Merge git://bedivere.hansenpartnership.com/git/scsi-rc-fixes-2.6
[linux-2.6.git] / drivers / net / e1000e / ich8lan.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2011 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /*
30  * 82562G 10/100 Network Connection
31  * 82562G-2 10/100 Network Connection
32  * 82562GT 10/100 Network Connection
33  * 82562GT-2 10/100 Network Connection
34  * 82562V 10/100 Network Connection
35  * 82562V-2 10/100 Network Connection
36  * 82566DC-2 Gigabit Network Connection
37  * 82566DC Gigabit Network Connection
38  * 82566DM-2 Gigabit Network Connection
39  * 82566DM Gigabit Network Connection
40  * 82566MC Gigabit Network Connection
41  * 82566MM Gigabit Network Connection
42  * 82567LM Gigabit Network Connection
43  * 82567LF Gigabit Network Connection
44  * 82567V Gigabit Network Connection
45  * 82567LM-2 Gigabit Network Connection
46  * 82567LF-2 Gigabit Network Connection
47  * 82567V-2 Gigabit Network Connection
48  * 82567LF-3 Gigabit Network Connection
49  * 82567LM-3 Gigabit Network Connection
50  * 82567LM-4 Gigabit Network Connection
51  * 82577LM Gigabit Network Connection
52  * 82577LC Gigabit Network Connection
53  * 82578DM Gigabit Network Connection
54  * 82578DC Gigabit Network Connection
55  * 82579LM Gigabit Network Connection
56  * 82579V Gigabit Network Connection
57  */
58
59 #include "e1000.h"
60
61 #define ICH_FLASH_GFPREG                0x0000
62 #define ICH_FLASH_HSFSTS                0x0004
63 #define ICH_FLASH_HSFCTL                0x0006
64 #define ICH_FLASH_FADDR                 0x0008
65 #define ICH_FLASH_FDATA0                0x0010
66 #define ICH_FLASH_PR0                   0x0074
67
68 #define ICH_FLASH_READ_COMMAND_TIMEOUT  500
69 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
70 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
71 #define ICH_FLASH_LINEAR_ADDR_MASK      0x00FFFFFF
72 #define ICH_FLASH_CYCLE_REPEAT_COUNT    10
73
74 #define ICH_CYCLE_READ                  0
75 #define ICH_CYCLE_WRITE                 2
76 #define ICH_CYCLE_ERASE                 3
77
78 #define FLASH_GFPREG_BASE_MASK          0x1FFF
79 #define FLASH_SECTOR_ADDR_SHIFT         12
80
81 #define ICH_FLASH_SEG_SIZE_256          256
82 #define ICH_FLASH_SEG_SIZE_4K           4096
83 #define ICH_FLASH_SEG_SIZE_8K           8192
84 #define ICH_FLASH_SEG_SIZE_64K          65536
85
86
87 #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
88 /* FW established a valid mode */
89 #define E1000_ICH_FWSM_FW_VALID         0x00008000
90
91 #define E1000_ICH_MNG_IAMT_MODE         0x2
92
93 #define ID_LED_DEFAULT_ICH8LAN  ((ID_LED_DEF1_DEF2 << 12) | \
94                                  (ID_LED_DEF1_OFF2 <<  8) | \
95                                  (ID_LED_DEF1_ON2  <<  4) | \
96                                  (ID_LED_DEF1_DEF2))
97
98 #define E1000_ICH_NVM_SIG_WORD          0x13
99 #define E1000_ICH_NVM_SIG_MASK          0xC000
100 #define E1000_ICH_NVM_VALID_SIG_MASK    0xC0
101 #define E1000_ICH_NVM_SIG_VALUE         0x80
102
103 #define E1000_ICH8_LAN_INIT_TIMEOUT     1500
104
105 #define E1000_FEXTNVM_SW_CONFIG         1
106 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
107
108 #define E1000_FEXTNVM4_BEACON_DURATION_MASK    0x7
109 #define E1000_FEXTNVM4_BEACON_DURATION_8USEC   0x7
110 #define E1000_FEXTNVM4_BEACON_DURATION_16USEC  0x3
111
112 #define PCIE_ICH8_SNOOP_ALL             PCIE_NO_SNOOP_ALL
113
114 #define E1000_ICH_RAR_ENTRIES           7
115
116 #define PHY_PAGE_SHIFT 5
117 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
118                            ((reg) & MAX_PHY_REG_ADDRESS))
119 #define IGP3_KMRN_DIAG  PHY_REG(770, 19) /* KMRN Diagnostic */
120 #define IGP3_VR_CTRL    PHY_REG(776, 18) /* Voltage Regulator Control */
121
122 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS    0x0002
123 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
124 #define IGP3_VR_CTRL_MODE_SHUTDOWN      0x0200
125
126 #define HV_LED_CONFIG           PHY_REG(768, 30) /* LED Configuration */
127
128 #define SW_FLAG_TIMEOUT    1000 /* SW Semaphore flag timeout in milliseconds */
129
130 /* SMBus Address Phy Register */
131 #define HV_SMB_ADDR            PHY_REG(768, 26)
132 #define HV_SMB_ADDR_MASK       0x007F
133 #define HV_SMB_ADDR_PEC_EN     0x0200
134 #define HV_SMB_ADDR_VALID      0x0080
135
136 /* PHY Power Management Control */
137 #define HV_PM_CTRL              PHY_REG(770, 17)
138
139 /* PHY Low Power Idle Control */
140 #define I82579_LPI_CTRL                         PHY_REG(772, 20)
141 #define I82579_LPI_CTRL_ENABLE_MASK             0x6000
142 #define I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT    0x80
143
144 /* EMI Registers */
145 #define I82579_EMI_ADDR         0x10
146 #define I82579_EMI_DATA         0x11
147 #define I82579_LPI_UPDATE_TIMER 0x4805  /* in 40ns units + 40 ns base value */
148
149 /* Strapping Option Register - RO */
150 #define E1000_STRAP                     0x0000C
151 #define E1000_STRAP_SMBUS_ADDRESS_MASK  0x00FE0000
152 #define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
153
154 /* OEM Bits Phy Register */
155 #define HV_OEM_BITS            PHY_REG(768, 25)
156 #define HV_OEM_BITS_LPLU       0x0004 /* Low Power Link Up */
157 #define HV_OEM_BITS_GBE_DIS    0x0040 /* Gigabit Disable */
158 #define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
159
160 #define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
161 #define E1000_NVM_K1_ENABLE 0x1  /* NVM Enable K1 bit */
162
163 /* KMRN Mode Control */
164 #define HV_KMRN_MODE_CTRL      PHY_REG(769, 16)
165 #define HV_KMRN_MDIO_SLOW      0x0400
166
167 /* KMRN FIFO Control and Status */
168 #define HV_KMRN_FIFO_CTRLSTA                  PHY_REG(770, 16)
169 #define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK    0x7000
170 #define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT   12
171
172 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
173 /* Offset 04h HSFSTS */
174 union ich8_hws_flash_status {
175         struct ich8_hsfsts {
176                 u16 flcdone    :1; /* bit 0 Flash Cycle Done */
177                 u16 flcerr     :1; /* bit 1 Flash Cycle Error */
178                 u16 dael       :1; /* bit 2 Direct Access error Log */
179                 u16 berasesz   :2; /* bit 4:3 Sector Erase Size */
180                 u16 flcinprog  :1; /* bit 5 flash cycle in Progress */
181                 u16 reserved1  :2; /* bit 13:6 Reserved */
182                 u16 reserved2  :6; /* bit 13:6 Reserved */
183                 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
184                 u16 flockdn    :1; /* bit 15 Flash Config Lock-Down */
185         } hsf_status;
186         u16 regval;
187 };
188
189 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
190 /* Offset 06h FLCTL */
191 union ich8_hws_flash_ctrl {
192         struct ich8_hsflctl {
193                 u16 flcgo      :1;   /* 0 Flash Cycle Go */
194                 u16 flcycle    :2;   /* 2:1 Flash Cycle */
195                 u16 reserved   :5;   /* 7:3 Reserved  */
196                 u16 fldbcount  :2;   /* 9:8 Flash Data Byte Count */
197                 u16 flockdn    :6;   /* 15:10 Reserved */
198         } hsf_ctrl;
199         u16 regval;
200 };
201
202 /* ICH Flash Region Access Permissions */
203 union ich8_hws_flash_regacc {
204         struct ich8_flracc {
205                 u32 grra      :8; /* 0:7 GbE region Read Access */
206                 u32 grwa      :8; /* 8:15 GbE region Write Access */
207                 u32 gmrag     :8; /* 23:16 GbE Master Read Access Grant */
208                 u32 gmwag     :8; /* 31:24 GbE Master Write Access Grant */
209         } hsf_flregacc;
210         u16 regval;
211 };
212
213 /* ICH Flash Protected Region */
214 union ich8_flash_protected_range {
215         struct ich8_pr {
216                 u32 base:13;     /* 0:12 Protected Range Base */
217                 u32 reserved1:2; /* 13:14 Reserved */
218                 u32 rpe:1;       /* 15 Read Protection Enable */
219                 u32 limit:13;    /* 16:28 Protected Range Limit */
220                 u32 reserved2:2; /* 29:30 Reserved */
221                 u32 wpe:1;       /* 31 Write Protection Enable */
222         } range;
223         u32 regval;
224 };
225
226 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
227 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
228 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
229 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
230 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
231                                                 u32 offset, u8 byte);
232 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
233                                          u8 *data);
234 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
235                                          u16 *data);
236 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
237                                          u8 size, u16 *data);
238 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
239 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
240 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
241 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
242 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
243 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
244 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
245 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
246 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
247 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
248 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
249 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
250 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
251 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
252 static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
253 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
254 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
255 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
256 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
257 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
258
259 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
260 {
261         return readw(hw->flash_address + reg);
262 }
263
264 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
265 {
266         return readl(hw->flash_address + reg);
267 }
268
269 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
270 {
271         writew(val, hw->flash_address + reg);
272 }
273
274 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
275 {
276         writel(val, hw->flash_address + reg);
277 }
278
279 #define er16flash(reg)          __er16flash(hw, (reg))
280 #define er32flash(reg)          __er32flash(hw, (reg))
281 #define ew16flash(reg,val)      __ew16flash(hw, (reg), (val))
282 #define ew32flash(reg,val)      __ew32flash(hw, (reg), (val))
283
284 static void e1000_toggle_lanphypc_value_ich8lan(struct e1000_hw *hw)
285 {
286         u32 ctrl;
287
288         ctrl = er32(CTRL);
289         ctrl |= E1000_CTRL_LANPHYPC_OVERRIDE;
290         ctrl &= ~E1000_CTRL_LANPHYPC_VALUE;
291         ew32(CTRL, ctrl);
292         e1e_flush();
293         udelay(10);
294         ctrl &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
295         ew32(CTRL, ctrl);
296 }
297
298 /**
299  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
300  *  @hw: pointer to the HW structure
301  *
302  *  Initialize family-specific PHY parameters and function pointers.
303  **/
304 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
305 {
306         struct e1000_phy_info *phy = &hw->phy;
307         u32 fwsm;
308         s32 ret_val = 0;
309
310         phy->addr                     = 1;
311         phy->reset_delay_us           = 100;
312
313         phy->ops.set_page             = e1000_set_page_igp;
314         phy->ops.read_reg             = e1000_read_phy_reg_hv;
315         phy->ops.read_reg_locked      = e1000_read_phy_reg_hv_locked;
316         phy->ops.read_reg_page        = e1000_read_phy_reg_page_hv;
317         phy->ops.set_d0_lplu_state    = e1000_set_lplu_state_pchlan;
318         phy->ops.set_d3_lplu_state    = e1000_set_lplu_state_pchlan;
319         phy->ops.write_reg            = e1000_write_phy_reg_hv;
320         phy->ops.write_reg_locked     = e1000_write_phy_reg_hv_locked;
321         phy->ops.write_reg_page       = e1000_write_phy_reg_page_hv;
322         phy->ops.power_up             = e1000_power_up_phy_copper;
323         phy->ops.power_down           = e1000_power_down_phy_copper_ich8lan;
324         phy->autoneg_mask             = AUTONEG_ADVERTISE_SPEED_DEFAULT;
325
326         /*
327          * The MAC-PHY interconnect may still be in SMBus mode
328          * after Sx->S0.  If the manageability engine (ME) is
329          * disabled, then toggle the LANPHYPC Value bit to force
330          * the interconnect to PCIe mode.
331          */
332         fwsm = er32(FWSM);
333         if (!(fwsm & E1000_ICH_FWSM_FW_VALID) && !e1000_check_reset_block(hw)) {
334                 e1000_toggle_lanphypc_value_ich8lan(hw);
335                 msleep(50);
336
337                 /*
338                  * Gate automatic PHY configuration by hardware on
339                  * non-managed 82579
340                  */
341                 if (hw->mac.type == e1000_pch2lan)
342                         e1000_gate_hw_phy_config_ich8lan(hw, true);
343         }
344
345         /*
346          * Reset the PHY before any access to it.  Doing so, ensures that
347          * the PHY is in a known good state before we read/write PHY registers.
348          * The generic reset is sufficient here, because we haven't determined
349          * the PHY type yet.
350          */
351         ret_val = e1000e_phy_hw_reset_generic(hw);
352         if (ret_val)
353                 goto out;
354
355         /* Ungate automatic PHY configuration on non-managed 82579 */
356         if ((hw->mac.type == e1000_pch2lan) &&
357             !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
358                 usleep_range(10000, 20000);
359                 e1000_gate_hw_phy_config_ich8lan(hw, false);
360         }
361
362         phy->id = e1000_phy_unknown;
363         switch (hw->mac.type) {
364         default:
365                 ret_val = e1000e_get_phy_id(hw);
366                 if (ret_val)
367                         goto out;
368                 if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
369                         break;
370                 /* fall-through */
371         case e1000_pch2lan:
372                 /*
373                  * In case the PHY needs to be in mdio slow mode,
374                  * set slow mode and try to get the PHY id again.
375                  */
376                 ret_val = e1000_set_mdio_slow_mode_hv(hw);
377                 if (ret_val)
378                         goto out;
379                 ret_val = e1000e_get_phy_id(hw);
380                 if (ret_val)
381                         goto out;
382                 break;
383         }
384         phy->type = e1000e_get_phy_type_from_id(phy->id);
385
386         switch (phy->type) {
387         case e1000_phy_82577:
388         case e1000_phy_82579:
389                 phy->ops.check_polarity = e1000_check_polarity_82577;
390                 phy->ops.force_speed_duplex =
391                     e1000_phy_force_speed_duplex_82577;
392                 phy->ops.get_cable_length = e1000_get_cable_length_82577;
393                 phy->ops.get_info = e1000_get_phy_info_82577;
394                 phy->ops.commit = e1000e_phy_sw_reset;
395                 break;
396         case e1000_phy_82578:
397                 phy->ops.check_polarity = e1000_check_polarity_m88;
398                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
399                 phy->ops.get_cable_length = e1000e_get_cable_length_m88;
400                 phy->ops.get_info = e1000e_get_phy_info_m88;
401                 break;
402         default:
403                 ret_val = -E1000_ERR_PHY;
404                 break;
405         }
406
407 out:
408         return ret_val;
409 }
410
411 /**
412  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
413  *  @hw: pointer to the HW structure
414  *
415  *  Initialize family-specific PHY parameters and function pointers.
416  **/
417 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
418 {
419         struct e1000_phy_info *phy = &hw->phy;
420         s32 ret_val;
421         u16 i = 0;
422
423         phy->addr                       = 1;
424         phy->reset_delay_us             = 100;
425
426         phy->ops.power_up               = e1000_power_up_phy_copper;
427         phy->ops.power_down             = e1000_power_down_phy_copper_ich8lan;
428
429         /*
430          * We may need to do this twice - once for IGP and if that fails,
431          * we'll set BM func pointers and try again
432          */
433         ret_val = e1000e_determine_phy_address(hw);
434         if (ret_val) {
435                 phy->ops.write_reg = e1000e_write_phy_reg_bm;
436                 phy->ops.read_reg  = e1000e_read_phy_reg_bm;
437                 ret_val = e1000e_determine_phy_address(hw);
438                 if (ret_val) {
439                         e_dbg("Cannot determine PHY addr. Erroring out\n");
440                         return ret_val;
441                 }
442         }
443
444         phy->id = 0;
445         while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
446                (i++ < 100)) {
447                 usleep_range(1000, 2000);
448                 ret_val = e1000e_get_phy_id(hw);
449                 if (ret_val)
450                         return ret_val;
451         }
452
453         /* Verify phy id */
454         switch (phy->id) {
455         case IGP03E1000_E_PHY_ID:
456                 phy->type = e1000_phy_igp_3;
457                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
458                 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
459                 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
460                 phy->ops.get_info = e1000e_get_phy_info_igp;
461                 phy->ops.check_polarity = e1000_check_polarity_igp;
462                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
463                 break;
464         case IFE_E_PHY_ID:
465         case IFE_PLUS_E_PHY_ID:
466         case IFE_C_E_PHY_ID:
467                 phy->type = e1000_phy_ife;
468                 phy->autoneg_mask = E1000_ALL_NOT_GIG;
469                 phy->ops.get_info = e1000_get_phy_info_ife;
470                 phy->ops.check_polarity = e1000_check_polarity_ife;
471                 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
472                 break;
473         case BME1000_E_PHY_ID:
474                 phy->type = e1000_phy_bm;
475                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
476                 phy->ops.read_reg = e1000e_read_phy_reg_bm;
477                 phy->ops.write_reg = e1000e_write_phy_reg_bm;
478                 phy->ops.commit = e1000e_phy_sw_reset;
479                 phy->ops.get_info = e1000e_get_phy_info_m88;
480                 phy->ops.check_polarity = e1000_check_polarity_m88;
481                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
482                 break;
483         default:
484                 return -E1000_ERR_PHY;
485                 break;
486         }
487
488         return 0;
489 }
490
491 /**
492  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
493  *  @hw: pointer to the HW structure
494  *
495  *  Initialize family-specific NVM parameters and function
496  *  pointers.
497  **/
498 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
499 {
500         struct e1000_nvm_info *nvm = &hw->nvm;
501         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
502         u32 gfpreg, sector_base_addr, sector_end_addr;
503         u16 i;
504
505         /* Can't read flash registers if the register set isn't mapped. */
506         if (!hw->flash_address) {
507                 e_dbg("ERROR: Flash registers not mapped\n");
508                 return -E1000_ERR_CONFIG;
509         }
510
511         nvm->type = e1000_nvm_flash_sw;
512
513         gfpreg = er32flash(ICH_FLASH_GFPREG);
514
515         /*
516          * sector_X_addr is a "sector"-aligned address (4096 bytes)
517          * Add 1 to sector_end_addr since this sector is included in
518          * the overall size.
519          */
520         sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
521         sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
522
523         /* flash_base_addr is byte-aligned */
524         nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
525
526         /*
527          * find total size of the NVM, then cut in half since the total
528          * size represents two separate NVM banks.
529          */
530         nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
531                                 << FLASH_SECTOR_ADDR_SHIFT;
532         nvm->flash_bank_size /= 2;
533         /* Adjust to word count */
534         nvm->flash_bank_size /= sizeof(u16);
535
536         nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
537
538         /* Clear shadow ram */
539         for (i = 0; i < nvm->word_size; i++) {
540                 dev_spec->shadow_ram[i].modified = false;
541                 dev_spec->shadow_ram[i].value    = 0xFFFF;
542         }
543
544         return 0;
545 }
546
547 /**
548  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
549  *  @hw: pointer to the HW structure
550  *
551  *  Initialize family-specific MAC parameters and function
552  *  pointers.
553  **/
554 static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
555 {
556         struct e1000_hw *hw = &adapter->hw;
557         struct e1000_mac_info *mac = &hw->mac;
558
559         /* Set media type function pointer */
560         hw->phy.media_type = e1000_media_type_copper;
561
562         /* Set mta register count */
563         mac->mta_reg_count = 32;
564         /* Set rar entry count */
565         mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
566         if (mac->type == e1000_ich8lan)
567                 mac->rar_entry_count--;
568         /* FWSM register */
569         mac->has_fwsm = true;
570         /* ARC subsystem not supported */
571         mac->arc_subsystem_valid = false;
572         /* Adaptive IFS supported */
573         mac->adaptive_ifs = true;
574
575         /* LED operations */
576         switch (mac->type) {
577         case e1000_ich8lan:
578         case e1000_ich9lan:
579         case e1000_ich10lan:
580                 /* check management mode */
581                 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
582                 /* ID LED init */
583                 mac->ops.id_led_init = e1000e_id_led_init;
584                 /* blink LED */
585                 mac->ops.blink_led = e1000e_blink_led_generic;
586                 /* setup LED */
587                 mac->ops.setup_led = e1000e_setup_led_generic;
588                 /* cleanup LED */
589                 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
590                 /* turn on/off LED */
591                 mac->ops.led_on = e1000_led_on_ich8lan;
592                 mac->ops.led_off = e1000_led_off_ich8lan;
593                 break;
594         case e1000_pchlan:
595         case e1000_pch2lan:
596                 /* check management mode */
597                 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
598                 /* ID LED init */
599                 mac->ops.id_led_init = e1000_id_led_init_pchlan;
600                 /* setup LED */
601                 mac->ops.setup_led = e1000_setup_led_pchlan;
602                 /* cleanup LED */
603                 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
604                 /* turn on/off LED */
605                 mac->ops.led_on = e1000_led_on_pchlan;
606                 mac->ops.led_off = e1000_led_off_pchlan;
607                 break;
608         default:
609                 break;
610         }
611
612         /* Enable PCS Lock-loss workaround for ICH8 */
613         if (mac->type == e1000_ich8lan)
614                 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
615
616         /* Gate automatic PHY configuration by hardware on managed 82579 */
617         if ((mac->type == e1000_pch2lan) &&
618             (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
619                 e1000_gate_hw_phy_config_ich8lan(hw, true);
620
621         return 0;
622 }
623
624 /**
625  *  e1000_set_eee_pchlan - Enable/disable EEE support
626  *  @hw: pointer to the HW structure
627  *
628  *  Enable/disable EEE based on setting in dev_spec structure.  The bits in
629  *  the LPI Control register will remain set only if/when link is up.
630  **/
631 static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
632 {
633         s32 ret_val = 0;
634         u16 phy_reg;
635
636         if (hw->phy.type != e1000_phy_82579)
637                 goto out;
638
639         ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
640         if (ret_val)
641                 goto out;
642
643         if (hw->dev_spec.ich8lan.eee_disable)
644                 phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK;
645         else
646                 phy_reg |= I82579_LPI_CTRL_ENABLE_MASK;
647
648         ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
649 out:
650         return ret_val;
651 }
652
653 /**
654  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
655  *  @hw: pointer to the HW structure
656  *
657  *  Checks to see of the link status of the hardware has changed.  If a
658  *  change in link status has been detected, then we read the PHY registers
659  *  to get the current speed/duplex if link exists.
660  **/
661 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
662 {
663         struct e1000_mac_info *mac = &hw->mac;
664         s32 ret_val;
665         bool link;
666         u16 phy_reg;
667
668         /*
669          * We only want to go out to the PHY registers to see if Auto-Neg
670          * has completed and/or if our link status has changed.  The
671          * get_link_status flag is set upon receiving a Link Status
672          * Change or Rx Sequence Error interrupt.
673          */
674         if (!mac->get_link_status) {
675                 ret_val = 0;
676                 goto out;
677         }
678
679         /*
680          * First we want to see if the MII Status Register reports
681          * link.  If so, then we want to get the current speed/duplex
682          * of the PHY.
683          */
684         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
685         if (ret_val)
686                 goto out;
687
688         if (hw->mac.type == e1000_pchlan) {
689                 ret_val = e1000_k1_gig_workaround_hv(hw, link);
690                 if (ret_val)
691                         goto out;
692         }
693
694         if (!link)
695                 goto out; /* No link detected */
696
697         mac->get_link_status = false;
698
699         switch (hw->mac.type) {
700         case e1000_pch2lan:
701                 ret_val = e1000_k1_workaround_lv(hw);
702                 if (ret_val)
703                         goto out;
704                 /* fall-thru */
705         case e1000_pchlan:
706                 if (hw->phy.type == e1000_phy_82578) {
707                         ret_val = e1000_link_stall_workaround_hv(hw);
708                         if (ret_val)
709                                 goto out;
710                 }
711
712                 /*
713                  * Workaround for PCHx parts in half-duplex:
714                  * Set the number of preambles removed from the packet
715                  * when it is passed from the PHY to the MAC to prevent
716                  * the MAC from misinterpreting the packet type.
717                  */
718                 e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
719                 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
720
721                 if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
722                         phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
723
724                 e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
725                 break;
726         default:
727                 break;
728         }
729
730         /*
731          * Check if there was DownShift, must be checked
732          * immediately after link-up
733          */
734         e1000e_check_downshift(hw);
735
736         /* Enable/Disable EEE after link up */
737         ret_val = e1000_set_eee_pchlan(hw);
738         if (ret_val)
739                 goto out;
740
741         /*
742          * If we are forcing speed/duplex, then we simply return since
743          * we have already determined whether we have link or not.
744          */
745         if (!mac->autoneg) {
746                 ret_val = -E1000_ERR_CONFIG;
747                 goto out;
748         }
749
750         /*
751          * Auto-Neg is enabled.  Auto Speed Detection takes care
752          * of MAC speed/duplex configuration.  So we only need to
753          * configure Collision Distance in the MAC.
754          */
755         e1000e_config_collision_dist(hw);
756
757         /*
758          * Configure Flow Control now that Auto-Neg has completed.
759          * First, we need to restore the desired flow control
760          * settings because we may have had to re-autoneg with a
761          * different link partner.
762          */
763         ret_val = e1000e_config_fc_after_link_up(hw);
764         if (ret_val)
765                 e_dbg("Error configuring flow control\n");
766
767 out:
768         return ret_val;
769 }
770
771 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
772 {
773         struct e1000_hw *hw = &adapter->hw;
774         s32 rc;
775
776         rc = e1000_init_mac_params_ich8lan(adapter);
777         if (rc)
778                 return rc;
779
780         rc = e1000_init_nvm_params_ich8lan(hw);
781         if (rc)
782                 return rc;
783
784         switch (hw->mac.type) {
785         case e1000_ich8lan:
786         case e1000_ich9lan:
787         case e1000_ich10lan:
788                 rc = e1000_init_phy_params_ich8lan(hw);
789                 break;
790         case e1000_pchlan:
791         case e1000_pch2lan:
792                 rc = e1000_init_phy_params_pchlan(hw);
793                 break;
794         default:
795                 break;
796         }
797         if (rc)
798                 return rc;
799
800         /*
801          * Disable Jumbo Frame support on parts with Intel 10/100 PHY or
802          * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
803          */
804         if ((adapter->hw.phy.type == e1000_phy_ife) ||
805             ((adapter->hw.mac.type >= e1000_pch2lan) &&
806              (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
807                 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
808                 adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
809
810                 hw->mac.ops.blink_led = NULL;
811         }
812
813         if ((adapter->hw.mac.type == e1000_ich8lan) &&
814             (adapter->hw.phy.type == e1000_phy_igp_3))
815                 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
816
817         /* Enable workaround for 82579 w/ ME enabled */
818         if ((adapter->hw.mac.type == e1000_pch2lan) &&
819             (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
820                 adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
821
822         /* Disable EEE by default until IEEE802.3az spec is finalized */
823         if (adapter->flags2 & FLAG2_HAS_EEE)
824                 adapter->hw.dev_spec.ich8lan.eee_disable = true;
825
826         return 0;
827 }
828
829 static DEFINE_MUTEX(nvm_mutex);
830
831 /**
832  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
833  *  @hw: pointer to the HW structure
834  *
835  *  Acquires the mutex for performing NVM operations.
836  **/
837 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
838 {
839         mutex_lock(&nvm_mutex);
840
841         return 0;
842 }
843
844 /**
845  *  e1000_release_nvm_ich8lan - Release NVM mutex
846  *  @hw: pointer to the HW structure
847  *
848  *  Releases the mutex used while performing NVM operations.
849  **/
850 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
851 {
852         mutex_unlock(&nvm_mutex);
853 }
854
855 static DEFINE_MUTEX(swflag_mutex);
856
857 /**
858  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
859  *  @hw: pointer to the HW structure
860  *
861  *  Acquires the software control flag for performing PHY and select
862  *  MAC CSR accesses.
863  **/
864 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
865 {
866         u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
867         s32 ret_val = 0;
868
869         mutex_lock(&swflag_mutex);
870
871         while (timeout) {
872                 extcnf_ctrl = er32(EXTCNF_CTRL);
873                 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
874                         break;
875
876                 mdelay(1);
877                 timeout--;
878         }
879
880         if (!timeout) {
881                 e_dbg("SW/FW/HW has locked the resource for too long.\n");
882                 ret_val = -E1000_ERR_CONFIG;
883                 goto out;
884         }
885
886         timeout = SW_FLAG_TIMEOUT;
887
888         extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
889         ew32(EXTCNF_CTRL, extcnf_ctrl);
890
891         while (timeout) {
892                 extcnf_ctrl = er32(EXTCNF_CTRL);
893                 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
894                         break;
895
896                 mdelay(1);
897                 timeout--;
898         }
899
900         if (!timeout) {
901                 e_dbg("Failed to acquire the semaphore.\n");
902                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
903                 ew32(EXTCNF_CTRL, extcnf_ctrl);
904                 ret_val = -E1000_ERR_CONFIG;
905                 goto out;
906         }
907
908 out:
909         if (ret_val)
910                 mutex_unlock(&swflag_mutex);
911
912         return ret_val;
913 }
914
915 /**
916  *  e1000_release_swflag_ich8lan - Release software control flag
917  *  @hw: pointer to the HW structure
918  *
919  *  Releases the software control flag for performing PHY and select
920  *  MAC CSR accesses.
921  **/
922 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
923 {
924         u32 extcnf_ctrl;
925
926         extcnf_ctrl = er32(EXTCNF_CTRL);
927
928         if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
929                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
930                 ew32(EXTCNF_CTRL, extcnf_ctrl);
931         } else {
932                 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
933         }
934
935         mutex_unlock(&swflag_mutex);
936 }
937
938 /**
939  *  e1000_check_mng_mode_ich8lan - Checks management mode
940  *  @hw: pointer to the HW structure
941  *
942  *  This checks if the adapter has any manageability enabled.
943  *  This is a function pointer entry point only called by read/write
944  *  routines for the PHY and NVM parts.
945  **/
946 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
947 {
948         u32 fwsm;
949
950         fwsm = er32(FWSM);
951         return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
952                ((fwsm & E1000_FWSM_MODE_MASK) ==
953                 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
954 }
955
956 /**
957  *  e1000_check_mng_mode_pchlan - Checks management mode
958  *  @hw: pointer to the HW structure
959  *
960  *  This checks if the adapter has iAMT enabled.
961  *  This is a function pointer entry point only called by read/write
962  *  routines for the PHY and NVM parts.
963  **/
964 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
965 {
966         u32 fwsm;
967
968         fwsm = er32(FWSM);
969         return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
970                (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
971 }
972
973 /**
974  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
975  *  @hw: pointer to the HW structure
976  *
977  *  Checks if firmware is blocking the reset of the PHY.
978  *  This is a function pointer entry point only called by
979  *  reset routines.
980  **/
981 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
982 {
983         u32 fwsm;
984
985         fwsm = er32(FWSM);
986
987         return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
988 }
989
990 /**
991  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
992  *  @hw: pointer to the HW structure
993  *
994  *  Assumes semaphore already acquired.
995  *
996  **/
997 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
998 {
999         u16 phy_data;
1000         u32 strap = er32(STRAP);
1001         s32 ret_val = 0;
1002
1003         strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
1004
1005         ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
1006         if (ret_val)
1007                 goto out;
1008
1009         phy_data &= ~HV_SMB_ADDR_MASK;
1010         phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
1011         phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
1012         ret_val = e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
1013
1014 out:
1015         return ret_val;
1016 }
1017
1018 /**
1019  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
1020  *  @hw:   pointer to the HW structure
1021  *
1022  *  SW should configure the LCD from the NVM extended configuration region
1023  *  as a workaround for certain parts.
1024  **/
1025 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
1026 {
1027         struct e1000_phy_info *phy = &hw->phy;
1028         u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
1029         s32 ret_val = 0;
1030         u16 word_addr, reg_data, reg_addr, phy_page = 0;
1031
1032         /*
1033          * Initialize the PHY from the NVM on ICH platforms.  This
1034          * is needed due to an issue where the NVM configuration is
1035          * not properly autoloaded after power transitions.
1036          * Therefore, after each PHY reset, we will load the
1037          * configuration data out of the NVM manually.
1038          */
1039         switch (hw->mac.type) {
1040         case e1000_ich8lan:
1041                 if (phy->type != e1000_phy_igp_3)
1042                         return ret_val;
1043
1044                 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
1045                     (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
1046                         sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
1047                         break;
1048                 }
1049                 /* Fall-thru */
1050         case e1000_pchlan:
1051         case e1000_pch2lan:
1052                 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
1053                 break;
1054         default:
1055                 return ret_val;
1056         }
1057
1058         ret_val = hw->phy.ops.acquire(hw);
1059         if (ret_val)
1060                 return ret_val;
1061
1062         data = er32(FEXTNVM);
1063         if (!(data & sw_cfg_mask))
1064                 goto out;
1065
1066         /*
1067          * Make sure HW does not configure LCD from PHY
1068          * extended configuration before SW configuration
1069          */
1070         data = er32(EXTCNF_CTRL);
1071         if (!(hw->mac.type == e1000_pch2lan)) {
1072                 if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
1073                         goto out;
1074         }
1075
1076         cnf_size = er32(EXTCNF_SIZE);
1077         cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
1078         cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
1079         if (!cnf_size)
1080                 goto out;
1081
1082         cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
1083         cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
1084
1085         if ((!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) &&
1086             (hw->mac.type == e1000_pchlan)) ||
1087              (hw->mac.type == e1000_pch2lan)) {
1088                 /*
1089                  * HW configures the SMBus address and LEDs when the
1090                  * OEM and LCD Write Enable bits are set in the NVM.
1091                  * When both NVM bits are cleared, SW will configure
1092                  * them instead.
1093                  */
1094                 ret_val = e1000_write_smbus_addr(hw);
1095                 if (ret_val)
1096                         goto out;
1097
1098                 data = er32(LEDCTL);
1099                 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
1100                                                         (u16)data);
1101                 if (ret_val)
1102                         goto out;
1103         }
1104
1105         /* Configure LCD from extended configuration region. */
1106
1107         /* cnf_base_addr is in DWORD */
1108         word_addr = (u16)(cnf_base_addr << 1);
1109
1110         for (i = 0; i < cnf_size; i++) {
1111                 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
1112                                          &reg_data);
1113                 if (ret_val)
1114                         goto out;
1115
1116                 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
1117                                          1, &reg_addr);
1118                 if (ret_val)
1119                         goto out;
1120
1121                 /* Save off the PHY page for future writes. */
1122                 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
1123                         phy_page = reg_data;
1124                         continue;
1125                 }
1126
1127                 reg_addr &= PHY_REG_MASK;
1128                 reg_addr |= phy_page;
1129
1130                 ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
1131                                                     reg_data);
1132                 if (ret_val)
1133                         goto out;
1134         }
1135
1136 out:
1137         hw->phy.ops.release(hw);
1138         return ret_val;
1139 }
1140
1141 /**
1142  *  e1000_k1_gig_workaround_hv - K1 Si workaround
1143  *  @hw:   pointer to the HW structure
1144  *  @link: link up bool flag
1145  *
1146  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
1147  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
1148  *  If link is down, the function will restore the default K1 setting located
1149  *  in the NVM.
1150  **/
1151 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
1152 {
1153         s32 ret_val = 0;
1154         u16 status_reg = 0;
1155         bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
1156
1157         if (hw->mac.type != e1000_pchlan)
1158                 goto out;
1159
1160         /* Wrap the whole flow with the sw flag */
1161         ret_val = hw->phy.ops.acquire(hw);
1162         if (ret_val)
1163                 goto out;
1164
1165         /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
1166         if (link) {
1167                 if (hw->phy.type == e1000_phy_82578) {
1168                         ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
1169                                                                   &status_reg);
1170                         if (ret_val)
1171                                 goto release;
1172
1173                         status_reg &= BM_CS_STATUS_LINK_UP |
1174                                       BM_CS_STATUS_RESOLVED |
1175                                       BM_CS_STATUS_SPEED_MASK;
1176
1177                         if (status_reg == (BM_CS_STATUS_LINK_UP |
1178                                            BM_CS_STATUS_RESOLVED |
1179                                            BM_CS_STATUS_SPEED_1000))
1180                                 k1_enable = false;
1181                 }
1182
1183                 if (hw->phy.type == e1000_phy_82577) {
1184                         ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
1185                                                                   &status_reg);
1186                         if (ret_val)
1187                                 goto release;
1188
1189                         status_reg &= HV_M_STATUS_LINK_UP |
1190                                       HV_M_STATUS_AUTONEG_COMPLETE |
1191                                       HV_M_STATUS_SPEED_MASK;
1192
1193                         if (status_reg == (HV_M_STATUS_LINK_UP |
1194                                            HV_M_STATUS_AUTONEG_COMPLETE |
1195                                            HV_M_STATUS_SPEED_1000))
1196                                 k1_enable = false;
1197                 }
1198
1199                 /* Link stall fix for link up */
1200                 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
1201                                                            0x0100);
1202                 if (ret_val)
1203                         goto release;
1204
1205         } else {
1206                 /* Link stall fix for link down */
1207                 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
1208                                                            0x4100);
1209                 if (ret_val)
1210                         goto release;
1211         }
1212
1213         ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
1214
1215 release:
1216         hw->phy.ops.release(hw);
1217 out:
1218         return ret_val;
1219 }
1220
1221 /**
1222  *  e1000_configure_k1_ich8lan - Configure K1 power state
1223  *  @hw: pointer to the HW structure
1224  *  @enable: K1 state to configure
1225  *
1226  *  Configure the K1 power state based on the provided parameter.
1227  *  Assumes semaphore already acquired.
1228  *
1229  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1230  **/
1231 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1232 {
1233         s32 ret_val = 0;
1234         u32 ctrl_reg = 0;
1235         u32 ctrl_ext = 0;
1236         u32 reg = 0;
1237         u16 kmrn_reg = 0;
1238
1239         ret_val = e1000e_read_kmrn_reg_locked(hw,
1240                                              E1000_KMRNCTRLSTA_K1_CONFIG,
1241                                              &kmrn_reg);
1242         if (ret_val)
1243                 goto out;
1244
1245         if (k1_enable)
1246                 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
1247         else
1248                 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
1249
1250         ret_val = e1000e_write_kmrn_reg_locked(hw,
1251                                               E1000_KMRNCTRLSTA_K1_CONFIG,
1252                                               kmrn_reg);
1253         if (ret_val)
1254                 goto out;
1255
1256         udelay(20);
1257         ctrl_ext = er32(CTRL_EXT);
1258         ctrl_reg = er32(CTRL);
1259
1260         reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1261         reg |= E1000_CTRL_FRCSPD;
1262         ew32(CTRL, reg);
1263
1264         ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
1265         e1e_flush();
1266         udelay(20);
1267         ew32(CTRL, ctrl_reg);
1268         ew32(CTRL_EXT, ctrl_ext);
1269         e1e_flush();
1270         udelay(20);
1271
1272 out:
1273         return ret_val;
1274 }
1275
1276 /**
1277  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1278  *  @hw:       pointer to the HW structure
1279  *  @d0_state: boolean if entering d0 or d3 device state
1280  *
1281  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1282  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
1283  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
1284  **/
1285 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
1286 {
1287         s32 ret_val = 0;
1288         u32 mac_reg;
1289         u16 oem_reg;
1290
1291         if ((hw->mac.type != e1000_pch2lan) && (hw->mac.type != e1000_pchlan))
1292                 return ret_val;
1293
1294         ret_val = hw->phy.ops.acquire(hw);
1295         if (ret_val)
1296                 return ret_val;
1297
1298         if (!(hw->mac.type == e1000_pch2lan)) {
1299                 mac_reg = er32(EXTCNF_CTRL);
1300                 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
1301                         goto out;
1302         }
1303
1304         mac_reg = er32(FEXTNVM);
1305         if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
1306                 goto out;
1307
1308         mac_reg = er32(PHY_CTRL);
1309
1310         ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
1311         if (ret_val)
1312                 goto out;
1313
1314         oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
1315
1316         if (d0_state) {
1317                 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
1318                         oem_reg |= HV_OEM_BITS_GBE_DIS;
1319
1320                 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
1321                         oem_reg |= HV_OEM_BITS_LPLU;
1322         } else {
1323                 if (mac_reg & E1000_PHY_CTRL_NOND0A_GBE_DISABLE)
1324                         oem_reg |= HV_OEM_BITS_GBE_DIS;
1325
1326                 if (mac_reg & E1000_PHY_CTRL_NOND0A_LPLU)
1327                         oem_reg |= HV_OEM_BITS_LPLU;
1328         }
1329         /* Restart auto-neg to activate the bits */
1330         if (!e1000_check_reset_block(hw))
1331                 oem_reg |= HV_OEM_BITS_RESTART_AN;
1332         ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
1333
1334 out:
1335         hw->phy.ops.release(hw);
1336
1337         return ret_val;
1338 }
1339
1340
1341 /**
1342  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
1343  *  @hw:   pointer to the HW structure
1344  **/
1345 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
1346 {
1347         s32 ret_val;
1348         u16 data;
1349
1350         ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
1351         if (ret_val)
1352                 return ret_val;
1353
1354         data |= HV_KMRN_MDIO_SLOW;
1355
1356         ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
1357
1358         return ret_val;
1359 }
1360
1361 /**
1362  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1363  *  done after every PHY reset.
1364  **/
1365 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1366 {
1367         s32 ret_val = 0;
1368         u16 phy_data;
1369
1370         if (hw->mac.type != e1000_pchlan)
1371                 return ret_val;
1372
1373         /* Set MDIO slow mode before any other MDIO access */
1374         if (hw->phy.type == e1000_phy_82577) {
1375                 ret_val = e1000_set_mdio_slow_mode_hv(hw);
1376                 if (ret_val)
1377                         goto out;
1378         }
1379
1380         if (((hw->phy.type == e1000_phy_82577) &&
1381              ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
1382             ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
1383                 /* Disable generation of early preamble */
1384                 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
1385                 if (ret_val)
1386                         return ret_val;
1387
1388                 /* Preamble tuning for SSC */
1389                 ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
1390                 if (ret_val)
1391                         return ret_val;
1392         }
1393
1394         if (hw->phy.type == e1000_phy_82578) {
1395                 /*
1396                  * Return registers to default by doing a soft reset then
1397                  * writing 0x3140 to the control register.
1398                  */
1399                 if (hw->phy.revision < 2) {
1400                         e1000e_phy_sw_reset(hw);
1401                         ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
1402                 }
1403         }
1404
1405         /* Select page 0 */
1406         ret_val = hw->phy.ops.acquire(hw);
1407         if (ret_val)
1408                 return ret_val;
1409
1410         hw->phy.addr = 1;
1411         ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
1412         hw->phy.ops.release(hw);
1413         if (ret_val)
1414                 goto out;
1415
1416         /*
1417          * Configure the K1 Si workaround during phy reset assuming there is
1418          * link so that it disables K1 if link is in 1Gbps.
1419          */
1420         ret_val = e1000_k1_gig_workaround_hv(hw, true);
1421         if (ret_val)
1422                 goto out;
1423
1424         /* Workaround for link disconnects on a busy hub in half duplex */
1425         ret_val = hw->phy.ops.acquire(hw);
1426         if (ret_val)
1427                 goto out;
1428         ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data);
1429         if (ret_val)
1430                 goto release;
1431         ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG,
1432                                                phy_data & 0x00FF);
1433 release:
1434         hw->phy.ops.release(hw);
1435 out:
1436         return ret_val;
1437 }
1438
1439 /**
1440  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
1441  *  @hw:   pointer to the HW structure
1442  **/
1443 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
1444 {
1445         u32 mac_reg;
1446         u16 i, phy_reg = 0;
1447         s32 ret_val;
1448
1449         ret_val = hw->phy.ops.acquire(hw);
1450         if (ret_val)
1451                 return;
1452         ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1453         if (ret_val)
1454                 goto release;
1455
1456         /* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
1457         for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1458                 mac_reg = er32(RAL(i));
1459                 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
1460                                            (u16)(mac_reg & 0xFFFF));
1461                 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
1462                                            (u16)((mac_reg >> 16) & 0xFFFF));
1463
1464                 mac_reg = er32(RAH(i));
1465                 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
1466                                            (u16)(mac_reg & 0xFFFF));
1467                 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
1468                                            (u16)((mac_reg & E1000_RAH_AV)
1469                                                  >> 16));
1470         }
1471
1472         e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1473
1474 release:
1475         hw->phy.ops.release(hw);
1476 }
1477
1478 /**
1479  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
1480  *  with 82579 PHY
1481  *  @hw: pointer to the HW structure
1482  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
1483  **/
1484 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
1485 {
1486         s32 ret_val = 0;
1487         u16 phy_reg, data;
1488         u32 mac_reg;
1489         u16 i;
1490
1491         if (hw->mac.type != e1000_pch2lan)
1492                 goto out;
1493
1494         /* disable Rx path while enabling/disabling workaround */
1495         e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1496         ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
1497         if (ret_val)
1498                 goto out;
1499
1500         if (enable) {
1501                 /*
1502                  * Write Rx addresses (rar_entry_count for RAL/H, +4 for
1503                  * SHRAL/H) and initial CRC values to the MAC
1504                  */
1505                 for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1506                         u8 mac_addr[ETH_ALEN] = {0};
1507                         u32 addr_high, addr_low;
1508
1509                         addr_high = er32(RAH(i));
1510                         if (!(addr_high & E1000_RAH_AV))
1511                                 continue;
1512                         addr_low = er32(RAL(i));
1513                         mac_addr[0] = (addr_low & 0xFF);
1514                         mac_addr[1] = ((addr_low >> 8) & 0xFF);
1515                         mac_addr[2] = ((addr_low >> 16) & 0xFF);
1516                         mac_addr[3] = ((addr_low >> 24) & 0xFF);
1517                         mac_addr[4] = (addr_high & 0xFF);
1518                         mac_addr[5] = ((addr_high >> 8) & 0xFF);
1519
1520                         ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
1521                 }
1522
1523                 /* Write Rx addresses to the PHY */
1524                 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
1525
1526                 /* Enable jumbo frame workaround in the MAC */
1527                 mac_reg = er32(FFLT_DBG);
1528                 mac_reg &= ~(1 << 14);
1529                 mac_reg |= (7 << 15);
1530                 ew32(FFLT_DBG, mac_reg);
1531
1532                 mac_reg = er32(RCTL);
1533                 mac_reg |= E1000_RCTL_SECRC;
1534                 ew32(RCTL, mac_reg);
1535
1536                 ret_val = e1000e_read_kmrn_reg(hw,
1537                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1538                                                 &data);
1539                 if (ret_val)
1540                         goto out;
1541                 ret_val = e1000e_write_kmrn_reg(hw,
1542                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1543                                                 data | (1 << 0));
1544                 if (ret_val)
1545                         goto out;
1546                 ret_val = e1000e_read_kmrn_reg(hw,
1547                                                 E1000_KMRNCTRLSTA_HD_CTRL,
1548                                                 &data);
1549                 if (ret_val)
1550                         goto out;
1551                 data &= ~(0xF << 8);
1552                 data |= (0xB << 8);
1553                 ret_val = e1000e_write_kmrn_reg(hw,
1554                                                 E1000_KMRNCTRLSTA_HD_CTRL,
1555                                                 data);
1556                 if (ret_val)
1557                         goto out;
1558
1559                 /* Enable jumbo frame workaround in the PHY */
1560                 e1e_rphy(hw, PHY_REG(769, 23), &data);
1561                 data &= ~(0x7F << 5);
1562                 data |= (0x37 << 5);
1563                 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1564                 if (ret_val)
1565                         goto out;
1566                 e1e_rphy(hw, PHY_REG(769, 16), &data);
1567                 data &= ~(1 << 13);
1568                 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1569                 if (ret_val)
1570                         goto out;
1571                 e1e_rphy(hw, PHY_REG(776, 20), &data);
1572                 data &= ~(0x3FF << 2);
1573                 data |= (0x1A << 2);
1574                 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1575                 if (ret_val)
1576                         goto out;
1577                 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xFE00);
1578                 if (ret_val)
1579                         goto out;
1580                 e1e_rphy(hw, HV_PM_CTRL, &data);
1581                 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
1582                 if (ret_val)
1583                         goto out;
1584         } else {
1585                 /* Write MAC register values back to h/w defaults */
1586                 mac_reg = er32(FFLT_DBG);
1587                 mac_reg &= ~(0xF << 14);
1588                 ew32(FFLT_DBG, mac_reg);
1589
1590                 mac_reg = er32(RCTL);
1591                 mac_reg &= ~E1000_RCTL_SECRC;
1592                 ew32(RCTL, mac_reg);
1593
1594                 ret_val = e1000e_read_kmrn_reg(hw,
1595                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1596                                                 &data);
1597                 if (ret_val)
1598                         goto out;
1599                 ret_val = e1000e_write_kmrn_reg(hw,
1600                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1601                                                 data & ~(1 << 0));
1602                 if (ret_val)
1603                         goto out;
1604                 ret_val = e1000e_read_kmrn_reg(hw,
1605                                                 E1000_KMRNCTRLSTA_HD_CTRL,
1606                                                 &data);
1607                 if (ret_val)
1608                         goto out;
1609                 data &= ~(0xF << 8);
1610                 data |= (0xB << 8);
1611                 ret_val = e1000e_write_kmrn_reg(hw,
1612                                                 E1000_KMRNCTRLSTA_HD_CTRL,
1613                                                 data);
1614                 if (ret_val)
1615                         goto out;
1616
1617                 /* Write PHY register values back to h/w defaults */
1618                 e1e_rphy(hw, PHY_REG(769, 23), &data);
1619                 data &= ~(0x7F << 5);
1620                 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1621                 if (ret_val)
1622                         goto out;
1623                 e1e_rphy(hw, PHY_REG(769, 16), &data);
1624                 data |= (1 << 13);
1625                 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1626                 if (ret_val)
1627                         goto out;
1628                 e1e_rphy(hw, PHY_REG(776, 20), &data);
1629                 data &= ~(0x3FF << 2);
1630                 data |= (0x8 << 2);
1631                 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1632                 if (ret_val)
1633                         goto out;
1634                 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
1635                 if (ret_val)
1636                         goto out;
1637                 e1e_rphy(hw, HV_PM_CTRL, &data);
1638                 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
1639                 if (ret_val)
1640                         goto out;
1641         }
1642
1643         /* re-enable Rx path after enabling/disabling workaround */
1644         ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
1645
1646 out:
1647         return ret_val;
1648 }
1649
1650 /**
1651  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1652  *  done after every PHY reset.
1653  **/
1654 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1655 {
1656         s32 ret_val = 0;
1657
1658         if (hw->mac.type != e1000_pch2lan)
1659                 goto out;
1660
1661         /* Set MDIO slow mode before any other MDIO access */
1662         ret_val = e1000_set_mdio_slow_mode_hv(hw);
1663
1664 out:
1665         return ret_val;
1666 }
1667
1668 /**
1669  *  e1000_k1_gig_workaround_lv - K1 Si workaround
1670  *  @hw:   pointer to the HW structure
1671  *
1672  *  Workaround to set the K1 beacon duration for 82579 parts
1673  **/
1674 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
1675 {
1676         s32 ret_val = 0;
1677         u16 status_reg = 0;
1678         u32 mac_reg;
1679         u16 phy_reg;
1680
1681         if (hw->mac.type != e1000_pch2lan)
1682                 goto out;
1683
1684         /* Set K1 beacon duration based on 1Gbps speed or otherwise */
1685         ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
1686         if (ret_val)
1687                 goto out;
1688
1689         if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
1690             == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
1691                 mac_reg = er32(FEXTNVM4);
1692                 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1693
1694                 ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
1695                 if (ret_val)
1696                         goto out;
1697
1698                 if (status_reg & HV_M_STATUS_SPEED_1000) {
1699                         mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1700                         phy_reg &= ~I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
1701                 } else {
1702                         mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
1703                         phy_reg |= I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
1704                 }
1705                 ew32(FEXTNVM4, mac_reg);
1706                 ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
1707         }
1708
1709 out:
1710         return ret_val;
1711 }
1712
1713 /**
1714  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
1715  *  @hw:   pointer to the HW structure
1716  *  @gate: boolean set to true to gate, false to ungate
1717  *
1718  *  Gate/ungate the automatic PHY configuration via hardware; perform
1719  *  the configuration via software instead.
1720  **/
1721 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
1722 {
1723         u32 extcnf_ctrl;
1724
1725         if (hw->mac.type != e1000_pch2lan)
1726                 return;
1727
1728         extcnf_ctrl = er32(EXTCNF_CTRL);
1729
1730         if (gate)
1731                 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
1732         else
1733                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
1734
1735         ew32(EXTCNF_CTRL, extcnf_ctrl);
1736         return;
1737 }
1738
1739 /**
1740  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
1741  *  @hw: pointer to the HW structure
1742  *
1743  *  Check the appropriate indication the MAC has finished configuring the
1744  *  PHY after a software reset.
1745  **/
1746 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
1747 {
1748         u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
1749
1750         /* Wait for basic configuration completes before proceeding */
1751         do {
1752                 data = er32(STATUS);
1753                 data &= E1000_STATUS_LAN_INIT_DONE;
1754                 udelay(100);
1755         } while ((!data) && --loop);
1756
1757         /*
1758          * If basic configuration is incomplete before the above loop
1759          * count reaches 0, loading the configuration from NVM will
1760          * leave the PHY in a bad state possibly resulting in no link.
1761          */
1762         if (loop == 0)
1763                 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
1764
1765         /* Clear the Init Done bit for the next init event */
1766         data = er32(STATUS);
1767         data &= ~E1000_STATUS_LAN_INIT_DONE;
1768         ew32(STATUS, data);
1769 }
1770
1771 /**
1772  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
1773  *  @hw: pointer to the HW structure
1774  **/
1775 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
1776 {
1777         s32 ret_val = 0;
1778         u16 reg;
1779
1780         if (e1000_check_reset_block(hw))
1781                 goto out;
1782
1783         /* Allow time for h/w to get to quiescent state after reset */
1784         usleep_range(10000, 20000);
1785
1786         /* Perform any necessary post-reset workarounds */
1787         switch (hw->mac.type) {
1788         case e1000_pchlan:
1789                 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
1790                 if (ret_val)
1791                         goto out;
1792                 break;
1793         case e1000_pch2lan:
1794                 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
1795                 if (ret_val)
1796                         goto out;
1797                 break;
1798         default:
1799                 break;
1800         }
1801
1802         /* Clear the host wakeup bit after lcd reset */
1803         if (hw->mac.type >= e1000_pchlan) {
1804                 e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
1805                 reg &= ~BM_WUC_HOST_WU_BIT;
1806                 e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
1807         }
1808
1809         /* Configure the LCD with the extended configuration region in NVM */
1810         ret_val = e1000_sw_lcd_config_ich8lan(hw);
1811         if (ret_val)
1812                 goto out;
1813
1814         /* Configure the LCD with the OEM bits in NVM */
1815         ret_val = e1000_oem_bits_config_ich8lan(hw, true);
1816
1817         if (hw->mac.type == e1000_pch2lan) {
1818                 /* Ungate automatic PHY configuration on non-managed 82579 */
1819                 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
1820                         usleep_range(10000, 20000);
1821                         e1000_gate_hw_phy_config_ich8lan(hw, false);
1822                 }
1823
1824                 /* Set EEE LPI Update Timer to 200usec */
1825                 ret_val = hw->phy.ops.acquire(hw);
1826                 if (ret_val)
1827                         goto out;
1828                 ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR,
1829                                                        I82579_LPI_UPDATE_TIMER);
1830                 if (ret_val)
1831                         goto release;
1832                 ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA,
1833                                                        0x1387);
1834 release:
1835                 hw->phy.ops.release(hw);
1836         }
1837
1838 out:
1839         return ret_val;
1840 }
1841
1842 /**
1843  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
1844  *  @hw: pointer to the HW structure
1845  *
1846  *  Resets the PHY
1847  *  This is a function pointer entry point called by drivers
1848  *  or other shared routines.
1849  **/
1850 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
1851 {
1852         s32 ret_val = 0;
1853
1854         /* Gate automatic PHY configuration by hardware on non-managed 82579 */
1855         if ((hw->mac.type == e1000_pch2lan) &&
1856             !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1857                 e1000_gate_hw_phy_config_ich8lan(hw, true);
1858
1859         ret_val = e1000e_phy_hw_reset_generic(hw);
1860         if (ret_val)
1861                 goto out;
1862
1863         ret_val = e1000_post_phy_reset_ich8lan(hw);
1864
1865 out:
1866         return ret_val;
1867 }
1868
1869 /**
1870  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
1871  *  @hw: pointer to the HW structure
1872  *  @active: true to enable LPLU, false to disable
1873  *
1874  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
1875  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
1876  *  the phy speed. This function will manually set the LPLU bit and restart
1877  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
1878  *  since it configures the same bit.
1879  **/
1880 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
1881 {
1882         s32 ret_val = 0;
1883         u16 oem_reg;
1884
1885         ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
1886         if (ret_val)
1887                 goto out;
1888
1889         if (active)
1890                 oem_reg |= HV_OEM_BITS_LPLU;
1891         else
1892                 oem_reg &= ~HV_OEM_BITS_LPLU;
1893
1894         oem_reg |= HV_OEM_BITS_RESTART_AN;
1895         ret_val = e1e_wphy(hw, HV_OEM_BITS, oem_reg);
1896
1897 out:
1898         return ret_val;
1899 }
1900
1901 /**
1902  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
1903  *  @hw: pointer to the HW structure
1904  *  @active: true to enable LPLU, false to disable
1905  *
1906  *  Sets the LPLU D0 state according to the active flag.  When
1907  *  activating LPLU this function also disables smart speed
1908  *  and vice versa.  LPLU will not be activated unless the
1909  *  device autonegotiation advertisement meets standards of
1910  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1911  *  This is a function pointer entry point only called by
1912  *  PHY setup routines.
1913  **/
1914 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1915 {
1916         struct e1000_phy_info *phy = &hw->phy;
1917         u32 phy_ctrl;
1918         s32 ret_val = 0;
1919         u16 data;
1920
1921         if (phy->type == e1000_phy_ife)
1922                 return ret_val;
1923
1924         phy_ctrl = er32(PHY_CTRL);
1925
1926         if (active) {
1927                 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
1928                 ew32(PHY_CTRL, phy_ctrl);
1929
1930                 if (phy->type != e1000_phy_igp_3)
1931                         return 0;
1932
1933                 /*
1934                  * Call gig speed drop workaround on LPLU before accessing
1935                  * any PHY registers
1936                  */
1937                 if (hw->mac.type == e1000_ich8lan)
1938                         e1000e_gig_downshift_workaround_ich8lan(hw);
1939
1940                 /* When LPLU is enabled, we should disable SmartSpeed */
1941                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1942                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1943                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1944                 if (ret_val)
1945                         return ret_val;
1946         } else {
1947                 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
1948                 ew32(PHY_CTRL, phy_ctrl);
1949
1950                 if (phy->type != e1000_phy_igp_3)
1951                         return 0;
1952
1953                 /*
1954                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1955                  * during Dx states where the power conservation is most
1956                  * important.  During driver activity we should enable
1957                  * SmartSpeed, so performance is maintained.
1958                  */
1959                 if (phy->smart_speed == e1000_smart_speed_on) {
1960                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1961                                            &data);
1962                         if (ret_val)
1963                                 return ret_val;
1964
1965                         data |= IGP01E1000_PSCFR_SMART_SPEED;
1966                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1967                                            data);
1968                         if (ret_val)
1969                                 return ret_val;
1970                 } else if (phy->smart_speed == e1000_smart_speed_off) {
1971                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1972                                            &data);
1973                         if (ret_val)
1974                                 return ret_val;
1975
1976                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1977                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1978                                            data);
1979                         if (ret_val)
1980                                 return ret_val;
1981                 }
1982         }
1983
1984         return 0;
1985 }
1986
1987 /**
1988  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
1989  *  @hw: pointer to the HW structure
1990  *  @active: true to enable LPLU, false to disable
1991  *
1992  *  Sets the LPLU D3 state according to the active flag.  When
1993  *  activating LPLU this function also disables smart speed
1994  *  and vice versa.  LPLU will not be activated unless the
1995  *  device autonegotiation advertisement meets standards of
1996  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1997  *  This is a function pointer entry point only called by
1998  *  PHY setup routines.
1999  **/
2000 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2001 {
2002         struct e1000_phy_info *phy = &hw->phy;
2003         u32 phy_ctrl;
2004         s32 ret_val;
2005         u16 data;
2006
2007         phy_ctrl = er32(PHY_CTRL);
2008
2009         if (!active) {
2010                 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2011                 ew32(PHY_CTRL, phy_ctrl);
2012
2013                 if (phy->type != e1000_phy_igp_3)
2014                         return 0;
2015
2016                 /*
2017                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2018                  * during Dx states where the power conservation is most
2019                  * important.  During driver activity we should enable
2020                  * SmartSpeed, so performance is maintained.
2021                  */
2022                 if (phy->smart_speed == e1000_smart_speed_on) {
2023                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2024                                            &data);
2025                         if (ret_val)
2026                                 return ret_val;
2027
2028                         data |= IGP01E1000_PSCFR_SMART_SPEED;
2029                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2030                                            data);
2031                         if (ret_val)
2032                                 return ret_val;
2033                 } else if (phy->smart_speed == e1000_smart_speed_off) {
2034                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2035                                            &data);
2036                         if (ret_val)
2037                                 return ret_val;
2038
2039                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2040                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2041                                            data);
2042                         if (ret_val)
2043                                 return ret_val;
2044                 }
2045         } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
2046                    (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
2047                    (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
2048                 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2049                 ew32(PHY_CTRL, phy_ctrl);
2050
2051                 if (phy->type != e1000_phy_igp_3)
2052                         return 0;
2053
2054                 /*
2055                  * Call gig speed drop workaround on LPLU before accessing
2056                  * any PHY registers
2057                  */
2058                 if (hw->mac.type == e1000_ich8lan)
2059                         e1000e_gig_downshift_workaround_ich8lan(hw);
2060
2061                 /* When LPLU is enabled, we should disable SmartSpeed */
2062                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2063                 if (ret_val)
2064                         return ret_val;
2065
2066                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2067                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2068         }
2069
2070         return 0;
2071 }
2072
2073 /**
2074  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
2075  *  @hw: pointer to the HW structure
2076  *  @bank:  pointer to the variable that returns the active bank
2077  *
2078  *  Reads signature byte from the NVM using the flash access registers.
2079  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
2080  **/
2081 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
2082 {
2083         u32 eecd;
2084         struct e1000_nvm_info *nvm = &hw->nvm;
2085         u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
2086         u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
2087         u8 sig_byte = 0;
2088         s32 ret_val = 0;
2089
2090         switch (hw->mac.type) {
2091         case e1000_ich8lan:
2092         case e1000_ich9lan:
2093                 eecd = er32(EECD);
2094                 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
2095                     E1000_EECD_SEC1VAL_VALID_MASK) {
2096                         if (eecd & E1000_EECD_SEC1VAL)
2097                                 *bank = 1;
2098                         else
2099                                 *bank = 0;
2100
2101                         return 0;
2102                 }
2103                 e_dbg("Unable to determine valid NVM bank via EEC - "
2104                        "reading flash signature\n");
2105                 /* fall-thru */
2106         default:
2107                 /* set bank to 0 in case flash read fails */
2108                 *bank = 0;
2109
2110                 /* Check bank 0 */
2111                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
2112                                                         &sig_byte);
2113                 if (ret_val)
2114                         return ret_val;
2115                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2116                     E1000_ICH_NVM_SIG_VALUE) {
2117                         *bank = 0;
2118                         return 0;
2119                 }
2120
2121                 /* Check bank 1 */
2122                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
2123                                                         bank1_offset,
2124                                                         &sig_byte);
2125                 if (ret_val)
2126                         return ret_val;
2127                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2128                     E1000_ICH_NVM_SIG_VALUE) {
2129                         *bank = 1;
2130                         return 0;
2131                 }
2132
2133                 e_dbg("ERROR: No valid NVM bank present\n");
2134                 return -E1000_ERR_NVM;
2135         }
2136
2137         return 0;
2138 }
2139
2140 /**
2141  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
2142  *  @hw: pointer to the HW structure
2143  *  @offset: The offset (in bytes) of the word(s) to read.
2144  *  @words: Size of data to read in words
2145  *  @data: Pointer to the word(s) to read at offset.
2146  *
2147  *  Reads a word(s) from the NVM using the flash access registers.
2148  **/
2149 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2150                                   u16 *data)
2151 {
2152         struct e1000_nvm_info *nvm = &hw->nvm;
2153         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2154         u32 act_offset;
2155         s32 ret_val = 0;
2156         u32 bank = 0;
2157         u16 i, word;
2158
2159         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2160             (words == 0)) {
2161                 e_dbg("nvm parameter(s) out of bounds\n");
2162                 ret_val = -E1000_ERR_NVM;
2163                 goto out;
2164         }
2165
2166         nvm->ops.acquire(hw);
2167
2168         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2169         if (ret_val) {
2170                 e_dbg("Could not detect valid bank, assuming bank 0\n");
2171                 bank = 0;
2172         }
2173
2174         act_offset = (bank) ? nvm->flash_bank_size : 0;
2175         act_offset += offset;
2176
2177         ret_val = 0;
2178         for (i = 0; i < words; i++) {
2179                 if (dev_spec->shadow_ram[offset+i].modified) {
2180                         data[i] = dev_spec->shadow_ram[offset+i].value;
2181                 } else {
2182                         ret_val = e1000_read_flash_word_ich8lan(hw,
2183                                                                 act_offset + i,
2184                                                                 &word);
2185                         if (ret_val)
2186                                 break;
2187                         data[i] = word;
2188                 }
2189         }
2190
2191         nvm->ops.release(hw);
2192
2193 out:
2194         if (ret_val)
2195                 e_dbg("NVM read error: %d\n", ret_val);
2196
2197         return ret_val;
2198 }
2199
2200 /**
2201  *  e1000_flash_cycle_init_ich8lan - Initialize flash
2202  *  @hw: pointer to the HW structure
2203  *
2204  *  This function does initial flash setup so that a new read/write/erase cycle
2205  *  can be started.
2206  **/
2207 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
2208 {
2209         union ich8_hws_flash_status hsfsts;
2210         s32 ret_val = -E1000_ERR_NVM;
2211
2212         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2213
2214         /* Check if the flash descriptor is valid */
2215         if (hsfsts.hsf_status.fldesvalid == 0) {
2216                 e_dbg("Flash descriptor invalid.  "
2217                          "SW Sequencing must be used.\n");
2218                 return -E1000_ERR_NVM;
2219         }
2220
2221         /* Clear FCERR and DAEL in hw status by writing 1 */
2222         hsfsts.hsf_status.flcerr = 1;
2223         hsfsts.hsf_status.dael = 1;
2224
2225         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2226
2227         /*
2228          * Either we should have a hardware SPI cycle in progress
2229          * bit to check against, in order to start a new cycle or
2230          * FDONE bit should be changed in the hardware so that it
2231          * is 1 after hardware reset, which can then be used as an
2232          * indication whether a cycle is in progress or has been
2233          * completed.
2234          */
2235
2236         if (hsfsts.hsf_status.flcinprog == 0) {
2237                 /*
2238                  * There is no cycle running at present,
2239                  * so we can start a cycle.
2240                  * Begin by setting Flash Cycle Done.
2241                  */
2242                 hsfsts.hsf_status.flcdone = 1;
2243                 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2244                 ret_val = 0;
2245         } else {
2246                 s32 i = 0;
2247
2248                 /*
2249                  * Otherwise poll for sometime so the current
2250                  * cycle has a chance to end before giving up.
2251                  */
2252                 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
2253                         hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
2254                         if (hsfsts.hsf_status.flcinprog == 0) {
2255                                 ret_val = 0;
2256                                 break;
2257                         }
2258                         udelay(1);
2259                 }
2260                 if (ret_val == 0) {
2261                         /*
2262                          * Successful in waiting for previous cycle to timeout,
2263                          * now set the Flash Cycle Done.
2264                          */
2265                         hsfsts.hsf_status.flcdone = 1;
2266                         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2267                 } else {
2268                         e_dbg("Flash controller busy, cannot get access\n");
2269                 }
2270         }
2271
2272         return ret_val;
2273 }
2274
2275 /**
2276  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
2277  *  @hw: pointer to the HW structure
2278  *  @timeout: maximum time to wait for completion
2279  *
2280  *  This function starts a flash cycle and waits for its completion.
2281  **/
2282 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
2283 {
2284         union ich8_hws_flash_ctrl hsflctl;
2285         union ich8_hws_flash_status hsfsts;
2286         s32 ret_val = -E1000_ERR_NVM;
2287         u32 i = 0;
2288
2289         /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
2290         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2291         hsflctl.hsf_ctrl.flcgo = 1;
2292         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2293
2294         /* wait till FDONE bit is set to 1 */
2295         do {
2296                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2297                 if (hsfsts.hsf_status.flcdone == 1)
2298                         break;
2299                 udelay(1);
2300         } while (i++ < timeout);
2301
2302         if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
2303                 return 0;
2304
2305         return ret_val;
2306 }
2307
2308 /**
2309  *  e1000_read_flash_word_ich8lan - Read word from flash
2310  *  @hw: pointer to the HW structure
2311  *  @offset: offset to data location
2312  *  @data: pointer to the location for storing the data
2313  *
2314  *  Reads the flash word at offset into data.  Offset is converted
2315  *  to bytes before read.
2316  **/
2317 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
2318                                          u16 *data)
2319 {
2320         /* Must convert offset into bytes. */
2321         offset <<= 1;
2322
2323         return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
2324 }
2325
2326 /**
2327  *  e1000_read_flash_byte_ich8lan - Read byte from flash
2328  *  @hw: pointer to the HW structure
2329  *  @offset: The offset of the byte to read.
2330  *  @data: Pointer to a byte to store the value read.
2331  *
2332  *  Reads a single byte from the NVM using the flash access registers.
2333  **/
2334 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2335                                          u8 *data)
2336 {
2337         s32 ret_val;
2338         u16 word = 0;
2339
2340         ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
2341         if (ret_val)
2342                 return ret_val;
2343
2344         *data = (u8)word;
2345
2346         return 0;
2347 }
2348
2349 /**
2350  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
2351  *  @hw: pointer to the HW structure
2352  *  @offset: The offset (in bytes) of the byte or word to read.
2353  *  @size: Size of data to read, 1=byte 2=word
2354  *  @data: Pointer to the word to store the value read.
2355  *
2356  *  Reads a byte or word from the NVM using the flash access registers.
2357  **/
2358 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2359                                          u8 size, u16 *data)
2360 {
2361         union ich8_hws_flash_status hsfsts;
2362         union ich8_hws_flash_ctrl hsflctl;
2363         u32 flash_linear_addr;
2364         u32 flash_data = 0;
2365         s32 ret_val = -E1000_ERR_NVM;
2366         u8 count = 0;
2367
2368         if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
2369                 return -E1000_ERR_NVM;
2370
2371         flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2372                             hw->nvm.flash_base_addr;
2373
2374         do {
2375                 udelay(1);
2376                 /* Steps */
2377                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2378                 if (ret_val != 0)
2379                         break;
2380
2381                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2382                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2383                 hsflctl.hsf_ctrl.fldbcount = size - 1;
2384                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
2385                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2386
2387                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2388
2389                 ret_val = e1000_flash_cycle_ich8lan(hw,
2390                                                 ICH_FLASH_READ_COMMAND_TIMEOUT);
2391
2392                 /*
2393                  * Check if FCERR is set to 1, if set to 1, clear it
2394                  * and try the whole sequence a few more times, else
2395                  * read in (shift in) the Flash Data0, the order is
2396                  * least significant byte first msb to lsb
2397                  */
2398                 if (ret_val == 0) {
2399                         flash_data = er32flash(ICH_FLASH_FDATA0);
2400                         if (size == 1)
2401                                 *data = (u8)(flash_data & 0x000000FF);
2402                         else if (size == 2)
2403                                 *data = (u16)(flash_data & 0x0000FFFF);
2404                         break;
2405                 } else {
2406                         /*
2407                          * If we've gotten here, then things are probably
2408                          * completely hosed, but if the error condition is
2409                          * detected, it won't hurt to give it another try...
2410                          * ICH_FLASH_CYCLE_REPEAT_COUNT times.
2411                          */
2412                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2413                         if (hsfsts.hsf_status.flcerr == 1) {
2414                                 /* Repeat for some time before giving up. */
2415                                 continue;
2416                         } else if (hsfsts.hsf_status.flcdone == 0) {
2417                                 e_dbg("Timeout error - flash cycle "
2418                                          "did not complete.\n");
2419                                 break;
2420                         }
2421                 }
2422         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2423
2424         return ret_val;
2425 }
2426
2427 /**
2428  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
2429  *  @hw: pointer to the HW structure
2430  *  @offset: The offset (in bytes) of the word(s) to write.
2431  *  @words: Size of data to write in words
2432  *  @data: Pointer to the word(s) to write at offset.
2433  *
2434  *  Writes a byte or word to the NVM using the flash access registers.
2435  **/
2436 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2437                                    u16 *data)
2438 {
2439         struct e1000_nvm_info *nvm = &hw->nvm;
2440         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2441         u16 i;
2442
2443         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2444             (words == 0)) {
2445                 e_dbg("nvm parameter(s) out of bounds\n");
2446                 return -E1000_ERR_NVM;
2447         }
2448
2449         nvm->ops.acquire(hw);
2450
2451         for (i = 0; i < words; i++) {
2452                 dev_spec->shadow_ram[offset+i].modified = true;
2453                 dev_spec->shadow_ram[offset+i].value = data[i];
2454         }
2455
2456         nvm->ops.release(hw);
2457
2458         return 0;
2459 }
2460
2461 /**
2462  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
2463  *  @hw: pointer to the HW structure
2464  *
2465  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
2466  *  which writes the checksum to the shadow ram.  The changes in the shadow
2467  *  ram are then committed to the EEPROM by processing each bank at a time
2468  *  checking for the modified bit and writing only the pending changes.
2469  *  After a successful commit, the shadow ram is cleared and is ready for
2470  *  future writes.
2471  **/
2472 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
2473 {
2474         struct e1000_nvm_info *nvm = &hw->nvm;
2475         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2476         u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
2477         s32 ret_val;
2478         u16 data;
2479
2480         ret_val = e1000e_update_nvm_checksum_generic(hw);
2481         if (ret_val)
2482                 goto out;
2483
2484         if (nvm->type != e1000_nvm_flash_sw)
2485                 goto out;
2486
2487         nvm->ops.acquire(hw);
2488
2489         /*
2490          * We're writing to the opposite bank so if we're on bank 1,
2491          * write to bank 0 etc.  We also need to erase the segment that
2492          * is going to be written
2493          */
2494         ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2495         if (ret_val) {
2496                 e_dbg("Could not detect valid bank, assuming bank 0\n");
2497                 bank = 0;
2498         }
2499
2500         if (bank == 0) {
2501                 new_bank_offset = nvm->flash_bank_size;
2502                 old_bank_offset = 0;
2503                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
2504                 if (ret_val)
2505                         goto release;
2506         } else {
2507                 old_bank_offset = nvm->flash_bank_size;
2508                 new_bank_offset = 0;
2509                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
2510                 if (ret_val)
2511                         goto release;
2512         }
2513
2514         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2515                 /*
2516                  * Determine whether to write the value stored
2517                  * in the other NVM bank or a modified value stored
2518                  * in the shadow RAM
2519                  */
2520                 if (dev_spec->shadow_ram[i].modified) {
2521                         data = dev_spec->shadow_ram[i].value;
2522                 } else {
2523                         ret_val = e1000_read_flash_word_ich8lan(hw, i +
2524                                                                 old_bank_offset,
2525                                                                 &data);
2526                         if (ret_val)
2527                                 break;
2528                 }
2529
2530                 /*
2531                  * If the word is 0x13, then make sure the signature bits
2532                  * (15:14) are 11b until the commit has completed.
2533                  * This will allow us to write 10b which indicates the
2534                  * signature is valid.  We want to do this after the write
2535                  * has completed so that we don't mark the segment valid
2536                  * while the write is still in progress
2537                  */
2538                 if (i == E1000_ICH_NVM_SIG_WORD)
2539                         data |= E1000_ICH_NVM_SIG_MASK;
2540
2541                 /* Convert offset to bytes. */
2542                 act_offset = (i + new_bank_offset) << 1;
2543
2544                 udelay(100);
2545                 /* Write the bytes to the new bank. */
2546                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2547                                                                act_offset,
2548                                                                (u8)data);
2549                 if (ret_val)
2550                         break;
2551
2552                 udelay(100);
2553                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2554                                                           act_offset + 1,
2555                                                           (u8)(data >> 8));
2556                 if (ret_val)
2557                         break;
2558         }
2559
2560         /*
2561          * Don't bother writing the segment valid bits if sector
2562          * programming failed.
2563          */
2564         if (ret_val) {
2565                 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
2566                 e_dbg("Flash commit failed.\n");
2567                 goto release;
2568         }
2569
2570         /*
2571          * Finally validate the new segment by setting bit 15:14
2572          * to 10b in word 0x13 , this can be done without an
2573          * erase as well since these bits are 11 to start with
2574          * and we need to change bit 14 to 0b
2575          */
2576         act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
2577         ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
2578         if (ret_val)
2579                 goto release;
2580
2581         data &= 0xBFFF;
2582         ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2583                                                        act_offset * 2 + 1,
2584                                                        (u8)(data >> 8));
2585         if (ret_val)
2586                 goto release;
2587
2588         /*
2589          * And invalidate the previously valid segment by setting
2590          * its signature word (0x13) high_byte to 0b. This can be
2591          * done without an erase because flash erase sets all bits
2592          * to 1's. We can write 1's to 0's without an erase
2593          */
2594         act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
2595         ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
2596         if (ret_val)
2597                 goto release;
2598
2599         /* Great!  Everything worked, we can now clear the cached entries. */
2600         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2601                 dev_spec->shadow_ram[i].modified = false;
2602                 dev_spec->shadow_ram[i].value = 0xFFFF;
2603         }
2604
2605 release:
2606         nvm->ops.release(hw);
2607
2608         /*
2609          * Reload the EEPROM, or else modifications will not appear
2610          * until after the next adapter reset.
2611          */
2612         if (!ret_val) {
2613                 e1000e_reload_nvm(hw);
2614                 usleep_range(10000, 20000);
2615         }
2616
2617 out:
2618         if (ret_val)
2619                 e_dbg("NVM update error: %d\n", ret_val);
2620
2621         return ret_val;
2622 }
2623
2624 /**
2625  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2626  *  @hw: pointer to the HW structure
2627  *
2628  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2629  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
2630  *  calculated, in which case we need to calculate the checksum and set bit 6.
2631  **/
2632 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
2633 {
2634         s32 ret_val;
2635         u16 data;
2636
2637         /*
2638          * Read 0x19 and check bit 6.  If this bit is 0, the checksum
2639          * needs to be fixed.  This bit is an indication that the NVM
2640          * was prepared by OEM software and did not calculate the
2641          * checksum...a likely scenario.
2642          */
2643         ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
2644         if (ret_val)
2645                 return ret_val;
2646
2647         if ((data & 0x40) == 0) {
2648                 data |= 0x40;
2649                 ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
2650                 if (ret_val)
2651                         return ret_val;
2652                 ret_val = e1000e_update_nvm_checksum(hw);
2653                 if (ret_val)
2654                         return ret_val;
2655         }
2656
2657         return e1000e_validate_nvm_checksum_generic(hw);
2658 }
2659
2660 /**
2661  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
2662  *  @hw: pointer to the HW structure
2663  *
2664  *  To prevent malicious write/erase of the NVM, set it to be read-only
2665  *  so that the hardware ignores all write/erase cycles of the NVM via
2666  *  the flash control registers.  The shadow-ram copy of the NVM will
2667  *  still be updated, however any updates to this copy will not stick
2668  *  across driver reloads.
2669  **/
2670 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
2671 {
2672         struct e1000_nvm_info *nvm = &hw->nvm;
2673         union ich8_flash_protected_range pr0;
2674         union ich8_hws_flash_status hsfsts;
2675         u32 gfpreg;
2676
2677         nvm->ops.acquire(hw);
2678
2679         gfpreg = er32flash(ICH_FLASH_GFPREG);
2680
2681         /* Write-protect GbE Sector of NVM */
2682         pr0.regval = er32flash(ICH_FLASH_PR0);
2683         pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
2684         pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
2685         pr0.range.wpe = true;
2686         ew32flash(ICH_FLASH_PR0, pr0.regval);
2687
2688         /*
2689          * Lock down a subset of GbE Flash Control Registers, e.g.
2690          * PR0 to prevent the write-protection from being lifted.
2691          * Once FLOCKDN is set, the registers protected by it cannot
2692          * be written until FLOCKDN is cleared by a hardware reset.
2693          */
2694         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2695         hsfsts.hsf_status.flockdn = true;
2696         ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2697
2698         nvm->ops.release(hw);
2699 }
2700
2701 /**
2702  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
2703  *  @hw: pointer to the HW structure
2704  *  @offset: The offset (in bytes) of the byte/word to read.
2705  *  @size: Size of data to read, 1=byte 2=word
2706  *  @data: The byte(s) to write to the NVM.
2707  *
2708  *  Writes one/two bytes to the NVM using the flash access registers.
2709  **/
2710 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2711                                           u8 size, u16 data)
2712 {
2713         union ich8_hws_flash_status hsfsts;
2714         union ich8_hws_flash_ctrl hsflctl;
2715         u32 flash_linear_addr;
2716         u32 flash_data = 0;
2717         s32 ret_val;
2718         u8 count = 0;
2719
2720         if (size < 1 || size > 2 || data > size * 0xff ||
2721             offset > ICH_FLASH_LINEAR_ADDR_MASK)
2722                 return -E1000_ERR_NVM;
2723
2724         flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2725                             hw->nvm.flash_base_addr;
2726
2727         do {
2728                 udelay(1);
2729                 /* Steps */
2730                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2731                 if (ret_val)
2732                         break;
2733
2734                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2735                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2736                 hsflctl.hsf_ctrl.fldbcount = size -1;
2737                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
2738                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2739
2740                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2741
2742                 if (size == 1)
2743                         flash_data = (u32)data & 0x00FF;
2744                 else
2745                         flash_data = (u32)data;
2746
2747                 ew32flash(ICH_FLASH_FDATA0, flash_data);
2748
2749                 /*
2750                  * check if FCERR is set to 1 , if set to 1, clear it
2751                  * and try the whole sequence a few more times else done
2752                  */
2753                 ret_val = e1000_flash_cycle_ich8lan(hw,
2754                                                ICH_FLASH_WRITE_COMMAND_TIMEOUT);
2755                 if (!ret_val)
2756                         break;
2757
2758                 /*
2759                  * If we're here, then things are most likely
2760                  * completely hosed, but if the error condition
2761                  * is detected, it won't hurt to give it another
2762                  * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
2763                  */
2764                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2765                 if (hsfsts.hsf_status.flcerr == 1)
2766                         /* Repeat for some time before giving up. */
2767                         continue;
2768                 if (hsfsts.hsf_status.flcdone == 0) {
2769                         e_dbg("Timeout error - flash cycle "
2770                                  "did not complete.");
2771                         break;
2772                 }
2773         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2774
2775         return ret_val;
2776 }
2777
2778 /**
2779  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
2780  *  @hw: pointer to the HW structure
2781  *  @offset: The index of the byte to read.
2782  *  @data: The byte to write to the NVM.
2783  *
2784  *  Writes a single byte to the NVM using the flash access registers.
2785  **/
2786 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2787                                           u8 data)
2788 {
2789         u16 word = (u16)data;
2790
2791         return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
2792 }
2793
2794 /**
2795  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
2796  *  @hw: pointer to the HW structure
2797  *  @offset: The offset of the byte to write.
2798  *  @byte: The byte to write to the NVM.
2799  *
2800  *  Writes a single byte to the NVM using the flash access registers.
2801  *  Goes through a retry algorithm before giving up.
2802  **/
2803 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
2804                                                 u32 offset, u8 byte)
2805 {
2806         s32 ret_val;
2807         u16 program_retries;
2808
2809         ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2810         if (!ret_val)
2811                 return ret_val;
2812
2813         for (program_retries = 0; program_retries < 100; program_retries++) {
2814                 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
2815                 udelay(100);
2816                 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2817                 if (!ret_val)
2818                         break;
2819         }
2820         if (program_retries == 100)
2821                 return -E1000_ERR_NVM;
2822
2823         return 0;
2824 }
2825
2826 /**
2827  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
2828  *  @hw: pointer to the HW structure
2829  *  @bank: 0 for first bank, 1 for second bank, etc.
2830  *
2831  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
2832  *  bank N is 4096 * N + flash_reg_addr.
2833  **/
2834 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
2835 {
2836         struct e1000_nvm_info *nvm = &hw->nvm;
2837         union ich8_hws_flash_status hsfsts;
2838         union ich8_hws_flash_ctrl hsflctl;
2839         u32 flash_linear_addr;
2840         /* bank size is in 16bit words - adjust to bytes */
2841         u32 flash_bank_size = nvm->flash_bank_size * 2;
2842         s32 ret_val;
2843         s32 count = 0;
2844         s32 j, iteration, sector_size;
2845
2846         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2847
2848         /*
2849          * Determine HW Sector size: Read BERASE bits of hw flash status
2850          * register
2851          * 00: The Hw sector is 256 bytes, hence we need to erase 16
2852          *     consecutive sectors.  The start index for the nth Hw sector
2853          *     can be calculated as = bank * 4096 + n * 256
2854          * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
2855          *     The start index for the nth Hw sector can be calculated
2856          *     as = bank * 4096
2857          * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
2858          *     (ich9 only, otherwise error condition)
2859          * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
2860          */
2861         switch (hsfsts.hsf_status.berasesz) {
2862         case 0:
2863                 /* Hw sector size 256 */
2864                 sector_size = ICH_FLASH_SEG_SIZE_256;
2865                 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
2866                 break;
2867         case 1:
2868                 sector_size = ICH_FLASH_SEG_SIZE_4K;
2869                 iteration = 1;
2870                 break;
2871         case 2:
2872                 sector_size = ICH_FLASH_SEG_SIZE_8K;
2873                 iteration = 1;
2874                 break;
2875         case 3:
2876                 sector_size = ICH_FLASH_SEG_SIZE_64K;
2877                 iteration = 1;
2878                 break;
2879         default:
2880                 return -E1000_ERR_NVM;
2881         }
2882
2883         /* Start with the base address, then add the sector offset. */
2884         flash_linear_addr = hw->nvm.flash_base_addr;
2885         flash_linear_addr += (bank) ? flash_bank_size : 0;
2886
2887         for (j = 0; j < iteration ; j++) {
2888                 do {
2889                         /* Steps */
2890                         ret_val = e1000_flash_cycle_init_ich8lan(hw);
2891                         if (ret_val)
2892                                 return ret_val;
2893
2894                         /*
2895                          * Write a value 11 (block Erase) in Flash
2896                          * Cycle field in hw flash control
2897                          */
2898                         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2899                         hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
2900                         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2901
2902                         /*
2903                          * Write the last 24 bits of an index within the
2904                          * block into Flash Linear address field in Flash
2905                          * Address.
2906                          */
2907                         flash_linear_addr += (j * sector_size);
2908                         ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2909
2910                         ret_val = e1000_flash_cycle_ich8lan(hw,
2911                                                ICH_FLASH_ERASE_COMMAND_TIMEOUT);
2912                         if (ret_val == 0)
2913                                 break;
2914
2915                         /*
2916                          * Check if FCERR is set to 1.  If 1,
2917                          * clear it and try the whole sequence
2918                          * a few more times else Done
2919                          */
2920                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2921                         if (hsfsts.hsf_status.flcerr == 1)
2922                                 /* repeat for some time before giving up */
2923                                 continue;
2924                         else if (hsfsts.hsf_status.flcdone == 0)
2925                                 return ret_val;
2926                 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
2927         }
2928
2929         return 0;
2930 }
2931
2932 /**
2933  *  e1000_valid_led_default_ich8lan - Set the default LED settings
2934  *  @hw: pointer to the HW structure
2935  *  @data: Pointer to the LED settings
2936  *
2937  *  Reads the LED default settings from the NVM to data.  If the NVM LED
2938  *  settings is all 0's or F's, set the LED default to a valid LED default
2939  *  setting.
2940  **/
2941 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
2942 {
2943         s32 ret_val;
2944
2945         ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
2946         if (ret_val) {
2947                 e_dbg("NVM Read Error\n");
2948                 return ret_val;
2949         }
2950
2951         if (*data == ID_LED_RESERVED_0000 ||
2952             *data == ID_LED_RESERVED_FFFF)
2953                 *data = ID_LED_DEFAULT_ICH8LAN;
2954
2955         return 0;
2956 }
2957
2958 /**
2959  *  e1000_id_led_init_pchlan - store LED configurations
2960  *  @hw: pointer to the HW structure
2961  *
2962  *  PCH does not control LEDs via the LEDCTL register, rather it uses
2963  *  the PHY LED configuration register.
2964  *
2965  *  PCH also does not have an "always on" or "always off" mode which
2966  *  complicates the ID feature.  Instead of using the "on" mode to indicate
2967  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
2968  *  use "link_up" mode.  The LEDs will still ID on request if there is no
2969  *  link based on logic in e1000_led_[on|off]_pchlan().
2970  **/
2971 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
2972 {
2973         struct e1000_mac_info *mac = &hw->mac;
2974         s32 ret_val;
2975         const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
2976         const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
2977         u16 data, i, temp, shift;
2978
2979         /* Get default ID LED modes */
2980         ret_val = hw->nvm.ops.valid_led_default(hw, &data);
2981         if (ret_val)
2982                 goto out;
2983
2984         mac->ledctl_default = er32(LEDCTL);
2985         mac->ledctl_mode1 = mac->ledctl_default;
2986         mac->ledctl_mode2 = mac->ledctl_default;
2987
2988         for (i = 0; i < 4; i++) {
2989                 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
2990                 shift = (i * 5);
2991                 switch (temp) {
2992                 case ID_LED_ON1_DEF2:
2993                 case ID_LED_ON1_ON2:
2994                 case ID_LED_ON1_OFF2:
2995                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2996                         mac->ledctl_mode1 |= (ledctl_on << shift);
2997                         break;
2998                 case ID_LED_OFF1_DEF2:
2999                 case ID_LED_OFF1_ON2:
3000                 case ID_LED_OFF1_OFF2:
3001                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3002                         mac->ledctl_mode1 |= (ledctl_off << shift);
3003                         break;
3004                 default:
3005                         /* Do nothing */
3006                         break;
3007                 }
3008                 switch (temp) {
3009                 case ID_LED_DEF1_ON2:
3010                 case ID_LED_ON1_ON2:
3011                 case ID_LED_OFF1_ON2:
3012                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3013                         mac->ledctl_mode2 |= (ledctl_on << shift);
3014                         break;
3015                 case ID_LED_DEF1_OFF2:
3016                 case ID_LED_ON1_OFF2:
3017                 case ID_LED_OFF1_OFF2:
3018                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3019                         mac->ledctl_mode2 |= (ledctl_off << shift);
3020                         break;
3021                 default:
3022                         /* Do nothing */
3023                         break;
3024                 }
3025         }
3026
3027 out:
3028         return ret_val;
3029 }
3030
3031 /**
3032  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
3033  *  @hw: pointer to the HW structure
3034  *
3035  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
3036  *  register, so the the bus width is hard coded.
3037  **/
3038 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
3039 {
3040         struct e1000_bus_info *bus = &hw->bus;
3041         s32 ret_val;
3042
3043         ret_val = e1000e_get_bus_info_pcie(hw);
3044
3045         /*
3046          * ICH devices are "PCI Express"-ish.  They have
3047          * a configuration space, but do not contain
3048          * PCI Express Capability registers, so bus width
3049          * must be hardcoded.
3050          */
3051         if (bus->width == e1000_bus_width_unknown)
3052                 bus->width = e1000_bus_width_pcie_x1;
3053
3054         return ret_val;
3055 }
3056
3057 /**
3058  *  e1000_reset_hw_ich8lan - Reset the hardware
3059  *  @hw: pointer to the HW structure
3060  *
3061  *  Does a full reset of the hardware which includes a reset of the PHY and
3062  *  MAC.
3063  **/
3064 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
3065 {
3066         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3067         u16 reg;
3068         u32 ctrl, kab;
3069         s32 ret_val;
3070
3071         /*
3072          * Prevent the PCI-E bus from sticking if there is no TLP connection
3073          * on the last TLP read/write transaction when MAC is reset.
3074          */
3075         ret_val = e1000e_disable_pcie_master(hw);
3076         if (ret_val)
3077                 e_dbg("PCI-E Master disable polling has failed.\n");
3078
3079         e_dbg("Masking off all interrupts\n");
3080         ew32(IMC, 0xffffffff);
3081
3082         /*
3083          * Disable the Transmit and Receive units.  Then delay to allow
3084          * any pending transactions to complete before we hit the MAC
3085          * with the global reset.
3086          */
3087         ew32(RCTL, 0);
3088         ew32(TCTL, E1000_TCTL_PSP);
3089         e1e_flush();
3090
3091         usleep_range(10000, 20000);
3092
3093         /* Workaround for ICH8 bit corruption issue in FIFO memory */
3094         if (hw->mac.type == e1000_ich8lan) {
3095                 /* Set Tx and Rx buffer allocation to 8k apiece. */
3096                 ew32(PBA, E1000_PBA_8K);
3097                 /* Set Packet Buffer Size to 16k. */
3098                 ew32(PBS, E1000_PBS_16K);
3099         }
3100
3101         if (hw->mac.type == e1000_pchlan) {
3102                 /* Save the NVM K1 bit setting*/
3103                 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &reg);
3104                 if (ret_val)
3105                         return ret_val;
3106
3107                 if (reg & E1000_NVM_K1_ENABLE)
3108                         dev_spec->nvm_k1_enabled = true;
3109                 else
3110                         dev_spec->nvm_k1_enabled = false;
3111         }
3112
3113         ctrl = er32(CTRL);
3114
3115         if (!e1000_check_reset_block(hw)) {
3116                 /*
3117                  * Full-chip reset requires MAC and PHY reset at the same
3118                  * time to make sure the interface between MAC and the
3119                  * external PHY is reset.
3120                  */
3121                 ctrl |= E1000_CTRL_PHY_RST;
3122
3123                 /*
3124                  * Gate automatic PHY configuration by hardware on
3125                  * non-managed 82579
3126                  */
3127                 if ((hw->mac.type == e1000_pch2lan) &&
3128                     !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3129                         e1000_gate_hw_phy_config_ich8lan(hw, true);
3130         }
3131         ret_val = e1000_acquire_swflag_ich8lan(hw);
3132         e_dbg("Issuing a global reset to ich8lan\n");
3133         ew32(CTRL, (ctrl | E1000_CTRL_RST));
3134         /* cannot issue a flush here because it hangs the hardware */
3135         msleep(20);
3136
3137         if (!ret_val)
3138                 mutex_unlock(&swflag_mutex);
3139
3140         if (ctrl & E1000_CTRL_PHY_RST) {
3141                 ret_val = hw->phy.ops.get_cfg_done(hw);
3142                 if (ret_val)
3143                         goto out;
3144
3145                 ret_val = e1000_post_phy_reset_ich8lan(hw);
3146                 if (ret_val)
3147                         goto out;
3148         }
3149
3150         /*
3151          * For PCH, this write will make sure that any noise
3152          * will be detected as a CRC error and be dropped rather than show up
3153          * as a bad packet to the DMA engine.
3154          */
3155         if (hw->mac.type == e1000_pchlan)
3156                 ew32(CRC_OFFSET, 0x65656565);
3157
3158         ew32(IMC, 0xffffffff);
3159         er32(ICR);
3160
3161         kab = er32(KABGTXD);
3162         kab |= E1000_KABGTXD_BGSQLBIAS;
3163         ew32(KABGTXD, kab);
3164
3165 out:
3166         return ret_val;
3167 }
3168
3169 /**
3170  *  e1000_init_hw_ich8lan - Initialize the hardware
3171  *  @hw: pointer to the HW structure
3172  *
3173  *  Prepares the hardware for transmit and receive by doing the following:
3174  *   - initialize hardware bits
3175  *   - initialize LED identification
3176  *   - setup receive address registers
3177  *   - setup flow control
3178  *   - setup transmit descriptors
3179  *   - clear statistics
3180  **/
3181 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
3182 {
3183         struct e1000_mac_info *mac = &hw->mac;
3184         u32 ctrl_ext, txdctl, snoop;
3185         s32 ret_val;
3186         u16 i;
3187
3188         e1000_initialize_hw_bits_ich8lan(hw);
3189
3190         /* Initialize identification LED */
3191         ret_val = mac->ops.id_led_init(hw);
3192         if (ret_val)
3193                 e_dbg("Error initializing identification LED\n");
3194                 /* This is not fatal and we should not stop init due to this */
3195
3196         /* Setup the receive address. */
3197         e1000e_init_rx_addrs(hw, mac->rar_entry_count);
3198
3199         /* Zero out the Multicast HASH table */
3200         e_dbg("Zeroing the MTA\n");
3201         for (i = 0; i < mac->mta_reg_count; i++)
3202                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
3203
3204         /*
3205          * The 82578 Rx buffer will stall if wakeup is enabled in host and
3206          * the ME.  Disable wakeup by clearing the host wakeup bit.
3207          * Reset the phy after disabling host wakeup to reset the Rx buffer.
3208          */
3209         if (hw->phy.type == e1000_phy_82578) {
3210                 e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
3211                 i &= ~BM_WUC_HOST_WU_BIT;
3212                 e1e_wphy(hw, BM_PORT_GEN_CFG, i);
3213                 ret_val = e1000_phy_hw_reset_ich8lan(hw);
3214                 if (ret_val)
3215                         return ret_val;
3216         }
3217
3218         /* Setup link and flow control */
3219         ret_val = e1000_setup_link_ich8lan(hw);
3220
3221         /* Set the transmit descriptor write-back policy for both queues */
3222         txdctl = er32(TXDCTL(0));
3223         txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3224                  E1000_TXDCTL_FULL_TX_DESC_WB;
3225         txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3226                  E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3227         ew32(TXDCTL(0), txdctl);
3228         txdctl = er32(TXDCTL(1));
3229         txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3230                  E1000_TXDCTL_FULL_TX_DESC_WB;
3231         txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3232                  E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3233         ew32(TXDCTL(1), txdctl);
3234
3235         /*
3236          * ICH8 has opposite polarity of no_snoop bits.
3237          * By default, we should use snoop behavior.
3238          */
3239         if (mac->type == e1000_ich8lan)
3240                 snoop = PCIE_ICH8_SNOOP_ALL;
3241         else
3242                 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
3243         e1000e_set_pcie_no_snoop(hw, snoop);
3244
3245         ctrl_ext = er32(CTRL_EXT);
3246         ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
3247         ew32(CTRL_EXT, ctrl_ext);
3248
3249         /*
3250          * Clear all of the statistics registers (clear on read).  It is
3251          * important that we do this after we have tried to establish link
3252          * because the symbol error count will increment wildly if there
3253          * is no link.
3254          */
3255         e1000_clear_hw_cntrs_ich8lan(hw);
3256
3257         return 0;
3258 }
3259 /**
3260  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
3261  *  @hw: pointer to the HW structure
3262  *
3263  *  Sets/Clears required hardware bits necessary for correctly setting up the
3264  *  hardware for transmit and receive.
3265  **/
3266 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
3267 {
3268         u32 reg;
3269
3270         /* Extended Device Control */
3271         reg = er32(CTRL_EXT);
3272         reg |= (1 << 22);
3273         /* Enable PHY low-power state when MAC is at D3 w/o WoL */
3274         if (hw->mac.type >= e1000_pchlan)
3275                 reg |= E1000_CTRL_EXT_PHYPDEN;
3276         ew32(CTRL_EXT, reg);
3277
3278         /* Transmit Descriptor Control 0 */
3279         reg = er32(TXDCTL(0));
3280         reg |= (1 << 22);
3281         ew32(TXDCTL(0), reg);
3282
3283         /* Transmit Descriptor Control 1 */
3284         reg = er32(TXDCTL(1));
3285         reg |= (1 << 22);
3286         ew32(TXDCTL(1), reg);
3287
3288         /* Transmit Arbitration Control 0 */
3289         reg = er32(TARC(0));
3290         if (hw->mac.type == e1000_ich8lan)
3291                 reg |= (1 << 28) | (1 << 29);
3292         reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
3293         ew32(TARC(0), reg);
3294
3295         /* Transmit Arbitration Control 1 */
3296         reg = er32(TARC(1));
3297         if (er32(TCTL) & E1000_TCTL_MULR)
3298                 reg &= ~(1 << 28);
3299         else
3300                 reg |= (1 << 28);
3301         reg |= (1 << 24) | (1 << 26) | (1 << 30);
3302         ew32(TARC(1), reg);
3303
3304         /* Device Status */
3305         if (hw->mac.type == e1000_ich8lan) {
3306                 reg = er32(STATUS);
3307                 reg &= ~(1 << 31);
3308                 ew32(STATUS, reg);
3309         }
3310
3311         /*
3312          * work-around descriptor data corruption issue during nfs v2 udp
3313          * traffic, just disable the nfs filtering capability
3314          */
3315         reg = er32(RFCTL);
3316         reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
3317         ew32(RFCTL, reg);
3318 }
3319
3320 /**
3321  *  e1000_setup_link_ich8lan - Setup flow control and link settings
3322  *  @hw: pointer to the HW structure
3323  *
3324  *  Determines which flow control settings to use, then configures flow
3325  *  control.  Calls the appropriate media-specific link configuration
3326  *  function.  Assuming the adapter has a valid link partner, a valid link
3327  *  should be established.  Assumes the hardware has previously been reset
3328  *  and the transmitter and receiver are not enabled.
3329  **/
3330 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
3331 {
3332         s32 ret_val;
3333
3334         if (e1000_check_reset_block(hw))
3335                 return 0;
3336
3337         /*
3338          * ICH parts do not have a word in the NVM to determine
3339          * the default flow control setting, so we explicitly
3340          * set it to full.
3341          */
3342         if (hw->fc.requested_mode == e1000_fc_default) {
3343                 /* Workaround h/w hang when Tx flow control enabled */
3344                 if (hw->mac.type == e1000_pchlan)
3345                         hw->fc.requested_mode = e1000_fc_rx_pause;
3346                 else
3347                         hw->fc.requested_mode = e1000_fc_full;
3348         }
3349
3350         /*
3351          * Save off the requested flow control mode for use later.  Depending
3352          * on the link partner's capabilities, we may or may not use this mode.
3353          */
3354         hw->fc.current_mode = hw->fc.requested_mode;
3355
3356         e_dbg("After fix-ups FlowControl is now = %x\n",
3357                 hw->fc.current_mode);
3358
3359         /* Continue to configure the copper link. */
3360         ret_val = e1000_setup_copper_link_ich8lan(hw);
3361         if (ret_val)
3362                 return ret_val;
3363
3364         ew32(FCTTV, hw->fc.pause_time);
3365         if ((hw->phy.type == e1000_phy_82578) ||
3366             (hw->phy.type == e1000_phy_82579) ||
3367             (hw->phy.type == e1000_phy_82577)) {
3368                 ew32(FCRTV_PCH, hw->fc.refresh_time);
3369
3370                 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
3371                                    hw->fc.pause_time);
3372                 if (ret_val)
3373                         return ret_val;
3374         }
3375
3376         return e1000e_set_fc_watermarks(hw);
3377 }
3378
3379 /**
3380  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
3381  *  @hw: pointer to the HW structure
3382  *
3383  *  Configures the kumeran interface to the PHY to wait the appropriate time
3384  *  when polling the PHY, then call the generic setup_copper_link to finish
3385  *  configuring the copper link.
3386  **/
3387 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
3388 {
3389         u32 ctrl;
3390         s32 ret_val;
3391         u16 reg_data;
3392
3393         ctrl = er32(CTRL);
3394         ctrl |= E1000_CTRL_SLU;
3395         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3396         ew32(CTRL, ctrl);
3397
3398         /*
3399          * Set the mac to wait the maximum time between each iteration
3400          * and increase the max iterations when polling the phy;
3401          * this fixes erroneous timeouts at 10Mbps.
3402          */
3403         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
3404         if (ret_val)
3405                 return ret_val;
3406         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3407                                        &reg_data);
3408         if (ret_val)
3409                 return ret_val;
3410         reg_data |= 0x3F;
3411         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3412                                         reg_data);
3413         if (ret_val)
3414                 return ret_val;
3415
3416         switch (hw->phy.type) {
3417         case e1000_phy_igp_3:
3418                 ret_val = e1000e_copper_link_setup_igp(hw);
3419                 if (ret_val)
3420                         return ret_val;
3421                 break;
3422         case e1000_phy_bm:
3423         case e1000_phy_82578:
3424                 ret_val = e1000e_copper_link_setup_m88(hw);
3425                 if (ret_val)
3426                         return ret_val;
3427                 break;
3428         case e1000_phy_82577:
3429         case e1000_phy_82579:
3430                 ret_val = e1000_copper_link_setup_82577(hw);
3431                 if (ret_val)
3432                         return ret_val;
3433                 break;
3434         case e1000_phy_ife:
3435                 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
3436                 if (ret_val)
3437                         return ret_val;
3438
3439                 reg_data &= ~IFE_PMC_AUTO_MDIX;
3440
3441                 switch (hw->phy.mdix) {
3442                 case 1:
3443                         reg_data &= ~IFE_PMC_FORCE_MDIX;
3444                         break;
3445                 case 2:
3446                         reg_data |= IFE_PMC_FORCE_MDIX;
3447                         break;
3448                 case 0:
3449                 default:
3450                         reg_data |= IFE_PMC_AUTO_MDIX;
3451                         break;
3452                 }
3453                 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
3454                 if (ret_val)
3455                         return ret_val;
3456                 break;
3457         default:
3458                 break;
3459         }
3460         return e1000e_setup_copper_link(hw);
3461 }
3462
3463 /**
3464  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
3465  *  @hw: pointer to the HW structure
3466  *  @speed: pointer to store current link speed
3467  *  @duplex: pointer to store the current link duplex
3468  *
3469  *  Calls the generic get_speed_and_duplex to retrieve the current link
3470  *  information and then calls the Kumeran lock loss workaround for links at
3471  *  gigabit speeds.
3472  **/
3473 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
3474                                           u16 *duplex)
3475 {
3476         s32 ret_val;
3477
3478         ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
3479         if (ret_val)
3480                 return ret_val;
3481
3482         if ((hw->mac.type == e1000_ich8lan) &&
3483             (hw->phy.type == e1000_phy_igp_3) &&
3484             (*speed == SPEED_1000)) {
3485                 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
3486         }
3487
3488         return ret_val;
3489 }
3490
3491 /**
3492  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
3493  *  @hw: pointer to the HW structure
3494  *
3495  *  Work-around for 82566 Kumeran PCS lock loss:
3496  *  On link status change (i.e. PCI reset, speed change) and link is up and
3497  *  speed is gigabit-
3498  *    0) if workaround is optionally disabled do nothing
3499  *    1) wait 1ms for Kumeran link to come up
3500  *    2) check Kumeran Diagnostic register PCS lock loss bit
3501  *    3) if not set the link is locked (all is good), otherwise...
3502  *    4) reset the PHY
3503  *    5) repeat up to 10 times
3504  *  Note: this is only called for IGP3 copper when speed is 1gb.
3505  **/
3506 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
3507 {
3508         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3509         u32 phy_ctrl;
3510         s32 ret_val;
3511         u16 i, data;
3512         bool link;
3513
3514         if (!dev_spec->kmrn_lock_loss_workaround_enabled)
3515                 return 0;
3516
3517         /*
3518          * Make sure link is up before proceeding.  If not just return.
3519          * Attempting this while link is negotiating fouled up link
3520          * stability
3521          */
3522         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3523         if (!link)
3524                 return 0;
3525
3526         for (i = 0; i < 10; i++) {
3527                 /* read once to clear */
3528                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3529                 if (ret_val)
3530                         return ret_val;
3531                 /* and again to get new status */
3532                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3533                 if (ret_val)
3534                         return ret_val;
3535
3536                 /* check for PCS lock */
3537                 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
3538                         return 0;
3539
3540                 /* Issue PHY reset */
3541                 e1000_phy_hw_reset(hw);
3542                 mdelay(5);
3543         }
3544         /* Disable GigE link negotiation */
3545         phy_ctrl = er32(PHY_CTRL);
3546         phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
3547                      E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3548         ew32(PHY_CTRL, phy_ctrl);
3549
3550         /*
3551          * Call gig speed drop workaround on Gig disable before accessing
3552          * any PHY registers
3553          */
3554         e1000e_gig_downshift_workaround_ich8lan(hw);
3555
3556         /* unable to acquire PCS lock */
3557         return -E1000_ERR_PHY;
3558 }
3559
3560 /**
3561  *  e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
3562  *  @hw: pointer to the HW structure
3563  *  @state: boolean value used to set the current Kumeran workaround state
3564  *
3565  *  If ICH8, set the current Kumeran workaround state (enabled - true
3566  *  /disabled - false).
3567  **/
3568 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
3569                                                  bool state)
3570 {
3571         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3572
3573         if (hw->mac.type != e1000_ich8lan) {
3574                 e_dbg("Workaround applies to ICH8 only.\n");
3575                 return;
3576         }
3577
3578         dev_spec->kmrn_lock_loss_workaround_enabled = state;
3579 }
3580
3581 /**
3582  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3583  *  @hw: pointer to the HW structure
3584  *
3585  *  Workaround for 82566 power-down on D3 entry:
3586  *    1) disable gigabit link
3587  *    2) write VR power-down enable
3588  *    3) read it back
3589  *  Continue if successful, else issue LCD reset and repeat
3590  **/
3591 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
3592 {
3593         u32 reg;
3594         u16 data;
3595         u8  retry = 0;
3596
3597         if (hw->phy.type != e1000_phy_igp_3)
3598                 return;
3599
3600         /* Try the workaround twice (if needed) */
3601         do {
3602                 /* Disable link */
3603                 reg = er32(PHY_CTRL);
3604                 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
3605                         E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3606                 ew32(PHY_CTRL, reg);
3607
3608                 /*
3609                  * Call gig speed drop workaround on Gig disable before
3610                  * accessing any PHY registers
3611                  */
3612                 if (hw->mac.type == e1000_ich8lan)
3613                         e1000e_gig_downshift_workaround_ich8lan(hw);
3614
3615                 /* Write VR power-down enable */
3616                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3617                 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3618                 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
3619
3620                 /* Read it back and test */
3621                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3622                 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3623                 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
3624                         break;
3625
3626                 /* Issue PHY reset and repeat at most one more time */
3627                 reg = er32(CTRL);
3628                 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
3629                 retry++;
3630         } while (retry);
3631 }
3632
3633 /**
3634  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
3635  *  @hw: pointer to the HW structure
3636  *
3637  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
3638  *  LPLU, Gig disable, MDIC PHY reset):
3639  *    1) Set Kumeran Near-end loopback
3640  *    2) Clear Kumeran Near-end loopback
3641  *  Should only be called for ICH8[m] devices with IGP_3 Phy.
3642  **/
3643 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
3644 {
3645         s32 ret_val;
3646         u16 reg_data;
3647
3648         if ((hw->mac.type != e1000_ich8lan) ||
3649             (hw->phy.type != e1000_phy_igp_3))
3650                 return;
3651
3652         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3653                                       &reg_data);
3654         if (ret_val)
3655                 return;
3656         reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
3657         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3658                                        reg_data);
3659         if (ret_val)
3660                 return;
3661         reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
3662         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3663                                        reg_data);
3664 }
3665
3666 /**
3667  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
3668  *  @hw: pointer to the HW structure
3669  *
3670  *  During S0 to Sx transition, it is possible the link remains at gig
3671  *  instead of negotiating to a lower speed.  Before going to Sx, set
3672  *  'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
3673  *  to a lower speed.  For PCH and newer parts, the OEM bits PHY register
3674  *  (LED, GbE disable and LPLU configurations) also needs to be written.
3675  **/
3676 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
3677 {
3678         u32 phy_ctrl;
3679         s32 ret_val;
3680
3681         phy_ctrl = er32(PHY_CTRL);
3682         phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU | E1000_PHY_CTRL_GBE_DISABLE;
3683         ew32(PHY_CTRL, phy_ctrl);
3684
3685         if (hw->mac.type >= e1000_pchlan) {
3686                 e1000_oem_bits_config_ich8lan(hw, false);
3687                 ret_val = hw->phy.ops.acquire(hw);
3688                 if (ret_val)
3689                         return;
3690                 e1000_write_smbus_addr(hw);
3691                 hw->phy.ops.release(hw);
3692         }
3693 }
3694
3695 /**
3696  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
3697  *  @hw: pointer to the HW structure
3698  *
3699  *  During Sx to S0 transitions on non-managed devices or managed devices
3700  *  on which PHY resets are not blocked, if the PHY registers cannot be
3701  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
3702  *  the PHY.
3703  **/
3704 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
3705 {
3706         u32 fwsm;
3707
3708         if (hw->mac.type != e1000_pch2lan)
3709                 return;
3710
3711         fwsm = er32(FWSM);
3712         if (!(fwsm & E1000_ICH_FWSM_FW_VALID) || !e1000_check_reset_block(hw)) {
3713                 u16 phy_id1, phy_id2;
3714                 s32 ret_val;
3715
3716                 ret_val = hw->phy.ops.acquire(hw);
3717                 if (ret_val) {
3718                         e_dbg("Failed to acquire PHY semaphore in resume\n");
3719                         return;
3720                 }
3721
3722                 /* Test access to the PHY registers by reading the ID regs */
3723                 ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_id1);
3724                 if (ret_val)
3725                         goto release;
3726                 ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_id2);
3727                 if (ret_val)
3728                         goto release;
3729
3730                 if (hw->phy.id == ((u32)(phy_id1 << 16) |
3731                                    (u32)(phy_id2 & PHY_REVISION_MASK)))
3732                         goto release;
3733
3734                 e1000_toggle_lanphypc_value_ich8lan(hw);
3735
3736                 hw->phy.ops.release(hw);
3737                 msleep(50);
3738                 e1000_phy_hw_reset(hw);
3739                 msleep(50);
3740                 return;
3741         }
3742
3743 release:
3744         hw->phy.ops.release(hw);
3745
3746         return;
3747 }
3748
3749 /**
3750  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
3751  *  @hw: pointer to the HW structure
3752  *
3753  *  Return the LED back to the default configuration.
3754  **/
3755 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
3756 {
3757         if (hw->phy.type == e1000_phy_ife)
3758                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
3759
3760         ew32(LEDCTL, hw->mac.ledctl_default);
3761         return 0;
3762 }
3763
3764 /**
3765  *  e1000_led_on_ich8lan - Turn LEDs on
3766  *  @hw: pointer to the HW structure
3767  *
3768  *  Turn on the LEDs.
3769  **/
3770 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
3771 {
3772         if (hw->phy.type == e1000_phy_ife)
3773                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3774                                 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
3775
3776         ew32(LEDCTL, hw->mac.ledctl_mode2);
3777         return 0;
3778 }
3779
3780 /**
3781  *  e1000_led_off_ich8lan - Turn LEDs off
3782  *  @hw: pointer to the HW structure
3783  *
3784  *  Turn off the LEDs.
3785  **/
3786 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
3787 {
3788         if (hw->phy.type == e1000_phy_ife)
3789                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3790                                 (IFE_PSCL_PROBE_MODE |
3791                                  IFE_PSCL_PROBE_LEDS_OFF));
3792
3793         ew32(LEDCTL, hw->mac.ledctl_mode1);
3794         return 0;
3795 }
3796
3797 /**
3798  *  e1000_setup_led_pchlan - Configures SW controllable LED
3799  *  @hw: pointer to the HW structure
3800  *
3801  *  This prepares the SW controllable LED for use.
3802  **/
3803 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
3804 {
3805         return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
3806 }
3807
3808 /**
3809  *  e1000_cleanup_led_pchlan - Restore the default LED operation
3810  *  @hw: pointer to the HW structure
3811  *
3812  *  Return the LED back to the default configuration.
3813  **/
3814 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
3815 {
3816         return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
3817 }
3818
3819 /**
3820  *  e1000_led_on_pchlan - Turn LEDs on
3821  *  @hw: pointer to the HW structure
3822  *
3823  *  Turn on the LEDs.
3824  **/
3825 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
3826 {
3827         u16 data = (u16)hw->mac.ledctl_mode2;
3828         u32 i, led;
3829
3830         /*
3831          * If no link, then turn LED on by setting the invert bit
3832          * for each LED that's mode is "link_up" in ledctl_mode2.
3833          */
3834         if (!(er32(STATUS) & E1000_STATUS_LU)) {
3835                 for (i = 0; i < 3; i++) {
3836                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3837                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
3838                             E1000_LEDCTL_MODE_LINK_UP)
3839                                 continue;
3840                         if (led & E1000_PHY_LED0_IVRT)
3841                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3842                         else
3843                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3844                 }
3845         }
3846
3847         return e1e_wphy(hw, HV_LED_CONFIG, data);
3848 }
3849
3850 /**
3851  *  e1000_led_off_pchlan - Turn LEDs off
3852  *  @hw: pointer to the HW structure
3853  *
3854  *  Turn off the LEDs.
3855  **/
3856 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
3857 {
3858         u16 data = (u16)hw->mac.ledctl_mode1;
3859         u32 i, led;
3860
3861         /*
3862          * If no link, then turn LED off by clearing the invert bit
3863          * for each LED that's mode is "link_up" in ledctl_mode1.
3864          */
3865         if (!(er32(STATUS) & E1000_STATUS_LU)) {
3866                 for (i = 0; i < 3; i++) {
3867                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3868                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
3869                             E1000_LEDCTL_MODE_LINK_UP)
3870                                 continue;
3871                         if (led & E1000_PHY_LED0_IVRT)
3872                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3873                         else
3874                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3875                 }
3876         }
3877
3878         return e1e_wphy(hw, HV_LED_CONFIG, data);
3879 }
3880
3881 /**
3882  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
3883  *  @hw: pointer to the HW structure
3884  *
3885  *  Read appropriate register for the config done bit for completion status
3886  *  and configure the PHY through s/w for EEPROM-less parts.
3887  *
3888  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
3889  *  config done bit, so only an error is logged and continues.  If we were
3890  *  to return with error, EEPROM-less silicon would not be able to be reset
3891  *  or change link.
3892  **/
3893 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
3894 {
3895         s32 ret_val = 0;
3896         u32 bank = 0;
3897         u32 status;
3898
3899         e1000e_get_cfg_done(hw);
3900
3901         /* Wait for indication from h/w that it has completed basic config */
3902         if (hw->mac.type >= e1000_ich10lan) {
3903                 e1000_lan_init_done_ich8lan(hw);
3904         } else {
3905                 ret_val = e1000e_get_auto_rd_done(hw);
3906                 if (ret_val) {
3907                         /*
3908                          * When auto config read does not complete, do not
3909                          * return with an error. This can happen in situations
3910                          * where there is no eeprom and prevents getting link.
3911                          */
3912                         e_dbg("Auto Read Done did not complete\n");
3913                         ret_val = 0;
3914                 }
3915         }
3916
3917         /* Clear PHY Reset Asserted bit */
3918         status = er32(STATUS);
3919         if (status & E1000_STATUS_PHYRA)
3920                 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
3921         else
3922                 e_dbg("PHY Reset Asserted not set - needs delay\n");
3923
3924         /* If EEPROM is not marked present, init the IGP 3 PHY manually */
3925         if (hw->mac.type <= e1000_ich9lan) {
3926                 if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
3927                     (hw->phy.type == e1000_phy_igp_3)) {
3928                         e1000e_phy_init_script_igp3(hw);
3929                 }
3930         } else {
3931                 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
3932                         /* Maybe we should do a basic PHY config */
3933                         e_dbg("EEPROM not present\n");
3934                         ret_val = -E1000_ERR_CONFIG;
3935                 }
3936         }
3937
3938         return ret_val;
3939 }
3940
3941 /**
3942  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
3943  * @hw: pointer to the HW structure
3944  *
3945  * In the case of a PHY power down to save power, or to turn off link during a
3946  * driver unload, or wake on lan is not enabled, remove the link.
3947  **/
3948 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
3949 {
3950         /* If the management interface is not enabled, then power down */
3951         if (!(hw->mac.ops.check_mng_mode(hw) ||
3952               hw->phy.ops.check_reset_block(hw)))
3953                 e1000_power_down_phy_copper(hw);
3954 }
3955
3956 /**
3957  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
3958  *  @hw: pointer to the HW structure
3959  *
3960  *  Clears hardware counters specific to the silicon family and calls
3961  *  clear_hw_cntrs_generic to clear all general purpose counters.
3962  **/
3963 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
3964 {
3965         u16 phy_data;
3966         s32 ret_val;
3967
3968         e1000e_clear_hw_cntrs_base(hw);
3969
3970         er32(ALGNERRC);
3971         er32(RXERRC);
3972         er32(TNCRS);
3973         er32(CEXTERR);
3974         er32(TSCTC);
3975         er32(TSCTFC);
3976
3977         er32(MGTPRC);
3978         er32(MGTPDC);
3979         er32(MGTPTC);
3980
3981         er32(IAC);
3982         er32(ICRXOC);
3983
3984         /* Clear PHY statistics registers */
3985         if ((hw->phy.type == e1000_phy_82578) ||
3986             (hw->phy.type == e1000_phy_82579) ||
3987             (hw->phy.type == e1000_phy_82577)) {
3988                 ret_val = hw->phy.ops.acquire(hw);
3989                 if (ret_val)
3990                         return;
3991                 ret_val = hw->phy.ops.set_page(hw,
3992                                                HV_STATS_PAGE << IGP_PAGE_SHIFT);
3993                 if (ret_val)
3994                         goto release;
3995                 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
3996                 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
3997                 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
3998                 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
3999                 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4000                 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4001                 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4002                 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4003                 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4004                 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4005                 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4006                 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4007                 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4008                 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4009 release:
4010                 hw->phy.ops.release(hw);
4011         }
4012 }
4013
4014 static struct e1000_mac_operations ich8_mac_ops = {
4015         .id_led_init            = e1000e_id_led_init,
4016         /* check_mng_mode dependent on mac type */
4017         .check_for_link         = e1000_check_for_copper_link_ich8lan,
4018         /* cleanup_led dependent on mac type */
4019         .clear_hw_cntrs         = e1000_clear_hw_cntrs_ich8lan,
4020         .get_bus_info           = e1000_get_bus_info_ich8lan,
4021         .set_lan_id             = e1000_set_lan_id_single_port,
4022         .get_link_up_info       = e1000_get_link_up_info_ich8lan,
4023         /* led_on dependent on mac type */
4024         /* led_off dependent on mac type */
4025         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
4026         .reset_hw               = e1000_reset_hw_ich8lan,
4027         .init_hw                = e1000_init_hw_ich8lan,
4028         .setup_link             = e1000_setup_link_ich8lan,
4029         .setup_physical_interface= e1000_setup_copper_link_ich8lan,
4030         /* id_led_init dependent on mac type */
4031 };
4032
4033 static struct e1000_phy_operations ich8_phy_ops = {
4034         .acquire                = e1000_acquire_swflag_ich8lan,
4035         .check_reset_block      = e1000_check_reset_block_ich8lan,
4036         .commit                 = NULL,
4037         .get_cfg_done           = e1000_get_cfg_done_ich8lan,
4038         .get_cable_length       = e1000e_get_cable_length_igp_2,
4039         .read_reg               = e1000e_read_phy_reg_igp,
4040         .release                = e1000_release_swflag_ich8lan,
4041         .reset                  = e1000_phy_hw_reset_ich8lan,
4042         .set_d0_lplu_state      = e1000_set_d0_lplu_state_ich8lan,
4043         .set_d3_lplu_state      = e1000_set_d3_lplu_state_ich8lan,
4044         .write_reg              = e1000e_write_phy_reg_igp,
4045 };
4046
4047 static struct e1000_nvm_operations ich8_nvm_ops = {
4048         .acquire                = e1000_acquire_nvm_ich8lan,
4049         .read                   = e1000_read_nvm_ich8lan,
4050         .release                = e1000_release_nvm_ich8lan,
4051         .update                 = e1000_update_nvm_checksum_ich8lan,
4052         .valid_led_default      = e1000_valid_led_default_ich8lan,
4053         .validate               = e1000_validate_nvm_checksum_ich8lan,
4054         .write                  = e1000_write_nvm_ich8lan,
4055 };
4056
4057 struct e1000_info e1000_ich8_info = {
4058         .mac                    = e1000_ich8lan,
4059         .flags                  = FLAG_HAS_WOL
4060                                   | FLAG_IS_ICH
4061                                   | FLAG_RX_CSUM_ENABLED
4062                                   | FLAG_HAS_CTRLEXT_ON_LOAD
4063                                   | FLAG_HAS_AMT
4064                                   | FLAG_HAS_FLASH
4065                                   | FLAG_APME_IN_WUC,
4066         .pba                    = 8,
4067         .max_hw_frame_size      = ETH_FRAME_LEN + ETH_FCS_LEN,
4068         .get_variants           = e1000_get_variants_ich8lan,
4069         .mac_ops                = &ich8_mac_ops,
4070         .phy_ops                = &ich8_phy_ops,
4071         .nvm_ops                = &ich8_nvm_ops,
4072 };
4073
4074 struct e1000_info e1000_ich9_info = {
4075         .mac                    = e1000_ich9lan,
4076         .flags                  = FLAG_HAS_JUMBO_FRAMES
4077                                   | FLAG_IS_ICH
4078                                   | FLAG_HAS_WOL
4079                                   | FLAG_RX_CSUM_ENABLED
4080                                   | FLAG_HAS_CTRLEXT_ON_LOAD
4081                                   | FLAG_HAS_AMT
4082                                   | FLAG_HAS_ERT
4083                                   | FLAG_HAS_FLASH
4084                                   | FLAG_APME_IN_WUC,
4085         .pba                    = 10,
4086         .max_hw_frame_size      = DEFAULT_JUMBO,
4087         .get_variants           = e1000_get_variants_ich8lan,
4088         .mac_ops                = &ich8_mac_ops,
4089         .phy_ops                = &ich8_phy_ops,
4090         .nvm_ops                = &ich8_nvm_ops,
4091 };
4092
4093 struct e1000_info e1000_ich10_info = {
4094         .mac                    = e1000_ich10lan,
4095         .flags                  = FLAG_HAS_JUMBO_FRAMES
4096                                   | FLAG_IS_ICH
4097                                   | FLAG_HAS_WOL
4098                                   | FLAG_RX_CSUM_ENABLED
4099                                   | FLAG_HAS_CTRLEXT_ON_LOAD
4100                                   | FLAG_HAS_AMT
4101                                   | FLAG_HAS_ERT
4102                                   | FLAG_HAS_FLASH
4103                                   | FLAG_APME_IN_WUC,
4104         .pba                    = 10,
4105         .max_hw_frame_size      = DEFAULT_JUMBO,
4106         .get_variants           = e1000_get_variants_ich8lan,
4107         .mac_ops                = &ich8_mac_ops,
4108         .phy_ops                = &ich8_phy_ops,
4109         .nvm_ops                = &ich8_nvm_ops,
4110 };
4111
4112 struct e1000_info e1000_pch_info = {
4113         .mac                    = e1000_pchlan,
4114         .flags                  = FLAG_IS_ICH
4115                                   | FLAG_HAS_WOL
4116                                   | FLAG_RX_CSUM_ENABLED
4117                                   | FLAG_HAS_CTRLEXT_ON_LOAD
4118                                   | FLAG_HAS_AMT
4119                                   | FLAG_HAS_FLASH
4120                                   | FLAG_HAS_JUMBO_FRAMES
4121                                   | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
4122                                   | FLAG_APME_IN_WUC,
4123         .flags2                 = FLAG2_HAS_PHY_STATS,
4124         .pba                    = 26,
4125         .max_hw_frame_size      = 4096,
4126         .get_variants           = e1000_get_variants_ich8lan,
4127         .mac_ops                = &ich8_mac_ops,
4128         .phy_ops                = &ich8_phy_ops,
4129         .nvm_ops                = &ich8_nvm_ops,
4130 };
4131
4132 struct e1000_info e1000_pch2_info = {
4133         .mac                    = e1000_pch2lan,
4134         .flags                  = FLAG_IS_ICH
4135                                   | FLAG_HAS_WOL
4136                                   | FLAG_RX_CSUM_ENABLED
4137                                   | FLAG_HAS_CTRLEXT_ON_LOAD
4138                                   | FLAG_HAS_AMT
4139                                   | FLAG_HAS_FLASH
4140                                   | FLAG_HAS_JUMBO_FRAMES
4141                                   | FLAG_APME_IN_WUC,
4142         .flags2                 = FLAG2_HAS_PHY_STATS
4143                                   | FLAG2_HAS_EEE,
4144         .pba                    = 26,
4145         .max_hw_frame_size      = DEFAULT_JUMBO,
4146         .get_variants           = e1000_get_variants_ich8lan,
4147         .mac_ops                = &ich8_mac_ops,
4148         .phy_ops                = &ich8_phy_ops,
4149         .nvm_ops                = &ich8_nvm_ops,
4150 };