e1000: remove unused Kconfig option for disabling packet split
[linux-2.6.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #define DRV_VERSION "7.3.20-k3-NAPI"
35 const char e1000_driver_version[] = DRV_VERSION;
36 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
37
38 /* e1000_pci_tbl - PCI Device ID Table
39  *
40  * Last entry must be all 0s
41  *
42  * Macro expands to...
43  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
44  */
45 static struct pci_device_id e1000_pci_tbl[] = {
46         INTEL_E1000_ETHERNET_DEVICE(0x1000),
47         INTEL_E1000_ETHERNET_DEVICE(0x1001),
48         INTEL_E1000_ETHERNET_DEVICE(0x1004),
49         INTEL_E1000_ETHERNET_DEVICE(0x1008),
50         INTEL_E1000_ETHERNET_DEVICE(0x1009),
51         INTEL_E1000_ETHERNET_DEVICE(0x100C),
52         INTEL_E1000_ETHERNET_DEVICE(0x100D),
53         INTEL_E1000_ETHERNET_DEVICE(0x100E),
54         INTEL_E1000_ETHERNET_DEVICE(0x100F),
55         INTEL_E1000_ETHERNET_DEVICE(0x1010),
56         INTEL_E1000_ETHERNET_DEVICE(0x1011),
57         INTEL_E1000_ETHERNET_DEVICE(0x1012),
58         INTEL_E1000_ETHERNET_DEVICE(0x1013),
59         INTEL_E1000_ETHERNET_DEVICE(0x1014),
60         INTEL_E1000_ETHERNET_DEVICE(0x1015),
61         INTEL_E1000_ETHERNET_DEVICE(0x1016),
62         INTEL_E1000_ETHERNET_DEVICE(0x1017),
63         INTEL_E1000_ETHERNET_DEVICE(0x1018),
64         INTEL_E1000_ETHERNET_DEVICE(0x1019),
65         INTEL_E1000_ETHERNET_DEVICE(0x101A),
66         INTEL_E1000_ETHERNET_DEVICE(0x101D),
67         INTEL_E1000_ETHERNET_DEVICE(0x101E),
68         INTEL_E1000_ETHERNET_DEVICE(0x1026),
69         INTEL_E1000_ETHERNET_DEVICE(0x1027),
70         INTEL_E1000_ETHERNET_DEVICE(0x1028),
71         INTEL_E1000_ETHERNET_DEVICE(0x1075),
72         INTEL_E1000_ETHERNET_DEVICE(0x1076),
73         INTEL_E1000_ETHERNET_DEVICE(0x1077),
74         INTEL_E1000_ETHERNET_DEVICE(0x1078),
75         INTEL_E1000_ETHERNET_DEVICE(0x1079),
76         INTEL_E1000_ETHERNET_DEVICE(0x107A),
77         INTEL_E1000_ETHERNET_DEVICE(0x107B),
78         INTEL_E1000_ETHERNET_DEVICE(0x107C),
79         INTEL_E1000_ETHERNET_DEVICE(0x108A),
80         INTEL_E1000_ETHERNET_DEVICE(0x1099),
81         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
82         /* required last entry */
83         {0,}
84 };
85
86 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
87
88 int e1000_up(struct e1000_adapter *adapter);
89 void e1000_down(struct e1000_adapter *adapter);
90 void e1000_reinit_locked(struct e1000_adapter *adapter);
91 void e1000_reset(struct e1000_adapter *adapter);
92 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx);
93 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
94 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
95 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
96 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
97 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
98                              struct e1000_tx_ring *txdr);
99 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
100                              struct e1000_rx_ring *rxdr);
101 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
102                              struct e1000_tx_ring *tx_ring);
103 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
104                              struct e1000_rx_ring *rx_ring);
105 void e1000_update_stats(struct e1000_adapter *adapter);
106
107 static int e1000_init_module(void);
108 static void e1000_exit_module(void);
109 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
110 static void __devexit e1000_remove(struct pci_dev *pdev);
111 static int e1000_alloc_queues(struct e1000_adapter *adapter);
112 static int e1000_sw_init(struct e1000_adapter *adapter);
113 static int e1000_open(struct net_device *netdev);
114 static int e1000_close(struct net_device *netdev);
115 static void e1000_configure_tx(struct e1000_adapter *adapter);
116 static void e1000_configure_rx(struct e1000_adapter *adapter);
117 static void e1000_setup_rctl(struct e1000_adapter *adapter);
118 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
119 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
120 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
121                                 struct e1000_tx_ring *tx_ring);
122 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
123                                 struct e1000_rx_ring *rx_ring);
124 static void e1000_set_rx_mode(struct net_device *netdev);
125 static void e1000_update_phy_info(unsigned long data);
126 static void e1000_watchdog(unsigned long data);
127 static void e1000_82547_tx_fifo_stall(unsigned long data);
128 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
129 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
130 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
131 static int e1000_set_mac(struct net_device *netdev, void *p);
132 static irqreturn_t e1000_intr(int irq, void *data);
133 static irqreturn_t e1000_intr_msi(int irq, void *data);
134 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
135                                struct e1000_tx_ring *tx_ring);
136 static int e1000_clean(struct napi_struct *napi, int budget);
137 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
138                                struct e1000_rx_ring *rx_ring,
139                                int *work_done, int work_to_do);
140 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
141                                    struct e1000_rx_ring *rx_ring,
142                                    int cleaned_count);
143 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
144 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
145                            int cmd);
146 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
147 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
148 static void e1000_tx_timeout(struct net_device *dev);
149 static void e1000_reset_task(struct work_struct *work);
150 static void e1000_smartspeed(struct e1000_adapter *adapter);
151 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
152                                        struct sk_buff *skb);
153
154 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
155 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
156 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
157 static void e1000_restore_vlan(struct e1000_adapter *adapter);
158
159 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
160 #ifdef CONFIG_PM
161 static int e1000_resume(struct pci_dev *pdev);
162 #endif
163 static void e1000_shutdown(struct pci_dev *pdev);
164
165 #ifdef CONFIG_NET_POLL_CONTROLLER
166 /* for netdump / net console */
167 static void e1000_netpoll (struct net_device *netdev);
168 #endif
169
170 #define COPYBREAK_DEFAULT 256
171 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
172 module_param(copybreak, uint, 0644);
173 MODULE_PARM_DESC(copybreak,
174         "Maximum size of packet that is copied to a new buffer on receive");
175
176 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
177                      pci_channel_state_t state);
178 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
179 static void e1000_io_resume(struct pci_dev *pdev);
180
181 static struct pci_error_handlers e1000_err_handler = {
182         .error_detected = e1000_io_error_detected,
183         .slot_reset = e1000_io_slot_reset,
184         .resume = e1000_io_resume,
185 };
186
187 static struct pci_driver e1000_driver = {
188         .name     = e1000_driver_name,
189         .id_table = e1000_pci_tbl,
190         .probe    = e1000_probe,
191         .remove   = __devexit_p(e1000_remove),
192 #ifdef CONFIG_PM
193         /* Power Managment Hooks */
194         .suspend  = e1000_suspend,
195         .resume   = e1000_resume,
196 #endif
197         .shutdown = e1000_shutdown,
198         .err_handler = &e1000_err_handler
199 };
200
201 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
202 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
203 MODULE_LICENSE("GPL");
204 MODULE_VERSION(DRV_VERSION);
205
206 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
207 module_param(debug, int, 0);
208 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
209
210 /**
211  * e1000_init_module - Driver Registration Routine
212  *
213  * e1000_init_module is the first routine called when the driver is
214  * loaded. All it does is register with the PCI subsystem.
215  **/
216
217 static int __init e1000_init_module(void)
218 {
219         int ret;
220         printk(KERN_INFO "%s - version %s\n",
221                e1000_driver_string, e1000_driver_version);
222
223         printk(KERN_INFO "%s\n", e1000_copyright);
224
225         ret = pci_register_driver(&e1000_driver);
226         if (copybreak != COPYBREAK_DEFAULT) {
227                 if (copybreak == 0)
228                         printk(KERN_INFO "e1000: copybreak disabled\n");
229                 else
230                         printk(KERN_INFO "e1000: copybreak enabled for "
231                                "packets <= %u bytes\n", copybreak);
232         }
233         return ret;
234 }
235
236 module_init(e1000_init_module);
237
238 /**
239  * e1000_exit_module - Driver Exit Cleanup Routine
240  *
241  * e1000_exit_module is called just before the driver is removed
242  * from memory.
243  **/
244
245 static void __exit e1000_exit_module(void)
246 {
247         pci_unregister_driver(&e1000_driver);
248 }
249
250 module_exit(e1000_exit_module);
251
252 static int e1000_request_irq(struct e1000_adapter *adapter)
253 {
254         struct e1000_hw *hw = &adapter->hw;
255         struct net_device *netdev = adapter->netdev;
256         irq_handler_t handler = e1000_intr;
257         int irq_flags = IRQF_SHARED;
258         int err;
259
260         if (hw->mac_type >= e1000_82571) {
261                 adapter->have_msi = !pci_enable_msi(adapter->pdev);
262                 if (adapter->have_msi) {
263                         handler = e1000_intr_msi;
264                         irq_flags = 0;
265                 }
266         }
267
268         err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
269                           netdev);
270         if (err) {
271                 if (adapter->have_msi)
272                         pci_disable_msi(adapter->pdev);
273                 DPRINTK(PROBE, ERR,
274                         "Unable to allocate interrupt Error: %d\n", err);
275         }
276
277         return err;
278 }
279
280 static void e1000_free_irq(struct e1000_adapter *adapter)
281 {
282         struct net_device *netdev = adapter->netdev;
283
284         free_irq(adapter->pdev->irq, netdev);
285
286         if (adapter->have_msi)
287                 pci_disable_msi(adapter->pdev);
288 }
289
290 /**
291  * e1000_irq_disable - Mask off interrupt generation on the NIC
292  * @adapter: board private structure
293  **/
294
295 static void e1000_irq_disable(struct e1000_adapter *adapter)
296 {
297         struct e1000_hw *hw = &adapter->hw;
298
299         ew32(IMC, ~0);
300         E1000_WRITE_FLUSH();
301         synchronize_irq(adapter->pdev->irq);
302 }
303
304 /**
305  * e1000_irq_enable - Enable default interrupt generation settings
306  * @adapter: board private structure
307  **/
308
309 static void e1000_irq_enable(struct e1000_adapter *adapter)
310 {
311         struct e1000_hw *hw = &adapter->hw;
312
313         ew32(IMS, IMS_ENABLE_MASK);
314         E1000_WRITE_FLUSH();
315 }
316
317 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
318 {
319         struct e1000_hw *hw = &adapter->hw;
320         struct net_device *netdev = adapter->netdev;
321         u16 vid = hw->mng_cookie.vlan_id;
322         u16 old_vid = adapter->mng_vlan_id;
323         if (adapter->vlgrp) {
324                 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
325                         if (hw->mng_cookie.status &
326                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
327                                 e1000_vlan_rx_add_vid(netdev, vid);
328                                 adapter->mng_vlan_id = vid;
329                         } else
330                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
331
332                         if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
333                                         (vid != old_vid) &&
334                             !vlan_group_get_device(adapter->vlgrp, old_vid))
335                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
336                 } else
337                         adapter->mng_vlan_id = vid;
338         }
339 }
340
341 /**
342  * e1000_release_hw_control - release control of the h/w to f/w
343  * @adapter: address of board private structure
344  *
345  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
346  * For ASF and Pass Through versions of f/w this means that the
347  * driver is no longer loaded. For AMT version (only with 82573) i
348  * of the f/w this means that the network i/f is closed.
349  *
350  **/
351
352 static void e1000_release_hw_control(struct e1000_adapter *adapter)
353 {
354         u32 ctrl_ext;
355         u32 swsm;
356         struct e1000_hw *hw = &adapter->hw;
357
358         /* Let firmware taken over control of h/w */
359         switch (hw->mac_type) {
360         case e1000_82573:
361                 swsm = er32(SWSM);
362                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
363                 break;
364         case e1000_82571:
365         case e1000_82572:
366         case e1000_80003es2lan:
367         case e1000_ich8lan:
368                 ctrl_ext = er32(CTRL_EXT);
369                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
370                 break;
371         default:
372                 break;
373         }
374 }
375
376 /**
377  * e1000_get_hw_control - get control of the h/w from f/w
378  * @adapter: address of board private structure
379  *
380  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
381  * For ASF and Pass Through versions of f/w this means that
382  * the driver is loaded. For AMT version (only with 82573)
383  * of the f/w this means that the network i/f is open.
384  *
385  **/
386
387 static void e1000_get_hw_control(struct e1000_adapter *adapter)
388 {
389         u32 ctrl_ext;
390         u32 swsm;
391         struct e1000_hw *hw = &adapter->hw;
392
393         /* Let firmware know the driver has taken over */
394         switch (hw->mac_type) {
395         case e1000_82573:
396                 swsm = er32(SWSM);
397                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
398                 break;
399         case e1000_82571:
400         case e1000_82572:
401         case e1000_80003es2lan:
402         case e1000_ich8lan:
403                 ctrl_ext = er32(CTRL_EXT);
404                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
405                 break;
406         default:
407                 break;
408         }
409 }
410
411 static void e1000_init_manageability(struct e1000_adapter *adapter)
412 {
413         struct e1000_hw *hw = &adapter->hw;
414
415         if (adapter->en_mng_pt) {
416                 u32 manc = er32(MANC);
417
418                 /* disable hardware interception of ARP */
419                 manc &= ~(E1000_MANC_ARP_EN);
420
421                 /* enable receiving management packets to the host */
422                 /* this will probably generate destination unreachable messages
423                  * from the host OS, but the packets will be handled on SMBUS */
424                 if (hw->has_manc2h) {
425                         u32 manc2h = er32(MANC2H);
426
427                         manc |= E1000_MANC_EN_MNG2HOST;
428 #define E1000_MNG2HOST_PORT_623 (1 << 5)
429 #define E1000_MNG2HOST_PORT_664 (1 << 6)
430                         manc2h |= E1000_MNG2HOST_PORT_623;
431                         manc2h |= E1000_MNG2HOST_PORT_664;
432                         ew32(MANC2H, manc2h);
433                 }
434
435                 ew32(MANC, manc);
436         }
437 }
438
439 static void e1000_release_manageability(struct e1000_adapter *adapter)
440 {
441         struct e1000_hw *hw = &adapter->hw;
442
443         if (adapter->en_mng_pt) {
444                 u32 manc = er32(MANC);
445
446                 /* re-enable hardware interception of ARP */
447                 manc |= E1000_MANC_ARP_EN;
448
449                 if (hw->has_manc2h)
450                         manc &= ~E1000_MANC_EN_MNG2HOST;
451
452                 /* don't explicitly have to mess with MANC2H since
453                  * MANC has an enable disable that gates MANC2H */
454
455                 ew32(MANC, manc);
456         }
457 }
458
459 /**
460  * e1000_configure - configure the hardware for RX and TX
461  * @adapter = private board structure
462  **/
463 static void e1000_configure(struct e1000_adapter *adapter)
464 {
465         struct net_device *netdev = adapter->netdev;
466         int i;
467
468         e1000_set_rx_mode(netdev);
469
470         e1000_restore_vlan(adapter);
471         e1000_init_manageability(adapter);
472
473         e1000_configure_tx(adapter);
474         e1000_setup_rctl(adapter);
475         e1000_configure_rx(adapter);
476         /* call E1000_DESC_UNUSED which always leaves
477          * at least 1 descriptor unused to make sure
478          * next_to_use != next_to_clean */
479         for (i = 0; i < adapter->num_rx_queues; i++) {
480                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
481                 adapter->alloc_rx_buf(adapter, ring,
482                                       E1000_DESC_UNUSED(ring));
483         }
484
485         adapter->tx_queue_len = netdev->tx_queue_len;
486 }
487
488 int e1000_up(struct e1000_adapter *adapter)
489 {
490         struct e1000_hw *hw = &adapter->hw;
491
492         /* hardware has been reset, we need to reload some things */
493         e1000_configure(adapter);
494
495         clear_bit(__E1000_DOWN, &adapter->flags);
496
497         napi_enable(&adapter->napi);
498
499         e1000_irq_enable(adapter);
500
501         /* fire a link change interrupt to start the watchdog */
502         ew32(ICS, E1000_ICS_LSC);
503         return 0;
504 }
505
506 /**
507  * e1000_power_up_phy - restore link in case the phy was powered down
508  * @adapter: address of board private structure
509  *
510  * The phy may be powered down to save power and turn off link when the
511  * driver is unloaded and wake on lan is not enabled (among others)
512  * *** this routine MUST be followed by a call to e1000_reset ***
513  *
514  **/
515
516 void e1000_power_up_phy(struct e1000_adapter *adapter)
517 {
518         struct e1000_hw *hw = &adapter->hw;
519         u16 mii_reg = 0;
520
521         /* Just clear the power down bit to wake the phy back up */
522         if (hw->media_type == e1000_media_type_copper) {
523                 /* according to the manual, the phy will retain its
524                  * settings across a power-down/up cycle */
525                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
526                 mii_reg &= ~MII_CR_POWER_DOWN;
527                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
528         }
529 }
530
531 static void e1000_power_down_phy(struct e1000_adapter *adapter)
532 {
533         struct e1000_hw *hw = &adapter->hw;
534
535         /* Power down the PHY so no link is implied when interface is down *
536          * The PHY cannot be powered down if any of the following is true *
537          * (a) WoL is enabled
538          * (b) AMT is active
539          * (c) SoL/IDER session is active */
540         if (!adapter->wol && hw->mac_type >= e1000_82540 &&
541            hw->media_type == e1000_media_type_copper) {
542                 u16 mii_reg = 0;
543
544                 switch (hw->mac_type) {
545                 case e1000_82540:
546                 case e1000_82545:
547                 case e1000_82545_rev_3:
548                 case e1000_82546:
549                 case e1000_82546_rev_3:
550                 case e1000_82541:
551                 case e1000_82541_rev_2:
552                 case e1000_82547:
553                 case e1000_82547_rev_2:
554                         if (er32(MANC) & E1000_MANC_SMBUS_EN)
555                                 goto out;
556                         break;
557                 case e1000_82571:
558                 case e1000_82572:
559                 case e1000_82573:
560                 case e1000_80003es2lan:
561                 case e1000_ich8lan:
562                         if (e1000_check_mng_mode(hw) ||
563                             e1000_check_phy_reset_block(hw))
564                                 goto out;
565                         break;
566                 default:
567                         goto out;
568                 }
569                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
570                 mii_reg |= MII_CR_POWER_DOWN;
571                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
572                 mdelay(1);
573         }
574 out:
575         return;
576 }
577
578 void e1000_down(struct e1000_adapter *adapter)
579 {
580         struct net_device *netdev = adapter->netdev;
581
582         /* signal that we're down so the interrupt handler does not
583          * reschedule our watchdog timer */
584         set_bit(__E1000_DOWN, &adapter->flags);
585
586         napi_disable(&adapter->napi);
587
588         e1000_irq_disable(adapter);
589
590         del_timer_sync(&adapter->tx_fifo_stall_timer);
591         del_timer_sync(&adapter->watchdog_timer);
592         del_timer_sync(&adapter->phy_info_timer);
593
594         netdev->tx_queue_len = adapter->tx_queue_len;
595         adapter->link_speed = 0;
596         adapter->link_duplex = 0;
597         netif_carrier_off(netdev);
598         netif_stop_queue(netdev);
599
600         e1000_reset(adapter);
601         e1000_clean_all_tx_rings(adapter);
602         e1000_clean_all_rx_rings(adapter);
603 }
604
605 void e1000_reinit_locked(struct e1000_adapter *adapter)
606 {
607         WARN_ON(in_interrupt());
608         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
609                 msleep(1);
610         e1000_down(adapter);
611         e1000_up(adapter);
612         clear_bit(__E1000_RESETTING, &adapter->flags);
613 }
614
615 void e1000_reset(struct e1000_adapter *adapter)
616 {
617         struct e1000_hw *hw = &adapter->hw;
618         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
619         u16 fc_high_water_mark = E1000_FC_HIGH_DIFF;
620         bool legacy_pba_adjust = false;
621
622         /* Repartition Pba for greater than 9k mtu
623          * To take effect CTRL.RST is required.
624          */
625
626         switch (hw->mac_type) {
627         case e1000_82542_rev2_0:
628         case e1000_82542_rev2_1:
629         case e1000_82543:
630         case e1000_82544:
631         case e1000_82540:
632         case e1000_82541:
633         case e1000_82541_rev_2:
634                 legacy_pba_adjust = true;
635                 pba = E1000_PBA_48K;
636                 break;
637         case e1000_82545:
638         case e1000_82545_rev_3:
639         case e1000_82546:
640         case e1000_82546_rev_3:
641                 pba = E1000_PBA_48K;
642                 break;
643         case e1000_82547:
644         case e1000_82547_rev_2:
645                 legacy_pba_adjust = true;
646                 pba = E1000_PBA_30K;
647                 break;
648         case e1000_82571:
649         case e1000_82572:
650         case e1000_80003es2lan:
651                 pba = E1000_PBA_38K;
652                 break;
653         case e1000_82573:
654                 pba = E1000_PBA_20K;
655                 break;
656         case e1000_ich8lan:
657                 pba = E1000_PBA_8K;
658         case e1000_undefined:
659         case e1000_num_macs:
660                 break;
661         }
662
663         if (legacy_pba_adjust) {
664                 if (adapter->netdev->mtu > E1000_RXBUFFER_8192)
665                         pba -= 8; /* allocate more FIFO for Tx */
666
667                 if (hw->mac_type == e1000_82547) {
668                         adapter->tx_fifo_head = 0;
669                         adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
670                         adapter->tx_fifo_size =
671                                 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
672                         atomic_set(&adapter->tx_fifo_stall, 0);
673                 }
674         } else if (hw->max_frame_size > MAXIMUM_ETHERNET_FRAME_SIZE) {
675                 /* adjust PBA for jumbo frames */
676                 ew32(PBA, pba);
677
678                 /* To maintain wire speed transmits, the Tx FIFO should be
679                  * large enough to accomodate two full transmit packets,
680                  * rounded up to the next 1KB and expressed in KB.  Likewise,
681                  * the Rx FIFO should be large enough to accomodate at least
682                  * one full receive packet and is similarly rounded up and
683                  * expressed in KB. */
684                 pba = er32(PBA);
685                 /* upper 16 bits has Tx packet buffer allocation size in KB */
686                 tx_space = pba >> 16;
687                 /* lower 16 bits has Rx packet buffer allocation size in KB */
688                 pba &= 0xffff;
689                 /* don't include ethernet FCS because hardware appends/strips */
690                 min_rx_space = adapter->netdev->mtu + ENET_HEADER_SIZE +
691                                VLAN_TAG_SIZE;
692                 min_tx_space = min_rx_space;
693                 min_tx_space *= 2;
694                 min_tx_space = ALIGN(min_tx_space, 1024);
695                 min_tx_space >>= 10;
696                 min_rx_space = ALIGN(min_rx_space, 1024);
697                 min_rx_space >>= 10;
698
699                 /* If current Tx allocation is less than the min Tx FIFO size,
700                  * and the min Tx FIFO size is less than the current Rx FIFO
701                  * allocation, take space away from current Rx allocation */
702                 if (tx_space < min_tx_space &&
703                     ((min_tx_space - tx_space) < pba)) {
704                         pba = pba - (min_tx_space - tx_space);
705
706                         /* PCI/PCIx hardware has PBA alignment constraints */
707                         switch (hw->mac_type) {
708                         case e1000_82545 ... e1000_82546_rev_3:
709                                 pba &= ~(E1000_PBA_8K - 1);
710                                 break;
711                         default:
712                                 break;
713                         }
714
715                         /* if short on rx space, rx wins and must trump tx
716                          * adjustment or use Early Receive if available */
717                         if (pba < min_rx_space) {
718                                 switch (hw->mac_type) {
719                                 case e1000_82573:
720                                         /* ERT enabled in e1000_configure_rx */
721                                         break;
722                                 default:
723                                         pba = min_rx_space;
724                                         break;
725                                 }
726                         }
727                 }
728         }
729
730         ew32(PBA, pba);
731
732         /* flow control settings */
733         /* Set the FC high water mark to 90% of the FIFO size.
734          * Required to clear last 3 LSB */
735         fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
736         /* We can't use 90% on small FIFOs because the remainder
737          * would be less than 1 full frame.  In this case, we size
738          * it to allow at least a full frame above the high water
739          *  mark. */
740         if (pba < E1000_PBA_16K)
741                 fc_high_water_mark = (pba * 1024) - 1600;
742
743         hw->fc_high_water = fc_high_water_mark;
744         hw->fc_low_water = fc_high_water_mark - 8;
745         if (hw->mac_type == e1000_80003es2lan)
746                 hw->fc_pause_time = 0xFFFF;
747         else
748                 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
749         hw->fc_send_xon = 1;
750         hw->fc = hw->original_fc;
751
752         /* Allow time for pending master requests to run */
753         e1000_reset_hw(hw);
754         if (hw->mac_type >= e1000_82544)
755                 ew32(WUC, 0);
756
757         if (e1000_init_hw(hw))
758                 DPRINTK(PROBE, ERR, "Hardware Error\n");
759         e1000_update_mng_vlan(adapter);
760
761         /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
762         if (hw->mac_type >= e1000_82544 &&
763             hw->mac_type <= e1000_82547_rev_2 &&
764             hw->autoneg == 1 &&
765             hw->autoneg_advertised == ADVERTISE_1000_FULL) {
766                 u32 ctrl = er32(CTRL);
767                 /* clear phy power management bit if we are in gig only mode,
768                  * which if enabled will attempt negotiation to 100Mb, which
769                  * can cause a loss of link at power off or driver unload */
770                 ctrl &= ~E1000_CTRL_SWDPIN3;
771                 ew32(CTRL, ctrl);
772         }
773
774         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
775         ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
776
777         e1000_reset_adaptive(hw);
778         e1000_phy_get_info(hw, &adapter->phy_info);
779
780         if (!adapter->smart_power_down &&
781             (hw->mac_type == e1000_82571 ||
782              hw->mac_type == e1000_82572)) {
783                 u16 phy_data = 0;
784                 /* speed up time to link by disabling smart power down, ignore
785                  * the return value of this function because there is nothing
786                  * different we would do if it failed */
787                 e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
788                                    &phy_data);
789                 phy_data &= ~IGP02E1000_PM_SPD;
790                 e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
791                                     phy_data);
792         }
793
794         e1000_release_manageability(adapter);
795 }
796
797 /**
798  *  Dump the eeprom for users having checksum issues
799  **/
800 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
801 {
802         struct net_device *netdev = adapter->netdev;
803         struct ethtool_eeprom eeprom;
804         const struct ethtool_ops *ops = netdev->ethtool_ops;
805         u8 *data;
806         int i;
807         u16 csum_old, csum_new = 0;
808
809         eeprom.len = ops->get_eeprom_len(netdev);
810         eeprom.offset = 0;
811
812         data = kmalloc(eeprom.len, GFP_KERNEL);
813         if (!data) {
814                 printk(KERN_ERR "Unable to allocate memory to dump EEPROM"
815                        " data\n");
816                 return;
817         }
818
819         ops->get_eeprom(netdev, &eeprom, data);
820
821         csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
822                    (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
823         for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
824                 csum_new += data[i] + (data[i + 1] << 8);
825         csum_new = EEPROM_SUM - csum_new;
826
827         printk(KERN_ERR "/*********************/\n");
828         printk(KERN_ERR "Current EEPROM Checksum : 0x%04x\n", csum_old);
829         printk(KERN_ERR "Calculated              : 0x%04x\n", csum_new);
830
831         printk(KERN_ERR "Offset    Values\n");
832         printk(KERN_ERR "========  ======\n");
833         print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
834
835         printk(KERN_ERR "Include this output when contacting your support "
836                "provider.\n");
837         printk(KERN_ERR "This is not a software error! Something bad "
838                "happened to your hardware or\n");
839         printk(KERN_ERR "EEPROM image. Ignoring this "
840                "problem could result in further problems,\n");
841         printk(KERN_ERR "possibly loss of data, corruption or system hangs!\n");
842         printk(KERN_ERR "The MAC Address will be reset to 00:00:00:00:00:00, "
843                "which is invalid\n");
844         printk(KERN_ERR "and requires you to set the proper MAC "
845                "address manually before continuing\n");
846         printk(KERN_ERR "to enable this network device.\n");
847         printk(KERN_ERR "Please inspect the EEPROM dump and report the issue "
848                "to your hardware vendor\n");
849         printk(KERN_ERR "or Intel Customer Support.\n");
850         printk(KERN_ERR "/*********************/\n");
851
852         kfree(data);
853 }
854
855 /**
856  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
857  * @pdev: PCI device information struct
858  *
859  * Return true if an adapter needs ioport resources
860  **/
861 static int e1000_is_need_ioport(struct pci_dev *pdev)
862 {
863         switch (pdev->device) {
864         case E1000_DEV_ID_82540EM:
865         case E1000_DEV_ID_82540EM_LOM:
866         case E1000_DEV_ID_82540EP:
867         case E1000_DEV_ID_82540EP_LOM:
868         case E1000_DEV_ID_82540EP_LP:
869         case E1000_DEV_ID_82541EI:
870         case E1000_DEV_ID_82541EI_MOBILE:
871         case E1000_DEV_ID_82541ER:
872         case E1000_DEV_ID_82541ER_LOM:
873         case E1000_DEV_ID_82541GI:
874         case E1000_DEV_ID_82541GI_LF:
875         case E1000_DEV_ID_82541GI_MOBILE:
876         case E1000_DEV_ID_82544EI_COPPER:
877         case E1000_DEV_ID_82544EI_FIBER:
878         case E1000_DEV_ID_82544GC_COPPER:
879         case E1000_DEV_ID_82544GC_LOM:
880         case E1000_DEV_ID_82545EM_COPPER:
881         case E1000_DEV_ID_82545EM_FIBER:
882         case E1000_DEV_ID_82546EB_COPPER:
883         case E1000_DEV_ID_82546EB_FIBER:
884         case E1000_DEV_ID_82546EB_QUAD_COPPER:
885                 return true;
886         default:
887                 return false;
888         }
889 }
890
891 /**
892  * e1000_probe - Device Initialization Routine
893  * @pdev: PCI device information struct
894  * @ent: entry in e1000_pci_tbl
895  *
896  * Returns 0 on success, negative on failure
897  *
898  * e1000_probe initializes an adapter identified by a pci_dev structure.
899  * The OS initialization, configuring of the adapter private structure,
900  * and a hardware reset occur.
901  **/
902 static int __devinit e1000_probe(struct pci_dev *pdev,
903                                  const struct pci_device_id *ent)
904 {
905         struct net_device *netdev;
906         struct e1000_adapter *adapter;
907         struct e1000_hw *hw;
908
909         static int cards_found = 0;
910         static int global_quad_port_a = 0; /* global ksp3 port a indication */
911         int i, err, pci_using_dac;
912         u16 eeprom_data = 0;
913         u16 eeprom_apme_mask = E1000_EEPROM_APME;
914         int bars, need_ioport;
915         DECLARE_MAC_BUF(mac);
916
917         /* do not allocate ioport bars when not needed */
918         need_ioport = e1000_is_need_ioport(pdev);
919         if (need_ioport) {
920                 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
921                 err = pci_enable_device(pdev);
922         } else {
923                 bars = pci_select_bars(pdev, IORESOURCE_MEM);
924                 err = pci_enable_device(pdev);
925         }
926         if (err)
927                 return err;
928
929         if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK) &&
930             !pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK)) {
931                 pci_using_dac = 1;
932         } else {
933                 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
934                 if (err) {
935                         err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
936                         if (err) {
937                                 E1000_ERR("No usable DMA configuration, "
938                                           "aborting\n");
939                                 goto err_dma;
940                         }
941                 }
942                 pci_using_dac = 0;
943         }
944
945         err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
946         if (err)
947                 goto err_pci_reg;
948
949         pci_set_master(pdev);
950
951         err = -ENOMEM;
952         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
953         if (!netdev)
954                 goto err_alloc_etherdev;
955
956         SET_NETDEV_DEV(netdev, &pdev->dev);
957
958         pci_set_drvdata(pdev, netdev);
959         adapter = netdev_priv(netdev);
960         adapter->netdev = netdev;
961         adapter->pdev = pdev;
962         adapter->msg_enable = (1 << debug) - 1;
963         adapter->bars = bars;
964         adapter->need_ioport = need_ioport;
965
966         hw = &adapter->hw;
967         hw->back = adapter;
968
969         err = -EIO;
970         hw->hw_addr = ioremap(pci_resource_start(pdev, BAR_0),
971                               pci_resource_len(pdev, BAR_0));
972         if (!hw->hw_addr)
973                 goto err_ioremap;
974
975         if (adapter->need_ioport) {
976                 for (i = BAR_1; i <= BAR_5; i++) {
977                         if (pci_resource_len(pdev, i) == 0)
978                                 continue;
979                         if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
980                                 hw->io_base = pci_resource_start(pdev, i);
981                                 break;
982                         }
983                 }
984         }
985
986         netdev->open = &e1000_open;
987         netdev->stop = &e1000_close;
988         netdev->hard_start_xmit = &e1000_xmit_frame;
989         netdev->get_stats = &e1000_get_stats;
990         netdev->set_rx_mode = &e1000_set_rx_mode;
991         netdev->set_mac_address = &e1000_set_mac;
992         netdev->change_mtu = &e1000_change_mtu;
993         netdev->do_ioctl = &e1000_ioctl;
994         e1000_set_ethtool_ops(netdev);
995         netdev->tx_timeout = &e1000_tx_timeout;
996         netdev->watchdog_timeo = 5 * HZ;
997         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
998         netdev->vlan_rx_register = e1000_vlan_rx_register;
999         netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
1000         netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
1001 #ifdef CONFIG_NET_POLL_CONTROLLER
1002         netdev->poll_controller = e1000_netpoll;
1003 #endif
1004         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1005
1006         adapter->bd_number = cards_found;
1007
1008         /* setup the private structure */
1009
1010         err = e1000_sw_init(adapter);
1011         if (err)
1012                 goto err_sw_init;
1013
1014         err = -EIO;
1015         /* Flash BAR mapping must happen after e1000_sw_init
1016          * because it depends on mac_type */
1017         if ((hw->mac_type == e1000_ich8lan) &&
1018            (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
1019                 hw->flash_address =
1020                         ioremap(pci_resource_start(pdev, 1),
1021                                 pci_resource_len(pdev, 1));
1022                 if (!hw->flash_address)
1023                         goto err_flashmap;
1024         }
1025
1026         if (e1000_check_phy_reset_block(hw))
1027                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
1028
1029         if (hw->mac_type >= e1000_82543) {
1030                 netdev->features = NETIF_F_SG |
1031                                    NETIF_F_HW_CSUM |
1032                                    NETIF_F_HW_VLAN_TX |
1033                                    NETIF_F_HW_VLAN_RX |
1034                                    NETIF_F_HW_VLAN_FILTER;
1035                 if (hw->mac_type == e1000_ich8lan)
1036                         netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
1037         }
1038
1039         if ((hw->mac_type >= e1000_82544) &&
1040            (hw->mac_type != e1000_82547))
1041                 netdev->features |= NETIF_F_TSO;
1042
1043         if (hw->mac_type > e1000_82547_rev_2)
1044                 netdev->features |= NETIF_F_TSO6;
1045         if (pci_using_dac)
1046                 netdev->features |= NETIF_F_HIGHDMA;
1047
1048         netdev->features |= NETIF_F_LLTX;
1049
1050         adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1051
1052         /* initialize eeprom parameters */
1053         if (e1000_init_eeprom_params(hw)) {
1054                 E1000_ERR("EEPROM initialization failed\n");
1055                 goto err_eeprom;
1056         }
1057
1058         /* before reading the EEPROM, reset the controller to
1059          * put the device in a known good starting state */
1060
1061         e1000_reset_hw(hw);
1062
1063         /* make sure the EEPROM is good */
1064         if (e1000_validate_eeprom_checksum(hw) < 0) {
1065                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
1066                 e1000_dump_eeprom(adapter);
1067                 /*
1068                  * set MAC address to all zeroes to invalidate and temporary
1069                  * disable this device for the user. This blocks regular
1070                  * traffic while still permitting ethtool ioctls from reaching
1071                  * the hardware as well as allowing the user to run the
1072                  * interface after manually setting a hw addr using
1073                  * `ip set address`
1074                  */
1075                 memset(hw->mac_addr, 0, netdev->addr_len);
1076         } else {
1077                 /* copy the MAC address out of the EEPROM */
1078                 if (e1000_read_mac_addr(hw))
1079                         DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
1080         }
1081         /* don't block initalization here due to bad MAC address */
1082         memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1083         memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
1084
1085         if (!is_valid_ether_addr(netdev->perm_addr))
1086                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
1087
1088         e1000_get_bus_info(hw);
1089
1090         init_timer(&adapter->tx_fifo_stall_timer);
1091         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
1092         adapter->tx_fifo_stall_timer.data = (unsigned long)adapter;
1093
1094         init_timer(&adapter->watchdog_timer);
1095         adapter->watchdog_timer.function = &e1000_watchdog;
1096         adapter->watchdog_timer.data = (unsigned long) adapter;
1097
1098         init_timer(&adapter->phy_info_timer);
1099         adapter->phy_info_timer.function = &e1000_update_phy_info;
1100         adapter->phy_info_timer.data = (unsigned long)adapter;
1101
1102         INIT_WORK(&adapter->reset_task, e1000_reset_task);
1103
1104         e1000_check_options(adapter);
1105
1106         /* Initial Wake on LAN setting
1107          * If APM wake is enabled in the EEPROM,
1108          * enable the ACPI Magic Packet filter
1109          */
1110
1111         switch (hw->mac_type) {
1112         case e1000_82542_rev2_0:
1113         case e1000_82542_rev2_1:
1114         case e1000_82543:
1115                 break;
1116         case e1000_82544:
1117                 e1000_read_eeprom(hw,
1118                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1119                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1120                 break;
1121         case e1000_ich8lan:
1122                 e1000_read_eeprom(hw,
1123                         EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
1124                 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
1125                 break;
1126         case e1000_82546:
1127         case e1000_82546_rev_3:
1128         case e1000_82571:
1129         case e1000_80003es2lan:
1130                 if (er32(STATUS) & E1000_STATUS_FUNC_1){
1131                         e1000_read_eeprom(hw,
1132                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1133                         break;
1134                 }
1135                 /* Fall Through */
1136         default:
1137                 e1000_read_eeprom(hw,
1138                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1139                 break;
1140         }
1141         if (eeprom_data & eeprom_apme_mask)
1142                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1143
1144         /* now that we have the eeprom settings, apply the special cases
1145          * where the eeprom may be wrong or the board simply won't support
1146          * wake on lan on a particular port */
1147         switch (pdev->device) {
1148         case E1000_DEV_ID_82546GB_PCIE:
1149                 adapter->eeprom_wol = 0;
1150                 break;
1151         case E1000_DEV_ID_82546EB_FIBER:
1152         case E1000_DEV_ID_82546GB_FIBER:
1153         case E1000_DEV_ID_82571EB_FIBER:
1154                 /* Wake events only supported on port A for dual fiber
1155                  * regardless of eeprom setting */
1156                 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1157                         adapter->eeprom_wol = 0;
1158                 break;
1159         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1160         case E1000_DEV_ID_82571EB_QUAD_COPPER:
1161         case E1000_DEV_ID_82571EB_QUAD_FIBER:
1162         case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1163         case E1000_DEV_ID_82571PT_QUAD_COPPER:
1164                 /* if quad port adapter, disable WoL on all but port A */
1165                 if (global_quad_port_a != 0)
1166                         adapter->eeprom_wol = 0;
1167                 else
1168                         adapter->quad_port_a = 1;
1169                 /* Reset for multiple quad port adapters */
1170                 if (++global_quad_port_a == 4)
1171                         global_quad_port_a = 0;
1172                 break;
1173         }
1174
1175         /* initialize the wol settings based on the eeprom settings */
1176         adapter->wol = adapter->eeprom_wol;
1177
1178         /* print bus type/speed/width info */
1179         DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
1180                 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
1181                  (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
1182                 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1183                  (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
1184                  (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
1185                  (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
1186                  (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
1187                 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
1188                  (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
1189                  (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
1190                  "32-bit"));
1191
1192         printk("%s\n", print_mac(mac, netdev->dev_addr));
1193
1194         if (hw->bus_type == e1000_bus_type_pci_express) {
1195                 DPRINTK(PROBE, WARNING, "This device (id %04x:%04x) will no "
1196                         "longer be supported by this driver in the future.\n",
1197                         pdev->vendor, pdev->device);
1198                 DPRINTK(PROBE, WARNING, "please use the \"e1000e\" "
1199                         "driver instead.\n");
1200         }
1201
1202         /* reset the hardware with the new settings */
1203         e1000_reset(adapter);
1204
1205         /* If the controller is 82573 and f/w is AMT, do not set
1206          * DRV_LOAD until the interface is up.  For all other cases,
1207          * let the f/w know that the h/w is now under the control
1208          * of the driver. */
1209         if (hw->mac_type != e1000_82573 ||
1210             !e1000_check_mng_mode(hw))
1211                 e1000_get_hw_control(adapter);
1212
1213         /* tell the stack to leave us alone until e1000_open() is called */
1214         netif_carrier_off(netdev);
1215         netif_stop_queue(netdev);
1216
1217         strcpy(netdev->name, "eth%d");
1218         err = register_netdev(netdev);
1219         if (err)
1220                 goto err_register;
1221
1222         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1223
1224         cards_found++;
1225         return 0;
1226
1227 err_register:
1228         e1000_release_hw_control(adapter);
1229 err_eeprom:
1230         if (!e1000_check_phy_reset_block(hw))
1231                 e1000_phy_hw_reset(hw);
1232
1233         if (hw->flash_address)
1234                 iounmap(hw->flash_address);
1235 err_flashmap:
1236         for (i = 0; i < adapter->num_rx_queues; i++)
1237                 dev_put(&adapter->polling_netdev[i]);
1238
1239         kfree(adapter->tx_ring);
1240         kfree(adapter->rx_ring);
1241         kfree(adapter->polling_netdev);
1242 err_sw_init:
1243         iounmap(hw->hw_addr);
1244 err_ioremap:
1245         free_netdev(netdev);
1246 err_alloc_etherdev:
1247         pci_release_selected_regions(pdev, bars);
1248 err_pci_reg:
1249 err_dma:
1250         pci_disable_device(pdev);
1251         return err;
1252 }
1253
1254 /**
1255  * e1000_remove - Device Removal Routine
1256  * @pdev: PCI device information struct
1257  *
1258  * e1000_remove is called by the PCI subsystem to alert the driver
1259  * that it should release a PCI device.  The could be caused by a
1260  * Hot-Plug event, or because the driver is going to be removed from
1261  * memory.
1262  **/
1263
1264 static void __devexit e1000_remove(struct pci_dev *pdev)
1265 {
1266         struct net_device *netdev = pci_get_drvdata(pdev);
1267         struct e1000_adapter *adapter = netdev_priv(netdev);
1268         struct e1000_hw *hw = &adapter->hw;
1269         int i;
1270
1271         cancel_work_sync(&adapter->reset_task);
1272
1273         e1000_release_manageability(adapter);
1274
1275         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1276          * would have already happened in close and is redundant. */
1277         e1000_release_hw_control(adapter);
1278
1279         for (i = 0; i < adapter->num_rx_queues; i++)
1280                 dev_put(&adapter->polling_netdev[i]);
1281
1282         unregister_netdev(netdev);
1283
1284         if (!e1000_check_phy_reset_block(hw))
1285                 e1000_phy_hw_reset(hw);
1286
1287         kfree(adapter->tx_ring);
1288         kfree(adapter->rx_ring);
1289         kfree(adapter->polling_netdev);
1290
1291         iounmap(hw->hw_addr);
1292         if (hw->flash_address)
1293                 iounmap(hw->flash_address);
1294         pci_release_selected_regions(pdev, adapter->bars);
1295
1296         free_netdev(netdev);
1297
1298         pci_disable_device(pdev);
1299 }
1300
1301 /**
1302  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1303  * @adapter: board private structure to initialize
1304  *
1305  * e1000_sw_init initializes the Adapter private data structure.
1306  * Fields are initialized based on PCI device information and
1307  * OS network device settings (MTU size).
1308  **/
1309
1310 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
1311 {
1312         struct e1000_hw *hw = &adapter->hw;
1313         struct net_device *netdev = adapter->netdev;
1314         struct pci_dev *pdev = adapter->pdev;
1315         int i;
1316
1317         /* PCI config space info */
1318
1319         hw->vendor_id = pdev->vendor;
1320         hw->device_id = pdev->device;
1321         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1322         hw->subsystem_id = pdev->subsystem_device;
1323         hw->revision_id = pdev->revision;
1324
1325         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1326
1327         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1328         hw->max_frame_size = netdev->mtu +
1329                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1330         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1331
1332         /* identify the MAC */
1333
1334         if (e1000_set_mac_type(hw)) {
1335                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1336                 return -EIO;
1337         }
1338
1339         switch (hw->mac_type) {
1340         default:
1341                 break;
1342         case e1000_82541:
1343         case e1000_82547:
1344         case e1000_82541_rev_2:
1345         case e1000_82547_rev_2:
1346                 hw->phy_init_script = 1;
1347                 break;
1348         }
1349
1350         e1000_set_media_type(hw);
1351
1352         hw->wait_autoneg_complete = false;
1353         hw->tbi_compatibility_en = true;
1354         hw->adaptive_ifs = true;
1355
1356         /* Copper options */
1357
1358         if (hw->media_type == e1000_media_type_copper) {
1359                 hw->mdix = AUTO_ALL_MODES;
1360                 hw->disable_polarity_correction = false;
1361                 hw->master_slave = E1000_MASTER_SLAVE;
1362         }
1363
1364         adapter->num_tx_queues = 1;
1365         adapter->num_rx_queues = 1;
1366
1367         if (e1000_alloc_queues(adapter)) {
1368                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1369                 return -ENOMEM;
1370         }
1371
1372         for (i = 0; i < adapter->num_rx_queues; i++) {
1373                 adapter->polling_netdev[i].priv = adapter;
1374                 dev_hold(&adapter->polling_netdev[i]);
1375                 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1376         }
1377         spin_lock_init(&adapter->tx_queue_lock);
1378
1379         /* Explicitly disable IRQ since the NIC can be in any state. */
1380         e1000_irq_disable(adapter);
1381
1382         spin_lock_init(&adapter->stats_lock);
1383
1384         set_bit(__E1000_DOWN, &adapter->flags);
1385
1386         return 0;
1387 }
1388
1389 /**
1390  * e1000_alloc_queues - Allocate memory for all rings
1391  * @adapter: board private structure to initialize
1392  *
1393  * We allocate one ring per queue at run-time since we don't know the
1394  * number of queues at compile-time.  The polling_netdev array is
1395  * intended for Multiqueue, but should work fine with a single queue.
1396  **/
1397
1398 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1399 {
1400         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1401                                    sizeof(struct e1000_tx_ring), GFP_KERNEL);
1402         if (!adapter->tx_ring)
1403                 return -ENOMEM;
1404
1405         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1406                                    sizeof(struct e1000_rx_ring), GFP_KERNEL);
1407         if (!adapter->rx_ring) {
1408                 kfree(adapter->tx_ring);
1409                 return -ENOMEM;
1410         }
1411
1412         adapter->polling_netdev = kcalloc(adapter->num_rx_queues,
1413                                           sizeof(struct net_device),
1414                                           GFP_KERNEL);
1415         if (!adapter->polling_netdev) {
1416                 kfree(adapter->tx_ring);
1417                 kfree(adapter->rx_ring);
1418                 return -ENOMEM;
1419         }
1420
1421         return E1000_SUCCESS;
1422 }
1423
1424 /**
1425  * e1000_open - Called when a network interface is made active
1426  * @netdev: network interface device structure
1427  *
1428  * Returns 0 on success, negative value on failure
1429  *
1430  * The open entry point is called when a network interface is made
1431  * active by the system (IFF_UP).  At this point all resources needed
1432  * for transmit and receive operations are allocated, the interrupt
1433  * handler is registered with the OS, the watchdog timer is started,
1434  * and the stack is notified that the interface is ready.
1435  **/
1436
1437 static int e1000_open(struct net_device *netdev)
1438 {
1439         struct e1000_adapter *adapter = netdev_priv(netdev);
1440         struct e1000_hw *hw = &adapter->hw;
1441         int err;
1442
1443         /* disallow open during test */
1444         if (test_bit(__E1000_TESTING, &adapter->flags))
1445                 return -EBUSY;
1446
1447         /* allocate transmit descriptors */
1448         err = e1000_setup_all_tx_resources(adapter);
1449         if (err)
1450                 goto err_setup_tx;
1451
1452         /* allocate receive descriptors */
1453         err = e1000_setup_all_rx_resources(adapter);
1454         if (err)
1455                 goto err_setup_rx;
1456
1457         e1000_power_up_phy(adapter);
1458
1459         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1460         if ((hw->mng_cookie.status &
1461                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1462                 e1000_update_mng_vlan(adapter);
1463         }
1464
1465         /* If AMT is enabled, let the firmware know that the network
1466          * interface is now open */
1467         if (hw->mac_type == e1000_82573 &&
1468             e1000_check_mng_mode(hw))
1469                 e1000_get_hw_control(adapter);
1470
1471         /* before we allocate an interrupt, we must be ready to handle it.
1472          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1473          * as soon as we call pci_request_irq, so we have to setup our
1474          * clean_rx handler before we do so.  */
1475         e1000_configure(adapter);
1476
1477         err = e1000_request_irq(adapter);
1478         if (err)
1479                 goto err_req_irq;
1480
1481         /* From here on the code is the same as e1000_up() */
1482         clear_bit(__E1000_DOWN, &adapter->flags);
1483
1484         napi_enable(&adapter->napi);
1485
1486         e1000_irq_enable(adapter);
1487
1488         netif_start_queue(netdev);
1489
1490         /* fire a link status change interrupt to start the watchdog */
1491         ew32(ICS, E1000_ICS_LSC);
1492
1493         return E1000_SUCCESS;
1494
1495 err_req_irq:
1496         e1000_release_hw_control(adapter);
1497         e1000_power_down_phy(adapter);
1498         e1000_free_all_rx_resources(adapter);
1499 err_setup_rx:
1500         e1000_free_all_tx_resources(adapter);
1501 err_setup_tx:
1502         e1000_reset(adapter);
1503
1504         return err;
1505 }
1506
1507 /**
1508  * e1000_close - Disables a network interface
1509  * @netdev: network interface device structure
1510  *
1511  * Returns 0, this is not allowed to fail
1512  *
1513  * The close entry point is called when an interface is de-activated
1514  * by the OS.  The hardware is still under the drivers control, but
1515  * needs to be disabled.  A global MAC reset is issued to stop the
1516  * hardware, and all transmit and receive resources are freed.
1517  **/
1518
1519 static int e1000_close(struct net_device *netdev)
1520 {
1521         struct e1000_adapter *adapter = netdev_priv(netdev);
1522         struct e1000_hw *hw = &adapter->hw;
1523
1524         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1525         e1000_down(adapter);
1526         e1000_power_down_phy(adapter);
1527         e1000_free_irq(adapter);
1528
1529         e1000_free_all_tx_resources(adapter);
1530         e1000_free_all_rx_resources(adapter);
1531
1532         /* kill manageability vlan ID if supported, but not if a vlan with
1533          * the same ID is registered on the host OS (let 8021q kill it) */
1534         if ((hw->mng_cookie.status &
1535                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1536              !(adapter->vlgrp &&
1537                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
1538                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1539         }
1540
1541         /* If AMT is enabled, let the firmware know that the network
1542          * interface is now closed */
1543         if (hw->mac_type == e1000_82573 &&
1544             e1000_check_mng_mode(hw))
1545                 e1000_release_hw_control(adapter);
1546
1547         return 0;
1548 }
1549
1550 /**
1551  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1552  * @adapter: address of board private structure
1553  * @start: address of beginning of memory
1554  * @len: length of memory
1555  **/
1556 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1557                                   unsigned long len)
1558 {
1559         struct e1000_hw *hw = &adapter->hw;
1560         unsigned long begin = (unsigned long)start;
1561         unsigned long end = begin + len;
1562
1563         /* First rev 82545 and 82546 need to not allow any memory
1564          * write location to cross 64k boundary due to errata 23 */
1565         if (hw->mac_type == e1000_82545 ||
1566             hw->mac_type == e1000_82546) {
1567                 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1568         }
1569
1570         return true;
1571 }
1572
1573 /**
1574  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1575  * @adapter: board private structure
1576  * @txdr:    tx descriptor ring (for a specific queue) to setup
1577  *
1578  * Return 0 on success, negative on failure
1579  **/
1580
1581 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1582                                     struct e1000_tx_ring *txdr)
1583 {
1584         struct pci_dev *pdev = adapter->pdev;
1585         int size;
1586
1587         size = sizeof(struct e1000_buffer) * txdr->count;
1588         txdr->buffer_info = vmalloc(size);
1589         if (!txdr->buffer_info) {
1590                 DPRINTK(PROBE, ERR,
1591                 "Unable to allocate memory for the transmit descriptor ring\n");
1592                 return -ENOMEM;
1593         }
1594         memset(txdr->buffer_info, 0, size);
1595
1596         /* round up to nearest 4K */
1597
1598         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1599         txdr->size = ALIGN(txdr->size, 4096);
1600
1601         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1602         if (!txdr->desc) {
1603 setup_tx_desc_die:
1604                 vfree(txdr->buffer_info);
1605                 DPRINTK(PROBE, ERR,
1606                 "Unable to allocate memory for the transmit descriptor ring\n");
1607                 return -ENOMEM;
1608         }
1609
1610         /* Fix for errata 23, can't cross 64kB boundary */
1611         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1612                 void *olddesc = txdr->desc;
1613                 dma_addr_t olddma = txdr->dma;
1614                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1615                                      "at %p\n", txdr->size, txdr->desc);
1616                 /* Try again, without freeing the previous */
1617                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1618                 /* Failed allocation, critical failure */
1619                 if (!txdr->desc) {
1620                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1621                         goto setup_tx_desc_die;
1622                 }
1623
1624                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1625                         /* give up */
1626                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1627                                             txdr->dma);
1628                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1629                         DPRINTK(PROBE, ERR,
1630                                 "Unable to allocate aligned memory "
1631                                 "for the transmit descriptor ring\n");
1632                         vfree(txdr->buffer_info);
1633                         return -ENOMEM;
1634                 } else {
1635                         /* Free old allocation, new allocation was successful */
1636                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1637                 }
1638         }
1639         memset(txdr->desc, 0, txdr->size);
1640
1641         txdr->next_to_use = 0;
1642         txdr->next_to_clean = 0;
1643         spin_lock_init(&txdr->tx_lock);
1644
1645         return 0;
1646 }
1647
1648 /**
1649  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1650  *                                (Descriptors) for all queues
1651  * @adapter: board private structure
1652  *
1653  * Return 0 on success, negative on failure
1654  **/
1655
1656 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1657 {
1658         int i, err = 0;
1659
1660         for (i = 0; i < adapter->num_tx_queues; i++) {
1661                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1662                 if (err) {
1663                         DPRINTK(PROBE, ERR,
1664                                 "Allocation for Tx Queue %u failed\n", i);
1665                         for (i-- ; i >= 0; i--)
1666                                 e1000_free_tx_resources(adapter,
1667                                                         &adapter->tx_ring[i]);
1668                         break;
1669                 }
1670         }
1671
1672         return err;
1673 }
1674
1675 /**
1676  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1677  * @adapter: board private structure
1678  *
1679  * Configure the Tx unit of the MAC after a reset.
1680  **/
1681
1682 static void e1000_configure_tx(struct e1000_adapter *adapter)
1683 {
1684         u64 tdba;
1685         struct e1000_hw *hw = &adapter->hw;
1686         u32 tdlen, tctl, tipg, tarc;
1687         u32 ipgr1, ipgr2;
1688
1689         /* Setup the HW Tx Head and Tail descriptor pointers */
1690
1691         switch (adapter->num_tx_queues) {
1692         case 1:
1693         default:
1694                 tdba = adapter->tx_ring[0].dma;
1695                 tdlen = adapter->tx_ring[0].count *
1696                         sizeof(struct e1000_tx_desc);
1697                 ew32(TDLEN, tdlen);
1698                 ew32(TDBAH, (tdba >> 32));
1699                 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1700                 ew32(TDT, 0);
1701                 ew32(TDH, 0);
1702                 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1703                 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1704                 break;
1705         }
1706
1707         /* Set the default values for the Tx Inter Packet Gap timer */
1708         if (hw->mac_type <= e1000_82547_rev_2 &&
1709             (hw->media_type == e1000_media_type_fiber ||
1710              hw->media_type == e1000_media_type_internal_serdes))
1711                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1712         else
1713                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1714
1715         switch (hw->mac_type) {
1716         case e1000_82542_rev2_0:
1717         case e1000_82542_rev2_1:
1718                 tipg = DEFAULT_82542_TIPG_IPGT;
1719                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1720                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1721                 break;
1722         case e1000_80003es2lan:
1723                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1724                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1725                 break;
1726         default:
1727                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1728                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1729                 break;
1730         }
1731         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1732         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1733         ew32(TIPG, tipg);
1734
1735         /* Set the Tx Interrupt Delay register */
1736
1737         ew32(TIDV, adapter->tx_int_delay);
1738         if (hw->mac_type >= e1000_82540)
1739                 ew32(TADV, adapter->tx_abs_int_delay);
1740
1741         /* Program the Transmit Control Register */
1742
1743         tctl = er32(TCTL);
1744         tctl &= ~E1000_TCTL_CT;
1745         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1746                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1747
1748         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1749                 tarc = er32(TARC0);
1750                 /* set the speed mode bit, we'll clear it if we're not at
1751                  * gigabit link later */
1752                 tarc |= (1 << 21);
1753                 ew32(TARC0, tarc);
1754         } else if (hw->mac_type == e1000_80003es2lan) {
1755                 tarc = er32(TARC0);
1756                 tarc |= 1;
1757                 ew32(TARC0, tarc);
1758                 tarc = er32(TARC1);
1759                 tarc |= 1;
1760                 ew32(TARC1, tarc);
1761         }
1762
1763         e1000_config_collision_dist(hw);
1764
1765         /* Setup Transmit Descriptor Settings for eop descriptor */
1766         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1767
1768         /* only set IDE if we are delaying interrupts using the timers */
1769         if (adapter->tx_int_delay)
1770                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1771
1772         if (hw->mac_type < e1000_82543)
1773                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1774         else
1775                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1776
1777         /* Cache if we're 82544 running in PCI-X because we'll
1778          * need this to apply a workaround later in the send path. */
1779         if (hw->mac_type == e1000_82544 &&
1780             hw->bus_type == e1000_bus_type_pcix)
1781                 adapter->pcix_82544 = 1;
1782
1783         ew32(TCTL, tctl);
1784
1785 }
1786
1787 /**
1788  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1789  * @adapter: board private structure
1790  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1791  *
1792  * Returns 0 on success, negative on failure
1793  **/
1794
1795 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1796                                     struct e1000_rx_ring *rxdr)
1797 {
1798         struct e1000_hw *hw = &adapter->hw;
1799         struct pci_dev *pdev = adapter->pdev;
1800         int size, desc_len;
1801
1802         size = sizeof(struct e1000_buffer) * rxdr->count;
1803         rxdr->buffer_info = vmalloc(size);
1804         if (!rxdr->buffer_info) {
1805                 DPRINTK(PROBE, ERR,
1806                 "Unable to allocate memory for the receive descriptor ring\n");
1807                 return -ENOMEM;
1808         }
1809         memset(rxdr->buffer_info, 0, size);
1810
1811         if (hw->mac_type <= e1000_82547_rev_2)
1812                 desc_len = sizeof(struct e1000_rx_desc);
1813         else
1814                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1815
1816         /* Round up to nearest 4K */
1817
1818         rxdr->size = rxdr->count * desc_len;
1819         rxdr->size = ALIGN(rxdr->size, 4096);
1820
1821         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1822
1823         if (!rxdr->desc) {
1824                 DPRINTK(PROBE, ERR,
1825                 "Unable to allocate memory for the receive descriptor ring\n");
1826 setup_rx_desc_die:
1827                 vfree(rxdr->buffer_info);
1828                 return -ENOMEM;
1829         }
1830
1831         /* Fix for errata 23, can't cross 64kB boundary */
1832         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1833                 void *olddesc = rxdr->desc;
1834                 dma_addr_t olddma = rxdr->dma;
1835                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1836                                      "at %p\n", rxdr->size, rxdr->desc);
1837                 /* Try again, without freeing the previous */
1838                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1839                 /* Failed allocation, critical failure */
1840                 if (!rxdr->desc) {
1841                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1842                         DPRINTK(PROBE, ERR,
1843                                 "Unable to allocate memory "
1844                                 "for the receive descriptor ring\n");
1845                         goto setup_rx_desc_die;
1846                 }
1847
1848                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1849                         /* give up */
1850                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1851                                             rxdr->dma);
1852                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1853                         DPRINTK(PROBE, ERR,
1854                                 "Unable to allocate aligned memory "
1855                                 "for the receive descriptor ring\n");
1856                         goto setup_rx_desc_die;
1857                 } else {
1858                         /* Free old allocation, new allocation was successful */
1859                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1860                 }
1861         }
1862         memset(rxdr->desc, 0, rxdr->size);
1863
1864         rxdr->next_to_clean = 0;
1865         rxdr->next_to_use = 0;
1866
1867         return 0;
1868 }
1869
1870 /**
1871  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1872  *                                (Descriptors) for all queues
1873  * @adapter: board private structure
1874  *
1875  * Return 0 on success, negative on failure
1876  **/
1877
1878 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1879 {
1880         int i, err = 0;
1881
1882         for (i = 0; i < adapter->num_rx_queues; i++) {
1883                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1884                 if (err) {
1885                         DPRINTK(PROBE, ERR,
1886                                 "Allocation for Rx Queue %u failed\n", i);
1887                         for (i-- ; i >= 0; i--)
1888                                 e1000_free_rx_resources(adapter,
1889                                                         &adapter->rx_ring[i]);
1890                         break;
1891                 }
1892         }
1893
1894         return err;
1895 }
1896
1897 /**
1898  * e1000_setup_rctl - configure the receive control registers
1899  * @adapter: Board private structure
1900  **/
1901 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1902                         (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1903 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1904 {
1905         struct e1000_hw *hw = &adapter->hw;
1906         u32 rctl;
1907
1908         rctl = er32(RCTL);
1909
1910         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1911
1912         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1913                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1914                 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1915
1916         if (hw->tbi_compatibility_on == 1)
1917                 rctl |= E1000_RCTL_SBP;
1918         else
1919                 rctl &= ~E1000_RCTL_SBP;
1920
1921         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1922                 rctl &= ~E1000_RCTL_LPE;
1923         else
1924                 rctl |= E1000_RCTL_LPE;
1925
1926         /* Setup buffer sizes */
1927         rctl &= ~E1000_RCTL_SZ_4096;
1928         rctl |= E1000_RCTL_BSEX;
1929         switch (adapter->rx_buffer_len) {
1930                 case E1000_RXBUFFER_256:
1931                         rctl |= E1000_RCTL_SZ_256;
1932                         rctl &= ~E1000_RCTL_BSEX;
1933                         break;
1934                 case E1000_RXBUFFER_512:
1935                         rctl |= E1000_RCTL_SZ_512;
1936                         rctl &= ~E1000_RCTL_BSEX;
1937                         break;
1938                 case E1000_RXBUFFER_1024:
1939                         rctl |= E1000_RCTL_SZ_1024;
1940                         rctl &= ~E1000_RCTL_BSEX;
1941                         break;
1942                 case E1000_RXBUFFER_2048:
1943                 default:
1944                         rctl |= E1000_RCTL_SZ_2048;
1945                         rctl &= ~E1000_RCTL_BSEX;
1946                         break;
1947                 case E1000_RXBUFFER_4096:
1948                         rctl |= E1000_RCTL_SZ_4096;
1949                         break;
1950                 case E1000_RXBUFFER_8192:
1951                         rctl |= E1000_RCTL_SZ_8192;
1952                         break;
1953                 case E1000_RXBUFFER_16384:
1954                         rctl |= E1000_RCTL_SZ_16384;
1955                         break;
1956         }
1957
1958         ew32(RCTL, rctl);
1959 }
1960
1961 /**
1962  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1963  * @adapter: board private structure
1964  *
1965  * Configure the Rx unit of the MAC after a reset.
1966  **/
1967
1968 static void e1000_configure_rx(struct e1000_adapter *adapter)
1969 {
1970         u64 rdba;
1971         struct e1000_hw *hw = &adapter->hw;
1972         u32 rdlen, rctl, rxcsum, ctrl_ext;
1973
1974         rdlen = adapter->rx_ring[0].count *
1975                 sizeof(struct e1000_rx_desc);
1976         adapter->clean_rx = e1000_clean_rx_irq;
1977         adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1978
1979         /* disable receives while setting up the descriptors */
1980         rctl = er32(RCTL);
1981         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1982
1983         /* set the Receive Delay Timer Register */
1984         ew32(RDTR, adapter->rx_int_delay);
1985
1986         if (hw->mac_type >= e1000_82540) {
1987                 ew32(RADV, adapter->rx_abs_int_delay);
1988                 if (adapter->itr_setting != 0)
1989                         ew32(ITR, 1000000000 / (adapter->itr * 256));
1990         }
1991
1992         if (hw->mac_type >= e1000_82571) {
1993                 ctrl_ext = er32(CTRL_EXT);
1994                 /* Reset delay timers after every interrupt */
1995                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1996                 /* Auto-Mask interrupts upon ICR access */
1997                 ctrl_ext |= E1000_CTRL_EXT_IAME;
1998                 ew32(IAM, 0xffffffff);
1999                 ew32(CTRL_EXT, ctrl_ext);
2000                 E1000_WRITE_FLUSH();
2001         }
2002
2003         /* Setup the HW Rx Head and Tail Descriptor Pointers and
2004          * the Base and Length of the Rx Descriptor Ring */
2005         switch (adapter->num_rx_queues) {
2006         case 1:
2007         default:
2008                 rdba = adapter->rx_ring[0].dma;
2009                 ew32(RDLEN, rdlen);
2010                 ew32(RDBAH, (rdba >> 32));
2011                 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
2012                 ew32(RDT, 0);
2013                 ew32(RDH, 0);
2014                 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
2015                 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
2016                 break;
2017         }
2018
2019         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
2020         if (hw->mac_type >= e1000_82543) {
2021                 rxcsum = er32(RXCSUM);
2022                 if (adapter->rx_csum)
2023                         rxcsum |= E1000_RXCSUM_TUOFL;
2024                 else
2025                         /* don't need to clear IPPCSE as it defaults to 0 */
2026                         rxcsum &= ~E1000_RXCSUM_TUOFL;
2027                 ew32(RXCSUM, rxcsum);
2028         }
2029
2030         /* Enable Receives */
2031         ew32(RCTL, rctl);
2032 }
2033
2034 /**
2035  * e1000_free_tx_resources - Free Tx Resources per Queue
2036  * @adapter: board private structure
2037  * @tx_ring: Tx descriptor ring for a specific queue
2038  *
2039  * Free all transmit software resources
2040  **/
2041
2042 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
2043                                     struct e1000_tx_ring *tx_ring)
2044 {
2045         struct pci_dev *pdev = adapter->pdev;
2046
2047         e1000_clean_tx_ring(adapter, tx_ring);
2048
2049         vfree(tx_ring->buffer_info);
2050         tx_ring->buffer_info = NULL;
2051
2052         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2053
2054         tx_ring->desc = NULL;
2055 }
2056
2057 /**
2058  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
2059  * @adapter: board private structure
2060  *
2061  * Free all transmit software resources
2062  **/
2063
2064 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
2065 {
2066         int i;
2067
2068         for (i = 0; i < adapter->num_tx_queues; i++)
2069                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
2070 }
2071
2072 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
2073                                              struct e1000_buffer *buffer_info)
2074 {
2075         if (buffer_info->dma) {
2076                 pci_unmap_page(adapter->pdev,
2077                                 buffer_info->dma,
2078                                 buffer_info->length,
2079                                 PCI_DMA_TODEVICE);
2080                 buffer_info->dma = 0;
2081         }
2082         if (buffer_info->skb) {
2083                 dev_kfree_skb_any(buffer_info->skb);
2084                 buffer_info->skb = NULL;
2085         }
2086         /* buffer_info must be completely set up in the transmit path */
2087 }
2088
2089 /**
2090  * e1000_clean_tx_ring - Free Tx Buffers
2091  * @adapter: board private structure
2092  * @tx_ring: ring to be cleaned
2093  **/
2094
2095 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
2096                                 struct e1000_tx_ring *tx_ring)
2097 {
2098         struct e1000_hw *hw = &adapter->hw;
2099         struct e1000_buffer *buffer_info;
2100         unsigned long size;
2101         unsigned int i;
2102
2103         /* Free all the Tx ring sk_buffs */
2104
2105         for (i = 0; i < tx_ring->count; i++) {
2106                 buffer_info = &tx_ring->buffer_info[i];
2107                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2108         }
2109
2110         size = sizeof(struct e1000_buffer) * tx_ring->count;
2111         memset(tx_ring->buffer_info, 0, size);
2112
2113         /* Zero out the descriptor ring */
2114
2115         memset(tx_ring->desc, 0, tx_ring->size);
2116
2117         tx_ring->next_to_use = 0;
2118         tx_ring->next_to_clean = 0;
2119         tx_ring->last_tx_tso = 0;
2120
2121         writel(0, hw->hw_addr + tx_ring->tdh);
2122         writel(0, hw->hw_addr + tx_ring->tdt);
2123 }
2124
2125 /**
2126  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2127  * @adapter: board private structure
2128  **/
2129
2130 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2131 {
2132         int i;
2133
2134         for (i = 0; i < adapter->num_tx_queues; i++)
2135                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2136 }
2137
2138 /**
2139  * e1000_free_rx_resources - Free Rx Resources
2140  * @adapter: board private structure
2141  * @rx_ring: ring to clean the resources from
2142  *
2143  * Free all receive software resources
2144  **/
2145
2146 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2147                                     struct e1000_rx_ring *rx_ring)
2148 {
2149         struct pci_dev *pdev = adapter->pdev;
2150
2151         e1000_clean_rx_ring(adapter, rx_ring);
2152
2153         vfree(rx_ring->buffer_info);
2154         rx_ring->buffer_info = NULL;
2155
2156         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2157
2158         rx_ring->desc = NULL;
2159 }
2160
2161 /**
2162  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2163  * @adapter: board private structure
2164  *
2165  * Free all receive software resources
2166  **/
2167
2168 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2169 {
2170         int i;
2171
2172         for (i = 0; i < adapter->num_rx_queues; i++)
2173                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2174 }
2175
2176 /**
2177  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2178  * @adapter: board private structure
2179  * @rx_ring: ring to free buffers from
2180  **/
2181
2182 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2183                                 struct e1000_rx_ring *rx_ring)
2184 {
2185         struct e1000_hw *hw = &adapter->hw;
2186         struct e1000_buffer *buffer_info;
2187         struct pci_dev *pdev = adapter->pdev;
2188         unsigned long size;
2189         unsigned int i;
2190
2191         /* Free all the Rx ring sk_buffs */
2192         for (i = 0; i < rx_ring->count; i++) {
2193                 buffer_info = &rx_ring->buffer_info[i];
2194                 if (buffer_info->skb) {
2195                         pci_unmap_single(pdev,
2196                                          buffer_info->dma,
2197                                          buffer_info->length,
2198                                          PCI_DMA_FROMDEVICE);
2199
2200                         dev_kfree_skb(buffer_info->skb);
2201                         buffer_info->skb = NULL;
2202                 }
2203         }
2204
2205         size = sizeof(struct e1000_buffer) * rx_ring->count;
2206         memset(rx_ring->buffer_info, 0, size);
2207
2208         /* Zero out the descriptor ring */
2209
2210         memset(rx_ring->desc, 0, rx_ring->size);
2211
2212         rx_ring->next_to_clean = 0;
2213         rx_ring->next_to_use = 0;
2214
2215         writel(0, hw->hw_addr + rx_ring->rdh);
2216         writel(0, hw->hw_addr + rx_ring->rdt);
2217 }
2218
2219 /**
2220  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2221  * @adapter: board private structure
2222  **/
2223
2224 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2225 {
2226         int i;
2227
2228         for (i = 0; i < adapter->num_rx_queues; i++)
2229                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2230 }
2231
2232 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2233  * and memory write and invalidate disabled for certain operations
2234  */
2235 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2236 {
2237         struct e1000_hw *hw = &adapter->hw;
2238         struct net_device *netdev = adapter->netdev;
2239         u32 rctl;
2240
2241         e1000_pci_clear_mwi(hw);
2242
2243         rctl = er32(RCTL);
2244         rctl |= E1000_RCTL_RST;
2245         ew32(RCTL, rctl);
2246         E1000_WRITE_FLUSH();
2247         mdelay(5);
2248
2249         if (netif_running(netdev))
2250                 e1000_clean_all_rx_rings(adapter);
2251 }
2252
2253 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2254 {
2255         struct e1000_hw *hw = &adapter->hw;
2256         struct net_device *netdev = adapter->netdev;
2257         u32 rctl;
2258
2259         rctl = er32(RCTL);
2260         rctl &= ~E1000_RCTL_RST;
2261         ew32(RCTL, rctl);
2262         E1000_WRITE_FLUSH();
2263         mdelay(5);
2264
2265         if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2266                 e1000_pci_set_mwi(hw);
2267
2268         if (netif_running(netdev)) {
2269                 /* No need to loop, because 82542 supports only 1 queue */
2270                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2271                 e1000_configure_rx(adapter);
2272                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2273         }
2274 }
2275
2276 /**
2277  * e1000_set_mac - Change the Ethernet Address of the NIC
2278  * @netdev: network interface device structure
2279  * @p: pointer to an address structure
2280  *
2281  * Returns 0 on success, negative on failure
2282  **/
2283
2284 static int e1000_set_mac(struct net_device *netdev, void *p)
2285 {
2286         struct e1000_adapter *adapter = netdev_priv(netdev);
2287         struct e1000_hw *hw = &adapter->hw;
2288         struct sockaddr *addr = p;
2289
2290         if (!is_valid_ether_addr(addr->sa_data))
2291                 return -EADDRNOTAVAIL;
2292
2293         /* 82542 2.0 needs to be in reset to write receive address registers */
2294
2295         if (hw->mac_type == e1000_82542_rev2_0)
2296                 e1000_enter_82542_rst(adapter);
2297
2298         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2299         memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2300
2301         e1000_rar_set(hw, hw->mac_addr, 0);
2302
2303         /* With 82571 controllers, LAA may be overwritten (with the default)
2304          * due to controller reset from the other port. */
2305         if (hw->mac_type == e1000_82571) {
2306                 /* activate the work around */
2307                 hw->laa_is_present = 1;
2308
2309                 /* Hold a copy of the LAA in RAR[14] This is done so that
2310                  * between the time RAR[0] gets clobbered  and the time it
2311                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2312                  * of the RARs and no incoming packets directed to this port
2313                  * are dropped. Eventaully the LAA will be in RAR[0] and
2314                  * RAR[14] */
2315                 e1000_rar_set(hw, hw->mac_addr,
2316                                         E1000_RAR_ENTRIES - 1);
2317         }
2318
2319         if (hw->mac_type == e1000_82542_rev2_0)
2320                 e1000_leave_82542_rst(adapter);
2321
2322         return 0;
2323 }
2324
2325 /**
2326  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2327  * @netdev: network interface device structure
2328  *
2329  * The set_rx_mode entry point is called whenever the unicast or multicast
2330  * address lists or the network interface flags are updated. This routine is
2331  * responsible for configuring the hardware for proper unicast, multicast,
2332  * promiscuous mode, and all-multi behavior.
2333  **/
2334
2335 static void e1000_set_rx_mode(struct net_device *netdev)
2336 {
2337         struct e1000_adapter *adapter = netdev_priv(netdev);
2338         struct e1000_hw *hw = &adapter->hw;
2339         struct dev_addr_list *uc_ptr;
2340         struct dev_addr_list *mc_ptr;
2341         u32 rctl;
2342         u32 hash_value;
2343         int i, rar_entries = E1000_RAR_ENTRIES;
2344         int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2345                                 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2346                                 E1000_NUM_MTA_REGISTERS;
2347
2348         if (hw->mac_type == e1000_ich8lan)
2349                 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2350
2351         /* reserve RAR[14] for LAA over-write work-around */
2352         if (hw->mac_type == e1000_82571)
2353                 rar_entries--;
2354
2355         /* Check for Promiscuous and All Multicast modes */
2356
2357         rctl = er32(RCTL);
2358
2359         if (netdev->flags & IFF_PROMISC) {
2360                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2361                 rctl &= ~E1000_RCTL_VFE;
2362         } else {
2363                 if (netdev->flags & IFF_ALLMULTI) {
2364                         rctl |= E1000_RCTL_MPE;
2365                 } else {
2366                         rctl &= ~E1000_RCTL_MPE;
2367                 }
2368                 if (adapter->hw.mac_type != e1000_ich8lan)
2369                         rctl |= E1000_RCTL_VFE;
2370         }
2371
2372         uc_ptr = NULL;
2373         if (netdev->uc_count > rar_entries - 1) {
2374                 rctl |= E1000_RCTL_UPE;
2375         } else if (!(netdev->flags & IFF_PROMISC)) {
2376                 rctl &= ~E1000_RCTL_UPE;
2377                 uc_ptr = netdev->uc_list;
2378         }
2379
2380         ew32(RCTL, rctl);
2381
2382         /* 82542 2.0 needs to be in reset to write receive address registers */
2383
2384         if (hw->mac_type == e1000_82542_rev2_0)
2385                 e1000_enter_82542_rst(adapter);
2386
2387         /* load the first 14 addresses into the exact filters 1-14. Unicast
2388          * addresses take precedence to avoid disabling unicast filtering
2389          * when possible.
2390          *
2391          * RAR 0 is used for the station MAC adddress
2392          * if there are not 14 addresses, go ahead and clear the filters
2393          * -- with 82571 controllers only 0-13 entries are filled here
2394          */
2395         mc_ptr = netdev->mc_list;
2396
2397         for (i = 1; i < rar_entries; i++) {
2398                 if (uc_ptr) {
2399                         e1000_rar_set(hw, uc_ptr->da_addr, i);
2400                         uc_ptr = uc_ptr->next;
2401                 } else if (mc_ptr) {
2402                         e1000_rar_set(hw, mc_ptr->da_addr, i);
2403                         mc_ptr = mc_ptr->next;
2404                 } else {
2405                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2406                         E1000_WRITE_FLUSH();
2407                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2408                         E1000_WRITE_FLUSH();
2409                 }
2410         }
2411         WARN_ON(uc_ptr != NULL);
2412
2413         /* clear the old settings from the multicast hash table */
2414
2415         for (i = 0; i < mta_reg_count; i++) {
2416                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2417                 E1000_WRITE_FLUSH();
2418         }
2419
2420         /* load any remaining addresses into the hash table */
2421
2422         for (; mc_ptr; mc_ptr = mc_ptr->next) {
2423                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->da_addr);
2424                 e1000_mta_set(hw, hash_value);
2425         }
2426
2427         if (hw->mac_type == e1000_82542_rev2_0)
2428                 e1000_leave_82542_rst(adapter);
2429 }
2430
2431 /* Need to wait a few seconds after link up to get diagnostic information from
2432  * the phy */
2433
2434 static void e1000_update_phy_info(unsigned long data)
2435 {
2436         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2437         struct e1000_hw *hw = &adapter->hw;
2438         e1000_phy_get_info(hw, &adapter->phy_info);
2439 }
2440
2441 /**
2442  * e1000_82547_tx_fifo_stall - Timer Call-back
2443  * @data: pointer to adapter cast into an unsigned long
2444  **/
2445
2446 static void e1000_82547_tx_fifo_stall(unsigned long data)
2447 {
2448         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2449         struct e1000_hw *hw = &adapter->hw;
2450         struct net_device *netdev = adapter->netdev;
2451         u32 tctl;
2452
2453         if (atomic_read(&adapter->tx_fifo_stall)) {
2454                 if ((er32(TDT) == er32(TDH)) &&
2455                    (er32(TDFT) == er32(TDFH)) &&
2456                    (er32(TDFTS) == er32(TDFHS))) {
2457                         tctl = er32(TCTL);
2458                         ew32(TCTL, tctl & ~E1000_TCTL_EN);
2459                         ew32(TDFT, adapter->tx_head_addr);
2460                         ew32(TDFH, adapter->tx_head_addr);
2461                         ew32(TDFTS, adapter->tx_head_addr);
2462                         ew32(TDFHS, adapter->tx_head_addr);
2463                         ew32(TCTL, tctl);
2464                         E1000_WRITE_FLUSH();
2465
2466                         adapter->tx_fifo_head = 0;
2467                         atomic_set(&adapter->tx_fifo_stall, 0);
2468                         netif_wake_queue(netdev);
2469                 } else {
2470                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2471                 }
2472         }
2473 }
2474
2475 /**
2476  * e1000_watchdog - Timer Call-back
2477  * @data: pointer to adapter cast into an unsigned long
2478  **/
2479 static void e1000_watchdog(unsigned long data)
2480 {
2481         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2482         struct e1000_hw *hw = &adapter->hw;
2483         struct net_device *netdev = adapter->netdev;
2484         struct e1000_tx_ring *txdr = adapter->tx_ring;
2485         u32 link, tctl;
2486         s32 ret_val;
2487
2488         ret_val = e1000_check_for_link(hw);
2489         if ((ret_val == E1000_ERR_PHY) &&
2490             (hw->phy_type == e1000_phy_igp_3) &&
2491             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2492                 /* See e1000_kumeran_lock_loss_workaround() */
2493                 DPRINTK(LINK, INFO,
2494                         "Gigabit has been disabled, downgrading speed\n");
2495         }
2496
2497         if (hw->mac_type == e1000_82573) {
2498                 e1000_enable_tx_pkt_filtering(hw);
2499                 if (adapter->mng_vlan_id != hw->mng_cookie.vlan_id)
2500                         e1000_update_mng_vlan(adapter);
2501         }
2502
2503         if ((hw->media_type == e1000_media_type_internal_serdes) &&
2504            !(er32(TXCW) & E1000_TXCW_ANE))
2505                 link = !hw->serdes_link_down;
2506         else
2507                 link = er32(STATUS) & E1000_STATUS_LU;
2508
2509         if (link) {
2510                 if (!netif_carrier_ok(netdev)) {
2511                         u32 ctrl;
2512                         bool txb2b = true;
2513                         e1000_get_speed_and_duplex(hw,
2514                                                    &adapter->link_speed,
2515                                                    &adapter->link_duplex);
2516
2517                         ctrl = er32(CTRL);
2518                         DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s, "
2519                                 "Flow Control: %s\n",
2520                                 adapter->link_speed,
2521                                 adapter->link_duplex == FULL_DUPLEX ?
2522                                 "Full Duplex" : "Half Duplex",
2523                                 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2524                                 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2525                                 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2526                                 E1000_CTRL_TFCE) ? "TX" : "None" )));
2527
2528                         /* tweak tx_queue_len according to speed/duplex
2529                          * and adjust the timeout factor */
2530                         netdev->tx_queue_len = adapter->tx_queue_len;
2531                         adapter->tx_timeout_factor = 1;
2532                         switch (adapter->link_speed) {
2533                         case SPEED_10:
2534                                 txb2b = false;
2535                                 netdev->tx_queue_len = 10;
2536                                 adapter->tx_timeout_factor = 8;
2537                                 break;
2538                         case SPEED_100:
2539                                 txb2b = false;
2540                                 netdev->tx_queue_len = 100;
2541                                 /* maybe add some timeout factor ? */
2542                                 break;
2543                         }
2544
2545                         if ((hw->mac_type == e1000_82571 ||
2546                              hw->mac_type == e1000_82572) &&
2547                             !txb2b) {
2548                                 u32 tarc0;
2549                                 tarc0 = er32(TARC0);
2550                                 tarc0 &= ~(1 << 21);
2551                                 ew32(TARC0, tarc0);
2552                         }
2553
2554                         /* disable TSO for pcie and 10/100 speeds, to avoid
2555                          * some hardware issues */
2556                         if (!adapter->tso_force &&
2557                             hw->bus_type == e1000_bus_type_pci_express){
2558                                 switch (adapter->link_speed) {
2559                                 case SPEED_10:
2560                                 case SPEED_100:
2561                                         DPRINTK(PROBE,INFO,
2562                                         "10/100 speed: disabling TSO\n");
2563                                         netdev->features &= ~NETIF_F_TSO;
2564                                         netdev->features &= ~NETIF_F_TSO6;
2565                                         break;
2566                                 case SPEED_1000:
2567                                         netdev->features |= NETIF_F_TSO;
2568                                         netdev->features |= NETIF_F_TSO6;
2569                                         break;
2570                                 default:
2571                                         /* oops */
2572                                         break;
2573                                 }
2574                         }
2575
2576                         /* enable transmits in the hardware, need to do this
2577                          * after setting TARC0 */
2578                         tctl = er32(TCTL);
2579                         tctl |= E1000_TCTL_EN;
2580                         ew32(TCTL, tctl);
2581
2582                         netif_carrier_on(netdev);
2583                         netif_wake_queue(netdev);
2584                         mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2585                         adapter->smartspeed = 0;
2586                 } else {
2587                         /* make sure the receive unit is started */
2588                         if (hw->rx_needs_kicking) {
2589                                 u32 rctl = er32(RCTL);
2590                                 ew32(RCTL, rctl | E1000_RCTL_EN);
2591                         }
2592                 }
2593         } else {
2594                 if (netif_carrier_ok(netdev)) {
2595                         adapter->link_speed = 0;
2596                         adapter->link_duplex = 0;
2597                         DPRINTK(LINK, INFO, "NIC Link is Down\n");
2598                         netif_carrier_off(netdev);
2599                         netif_stop_queue(netdev);
2600                         mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2601
2602                         /* 80003ES2LAN workaround--
2603                          * For packet buffer work-around on link down event;
2604                          * disable receives in the ISR and
2605                          * reset device here in the watchdog
2606                          */
2607                         if (hw->mac_type == e1000_80003es2lan)
2608                                 /* reset device */
2609                                 schedule_work(&adapter->reset_task);
2610                 }
2611
2612                 e1000_smartspeed(adapter);
2613         }
2614
2615         e1000_update_stats(adapter);
2616
2617         hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2618         adapter->tpt_old = adapter->stats.tpt;
2619         hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2620         adapter->colc_old = adapter->stats.colc;
2621
2622         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2623         adapter->gorcl_old = adapter->stats.gorcl;
2624         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2625         adapter->gotcl_old = adapter->stats.gotcl;
2626
2627         e1000_update_adaptive(hw);
2628
2629         if (!netif_carrier_ok(netdev)) {
2630                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2631                         /* We've lost link, so the controller stops DMA,
2632                          * but we've got queued Tx work that's never going
2633                          * to get done, so reset controller to flush Tx.
2634                          * (Do the reset outside of interrupt context). */
2635                         adapter->tx_timeout_count++;
2636                         schedule_work(&adapter->reset_task);
2637                 }
2638         }
2639
2640         /* Cause software interrupt to ensure rx ring is cleaned */
2641         ew32(ICS, E1000_ICS_RXDMT0);
2642
2643         /* Force detection of hung controller every watchdog period */
2644         adapter->detect_tx_hung = true;
2645
2646         /* With 82571 controllers, LAA may be overwritten due to controller
2647          * reset from the other port. Set the appropriate LAA in RAR[0] */
2648         if (hw->mac_type == e1000_82571 && hw->laa_is_present)
2649                 e1000_rar_set(hw, hw->mac_addr, 0);
2650
2651         /* Reset the timer */
2652         mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 2 * HZ));
2653 }
2654
2655 enum latency_range {
2656         lowest_latency = 0,
2657         low_latency = 1,
2658         bulk_latency = 2,
2659         latency_invalid = 255
2660 };
2661
2662 /**
2663  * e1000_update_itr - update the dynamic ITR value based on statistics
2664  *      Stores a new ITR value based on packets and byte
2665  *      counts during the last interrupt.  The advantage of per interrupt
2666  *      computation is faster updates and more accurate ITR for the current
2667  *      traffic pattern.  Constants in this function were computed
2668  *      based on theoretical maximum wire speed and thresholds were set based
2669  *      on testing data as well as attempting to minimize response time
2670  *      while increasing bulk throughput.
2671  *      this functionality is controlled by the InterruptThrottleRate module
2672  *      parameter (see e1000_param.c)
2673  * @adapter: pointer to adapter
2674  * @itr_setting: current adapter->itr
2675  * @packets: the number of packets during this measurement interval
2676  * @bytes: the number of bytes during this measurement interval
2677  **/
2678 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2679                                      u16 itr_setting, int packets, int bytes)
2680 {
2681         unsigned int retval = itr_setting;
2682         struct e1000_hw *hw = &adapter->hw;
2683
2684         if (unlikely(hw->mac_type < e1000_82540))
2685                 goto update_itr_done;
2686
2687         if (packets == 0)
2688                 goto update_itr_done;
2689
2690         switch (itr_setting) {
2691         case lowest_latency:
2692                 /* jumbo frames get bulk treatment*/
2693                 if (bytes/packets > 8000)
2694                         retval = bulk_latency;
2695                 else if ((packets < 5) && (bytes > 512))
2696                         retval = low_latency;
2697                 break;
2698         case low_latency:  /* 50 usec aka 20000 ints/s */
2699                 if (bytes > 10000) {
2700                         /* jumbo frames need bulk latency setting */
2701                         if (bytes/packets > 8000)
2702                                 retval = bulk_latency;
2703                         else if ((packets < 10) || ((bytes/packets) > 1200))
2704                                 retval = bulk_latency;
2705                         else if ((packets > 35))
2706                                 retval = lowest_latency;
2707                 } else if (bytes/packets > 2000)
2708                         retval = bulk_latency;
2709                 else if (packets <= 2 && bytes < 512)
2710                         retval = lowest_latency;
2711                 break;
2712         case bulk_latency: /* 250 usec aka 4000 ints/s */
2713                 if (bytes > 25000) {
2714                         if (packets > 35)
2715                                 retval = low_latency;
2716                 } else if (bytes < 6000) {
2717                         retval = low_latency;
2718                 }
2719                 break;
2720         }
2721
2722 update_itr_done:
2723         return retval;
2724 }
2725
2726 static void e1000_set_itr(struct e1000_adapter *adapter)
2727 {
2728         struct e1000_hw *hw = &adapter->hw;
2729         u16 current_itr;
2730         u32 new_itr = adapter->itr;
2731
2732         if (unlikely(hw->mac_type < e1000_82540))
2733                 return;
2734
2735         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2736         if (unlikely(adapter->link_speed != SPEED_1000)) {
2737                 current_itr = 0;
2738                 new_itr = 4000;
2739                 goto set_itr_now;
2740         }
2741
2742         adapter->tx_itr = e1000_update_itr(adapter,
2743                                     adapter->tx_itr,
2744                                     adapter->total_tx_packets,
2745                                     adapter->total_tx_bytes);
2746         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2747         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2748                 adapter->tx_itr = low_latency;
2749
2750         adapter->rx_itr = e1000_update_itr(adapter,
2751                                     adapter->rx_itr,
2752                                     adapter->total_rx_packets,
2753                                     adapter->total_rx_bytes);
2754         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2755         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2756                 adapter->rx_itr = low_latency;
2757
2758         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2759
2760         switch (current_itr) {
2761         /* counts and packets in update_itr are dependent on these numbers */
2762         case lowest_latency:
2763                 new_itr = 70000;
2764                 break;
2765         case low_latency:
2766                 new_itr = 20000; /* aka hwitr = ~200 */
2767                 break;
2768         case bulk_latency:
2769                 new_itr = 4000;
2770                 break;
2771         default:
2772                 break;
2773         }
2774
2775 set_itr_now:
2776         if (new_itr != adapter->itr) {
2777                 /* this attempts to bias the interrupt rate towards Bulk
2778                  * by adding intermediate steps when interrupt rate is
2779                  * increasing */
2780                 new_itr = new_itr > adapter->itr ?
2781                              min(adapter->itr + (new_itr >> 2), new_itr) :
2782                              new_itr;
2783                 adapter->itr = new_itr;
2784                 ew32(ITR, 1000000000 / (new_itr * 256));
2785         }
2786
2787         return;
2788 }
2789
2790 #define E1000_TX_FLAGS_CSUM             0x00000001
2791 #define E1000_TX_FLAGS_VLAN             0x00000002
2792 #define E1000_TX_FLAGS_TSO              0x00000004
2793 #define E1000_TX_FLAGS_IPV4             0x00000008
2794 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2795 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2796
2797 static int e1000_tso(struct e1000_adapter *adapter,
2798                      struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2799 {
2800         struct e1000_context_desc *context_desc;
2801         struct e1000_buffer *buffer_info;
2802         unsigned int i;
2803         u32 cmd_length = 0;
2804         u16 ipcse = 0, tucse, mss;
2805         u8 ipcss, ipcso, tucss, tucso, hdr_len;
2806         int err;
2807
2808         if (skb_is_gso(skb)) {
2809                 if (skb_header_cloned(skb)) {
2810                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2811                         if (err)
2812                                 return err;
2813                 }
2814
2815                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2816                 mss = skb_shinfo(skb)->gso_size;
2817                 if (skb->protocol == htons(ETH_P_IP)) {
2818                         struct iphdr *iph = ip_hdr(skb);
2819                         iph->tot_len = 0;
2820                         iph->check = 0;
2821                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2822                                                                  iph->daddr, 0,
2823                                                                  IPPROTO_TCP,
2824                                                                  0);
2825                         cmd_length = E1000_TXD_CMD_IP;
2826                         ipcse = skb_transport_offset(skb) - 1;
2827                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2828                         ipv6_hdr(skb)->payload_len = 0;
2829                         tcp_hdr(skb)->check =
2830                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2831                                                  &ipv6_hdr(skb)->daddr,
2832                                                  0, IPPROTO_TCP, 0);
2833                         ipcse = 0;
2834                 }
2835                 ipcss = skb_network_offset(skb);
2836                 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2837                 tucss = skb_transport_offset(skb);
2838                 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2839                 tucse = 0;
2840
2841                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2842                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2843
2844                 i = tx_ring->next_to_use;
2845                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2846                 buffer_info = &tx_ring->buffer_info[i];
2847
2848                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2849                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2850                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2851                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2852                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2853                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2854                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2855                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2856                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2857
2858                 buffer_info->time_stamp = jiffies;
2859                 buffer_info->next_to_watch = i;
2860
2861                 if (++i == tx_ring->count) i = 0;
2862                 tx_ring->next_to_use = i;
2863
2864                 return true;
2865         }
2866         return false;
2867 }
2868
2869 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2870                           struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2871 {
2872         struct e1000_context_desc *context_desc;
2873         struct e1000_buffer *buffer_info;
2874         unsigned int i;
2875         u8 css;
2876
2877         if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2878                 css = skb_transport_offset(skb);
2879
2880                 i = tx_ring->next_to_use;
2881                 buffer_info = &tx_ring->buffer_info[i];
2882                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2883
2884                 context_desc->lower_setup.ip_config = 0;
2885                 context_desc->upper_setup.tcp_fields.tucss = css;
2886                 context_desc->upper_setup.tcp_fields.tucso =
2887                         css + skb->csum_offset;
2888                 context_desc->upper_setup.tcp_fields.tucse = 0;
2889                 context_desc->tcp_seg_setup.data = 0;
2890                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2891
2892                 buffer_info->time_stamp = jiffies;
2893                 buffer_info->next_to_watch = i;
2894
2895                 if (unlikely(++i == tx_ring->count)) i = 0;
2896                 tx_ring->next_to_use = i;
2897
2898                 return true;
2899         }
2900
2901         return false;
2902 }
2903
2904 #define E1000_MAX_TXD_PWR       12
2905 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2906
2907 static int e1000_tx_map(struct e1000_adapter *adapter,
2908                         struct e1000_tx_ring *tx_ring,
2909                         struct sk_buff *skb, unsigned int first,
2910                         unsigned int max_per_txd, unsigned int nr_frags,
2911                         unsigned int mss)
2912 {
2913         struct e1000_hw *hw = &adapter->hw;
2914         struct e1000_buffer *buffer_info;
2915         unsigned int len = skb->len;
2916         unsigned int offset = 0, size, count = 0, i;
2917         unsigned int f;
2918         len -= skb->data_len;
2919
2920         i = tx_ring->next_to_use;
2921
2922         while (len) {
2923                 buffer_info = &tx_ring->buffer_info[i];
2924                 size = min(len, max_per_txd);
2925                 /* Workaround for Controller erratum --
2926                  * descriptor for non-tso packet in a linear SKB that follows a
2927                  * tso gets written back prematurely before the data is fully
2928                  * DMA'd to the controller */
2929                 if (!skb->data_len && tx_ring->last_tx_tso &&
2930                     !skb_is_gso(skb)) {
2931                         tx_ring->last_tx_tso = 0;
2932                         size -= 4;
2933                 }
2934
2935                 /* Workaround for premature desc write-backs
2936                  * in TSO mode.  Append 4-byte sentinel desc */
2937                 if (unlikely(mss && !nr_frags && size == len && size > 8))
2938                         size -= 4;
2939                 /* work-around for errata 10 and it applies
2940                  * to all controllers in PCI-X mode
2941                  * The fix is to make sure that the first descriptor of a
2942                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2943                  */
2944                 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2945                                 (size > 2015) && count == 0))
2946                         size = 2015;
2947
2948                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2949                  * terminating buffers within evenly-aligned dwords. */
2950                 if (unlikely(adapter->pcix_82544 &&
2951                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2952                    size > 4))
2953                         size -= 4;
2954
2955                 buffer_info->length = size;
2956                 buffer_info->dma =
2957                         pci_map_single(adapter->pdev,
2958                                 skb->data + offset,
2959                                 size,
2960                                 PCI_DMA_TODEVICE);
2961                 buffer_info->time_stamp = jiffies;
2962                 buffer_info->next_to_watch = i;
2963
2964                 len -= size;
2965                 offset += size;
2966                 count++;
2967                 if (unlikely(++i == tx_ring->count)) i = 0;
2968         }
2969
2970         for (f = 0; f < nr_frags; f++) {
2971                 struct skb_frag_struct *frag;
2972
2973                 frag = &skb_shinfo(skb)->frags[f];
2974                 len = frag->size;
2975                 offset = frag->page_offset;
2976
2977                 while (len) {
2978                         buffer_info = &tx_ring->buffer_info[i];
2979                         size = min(len, max_per_txd);
2980                         /* Workaround for premature desc write-backs
2981                          * in TSO mode.  Append 4-byte sentinel desc */
2982                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2983                                 size -= 4;
2984                         /* Workaround for potential 82544 hang in PCI-X.
2985                          * Avoid terminating buffers within evenly-aligned
2986                          * dwords. */
2987                         if (unlikely(adapter->pcix_82544 &&
2988                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
2989                            size > 4))
2990                                 size -= 4;
2991
2992                         buffer_info->length = size;
2993                         buffer_info->dma =
2994                                 pci_map_page(adapter->pdev,
2995                                         frag->page,
2996                                         offset,
2997                                         size,
2998                                         PCI_DMA_TODEVICE);
2999                         buffer_info->time_stamp = jiffies;
3000                         buffer_info->next_to_watch = i;
3001
3002                         len -= size;
3003                         offset += size;
3004                         count++;
3005                         if (unlikely(++i == tx_ring->count)) i = 0;
3006                 }
3007         }
3008
3009         i = (i == 0) ? tx_ring->count - 1 : i - 1;
3010         tx_ring->buffer_info[i].skb = skb;
3011         tx_ring->buffer_info[first].next_to_watch = i;
3012
3013         return count;
3014 }
3015
3016 static void e1000_tx_queue(struct e1000_adapter *adapter,
3017                            struct e1000_tx_ring *tx_ring, int tx_flags,
3018                            int count)
3019 {
3020         struct e1000_hw *hw = &adapter->hw;
3021         struct e1000_tx_desc *tx_desc = NULL;
3022         struct e1000_buffer *buffer_info;
3023         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3024         unsigned int i;
3025
3026         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
3027                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3028                              E1000_TXD_CMD_TSE;
3029                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3030
3031                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3032                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3033         }
3034
3035         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3036                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3037                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3038         }
3039
3040         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3041                 txd_lower |= E1000_TXD_CMD_VLE;
3042                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3043         }
3044
3045         i = tx_ring->next_to_use;
3046
3047         while (count--) {
3048                 buffer_info = &tx_ring->buffer_info[i];
3049                 tx_desc = E1000_TX_DESC(*tx_ring, i);
3050                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3051                 tx_desc->lower.data =
3052                         cpu_to_le32(txd_lower | buffer_info->length);
3053                 tx_desc->upper.data = cpu_to_le32(txd_upper);
3054                 if (unlikely(++i == tx_ring->count)) i = 0;
3055         }
3056
3057         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3058
3059         /* Force memory writes to complete before letting h/w
3060          * know there are new descriptors to fetch.  (Only
3061          * applicable for weak-ordered memory model archs,
3062          * such as IA-64). */
3063         wmb();
3064
3065         tx_ring->next_to_use = i;
3066         writel(i, hw->hw_addr + tx_ring->tdt);
3067         /* we need this if more than one processor can write to our tail
3068          * at a time, it syncronizes IO on IA64/Altix systems */
3069         mmiowb();
3070 }
3071
3072 /**
3073  * 82547 workaround to avoid controller hang in half-duplex environment.
3074  * The workaround is to avoid queuing a large packet that would span
3075  * the internal Tx FIFO ring boundary by notifying the stack to resend
3076  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3077  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3078  * to the beginning of the Tx FIFO.
3079  **/
3080
3081 #define E1000_FIFO_HDR                  0x10
3082 #define E1000_82547_PAD_LEN             0x3E0
3083
3084 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3085                                        struct sk_buff *skb)
3086 {
3087         u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3088         u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3089
3090         skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3091
3092         if (adapter->link_duplex != HALF_DUPLEX)
3093                 goto no_fifo_stall_required;
3094
3095         if (atomic_read(&adapter->tx_fifo_stall))
3096                 return 1;
3097
3098         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3099                 atomic_set(&adapter->tx_fifo_stall, 1);
3100                 return 1;
3101         }
3102
3103 no_fifo_stall_required:
3104         adapter->tx_fifo_head += skb_fifo_len;
3105         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3106                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3107         return 0;
3108 }
3109
3110 #define MINIMUM_DHCP_PACKET_SIZE 282
3111 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
3112                                     struct sk_buff *skb)
3113 {
3114         struct e1000_hw *hw =  &adapter->hw;
3115         u16 length, offset;
3116         if (vlan_tx_tag_present(skb)) {
3117                 if (!((vlan_tx_tag_get(skb) == hw->mng_cookie.vlan_id) &&
3118                         ( hw->mng_cookie.status &
3119                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
3120                         return 0;
3121         }
3122         if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
3123                 struct ethhdr *eth = (struct ethhdr *)skb->data;
3124                 if ((htons(ETH_P_IP) == eth->h_proto)) {
3125                         const struct iphdr *ip =
3126                                 (struct iphdr *)((u8 *)skb->data+14);
3127                         if (IPPROTO_UDP == ip->protocol) {
3128                                 struct udphdr *udp =
3129                                         (struct udphdr *)((u8 *)ip +
3130                                                 (ip->ihl << 2));
3131                                 if (ntohs(udp->dest) == 67) {
3132                                         offset = (u8 *)udp + 8 - skb->data;
3133                                         length = skb->len - offset;
3134
3135                                         return e1000_mng_write_dhcp_info(hw,
3136                                                         (u8 *)udp + 8,
3137                                                         length);
3138                                 }
3139                         }
3140                 }
3141         }
3142         return 0;
3143 }
3144
3145 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3146 {
3147         struct e1000_adapter *adapter = netdev_priv(netdev);
3148         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3149
3150         netif_stop_queue(netdev);
3151         /* Herbert's original patch had:
3152          *  smp_mb__after_netif_stop_queue();
3153          * but since that doesn't exist yet, just open code it. */
3154         smp_mb();
3155
3156         /* We need to check again in a case another CPU has just
3157          * made room available. */
3158         if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3159                 return -EBUSY;
3160
3161         /* A reprieve! */
3162         netif_start_queue(netdev);
3163         ++adapter->restart_queue;
3164         return 0;
3165 }
3166
3167 static int e1000_maybe_stop_tx(struct net_device *netdev,
3168                                struct e1000_tx_ring *tx_ring, int size)
3169 {
3170         if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3171                 return 0;
3172         return __e1000_maybe_stop_tx(netdev, size);
3173 }
3174
3175 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3176 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3177 {
3178         struct e1000_adapter *adapter = netdev_priv(netdev);
3179         struct e1000_hw *hw = &adapter->hw;
3180         struct e1000_tx_ring *tx_ring;
3181         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3182         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3183         unsigned int tx_flags = 0;
3184         unsigned int len = skb->len - skb->data_len;
3185         unsigned long flags;
3186         unsigned int nr_frags;
3187         unsigned int mss;
3188         int count = 0;
3189         int tso;
3190         unsigned int f;
3191
3192         /* This goes back to the question of how to logically map a tx queue
3193          * to a flow.  Right now, performance is impacted slightly negatively
3194          * if using multiple tx queues.  If the stack breaks away from a
3195          * single qdisc implementation, we can look at this again. */
3196         tx_ring = adapter->tx_ring;
3197
3198         if (unlikely(skb->len <= 0)) {
3199                 dev_kfree_skb_any(skb);
3200                 return NETDEV_TX_OK;
3201         }
3202
3203         /* 82571 and newer doesn't need the workaround that limited descriptor
3204          * length to 4kB */
3205         if (hw->mac_type >= e1000_82571)
3206                 max_per_txd = 8192;
3207
3208         mss = skb_shinfo(skb)->gso_size;
3209         /* The controller does a simple calculation to
3210          * make sure there is enough room in the FIFO before
3211          * initiating the DMA for each buffer.  The calc is:
3212          * 4 = ceil(buffer len/mss).  To make sure we don't
3213          * overrun the FIFO, adjust the max buffer len if mss
3214          * drops. */
3215         if (mss) {
3216                 u8 hdr_len;
3217                 max_per_txd = min(mss << 2, max_per_txd);
3218                 max_txd_pwr = fls(max_per_txd) - 1;
3219
3220                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3221                 * points to just header, pull a few bytes of payload from
3222                 * frags into skb->data */
3223                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3224                 if (skb->data_len && hdr_len == len) {
3225                         switch (hw->mac_type) {
3226                                 unsigned int pull_size;
3227                         case e1000_82544:
3228                                 /* Make sure we have room to chop off 4 bytes,
3229                                  * and that the end alignment will work out to
3230                                  * this hardware's requirements
3231                                  * NOTE: this is a TSO only workaround
3232                                  * if end byte alignment not correct move us
3233                                  * into the next dword */
3234                                 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
3235                                         break;
3236                                 /* fall through */
3237                         case e1000_82571:
3238                         case e1000_82572:
3239                         case e1000_82573:
3240                         case e1000_ich8lan:
3241                                 pull_size = min((unsigned int)4, skb->data_len);
3242                                 if (!__pskb_pull_tail(skb, pull_size)) {
3243                                         DPRINTK(DRV, ERR,
3244                                                 "__pskb_pull_tail failed.\n");
3245                                         dev_kfree_skb_any(skb);
3246                                         return NETDEV_TX_OK;
3247                                 }
3248                                 len = skb->len - skb->data_len;
3249                                 break;
3250                         default:
3251                                 /* do nothing */
3252                                 break;
3253                         }
3254                 }
3255         }
3256
3257         /* reserve a descriptor for the offload context */
3258         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3259                 count++;
3260         count++;
3261
3262         /* Controller Erratum workaround */
3263         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3264                 count++;
3265
3266         count += TXD_USE_COUNT(len, max_txd_pwr);
3267
3268         if (adapter->pcix_82544)
3269                 count++;
3270
3271         /* work-around for errata 10 and it applies to all controllers
3272          * in PCI-X mode, so add one more descriptor to the count
3273          */
3274         if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3275                         (len > 2015)))
3276                 count++;
3277
3278         nr_frags = skb_shinfo(skb)->nr_frags;
3279         for (f = 0; f < nr_frags; f++)
3280                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3281                                        max_txd_pwr);
3282         if (adapter->pcix_82544)
3283                 count += nr_frags;
3284
3285
3286         if (hw->tx_pkt_filtering &&
3287             (hw->mac_type == e1000_82573))
3288                 e1000_transfer_dhcp_info(adapter, skb);
3289
3290         if (!spin_trylock_irqsave(&tx_ring->tx_lock, flags))
3291                 /* Collision - tell upper layer to requeue */
3292                 return NETDEV_TX_LOCKED;
3293
3294         /* need: count + 2 desc gap to keep tail from touching
3295          * head, otherwise try next time */
3296         if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) {
3297                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3298                 return NETDEV_TX_BUSY;
3299         }
3300
3301         if (unlikely(hw->mac_type == e1000_82547)) {
3302                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3303                         netif_stop_queue(netdev);
3304                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
3305                         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3306                         return NETDEV_TX_BUSY;
3307                 }
3308         }
3309
3310         if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3311                 tx_flags |= E1000_TX_FLAGS_VLAN;
3312                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3313         }
3314
3315         first = tx_ring->next_to_use;
3316
3317         tso = e1000_tso(adapter, tx_ring, skb);
3318         if (tso < 0) {
3319                 dev_kfree_skb_any(skb);
3320                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3321                 return NETDEV_TX_OK;
3322         }
3323
3324         if (likely(tso)) {
3325                 tx_ring->last_tx_tso = 1;
3326                 tx_flags |= E1000_TX_FLAGS_TSO;
3327         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3328                 tx_flags |= E1000_TX_FLAGS_CSUM;
3329
3330         /* Old method was to assume IPv4 packet by default if TSO was enabled.
3331          * 82571 hardware supports TSO capabilities for IPv6 as well...
3332          * no longer assume, we must. */
3333         if (likely(skb->protocol == htons(ETH_P_IP)))
3334                 tx_flags |= E1000_TX_FLAGS_IPV4;
3335
3336         e1000_tx_queue(adapter, tx_ring, tx_flags,
3337                        e1000_tx_map(adapter, tx_ring, skb, first,
3338                                     max_per_txd, nr_frags, mss));
3339
3340         netdev->trans_start = jiffies;
3341
3342         /* Make sure there is space in the ring for the next send. */
3343         e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3344
3345         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3346         return NETDEV_TX_OK;
3347 }
3348
3349 /**
3350  * e1000_tx_timeout - Respond to a Tx Hang
3351  * @netdev: network interface device structure
3352  **/
3353
3354 static void e1000_tx_timeout(struct net_device *netdev)
3355 {
3356         struct e1000_adapter *adapter = netdev_priv(netdev);
3357
3358         /* Do the reset outside of interrupt context */
3359         adapter->tx_timeout_count++;
3360         schedule_work(&adapter->reset_task);
3361 }
3362
3363 static void e1000_reset_task(struct work_struct *work)
3364 {
3365         struct e1000_adapter *adapter =
3366                 container_of(work, struct e1000_adapter, reset_task);
3367
3368         e1000_reinit_locked(adapter);
3369 }
3370
3371 /**
3372  * e1000_get_stats - Get System Network Statistics
3373  * @netdev: network interface device structure
3374  *
3375  * Returns the address of the device statistics structure.
3376  * The statistics are actually updated from the timer callback.
3377  **/
3378
3379 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3380 {
3381         struct e1000_adapter *adapter = netdev_priv(netdev);
3382
3383         /* only return the current stats */
3384         return &adapter->net_stats;
3385 }
3386
3387 /**
3388  * e1000_change_mtu - Change the Maximum Transfer Unit
3389  * @netdev: network interface device structure
3390  * @new_mtu: new value for maximum frame size
3391  *
3392  * Returns 0 on success, negative on failure
3393  **/
3394
3395 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3396 {
3397         struct e1000_adapter *adapter = netdev_priv(netdev);
3398         struct e1000_hw *hw = &adapter->hw;
3399         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3400         u16 eeprom_data = 0;
3401
3402         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3403             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3404                 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3405                 return -EINVAL;
3406         }
3407
3408         /* Adapter-specific max frame size limits. */
3409         switch (hw->mac_type) {
3410         case e1000_undefined ... e1000_82542_rev2_1:
3411         case e1000_ich8lan:
3412                 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3413                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3414                         return -EINVAL;
3415                 }
3416                 break;
3417         case e1000_82573:
3418                 /* Jumbo Frames not supported if:
3419                  * - this is not an 82573L device
3420                  * - ASPM is enabled in any way (0x1A bits 3:2) */
3421                 e1000_read_eeprom(hw, EEPROM_INIT_3GIO_3, 1,
3422                                   &eeprom_data);
3423                 if ((hw->device_id != E1000_DEV_ID_82573L) ||
3424                     (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
3425                         if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3426                                 DPRINTK(PROBE, ERR,
3427                                         "Jumbo Frames not supported.\n");
3428                                 return -EINVAL;
3429                         }
3430                         break;
3431                 }
3432                 /* ERT will be enabled later to enable wire speed receives */
3433
3434                 /* fall through to get support */
3435         case e1000_82571:
3436         case e1000_82572:
3437         case e1000_80003es2lan:
3438 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3439                 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3440                         DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3441                         return -EINVAL;
3442                 }
3443                 break;
3444         default:
3445                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3446                 break;
3447         }
3448
3449         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3450          * means we reserve 2 more, this pushes us to allocate from the next
3451          * larger slab size
3452          * i.e. RXBUFFER_2048 --> size-4096 slab */
3453
3454         if (max_frame <= E1000_RXBUFFER_256)
3455                 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3456         else if (max_frame <= E1000_RXBUFFER_512)
3457                 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3458         else if (max_frame <= E1000_RXBUFFER_1024)
3459                 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3460         else if (max_frame <= E1000_RXBUFFER_2048)
3461                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3462         else if (max_frame <= E1000_RXBUFFER_4096)
3463                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3464         else if (max_frame <= E1000_RXBUFFER_8192)
3465                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3466         else if (max_frame <= E1000_RXBUFFER_16384)
3467                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3468
3469         /* adjust allocation if LPE protects us, and we aren't using SBP */
3470         if (!hw->tbi_compatibility_on &&
3471             ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3472              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3473                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3474
3475         netdev->mtu = new_mtu;
3476         hw->max_frame_size = max_frame;
3477
3478         if (netif_running(netdev))
3479                 e1000_reinit_locked(adapter);
3480
3481         return 0;
3482 }
3483
3484 /**
3485  * e1000_update_stats - Update the board statistics counters
3486  * @adapter: board private structure
3487  **/
3488
3489 void e1000_update_stats(struct e1000_adapter *adapter)
3490 {
3491         struct e1000_hw *hw = &adapter->hw;
3492         struct pci_dev *pdev = adapter->pdev;
3493         unsigned long flags;
3494         u16 phy_tmp;
3495
3496 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3497
3498         /*
3499          * Prevent stats update while adapter is being reset, or if the pci
3500          * connection is down.
3501          */
3502         if (adapter->link_speed == 0)
3503                 return;
3504         if (pci_channel_offline(pdev))
3505                 return;
3506
3507         spin_lock_irqsave(&adapter->stats_lock, flags);
3508
3509         /* these counters are modified from e1000_tbi_adjust_stats,
3510          * called from the interrupt context, so they must only
3511          * be written while holding adapter->stats_lock
3512          */
3513
3514         adapter->stats.crcerrs += er32(CRCERRS);
3515         adapter->stats.gprc += er32(GPRC);
3516         adapter->stats.gorcl += er32(GORCL);
3517         adapter->stats.gorch += er32(GORCH);
3518         adapter->stats.bprc += er32(BPRC);
3519         adapter->stats.mprc += er32(MPRC);
3520         adapter->stats.roc += er32(ROC);
3521
3522         if (hw->mac_type != e1000_ich8lan) {
3523                 adapter->stats.prc64 += er32(PRC64);
3524                 adapter->stats.prc127 += er32(PRC127);
3525                 adapter->stats.prc255 += er32(PRC255);
3526                 adapter->stats.prc511 += er32(PRC511);
3527                 adapter->stats.prc1023 += er32(PRC1023);
3528                 adapter->stats.prc1522 += er32(PRC1522);
3529         }
3530
3531         adapter->stats.symerrs += er32(SYMERRS);
3532         adapter->stats.mpc += er32(MPC);
3533         adapter->stats.scc += er32(SCC);
3534         adapter->stats.ecol += er32(ECOL);
3535         adapter->stats.mcc += er32(MCC);
3536         adapter->stats.latecol += er32(LATECOL);
3537         adapter->stats.dc += er32(DC);
3538         adapter->stats.sec += er32(SEC);
3539         adapter->stats.rlec += er32(RLEC);
3540         adapter->stats.xonrxc += er32(XONRXC);
3541         adapter->stats.xontxc += er32(XONTXC);
3542         adapter->stats.xoffrxc += er32(XOFFRXC);
3543         adapter->stats.xofftxc += er32(XOFFTXC);
3544         adapter->stats.fcruc += er32(FCRUC);
3545         adapter->stats.gptc += er32(GPTC);
3546         adapter->stats.gotcl += er32(GOTCL);
3547         adapter->stats.gotch += er32(GOTCH);
3548         adapter->stats.rnbc += er32(RNBC);
3549         adapter->stats.ruc += er32(RUC);
3550         adapter->stats.rfc += er32(RFC);
3551         adapter->stats.rjc += er32(RJC);
3552         adapter->stats.torl += er32(TORL);
3553         adapter->stats.torh += er32(TORH);
3554         adapter->stats.totl += er32(TOTL);
3555         adapter->stats.toth += er32(TOTH);
3556         adapter->stats.tpr += er32(TPR);
3557
3558         if (hw->mac_type != e1000_ich8lan) {
3559                 adapter->stats.ptc64 += er32(PTC64);
3560                 adapter->stats.ptc127 += er32(PTC127);
3561                 adapter->stats.ptc255 += er32(PTC255);
3562                 adapter->stats.ptc511 += er32(PTC511);
3563                 adapter->stats.ptc1023 += er32(PTC1023);
3564                 adapter->stats.ptc1522 += er32(PTC1522);
3565         }
3566
3567         adapter->stats.mptc += er32(MPTC);
3568         adapter->stats.bptc += er32(BPTC);
3569
3570         /* used for adaptive IFS */
3571
3572         hw->tx_packet_delta = er32(TPT);
3573         adapter->stats.tpt += hw->tx_packet_delta;
3574         hw->collision_delta = er32(COLC);
3575         adapter->stats.colc += hw->collision_delta;
3576
3577         if (hw->mac_type >= e1000_82543) {
3578                 adapter->stats.algnerrc += er32(ALGNERRC);
3579                 adapter->stats.rxerrc += er32(RXERRC);
3580                 adapter->stats.tncrs += er32(TNCRS);
3581                 adapter->stats.cexterr += er32(CEXTERR);
3582                 adapter->stats.tsctc += er32(TSCTC);
3583                 adapter->stats.tsctfc += er32(TSCTFC);
3584         }
3585         if (hw->mac_type > e1000_82547_rev_2) {
3586                 adapter->stats.iac += er32(IAC);
3587                 adapter->stats.icrxoc += er32(ICRXOC);
3588
3589                 if (hw->mac_type != e1000_ich8lan) {
3590                         adapter->stats.icrxptc += er32(ICRXPTC);
3591                         adapter->stats.icrxatc += er32(ICRXATC);
3592                         adapter->stats.ictxptc += er32(ICTXPTC);
3593                         adapter->stats.ictxatc += er32(ICTXATC);
3594                         adapter->stats.ictxqec += er32(ICTXQEC);
3595                         adapter->stats.ictxqmtc += er32(ICTXQMTC);
3596                         adapter->stats.icrxdmtc += er32(ICRXDMTC);
3597                 }
3598         }
3599
3600         /* Fill out the OS statistics structure */
3601         adapter->net_stats.multicast = adapter->stats.mprc;
3602         adapter->net_stats.collisions = adapter->stats.colc;
3603
3604         /* Rx Errors */
3605
3606         /* RLEC on some newer hardware can be incorrect so build
3607         * our own version based on RUC and ROC */
3608         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3609                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3610                 adapter->stats.ruc + adapter->stats.roc +
3611                 adapter->stats.cexterr;
3612         adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3613         adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3614         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3615         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3616         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3617
3618         /* Tx Errors */
3619         adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3620         adapter->net_stats.tx_errors = adapter->stats.txerrc;
3621         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3622         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3623         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3624         if (hw->bad_tx_carr_stats_fd &&
3625             adapter->link_duplex == FULL_DUPLEX) {
3626                 adapter->net_stats.tx_carrier_errors = 0;
3627                 adapter->stats.tncrs = 0;
3628         }
3629
3630         /* Tx Dropped needs to be maintained elsewhere */
3631
3632         /* Phy Stats */
3633         if (hw->media_type == e1000_media_type_copper) {
3634                 if ((adapter->link_speed == SPEED_1000) &&
3635                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3636                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3637                         adapter->phy_stats.idle_errors += phy_tmp;
3638                 }
3639
3640                 if ((hw->mac_type <= e1000_82546) &&
3641                    (hw->phy_type == e1000_phy_m88) &&
3642                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3643                         adapter->phy_stats.receive_errors += phy_tmp;
3644         }
3645
3646         /* Management Stats */
3647         if (hw->has_smbus) {
3648                 adapter->stats.mgptc += er32(MGTPTC);
3649                 adapter->stats.mgprc += er32(MGTPRC);
3650                 adapter->stats.mgpdc += er32(MGTPDC);
3651         }
3652
3653         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3654 }
3655
3656 /**
3657  * e1000_intr_msi - Interrupt Handler
3658  * @irq: interrupt number
3659  * @data: pointer to a network interface device structure
3660  **/
3661
3662 static irqreturn_t e1000_intr_msi(int irq, void *data)
3663 {
3664         struct net_device *netdev = data;
3665         struct e1000_adapter *adapter = netdev_priv(netdev);
3666         struct e1000_hw *hw = &adapter->hw;
3667         u32 icr = er32(ICR);
3668
3669         /* in NAPI mode read ICR disables interrupts using IAM */
3670
3671         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3672                 hw->get_link_status = 1;
3673                 /* 80003ES2LAN workaround-- For packet buffer work-around on
3674                  * link down event; disable receives here in the ISR and reset
3675                  * adapter in watchdog */
3676                 if (netif_carrier_ok(netdev) &&
3677                     (hw->mac_type == e1000_80003es2lan)) {
3678                         /* disable receives */
3679                         u32 rctl = er32(RCTL);
3680                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3681                 }
3682                 /* guard against interrupt when we're going down */
3683                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3684                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3685         }
3686
3687         if (likely(netif_rx_schedule_prep(netdev, &adapter->napi))) {
3688                 adapter->total_tx_bytes = 0;
3689                 adapter->total_tx_packets = 0;
3690                 adapter->total_rx_bytes = 0;
3691                 adapter->total_rx_packets = 0;
3692                 __netif_rx_schedule(netdev, &adapter->napi);
3693         } else
3694                 e1000_irq_enable(adapter);
3695
3696         return IRQ_HANDLED;
3697 }
3698
3699 /**
3700  * e1000_intr - Interrupt Handler
3701  * @irq: interrupt number
3702  * @data: pointer to a network interface device structure
3703  **/
3704
3705 static irqreturn_t e1000_intr(int irq, void *data)
3706 {
3707         struct net_device *netdev = data;
3708         struct e1000_adapter *adapter = netdev_priv(netdev);
3709         struct e1000_hw *hw = &adapter->hw;
3710         u32 rctl, icr = er32(ICR);
3711
3712         if (unlikely(!icr))
3713                 return IRQ_NONE;  /* Not our interrupt */
3714
3715         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3716          * not set, then the adapter didn't send an interrupt */
3717         if (unlikely(hw->mac_type >= e1000_82571 &&
3718                      !(icr & E1000_ICR_INT_ASSERTED)))
3719                 return IRQ_NONE;
3720
3721         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
3722          * need for the IMC write */
3723
3724         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3725                 hw->get_link_status = 1;
3726                 /* 80003ES2LAN workaround--
3727                  * For packet buffer work-around on link down event;
3728                  * disable receives here in the ISR and
3729                  * reset adapter in watchdog
3730                  */
3731                 if (netif_carrier_ok(netdev) &&
3732                     (hw->mac_type == e1000_80003es2lan)) {
3733                         /* disable receives */
3734                         rctl = er32(RCTL);
3735                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3736                 }
3737                 /* guard against interrupt when we're going down */
3738                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3739                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3740         }
3741
3742         if (unlikely(hw->mac_type < e1000_82571)) {
3743                 /* disable interrupts, without the synchronize_irq bit */
3744                 ew32(IMC, ~0);
3745                 E1000_WRITE_FLUSH();
3746         }
3747         if (likely(netif_rx_schedule_prep(netdev, &adapter->napi))) {
3748                 adapter->total_tx_bytes = 0;
3749                 adapter->total_tx_packets = 0;
3750                 adapter->total_rx_bytes = 0;
3751                 adapter->total_rx_packets = 0;
3752                 __netif_rx_schedule(netdev, &adapter->napi);
3753         } else
3754                 /* this really should not happen! if it does it is basically a
3755                  * bug, but not a hard error, so enable ints and continue */
3756                 e1000_irq_enable(adapter);
3757
3758         return IRQ_HANDLED;
3759 }
3760
3761 /**
3762  * e1000_clean - NAPI Rx polling callback
3763  * @adapter: board private structure
3764  **/
3765 static int e1000_clean(struct napi_struct *napi, int budget)
3766 {
3767         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3768         struct net_device *poll_dev = adapter->netdev;
3769         int tx_cleaned = 0, work_done = 0;
3770
3771         /* Must NOT use netdev_priv macro here. */
3772         adapter = poll_dev->priv;
3773
3774         /* e1000_clean is called per-cpu.  This lock protects
3775          * tx_ring[0] from being cleaned by multiple cpus
3776          * simultaneously.  A failure obtaining the lock means
3777          * tx_ring[0] is currently being cleaned anyway. */
3778         if (spin_trylock(&adapter->tx_queue_lock)) {
3779                 tx_cleaned = e1000_clean_tx_irq(adapter,
3780                                                 &adapter->tx_ring[0]);
3781                 spin_unlock(&adapter->tx_queue_lock);
3782         }
3783
3784         adapter->clean_rx(adapter, &adapter->rx_ring[0],
3785                           &work_done, budget);
3786
3787         if (tx_cleaned)
3788                 work_done = budget;
3789
3790         /* If budget not fully consumed, exit the polling mode */
3791         if (work_done < budget) {
3792                 if (likely(adapter->itr_setting & 3))
3793                         e1000_set_itr(adapter);
3794                 netif_rx_complete(poll_dev, napi);
3795                 e1000_irq_enable(adapter);
3796         }
3797
3798         return work_done;
3799 }
3800
3801 /**
3802  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3803  * @adapter: board private structure
3804  **/
3805 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3806                                struct e1000_tx_ring *tx_ring)
3807 {
3808         struct e1000_hw *hw = &adapter->hw;
3809         struct net_device *netdev = adapter->netdev;
3810         struct e1000_tx_desc *tx_desc, *eop_desc;
3811         struct e1000_buffer *buffer_info;
3812         unsigned int i, eop;
3813         unsigned int count = 0;
3814         bool cleaned = false;
3815         unsigned int total_tx_bytes=0, total_tx_packets=0;
3816
3817         i = tx_ring->next_to_clean;
3818         eop = tx_ring->buffer_info[i].next_to_watch;
3819         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3820
3821         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3822                 for (cleaned = false; !cleaned; ) {
3823                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3824                         buffer_info = &tx_ring->buffer_info[i];
3825                         cleaned = (i == eop);
3826
3827                         if (cleaned) {
3828                                 struct sk_buff *skb = buffer_info->skb;
3829                                 unsigned int segs, bytecount;
3830                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
3831                                 /* multiply data chunks by size of headers */
3832                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
3833                                             skb->len;
3834                                 total_tx_packets += segs;
3835                                 total_tx_bytes += bytecount;
3836                         }
3837                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3838                         tx_desc->upper.data = 0;
3839
3840                         if (unlikely(++i == tx_ring->count)) i = 0;
3841                 }
3842
3843                 eop = tx_ring->buffer_info[i].next_to_watch;
3844                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3845 #define E1000_TX_WEIGHT 64
3846                 /* weight of a sort for tx, to avoid endless transmit cleanup */
3847                 if (count++ == E1000_TX_WEIGHT)
3848                         break;
3849         }
3850
3851         tx_ring->next_to_clean = i;
3852
3853 #define TX_WAKE_THRESHOLD 32
3854         if (unlikely(cleaned && netif_carrier_ok(netdev) &&
3855                      E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3856                 /* Make sure that anybody stopping the queue after this
3857                  * sees the new next_to_clean.
3858                  */
3859                 smp_mb();
3860                 if (netif_queue_stopped(netdev)) {
3861                         netif_wake_queue(netdev);
3862                         ++adapter->restart_queue;
3863                 }
3864         }
3865
3866         if (adapter->detect_tx_hung) {
3867                 /* Detect a transmit hang in hardware, this serializes the
3868                  * check with the clearing of time_stamp and movement of i */
3869                 adapter->detect_tx_hung = false;
3870                 if (tx_ring->buffer_info[eop].dma &&
3871                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3872                                (adapter->tx_timeout_factor * HZ))
3873                     && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3874
3875                         /* detected Tx unit hang */
3876                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3877                                         "  Tx Queue             <%lu>\n"
3878                                         "  TDH                  <%x>\n"
3879                                         "  TDT                  <%x>\n"
3880                                         "  next_to_use          <%x>\n"
3881                                         "  next_to_clean        <%x>\n"
3882                                         "buffer_info[next_to_clean]\n"
3883                                         "  time_stamp           <%lx>\n"
3884                                         "  next_to_watch        <%x>\n"
3885                                         "  jiffies              <%lx>\n"
3886                                         "  next_to_watch.status <%x>\n",
3887                                 (unsigned long)((tx_ring - adapter->tx_ring) /
3888                                         sizeof(struct e1000_tx_ring)),
3889                                 readl(hw->hw_addr + tx_ring->tdh),
3890                                 readl(hw->hw_addr + tx_ring->tdt),
3891                                 tx_ring->next_to_use,
3892                                 tx_ring->next_to_clean,
3893                                 tx_ring->buffer_info[eop].time_stamp,
3894                                 eop,
3895                                 jiffies,
3896                                 eop_desc->upper.fields.status);
3897                         netif_stop_queue(netdev);
3898                 }
3899         }
3900         adapter->total_tx_bytes += total_tx_bytes;
3901         adapter->total_tx_packets += total_tx_packets;
3902         adapter->net_stats.tx_bytes += total_tx_bytes;
3903         adapter->net_stats.tx_packets += total_tx_packets;
3904         return cleaned;
3905 }
3906
3907 /**
3908  * e1000_rx_checksum - Receive Checksum Offload for 82543
3909  * @adapter:     board private structure
3910  * @status_err:  receive descriptor status and error fields
3911  * @csum:        receive descriptor csum field
3912  * @sk_buff:     socket buffer with received data
3913  **/
3914
3915 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3916                               u32 csum, struct sk_buff *skb)
3917 {
3918         struct e1000_hw *hw = &adapter->hw;
3919         u16 status = (u16)status_err;
3920         u8 errors = (u8)(status_err >> 24);
3921         skb->ip_summed = CHECKSUM_NONE;
3922
3923         /* 82543 or newer only */
3924         if (unlikely(hw->mac_type < e1000_82543)) return;
3925         /* Ignore Checksum bit is set */
3926         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3927         /* TCP/UDP checksum error bit is set */
3928         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3929                 /* let the stack verify checksum errors */
3930                 adapter->hw_csum_err++;
3931                 return;
3932         }
3933         /* TCP/UDP Checksum has not been calculated */
3934         if (hw->mac_type <= e1000_82547_rev_2) {
3935                 if (!(status & E1000_RXD_STAT_TCPCS))
3936                         return;
3937         } else {
3938                 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3939                         return;
3940         }
3941         /* It must be a TCP or UDP packet with a valid checksum */
3942         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3943                 /* TCP checksum is good */
3944                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3945         } else if (hw->mac_type > e1000_82547_rev_2) {
3946                 /* IP fragment with UDP payload */
3947                 /* Hardware complements the payload checksum, so we undo it
3948                  * and then put the value in host order for further stack use.
3949                  */
3950                 __sum16 sum = (__force __sum16)htons(csum);
3951                 skb->csum = csum_unfold(~sum);
3952                 skb->ip_summed = CHECKSUM_COMPLETE;
3953         }
3954         adapter->hw_csum_good++;
3955 }
3956
3957 /**
3958  * e1000_clean_rx_irq - Send received data up the network stack; legacy
3959  * @adapter: board private structure
3960  **/
3961 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
3962                                struct e1000_rx_ring *rx_ring,
3963                                int *work_done, int work_to_do)
3964 {
3965         struct e1000_hw *hw = &adapter->hw;
3966         struct net_device *netdev = adapter->netdev;
3967         struct pci_dev *pdev = adapter->pdev;
3968         struct e1000_rx_desc *rx_desc, *next_rxd;
3969         struct e1000_buffer *buffer_info, *next_buffer;
3970         unsigned long flags;
3971         u32 length;
3972         u8 last_byte;
3973         unsigned int i;
3974         int cleaned_count = 0;
3975         bool cleaned = false;
3976         unsigned int total_rx_bytes=0, total_rx_packets=0;
3977
3978         i = rx_ring->next_to_clean;
3979         rx_desc = E1000_RX_DESC(*rx_ring, i);
3980         buffer_info = &rx_ring->buffer_info[i];
3981
3982         while (rx_desc->status & E1000_RXD_STAT_DD) {
3983                 struct sk_buff *skb;
3984                 u8 status;
3985
3986                 if (*work_done >= work_to_do)
3987                         break;
3988                 (*work_done)++;
3989
3990                 status = rx_desc->status;
3991                 skb = buffer_info->skb;
3992                 buffer_info->skb = NULL;
3993
3994                 prefetch(skb->data - NET_IP_ALIGN);
3995
3996                 if (++i == rx_ring->count) i = 0;
3997                 next_rxd = E1000_RX_DESC(*rx_ring, i);
3998                 prefetch(next_rxd);
3999
4000                 next_buffer = &rx_ring->buffer_info[i];
4001
4002                 cleaned = true;
4003                 cleaned_count++;
4004                 pci_unmap_single(pdev,
4005                                  buffer_info->dma,
4006                                  buffer_info->length,
4007                                  PCI_DMA_FROMDEVICE);
4008
4009                 length = le16_to_cpu(rx_desc->length);
4010
4011                 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
4012                         /* All receives must fit into a single buffer */
4013                         E1000_DBG("%s: Receive packet consumed multiple"
4014                                   " buffers\n", netdev->name);
4015                         /* recycle */
4016                         buffer_info->skb = skb;
4017                         goto next_desc;
4018                 }
4019
4020                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4021                         last_byte = *(skb->data + length - 1);
4022                         if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4023                                        last_byte)) {
4024                                 spin_lock_irqsave(&adapter->stats_lock, flags);
4025                                 e1000_tbi_adjust_stats(hw, &adapter->stats,
4026                                                        length, skb->data);
4027                                 spin_unlock_irqrestore(&adapter->stats_lock,
4028                                                        flags);
4029                                 length--;
4030                         } else {
4031                                 /* recycle */
4032                                 buffer_info->skb = skb;
4033                                 goto next_desc;
4034                         }
4035                 }
4036
4037                 /* adjust length to remove Ethernet CRC, this must be
4038                  * done after the TBI_ACCEPT workaround above */
4039                 length -= 4;
4040
4041                 /* probably a little skewed due to removing CRC */
4042                 total_rx_bytes += length;
4043                 total_rx_packets++;
4044
4045                 /* code added for copybreak, this should improve
4046                  * performance for small packets with large amounts
4047                  * of reassembly being done in the stack */
4048                 if (length < copybreak) {
4049                         struct sk_buff *new_skb =
4050                             netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
4051                         if (new_skb) {
4052                                 skb_reserve(new_skb, NET_IP_ALIGN);
4053                                 skb_copy_to_linear_data_offset(new_skb,
4054                                                                -NET_IP_ALIGN,
4055                                                                (skb->data -
4056                                                                 NET_IP_ALIGN),
4057                                                                (length +
4058                                                                 NET_IP_ALIGN));
4059                                 /* save the skb in buffer_info as good */
4060                                 buffer_info->skb = skb;
4061                                 skb = new_skb;
4062                         }
4063                         /* else just continue with the old one */
4064                 }
4065                 /* end copybreak code */
4066                 skb_put(skb, length);
4067
4068                 /* Receive Checksum Offload */
4069                 e1000_rx_checksum(adapter,
4070                                   (u32)(status) |
4071                                   ((u32)(rx_desc->errors) << 24),
4072                                   le16_to_cpu(rx_desc->csum), skb);
4073
4074                 skb->protocol = eth_type_trans(skb, netdev);
4075
4076                 if (unlikely(adapter->vlgrp &&
4077                             (status & E1000_RXD_STAT_VP))) {
4078                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4079                                                  le16_to_cpu(rx_desc->special));
4080                 } else {
4081                         netif_receive_skb(skb);
4082                 }
4083
4084                 netdev->last_rx = jiffies;
4085
4086 next_desc:
4087                 rx_desc->status = 0;
4088
4089                 /* return some buffers to hardware, one at a time is too slow */
4090                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4091                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4092                         cleaned_count = 0;
4093                 }
4094
4095                 /* use prefetched values */
4096                 rx_desc = next_rxd;
4097                 buffer_info = next_buffer;
4098         }
4099         rx_ring->next_to_clean = i;
4100
4101         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4102         if (cleaned_count)
4103                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4104
4105         adapter->total_rx_packets += total_rx_packets;
4106         adapter->total_rx_bytes += total_rx_bytes;
4107         adapter->net_stats.rx_bytes += total_rx_bytes;
4108         adapter->net_stats.rx_packets += total_rx_packets;
4109         return cleaned;
4110 }
4111
4112 /**
4113  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4114  * @adapter: address of board private structure
4115  **/
4116
4117 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4118                                    struct e1000_rx_ring *rx_ring,
4119                                    int cleaned_count)
4120 {
4121         struct e1000_hw *hw = &adapter->hw;
4122         struct net_device *netdev = adapter->netdev;
4123         struct pci_dev *pdev = adapter->pdev;
4124         struct e1000_rx_desc *rx_desc;
4125         struct e1000_buffer *buffer_info;
4126         struct sk_buff *skb;
4127         unsigned int i;
4128         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4129
4130         i = rx_ring->next_to_use;
4131         buffer_info = &rx_ring->buffer_info[i];
4132
4133         while (cleaned_count--) {
4134                 skb = buffer_info->skb;
4135                 if (skb) {
4136                         skb_trim(skb, 0);
4137                         goto map_skb;
4138                 }
4139
4140                 skb = netdev_alloc_skb(netdev, bufsz);
4141                 if (unlikely(!skb)) {
4142                         /* Better luck next round */
4143                         adapter->alloc_rx_buff_failed++;
4144                         break;
4145                 }
4146
4147                 /* Fix for errata 23, can't cross 64kB boundary */
4148                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4149                         struct sk_buff *oldskb = skb;
4150                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4151                                              "at %p\n", bufsz, skb->data);
4152                         /* Try again, without freeing the previous */
4153                         skb = netdev_alloc_skb(netdev, bufsz);
4154                         /* Failed allocation, critical failure */
4155                         if (!skb) {
4156                                 dev_kfree_skb(oldskb);
4157                                 break;
4158                         }
4159
4160                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4161                                 /* give up */
4162                                 dev_kfree_skb(skb);
4163                                 dev_kfree_skb(oldskb);
4164                                 break; /* while !buffer_info->skb */
4165                         }
4166
4167                         /* Use new allocation */
4168                         dev_kfree_skb(oldskb);
4169                 }
4170                 /* Make buffer alignment 2 beyond a 16 byte boundary
4171                  * this will result in a 16 byte aligned IP header after
4172                  * the 14 byte MAC header is removed
4173                  */
4174                 skb_reserve(skb, NET_IP_ALIGN);
4175
4176                 buffer_info->skb = skb;
4177                 buffer_info->length = adapter->rx_buffer_len;
4178 map_skb:
4179                 buffer_info->dma = pci_map_single(pdev,
4180                                                   skb->data,
4181                                                   adapter->rx_buffer_len,
4182                                                   PCI_DMA_FROMDEVICE);
4183
4184                 /* Fix for errata 23, can't cross 64kB boundary */
4185                 if (!e1000_check_64k_bound(adapter,
4186                                         (void *)(unsigned long)buffer_info->dma,
4187                                         adapter->rx_buffer_len)) {
4188                         DPRINTK(RX_ERR, ERR,
4189                                 "dma align check failed: %u bytes at %p\n",
4190                                 adapter->rx_buffer_len,
4191                                 (void *)(unsigned long)buffer_info->dma);
4192                         dev_kfree_skb(skb);
4193                         buffer_info->skb = NULL;
4194
4195                         pci_unmap_single(pdev, buffer_info->dma,
4196                                          adapter->rx_buffer_len,
4197                                          PCI_DMA_FROMDEVICE);
4198
4199                         break; /* while !buffer_info->skb */
4200                 }
4201                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4202                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4203
4204                 if (unlikely(++i == rx_ring->count))
4205                         i = 0;
4206                 buffer_info = &rx_ring->buffer_info[i];
4207         }
4208
4209         if (likely(rx_ring->next_to_use != i)) {
4210                 rx_ring->next_to_use = i;
4211                 if (unlikely(i-- == 0))
4212                         i = (rx_ring->count - 1);
4213
4214                 /* Force memory writes to complete before letting h/w
4215                  * know there are new descriptors to fetch.  (Only
4216                  * applicable for weak-ordered memory model archs,
4217                  * such as IA-64). */
4218                 wmb();
4219                 writel(i, hw->hw_addr + rx_ring->rdt);
4220         }
4221 }
4222
4223 /**
4224  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4225  * @adapter:
4226  **/
4227
4228 static void e1000_smartspeed(struct e1000_adapter *adapter)
4229 {
4230         struct e1000_hw *hw = &adapter->hw;
4231         u16 phy_status;
4232         u16 phy_ctrl;
4233
4234         if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4235            !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4236                 return;
4237
4238         if (adapter->smartspeed == 0) {
4239                 /* If Master/Slave config fault is asserted twice,
4240                  * we assume back-to-back */
4241                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4242                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4243                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4244                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4245                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4246                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4247                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4248                         e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4249                                             phy_ctrl);
4250                         adapter->smartspeed++;
4251                         if (!e1000_phy_setup_autoneg(hw) &&
4252                            !e1000_read_phy_reg(hw, PHY_CTRL,
4253                                                &phy_ctrl)) {
4254                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4255                                              MII_CR_RESTART_AUTO_NEG);
4256                                 e1000_write_phy_reg(hw, PHY_CTRL,
4257                                                     phy_ctrl);
4258                         }
4259                 }
4260                 return;
4261         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4262                 /* If still no link, perhaps using 2/3 pair cable */
4263                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4264                 phy_ctrl |= CR_1000T_MS_ENABLE;
4265                 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4266                 if (!e1000_phy_setup_autoneg(hw) &&
4267                    !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4268                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4269                                      MII_CR_RESTART_AUTO_NEG);
4270                         e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4271                 }
4272         }
4273         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4274         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4275                 adapter->smartspeed = 0;
4276 }
4277
4278 /**
4279  * e1000_ioctl -
4280  * @netdev:
4281  * @ifreq:
4282  * @cmd:
4283  **/
4284
4285 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4286 {
4287         switch (cmd) {
4288         case SIOCGMIIPHY:
4289         case SIOCGMIIREG:
4290         case SIOCSMIIREG:
4291                 return e1000_mii_ioctl(netdev, ifr, cmd);
4292         default:
4293                 return -EOPNOTSUPP;
4294         }
4295 }
4296
4297 /**
4298  * e1000_mii_ioctl -
4299  * @netdev:
4300  * @ifreq:
4301  * @cmd:
4302  **/
4303
4304 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4305                            int cmd)
4306 {
4307         struct e1000_adapter *adapter = netdev_priv(netdev);
4308         struct e1000_hw *hw = &adapter->hw;
4309         struct mii_ioctl_data *data = if_mii(ifr);
4310         int retval;
4311         u16 mii_reg;
4312         u16 spddplx;
4313         unsigned long flags;
4314
4315         if (hw->media_type != e1000_media_type_copper)
4316                 return -EOPNOTSUPP;
4317
4318         switch (cmd) {
4319         case SIOCGMIIPHY:
4320                 data->phy_id = hw->phy_addr;
4321                 break;
4322         case SIOCGMIIREG:
4323                 if (!capable(CAP_NET_ADMIN))
4324                         return -EPERM;
4325                 spin_lock_irqsave(&adapter->stats_lock, flags);
4326                 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4327                                    &data->val_out)) {
4328                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4329                         return -EIO;
4330                 }
4331                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4332                 break;
4333         case SIOCSMIIREG:
4334                 if (!capable(CAP_NET_ADMIN))
4335                         return -EPERM;
4336                 if (data->reg_num & ~(0x1F))
4337                         return -EFAULT;
4338                 mii_reg = data->val_in;
4339                 spin_lock_irqsave(&adapter->stats_lock, flags);
4340                 if (e1000_write_phy_reg(hw, data->reg_num,
4341                                         mii_reg)) {
4342                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4343                         return -EIO;
4344                 }
4345                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4346                 if (hw->media_type == e1000_media_type_copper) {
4347                         switch (data->reg_num) {
4348                         case PHY_CTRL:
4349                                 if (mii_reg & MII_CR_POWER_DOWN)
4350                                         break;
4351                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4352                                         hw->autoneg = 1;
4353                                         hw->autoneg_advertised = 0x2F;
4354                                 } else {
4355                                         if (mii_reg & 0x40)
4356                                                 spddplx = SPEED_1000;
4357                                         else if (mii_reg & 0x2000)
4358                                                 spddplx = SPEED_100;
4359                                         else
4360                                                 spddplx = SPEED_10;
4361                                         spddplx += (mii_reg & 0x100)
4362                                                    ? DUPLEX_FULL :
4363                                                    DUPLEX_HALF;
4364                                         retval = e1000_set_spd_dplx(adapter,
4365                                                                     spddplx);
4366                                         if (retval)
4367                                                 return retval;
4368                                 }
4369                                 if (netif_running(adapter->netdev))
4370                                         e1000_reinit_locked(adapter);
4371                                 else
4372                                         e1000_reset(adapter);
4373                                 break;
4374                         case M88E1000_PHY_SPEC_CTRL:
4375                         case M88E1000_EXT_PHY_SPEC_CTRL:
4376                                 if (e1000_phy_reset(hw))
4377                                         return -EIO;
4378                                 break;
4379                         }
4380                 } else {
4381                         switch (data->reg_num) {
4382                         case PHY_CTRL:
4383                                 if (mii_reg & MII_CR_POWER_DOWN)
4384                                         break;
4385                                 if (netif_running(adapter->netdev))
4386                                         e1000_reinit_locked(adapter);
4387                                 else
4388                                         e1000_reset(adapter);
4389                                 break;
4390                         }
4391                 }
4392                 break;
4393         default:
4394                 return -EOPNOTSUPP;
4395         }
4396         return E1000_SUCCESS;
4397 }
4398
4399 void e1000_pci_set_mwi(struct e1000_hw *hw)
4400 {
4401         struct e1000_adapter *adapter = hw->back;
4402         int ret_val = pci_set_mwi(adapter->pdev);
4403
4404         if (ret_val)
4405                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4406 }
4407
4408 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4409 {
4410         struct e1000_adapter *adapter = hw->back;
4411
4412         pci_clear_mwi(adapter->pdev);
4413 }
4414
4415 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4416 {
4417         struct e1000_adapter *adapter = hw->back;
4418         return pcix_get_mmrbc(adapter->pdev);
4419 }
4420
4421 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4422 {
4423         struct e1000_adapter *adapter = hw->back;
4424         pcix_set_mmrbc(adapter->pdev, mmrbc);
4425 }
4426
4427 s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
4428 {
4429     struct e1000_adapter *adapter = hw->back;
4430     u16 cap_offset;
4431
4432     cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
4433     if (!cap_offset)
4434         return -E1000_ERR_CONFIG;
4435
4436     pci_read_config_word(adapter->pdev, cap_offset + reg, value);
4437
4438     return E1000_SUCCESS;
4439 }
4440
4441 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4442 {
4443         outl(value, port);
4444 }
4445
4446 static void e1000_vlan_rx_register(struct net_device *netdev,
4447                                    struct vlan_group *grp)
4448 {
4449         struct e1000_adapter *adapter = netdev_priv(netdev);
4450         struct e1000_hw *hw = &adapter->hw;
4451         u32 ctrl, rctl;
4452
4453         if (!test_bit(__E1000_DOWN, &adapter->flags))
4454                 e1000_irq_disable(adapter);
4455         adapter->vlgrp = grp;
4456
4457         if (grp) {
4458                 /* enable VLAN tag insert/strip */
4459                 ctrl = er32(CTRL);
4460                 ctrl |= E1000_CTRL_VME;
4461                 ew32(CTRL, ctrl);
4462
4463                 if (adapter->hw.mac_type != e1000_ich8lan) {
4464                         /* enable VLAN receive filtering */
4465                         rctl = er32(RCTL);
4466                         rctl &= ~E1000_RCTL_CFIEN;
4467                         ew32(RCTL, rctl);
4468                         e1000_update_mng_vlan(adapter);
4469                 }
4470         } else {
4471                 /* disable VLAN tag insert/strip */
4472                 ctrl = er32(CTRL);
4473                 ctrl &= ~E1000_CTRL_VME;
4474                 ew32(CTRL, ctrl);
4475
4476                 if (adapter->hw.mac_type != e1000_ich8lan) {
4477                         if (adapter->mng_vlan_id !=
4478                             (u16)E1000_MNG_VLAN_NONE) {
4479                                 e1000_vlan_rx_kill_vid(netdev,
4480                                                        adapter->mng_vlan_id);
4481                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4482                         }
4483                 }
4484         }
4485
4486         if (!test_bit(__E1000_DOWN, &adapter->flags))
4487                 e1000_irq_enable(adapter);
4488 }
4489
4490 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4491 {
4492         struct e1000_adapter *adapter = netdev_priv(netdev);
4493         struct e1000_hw *hw = &adapter->hw;
4494         u32 vfta, index;
4495
4496         if ((hw->mng_cookie.status &
4497              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4498             (vid == adapter->mng_vlan_id))
4499                 return;
4500         /* add VID to filter table */
4501         index = (vid >> 5) & 0x7F;
4502         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4503         vfta |= (1 << (vid & 0x1F));
4504         e1000_write_vfta(hw, index, vfta);
4505 }
4506
4507 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4508 {
4509         struct e1000_adapter *adapter = netdev_priv(netdev);
4510         struct e1000_hw *hw = &adapter->hw;
4511         u32 vfta, index;
4512
4513         if (!test_bit(__E1000_DOWN, &adapter->flags))
4514                 e1000_irq_disable(adapter);
4515         vlan_group_set_device(adapter->vlgrp, vid, NULL);
4516         if (!test_bit(__E1000_DOWN, &adapter->flags))
4517                 e1000_irq_enable(adapter);
4518
4519         if ((hw->mng_cookie.status &
4520              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4521             (vid == adapter->mng_vlan_id)) {
4522                 /* release control to f/w */
4523                 e1000_release_hw_control(adapter);
4524                 return;
4525         }
4526
4527         /* remove VID from filter table */
4528         index = (vid >> 5) & 0x7F;
4529         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4530         vfta &= ~(1 << (vid & 0x1F));
4531         e1000_write_vfta(hw, index, vfta);
4532 }
4533
4534 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4535 {
4536         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4537
4538         if (adapter->vlgrp) {
4539                 u16 vid;
4540                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4541                         if (!vlan_group_get_device(adapter->vlgrp, vid))
4542                                 continue;
4543                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
4544                 }
4545         }
4546 }
4547
4548 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
4549 {
4550         struct e1000_hw *hw = &adapter->hw;
4551
4552         hw->autoneg = 0;
4553
4554         /* Fiber NICs only allow 1000 gbps Full duplex */
4555         if ((hw->media_type == e1000_media_type_fiber) &&
4556                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4557                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4558                 return -EINVAL;
4559         }
4560
4561         switch (spddplx) {
4562         case SPEED_10 + DUPLEX_HALF:
4563                 hw->forced_speed_duplex = e1000_10_half;
4564                 break;
4565         case SPEED_10 + DUPLEX_FULL:
4566                 hw->forced_speed_duplex = e1000_10_full;
4567                 break;
4568         case SPEED_100 + DUPLEX_HALF:
4569                 hw->forced_speed_duplex = e1000_100_half;
4570                 break;
4571         case SPEED_100 + DUPLEX_FULL:
4572                 hw->forced_speed_duplex = e1000_100_full;
4573                 break;
4574         case SPEED_1000 + DUPLEX_FULL:
4575                 hw->autoneg = 1;
4576                 hw->autoneg_advertised = ADVERTISE_1000_FULL;
4577                 break;
4578         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4579         default:
4580                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4581                 return -EINVAL;
4582         }
4583         return 0;
4584 }
4585
4586 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4587 {
4588         struct net_device *netdev = pci_get_drvdata(pdev);
4589         struct e1000_adapter *adapter = netdev_priv(netdev);
4590         struct e1000_hw *hw = &adapter->hw;
4591         u32 ctrl, ctrl_ext, rctl, status;
4592         u32 wufc = adapter->wol;
4593 #ifdef CONFIG_PM
4594         int retval = 0;
4595 #endif
4596
4597         netif_device_detach(netdev);
4598
4599         if (netif_running(netdev)) {
4600                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4601                 e1000_down(adapter);
4602         }
4603
4604 #ifdef CONFIG_PM
4605         retval = pci_save_state(pdev);
4606         if (retval)
4607                 return retval;
4608 #endif
4609
4610         status = er32(STATUS);
4611         if (status & E1000_STATUS_LU)
4612                 wufc &= ~E1000_WUFC_LNKC;
4613
4614         if (wufc) {
4615                 e1000_setup_rctl(adapter);
4616                 e1000_set_rx_mode(netdev);
4617
4618                 /* turn on all-multi mode if wake on multicast is enabled */
4619                 if (wufc & E1000_WUFC_MC) {
4620                         rctl = er32(RCTL);
4621                         rctl |= E1000_RCTL_MPE;
4622                         ew32(RCTL, rctl);
4623                 }
4624
4625                 if (hw->mac_type >= e1000_82540) {
4626                         ctrl = er32(CTRL);
4627                         /* advertise wake from D3Cold */
4628                         #define E1000_CTRL_ADVD3WUC 0x00100000
4629                         /* phy power management enable */
4630                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4631                         ctrl |= E1000_CTRL_ADVD3WUC |
4632                                 E1000_CTRL_EN_PHY_PWR_MGMT;
4633                         ew32(CTRL, ctrl);
4634                 }
4635
4636                 if (hw->media_type == e1000_media_type_fiber ||
4637                    hw->media_type == e1000_media_type_internal_serdes) {
4638                         /* keep the laser running in D3 */
4639                         ctrl_ext = er32(CTRL_EXT);
4640                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4641                         ew32(CTRL_EXT, ctrl_ext);
4642                 }
4643
4644                 /* Allow time for pending master requests to run */
4645                 e1000_disable_pciex_master(hw);
4646
4647                 ew32(WUC, E1000_WUC_PME_EN);
4648                 ew32(WUFC, wufc);
4649                 pci_enable_wake(pdev, PCI_D3hot, 1);
4650                 pci_enable_wake(pdev, PCI_D3cold, 1);
4651         } else {
4652                 ew32(WUC, 0);
4653                 ew32(WUFC, 0);
4654                 pci_enable_wake(pdev, PCI_D3hot, 0);
4655                 pci_enable_wake(pdev, PCI_D3cold, 0);
4656         }
4657
4658         e1000_release_manageability(adapter);
4659
4660         /* make sure adapter isn't asleep if manageability is enabled */
4661         if (adapter->en_mng_pt) {
4662                 pci_enable_wake(pdev, PCI_D3hot, 1);
4663                 pci_enable_wake(pdev, PCI_D3cold, 1);
4664         }
4665
4666         if (hw->phy_type == e1000_phy_igp_3)
4667                 e1000_phy_powerdown_workaround(hw);
4668
4669         if (netif_running(netdev))
4670                 e1000_free_irq(adapter);
4671
4672         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
4673          * would have already happened in close and is redundant. */
4674         e1000_release_hw_control(adapter);
4675
4676         pci_disable_device(pdev);
4677
4678         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4679
4680         return 0;
4681 }
4682
4683 #ifdef CONFIG_PM
4684 static int e1000_resume(struct pci_dev *pdev)
4685 {
4686         struct net_device *netdev = pci_get_drvdata(pdev);
4687         struct e1000_adapter *adapter = netdev_priv(netdev);
4688         struct e1000_hw *hw = &adapter->hw;
4689         u32 err;
4690
4691         pci_set_power_state(pdev, PCI_D0);
4692         pci_restore_state(pdev);
4693
4694         if (adapter->need_ioport)
4695                 err = pci_enable_device(pdev);
4696         else
4697                 err = pci_enable_device_mem(pdev);
4698         if (err) {
4699                 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
4700                 return err;
4701         }
4702         pci_set_master(pdev);
4703
4704         pci_enable_wake(pdev, PCI_D3hot, 0);
4705         pci_enable_wake(pdev, PCI_D3cold, 0);
4706
4707         if (netif_running(netdev)) {
4708                 err = e1000_request_irq(adapter);
4709                 if (err)
4710                         return err;
4711         }
4712
4713         e1000_power_up_phy(adapter);
4714         e1000_reset(adapter);
4715         ew32(WUS, ~0);
4716
4717         e1000_init_manageability(adapter);
4718
4719         if (netif_running(netdev))
4720                 e1000_up(adapter);
4721
4722         netif_device_attach(netdev);
4723
4724         /* If the controller is 82573 and f/w is AMT, do not set
4725          * DRV_LOAD until the interface is up.  For all other cases,
4726          * let the f/w know that the h/w is now under the control
4727          * of the driver. */
4728         if (hw->mac_type != e1000_82573 ||
4729             !e1000_check_mng_mode(hw))
4730                 e1000_get_hw_control(adapter);
4731
4732         return 0;
4733 }
4734 #endif
4735
4736 static void e1000_shutdown(struct pci_dev *pdev)
4737 {
4738         e1000_suspend(pdev, PMSG_SUSPEND);
4739 }
4740
4741 #ifdef CONFIG_NET_POLL_CONTROLLER
4742 /*
4743  * Polling 'interrupt' - used by things like netconsole to send skbs
4744  * without having to re-enable interrupts. It's not called while
4745  * the interrupt routine is executing.
4746  */
4747 static void e1000_netpoll(struct net_device *netdev)
4748 {
4749         struct e1000_adapter *adapter = netdev_priv(netdev);
4750
4751         disable_irq(adapter->pdev->irq);
4752         e1000_intr(adapter->pdev->irq, netdev);
4753         enable_irq(adapter->pdev->irq);
4754 }
4755 #endif
4756
4757 /**
4758  * e1000_io_error_detected - called when PCI error is detected
4759  * @pdev: Pointer to PCI device
4760  * @state: The current pci conneection state
4761  *
4762  * This function is called after a PCI bus error affecting
4763  * this device has been detected.
4764  */
4765 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4766                                                 pci_channel_state_t state)
4767 {
4768         struct net_device *netdev = pci_get_drvdata(pdev);
4769         struct e1000_adapter *adapter = netdev->priv;
4770
4771         netif_device_detach(netdev);
4772
4773         if (netif_running(netdev))
4774                 e1000_down(adapter);
4775         pci_disable_device(pdev);
4776
4777         /* Request a slot slot reset. */
4778         return PCI_ERS_RESULT_NEED_RESET;
4779 }
4780
4781 /**
4782  * e1000_io_slot_reset - called after the pci bus has been reset.
4783  * @pdev: Pointer to PCI device
4784  *
4785  * Restart the card from scratch, as if from a cold-boot. Implementation
4786  * resembles the first-half of the e1000_resume routine.
4787  */
4788 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4789 {
4790         struct net_device *netdev = pci_get_drvdata(pdev);
4791         struct e1000_adapter *adapter = netdev->priv;
4792         struct e1000_hw *hw = &adapter->hw;
4793         int err;
4794
4795         if (adapter->need_ioport)
4796                 err = pci_enable_device(pdev);
4797         else
4798                 err = pci_enable_device_mem(pdev);
4799         if (err) {
4800                 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
4801                 return PCI_ERS_RESULT_DISCONNECT;
4802         }
4803         pci_set_master(pdev);
4804
4805         pci_enable_wake(pdev, PCI_D3hot, 0);
4806         pci_enable_wake(pdev, PCI_D3cold, 0);
4807
4808         e1000_reset(adapter);
4809         ew32(WUS, ~0);
4810
4811         return PCI_ERS_RESULT_RECOVERED;
4812 }
4813
4814 /**
4815  * e1000_io_resume - called when traffic can start flowing again.
4816  * @pdev: Pointer to PCI device
4817  *
4818  * This callback is called when the error recovery driver tells us that
4819  * its OK to resume normal operation. Implementation resembles the
4820  * second-half of the e1000_resume routine.
4821  */
4822 static void e1000_io_resume(struct pci_dev *pdev)
4823 {
4824         struct net_device *netdev = pci_get_drvdata(pdev);
4825         struct e1000_adapter *adapter = netdev->priv;
4826         struct e1000_hw *hw = &adapter->hw;
4827
4828         e1000_init_manageability(adapter);
4829
4830         if (netif_running(netdev)) {
4831                 if (e1000_up(adapter)) {
4832                         printk("e1000: can't bring device back up after reset\n");
4833                         return;
4834                 }
4835         }
4836
4837         netif_device_attach(netdev);
4838
4839         /* If the controller is 82573 and f/w is AMT, do not set
4840          * DRV_LOAD until the interface is up.  For all other cases,
4841          * let the f/w know that the h/w is now under the control
4842          * of the driver. */
4843         if (hw->mac_type != e1000_82573 ||
4844             !e1000_check_mng_mode(hw))
4845                 e1000_get_hw_control(adapter);
4846
4847 }
4848
4849 /* e1000_main.c */