPLEX)) {
3583                                 u16 autoneg_exp;
3584
3585                                 e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
3586
3587                                 if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
3588                                         e_info("Autonegotiated half duplex but"
3589                                                " link partner cannot autoneg. "
3590                                                " Try forcing full duplex if "
3591                                                "link gets many collisions.\n");
3592                         }
3593
3594                         /*
3595                          * tweak tx_queue_len according to speed/duplex
3596                          * and adjust the timeout factor
3597                          */
3598                         netdev->tx_queue_len = adapter->tx_queue_len;
3599                         adapter->tx_timeout_factor = 1;
3600                         switch (adapter->link_speed) {
3601                         case SPEED_10:
3602                                 txb2b = 0;
3603                                 netdev->tx_queue_len = 10;
3604                                 adapter->tx_timeout_factor = 16;
3605                                 break;
3606                         case SPEED_100:
3607                                 txb2b = 0;
3608                                 netdev->tx_queue_len = 100;
3609                                 adapter->tx_timeout_factor = 10;
3610                                 break;
3611                         }
3612
3613                         /*
3614                          * workaround: re-program speed mode bit after
3615                          * link-up event
3616                          */
3617                         if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
3618                             !txb2b) {
3619                                 u32 tarc0;
3620                                 tarc0 = er32(TARC(0));
3621                                 tarc0 &= ~SPEED_MODE_BIT;
3622                                 ew32(TARC(0), tarc0);
3623                         }
3624
3625                         /*
3626                          * disable TSO for pcie and 10/100 speeds, to avoid
3627                          * some hardware issues
3628                          */
3629                         if (!(adapter->flags & FLAG_TSO_FORCE)) {
3630                                 switch (adapter->link_speed) {
3631                                 case SPEED_10:
3632                                 case SPEED_100:
3633                                         e_info("10/100 speed: disabling TSO\n");
3634                                         netdev->features &= ~NETIF_F_TSO;
3635                                         netdev->features &= ~NETIF_F_TSO6;
3636                                         break;
3637                                 case SPEED_1000:
3638                                         netdev->features |= NETIF_F_TSO;
3639                                         netdev->features |= NETIF_F_TSO6;
3640                                         break;
3641                                 default:
3642                                         /* oops */
3643                                         break;
3644                                 }
3645                         }
3646
3647                         /*
3648                          * enable transmits in the hardware, need to do this
3649                          * after setting TARC(0)
3650                          */
3651                         tctl = er32(TCTL);
3652                         tctl |= E1000_TCTL_EN;
3653                         ew32(TCTL, tctl);
3654
3655                         /*
3656                          * Perform any post-link-up configuration before
3657                          * reporting link up.
3658                          */
3659                         if (phy->ops.cfg_on_link_up)
3660                                 phy->ops.cfg_on_link_up(hw);
3661
3662                         netif_carrier_on(netdev);
3663
3664                         if (!test_bit(__E1000_DOWN, &adapter->state))
3665                                 mod_timer(&adapter->phy_info_timer,
3666                                           round_jiffies(jiffies + 2 * HZ));
3667                 }
3668         } else {
3669                 if (netif_carrier_ok(netdev)) {
3670                         adapter->link_speed = 0;
3671                         adapter->link_duplex = 0;
3672                         /* Link status message must follow this format */
3673                         printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
3674                                adapter->netdev->name);
3675                         netif_carrier_off(netdev);
3676                         if (!test_bit(__E1000_DOWN, &adapter->state))
3677                                 mod_timer(&adapter->phy_info_timer,
3678                                           round_jiffies(jiffies + 2 * HZ));
3679
3680                         if (adapter->flags & FLAG_RX_NEEDS_RESTART)
3681                                 schedule_work(&adapter->reset_task);
3682                 }
3683         }
3684
3685 link_up:
3686         e1000e_update_stats(adapter);
3687
3688         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
3689         adapter->tpt_old = adapter->stats.tpt;
3690         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
3691         adapter->colc_old = adapter->stats.colc;
3692
3693         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
3694         adapter->gorc_old = adapter->stats.gorc;
3695         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
3696         adapter->gotc_old = adapter->stats.gotc;
3697
3698         e1000e_update_adaptive(&adapter->hw);
3699
3700         if (!netif_carrier_ok(netdev)) {
3701                 tx_pending = (e1000_desc_unused(tx_ring) + 1 <
3702                                tx_ring->count);
3703                 if (tx_pending) {
3704                         /*
3705                          * We've lost link, so the controller stops DMA,
3706                          * but we've got queued Tx work that's never going
3707                          * to get done, so reset controller to flush Tx.
3708                          * (Do the reset outside of interrupt context).
3709                          */
3710                         adapter->tx_timeout_count++;
3711                         schedule_work(&adapter->reset_task);
3712                         /* return immediately since reset is imminent */
3713                         return;
3714                 }
3715         }
3716
3717         /* Cause software interrupt to ensure Rx ring is cleaned */
3718         if (adapter->msix_entries)
3719                 ew32(ICS, adapter->rx_ring->ims_val);
3720         else
3721                 ew32(ICS, E1000_ICS_RXDMT0);
3722
3723         /* Force detection of hung controller every watchdog period */
3724         adapter->detect_tx_hung = 1;
3725
3726         /*
3727          * With 82571 controllers, LAA may be overwritten due to controller
3728          * reset from the other port. Set the appropriate LAA in RAR[0]
3729          */
3730         if (e1000e_get_laa_state_82571(hw))
3731                 e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
3732
3733         /* Reset the timer */
3734         if (!test_bit(__E1000_DOWN, &adapter->state))
3735                 mod_timer(&adapter->watchdog_timer,
3736                           round_jiffies(jiffies + 2 * HZ));
3737 }
3738
3739 #define E1000_TX_FLAGS_CSUM             0x00000001
3740 #define E1000_TX_FLAGS_VLAN             0x00000002
3741 #define E1000_TX_FLAGS_TSO              0x00000004
3742 #define E1000_TX_FLAGS_IPV4             0x00000008
3743 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
3744 #define E1000_TX_FLAGS_VLAN_SHIFT       16
3745
3746 static int e1000_tso(struct e1000_adapter *adapter,
3747                      struct sk_buff *skb)
3748 {
3749         struct e1000_ring *tx_ring = adapter->tx_ring;
3750         struct e1000_context_desc *context_desc;
3751         struct e1000_buffer *buffer_info;
3752         unsigned int i;
3753         u32 cmd_length = 0;
3754         u16 ipcse = 0, tucse, mss;
3755         u8 ipcss, ipcso, tucss, tucso, hdr_len;
3756         int err;
3757
3758         if (!skb_is_gso(skb))
3759                 return 0;
3760
3761         if (skb_header_cloned(skb)) {
3762                 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3763                 if (err)
3764                         return err;
3765         }
3766
3767         hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3768         mss = skb_shinfo(skb)->gso_size;
3769         if (skb->protocol == htons(ETH_P_IP)) {
3770                 struct iphdr *iph = ip_hdr(skb);
3771                 iph->tot_len = 0;
3772                 iph->check = 0;
3773                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
3774                                                          0, IPPROTO_TCP, 0);
3775                 cmd_length = E1000_TXD_CMD_IP;
3776                 ipcse = skb_transport_offset(skb) - 1;
3777         } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
3778                 ipv6_hdr(skb)->payload_len = 0;
3779                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3780                                                        &ipv6_hdr(skb)->daddr,
3781                                                        0, IPPROTO_TCP, 0);
3782                 ipcse = 0;
3783         }
3784         ipcss = skb_network_offset(skb);
3785         ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
3786         tucss = skb_transport_offset(skb);
3787         tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
3788         tucse = 0;
3789
3790         cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
3791                        E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
3792
3793         i = tx_ring->next_to_use;
3794         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3795         buffer_info = &tx_ring->buffer_info[i];
3796
3797         context_desc->lower_setup.ip_fields.ipcss  = ipcss;
3798         context_desc->lower_setup.ip_fields.ipcso  = ipcso;
3799         context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
3800         context_desc->upper_setup.tcp_fields.tucss = tucss;
3801         context_desc->upper_setup.tcp_fields.tucso = tucso;
3802         context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
3803         context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
3804         context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
3805         context_desc->cmd_and_length = cpu_to_le32(cmd_length);
3806
3807         buffer_info->time_stamp = jiffies;
3808         buffer_info->next_to_watch = i;
3809
3810         i++;
3811         if (i == tx_ring->count)
3812                 i = 0;
3813         tx_ring->next_to_use = i;
3814
3815         return 1;
3816 }
3817
3818 static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
3819 {
3820         struct e1000_ring *tx_ring = adapter->tx_ring;
3821         struct e1000_context_desc *context_desc;
3822         struct e1000_buffer *buffer_info;
3823         unsigned int i;
3824         u8 css;
3825         u32 cmd_len = E1000_TXD_CMD_DEXT;
3826         __be16 protocol;
3827
3828         if (skb->ip_summed != CHECKSUM_PARTIAL)
3829                 return 0;
3830
3831         if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
3832                 protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
3833         else
3834                 protocol = skb->protocol;
3835
3836         switch (protocol) {
3837         case cpu_to_be16(ETH_P_IP):
3838                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3839                         cmd_len |= E1000_TXD_CMD_TCP;
3840                 break;
3841         case cpu_to_be16(ETH_P_IPV6):
3842                 /* XXX not handling all IPV6 headers */
3843                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3844                         cmd_len |= E1000_TXD_CMD_TCP;
3845                 break;
3846         default:
3847                 if (unlikely(net_ratelimit()))
3848                         e_warn("checksum_partial proto=%x!\n",
3849                                be16_to_cpu(protocol));
3850                 break;
3851         }
3852
3853         css = skb_transport_offset(skb);
3854
3855         i = tx_ring->next_to_use;
3856         buffer_info = &tx_ring->buffer_info[i];
3857         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3858
3859         context_desc->lower_setup.ip_config = 0;
3860         context_desc->upper_setup.tcp_fields.tucss = css;
3861         context_desc->upper_setup.tcp_fields.tucso =
3862                                 css + skb->csum_offset;
3863         context_desc->upper_setup.tcp_fields.tucse = 0;
3864         context_desc->tcp_seg_setup.data = 0;
3865         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
3866
3867         buffer_info->time_stamp = jiffies;
3868         buffer_info->next_to_watch = i;
3869
3870         i++;
3871         if (i == tx_ring->count)
3872                 i = 0;
3873         tx_ring->next_to_use = i;
3874
3875         return 1;
3876 }
3877
3878 #define E1000_MAX_PER_TXD       8192
3879 #define E1000_MAX_TXD_PWR       12
3880
3881 static int e1000_tx_map(struct e1000_adapter *adapter,
3882                         struct sk_buff *skb, unsigned int first,
3883                         unsigned int max_per_txd, unsigned int nr_frags,
3884                         unsigned int mss)
3885 {
3886         struct e1000_ring *tx_ring = adapter->tx_ring;
3887         struct e1000_buffer *buffer_info;
3888         unsigned int len = skb_headlen(skb);
3889         unsigned int offset, size, count = 0, i;
3890         unsigned int f;
3891         dma_addr_t *map;
3892
3893         i = tx_ring->next_to_use;
3894
3895         if (skb_dma_map(&adapter->pdev->dev, skb, DMA_TO_DEVICE)) {
3896                 dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
3897                 adapter->tx_dma_failed++;
3898                 return 0;
3899         }
3900
3901         map = skb_shinfo(skb)->dma_maps;
3902         offset = 0;
3903
3904         while (len) {
3905                 buffer_info = &tx_ring->buffer_info[i];
3906                 size = min(len, max_per_txd);
3907
3908                 buffer_info->length = size;
3909                 buffer_info->time_stamp = jiffies;
3910                 buffer_info->next_to_watch = i;
3911                 buffer_info->dma = skb_shinfo(skb)->dma_head + offset;
3912                 count++;
3913
3914                 len -= size;
3915                 offset += size;
3916
3917                 if (len) {
3918                         i++;
3919                         if (i == tx_ring->count)
3920                                 i = 0;
3921                 }
3922         }
3923
3924         for (f = 0; f < nr_frags; f++) {
3925                 struct skb_frag_struct *frag;
3926
3927                 frag = &skb_shinfo(skb)->frags[f];
3928                 len = frag->size;
3929                 offset = 0;
3930
3931                 while (len) {
3932                         i++;
3933                         if (i == tx_ring->count)
3934                                 i = 0;
3935
3936                         buffer_info = &tx_ring->buffer_info[i];
3937                         size = min(len, max_per_txd);
3938
3939                         buffer_info->length = size;
3940                         buffer_info->time_stamp = jiffies;
3941                         buffer_info->next_to_watch = i;
3942                         buffer_info->dma = map[f] + offset;
3943
3944                         len -= size;
3945                         offset += size;
3946                         count++;
3947                 }
3948         }
3949
3950         tx_ring->buffer_info[i].skb = skb;
3951         tx_ring->buffer_info[first].next_to_watch = i;
3952
3953         return count;
3954 }
3955
3956 static void e1000_tx_queue(struct e1000_adapter *adapter,
3957                            int tx_flags, int count)
3958 {
3959         struct e1000_ring *tx_ring = adapter->tx_ring;
3960         struct e1000_tx_desc *tx_desc = NULL;
3961         struct e1000_buffer *buffer_info;
3962         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3963         unsigned int i;
3964
3965         if (tx_flags & E1000_TX_FLAGS_TSO) {
3966                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3967                              E1000_TXD_CMD_TSE;
3968                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3969
3970                 if (tx_flags & E1000_TX_FLAGS_IPV4)
3971                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3972         }
3973
3974         if (tx_flags & E1000_TX_FLAGS_CSUM) {
3975                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3976                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3977         }
3978
3979         if (tx_flags & E1000_TX_FLAGS_VLAN) {
3980                 txd_lower |= E1000_TXD_CMD_VLE;
3981                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3982         }
3983
3984         i = tx_ring->next_to_use;
3985
3986         while (count--) {
3987                 buffer_info = &tx_ring->buffer_info[i];
3988                 tx_desc = E1000_TX_DESC(*tx_ring, i);
3989                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3990                 tx_desc->lower.data =
3991                         cpu_to_le32(txd_lower | buffer_info->length);
3992                 tx_desc->upper.data = cpu_to_le32(txd_upper);
3993
3994                 i++;
3995                 if (i == tx_ring->count)
3996                         i = 0;
3997         }
3998
3999         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
4000
4001         /*
4002          * Force memory writes to complete before letting h/w
4003          * know there are new descriptors to fetch.  (Only
4004          * applicable for weak-ordered memory model archs,
4005          * such as IA-64).
4006          */
4007         wmb();
4008
4009         tx_ring->next_to_use = i;
4010         writel(i, adapter->hw.hw_addr + tx_ring->tail);
4011         /*
4012          * we need this if more than one processor can write to our tail
4013          * at a time, it synchronizes IO on IA64/Altix systems
4014          */
4015         mmiowb();
4016 }
4017
4018 #define MINIMUM_DHCP_PACKET_SIZE 282
4019 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
4020                                     struct sk_buff *skb)
4021 {
4022         struct e1000_hw *hw =  &adapter->hw;
4023         u16 length, offset;
4024
4025         if (vlan_tx_tag_present(skb)) {
4026                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id)
4027                     && (adapter->hw.mng_cookie.status &
4028                         E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
4029                         return 0;
4030         }
4031
4032         if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
4033                 return 0;
4034
4035         if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
4036                 return 0;
4037
4038         {
4039                 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
4040                 struct udphdr *udp;
4041
4042                 if (ip->protocol != IPPROTO_UDP)
4043                         return 0;
4044
4045                 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
4046                 if (ntohs(udp->dest) != 67)
4047                         return 0;
4048
4049                 offset = (u8 *)udp + 8 - skb->data;
4050                 length = skb->len - offset;
4051                 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
4052         }
4053
4054         return 0;
4055 }
4056
4057 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
4058 {
4059         struct e1000_adapter *adapter = netdev_priv(netdev);
4060
4061         netif_stop_queue(netdev);
4062         /*
4063          * Herbert's original patch had:
4064          *  smp_mb__after_netif_stop_queue();
4065          * but since that doesn't exist yet, just open code it.
4066          */
4067         smp_mb();
4068
4069         /*
4070          * We need to check again in a case another CPU has just
4071          * made room available.
4072          */
4073         if (e1000_desc_unused(adapter->tx_ring) < size)
4074                 return -EBUSY;
4075
4076         /* A reprieve! */
4077         netif_start_queue(netdev);
4078         ++adapter->restart_queue;
4079         return 0;
4080 }
4081
4082 static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
4083 {
4084         struct e1000_adapter *adapter = netdev_priv(netdev);
4085
4086         if (e1000_desc_unused(adapter->tx_ring) >= size)
4087                 return 0;
4088         return __e1000_maybe_stop_tx(netdev, size);
4089 }
4090
4091 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
4092 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
4093                                     struct net_device *netdev)
4094 {
4095         struct e1000_adapter *adapter = netdev_priv(netdev);
4096         struct e1000_ring *tx_ring = adapter->tx_ring;
4097         unsigned int first;
4098         unsigned int max_per_txd = E1000_MAX_PER_TXD;
4099         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
4100         unsigned int tx_flags = 0;
4101         unsigned int len = skb->len - skb->data_len;
4102         unsigned int nr_frags;
4103         unsigned int mss;
4104         int count = 0;
4105         int tso;
4106         unsigned int f;
4107
4108         if (test_bit(__E1000_DOWN, &adapter->state)) {
4109                 dev_kfree_skb_any(skb);
4110                 return NETDEV_TX_OK;
4111         }
4112
4113         if (skb->len <= 0) {
4114                 dev_kfree_skb_any(skb);
4115                 return NETDEV_TX_OK;
4116         }
4117
4118         mss = skb_shinfo(skb)->gso_size;
4119         /*
4120          * The controller does a simple calculation to
4121          * make sure there is enough room in the FIFO before
4122          * initiating the DMA for each buffer.  The calc is:
4123          * 4 = ceil(buffer len/mss).  To make sure we don't
4124          * overrun the FIFO, adjust the max buffer len if mss
4125          * drops.
4126          */
4127         if (mss) {
4128                 u8 hdr_len;
4129                 max_per_txd = min(mss << 2, max_per_txd);
4130                 max_txd_pwr = fls(max_per_txd) - 1;
4131
4132                 /*
4133                  * TSO Workaround for 82571/2/3 Controllers -- if skb->data
4134                  * points to just header, pull a few bytes of payload from
4135                  * frags into skb->data
4136                  */
4137                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4138                 /*
4139                  * we do this workaround for ES2LAN, but it is un-necessary,
4140                  * avoiding it could save a lot of cycles
4141                  */
4142                 if (skb->data_len && (hdr_len == len)) {
4143                         unsigned int pull_size;
4144
4145                         pull_size = min((unsigned int)4, skb->data_len);
4146                         if (!__pskb_pull_tail(skb, pull_size)) {
4147                                 e_err("__pskb_pull_tail failed.\n");
4148                                 dev_kfree_skb_any(skb);
4149                                 return NETDEV_TX_OK;
4150                         }
4151                         len = skb->len - skb->data_len;
4152                 }
4153         }
4154
4155         /* reserve a descriptor for the offload context */
4156         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
4157                 count++;
4158         count++;
4159
4160         count += TXD_USE_COUNT(len, max_txd_pwr);
4161
4162         nr_frags = skb_shinfo(skb)->nr_frags;
4163         for (f = 0; f < nr_frags; f++)
4164                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
4165                                        max_txd_pwr);
4166
4167         if (adapter->hw.mac.tx_pkt_filtering)
4168                 e1000_transfer_dhcp_info(adapter, skb);
4169
4170         /*
4171          * need: count + 2 desc gap to keep tail from touching
4172          * head, otherwise try next time
4173          */
4174         if (e1000_maybe_stop_tx(netdev, count + 2))
4175                 return NETDEV_TX_BUSY;
4176
4177         if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
4178                 tx_flags |= E1000_TX_FLAGS_VLAN;
4179                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
4180         }
4181
4182         first = tx_ring->next_to_use;
4183
4184         tso = e1000_tso(adapter, skb);
4185         if (tso < 0) {
4186                 dev_kfree_skb_any(skb);
4187                 return NETDEV_TX_OK;
4188         }
4189
4190         if (tso)
4191                 tx_flags |= E1000_TX_FLAGS_TSO;
4192         else if (e1000_tx_csum(adapter, skb))
4193                 tx_flags |= E1000_TX_FLAGS_CSUM;
4194
4195         /*
4196          * Old method was to assume IPv4 packet by default if TSO was enabled.
4197          * 82571 hardware supports TSO capabilities for IPv6 as well...
4198          * no longer assume, we must.
4199          */
4200         if (skb->protocol == htons(ETH_P_IP))
4201                 tx_flags |= E1000_TX_FLAGS_IPV4;
4202
4203         /* if count is 0 then mapping error has occured */
4204         count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
4205         if (count) {
4206                 e1000_tx_queue(adapter, tx_flags, count);
4207                 /* Make sure there is space in the ring for the next send. */
4208                 e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
4209
4210         } else {
4211                 dev_kfree_skb_any(skb);
4212                 tx_ring->buffer_info[first].time_stamp = 0;
4213                 tx_ring->next_to_use = first;
4214         }
4215
4216         return NETDEV_TX_OK;
4217 }
4218
4219 /**
4220  * e1000_tx_timeout - Respond to a Tx Hang
4221  * @netdev: network interface device structure
4222  **/
4223 static void e1000_tx_timeout(struct net_device *netdev)
4224 {
4225         struct e1000_adapter *adapter = netdev_priv(netdev);
4226
4227         /* Do the reset outside of interrupt context */
4228         adapter->tx_timeout_count++;
4229         schedule_work(&adapter->reset_task);
4230 }
4231
4232 static void e1000_reset_task(struct work_struct *work)
4233 {
4234         struct e1000_adapter *adapter;
4235         adapter = container_of(work, struct e1000_adapter, reset_task);
4236
4237         e1000e_reinit_locked(adapter);
4238 }
4239
4240 /**
4241  * e1000_get_stats - Get System Network Statistics
4242  * @netdev: network interface device structure
4243  *
4244  * Returns the address of the device statistics structure.
4245  * The statistics are actually updated from the timer callback.
4246  **/
4247 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
4248 {
4249         /* only return the current stats */
4250         return &netdev->stats;
4251 }
4252
4253 /**
4254  * e1000_change_mtu - Change the Maximum Transfer Unit
4255  * @netdev: network interface device structure
4256  * @new_mtu: new value for maximum frame size
4257  *
4258  * Returns 0 on success, negative on failure
4259  **/
4260 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
4261 {
4262         struct e1000_adapter *adapter = netdev_priv(netdev);
4263         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4264
4265         /* Jumbo frame support */
4266         if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
4267             !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
4268                 e_err("Jumbo Frames not supported.\n");
4269                 return -EINVAL;
4270         }
4271
4272         /* Supported frame sizes */
4273         if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
4274             (max_frame > adapter->max_hw_frame_size)) {
4275                 e_err("Unsupported MTU setting\n");
4276                 return -EINVAL;
4277         }
4278
4279         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4280                 msleep(1);
4281         /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
4282         adapter->max_frame_size = max_frame;
4283         e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
4284         netdev->mtu = new_mtu;
4285         if (netif_running(netdev))
4286                 e1000e_down(adapter);
4287
4288         /*
4289          * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
4290          * means we reserve 2 more, this pushes us to allocate from the next
4291          * larger slab size.
4292          * i.e. RXBUFFER_2048 --> size-4096 slab
4293          * However with the new *_jumbo_rx* routines, jumbo receives will use
4294          * fragmented skbs
4295          */
4296
4297         if (max_frame <= 256)
4298                 adapter->rx_buffer_len = 256;
4299         else if (max_frame <= 512)
4300                 adapter->rx_buffer_len = 512;
4301         else if (max_frame <= 1024)
4302                 adapter->rx_buffer_len = 1024;
4303         else if (max_frame <= 2048)
4304                 adapter->rx_buffer_len = 2048;
4305         else
4306                 adapter->rx_buffer_len = 4096;
4307
4308         /* adjust allocation if LPE protects us, and we aren't using SBP */
4309         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
4310              (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
4311                 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
4312                                          + ETH_FCS_LEN;
4313
4314         if (netif_running(netdev))
4315                 e1000e_up(adapter);
4316         else
4317                 e1000e_reset(adapter);
4318
4319         clear_bit(__E1000_RESETTING, &adapter->state);
4320
4321         return 0;
4322 }
4323
4324 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4325                            int cmd)
4326 {
4327         struct e1000_adapter *adapter = netdev_priv(netdev);
4328         struct mii_ioctl_data *data = if_mii(ifr);
4329
4330         if (adapter->hw.phy.media_type != e1000_media_type_copper)
4331                 return -EOPNOTSUPP;
4332
4333         switch (cmd) {
4334         case SIOCGMIIPHY:
4335                 data->phy_id = adapter->hw.phy.addr;
4336                 break;
4337         case SIOCGMIIREG:
4338                 e1000_phy_read_status(adapter);
4339
4340                 switch (data->reg_num & 0x1F) {
4341                 case MII_BMCR:
4342                         data->val_out = adapter->phy_regs.bmcr;
4343                         break;
4344                 case MII_BMSR:
4345                         data->val_out = adapter->phy_regs.bmsr;
4346                         break;
4347                 case MII_PHYSID1:
4348                         data->val_out = (adapter->hw.phy.id >> 16);
4349                         break;
4350                 case MII_PHYSID2:
4351                         data->val_out = (adapter->hw.phy.id & 0xFFFF);
4352                         break;
4353                 case MII_ADVERTISE:
4354                         data->val_out = adapter->phy_regs.advertise;
4355                         break;
4356                 case MII_LPA:
4357                         data->val_out = adapter->phy_regs.lpa;
4358                         break;
4359                 case MII_EXPANSION:
4360                         data->val_out = adapter->phy_regs.expansion;
4361                         break;
4362                 case MII_CTRL1000:
4363                         data->val_out = adapter->phy_regs.ctrl1000;
4364                         break;
4365                 case MII_STAT1000:
4366                         data->val_out = adapter->phy_regs.stat1000;
4367                         break;
4368                 case MII_ESTATUS:
4369                         data->val_out = adapter->phy_regs.estatus;
4370                         break;
4371                 default:
4372                         return -EIO;
4373                 }
4374                 break;
4375         case SIOCSMIIREG:
4376         default:
4377                 return -EOPNOTSUPP;
4378         }
4379         return 0;
4380 }
4381
4382 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4383 {
4384         switch (cmd) {
4385         case SIOCGMIIPHY:
4386         case SIOCGMIIREG:
4387         case SIOCSMIIREG:
4388                 return e1000_mii_ioctl(netdev, ifr, cmd);
4389         default:
4390                 return -EOPNOTSUPP;
4391         }
4392 }
4393
4394 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
4395 {
4396         struct e1000_hw *hw = &adapter->hw;
4397         u32 i, mac_reg;
4398         u16 phy_reg;
4399         int retval = 0;
4400
4401         /* copy MAC RARs to PHY RARs */
4402         for (i = 0; i < adapter->hw.mac.rar_entry_count; i++) {
4403                 mac_reg = er32(RAL(i));
4404                 e1e_wphy(hw, BM_RAR_L(i), (u16)(mac_reg & 0xFFFF));
4405                 e1e_wphy(hw, BM_RAR_M(i), (u16)((mac_reg >> 16) & 0xFFFF));
4406                 mac_reg = er32(RAH(i));
4407                 e1e_wphy(hw, BM_RAR_H(i), (u16)(mac_reg & 0xFFFF));
4408                 e1e_wphy(hw, BM_RAR_CTRL(i), (u16)((mac_reg >> 16) & 0xFFFF));
4409         }
4410
4411         /* copy MAC MTA to PHY MTA */
4412         for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
4413                 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
4414                 e1e_wphy(hw, BM_MTA(i), (u16)(mac_reg & 0xFFFF));
4415                 e1e_wphy(hw, BM_MTA(i) + 1, (u16)((mac_reg >> 16) & 0xFFFF));
4416         }
4417
4418         /* configure PHY Rx Control register */
4419         e1e_rphy(&adapter->hw, BM_RCTL, &phy_reg);
4420         mac_reg = er32(RCTL);
4421         if (mac_reg & E1000_RCTL_UPE)
4422                 phy_reg |= BM_RCTL_UPE;
4423         if (mac_reg & E1000_RCTL_MPE)
4424                 phy_reg |= BM_RCTL_MPE;
4425         phy_reg &= ~(BM_RCTL_MO_MASK);
4426         if (mac_reg & E1000_RCTL_MO_3)
4427                 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
4428                                 << BM_RCTL_MO_SHIFT);
4429         if (mac_reg & E1000_RCTL_BAM)
4430                 phy_reg |= BM_RCTL_BAM;
4431         if (mac_reg & E1000_RCTL_PMCF)
4432                 phy_reg |= BM_RCTL_PMCF;
4433         mac_reg = er32(CTRL);
4434         if (mac_reg & E1000_CTRL_RFCE)
4435                 phy_reg |= BM_RCTL_RFCE;
4436         e1e_wphy(&adapter->hw, BM_RCTL, phy_reg);
4437
4438         /* enable PHY wakeup in MAC register */
4439         ew32(WUFC, wufc);
4440         ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
4441
4442         /* configure and enable PHY wakeup in PHY registers */
4443         e1e_wphy(&adapter->hw, BM_WUFC, wufc);
4444         e1e_wphy(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
4445
4446         /* activate PHY wakeup */
4447         retval = hw->phy.ops.acquire(hw);
4448         if (retval) {
4449                 e_err("Could not acquire PHY\n");
4450                 return retval;
4451         }
4452         e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4453                                  (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
4454         retval = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &phy_reg);
4455         if (retval) {
4456                 e_err("Could not read PHY page 769\n");
4457                 goto out;
4458         }
4459         phy_reg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
4460         retval = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
4461         if (retval)
4462                 e_err("Could not set PHY Host Wakeup bit\n");
4463 out:
4464         hw->phy.ops.release(hw);
4465
4466         return retval;
4467 }
4468
4469 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4470 {
4471         struct net_device *netdev = pci_get_drvdata(pdev);
4472         struct e1000_adapter *adapter = netdev_priv(netdev);
4473         struct e1000_hw *hw = &adapter->hw;
4474         u32 ctrl, ctrl_ext, rctl, status;
4475         u32 wufc = adapter->wol;
4476         int retval = 0;
4477
4478         netif_device_detach(netdev);
4479
4480         if (netif_running(netdev)) {
4481                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4482                 e1000e_down(adapter);
4483                 e1000_free_irq(adapter);
4484         }
4485         e1000e_reset_interrupt_capability(adapter);
4486
4487         retval = pci_save_state(pdev);
4488         if (retval)
4489                 return retval;
4490
4491         status = er32(STATUS);
4492         if (status & E1000_STATUS_LU)
4493                 wufc &= ~E1000_WUFC_LNKC;
4494
4495         if (wufc) {
4496                 e1000_setup_rctl(adapter);
4497                 e1000_set_multi(netdev);
4498
4499                 /* turn on all-multi mode if wake on multicast is enabled */
4500                 if (wufc & E1000_WUFC_MC) {
4501                         rctl = er32(RCTL);
4502                         rctl |= E1000_RCTL_MPE;
4503                         ew32(RCTL, rctl);
4504                 }
4505
4506                 ctrl = er32(CTRL);
4507                 /* advertise wake from D3Cold */
4508                 #define E1000_CTRL_ADVD3WUC 0x00100000
4509                 /* phy power management enable */
4510                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4511                 ctrl |= E1000_CTRL_ADVD3WUC;
4512                 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
4513                         ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
4514                 ew32(CTRL, ctrl);
4515
4516                 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
4517                     adapter->hw.phy.media_type ==
4518                     e1000_media_type_internal_serdes) {
4519                         /* keep the laser running in D3 */
4520                         ctrl_ext = er32(CTRL_EXT);
4521                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4522                         ew32(CTRL_EXT, ctrl_ext);
4523                 }
4524
4525                 if (adapter->flags & FLAG_IS_ICH)
4526                         e1000e_disable_gig_wol_ich8lan(&adapter->hw);
4527
4528                 /* Allow time for pending master requests to run */
4529                 e1000e_disable_pcie_master(&adapter->hw);
4530
4531                 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
4532                         /* enable wakeup by the PHY */
4533                         retval = e1000_init_phy_wakeup(adapter, wufc);
4534                         if (retval)
4535                                 return retval;
4536                 } else {
4537                         /* enable wakeup by the MAC */
4538                         ew32(WUFC, wufc);
4539                         ew32(WUC, E1000_WUC_PME_EN);
4540                 }
4541         } else {
4542                 ew32(WUC, 0);
4543                 ew32(WUFC, 0);
4544         }
4545
4546         *enable_wake = !!wufc;
4547
4548         /* make sure adapter isn't asleep if manageability is enabled */
4549         if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
4550             (hw->mac.ops.check_mng_mode(hw)))
4551                 *enable_wake = true;
4552
4553         if (adapter->hw.phy.type == e1000_phy_igp_3)
4554                 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
4555
4556         /*
4557          * Release control of h/w to f/w.  If f/w is AMT enabled, this
4558          * would have already happened in close and is redundant.
4559          */
4560         e1000_release_hw_control(adapter);
4561
4562         pci_disable_device(pdev);
4563
4564         return 0;
4565 }
4566
4567 static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
4568 {
4569         if (sleep && wake) {
4570                 pci_prepare_to_sleep(pdev);
4571                 return;
4572         }
4573
4574         pci_wake_from_d3(pdev, wake);
4575         pci_set_power_state(pdev, PCI_D3hot);
4576 }
4577
4578 static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
4579                                     bool wake)
4580 {
4581         struct net_device *netdev = pci_get_drvdata(pdev);
4582         struct e1000_adapter *adapter = netdev_priv(netdev);
4583
4584         /*
4585          * The pci-e switch on some quad port adapters will report a
4586          * correctable error when the MAC transitions from D0 to D3.  To
4587          * prevent this we need to mask off the correctable errors on the
4588          * downstream port of the pci-e switch.
4589          */
4590         if (adapter->flags & FLAG_IS_QUAD_PORT) {
4591                 struct pci_dev *us_dev = pdev->bus->self;
4592                 int pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
4593                 u16 devctl;
4594
4595                 pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
4596                 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
4597                                       (devctl & ~PCI_EXP_DEVCTL_CERE));
4598
4599                 e1000_power_off(pdev, sleep, wake);
4600
4601                 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
4602         } else {
4603                 e1000_power_off(pdev, sleep, wake);
4604         }
4605 }
4606
4607 static void e1000e_disable_l1aspm(struct pci_dev *pdev)
4608 {
4609         int pos;
4610         u16 val;
4611
4612         /*
4613          * 82573 workaround - disable L1 ASPM on mobile chipsets
4614          *
4615          * L1 ASPM on various mobile (ich7) chipsets do not behave properly
4616          * resulting in lost data or garbage information on the pci-e link
4617          * level. This could result in (false) bad EEPROM checksum errors,
4618          * long ping times (up to 2s) or even a system freeze/hang.
4619          *
4620          * Unfortunately this feature saves about 1W power consumption when
4621          * active.
4622          */
4623         pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
4624         pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &val);
4625         if (val & 0x2) {
4626                 dev_warn(&pdev->dev, "Disabling L1 ASPM\n");
4627                 val &= ~0x2;
4628                 pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, val);
4629         }
4630 }
4631
4632 #ifdef CONFIG_PM
4633 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4634 {
4635         int retval;
4636         bool wake;
4637
4638         retval = __e1000_shutdown(pdev, &wake);
4639         if (!retval)
4640                 e1000_complete_shutdown(pdev, true, wake);
4641
4642         return retval;
4643 }
4644
4645 static int e1000_resume(struct pci_dev *pdev)
4646 {
4647         struct net_device *netdev = pci_get_drvdata(pdev);
4648         struct e1000_adapter *adapter = netdev_priv(netdev);
4649         struct e1000_hw *hw = &adapter->hw;
4650         u32 err;
4651
4652         pci_set_power_state(pdev, PCI_D0);
4653         pci_restore_state(pdev);
4654         e1000e_disable_l1aspm(pdev);
4655
4656         err = pci_enable_device_mem(pdev);
4657         if (err) {
4658                 dev_err(&pdev->dev,
4659                         "Cannot enable PCI device from suspend\n");
4660                 return err;
4661         }
4662
4663         pci_set_master(pdev);
4664
4665         pci_enable_wake(pdev, PCI_D3hot, 0);
4666         pci_enable_wake(pdev, PCI_D3cold, 0);
4667
4668         e1000e_set_interrupt_capability(adapter);
4669         if (netif_running(netdev)) {
4670                 err = e1000_request_irq(adapter);
4671                 if (err)
4672                         return err;
4673         }
4674
4675         e1000e_power_up_phy(adapter);
4676
4677         /* report the system wakeup cause from S3/S4 */
4678         if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
4679                 u16 phy_data;
4680
4681                 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
4682                 if (phy_data) {
4683                         e_info("PHY Wakeup cause - %s\n",
4684                                 phy_data & E1000_WUS_EX ? "Unicast Packet" :
4685                                 phy_data & E1000_WUS_MC ? "Multicast Packet" :
4686                                 phy_data & E1000_WUS_BC ? "Broadcast Packet" :
4687                                 phy_data & E1000_WUS_MAG ? "Magic Packet" :
4688                                 phy_data & E1000_WUS_LNKC ? "Link Status "
4689                                 " Change" : "other");
4690                 }
4691                 e1e_wphy(&adapter->hw, BM_WUS, ~0);
4692         } else {
4693                 u32 wus = er32(WUS);
4694                 if (wus) {
4695                         e_info("MAC Wakeup cause - %s\n",
4696                                 wus & E1000_WUS_EX ? "Unicast Packet" :
4697                                 wus & E1000_WUS_MC ? "Multicast Packet" :
4698                                 wus & E1000_WUS_BC ? "Broadcast Packet" :
4699                                 wus & E1000_WUS_MAG ? "Magic Packet" :
4700                                 wus & E1000_WUS_LNKC ? "Link Status Change" :
4701                                 "other");
4702                 }
4703                 ew32(WUS, ~0);
4704         }
4705
4706         e1000e_reset(adapter);
4707
4708         e1000_init_manageability(adapter);
4709
4710         if (netif_running(netdev))
4711                 e1000e_up(adapter);
4712
4713         netif_device_attach(netdev);
4714
4715         /*
4716          * If the controller has AMT, do not set DRV_LOAD until the interface
4717          * is up.  For all other cases, let the f/w know that the h/w is now
4718          * under the control of the driver.
4719          */
4720         if (!(adapter->flags & FLAG_HAS_AMT))
4721                 e1000_get_hw_control(adapter);
4722
4723         return 0;
4724 }
4725 #endif
4726
4727 static void e1000_shutdown(struct pci_dev *pdev)
4728 {
4729         bool wake = false;
4730
4731         __e1000_shutdown(pdev, &wake);
4732
4733         if (system_state == SYSTEM_POWER_OFF)
4734                 e1000_complete_shutdown(pdev, false, wake);
4735 }
4736
4737 #ifdef CONFIG_NET_POLL_CONTROLLER
4738 /*
4739  * Polling 'interrupt' - used by things like netconsole to send skbs
4740  * without having to re-enable interrupts. It's not called while
4741  * the interrupt routine is executing.
4742  */
4743 static void e1000_netpoll(struct net_device *netdev)
4744 {
4745         struct e1000_adapter *adapter = netdev_priv(netdev);
4746
4747         disable_irq(adapter->pdev->irq);
4748         e1000_intr(adapter->pdev->irq, netdev);
4749
4750         enable_irq(adapter->pdev->irq);
4751 }
4752 #endif
4753
4754 /**
4755  * e1000_io_error_detected - called when PCI error is detected
4756  * @pdev: Pointer to PCI device
4757  * @state: The current pci connection state
4758  *
4759  * This function is called after a PCI bus error affecting
4760  * this device has been detected.
4761  */
4762 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4763                                                 pci_channel_state_t state)
4764 {
4765         struct net_device *netdev = pci_get_drvdata(pdev);
4766         struct e1000_adapter *adapter = netdev_priv(netdev);
4767
4768         netif_device_detach(netdev);
4769
4770         if (state == pci_channel_io_perm_failure)
4771                 return PCI_ERS_RESULT_DISCONNECT;
4772
4773         if (netif_running(netdev))
4774                 e1000e_down(adapter);
4775         pci_disable_device(pdev);
4776
4777         /* Request a slot slot reset. */
4778         return PCI_ERS_RESULT_NEED_RESET;
4779 }
4780
4781 /**
4782  * e1000_io_slot_reset - called after the pci bus has been reset.
4783  * @pdev: Pointer to PCI device
4784  *
4785  * Restart the card from scratch, as if from a cold-boot. Implementation
4786  * resembles the first-half of the e1000_resume routine.
4787  */
4788 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4789 {
4790         struct net_device *netdev = pci_get_drvdata(pdev);
4791         struct e1000_adapter *adapter = netdev_priv(netdev);
4792         struct e1000_hw *hw = &adapter->hw;
4793         int err;
4794         pci_ers_result_t result;
4795
4796         e1000e_disable_l1aspm(pdev);
4797         err = pci_enable_device_mem(pdev);
4798         if (err) {
4799                 dev_err(&pdev->dev,
4800                         "Cannot re-enable PCI device after reset.\n");
4801                 result = PCI_ERS_RESULT_DISCONNECT;
4802         } else {
4803                 pci_set_master(pdev);
4804                 pci_restore_state(pdev);
4805
4806                 pci_enable_wake(pdev, PCI_D3hot, 0);
4807                 pci_enable_wake(pdev, PCI_D3cold, 0);
4808
4809                 e1000e_reset(adapter);
4810                 ew32(WUS, ~0);
4811                 result = PCI_ERS_RESULT_RECOVERED;
4812         }
4813
4814         pci_cleanup_aer_uncorrect_error_status(pdev);
4815
4816         return result;
4817 }
4818
4819 /**
4820  * e1000_io_resume - called when traffic can start flowing again.
4821  * @pdev: Pointer to PCI device
4822  *
4823  * This callback is called when the error recovery driver tells us that
4824  * its OK to resume normal operation. Implementation resembles the
4825  * second-half of the e1000_resume routine.
4826  */
4827 static void e1000_io_resume(struct pci_dev *pdev)
4828 {
4829         struct net_device *netdev = pci_get_drvdata(pdev);
4830         struct e1000_adapter *adapter = netdev_priv(netdev);
4831
4832         e1000_init_manageability(adapter);
4833
4834         if (netif_running(netdev)) {
4835                 if (e1000e_up(adapter)) {
4836                         dev_err(&pdev->dev,
4837                                 "can't bring device back up after reset\n");
4838                         return;
4839                 }
4840         }
4841
4842         netif_device_attach(netdev);
4843
4844         /*
4845          * If the controller has AMT, do not set DRV_LOAD until the interface
4846          * is up.  For all other cases, let the f/w know that the h/w is now
4847          * under the control of the driver.
4848          */
4849         if (!(adapter->flags & FLAG_HAS_AMT))
4850                 e1000_get_hw_control(adapter);
4851
4852 }
4853
4854 static void e1000_print_device_info(struct e1000_adapter *adapter)
4855 {
4856         struct e1000_hw *hw = &adapter->hw;
4857         struct net_device *netdev = adapter->netdev;
4858         u32 pba_num;
4859
4860         /* print bus type/speed/width info */
4861         e_info("(PCI Express:2.5GB/s:%s) %pM\n",
4862                /* bus width */
4863                ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
4864                 "Width x1"),
4865                /* MAC address */
4866                netdev->dev_addr);
4867         e_info("Intel(R) PRO/%s Network Connection\n",
4868                (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
4869         e1000e_read_pba_num(hw, &pba_num);
4870         e_info("MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
4871                hw->mac.type, hw->phy.type, (pba_num >> 8), (pba_num & 0xff));
4872 }
4873
4874 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
4875 {
4876         struct e1000_hw *hw = &adapter->hw;
4877         int ret_val;
4878         u16 buf = 0;
4879
4880         if (hw->mac.type != e1000_82573)
4881                 return;
4882
4883         ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
4884         if (!ret_val && (!(le16_to_cpu(buf) & (1 << 0)))) {
4885                 /* Deep Smart Power Down (DSPD) */
4886                 dev_warn(&adapter->pdev->dev,
4887                          "Warning: detected DSPD enabled in EEPROM\n");
4888         }
4889
4890         ret_val = e1000_read_nvm(hw, NVM_INIT_3GIO_3, 1, &buf);
4891         if (!ret_val && (le16_to_cpu(buf) & (3 << 2))) {
4892                 /* ASPM enable */
4893                 dev_warn(&adapter->pdev->dev,
4894                          "Warning: detected ASPM enabled in EEPROM\n");
4895         }
4896 }
4897
4898 static const struct net_device_ops e1000e_netdev_ops = {
4899         .ndo_open               = e1000_open,
4900         .ndo_stop               = e1000_close,
4901         .ndo_start_xmit         = e1000_xmit_frame,
4902         .ndo_get_stats          = e1000_get_stats,
4903         .ndo_set_multicast_list = e1000_set_multi,
4904         .ndo_set_mac_address    = e1000_set_mac,
4905         .ndo_change_mtu         = e1000_change_mtu,
4906         .ndo_do_ioctl           = e1000_ioctl,
4907         .ndo_tx_timeout         = e1000_tx_timeout,
4908         .ndo_validate_addr      = eth_validate_addr,
4909
4910         .ndo_vlan_rx_register   = e1000_vlan_rx_register,
4911         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
4912         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
4913 #ifdef CONFIG_NET_POLL_CONTROLLER
4914         .ndo_poll_controller    = e1000_netpoll,
4915 #endif
4916 };
4917
4918 /**
4919  * e1000_probe - Device Initialization Routine
4920  * @pdev: PCI device information struct
4921  * @ent: entry in e1000_pci_tbl
4922  *
4923  * Returns 0 on success, negative on failure
4924  *
4925  * e1000_probe initializes an adapter identified by a pci_dev structure.
4926  * The OS initialization, configuring of the adapter private structure,
4927  * and a hardware reset occur.
4928  **/
4929 static int __devinit e1000_probe(struct pci_dev *pdev,
4930                                  const struct pci_device_id *ent)
4931 {
4932         struct net_device *netdev;
4933         struct e1000_adapter *adapter;
4934         struct e1000_hw *hw;
4935         const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
4936         resource_size_t mmio_start, mmio_len;
4937         resource_size_t flash_start, flash_len;
4938
4939         static int cards_found;
4940         int i, err, pci_using_dac;
4941         u16 eeprom_data = 0;
4942         u16 eeprom_apme_mask = E1000_EEPROM_APME;
4943
4944         e1000e_disable_l1aspm(pdev);
4945
4946         err = pci_enable_device_mem(pdev);
4947         if (err)
4948                 return err;
4949
4950         pci_using_dac = 0;
4951         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4952         if (!err) {
4953                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4954                 if (!err)
4955                         pci_using_dac = 1;
4956         } else {
4957                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4958                 if (err) {
4959                         err = pci_set_consistent_dma_mask(pdev,
4960                                                           DMA_BIT_MASK(32));
4961                         if (err) {
4962                                 dev_err(&pdev->dev, "No usable DMA "
4963                                         "configuration, aborting\n");
4964                                 goto err_dma;
4965                         }
4966                 }
4967         }
4968
4969         err = pci_request_selected_regions_exclusive(pdev,
4970                                           pci_select_bars(pdev, IORESOURCE_MEM),
4971                                           e1000e_driver_name);
4972         if (err)
4973                 goto err_pci_reg;
4974
4975         /* AER (Advanced Error Reporting) hooks */
4976         pci_enable_pcie_error_reporting(pdev);
4977
4978         pci_set_master(pdev);
4979         /* PCI config space info */
4980         err = pci_save_state(pdev);
4981         if (err)
4982                 goto err_alloc_etherdev;
4983
4984         err = -ENOMEM;
4985         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
4986         if (!netdev)
4987                 goto err_alloc_etherdev;
4988
4989         SET_NETDEV_DEV(netdev, &pdev->dev);
4990
4991         pci_set_drvdata(pdev, netdev);
4992         adapter = netdev_priv(netdev);
4993         hw = &adapter->hw;
4994         adapter->netdev = netdev;
4995         adapter->pdev = pdev;
4996         adapter->ei = ei;
4997         adapter->pba = ei->pba;
4998         adapter->flags = ei->flags;
4999         adapter->flags2 = ei->flags2;
5000         adapter->hw.adapter = adapter;
5001         adapter->hw.mac.type = ei->mac;
5002         adapter->max_hw_frame_size = ei->max_hw_frame_size;
5003         adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
5004
5005         mmio_start = pci_resource_start(pdev, 0);
5006         mmio_len = pci_resource_len(pdev, 0);
5007
5008         err = -EIO;
5009         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
5010         if (!adapter->hw.hw_addr)
5011                 goto err_ioremap;
5012
5013         if ((adapter->flags & FLAG_HAS_FLASH) &&
5014             (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
5015                 flash_start = pci_resource_start(pdev, 1);
5016                 flash_len = pci_resource_len(pdev, 1);
5017                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
5018                 if (!adapter->hw.flash_address)
5019                         goto err_flashmap;
5020         }
5021
5022         /* construct the net_device struct */
5023         netdev->netdev_ops              = &e1000e_netdev_ops;
5024         e1000e_set_ethtool_ops(netdev);
5025         netdev->watchdog_timeo          = 5 * HZ;
5026         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
5027         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
5028
5029         netdev->mem_start = mmio_start;
5030         netdev->mem_end = mmio_start + mmio_len;
5031
5032         adapter->bd_number = cards_found++;
5033
5034         e1000e_check_options(adapter);
5035
5036         /* setup adapter struct */
5037         err = e1000_sw_init(adapter);
5038         if (err)
5039                 goto err_sw_init;
5040
5041         err = -EIO;
5042
5043         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
5044         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
5045         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
5046
5047         err = ei->get_variants(adapter);
5048         if (err)
5049                 goto err_hw_init;
5050
5051         if ((adapter->flags & FLAG_IS_ICH) &&
5052             (adapter->flags & FLAG_READ_ONLY_NVM))
5053                 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
5054
5055         hw->mac.ops.get_bus_info(&adapter->hw);
5056
5057         adapter->hw.phy.autoneg_wait_to_complete = 0;
5058
5059         /* Copper options */
5060         if (adapter->hw.phy.media_type == e1000_media_type_copper) {
5061                 adapter->hw.phy.mdix = AUTO_ALL_MODES;
5062                 adapter->hw.phy.disable_polarity_correction = 0;
5063                 adapter->hw.phy.ms_type = e1000_ms_hw_default;
5064         }
5065
5066         if (e1000_check_reset_block(&adapter->hw))
5067                 e_info("PHY reset is blocked due to SOL/IDER session.\n");
5068
5069         netdev->features = NETIF_F_SG |
5070                            NETIF_F_HW_CSUM |
5071                            NETIF_F_HW_VLAN_TX |
5072                            NETIF_F_HW_VLAN_RX;
5073
5074         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
5075                 netdev->features |= NETIF_F_HW_VLAN_FILTER;
5076
5077         netdev->features |= NETIF_F_TSO;
5078         netdev->features |= NETIF_F_TSO6;
5079
5080         netdev->vlan_features |= NETIF_F_TSO;
5081         netdev->vlan_features |= NETIF_F_TSO6;
5082         netdev->vlan_features |= NETIF_F_HW_CSUM;
5083         netdev->vlan_features |= NETIF_F_SG;
5084
5085         if (pci_using_dac)
5086                 netdev->features |= NETIF_F_HIGHDMA;
5087
5088         if (e1000e_enable_mng_pass_thru(&adapter->hw))
5089                 adapter->flags |= FLAG_MNG_PT_ENABLED;
5090
5091         /*
5092          * before reading the NVM, reset the controller to
5093          * put the device in a known good starting state
5094          */
5095         adapter->hw.mac.ops.reset_hw(&adapter->hw);
5096
5097         /*
5098          * systems with ASPM and others may see the checksum fail on the first
5099          * attempt. Let's give it a few tries
5100          */
5101         for (i = 0;; i++) {
5102                 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
5103                         break;
5104                 if (i == 2) {
5105                         e_err("The NVM Checksum Is Not Valid\n");
5106                         err = -EIO;
5107                         goto err_eeprom;
5108                 }
5109         }
5110
5111         e1000_eeprom_checks(adapter);
5112
5113         /* copy the MAC address out of the NVM */
5114         if (e1000e_read_mac_addr(&adapter->hw))
5115                 e_err("NVM Read Error while reading MAC address\n");
5116
5117         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
5118         memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
5119
5120         if (!is_valid_ether_addr(netdev->perm_addr)) {
5121                 e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
5122                 err = -EIO;
5123                 goto err_eeprom;
5124         }
5125
5126         init_timer(&adapter->watchdog_timer);
5127         adapter->watchdog_timer.function = &e1000_watchdog;
5128         adapter->watchdog_timer.data = (unsigned long) adapter;
5129
5130         init_timer(&adapter->phy_info_timer);
5131         adapter->phy_info_timer.function = &e1000_update_phy_info;
5132         adapter->phy_info_timer.data = (unsigned long) adapter;
5133
5134         INIT_WORK(&adapter->reset_task, e1000_reset_task);
5135         INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
5136         INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
5137         INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
5138         INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
5139
5140         /* Initialize link parameters. User can change them with ethtool */
5141         adapter->hw.mac.autoneg = 1;
5142         adapter->fc_autoneg = 1;
5143         adapter->hw.fc.requested_mode = e1000_fc_default;
5144         adapter->hw.fc.current_mode = e1000_fc_default;
5145         adapter->hw.phy.autoneg_advertised = 0x2f;
5146
5147         /* ring size defaults */
5148         adapter->rx_ring->count = 256;
5149         adapter->tx_ring->count = 256;
5150
5151         /*
5152          * Initial Wake on LAN setting - If APM wake is enabled in
5153          * the EEPROM, enable the ACPI Magic Packet filter
5154          */
5155         if (adapter->flags & FLAG_APME_IN_WUC) {
5156                 /* APME bit in EEPROM is mapped to WUC.APME */
5157                 eeprom_data = er32(WUC);
5158                 eeprom_apme_mask = E1000_WUC_APME;
5159                 if (eeprom_data & E1000_WUC_PHY_WAKE)
5160                         adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
5161         } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
5162                 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
5163                     (adapter->hw.bus.func == 1))
5164                         e1000_read_nvm(&adapter->hw,
5165                                 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
5166                 else
5167                         e1000_read_nvm(&adapter->hw,
5168                                 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
5169         }
5170
5171         /* fetch WoL from EEPROM */
5172         if (eeprom_data & eeprom_apme_mask)
5173                 adapter->eeprom_wol |= E1000_WUFC_MAG;
5174
5175         /*
5176          * now that we have the eeprom settings, apply the special cases
5177          * where the eeprom may be wrong or the board simply won't support
5178          * wake on lan on a particular port
5179          */
5180         if (!(adapter->flags & FLAG_HAS_WOL))
5181                 adapter->eeprom_wol = 0;
5182
5183         /* initialize the wol settings based on the eeprom settings */
5184         adapter->wol = adapter->eeprom_wol;
5185         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
5186
5187         /* save off EEPROM version number */
5188         e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
5189
5190         /* reset the hardware with the new settings */
5191         e1000e_reset(adapter);
5192
5193         /*
5194          * If the controller has AMT, do not set DRV_LOAD until the interface
5195          * is up.  For all other cases, let the f/w know that the h/w is now
5196          * under the control of the driver.
5197          */
5198         if (!(adapter->flags & FLAG_HAS_AMT))
5199                 e1000_get_hw_control(adapter);
5200
5201         strcpy(netdev->name, "eth%d");
5202         err = register_netdev(netdev);
5203         if (err)
5204                 goto err_register;
5205
5206         /* carrier off reporting is important to ethtool even BEFORE open */
5207         netif_carrier_off(netdev);
5208
5209         e1000_print_device_info(adapter);
5210
5211         return 0;
5212
5213 err_register:
5214         if (!(adapter->flags & FLAG_HAS_AMT))
5215                 e1000_release_hw_control(adapter);
5216 err_eeprom:
5217         if (!e1000_check_reset_block(&adapter->hw))
5218                 e1000_phy_hw_reset(&adapter->hw);
5219 err_hw_init:
5220
5221         kfree(adapter->tx_ring);
5222         kfree(adapter->rx_ring);
5223 err_sw_init:
5224         if (adapter->hw.flash_address)
5225                 iounmap(adapter->hw.flash_address);
5226         e1000e_reset_interrupt_capability(adapter);
5227 err_flashmap:
5228         iounmap(adapter->hw.hw_addr);
5229 err_ioremap:
5230         free_netdev(netdev);
5231 err_alloc_etherdev:
5232         pci_release_selected_regions(pdev,
5233                                      pci_select_bars(pdev, IORESOURCE_MEM));
5234 err_pci_reg:
5235 err_dma:
5236         pci_disable_device(pdev);
5237         return err;
5238 }
5239
5240 /**
5241  * e1000_remove - Device Removal Routine
5242  * @pdev: PCI device information struct
5243  *
5244  * e1000_remove is called by the PCI subsystem to alert the driver
5245  * that it should release a PCI device.  The could be caused by a
5246  * Hot-Plug event, or because the driver is going to be removed from
5247  * memory.
5248  **/
5249 static void __devexit e1000_remove(struct pci_dev *pdev)
5250 {
5251         struct net_device *netdev = pci_get_drvdata(pdev);
5252         struct e1000_adapter *adapter = netdev_priv(netdev);
5253
5254         /*
5255          * flush_scheduled work may reschedule our watchdog task, so
5256          * explicitly disable watchdog tasks from being rescheduled
5257          */
5258         set_bit(__E1000_DOWN, &adapter->state);
5259         del_timer_sync(&adapter->watchdog_timer);
5260         del_timer_sync(&adapter->phy_info_timer);
5261
5262         cancel_work_sync(&adapter->reset_task);
5263         cancel_work_sync(&adapter->watchdog_task);
5264         cancel_work_sync(&adapter->downshift_task);
5265         cancel_work_sync(&adapter->update_phy_task);
5266         cancel_work_sync(&adapter->print_hang_task);
5267         flush_scheduled_work();
5268
5269         if (!(netdev->flags & IFF_UP))
5270                 e1000_power_down_phy(adapter);
5271
5272         unregister_netdev(netdev);
5273
5274         /*
5275          * Release control of h/w to f/w.  If f/w is AMT enabled, this
5276          * would have already happened in close and is redundant.
5277          */
5278         e1000_release_hw_control(adapter);
5279
5280         e1000e_reset_interrupt_capability(adapter);
5281         kfree(adapter->tx_ring);
5282         kfree(adapter->rx_ring);
5283
5284         iounmap(adapter->hw.hw_addr);
5285         if (adapter->hw.flash_address)
5286                 iounmap(adapter->hw.flash_address);
5287         pci_release_selected_regions(pdev,
5288                                      pci_select_bars(pdev, IORESOURCE_MEM));
5289
5290         free_netdev(netdev);
5291
5292         /* AER disable */
5293         pci_disable_pcie_error_reporting(pdev);
5294
5295         pci_disable_device(pdev);
5296 }
5297
5298 /* PCI Error Recovery (ERS) */
5299 static struct pci_error_handlers e1000_err_handler = {
5300         .error_detected = e1000_io_error_detected,
5301         .slot_reset = e1000_io_slot_reset,
5302         .resume = e1000_io_resume,
5303 };
5304
5305 static struct pci_device_id e1000_pci_tbl[] = {
5306         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
5307         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
5308         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
5309         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
5310         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
5311         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
5312         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
5313         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
5314         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
5315
5316         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
5317         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
5318         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
5319         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
5320
5321         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
5322         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
5323         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
5324
5325         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
5326         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
5327         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
5328
5329         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
5330           board_80003es2lan },
5331         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
5332           board_80003es2lan },
5333         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
5334           board_80003es2lan },
5335         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
5336           board_80003es2lan },
5337
5338         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
5339         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
5340         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
5341         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
5342         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
5343         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
5344         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
5345
5346         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
5347         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
5348         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
5349         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
5350         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
5351         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
5352         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
5353         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
5354         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
5355
5356         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
5357         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
5358         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
5359
5360         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
5361         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
5362
5363         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
5364         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
5365         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
5366         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
5367
5368         { }     /* terminate list */
5369 };
5370 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
5371
5372 /* PCI Device API Driver */
5373 static struct pci_driver e1000_driver = {
5374         .name     = e1000e_driver_name,
5375         .id_table = e1000_pci_tbl,
5376         .probe    = e1000_probe,
5377         .remove   = __devexit_p(e1000_remove),
5378 #ifdef CONFIG_PM
5379         /* Power Management Hooks */
5380         .suspend  = e1000_suspend,
5381         .resume   = e1000_resume,
5382 #endif
5383         .shutdown = e1000_shutdown,
5384         .err_handler = &e1000_err_handler
5385 };
5386
5387 /**
5388  * e1000_init_module - Driver Registration Routine
5389  *
5390  * e1000_init_module is the first routine called when the driver is
5391  * loaded. All it does is register with the PCI subsystem.
5392  **/
5393 static int __init e1000_init_module(void)
5394 {
5395         int ret;
5396         printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n",
5397                e1000e_driver_name, e1000e_driver_version);
5398         printk(KERN_INFO "%s: Copyright (c) 1999 - 2009 Intel Corporation.\n",
5399                e1000e_driver_name);
5400         ret = pci_register_driver(&e1000_driver);
5401
5402         return ret;
5403 }
5404 module_init(e1000_init_module);
5405
5406 /**
5407  * e1000_exit_module - Driver Exit Cleanup Routine
5408  *
5409  * e1000_exit_module is called just before the driver is removed
5410  * from memory.
5411  **/
5412 static void __exit e1000_exit_module(void)
5413 {
5414         pci_unregister_driver(&e1000_driver);
5415 }
5416 module_exit(e1000_exit_module);
5417
5418
5419 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
5420 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
5421 MODULE_LICENSE("GPL");
5422 MODULE_VERSION(DRV_VERSION);
5423
5424 /* e1000_main.c */