e1000e: set bools to true/false instead of 1/0
[linux-2.6.git] / drivers / net / e1000e / 82571.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2009 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /*
30  * 82571EB Gigabit Ethernet Controller
31  * 82571EB Gigabit Ethernet Controller (Copper)
32  * 82571EB Gigabit Ethernet Controller (Fiber)
33  * 82571EB Dual Port Gigabit Mezzanine Adapter
34  * 82571EB Quad Port Gigabit Mezzanine Adapter
35  * 82571PT Gigabit PT Quad Port Server ExpressModule
36  * 82572EI Gigabit Ethernet Controller (Copper)
37  * 82572EI Gigabit Ethernet Controller (Fiber)
38  * 82572EI Gigabit Ethernet Controller
39  * 82573V Gigabit Ethernet Controller (Copper)
40  * 82573E Gigabit Ethernet Controller (Copper)
41  * 82573L Gigabit Ethernet Controller
42  * 82574L Gigabit Network Connection
43  * 82583V Gigabit Network Connection
44  */
45
46 #include "e1000.h"
47
48 #define ID_LED_RESERVED_F746 0xF746
49 #define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
50                               (ID_LED_OFF1_ON2  <<  8) | \
51                               (ID_LED_DEF1_DEF2 <<  4) | \
52                               (ID_LED_DEF1_DEF2))
53
54 #define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
55
56 #define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */
57
58 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
59 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
60 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
61 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
62 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
63                                       u16 words, u16 *data);
64 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
65 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
66 static s32 e1000_setup_link_82571(struct e1000_hw *hw);
67 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
68 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
69 static s32 e1000_led_on_82574(struct e1000_hw *hw);
70 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
71
72 /**
73  *  e1000_init_phy_params_82571 - Init PHY func ptrs.
74  *  @hw: pointer to the HW structure
75  **/
76 static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
77 {
78         struct e1000_phy_info *phy = &hw->phy;
79         s32 ret_val;
80
81         if (hw->phy.media_type != e1000_media_type_copper) {
82                 phy->type = e1000_phy_none;
83                 return 0;
84         }
85
86         phy->addr                        = 1;
87         phy->autoneg_mask                = AUTONEG_ADVERTISE_SPEED_DEFAULT;
88         phy->reset_delay_us              = 100;
89
90         switch (hw->mac.type) {
91         case e1000_82571:
92         case e1000_82572:
93                 phy->type                = e1000_phy_igp_2;
94                 break;
95         case e1000_82573:
96                 phy->type                = e1000_phy_m88;
97                 break;
98         case e1000_82574:
99         case e1000_82583:
100                 phy->type                = e1000_phy_bm;
101                 break;
102         default:
103                 return -E1000_ERR_PHY;
104                 break;
105         }
106
107         /* This can only be done after all function pointers are setup. */
108         ret_val = e1000_get_phy_id_82571(hw);
109
110         /* Verify phy id */
111         switch (hw->mac.type) {
112         case e1000_82571:
113         case e1000_82572:
114                 if (phy->id != IGP01E1000_I_PHY_ID)
115                         return -E1000_ERR_PHY;
116                 break;
117         case e1000_82573:
118                 if (phy->id != M88E1111_I_PHY_ID)
119                         return -E1000_ERR_PHY;
120                 break;
121         case e1000_82574:
122         case e1000_82583:
123                 if (phy->id != BME1000_E_PHY_ID_R2)
124                         return -E1000_ERR_PHY;
125                 break;
126         default:
127                 return -E1000_ERR_PHY;
128                 break;
129         }
130
131         return 0;
132 }
133
134 /**
135  *  e1000_init_nvm_params_82571 - Init NVM func ptrs.
136  *  @hw: pointer to the HW structure
137  **/
138 static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
139 {
140         struct e1000_nvm_info *nvm = &hw->nvm;
141         u32 eecd = er32(EECD);
142         u16 size;
143
144         nvm->opcode_bits = 8;
145         nvm->delay_usec = 1;
146         switch (nvm->override) {
147         case e1000_nvm_override_spi_large:
148                 nvm->page_size = 32;
149                 nvm->address_bits = 16;
150                 break;
151         case e1000_nvm_override_spi_small:
152                 nvm->page_size = 8;
153                 nvm->address_bits = 8;
154                 break;
155         default:
156                 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
157                 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
158                 break;
159         }
160
161         switch (hw->mac.type) {
162         case e1000_82573:
163         case e1000_82574:
164         case e1000_82583:
165                 if (((eecd >> 15) & 0x3) == 0x3) {
166                         nvm->type = e1000_nvm_flash_hw;
167                         nvm->word_size = 2048;
168                         /*
169                          * Autonomous Flash update bit must be cleared due
170                          * to Flash update issue.
171                          */
172                         eecd &= ~E1000_EECD_AUPDEN;
173                         ew32(EECD, eecd);
174                         break;
175                 }
176                 /* Fall Through */
177         default:
178                 nvm->type = e1000_nvm_eeprom_spi;
179                 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
180                                   E1000_EECD_SIZE_EX_SHIFT);
181                 /*
182                  * Added to a constant, "size" becomes the left-shift value
183                  * for setting word_size.
184                  */
185                 size += NVM_WORD_SIZE_BASE_SHIFT;
186
187                 /* EEPROM access above 16k is unsupported */
188                 if (size > 14)
189                         size = 14;
190                 nvm->word_size  = 1 << size;
191                 break;
192         }
193
194         return 0;
195 }
196
197 /**
198  *  e1000_init_mac_params_82571 - Init MAC func ptrs.
199  *  @hw: pointer to the HW structure
200  **/
201 static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter)
202 {
203         struct e1000_hw *hw = &adapter->hw;
204         struct e1000_mac_info *mac = &hw->mac;
205         struct e1000_mac_operations *func = &mac->ops;
206         u32 swsm = 0;
207         u32 swsm2 = 0;
208         bool force_clear_smbi = false;
209
210         /* Set media type */
211         switch (adapter->pdev->device) {
212         case E1000_DEV_ID_82571EB_FIBER:
213         case E1000_DEV_ID_82572EI_FIBER:
214         case E1000_DEV_ID_82571EB_QUAD_FIBER:
215                 hw->phy.media_type = e1000_media_type_fiber;
216                 break;
217         case E1000_DEV_ID_82571EB_SERDES:
218         case E1000_DEV_ID_82572EI_SERDES:
219         case E1000_DEV_ID_82571EB_SERDES_DUAL:
220         case E1000_DEV_ID_82571EB_SERDES_QUAD:
221                 hw->phy.media_type = e1000_media_type_internal_serdes;
222                 break;
223         default:
224                 hw->phy.media_type = e1000_media_type_copper;
225                 break;
226         }
227
228         /* Set mta register count */
229         mac->mta_reg_count = 128;
230         /* Set rar entry count */
231         mac->rar_entry_count = E1000_RAR_ENTRIES;
232         /* Set if manageability features are enabled. */
233         mac->arc_subsystem_valid = (er32(FWSM) & E1000_FWSM_MODE_MASK)
234                         ? true : false;
235
236         /* check for link */
237         switch (hw->phy.media_type) {
238         case e1000_media_type_copper:
239                 func->setup_physical_interface = e1000_setup_copper_link_82571;
240                 func->check_for_link = e1000e_check_for_copper_link;
241                 func->get_link_up_info = e1000e_get_speed_and_duplex_copper;
242                 break;
243         case e1000_media_type_fiber:
244                 func->setup_physical_interface =
245                         e1000_setup_fiber_serdes_link_82571;
246                 func->check_for_link = e1000e_check_for_fiber_link;
247                 func->get_link_up_info =
248                         e1000e_get_speed_and_duplex_fiber_serdes;
249                 break;
250         case e1000_media_type_internal_serdes:
251                 func->setup_physical_interface =
252                         e1000_setup_fiber_serdes_link_82571;
253                 func->check_for_link = e1000_check_for_serdes_link_82571;
254                 func->get_link_up_info =
255                         e1000e_get_speed_and_duplex_fiber_serdes;
256                 break;
257         default:
258                 return -E1000_ERR_CONFIG;
259                 break;
260         }
261
262         switch (hw->mac.type) {
263         case e1000_82574:
264         case e1000_82583:
265                 func->check_mng_mode = e1000_check_mng_mode_82574;
266                 func->led_on = e1000_led_on_82574;
267                 break;
268         default:
269                 func->check_mng_mode = e1000e_check_mng_mode_generic;
270                 func->led_on = e1000e_led_on_generic;
271                 break;
272         }
273
274         /*
275          * Ensure that the inter-port SWSM.SMBI lock bit is clear before
276          * first NVM or PHY acess. This should be done for single-port
277          * devices, and for one port only on dual-port devices so that
278          * for those devices we can still use the SMBI lock to synchronize
279          * inter-port accesses to the PHY & NVM.
280          */
281         switch (hw->mac.type) {
282         case e1000_82571:
283         case e1000_82572:
284                 swsm2 = er32(SWSM2);
285
286                 if (!(swsm2 & E1000_SWSM2_LOCK)) {
287                         /* Only do this for the first interface on this card */
288                         ew32(SWSM2,
289                             swsm2 | E1000_SWSM2_LOCK);
290                         force_clear_smbi = true;
291                 } else
292                         force_clear_smbi = false;
293                 break;
294         default:
295                 force_clear_smbi = true;
296                 break;
297         }
298
299         if (force_clear_smbi) {
300                 /* Make sure SWSM.SMBI is clear */
301                 swsm = er32(SWSM);
302                 if (swsm & E1000_SWSM_SMBI) {
303                         /* This bit should not be set on a first interface, and
304                          * indicates that the bootagent or EFI code has
305                          * improperly left this bit enabled
306                          */
307                         e_dbg("Please update your 82571 Bootagent\n");
308                 }
309                 ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
310         }
311
312         /*
313          * Initialze device specific counter of SMBI acquisition
314          * timeouts.
315          */
316          hw->dev_spec.e82571.smb_counter = 0;
317
318         return 0;
319 }
320
321 static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
322 {
323         struct e1000_hw *hw = &adapter->hw;
324         static int global_quad_port_a; /* global port a indication */
325         struct pci_dev *pdev = adapter->pdev;
326         u16 eeprom_data = 0;
327         int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
328         s32 rc;
329
330         rc = e1000_init_mac_params_82571(adapter);
331         if (rc)
332                 return rc;
333
334         rc = e1000_init_nvm_params_82571(hw);
335         if (rc)
336                 return rc;
337
338         rc = e1000_init_phy_params_82571(hw);
339         if (rc)
340                 return rc;
341
342         /* tag quad port adapters first, it's used below */
343         switch (pdev->device) {
344         case E1000_DEV_ID_82571EB_QUAD_COPPER:
345         case E1000_DEV_ID_82571EB_QUAD_FIBER:
346         case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
347         case E1000_DEV_ID_82571PT_QUAD_COPPER:
348                 adapter->flags |= FLAG_IS_QUAD_PORT;
349                 /* mark the first port */
350                 if (global_quad_port_a == 0)
351                         adapter->flags |= FLAG_IS_QUAD_PORT_A;
352                 /* Reset for multiple quad port adapters */
353                 global_quad_port_a++;
354                 if (global_quad_port_a == 4)
355                         global_quad_port_a = 0;
356                 break;
357         default:
358                 break;
359         }
360
361         switch (adapter->hw.mac.type) {
362         case e1000_82571:
363                 /* these dual ports don't have WoL on port B at all */
364                 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
365                      (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
366                      (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
367                     (is_port_b))
368                         adapter->flags &= ~FLAG_HAS_WOL;
369                 /* quad ports only support WoL on port A */
370                 if (adapter->flags & FLAG_IS_QUAD_PORT &&
371                     (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
372                         adapter->flags &= ~FLAG_HAS_WOL;
373                 /* Does not support WoL on any port */
374                 if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
375                         adapter->flags &= ~FLAG_HAS_WOL;
376                 break;
377
378         case e1000_82573:
379                 if (pdev->device == E1000_DEV_ID_82573L) {
380                         if (e1000_read_nvm(&adapter->hw, NVM_INIT_3GIO_3, 1,
381                                        &eeprom_data) < 0)
382                                 break;
383                         if (!(eeprom_data & NVM_WORD1A_ASPM_MASK)) {
384                                 adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
385                                 adapter->max_hw_frame_size = DEFAULT_JUMBO;
386                         }
387                 }
388                 break;
389         default:
390                 break;
391         }
392
393         return 0;
394 }
395
396 /**
397  *  e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
398  *  @hw: pointer to the HW structure
399  *
400  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
401  *  revision in the hardware structure.
402  **/
403 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
404 {
405         struct e1000_phy_info *phy = &hw->phy;
406         s32 ret_val;
407         u16 phy_id = 0;
408
409         switch (hw->mac.type) {
410         case e1000_82571:
411         case e1000_82572:
412                 /*
413                  * The 82571 firmware may still be configuring the PHY.
414                  * In this case, we cannot access the PHY until the
415                  * configuration is done.  So we explicitly set the
416                  * PHY ID.
417                  */
418                 phy->id = IGP01E1000_I_PHY_ID;
419                 break;
420         case e1000_82573:
421                 return e1000e_get_phy_id(hw);
422                 break;
423         case e1000_82574:
424         case e1000_82583:
425                 ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
426                 if (ret_val)
427                         return ret_val;
428
429                 phy->id = (u32)(phy_id << 16);
430                 udelay(20);
431                 ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
432                 if (ret_val)
433                         return ret_val;
434
435                 phy->id |= (u32)(phy_id);
436                 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
437                 break;
438         default:
439                 return -E1000_ERR_PHY;
440                 break;
441         }
442
443         return 0;
444 }
445
446 /**
447  *  e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
448  *  @hw: pointer to the HW structure
449  *
450  *  Acquire the HW semaphore to access the PHY or NVM
451  **/
452 static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
453 {
454         u32 swsm;
455         s32 sw_timeout = hw->nvm.word_size + 1;
456         s32 fw_timeout = hw->nvm.word_size + 1;
457         s32 i = 0;
458
459         /*
460          * If we have timedout 3 times on trying to acquire
461          * the inter-port SMBI semaphore, there is old code
462          * operating on the other port, and it is not
463          * releasing SMBI. Modify the number of times that
464          * we try for the semaphore to interwork with this
465          * older code.
466          */
467         if (hw->dev_spec.e82571.smb_counter > 2)
468                 sw_timeout = 1;
469
470         /* Get the SW semaphore */
471         while (i < sw_timeout) {
472                 swsm = er32(SWSM);
473                 if (!(swsm & E1000_SWSM_SMBI))
474                         break;
475
476                 udelay(50);
477                 i++;
478         }
479
480         if (i == sw_timeout) {
481                 e_dbg("Driver can't access device - SMBI bit is set.\n");
482                 hw->dev_spec.e82571.smb_counter++;
483         }
484         /* Get the FW semaphore. */
485         for (i = 0; i < fw_timeout; i++) {
486                 swsm = er32(SWSM);
487                 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
488
489                 /* Semaphore acquired if bit latched */
490                 if (er32(SWSM) & E1000_SWSM_SWESMBI)
491                         break;
492
493                 udelay(50);
494         }
495
496         if (i == fw_timeout) {
497                 /* Release semaphores */
498                 e1000_put_hw_semaphore_82571(hw);
499                 e_dbg("Driver can't access the NVM\n");
500                 return -E1000_ERR_NVM;
501         }
502
503         return 0;
504 }
505
506 /**
507  *  e1000_put_hw_semaphore_82571 - Release hardware semaphore
508  *  @hw: pointer to the HW structure
509  *
510  *  Release hardware semaphore used to access the PHY or NVM
511  **/
512 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
513 {
514         u32 swsm;
515
516         swsm = er32(SWSM);
517         swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
518         ew32(SWSM, swsm);
519 }
520
521 /**
522  *  e1000_acquire_nvm_82571 - Request for access to the EEPROM
523  *  @hw: pointer to the HW structure
524  *
525  *  To gain access to the EEPROM, first we must obtain a hardware semaphore.
526  *  Then for non-82573 hardware, set the EEPROM access request bit and wait
527  *  for EEPROM access grant bit.  If the access grant bit is not set, release
528  *  hardware semaphore.
529  **/
530 static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
531 {
532         s32 ret_val;
533
534         ret_val = e1000_get_hw_semaphore_82571(hw);
535         if (ret_val)
536                 return ret_val;
537
538         switch (hw->mac.type) {
539         case e1000_82573:
540         case e1000_82574:
541         case e1000_82583:
542                 break;
543         default:
544                 ret_val = e1000e_acquire_nvm(hw);
545                 break;
546         }
547
548         if (ret_val)
549                 e1000_put_hw_semaphore_82571(hw);
550
551         return ret_val;
552 }
553
554 /**
555  *  e1000_release_nvm_82571 - Release exclusive access to EEPROM
556  *  @hw: pointer to the HW structure
557  *
558  *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
559  **/
560 static void e1000_release_nvm_82571(struct e1000_hw *hw)
561 {
562         e1000e_release_nvm(hw);
563         e1000_put_hw_semaphore_82571(hw);
564 }
565
566 /**
567  *  e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
568  *  @hw: pointer to the HW structure
569  *  @offset: offset within the EEPROM to be written to
570  *  @words: number of words to write
571  *  @data: 16 bit word(s) to be written to the EEPROM
572  *
573  *  For non-82573 silicon, write data to EEPROM at offset using SPI interface.
574  *
575  *  If e1000e_update_nvm_checksum is not called after this function, the
576  *  EEPROM will most likely contain an invalid checksum.
577  **/
578 static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
579                                  u16 *data)
580 {
581         s32 ret_val;
582
583         switch (hw->mac.type) {
584         case e1000_82573:
585         case e1000_82574:
586         case e1000_82583:
587                 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
588                 break;
589         case e1000_82571:
590         case e1000_82572:
591                 ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
592                 break;
593         default:
594                 ret_val = -E1000_ERR_NVM;
595                 break;
596         }
597
598         return ret_val;
599 }
600
601 /**
602  *  e1000_update_nvm_checksum_82571 - Update EEPROM checksum
603  *  @hw: pointer to the HW structure
604  *
605  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
606  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
607  *  value to the EEPROM.
608  **/
609 static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
610 {
611         u32 eecd;
612         s32 ret_val;
613         u16 i;
614
615         ret_val = e1000e_update_nvm_checksum_generic(hw);
616         if (ret_val)
617                 return ret_val;
618
619         /*
620          * If our nvm is an EEPROM, then we're done
621          * otherwise, commit the checksum to the flash NVM.
622          */
623         if (hw->nvm.type != e1000_nvm_flash_hw)
624                 return ret_val;
625
626         /* Check for pending operations. */
627         for (i = 0; i < E1000_FLASH_UPDATES; i++) {
628                 msleep(1);
629                 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
630                         break;
631         }
632
633         if (i == E1000_FLASH_UPDATES)
634                 return -E1000_ERR_NVM;
635
636         /* Reset the firmware if using STM opcode. */
637         if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
638                 /*
639                  * The enabling of and the actual reset must be done
640                  * in two write cycles.
641                  */
642                 ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
643                 e1e_flush();
644                 ew32(HICR, E1000_HICR_FW_RESET);
645         }
646
647         /* Commit the write to flash */
648         eecd = er32(EECD) | E1000_EECD_FLUPD;
649         ew32(EECD, eecd);
650
651         for (i = 0; i < E1000_FLASH_UPDATES; i++) {
652                 msleep(1);
653                 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
654                         break;
655         }
656
657         if (i == E1000_FLASH_UPDATES)
658                 return -E1000_ERR_NVM;
659
660         return 0;
661 }
662
663 /**
664  *  e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
665  *  @hw: pointer to the HW structure
666  *
667  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
668  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
669  **/
670 static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
671 {
672         if (hw->nvm.type == e1000_nvm_flash_hw)
673                 e1000_fix_nvm_checksum_82571(hw);
674
675         return e1000e_validate_nvm_checksum_generic(hw);
676 }
677
678 /**
679  *  e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
680  *  @hw: pointer to the HW structure
681  *  @offset: offset within the EEPROM to be written to
682  *  @words: number of words to write
683  *  @data: 16 bit word(s) to be written to the EEPROM
684  *
685  *  After checking for invalid values, poll the EEPROM to ensure the previous
686  *  command has completed before trying to write the next word.  After write
687  *  poll for completion.
688  *
689  *  If e1000e_update_nvm_checksum is not called after this function, the
690  *  EEPROM will most likely contain an invalid checksum.
691  **/
692 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
693                                       u16 words, u16 *data)
694 {
695         struct e1000_nvm_info *nvm = &hw->nvm;
696         u32 i;
697         u32 eewr = 0;
698         s32 ret_val = 0;
699
700         /*
701          * A check for invalid values:  offset too large, too many words,
702          * and not enough words.
703          */
704         if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
705             (words == 0)) {
706                 e_dbg("nvm parameter(s) out of bounds\n");
707                 return -E1000_ERR_NVM;
708         }
709
710         for (i = 0; i < words; i++) {
711                 eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
712                        ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
713                        E1000_NVM_RW_REG_START;
714
715                 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
716                 if (ret_val)
717                         break;
718
719                 ew32(EEWR, eewr);
720
721                 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
722                 if (ret_val)
723                         break;
724         }
725
726         return ret_val;
727 }
728
729 /**
730  *  e1000_get_cfg_done_82571 - Poll for configuration done
731  *  @hw: pointer to the HW structure
732  *
733  *  Reads the management control register for the config done bit to be set.
734  **/
735 static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
736 {
737         s32 timeout = PHY_CFG_TIMEOUT;
738
739         while (timeout) {
740                 if (er32(EEMNGCTL) &
741                     E1000_NVM_CFG_DONE_PORT_0)
742                         break;
743                 msleep(1);
744                 timeout--;
745         }
746         if (!timeout) {
747                 e_dbg("MNG configuration cycle has not completed.\n");
748                 return -E1000_ERR_RESET;
749         }
750
751         return 0;
752 }
753
754 /**
755  *  e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
756  *  @hw: pointer to the HW structure
757  *  @active: true to enable LPLU, false to disable
758  *
759  *  Sets the LPLU D0 state according to the active flag.  When activating LPLU
760  *  this function also disables smart speed and vice versa.  LPLU will not be
761  *  activated unless the device autonegotiation advertisement meets standards
762  *  of either 10 or 10/100 or 10/100/1000 at all duplexes.  This is a function
763  *  pointer entry point only called by PHY setup routines.
764  **/
765 static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
766 {
767         struct e1000_phy_info *phy = &hw->phy;
768         s32 ret_val;
769         u16 data;
770
771         ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
772         if (ret_val)
773                 return ret_val;
774
775         if (active) {
776                 data |= IGP02E1000_PM_D0_LPLU;
777                 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
778                 if (ret_val)
779                         return ret_val;
780
781                 /* When LPLU is enabled, we should disable SmartSpeed */
782                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
783                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
784                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
785                 if (ret_val)
786                         return ret_val;
787         } else {
788                 data &= ~IGP02E1000_PM_D0_LPLU;
789                 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
790                 /*
791                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
792                  * during Dx states where the power conservation is most
793                  * important.  During driver activity we should enable
794                  * SmartSpeed, so performance is maintained.
795                  */
796                 if (phy->smart_speed == e1000_smart_speed_on) {
797                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
798                                            &data);
799                         if (ret_val)
800                                 return ret_val;
801
802                         data |= IGP01E1000_PSCFR_SMART_SPEED;
803                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
804                                            data);
805                         if (ret_val)
806                                 return ret_val;
807                 } else if (phy->smart_speed == e1000_smart_speed_off) {
808                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
809                                            &data);
810                         if (ret_val)
811                                 return ret_val;
812
813                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
814                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
815                                            data);
816                         if (ret_val)
817                                 return ret_val;
818                 }
819         }
820
821         return 0;
822 }
823
824 /**
825  *  e1000_reset_hw_82571 - Reset hardware
826  *  @hw: pointer to the HW structure
827  *
828  *  This resets the hardware into a known state.
829  **/
830 static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
831 {
832         u32 ctrl;
833         u32 extcnf_ctrl;
834         u32 ctrl_ext;
835         u32 icr;
836         s32 ret_val;
837         u16 i = 0;
838
839         /*
840          * Prevent the PCI-E bus from sticking if there is no TLP connection
841          * on the last TLP read/write transaction when MAC is reset.
842          */
843         ret_val = e1000e_disable_pcie_master(hw);
844         if (ret_val)
845                 e_dbg("PCI-E Master disable polling has failed.\n");
846
847         e_dbg("Masking off all interrupts\n");
848         ew32(IMC, 0xffffffff);
849
850         ew32(RCTL, 0);
851         ew32(TCTL, E1000_TCTL_PSP);
852         e1e_flush();
853
854         msleep(10);
855
856         /*
857          * Must acquire the MDIO ownership before MAC reset.
858          * Ownership defaults to firmware after a reset.
859          */
860         switch (hw->mac.type) {
861         case e1000_82573:
862         case e1000_82574:
863         case e1000_82583:
864                 extcnf_ctrl = er32(EXTCNF_CTRL);
865                 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
866
867                 do {
868                         ew32(EXTCNF_CTRL, extcnf_ctrl);
869                         extcnf_ctrl = er32(EXTCNF_CTRL);
870
871                         if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
872                                 break;
873
874                         extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
875
876                         msleep(2);
877                         i++;
878                 } while (i < MDIO_OWNERSHIP_TIMEOUT);
879                 break;
880         default:
881                 break;
882         }
883
884         ctrl = er32(CTRL);
885
886         e_dbg("Issuing a global reset to MAC\n");
887         ew32(CTRL, ctrl | E1000_CTRL_RST);
888
889         if (hw->nvm.type == e1000_nvm_flash_hw) {
890                 udelay(10);
891                 ctrl_ext = er32(CTRL_EXT);
892                 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
893                 ew32(CTRL_EXT, ctrl_ext);
894                 e1e_flush();
895         }
896
897         ret_val = e1000e_get_auto_rd_done(hw);
898         if (ret_val)
899                 /* We don't want to continue accessing MAC registers. */
900                 return ret_val;
901
902         /*
903          * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
904          * Need to wait for Phy configuration completion before accessing
905          * NVM and Phy.
906          */
907
908         switch (hw->mac.type) {
909         case e1000_82573:
910         case e1000_82574:
911         case e1000_82583:
912                 msleep(25);
913                 break;
914         default:
915                 break;
916         }
917
918         /* Clear any pending interrupt events. */
919         ew32(IMC, 0xffffffff);
920         icr = er32(ICR);
921
922         if (hw->mac.type == e1000_82571 &&
923                 hw->dev_spec.e82571.alt_mac_addr_is_present)
924                         e1000e_set_laa_state_82571(hw, true);
925
926         /* Reinitialize the 82571 serdes link state machine */
927         if (hw->phy.media_type == e1000_media_type_internal_serdes)
928                 hw->mac.serdes_link_state = e1000_serdes_link_down;
929
930         return 0;
931 }
932
933 /**
934  *  e1000_init_hw_82571 - Initialize hardware
935  *  @hw: pointer to the HW structure
936  *
937  *  This inits the hardware readying it for operation.
938  **/
939 static s32 e1000_init_hw_82571(struct e1000_hw *hw)
940 {
941         struct e1000_mac_info *mac = &hw->mac;
942         u32 reg_data;
943         s32 ret_val;
944         u16 i;
945         u16 rar_count = mac->rar_entry_count;
946
947         e1000_initialize_hw_bits_82571(hw);
948
949         /* Initialize identification LED */
950         ret_val = e1000e_id_led_init(hw);
951         if (ret_val) {
952                 e_dbg("Error initializing identification LED\n");
953                 return ret_val;
954         }
955
956         /* Disabling VLAN filtering */
957         e_dbg("Initializing the IEEE VLAN\n");
958         e1000e_clear_vfta(hw);
959
960         /* Setup the receive address. */
961         /*
962          * If, however, a locally administered address was assigned to the
963          * 82571, we must reserve a RAR for it to work around an issue where
964          * resetting one port will reload the MAC on the other port.
965          */
966         if (e1000e_get_laa_state_82571(hw))
967                 rar_count--;
968         e1000e_init_rx_addrs(hw, rar_count);
969
970         /* Zero out the Multicast HASH table */
971         e_dbg("Zeroing the MTA\n");
972         for (i = 0; i < mac->mta_reg_count; i++)
973                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
974
975         /* Setup link and flow control */
976         ret_val = e1000_setup_link_82571(hw);
977
978         /* Set the transmit descriptor write-back policy */
979         reg_data = er32(TXDCTL(0));
980         reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
981                    E1000_TXDCTL_FULL_TX_DESC_WB |
982                    E1000_TXDCTL_COUNT_DESC;
983         ew32(TXDCTL(0), reg_data);
984
985         /* ...for both queues. */
986         switch (mac->type) {
987         case e1000_82573:
988         case e1000_82574:
989         case e1000_82583:
990                 e1000e_enable_tx_pkt_filtering(hw);
991                 reg_data = er32(GCR);
992                 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
993                 ew32(GCR, reg_data);
994                 break;
995         default:
996                 reg_data = er32(TXDCTL(1));
997                 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
998                            E1000_TXDCTL_FULL_TX_DESC_WB |
999                            E1000_TXDCTL_COUNT_DESC;
1000                 ew32(TXDCTL(1), reg_data);
1001                 break;
1002         }
1003
1004         /*
1005          * Clear all of the statistics registers (clear on read).  It is
1006          * important that we do this after we have tried to establish link
1007          * because the symbol error count will increment wildly if there
1008          * is no link.
1009          */
1010         e1000_clear_hw_cntrs_82571(hw);
1011
1012         return ret_val;
1013 }
1014
1015 /**
1016  *  e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1017  *  @hw: pointer to the HW structure
1018  *
1019  *  Initializes required hardware-dependent bits needed for normal operation.
1020  **/
1021 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
1022 {
1023         u32 reg;
1024
1025         /* Transmit Descriptor Control 0 */
1026         reg = er32(TXDCTL(0));
1027         reg |= (1 << 22);
1028         ew32(TXDCTL(0), reg);
1029
1030         /* Transmit Descriptor Control 1 */
1031         reg = er32(TXDCTL(1));
1032         reg |= (1 << 22);
1033         ew32(TXDCTL(1), reg);
1034
1035         /* Transmit Arbitration Control 0 */
1036         reg = er32(TARC(0));
1037         reg &= ~(0xF << 27); /* 30:27 */
1038         switch (hw->mac.type) {
1039         case e1000_82571:
1040         case e1000_82572:
1041                 reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
1042                 break;
1043         default:
1044                 break;
1045         }
1046         ew32(TARC(0), reg);
1047
1048         /* Transmit Arbitration Control 1 */
1049         reg = er32(TARC(1));
1050         switch (hw->mac.type) {
1051         case e1000_82571:
1052         case e1000_82572:
1053                 reg &= ~((1 << 29) | (1 << 30));
1054                 reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
1055                 if (er32(TCTL) & E1000_TCTL_MULR)
1056                         reg &= ~(1 << 28);
1057                 else
1058                         reg |= (1 << 28);
1059                 ew32(TARC(1), reg);
1060                 break;
1061         default:
1062                 break;
1063         }
1064
1065         /* Device Control */
1066         switch (hw->mac.type) {
1067         case e1000_82573:
1068         case e1000_82574:
1069         case e1000_82583:
1070                 reg = er32(CTRL);
1071                 reg &= ~(1 << 29);
1072                 ew32(CTRL, reg);
1073                 break;
1074         default:
1075                 break;
1076         }
1077
1078         /* Extended Device Control */
1079         switch (hw->mac.type) {
1080         case e1000_82573:
1081         case e1000_82574:
1082         case e1000_82583:
1083                 reg = er32(CTRL_EXT);
1084                 reg &= ~(1 << 23);
1085                 reg |= (1 << 22);
1086                 ew32(CTRL_EXT, reg);
1087                 break;
1088         default:
1089                 break;
1090         }
1091
1092         if (hw->mac.type == e1000_82571) {
1093                 reg = er32(PBA_ECC);
1094                 reg |= E1000_PBA_ECC_CORR_EN;
1095                 ew32(PBA_ECC, reg);
1096         }
1097         /*
1098          * Workaround for hardware errata.
1099          * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1100          */
1101
1102         if ((hw->mac.type == e1000_82571) ||
1103            (hw->mac.type == e1000_82572)) {
1104                 reg = er32(CTRL_EXT);
1105                 reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1106                 ew32(CTRL_EXT, reg);
1107         }
1108
1109
1110         /* PCI-Ex Control Registers */
1111         switch (hw->mac.type) {
1112         case e1000_82574:
1113         case e1000_82583:
1114                 reg = er32(GCR);
1115                 reg |= (1 << 22);
1116                 ew32(GCR, reg);
1117
1118                 /*
1119                  * Workaround for hardware errata.
1120                  * apply workaround for hardware errata documented in errata
1121                  * docs Fixes issue where some error prone or unreliable PCIe
1122                  * completions are occurring, particularly with ASPM enabled.
1123                  * Without fix, issue can cause tx timeouts.
1124                  */
1125                 reg = er32(GCR2);
1126                 reg |= 1;
1127                 ew32(GCR2, reg);
1128                 break;
1129         default:
1130                 break;
1131         }
1132
1133         return;
1134 }
1135
1136 /**
1137  *  e1000e_clear_vfta - Clear VLAN filter table
1138  *  @hw: pointer to the HW structure
1139  *
1140  *  Clears the register array which contains the VLAN filter table by
1141  *  setting all the values to 0.
1142  **/
1143 void e1000e_clear_vfta(struct e1000_hw *hw)
1144 {
1145         u32 offset;
1146         u32 vfta_value = 0;
1147         u32 vfta_offset = 0;
1148         u32 vfta_bit_in_reg = 0;
1149
1150         switch (hw->mac.type) {
1151         case e1000_82573:
1152         case e1000_82574:
1153         case e1000_82583:
1154                 if (hw->mng_cookie.vlan_id != 0) {
1155                         /*
1156                          * The VFTA is a 4096b bit-field, each identifying
1157                          * a single VLAN ID.  The following operations
1158                          * determine which 32b entry (i.e. offset) into the
1159                          * array we want to set the VLAN ID (i.e. bit) of
1160                          * the manageability unit.
1161                          */
1162                         vfta_offset = (hw->mng_cookie.vlan_id >>
1163                                        E1000_VFTA_ENTRY_SHIFT) &
1164                                       E1000_VFTA_ENTRY_MASK;
1165                         vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
1166                                                E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1167                 }
1168                 break;
1169         default:
1170                 break;
1171         }
1172         for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
1173                 /*
1174                  * If the offset we want to clear is the same offset of the
1175                  * manageability VLAN ID, then clear all bits except that of
1176                  * the manageability unit.
1177                  */
1178                 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1179                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1180                 e1e_flush();
1181         }
1182 }
1183
1184 /**
1185  *  e1000_check_mng_mode_82574 - Check manageability is enabled
1186  *  @hw: pointer to the HW structure
1187  *
1188  *  Reads the NVM Initialization Control Word 2 and returns true
1189  *  (>0) if any manageability is enabled, else false (0).
1190  **/
1191 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1192 {
1193         u16 data;
1194
1195         e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1196         return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1197 }
1198
1199 /**
1200  *  e1000_led_on_82574 - Turn LED on
1201  *  @hw: pointer to the HW structure
1202  *
1203  *  Turn LED on.
1204  **/
1205 static s32 e1000_led_on_82574(struct e1000_hw *hw)
1206 {
1207         u32 ctrl;
1208         u32 i;
1209
1210         ctrl = hw->mac.ledctl_mode2;
1211         if (!(E1000_STATUS_LU & er32(STATUS))) {
1212                 /*
1213                  * If no link, then turn LED on by setting the invert bit
1214                  * for each LED that's "on" (0x0E) in ledctl_mode2.
1215                  */
1216                 for (i = 0; i < 4; i++)
1217                         if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1218                             E1000_LEDCTL_MODE_LED_ON)
1219                                 ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1220         }
1221         ew32(LEDCTL, ctrl);
1222
1223         return 0;
1224 }
1225
1226 /**
1227  *  e1000_update_mc_addr_list_82571 - Update Multicast addresses
1228  *  @hw: pointer to the HW structure
1229  *  @mc_addr_list: array of multicast addresses to program
1230  *  @mc_addr_count: number of multicast addresses to program
1231  *  @rar_used_count: the first RAR register free to program
1232  *  @rar_count: total number of supported Receive Address Registers
1233  *
1234  *  Updates the Receive Address Registers and Multicast Table Array.
1235  *  The caller must have a packed mc_addr_list of multicast addresses.
1236  *  The parameter rar_count will usually be hw->mac.rar_entry_count
1237  *  unless there are workarounds that change this.
1238  **/
1239 static void e1000_update_mc_addr_list_82571(struct e1000_hw *hw,
1240                                             u8 *mc_addr_list,
1241                                             u32 mc_addr_count,
1242                                             u32 rar_used_count,
1243                                             u32 rar_count)
1244 {
1245         if (e1000e_get_laa_state_82571(hw))
1246                 rar_count--;
1247
1248         e1000e_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count,
1249                                            rar_used_count, rar_count);
1250 }
1251
1252 /**
1253  *  e1000_setup_link_82571 - Setup flow control and link settings
1254  *  @hw: pointer to the HW structure
1255  *
1256  *  Determines which flow control settings to use, then configures flow
1257  *  control.  Calls the appropriate media-specific link configuration
1258  *  function.  Assuming the adapter has a valid link partner, a valid link
1259  *  should be established.  Assumes the hardware has previously been reset
1260  *  and the transmitter and receiver are not enabled.
1261  **/
1262 static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1263 {
1264         /*
1265          * 82573 does not have a word in the NVM to determine
1266          * the default flow control setting, so we explicitly
1267          * set it to full.
1268          */
1269         switch (hw->mac.type) {
1270         case e1000_82573:
1271         case e1000_82574:
1272         case e1000_82583:
1273                 if (hw->fc.requested_mode == e1000_fc_default)
1274                         hw->fc.requested_mode = e1000_fc_full;
1275                 break;
1276         default:
1277                 break;
1278         }
1279
1280         return e1000e_setup_link(hw);
1281 }
1282
1283 /**
1284  *  e1000_setup_copper_link_82571 - Configure copper link settings
1285  *  @hw: pointer to the HW structure
1286  *
1287  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1288  *  for link, once link is established calls to configure collision distance
1289  *  and flow control are called.
1290  **/
1291 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1292 {
1293         u32 ctrl;
1294         u32 led_ctrl;
1295         s32 ret_val;
1296
1297         ctrl = er32(CTRL);
1298         ctrl |= E1000_CTRL_SLU;
1299         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1300         ew32(CTRL, ctrl);
1301
1302         switch (hw->phy.type) {
1303         case e1000_phy_m88:
1304         case e1000_phy_bm:
1305                 ret_val = e1000e_copper_link_setup_m88(hw);
1306                 break;
1307         case e1000_phy_igp_2:
1308                 ret_val = e1000e_copper_link_setup_igp(hw);
1309                 /* Setup activity LED */
1310                 led_ctrl = er32(LEDCTL);
1311                 led_ctrl &= IGP_ACTIVITY_LED_MASK;
1312                 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1313                 ew32(LEDCTL, led_ctrl);
1314                 break;
1315         default:
1316                 return -E1000_ERR_PHY;
1317                 break;
1318         }
1319
1320         if (ret_val)
1321                 return ret_val;
1322
1323         ret_val = e1000e_setup_copper_link(hw);
1324
1325         return ret_val;
1326 }
1327
1328 /**
1329  *  e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1330  *  @hw: pointer to the HW structure
1331  *
1332  *  Configures collision distance and flow control for fiber and serdes links.
1333  *  Upon successful setup, poll for link.
1334  **/
1335 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1336 {
1337         switch (hw->mac.type) {
1338         case e1000_82571:
1339         case e1000_82572:
1340                 /*
1341                  * If SerDes loopback mode is entered, there is no form
1342                  * of reset to take the adapter out of that mode.  So we
1343                  * have to explicitly take the adapter out of loopback
1344                  * mode.  This prevents drivers from twiddling their thumbs
1345                  * if another tool failed to take it out of loopback mode.
1346                  */
1347                 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1348                 break;
1349         default:
1350                 break;
1351         }
1352
1353         return e1000e_setup_fiber_serdes_link(hw);
1354 }
1355
1356 /**
1357  *  e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1358  *  @hw: pointer to the HW structure
1359  *
1360  *  Checks for link up on the hardware.  If link is not up and we have
1361  *  a signal, then we need to force link up.
1362  **/
1363 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
1364 {
1365         struct e1000_mac_info *mac = &hw->mac;
1366         u32 rxcw;
1367         u32 ctrl;
1368         u32 status;
1369         s32 ret_val = 0;
1370
1371         ctrl = er32(CTRL);
1372         status = er32(STATUS);
1373         rxcw = er32(RXCW);
1374
1375         if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
1376
1377                 /* Receiver is synchronized with no invalid bits.  */
1378                 switch (mac->serdes_link_state) {
1379                 case e1000_serdes_link_autoneg_complete:
1380                         if (!(status & E1000_STATUS_LU)) {
1381                                 /*
1382                                  * We have lost link, retry autoneg before
1383                                  * reporting link failure
1384                                  */
1385                                 mac->serdes_link_state =
1386                                     e1000_serdes_link_autoneg_progress;
1387                                 e_dbg("AN_UP     -> AN_PROG\n");
1388                         }
1389                 break;
1390
1391                 case e1000_serdes_link_forced_up:
1392                         /*
1393                          * If we are receiving /C/ ordered sets, re-enable
1394                          * auto-negotiation in the TXCW register and disable
1395                          * forced link in the Device Control register in an
1396                          * attempt to auto-negotiate with our link partner.
1397                          */
1398                         if (rxcw & E1000_RXCW_C) {
1399                                 /* Enable autoneg, and unforce link up */
1400                                 ew32(TXCW, mac->txcw);
1401                                 ew32(CTRL,
1402                                     (ctrl & ~E1000_CTRL_SLU));
1403                                 mac->serdes_link_state =
1404                                     e1000_serdes_link_autoneg_progress;
1405                                 e_dbg("FORCED_UP -> AN_PROG\n");
1406                         }
1407                         break;
1408
1409                 case e1000_serdes_link_autoneg_progress:
1410                         /*
1411                          * If the LU bit is set in the STATUS register,
1412                          * autoneg has completed sucessfully. If not,
1413                          * try foring the link because the far end may be
1414                          * available but not capable of autonegotiation.
1415                          */
1416                         if (status & E1000_STATUS_LU)  {
1417                                 mac->serdes_link_state =
1418                                     e1000_serdes_link_autoneg_complete;
1419                                 e_dbg("AN_PROG   -> AN_UP\n");
1420                         } else {
1421                                 /*
1422                                  * Disable autoneg, force link up and
1423                                  * full duplex, and change state to forced
1424                                  */
1425                                 ew32(TXCW,
1426                                     (mac->txcw & ~E1000_TXCW_ANE));
1427                                 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1428                                 ew32(CTRL, ctrl);
1429
1430                                 /* Configure Flow Control after link up. */
1431                                 ret_val =
1432                                     e1000e_config_fc_after_link_up(hw);
1433                                 if (ret_val) {
1434                                         e_dbg("Error config flow control\n");
1435                                         break;
1436                                 }
1437                                 mac->serdes_link_state =
1438                                     e1000_serdes_link_forced_up;
1439                                 e_dbg("AN_PROG   -> FORCED_UP\n");
1440                         }
1441                         mac->serdes_has_link = true;
1442                         break;
1443
1444                 case e1000_serdes_link_down:
1445                 default:
1446                         /* The link was down but the receiver has now gained
1447                          * valid sync, so lets see if we can bring the link
1448                          * up. */
1449                         ew32(TXCW, mac->txcw);
1450                         ew32(CTRL,
1451                             (ctrl & ~E1000_CTRL_SLU));
1452                         mac->serdes_link_state =
1453                             e1000_serdes_link_autoneg_progress;
1454                         e_dbg("DOWN      -> AN_PROG\n");
1455                         break;
1456                 }
1457         } else {
1458                 if (!(rxcw & E1000_RXCW_SYNCH)) {
1459                         mac->serdes_has_link = false;
1460                         mac->serdes_link_state = e1000_serdes_link_down;
1461                         e_dbg("ANYSTATE  -> DOWN\n");
1462                 } else {
1463                         /*
1464                          * We have sync, and can tolerate one
1465                          * invalid (IV) codeword before declaring
1466                          * link down, so reread to look again
1467                          */
1468                         udelay(10);
1469                         rxcw = er32(RXCW);
1470                         if (rxcw & E1000_RXCW_IV) {
1471                                 mac->serdes_link_state = e1000_serdes_link_down;
1472                                 mac->serdes_has_link = false;
1473                                 e_dbg("ANYSTATE  -> DOWN\n");
1474                         }
1475                 }
1476         }
1477
1478         return ret_val;
1479 }
1480
1481 /**
1482  *  e1000_valid_led_default_82571 - Verify a valid default LED config
1483  *  @hw: pointer to the HW structure
1484  *  @data: pointer to the NVM (EEPROM)
1485  *
1486  *  Read the EEPROM for the current default LED configuration.  If the
1487  *  LED configuration is not valid, set to a valid LED configuration.
1488  **/
1489 static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1490 {
1491         s32 ret_val;
1492
1493         ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1494         if (ret_val) {
1495                 e_dbg("NVM Read Error\n");
1496                 return ret_val;
1497         }
1498
1499         switch (hw->mac.type) {
1500         case e1000_82573:
1501         case e1000_82574:
1502         case e1000_82583:
1503                 if (*data == ID_LED_RESERVED_F746)
1504                         *data = ID_LED_DEFAULT_82573;
1505                 break;
1506         default:
1507                 if (*data == ID_LED_RESERVED_0000 ||
1508                     *data == ID_LED_RESERVED_FFFF)
1509                         *data = ID_LED_DEFAULT;
1510                 break;
1511         }
1512
1513         return 0;
1514 }
1515
1516 /**
1517  *  e1000e_get_laa_state_82571 - Get locally administered address state
1518  *  @hw: pointer to the HW structure
1519  *
1520  *  Retrieve and return the current locally administered address state.
1521  **/
1522 bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1523 {
1524         if (hw->mac.type != e1000_82571)
1525                 return false;
1526
1527         return hw->dev_spec.e82571.laa_is_present;
1528 }
1529
1530 /**
1531  *  e1000e_set_laa_state_82571 - Set locally administered address state
1532  *  @hw: pointer to the HW structure
1533  *  @state: enable/disable locally administered address
1534  *
1535  *  Enable/Disable the current locally administers address state.
1536  **/
1537 void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1538 {
1539         if (hw->mac.type != e1000_82571)
1540                 return;
1541
1542         hw->dev_spec.e82571.laa_is_present = state;
1543
1544         /* If workaround is activated... */
1545         if (state)
1546                 /*
1547                  * Hold a copy of the LAA in RAR[14] This is done so that
1548                  * between the time RAR[0] gets clobbered and the time it
1549                  * gets fixed, the actual LAA is in one of the RARs and no
1550                  * incoming packets directed to this port are dropped.
1551                  * Eventually the LAA will be in RAR[0] and RAR[14].
1552                  */
1553                 e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1);
1554 }
1555
1556 /**
1557  *  e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1558  *  @hw: pointer to the HW structure
1559  *
1560  *  Verifies that the EEPROM has completed the update.  After updating the
1561  *  EEPROM, we need to check bit 15 in work 0x23 for the checksum fix.  If
1562  *  the checksum fix is not implemented, we need to set the bit and update
1563  *  the checksum.  Otherwise, if bit 15 is set and the checksum is incorrect,
1564  *  we need to return bad checksum.
1565  **/
1566 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1567 {
1568         struct e1000_nvm_info *nvm = &hw->nvm;
1569         s32 ret_val;
1570         u16 data;
1571
1572         if (nvm->type != e1000_nvm_flash_hw)
1573                 return 0;
1574
1575         /*
1576          * Check bit 4 of word 10h.  If it is 0, firmware is done updating
1577          * 10h-12h.  Checksum may need to be fixed.
1578          */
1579         ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1580         if (ret_val)
1581                 return ret_val;
1582
1583         if (!(data & 0x10)) {
1584                 /*
1585                  * Read 0x23 and check bit 15.  This bit is a 1
1586                  * when the checksum has already been fixed.  If
1587                  * the checksum is still wrong and this bit is a
1588                  * 1, we need to return bad checksum.  Otherwise,
1589                  * we need to set this bit to a 1 and update the
1590                  * checksum.
1591                  */
1592                 ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1593                 if (ret_val)
1594                         return ret_val;
1595
1596                 if (!(data & 0x8000)) {
1597                         data |= 0x8000;
1598                         ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1599                         if (ret_val)
1600                                 return ret_val;
1601                         ret_val = e1000e_update_nvm_checksum(hw);
1602                 }
1603         }
1604
1605         return 0;
1606 }
1607
1608 /**
1609  *  e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1610  *  @hw: pointer to the HW structure
1611  *
1612  *  Clears the hardware counters by reading the counter registers.
1613  **/
1614 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1615 {
1616         u32 temp;
1617
1618         e1000e_clear_hw_cntrs_base(hw);
1619
1620         temp = er32(PRC64);
1621         temp = er32(PRC127);
1622         temp = er32(PRC255);
1623         temp = er32(PRC511);
1624         temp = er32(PRC1023);
1625         temp = er32(PRC1522);
1626         temp = er32(PTC64);
1627         temp = er32(PTC127);
1628         temp = er32(PTC255);
1629         temp = er32(PTC511);
1630         temp = er32(PTC1023);
1631         temp = er32(PTC1522);
1632
1633         temp = er32(ALGNERRC);
1634         temp = er32(RXERRC);
1635         temp = er32(TNCRS);
1636         temp = er32(CEXTERR);
1637         temp = er32(TSCTC);
1638         temp = er32(TSCTFC);
1639
1640         temp = er32(MGTPRC);
1641         temp = er32(MGTPDC);
1642         temp = er32(MGTPTC);
1643
1644         temp = er32(IAC);
1645         temp = er32(ICRXOC);
1646
1647         temp = er32(ICRXPTC);
1648         temp = er32(ICRXATC);
1649         temp = er32(ICTXPTC);
1650         temp = er32(ICTXATC);
1651         temp = er32(ICTXQEC);
1652         temp = er32(ICTXQMTC);
1653         temp = er32(ICRXDMTC);
1654 }
1655
1656 static struct e1000_mac_operations e82571_mac_ops = {
1657         /* .check_mng_mode: mac type dependent */
1658         /* .check_for_link: media type dependent */
1659         .id_led_init            = e1000e_id_led_init,
1660         .cleanup_led            = e1000e_cleanup_led_generic,
1661         .clear_hw_cntrs         = e1000_clear_hw_cntrs_82571,
1662         .get_bus_info           = e1000e_get_bus_info_pcie,
1663         /* .get_link_up_info: media type dependent */
1664         /* .led_on: mac type dependent */
1665         .led_off                = e1000e_led_off_generic,
1666         .update_mc_addr_list    = e1000_update_mc_addr_list_82571,
1667         .reset_hw               = e1000_reset_hw_82571,
1668         .init_hw                = e1000_init_hw_82571,
1669         .setup_link             = e1000_setup_link_82571,
1670         /* .setup_physical_interface: media type dependent */
1671         .setup_led              = e1000e_setup_led_generic,
1672 };
1673
1674 static struct e1000_phy_operations e82_phy_ops_igp = {
1675         .acquire                = e1000_get_hw_semaphore_82571,
1676         .check_reset_block      = e1000e_check_reset_block_generic,
1677         .commit                 = NULL,
1678         .force_speed_duplex     = e1000e_phy_force_speed_duplex_igp,
1679         .get_cfg_done           = e1000_get_cfg_done_82571,
1680         .get_cable_length       = e1000e_get_cable_length_igp_2,
1681         .get_info               = e1000e_get_phy_info_igp,
1682         .read_reg               = e1000e_read_phy_reg_igp,
1683         .release                = e1000_put_hw_semaphore_82571,
1684         .reset                  = e1000e_phy_hw_reset_generic,
1685         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1686         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1687         .write_reg              = e1000e_write_phy_reg_igp,
1688         .cfg_on_link_up         = NULL,
1689 };
1690
1691 static struct e1000_phy_operations e82_phy_ops_m88 = {
1692         .acquire                = e1000_get_hw_semaphore_82571,
1693         .check_reset_block      = e1000e_check_reset_block_generic,
1694         .commit                 = e1000e_phy_sw_reset,
1695         .force_speed_duplex     = e1000e_phy_force_speed_duplex_m88,
1696         .get_cfg_done           = e1000e_get_cfg_done,
1697         .get_cable_length       = e1000e_get_cable_length_m88,
1698         .get_info               = e1000e_get_phy_info_m88,
1699         .read_reg               = e1000e_read_phy_reg_m88,
1700         .release                = e1000_put_hw_semaphore_82571,
1701         .reset                  = e1000e_phy_hw_reset_generic,
1702         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1703         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1704         .write_reg              = e1000e_write_phy_reg_m88,
1705         .cfg_on_link_up         = NULL,
1706 };
1707
1708 static struct e1000_phy_operations e82_phy_ops_bm = {
1709         .acquire                = e1000_get_hw_semaphore_82571,
1710         .check_reset_block      = e1000e_check_reset_block_generic,
1711         .commit                 = e1000e_phy_sw_reset,
1712         .force_speed_duplex     = e1000e_phy_force_speed_duplex_m88,
1713         .get_cfg_done           = e1000e_get_cfg_done,
1714         .get_cable_length       = e1000e_get_cable_length_m88,
1715         .get_info               = e1000e_get_phy_info_m88,
1716         .read_reg               = e1000e_read_phy_reg_bm2,
1717         .release                = e1000_put_hw_semaphore_82571,
1718         .reset                  = e1000e_phy_hw_reset_generic,
1719         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1720         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1721         .write_reg              = e1000e_write_phy_reg_bm2,
1722         .cfg_on_link_up         = NULL,
1723 };
1724
1725 static struct e1000_nvm_operations e82571_nvm_ops = {
1726         .acquire                = e1000_acquire_nvm_82571,
1727         .read                   = e1000e_read_nvm_eerd,
1728         .release                = e1000_release_nvm_82571,
1729         .update                 = e1000_update_nvm_checksum_82571,
1730         .valid_led_default      = e1000_valid_led_default_82571,
1731         .validate               = e1000_validate_nvm_checksum_82571,
1732         .write                  = e1000_write_nvm_82571,
1733 };
1734
1735 struct e1000_info e1000_82571_info = {
1736         .mac                    = e1000_82571,
1737         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1738                                   | FLAG_HAS_JUMBO_FRAMES
1739                                   | FLAG_HAS_WOL
1740                                   | FLAG_APME_IN_CTRL3
1741                                   | FLAG_RX_CSUM_ENABLED
1742                                   | FLAG_HAS_CTRLEXT_ON_LOAD
1743                                   | FLAG_HAS_SMART_POWER_DOWN
1744                                   | FLAG_RESET_OVERWRITES_LAA /* errata */
1745                                   | FLAG_TARC_SPEED_MODE_BIT /* errata */
1746                                   | FLAG_APME_CHECK_PORT_B,
1747         .pba                    = 38,
1748         .max_hw_frame_size      = DEFAULT_JUMBO,
1749         .get_variants           = e1000_get_variants_82571,
1750         .mac_ops                = &e82571_mac_ops,
1751         .phy_ops                = &e82_phy_ops_igp,
1752         .nvm_ops                = &e82571_nvm_ops,
1753 };
1754
1755 struct e1000_info e1000_82572_info = {
1756         .mac                    = e1000_82572,
1757         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1758                                   | FLAG_HAS_JUMBO_FRAMES
1759                                   | FLAG_HAS_WOL
1760                                   | FLAG_APME_IN_CTRL3
1761                                   | FLAG_RX_CSUM_ENABLED
1762                                   | FLAG_HAS_CTRLEXT_ON_LOAD
1763                                   | FLAG_TARC_SPEED_MODE_BIT, /* errata */
1764         .pba                    = 38,
1765         .max_hw_frame_size      = DEFAULT_JUMBO,
1766         .get_variants           = e1000_get_variants_82571,
1767         .mac_ops                = &e82571_mac_ops,
1768         .phy_ops                = &e82_phy_ops_igp,
1769         .nvm_ops                = &e82571_nvm_ops,
1770 };
1771
1772 struct e1000_info e1000_82573_info = {
1773         .mac                    = e1000_82573,
1774         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1775                                   | FLAG_HAS_JUMBO_FRAMES
1776                                   | FLAG_HAS_WOL
1777                                   | FLAG_APME_IN_CTRL3
1778                                   | FLAG_RX_CSUM_ENABLED
1779                                   | FLAG_HAS_SMART_POWER_DOWN
1780                                   | FLAG_HAS_AMT
1781                                   | FLAG_HAS_ERT
1782                                   | FLAG_HAS_SWSM_ON_LOAD,
1783         .pba                    = 20,
1784         .max_hw_frame_size      = ETH_FRAME_LEN + ETH_FCS_LEN,
1785         .get_variants           = e1000_get_variants_82571,
1786         .mac_ops                = &e82571_mac_ops,
1787         .phy_ops                = &e82_phy_ops_m88,
1788         .nvm_ops                = &e82571_nvm_ops,
1789 };
1790
1791 struct e1000_info e1000_82574_info = {
1792         .mac                    = e1000_82574,
1793         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1794                                   | FLAG_HAS_MSIX
1795                                   | FLAG_HAS_JUMBO_FRAMES
1796                                   | FLAG_HAS_WOL
1797                                   | FLAG_APME_IN_CTRL3
1798                                   | FLAG_RX_CSUM_ENABLED
1799                                   | FLAG_HAS_SMART_POWER_DOWN
1800                                   | FLAG_HAS_AMT
1801                                   | FLAG_HAS_CTRLEXT_ON_LOAD,
1802         .pba                    = 20,
1803         .max_hw_frame_size      = DEFAULT_JUMBO,
1804         .get_variants           = e1000_get_variants_82571,
1805         .mac_ops                = &e82571_mac_ops,
1806         .phy_ops                = &e82_phy_ops_bm,
1807         .nvm_ops                = &e82571_nvm_ops,
1808 };
1809
1810 struct e1000_info e1000_82583_info = {
1811         .mac                    = e1000_82583,
1812         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1813                                   | FLAG_HAS_WOL
1814                                   | FLAG_APME_IN_CTRL3
1815                                   | FLAG_RX_CSUM_ENABLED
1816                                   | FLAG_HAS_SMART_POWER_DOWN
1817                                   | FLAG_HAS_AMT
1818                                   | FLAG_HAS_CTRLEXT_ON_LOAD,
1819         .pba                    = 20,
1820         .max_hw_frame_size      = ETH_FRAME_LEN + ETH_FCS_LEN,
1821         .get_variants           = e1000_get_variants_82571,
1822         .mac_ops                = &e82571_mac_ops,
1823         .phy_ops                = &e82_phy_ops_bm,
1824         .nvm_ops                = &e82571_nvm_ops,
1825 };
1826