e1000: consolidate managability enabling/disabling
[linux-2.6.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #ifndef CONFIG_E1000_NAPI
35 #define DRIVERNAPI
36 #else
37 #define DRIVERNAPI "-NAPI"
38 #endif
39 #define DRV_VERSION "7.3.15-k2"DRIVERNAPI
40 char e1000_driver_version[] = DRV_VERSION;
41 static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
42
43 /* e1000_pci_tbl - PCI Device ID Table
44  *
45  * Last entry must be all 0s
46  *
47  * Macro expands to...
48  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
49  */
50 static struct pci_device_id e1000_pci_tbl[] = {
51         INTEL_E1000_ETHERNET_DEVICE(0x1000),
52         INTEL_E1000_ETHERNET_DEVICE(0x1001),
53         INTEL_E1000_ETHERNET_DEVICE(0x1004),
54         INTEL_E1000_ETHERNET_DEVICE(0x1008),
55         INTEL_E1000_ETHERNET_DEVICE(0x1009),
56         INTEL_E1000_ETHERNET_DEVICE(0x100C),
57         INTEL_E1000_ETHERNET_DEVICE(0x100D),
58         INTEL_E1000_ETHERNET_DEVICE(0x100E),
59         INTEL_E1000_ETHERNET_DEVICE(0x100F),
60         INTEL_E1000_ETHERNET_DEVICE(0x1010),
61         INTEL_E1000_ETHERNET_DEVICE(0x1011),
62         INTEL_E1000_ETHERNET_DEVICE(0x1012),
63         INTEL_E1000_ETHERNET_DEVICE(0x1013),
64         INTEL_E1000_ETHERNET_DEVICE(0x1014),
65         INTEL_E1000_ETHERNET_DEVICE(0x1015),
66         INTEL_E1000_ETHERNET_DEVICE(0x1016),
67         INTEL_E1000_ETHERNET_DEVICE(0x1017),
68         INTEL_E1000_ETHERNET_DEVICE(0x1018),
69         INTEL_E1000_ETHERNET_DEVICE(0x1019),
70         INTEL_E1000_ETHERNET_DEVICE(0x101A),
71         INTEL_E1000_ETHERNET_DEVICE(0x101D),
72         INTEL_E1000_ETHERNET_DEVICE(0x101E),
73         INTEL_E1000_ETHERNET_DEVICE(0x1026),
74         INTEL_E1000_ETHERNET_DEVICE(0x1027),
75         INTEL_E1000_ETHERNET_DEVICE(0x1028),
76         INTEL_E1000_ETHERNET_DEVICE(0x1049),
77         INTEL_E1000_ETHERNET_DEVICE(0x104A),
78         INTEL_E1000_ETHERNET_DEVICE(0x104B),
79         INTEL_E1000_ETHERNET_DEVICE(0x104C),
80         INTEL_E1000_ETHERNET_DEVICE(0x104D),
81         INTEL_E1000_ETHERNET_DEVICE(0x105E),
82         INTEL_E1000_ETHERNET_DEVICE(0x105F),
83         INTEL_E1000_ETHERNET_DEVICE(0x1060),
84         INTEL_E1000_ETHERNET_DEVICE(0x1075),
85         INTEL_E1000_ETHERNET_DEVICE(0x1076),
86         INTEL_E1000_ETHERNET_DEVICE(0x1077),
87         INTEL_E1000_ETHERNET_DEVICE(0x1078),
88         INTEL_E1000_ETHERNET_DEVICE(0x1079),
89         INTEL_E1000_ETHERNET_DEVICE(0x107A),
90         INTEL_E1000_ETHERNET_DEVICE(0x107B),
91         INTEL_E1000_ETHERNET_DEVICE(0x107C),
92         INTEL_E1000_ETHERNET_DEVICE(0x107D),
93         INTEL_E1000_ETHERNET_DEVICE(0x107E),
94         INTEL_E1000_ETHERNET_DEVICE(0x107F),
95         INTEL_E1000_ETHERNET_DEVICE(0x108A),
96         INTEL_E1000_ETHERNET_DEVICE(0x108B),
97         INTEL_E1000_ETHERNET_DEVICE(0x108C),
98         INTEL_E1000_ETHERNET_DEVICE(0x1096),
99         INTEL_E1000_ETHERNET_DEVICE(0x1098),
100         INTEL_E1000_ETHERNET_DEVICE(0x1099),
101         INTEL_E1000_ETHERNET_DEVICE(0x109A),
102         INTEL_E1000_ETHERNET_DEVICE(0x10A4),
103         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
104         INTEL_E1000_ETHERNET_DEVICE(0x10B9),
105         INTEL_E1000_ETHERNET_DEVICE(0x10BA),
106         INTEL_E1000_ETHERNET_DEVICE(0x10BB),
107         INTEL_E1000_ETHERNET_DEVICE(0x10BC),
108         INTEL_E1000_ETHERNET_DEVICE(0x10C4),
109         INTEL_E1000_ETHERNET_DEVICE(0x10C5),
110         /* required last entry */
111         {0,}
112 };
113
114 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
115
116 int e1000_up(struct e1000_adapter *adapter);
117 void e1000_down(struct e1000_adapter *adapter);
118 void e1000_reinit_locked(struct e1000_adapter *adapter);
119 void e1000_reset(struct e1000_adapter *adapter);
120 int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
121 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
122 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
123 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
124 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
125 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
126                              struct e1000_tx_ring *txdr);
127 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
128                              struct e1000_rx_ring *rxdr);
129 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
130                              struct e1000_tx_ring *tx_ring);
131 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
132                              struct e1000_rx_ring *rx_ring);
133 void e1000_update_stats(struct e1000_adapter *adapter);
134
135 static int e1000_init_module(void);
136 static void e1000_exit_module(void);
137 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
138 static void __devexit e1000_remove(struct pci_dev *pdev);
139 static int e1000_alloc_queues(struct e1000_adapter *adapter);
140 static int e1000_sw_init(struct e1000_adapter *adapter);
141 static int e1000_open(struct net_device *netdev);
142 static int e1000_close(struct net_device *netdev);
143 static void e1000_configure_tx(struct e1000_adapter *adapter);
144 static void e1000_configure_rx(struct e1000_adapter *adapter);
145 static void e1000_setup_rctl(struct e1000_adapter *adapter);
146 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
147 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
148 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
149                                 struct e1000_tx_ring *tx_ring);
150 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
151                                 struct e1000_rx_ring *rx_ring);
152 static void e1000_set_multi(struct net_device *netdev);
153 static void e1000_update_phy_info(unsigned long data);
154 static void e1000_watchdog(unsigned long data);
155 static void e1000_82547_tx_fifo_stall(unsigned long data);
156 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
157 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
158 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
159 static int e1000_set_mac(struct net_device *netdev, void *p);
160 static irqreturn_t e1000_intr(int irq, void *data);
161 #ifdef CONFIG_PCI_MSI
162 static irqreturn_t e1000_intr_msi(int irq, void *data);
163 #endif
164 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
165                                     struct e1000_tx_ring *tx_ring);
166 #ifdef CONFIG_E1000_NAPI
167 static int e1000_clean(struct net_device *poll_dev, int *budget);
168 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
169                                     struct e1000_rx_ring *rx_ring,
170                                     int *work_done, int work_to_do);
171 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
172                                        struct e1000_rx_ring *rx_ring,
173                                        int *work_done, int work_to_do);
174 #else
175 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
176                                     struct e1000_rx_ring *rx_ring);
177 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
178                                        struct e1000_rx_ring *rx_ring);
179 #endif
180 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
181                                    struct e1000_rx_ring *rx_ring,
182                                    int cleaned_count);
183 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
184                                       struct e1000_rx_ring *rx_ring,
185                                       int cleaned_count);
186 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
187 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
188                            int cmd);
189 void e1000_set_ethtool_ops(struct net_device *netdev);
190 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
191 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
192 static void e1000_tx_timeout(struct net_device *dev);
193 static void e1000_reset_task(struct work_struct *work);
194 static void e1000_smartspeed(struct e1000_adapter *adapter);
195 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
196                                        struct sk_buff *skb);
197
198 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
199 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
200 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
201 static void e1000_restore_vlan(struct e1000_adapter *adapter);
202
203 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
204 #ifdef CONFIG_PM
205 static int e1000_resume(struct pci_dev *pdev);
206 #endif
207 static void e1000_shutdown(struct pci_dev *pdev);
208
209 #ifdef CONFIG_NET_POLL_CONTROLLER
210 /* for netdump / net console */
211 static void e1000_netpoll (struct net_device *netdev);
212 #endif
213
214 extern void e1000_check_options(struct e1000_adapter *adapter);
215
216 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
217                      pci_channel_state_t state);
218 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
219 static void e1000_io_resume(struct pci_dev *pdev);
220
221 static struct pci_error_handlers e1000_err_handler = {
222         .error_detected = e1000_io_error_detected,
223         .slot_reset = e1000_io_slot_reset,
224         .resume = e1000_io_resume,
225 };
226
227 static struct pci_driver e1000_driver = {
228         .name     = e1000_driver_name,
229         .id_table = e1000_pci_tbl,
230         .probe    = e1000_probe,
231         .remove   = __devexit_p(e1000_remove),
232 #ifdef CONFIG_PM
233         /* Power Managment Hooks */
234         .suspend  = e1000_suspend,
235         .resume   = e1000_resume,
236 #endif
237         .shutdown = e1000_shutdown,
238         .err_handler = &e1000_err_handler
239 };
240
241 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
242 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
243 MODULE_LICENSE("GPL");
244 MODULE_VERSION(DRV_VERSION);
245
246 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
247 module_param(debug, int, 0);
248 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
249
250 /**
251  * e1000_init_module - Driver Registration Routine
252  *
253  * e1000_init_module is the first routine called when the driver is
254  * loaded. All it does is register with the PCI subsystem.
255  **/
256
257 static int __init
258 e1000_init_module(void)
259 {
260         int ret;
261         printk(KERN_INFO "%s - version %s\n",
262                e1000_driver_string, e1000_driver_version);
263
264         printk(KERN_INFO "%s\n", e1000_copyright);
265
266         ret = pci_register_driver(&e1000_driver);
267
268         return ret;
269 }
270
271 module_init(e1000_init_module);
272
273 /**
274  * e1000_exit_module - Driver Exit Cleanup Routine
275  *
276  * e1000_exit_module is called just before the driver is removed
277  * from memory.
278  **/
279
280 static void __exit
281 e1000_exit_module(void)
282 {
283         pci_unregister_driver(&e1000_driver);
284 }
285
286 module_exit(e1000_exit_module);
287
288 static int e1000_request_irq(struct e1000_adapter *adapter)
289 {
290         struct net_device *netdev = adapter->netdev;
291         int flags, err = 0;
292
293         flags = IRQF_SHARED;
294 #ifdef CONFIG_PCI_MSI
295         if (adapter->hw.mac_type >= e1000_82571) {
296                 adapter->have_msi = TRUE;
297                 if ((err = pci_enable_msi(adapter->pdev))) {
298                         DPRINTK(PROBE, ERR,
299                          "Unable to allocate MSI interrupt Error: %d\n", err);
300                         adapter->have_msi = FALSE;
301                 }
302         }
303         if (adapter->have_msi) {
304                 flags &= ~IRQF_SHARED;
305                 err = request_irq(adapter->pdev->irq, &e1000_intr_msi, flags,
306                                   netdev->name, netdev);
307                 if (err)
308                         DPRINTK(PROBE, ERR,
309                                "Unable to allocate interrupt Error: %d\n", err);
310         } else
311 #endif
312         if ((err = request_irq(adapter->pdev->irq, &e1000_intr, flags,
313                                netdev->name, netdev)))
314                 DPRINTK(PROBE, ERR,
315                         "Unable to allocate interrupt Error: %d\n", err);
316
317         return err;
318 }
319
320 static void e1000_free_irq(struct e1000_adapter *adapter)
321 {
322         struct net_device *netdev = adapter->netdev;
323
324         free_irq(adapter->pdev->irq, netdev);
325
326 #ifdef CONFIG_PCI_MSI
327         if (adapter->have_msi)
328                 pci_disable_msi(adapter->pdev);
329 #endif
330 }
331
332 /**
333  * e1000_irq_disable - Mask off interrupt generation on the NIC
334  * @adapter: board private structure
335  **/
336
337 static void
338 e1000_irq_disable(struct e1000_adapter *adapter)
339 {
340         atomic_inc(&adapter->irq_sem);
341         E1000_WRITE_REG(&adapter->hw, IMC, ~0);
342         E1000_WRITE_FLUSH(&adapter->hw);
343         synchronize_irq(adapter->pdev->irq);
344 }
345
346 /**
347  * e1000_irq_enable - Enable default interrupt generation settings
348  * @adapter: board private structure
349  **/
350
351 static void
352 e1000_irq_enable(struct e1000_adapter *adapter)
353 {
354         if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
355                 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
356                 E1000_WRITE_FLUSH(&adapter->hw);
357         }
358 }
359
360 static void
361 e1000_update_mng_vlan(struct e1000_adapter *adapter)
362 {
363         struct net_device *netdev = adapter->netdev;
364         uint16_t vid = adapter->hw.mng_cookie.vlan_id;
365         uint16_t old_vid = adapter->mng_vlan_id;
366         if (adapter->vlgrp) {
367                 if (!adapter->vlgrp->vlan_devices[vid]) {
368                         if (adapter->hw.mng_cookie.status &
369                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
370                                 e1000_vlan_rx_add_vid(netdev, vid);
371                                 adapter->mng_vlan_id = vid;
372                         } else
373                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
374
375                         if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
376                                         (vid != old_vid) &&
377                                         !adapter->vlgrp->vlan_devices[old_vid])
378                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
379                 } else
380                         adapter->mng_vlan_id = vid;
381         }
382 }
383
384 /**
385  * e1000_release_hw_control - release control of the h/w to f/w
386  * @adapter: address of board private structure
387  *
388  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
389  * For ASF and Pass Through versions of f/w this means that the
390  * driver is no longer loaded. For AMT version (only with 82573) i
391  * of the f/w this means that the network i/f is closed.
392  *
393  **/
394
395 static void
396 e1000_release_hw_control(struct e1000_adapter *adapter)
397 {
398         uint32_t ctrl_ext;
399         uint32_t swsm;
400         uint32_t extcnf;
401
402         /* Let firmware taken over control of h/w */
403         switch (adapter->hw.mac_type) {
404         case e1000_82571:
405         case e1000_82572:
406         case e1000_80003es2lan:
407                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
408                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
409                                 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
410                 break;
411         case e1000_82573:
412                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
413                 E1000_WRITE_REG(&adapter->hw, SWSM,
414                                 swsm & ~E1000_SWSM_DRV_LOAD);
415         case e1000_ich8lan:
416                 extcnf = E1000_READ_REG(&adapter->hw, CTRL_EXT);
417                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
418                                 extcnf & ~E1000_CTRL_EXT_DRV_LOAD);
419                 break;
420         default:
421                 break;
422         }
423 }
424
425 /**
426  * e1000_get_hw_control - get control of the h/w from f/w
427  * @adapter: address of board private structure
428  *
429  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
430  * For ASF and Pass Through versions of f/w this means that
431  * the driver is loaded. For AMT version (only with 82573)
432  * of the f/w this means that the network i/f is open.
433  *
434  **/
435
436 static void
437 e1000_get_hw_control(struct e1000_adapter *adapter)
438 {
439         uint32_t ctrl_ext;
440         uint32_t swsm;
441         uint32_t extcnf;
442
443         /* Let firmware know the driver has taken over */
444         switch (adapter->hw.mac_type) {
445         case e1000_82571:
446         case e1000_82572:
447         case e1000_80003es2lan:
448                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
449                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
450                                 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
451                 break;
452         case e1000_82573:
453                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
454                 E1000_WRITE_REG(&adapter->hw, SWSM,
455                                 swsm | E1000_SWSM_DRV_LOAD);
456                 break;
457         case e1000_ich8lan:
458                 extcnf = E1000_READ_REG(&adapter->hw, EXTCNF_CTRL);
459                 E1000_WRITE_REG(&adapter->hw, EXTCNF_CTRL,
460                                 extcnf | E1000_EXTCNF_CTRL_SWFLAG);
461                 break;
462         default:
463                 break;
464         }
465 }
466
467 static void
468 e1000_init_manageability(struct e1000_adapter *adapter)
469 {
470         if (adapter->en_mng_pt) {
471                 uint32_t manc = E1000_READ_REG(&adapter->hw, MANC);
472
473                 /* disable hardware interception of ARP */
474                 manc &= ~(E1000_MANC_ARP_EN);
475
476                 /* enable receiving management packets to the host */
477                 /* this will probably generate destination unreachable messages
478                  * from the host OS, but the packets will be handled on SMBUS */
479                 if (adapter->hw.has_manc2h) {
480                         uint32_t manc2h = E1000_READ_REG(&adapter->hw, MANC2H);
481
482                         manc |= E1000_MANC_EN_MNG2HOST;
483 #define E1000_MNG2HOST_PORT_623 (1 << 5)
484 #define E1000_MNG2HOST_PORT_664 (1 << 6)
485                         manc2h |= E1000_MNG2HOST_PORT_623;
486                         manc2h |= E1000_MNG2HOST_PORT_664;
487                         E1000_WRITE_REG(&adapter->hw, MANC2H, manc2h);
488                 }
489
490                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
491         }
492 }
493
494 static void
495 e1000_release_manageability(struct e1000_adapter *adapter)
496 {
497         if (adapter->en_mng_pt) {
498                 uint32_t manc = E1000_READ_REG(&adapter->hw, MANC);
499
500                 /* re-enable hardware interception of ARP */
501                 manc |= E1000_MANC_ARP_EN;
502
503                 if (adapter->hw.has_manc2h)
504                         manc &= ~E1000_MANC_EN_MNG2HOST;
505
506                 /* don't explicitly have to mess with MANC2H since
507                  * MANC has an enable disable that gates MANC2H */
508
509                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
510         }
511 }
512
513 int
514 e1000_up(struct e1000_adapter *adapter)
515 {
516         struct net_device *netdev = adapter->netdev;
517         int i;
518
519         /* hardware has been reset, we need to reload some things */
520
521         e1000_set_multi(netdev);
522
523         e1000_restore_vlan(adapter);
524         e1000_init_manageability(adapter);
525
526         e1000_configure_tx(adapter);
527         e1000_setup_rctl(adapter);
528         e1000_configure_rx(adapter);
529         /* call E1000_DESC_UNUSED which always leaves
530          * at least 1 descriptor unused to make sure
531          * next_to_use != next_to_clean */
532         for (i = 0; i < adapter->num_rx_queues; i++) {
533                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
534                 adapter->alloc_rx_buf(adapter, ring,
535                                       E1000_DESC_UNUSED(ring));
536         }
537
538         adapter->tx_queue_len = netdev->tx_queue_len;
539
540 #ifdef CONFIG_E1000_NAPI
541         netif_poll_enable(netdev);
542 #endif
543         e1000_irq_enable(adapter);
544
545         clear_bit(__E1000_DOWN, &adapter->flags);
546
547         mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
548         return 0;
549 }
550
551 /**
552  * e1000_power_up_phy - restore link in case the phy was powered down
553  * @adapter: address of board private structure
554  *
555  * The phy may be powered down to save power and turn off link when the
556  * driver is unloaded and wake on lan is not enabled (among others)
557  * *** this routine MUST be followed by a call to e1000_reset ***
558  *
559  **/
560
561 void e1000_power_up_phy(struct e1000_adapter *adapter)
562 {
563         uint16_t mii_reg = 0;
564
565         /* Just clear the power down bit to wake the phy back up */
566         if (adapter->hw.media_type == e1000_media_type_copper) {
567                 /* according to the manual, the phy will retain its
568                  * settings across a power-down/up cycle */
569                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
570                 mii_reg &= ~MII_CR_POWER_DOWN;
571                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
572         }
573 }
574
575 static void e1000_power_down_phy(struct e1000_adapter *adapter)
576 {
577         /* Power down the PHY so no link is implied when interface is down *
578          * The PHY cannot be powered down if any of the following is TRUE *
579          * (a) WoL is enabled
580          * (b) AMT is active
581          * (c) SoL/IDER session is active */
582         if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
583            adapter->hw.media_type == e1000_media_type_copper) {
584                 uint16_t mii_reg = 0;
585
586                 switch (adapter->hw.mac_type) {
587                 case e1000_82540:
588                 case e1000_82545:
589                 case e1000_82545_rev_3:
590                 case e1000_82546:
591                 case e1000_82546_rev_3:
592                 case e1000_82541:
593                 case e1000_82541_rev_2:
594                 case e1000_82547:
595                 case e1000_82547_rev_2:
596                         if (E1000_READ_REG(&adapter->hw, MANC) &
597                             E1000_MANC_SMBUS_EN)
598                                 goto out;
599                         break;
600                 case e1000_82571:
601                 case e1000_82572:
602                 case e1000_82573:
603                 case e1000_80003es2lan:
604                 case e1000_ich8lan:
605                         if (e1000_check_mng_mode(&adapter->hw) ||
606                             e1000_check_phy_reset_block(&adapter->hw))
607                                 goto out;
608                         break;
609                 default:
610                         goto out;
611                 }
612                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
613                 mii_reg |= MII_CR_POWER_DOWN;
614                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
615                 mdelay(1);
616         }
617 out:
618         return;
619 }
620
621 void
622 e1000_down(struct e1000_adapter *adapter)
623 {
624         struct net_device *netdev = adapter->netdev;
625
626         /* signal that we're down so the interrupt handler does not
627          * reschedule our watchdog timer */
628         set_bit(__E1000_DOWN, &adapter->flags);
629
630         e1000_irq_disable(adapter);
631
632         del_timer_sync(&adapter->tx_fifo_stall_timer);
633         del_timer_sync(&adapter->watchdog_timer);
634         del_timer_sync(&adapter->phy_info_timer);
635
636 #ifdef CONFIG_E1000_NAPI
637         netif_poll_disable(netdev);
638 #endif
639         netdev->tx_queue_len = adapter->tx_queue_len;
640         adapter->link_speed = 0;
641         adapter->link_duplex = 0;
642         netif_carrier_off(netdev);
643         netif_stop_queue(netdev);
644
645         e1000_reset(adapter);
646         e1000_clean_all_tx_rings(adapter);
647         e1000_clean_all_rx_rings(adapter);
648 }
649
650 void
651 e1000_reinit_locked(struct e1000_adapter *adapter)
652 {
653         WARN_ON(in_interrupt());
654         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
655                 msleep(1);
656         e1000_down(adapter);
657         e1000_up(adapter);
658         clear_bit(__E1000_RESETTING, &adapter->flags);
659 }
660
661 void
662 e1000_reset(struct e1000_adapter *adapter)
663 {
664         uint32_t pba;
665         uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
666
667         /* Repartition Pba for greater than 9k mtu
668          * To take effect CTRL.RST is required.
669          */
670
671         switch (adapter->hw.mac_type) {
672         case e1000_82547:
673         case e1000_82547_rev_2:
674                 pba = E1000_PBA_30K;
675                 break;
676         case e1000_82571:
677         case e1000_82572:
678         case e1000_80003es2lan:
679                 pba = E1000_PBA_38K;
680                 break;
681         case e1000_82573:
682                 pba = E1000_PBA_12K;
683                 break;
684         case e1000_ich8lan:
685                 pba = E1000_PBA_8K;
686                 break;
687         default:
688                 pba = E1000_PBA_48K;
689                 break;
690         }
691
692         if ((adapter->hw.mac_type != e1000_82573) &&
693            (adapter->netdev->mtu > E1000_RXBUFFER_8192))
694                 pba -= 8; /* allocate more FIFO for Tx */
695
696
697         if (adapter->hw.mac_type == e1000_82547) {
698                 adapter->tx_fifo_head = 0;
699                 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
700                 adapter->tx_fifo_size =
701                         (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
702                 atomic_set(&adapter->tx_fifo_stall, 0);
703         }
704
705         E1000_WRITE_REG(&adapter->hw, PBA, pba);
706
707         /* flow control settings */
708         /* Set the FC high water mark to 90% of the FIFO size.
709          * Required to clear last 3 LSB */
710         fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
711         /* We can't use 90% on small FIFOs because the remainder
712          * would be less than 1 full frame.  In this case, we size
713          * it to allow at least a full frame above the high water
714          *  mark. */
715         if (pba < E1000_PBA_16K)
716                 fc_high_water_mark = (pba * 1024) - 1600;
717
718         adapter->hw.fc_high_water = fc_high_water_mark;
719         adapter->hw.fc_low_water = fc_high_water_mark - 8;
720         if (adapter->hw.mac_type == e1000_80003es2lan)
721                 adapter->hw.fc_pause_time = 0xFFFF;
722         else
723                 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
724         adapter->hw.fc_send_xon = 1;
725         adapter->hw.fc = adapter->hw.original_fc;
726
727         /* Allow time for pending master requests to run */
728         e1000_reset_hw(&adapter->hw);
729         if (adapter->hw.mac_type >= e1000_82544)
730                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
731
732         if (e1000_init_hw(&adapter->hw))
733                 DPRINTK(PROBE, ERR, "Hardware Error\n");
734         e1000_update_mng_vlan(adapter);
735         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
736         E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
737
738         e1000_reset_adaptive(&adapter->hw);
739         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
740
741         if (!adapter->smart_power_down &&
742             (adapter->hw.mac_type == e1000_82571 ||
743              adapter->hw.mac_type == e1000_82572)) {
744                 uint16_t phy_data = 0;
745                 /* speed up time to link by disabling smart power down, ignore
746                  * the return value of this function because there is nothing
747                  * different we would do if it failed */
748                 e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
749                                    &phy_data);
750                 phy_data &= ~IGP02E1000_PM_SPD;
751                 e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
752                                     phy_data);
753         }
754
755         e1000_release_manageability(adapter);
756 }
757
758 /**
759  * e1000_probe - Device Initialization Routine
760  * @pdev: PCI device information struct
761  * @ent: entry in e1000_pci_tbl
762  *
763  * Returns 0 on success, negative on failure
764  *
765  * e1000_probe initializes an adapter identified by a pci_dev structure.
766  * The OS initialization, configuring of the adapter private structure,
767  * and a hardware reset occur.
768  **/
769
770 static int __devinit
771 e1000_probe(struct pci_dev *pdev,
772             const struct pci_device_id *ent)
773 {
774         struct net_device *netdev;
775         struct e1000_adapter *adapter;
776         unsigned long mmio_start, mmio_len;
777         unsigned long flash_start, flash_len;
778
779         static int cards_found = 0;
780         static int global_quad_port_a = 0; /* global ksp3 port a indication */
781         int i, err, pci_using_dac;
782         uint16_t eeprom_data = 0;
783         uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
784         if ((err = pci_enable_device(pdev)))
785                 return err;
786
787         if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
788             !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
789                 pci_using_dac = 1;
790         } else {
791                 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) &&
792                     (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
793                         E1000_ERR("No usable DMA configuration, aborting\n");
794                         goto err_dma;
795                 }
796                 pci_using_dac = 0;
797         }
798
799         if ((err = pci_request_regions(pdev, e1000_driver_name)))
800                 goto err_pci_reg;
801
802         pci_set_master(pdev);
803
804         err = -ENOMEM;
805         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
806         if (!netdev)
807                 goto err_alloc_etherdev;
808
809         SET_MODULE_OWNER(netdev);
810         SET_NETDEV_DEV(netdev, &pdev->dev);
811
812         pci_set_drvdata(pdev, netdev);
813         adapter = netdev_priv(netdev);
814         adapter->netdev = netdev;
815         adapter->pdev = pdev;
816         adapter->hw.back = adapter;
817         adapter->msg_enable = (1 << debug) - 1;
818
819         mmio_start = pci_resource_start(pdev, BAR_0);
820         mmio_len = pci_resource_len(pdev, BAR_0);
821
822         err = -EIO;
823         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
824         if (!adapter->hw.hw_addr)
825                 goto err_ioremap;
826
827         for (i = BAR_1; i <= BAR_5; i++) {
828                 if (pci_resource_len(pdev, i) == 0)
829                         continue;
830                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
831                         adapter->hw.io_base = pci_resource_start(pdev, i);
832                         break;
833                 }
834         }
835
836         netdev->open = &e1000_open;
837         netdev->stop = &e1000_close;
838         netdev->hard_start_xmit = &e1000_xmit_frame;
839         netdev->get_stats = &e1000_get_stats;
840         netdev->set_multicast_list = &e1000_set_multi;
841         netdev->set_mac_address = &e1000_set_mac;
842         netdev->change_mtu = &e1000_change_mtu;
843         netdev->do_ioctl = &e1000_ioctl;
844         e1000_set_ethtool_ops(netdev);
845         netdev->tx_timeout = &e1000_tx_timeout;
846         netdev->watchdog_timeo = 5 * HZ;
847 #ifdef CONFIG_E1000_NAPI
848         netdev->poll = &e1000_clean;
849         netdev->weight = 64;
850 #endif
851         netdev->vlan_rx_register = e1000_vlan_rx_register;
852         netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
853         netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
854 #ifdef CONFIG_NET_POLL_CONTROLLER
855         netdev->poll_controller = e1000_netpoll;
856 #endif
857         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
858
859         netdev->mem_start = mmio_start;
860         netdev->mem_end = mmio_start + mmio_len;
861         netdev->base_addr = adapter->hw.io_base;
862
863         adapter->bd_number = cards_found;
864
865         /* setup the private structure */
866
867         if ((err = e1000_sw_init(adapter)))
868                 goto err_sw_init;
869
870         err = -EIO;
871         /* Flash BAR mapping must happen after e1000_sw_init
872          * because it depends on mac_type */
873         if ((adapter->hw.mac_type == e1000_ich8lan) &&
874            (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
875                 flash_start = pci_resource_start(pdev, 1);
876                 flash_len = pci_resource_len(pdev, 1);
877                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
878                 if (!adapter->hw.flash_address)
879                         goto err_flashmap;
880         }
881
882         if (e1000_check_phy_reset_block(&adapter->hw))
883                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
884
885         if (adapter->hw.mac_type >= e1000_82543) {
886                 netdev->features = NETIF_F_SG |
887                                    NETIF_F_HW_CSUM |
888                                    NETIF_F_HW_VLAN_TX |
889                                    NETIF_F_HW_VLAN_RX |
890                                    NETIF_F_HW_VLAN_FILTER;
891                 if (adapter->hw.mac_type == e1000_ich8lan)
892                         netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
893         }
894
895 #ifdef NETIF_F_TSO
896         if ((adapter->hw.mac_type >= e1000_82544) &&
897            (adapter->hw.mac_type != e1000_82547))
898                 netdev->features |= NETIF_F_TSO;
899
900 #ifdef NETIF_F_TSO6
901         if (adapter->hw.mac_type > e1000_82547_rev_2)
902                 netdev->features |= NETIF_F_TSO6;
903 #endif
904 #endif
905         if (pci_using_dac)
906                 netdev->features |= NETIF_F_HIGHDMA;
907
908         netdev->features |= NETIF_F_LLTX;
909
910         adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
911
912         /* initialize eeprom parameters */
913
914         if (e1000_init_eeprom_params(&adapter->hw)) {
915                 E1000_ERR("EEPROM initialization failed\n");
916                 goto err_eeprom;
917         }
918
919         /* before reading the EEPROM, reset the controller to
920          * put the device in a known good starting state */
921
922         e1000_reset_hw(&adapter->hw);
923
924         /* make sure the EEPROM is good */
925
926         if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
927                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
928                 goto err_eeprom;
929         }
930
931         /* copy the MAC address out of the EEPROM */
932
933         if (e1000_read_mac_addr(&adapter->hw))
934                 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
935         memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
936         memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
937
938         if (!is_valid_ether_addr(netdev->perm_addr)) {
939                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
940                 goto err_eeprom;
941         }
942
943         e1000_get_bus_info(&adapter->hw);
944
945         init_timer(&adapter->tx_fifo_stall_timer);
946         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
947         adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
948
949         init_timer(&adapter->watchdog_timer);
950         adapter->watchdog_timer.function = &e1000_watchdog;
951         adapter->watchdog_timer.data = (unsigned long) adapter;
952
953         init_timer(&adapter->phy_info_timer);
954         adapter->phy_info_timer.function = &e1000_update_phy_info;
955         adapter->phy_info_timer.data = (unsigned long) adapter;
956
957         INIT_WORK(&adapter->reset_task, e1000_reset_task);
958
959         e1000_check_options(adapter);
960
961         /* Initial Wake on LAN setting
962          * If APM wake is enabled in the EEPROM,
963          * enable the ACPI Magic Packet filter
964          */
965
966         switch (adapter->hw.mac_type) {
967         case e1000_82542_rev2_0:
968         case e1000_82542_rev2_1:
969         case e1000_82543:
970                 break;
971         case e1000_82544:
972                 e1000_read_eeprom(&adapter->hw,
973                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
974                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
975                 break;
976         case e1000_ich8lan:
977                 e1000_read_eeprom(&adapter->hw,
978                         EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
979                 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
980                 break;
981         case e1000_82546:
982         case e1000_82546_rev_3:
983         case e1000_82571:
984         case e1000_80003es2lan:
985                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
986                         e1000_read_eeprom(&adapter->hw,
987                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
988                         break;
989                 }
990                 /* Fall Through */
991         default:
992                 e1000_read_eeprom(&adapter->hw,
993                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
994                 break;
995         }
996         if (eeprom_data & eeprom_apme_mask)
997                 adapter->eeprom_wol |= E1000_WUFC_MAG;
998
999         /* now that we have the eeprom settings, apply the special cases
1000          * where the eeprom may be wrong or the board simply won't support
1001          * wake on lan on a particular port */
1002         switch (pdev->device) {
1003         case E1000_DEV_ID_82546GB_PCIE:
1004                 adapter->eeprom_wol = 0;
1005                 break;
1006         case E1000_DEV_ID_82546EB_FIBER:
1007         case E1000_DEV_ID_82546GB_FIBER:
1008         case E1000_DEV_ID_82571EB_FIBER:
1009                 /* Wake events only supported on port A for dual fiber
1010                  * regardless of eeprom setting */
1011                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
1012                         adapter->eeprom_wol = 0;
1013                 break;
1014         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1015         case E1000_DEV_ID_82571EB_QUAD_COPPER:
1016         case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1017                 /* if quad port adapter, disable WoL on all but port A */
1018                 if (global_quad_port_a != 0)
1019                         adapter->eeprom_wol = 0;
1020                 else
1021                         adapter->quad_port_a = 1;
1022                 /* Reset for multiple quad port adapters */
1023                 if (++global_quad_port_a == 4)
1024                         global_quad_port_a = 0;
1025                 break;
1026         }
1027
1028         /* initialize the wol settings based on the eeprom settings */
1029         adapter->wol = adapter->eeprom_wol;
1030
1031         /* print bus type/speed/width info */
1032         {
1033         struct e1000_hw *hw = &adapter->hw;
1034         DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
1035                 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
1036                  (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
1037                 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1038                  (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
1039                  (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
1040                  (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
1041                  (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
1042                 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
1043                  (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
1044                  (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
1045                  "32-bit"));
1046         }
1047
1048         for (i = 0; i < 6; i++)
1049                 printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
1050
1051         /* reset the hardware with the new settings */
1052         e1000_reset(adapter);
1053
1054         /* If the controller is 82573 and f/w is AMT, do not set
1055          * DRV_LOAD until the interface is up.  For all other cases,
1056          * let the f/w know that the h/w is now under the control
1057          * of the driver. */
1058         if (adapter->hw.mac_type != e1000_82573 ||
1059             !e1000_check_mng_mode(&adapter->hw))
1060                 e1000_get_hw_control(adapter);
1061
1062         strcpy(netdev->name, "eth%d");
1063         if ((err = register_netdev(netdev)))
1064                 goto err_register;
1065
1066         /* tell the stack to leave us alone until e1000_open() is called */
1067         netif_carrier_off(netdev);
1068         netif_stop_queue(netdev);
1069
1070         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1071
1072         cards_found++;
1073         return 0;
1074
1075 err_register:
1076         e1000_release_hw_control(adapter);
1077 err_eeprom:
1078         if (!e1000_check_phy_reset_block(&adapter->hw))
1079                 e1000_phy_hw_reset(&adapter->hw);
1080
1081         if (adapter->hw.flash_address)
1082                 iounmap(adapter->hw.flash_address);
1083 err_flashmap:
1084 #ifdef CONFIG_E1000_NAPI
1085         for (i = 0; i < adapter->num_rx_queues; i++)
1086                 dev_put(&adapter->polling_netdev[i]);
1087 #endif
1088
1089         kfree(adapter->tx_ring);
1090         kfree(adapter->rx_ring);
1091 #ifdef CONFIG_E1000_NAPI
1092         kfree(adapter->polling_netdev);
1093 #endif
1094 err_sw_init:
1095         iounmap(adapter->hw.hw_addr);
1096 err_ioremap:
1097         free_netdev(netdev);
1098 err_alloc_etherdev:
1099         pci_release_regions(pdev);
1100 err_pci_reg:
1101 err_dma:
1102         pci_disable_device(pdev);
1103         return err;
1104 }
1105
1106 /**
1107  * e1000_remove - Device Removal Routine
1108  * @pdev: PCI device information struct
1109  *
1110  * e1000_remove is called by the PCI subsystem to alert the driver
1111  * that it should release a PCI device.  The could be caused by a
1112  * Hot-Plug event, or because the driver is going to be removed from
1113  * memory.
1114  **/
1115
1116 static void __devexit
1117 e1000_remove(struct pci_dev *pdev)
1118 {
1119         struct net_device *netdev = pci_get_drvdata(pdev);
1120         struct e1000_adapter *adapter = netdev_priv(netdev);
1121 #ifdef CONFIG_E1000_NAPI
1122         int i;
1123 #endif
1124
1125         flush_scheduled_work();
1126
1127         e1000_release_manageability(adapter);
1128
1129         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1130          * would have already happened in close and is redundant. */
1131         e1000_release_hw_control(adapter);
1132
1133         unregister_netdev(netdev);
1134 #ifdef CONFIG_E1000_NAPI
1135         for (i = 0; i < adapter->num_rx_queues; i++)
1136                 dev_put(&adapter->polling_netdev[i]);
1137 #endif
1138
1139         if (!e1000_check_phy_reset_block(&adapter->hw))
1140                 e1000_phy_hw_reset(&adapter->hw);
1141
1142         kfree(adapter->tx_ring);
1143         kfree(adapter->rx_ring);
1144 #ifdef CONFIG_E1000_NAPI
1145         kfree(adapter->polling_netdev);
1146 #endif
1147
1148         iounmap(adapter->hw.hw_addr);
1149         if (adapter->hw.flash_address)
1150                 iounmap(adapter->hw.flash_address);
1151         pci_release_regions(pdev);
1152
1153         free_netdev(netdev);
1154
1155         pci_disable_device(pdev);
1156 }
1157
1158 /**
1159  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1160  * @adapter: board private structure to initialize
1161  *
1162  * e1000_sw_init initializes the Adapter private data structure.
1163  * Fields are initialized based on PCI device information and
1164  * OS network device settings (MTU size).
1165  **/
1166
1167 static int __devinit
1168 e1000_sw_init(struct e1000_adapter *adapter)
1169 {
1170         struct e1000_hw *hw = &adapter->hw;
1171         struct net_device *netdev = adapter->netdev;
1172         struct pci_dev *pdev = adapter->pdev;
1173 #ifdef CONFIG_E1000_NAPI
1174         int i;
1175 #endif
1176
1177         /* PCI config space info */
1178
1179         hw->vendor_id = pdev->vendor;
1180         hw->device_id = pdev->device;
1181         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1182         hw->subsystem_id = pdev->subsystem_device;
1183
1184         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
1185
1186         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1187
1188         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1189         adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
1190         hw->max_frame_size = netdev->mtu +
1191                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1192         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1193
1194         /* identify the MAC */
1195
1196         if (e1000_set_mac_type(hw)) {
1197                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1198                 return -EIO;
1199         }
1200
1201         switch (hw->mac_type) {
1202         default:
1203                 break;
1204         case e1000_82541:
1205         case e1000_82547:
1206         case e1000_82541_rev_2:
1207         case e1000_82547_rev_2:
1208                 hw->phy_init_script = 1;
1209                 break;
1210         }
1211
1212         e1000_set_media_type(hw);
1213
1214         hw->wait_autoneg_complete = FALSE;
1215         hw->tbi_compatibility_en = TRUE;
1216         hw->adaptive_ifs = TRUE;
1217
1218         /* Copper options */
1219
1220         if (hw->media_type == e1000_media_type_copper) {
1221                 hw->mdix = AUTO_ALL_MODES;
1222                 hw->disable_polarity_correction = FALSE;
1223                 hw->master_slave = E1000_MASTER_SLAVE;
1224         }
1225
1226         adapter->num_tx_queues = 1;
1227         adapter->num_rx_queues = 1;
1228
1229         if (e1000_alloc_queues(adapter)) {
1230                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1231                 return -ENOMEM;
1232         }
1233
1234 #ifdef CONFIG_E1000_NAPI
1235         for (i = 0; i < adapter->num_rx_queues; i++) {
1236                 adapter->polling_netdev[i].priv = adapter;
1237                 adapter->polling_netdev[i].poll = &e1000_clean;
1238                 adapter->polling_netdev[i].weight = 64;
1239                 dev_hold(&adapter->polling_netdev[i]);
1240                 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1241         }
1242         spin_lock_init(&adapter->tx_queue_lock);
1243 #endif
1244
1245         atomic_set(&adapter->irq_sem, 1);
1246         spin_lock_init(&adapter->stats_lock);
1247
1248         set_bit(__E1000_DOWN, &adapter->flags);
1249
1250         return 0;
1251 }
1252
1253 /**
1254  * e1000_alloc_queues - Allocate memory for all rings
1255  * @adapter: board private structure to initialize
1256  *
1257  * We allocate one ring per queue at run-time since we don't know the
1258  * number of queues at compile-time.  The polling_netdev array is
1259  * intended for Multiqueue, but should work fine with a single queue.
1260  **/
1261
1262 static int __devinit
1263 e1000_alloc_queues(struct e1000_adapter *adapter)
1264 {
1265         int size;
1266
1267         size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
1268         adapter->tx_ring = kmalloc(size, GFP_KERNEL);
1269         if (!adapter->tx_ring)
1270                 return -ENOMEM;
1271         memset(adapter->tx_ring, 0, size);
1272
1273         size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
1274         adapter->rx_ring = kmalloc(size, GFP_KERNEL);
1275         if (!adapter->rx_ring) {
1276                 kfree(adapter->tx_ring);
1277                 return -ENOMEM;
1278         }
1279         memset(adapter->rx_ring, 0, size);
1280
1281 #ifdef CONFIG_E1000_NAPI
1282         size = sizeof(struct net_device) * adapter->num_rx_queues;
1283         adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
1284         if (!adapter->polling_netdev) {
1285                 kfree(adapter->tx_ring);
1286                 kfree(adapter->rx_ring);
1287                 return -ENOMEM;
1288         }
1289         memset(adapter->polling_netdev, 0, size);
1290 #endif
1291
1292         return E1000_SUCCESS;
1293 }
1294
1295 /**
1296  * e1000_open - Called when a network interface is made active
1297  * @netdev: network interface device structure
1298  *
1299  * Returns 0 on success, negative value on failure
1300  *
1301  * The open entry point is called when a network interface is made
1302  * active by the system (IFF_UP).  At this point all resources needed
1303  * for transmit and receive operations are allocated, the interrupt
1304  * handler is registered with the OS, the watchdog timer is started,
1305  * and the stack is notified that the interface is ready.
1306  **/
1307
1308 static int
1309 e1000_open(struct net_device *netdev)
1310 {
1311         struct e1000_adapter *adapter = netdev_priv(netdev);
1312         int err;
1313
1314         /* disallow open during test */
1315         if (test_bit(__E1000_TESTING, &adapter->flags))
1316                 return -EBUSY;
1317
1318         /* allocate transmit descriptors */
1319         if ((err = e1000_setup_all_tx_resources(adapter)))
1320                 goto err_setup_tx;
1321
1322         /* allocate receive descriptors */
1323         if ((err = e1000_setup_all_rx_resources(adapter)))
1324                 goto err_setup_rx;
1325
1326         err = e1000_request_irq(adapter);
1327         if (err)
1328                 goto err_req_irq;
1329
1330         e1000_power_up_phy(adapter);
1331
1332         if ((err = e1000_up(adapter)))
1333                 goto err_up;
1334         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1335         if ((adapter->hw.mng_cookie.status &
1336                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1337                 e1000_update_mng_vlan(adapter);
1338         }
1339
1340         /* If AMT is enabled, let the firmware know that the network
1341          * interface is now open */
1342         if (adapter->hw.mac_type == e1000_82573 &&
1343             e1000_check_mng_mode(&adapter->hw))
1344                 e1000_get_hw_control(adapter);
1345
1346         return E1000_SUCCESS;
1347
1348 err_up:
1349         e1000_power_down_phy(adapter);
1350         e1000_free_irq(adapter);
1351 err_req_irq:
1352         e1000_free_all_rx_resources(adapter);
1353 err_setup_rx:
1354         e1000_free_all_tx_resources(adapter);
1355 err_setup_tx:
1356         e1000_reset(adapter);
1357
1358         return err;
1359 }
1360
1361 /**
1362  * e1000_close - Disables a network interface
1363  * @netdev: network interface device structure
1364  *
1365  * Returns 0, this is not allowed to fail
1366  *
1367  * The close entry point is called when an interface is de-activated
1368  * by the OS.  The hardware is still under the drivers control, but
1369  * needs to be disabled.  A global MAC reset is issued to stop the
1370  * hardware, and all transmit and receive resources are freed.
1371  **/
1372
1373 static int
1374 e1000_close(struct net_device *netdev)
1375 {
1376         struct e1000_adapter *adapter = netdev_priv(netdev);
1377
1378         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1379         e1000_down(adapter);
1380         e1000_power_down_phy(adapter);
1381         e1000_free_irq(adapter);
1382
1383         e1000_free_all_tx_resources(adapter);
1384         e1000_free_all_rx_resources(adapter);
1385
1386         /* kill manageability vlan ID if supported, but not if a vlan with
1387          * the same ID is registered on the host OS (let 8021q kill it) */
1388         if ((adapter->hw.mng_cookie.status &
1389                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1390              !(adapter->vlgrp &&
1391                           adapter->vlgrp->vlan_devices[adapter->mng_vlan_id])) {
1392                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1393         }
1394
1395         /* If AMT is enabled, let the firmware know that the network
1396          * interface is now closed */
1397         if (adapter->hw.mac_type == e1000_82573 &&
1398             e1000_check_mng_mode(&adapter->hw))
1399                 e1000_release_hw_control(adapter);
1400
1401         return 0;
1402 }
1403
1404 /**
1405  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1406  * @adapter: address of board private structure
1407  * @start: address of beginning of memory
1408  * @len: length of memory
1409  **/
1410 static boolean_t
1411 e1000_check_64k_bound(struct e1000_adapter *adapter,
1412                       void *start, unsigned long len)
1413 {
1414         unsigned long begin = (unsigned long) start;
1415         unsigned long end = begin + len;
1416
1417         /* First rev 82545 and 82546 need to not allow any memory
1418          * write location to cross 64k boundary due to errata 23 */
1419         if (adapter->hw.mac_type == e1000_82545 ||
1420             adapter->hw.mac_type == e1000_82546) {
1421                 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1422         }
1423
1424         return TRUE;
1425 }
1426
1427 /**
1428  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1429  * @adapter: board private structure
1430  * @txdr:    tx descriptor ring (for a specific queue) to setup
1431  *
1432  * Return 0 on success, negative on failure
1433  **/
1434
1435 static int
1436 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1437                          struct e1000_tx_ring *txdr)
1438 {
1439         struct pci_dev *pdev = adapter->pdev;
1440         int size;
1441
1442         size = sizeof(struct e1000_buffer) * txdr->count;
1443         txdr->buffer_info = vmalloc(size);
1444         if (!txdr->buffer_info) {
1445                 DPRINTK(PROBE, ERR,
1446                 "Unable to allocate memory for the transmit descriptor ring\n");
1447                 return -ENOMEM;
1448         }
1449         memset(txdr->buffer_info, 0, size);
1450
1451         /* round up to nearest 4K */
1452
1453         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1454         E1000_ROUNDUP(txdr->size, 4096);
1455
1456         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1457         if (!txdr->desc) {
1458 setup_tx_desc_die:
1459                 vfree(txdr->buffer_info);
1460                 DPRINTK(PROBE, ERR,
1461                 "Unable to allocate memory for the transmit descriptor ring\n");
1462                 return -ENOMEM;
1463         }
1464
1465         /* Fix for errata 23, can't cross 64kB boundary */
1466         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1467                 void *olddesc = txdr->desc;
1468                 dma_addr_t olddma = txdr->dma;
1469                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1470                                      "at %p\n", txdr->size, txdr->desc);
1471                 /* Try again, without freeing the previous */
1472                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1473                 /* Failed allocation, critical failure */
1474                 if (!txdr->desc) {
1475                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1476                         goto setup_tx_desc_die;
1477                 }
1478
1479                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1480                         /* give up */
1481                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1482                                             txdr->dma);
1483                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1484                         DPRINTK(PROBE, ERR,
1485                                 "Unable to allocate aligned memory "
1486                                 "for the transmit descriptor ring\n");
1487                         vfree(txdr->buffer_info);
1488                         return -ENOMEM;
1489                 } else {
1490                         /* Free old allocation, new allocation was successful */
1491                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1492                 }
1493         }
1494         memset(txdr->desc, 0, txdr->size);
1495
1496         txdr->next_to_use = 0;
1497         txdr->next_to_clean = 0;
1498         spin_lock_init(&txdr->tx_lock);
1499
1500         return 0;
1501 }
1502
1503 /**
1504  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1505  *                                (Descriptors) for all queues
1506  * @adapter: board private structure
1507  *
1508  * Return 0 on success, negative on failure
1509  **/
1510
1511 int
1512 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1513 {
1514         int i, err = 0;
1515
1516         for (i = 0; i < adapter->num_tx_queues; i++) {
1517                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1518                 if (err) {
1519                         DPRINTK(PROBE, ERR,
1520                                 "Allocation for Tx Queue %u failed\n", i);
1521                         for (i-- ; i >= 0; i--)
1522                                 e1000_free_tx_resources(adapter,
1523                                                         &adapter->tx_ring[i]);
1524                         break;
1525                 }
1526         }
1527
1528         return err;
1529 }
1530
1531 /**
1532  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1533  * @adapter: board private structure
1534  *
1535  * Configure the Tx unit of the MAC after a reset.
1536  **/
1537
1538 static void
1539 e1000_configure_tx(struct e1000_adapter *adapter)
1540 {
1541         uint64_t tdba;
1542         struct e1000_hw *hw = &adapter->hw;
1543         uint32_t tdlen, tctl, tipg, tarc;
1544         uint32_t ipgr1, ipgr2;
1545
1546         /* Setup the HW Tx Head and Tail descriptor pointers */
1547
1548         switch (adapter->num_tx_queues) {
1549         case 1:
1550         default:
1551                 tdba = adapter->tx_ring[0].dma;
1552                 tdlen = adapter->tx_ring[0].count *
1553                         sizeof(struct e1000_tx_desc);
1554                 E1000_WRITE_REG(hw, TDLEN, tdlen);
1555                 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1556                 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1557                 E1000_WRITE_REG(hw, TDT, 0);
1558                 E1000_WRITE_REG(hw, TDH, 0);
1559                 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1560                 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1561                 break;
1562         }
1563
1564         /* Set the default values for the Tx Inter Packet Gap timer */
1565
1566         if (hw->media_type == e1000_media_type_fiber ||
1567             hw->media_type == e1000_media_type_internal_serdes)
1568                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1569         else
1570                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1571
1572         switch (hw->mac_type) {
1573         case e1000_82542_rev2_0:
1574         case e1000_82542_rev2_1:
1575                 tipg = DEFAULT_82542_TIPG_IPGT;
1576                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1577                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1578                 break;
1579         case e1000_80003es2lan:
1580                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1581                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1582                 break;
1583         default:
1584                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1585                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1586                 break;
1587         }
1588         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1589         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1590         E1000_WRITE_REG(hw, TIPG, tipg);
1591
1592         /* Set the Tx Interrupt Delay register */
1593
1594         E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1595         if (hw->mac_type >= e1000_82540)
1596                 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1597
1598         /* Program the Transmit Control Register */
1599
1600         tctl = E1000_READ_REG(hw, TCTL);
1601         tctl &= ~E1000_TCTL_CT;
1602         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1603                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1604
1605         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1606                 tarc = E1000_READ_REG(hw, TARC0);
1607                 /* set the speed mode bit, we'll clear it if we're not at
1608                  * gigabit link later */
1609                 tarc |= (1 << 21);
1610                 E1000_WRITE_REG(hw, TARC0, tarc);
1611         } else if (hw->mac_type == e1000_80003es2lan) {
1612                 tarc = E1000_READ_REG(hw, TARC0);
1613                 tarc |= 1;
1614                 E1000_WRITE_REG(hw, TARC0, tarc);
1615                 tarc = E1000_READ_REG(hw, TARC1);
1616                 tarc |= 1;
1617                 E1000_WRITE_REG(hw, TARC1, tarc);
1618         }
1619
1620         e1000_config_collision_dist(hw);
1621
1622         /* Setup Transmit Descriptor Settings for eop descriptor */
1623         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1624
1625         /* only set IDE if we are delaying interrupts using the timers */
1626         if (adapter->tx_int_delay)
1627                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1628
1629         if (hw->mac_type < e1000_82543)
1630                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1631         else
1632                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1633
1634         /* Cache if we're 82544 running in PCI-X because we'll
1635          * need this to apply a workaround later in the send path. */
1636         if (hw->mac_type == e1000_82544 &&
1637             hw->bus_type == e1000_bus_type_pcix)
1638                 adapter->pcix_82544 = 1;
1639
1640         E1000_WRITE_REG(hw, TCTL, tctl);
1641
1642 }
1643
1644 /**
1645  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1646  * @adapter: board private structure
1647  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1648  *
1649  * Returns 0 on success, negative on failure
1650  **/
1651
1652 static int
1653 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1654                          struct e1000_rx_ring *rxdr)
1655 {
1656         struct pci_dev *pdev = adapter->pdev;
1657         int size, desc_len;
1658
1659         size = sizeof(struct e1000_buffer) * rxdr->count;
1660         rxdr->buffer_info = vmalloc(size);
1661         if (!rxdr->buffer_info) {
1662                 DPRINTK(PROBE, ERR,
1663                 "Unable to allocate memory for the receive descriptor ring\n");
1664                 return -ENOMEM;
1665         }
1666         memset(rxdr->buffer_info, 0, size);
1667
1668         size = sizeof(struct e1000_ps_page) * rxdr->count;
1669         rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1670         if (!rxdr->ps_page) {
1671                 vfree(rxdr->buffer_info);
1672                 DPRINTK(PROBE, ERR,
1673                 "Unable to allocate memory for the receive descriptor ring\n");
1674                 return -ENOMEM;
1675         }
1676         memset(rxdr->ps_page, 0, size);
1677
1678         size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1679         rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1680         if (!rxdr->ps_page_dma) {
1681                 vfree(rxdr->buffer_info);
1682                 kfree(rxdr->ps_page);
1683                 DPRINTK(PROBE, ERR,
1684                 "Unable to allocate memory for the receive descriptor ring\n");
1685                 return -ENOMEM;
1686         }
1687         memset(rxdr->ps_page_dma, 0, size);
1688
1689         if (adapter->hw.mac_type <= e1000_82547_rev_2)
1690                 desc_len = sizeof(struct e1000_rx_desc);
1691         else
1692                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1693
1694         /* Round up to nearest 4K */
1695
1696         rxdr->size = rxdr->count * desc_len;
1697         E1000_ROUNDUP(rxdr->size, 4096);
1698
1699         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1700
1701         if (!rxdr->desc) {
1702                 DPRINTK(PROBE, ERR,
1703                 "Unable to allocate memory for the receive descriptor ring\n");
1704 setup_rx_desc_die:
1705                 vfree(rxdr->buffer_info);
1706                 kfree(rxdr->ps_page);
1707                 kfree(rxdr->ps_page_dma);
1708                 return -ENOMEM;
1709         }
1710
1711         /* Fix for errata 23, can't cross 64kB boundary */
1712         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1713                 void *olddesc = rxdr->desc;
1714                 dma_addr_t olddma = rxdr->dma;
1715                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1716                                      "at %p\n", rxdr->size, rxdr->desc);
1717                 /* Try again, without freeing the previous */
1718                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1719                 /* Failed allocation, critical failure */
1720                 if (!rxdr->desc) {
1721                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1722                         DPRINTK(PROBE, ERR,
1723                                 "Unable to allocate memory "
1724                                 "for the receive descriptor ring\n");
1725                         goto setup_rx_desc_die;
1726                 }
1727
1728                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1729                         /* give up */
1730                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1731                                             rxdr->dma);
1732                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1733                         DPRINTK(PROBE, ERR,
1734                                 "Unable to allocate aligned memory "
1735                                 "for the receive descriptor ring\n");
1736                         goto setup_rx_desc_die;
1737                 } else {
1738                         /* Free old allocation, new allocation was successful */
1739                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1740                 }
1741         }
1742         memset(rxdr->desc, 0, rxdr->size);
1743
1744         rxdr->next_to_clean = 0;
1745         rxdr->next_to_use = 0;
1746
1747         return 0;
1748 }
1749
1750 /**
1751  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1752  *                                (Descriptors) for all queues
1753  * @adapter: board private structure
1754  *
1755  * Return 0 on success, negative on failure
1756  **/
1757
1758 int
1759 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1760 {
1761         int i, err = 0;
1762
1763         for (i = 0; i < adapter->num_rx_queues; i++) {
1764                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1765                 if (err) {
1766                         DPRINTK(PROBE, ERR,
1767                                 "Allocation for Rx Queue %u failed\n", i);
1768                         for (i-- ; i >= 0; i--)
1769                                 e1000_free_rx_resources(adapter,
1770                                                         &adapter->rx_ring[i]);
1771                         break;
1772                 }
1773         }
1774
1775         return err;
1776 }
1777
1778 /**
1779  * e1000_setup_rctl - configure the receive control registers
1780  * @adapter: Board private structure
1781  **/
1782 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1783                         (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1784 static void
1785 e1000_setup_rctl(struct e1000_adapter *adapter)
1786 {
1787         uint32_t rctl, rfctl;
1788         uint32_t psrctl = 0;
1789 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1790         uint32_t pages = 0;
1791 #endif
1792
1793         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1794
1795         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1796
1797         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1798                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1799                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1800
1801         if (adapter->hw.tbi_compatibility_on == 1)
1802                 rctl |= E1000_RCTL_SBP;
1803         else
1804                 rctl &= ~E1000_RCTL_SBP;
1805
1806         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1807                 rctl &= ~E1000_RCTL_LPE;
1808         else
1809                 rctl |= E1000_RCTL_LPE;
1810
1811         /* Setup buffer sizes */
1812         rctl &= ~E1000_RCTL_SZ_4096;
1813         rctl |= E1000_RCTL_BSEX;
1814         switch (adapter->rx_buffer_len) {
1815                 case E1000_RXBUFFER_256:
1816                         rctl |= E1000_RCTL_SZ_256;
1817                         rctl &= ~E1000_RCTL_BSEX;
1818                         break;
1819                 case E1000_RXBUFFER_512:
1820                         rctl |= E1000_RCTL_SZ_512;
1821                         rctl &= ~E1000_RCTL_BSEX;
1822                         break;
1823                 case E1000_RXBUFFER_1024:
1824                         rctl |= E1000_RCTL_SZ_1024;
1825                         rctl &= ~E1000_RCTL_BSEX;
1826                         break;
1827                 case E1000_RXBUFFER_2048:
1828                 default:
1829                         rctl |= E1000_RCTL_SZ_2048;
1830                         rctl &= ~E1000_RCTL_BSEX;
1831                         break;
1832                 case E1000_RXBUFFER_4096:
1833                         rctl |= E1000_RCTL_SZ_4096;
1834                         break;
1835                 case E1000_RXBUFFER_8192:
1836                         rctl |= E1000_RCTL_SZ_8192;
1837                         break;
1838                 case E1000_RXBUFFER_16384:
1839                         rctl |= E1000_RCTL_SZ_16384;
1840                         break;
1841         }
1842
1843 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1844         /* 82571 and greater support packet-split where the protocol
1845          * header is placed in skb->data and the packet data is
1846          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1847          * In the case of a non-split, skb->data is linearly filled,
1848          * followed by the page buffers.  Therefore, skb->data is
1849          * sized to hold the largest protocol header.
1850          */
1851         /* allocations using alloc_page take too long for regular MTU
1852          * so only enable packet split for jumbo frames */
1853         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1854         if ((adapter->hw.mac_type >= e1000_82571) && (pages <= 3) &&
1855             PAGE_SIZE <= 16384 && (rctl & E1000_RCTL_LPE))
1856                 adapter->rx_ps_pages = pages;
1857         else
1858                 adapter->rx_ps_pages = 0;
1859 #endif
1860         if (adapter->rx_ps_pages) {
1861                 /* Configure extra packet-split registers */
1862                 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1863                 rfctl |= E1000_RFCTL_EXTEN;
1864                 /* disable packet split support for IPv6 extension headers,
1865                  * because some malformed IPv6 headers can hang the RX */
1866                 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
1867                           E1000_RFCTL_NEW_IPV6_EXT_DIS);
1868
1869                 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1870
1871                 rctl |= E1000_RCTL_DTYP_PS;
1872
1873                 psrctl |= adapter->rx_ps_bsize0 >>
1874                         E1000_PSRCTL_BSIZE0_SHIFT;
1875
1876                 switch (adapter->rx_ps_pages) {
1877                 case 3:
1878                         psrctl |= PAGE_SIZE <<
1879                                 E1000_PSRCTL_BSIZE3_SHIFT;
1880                 case 2:
1881                         psrctl |= PAGE_SIZE <<
1882                                 E1000_PSRCTL_BSIZE2_SHIFT;
1883                 case 1:
1884                         psrctl |= PAGE_SIZE >>
1885                                 E1000_PSRCTL_BSIZE1_SHIFT;
1886                         break;
1887                 }
1888
1889                 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1890         }
1891
1892         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1893 }
1894
1895 /**
1896  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1897  * @adapter: board private structure
1898  *
1899  * Configure the Rx unit of the MAC after a reset.
1900  **/
1901
1902 static void
1903 e1000_configure_rx(struct e1000_adapter *adapter)
1904 {
1905         uint64_t rdba;
1906         struct e1000_hw *hw = &adapter->hw;
1907         uint32_t rdlen, rctl, rxcsum, ctrl_ext;
1908
1909         if (adapter->rx_ps_pages) {
1910                 /* this is a 32 byte descriptor */
1911                 rdlen = adapter->rx_ring[0].count *
1912                         sizeof(union e1000_rx_desc_packet_split);
1913                 adapter->clean_rx = e1000_clean_rx_irq_ps;
1914                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1915         } else {
1916                 rdlen = adapter->rx_ring[0].count *
1917                         sizeof(struct e1000_rx_desc);
1918                 adapter->clean_rx = e1000_clean_rx_irq;
1919                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1920         }
1921
1922         /* disable receives while setting up the descriptors */
1923         rctl = E1000_READ_REG(hw, RCTL);
1924         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
1925
1926         /* set the Receive Delay Timer Register */
1927         E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
1928
1929         if (hw->mac_type >= e1000_82540) {
1930                 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
1931                 if (adapter->itr_setting != 0)
1932                         E1000_WRITE_REG(hw, ITR,
1933                                 1000000000 / (adapter->itr * 256));
1934         }
1935
1936         if (hw->mac_type >= e1000_82571) {
1937                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1938                 /* Reset delay timers after every interrupt */
1939                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1940 #ifdef CONFIG_E1000_NAPI
1941                 /* Auto-Mask interrupts upon ICR access */
1942                 ctrl_ext |= E1000_CTRL_EXT_IAME;
1943                 E1000_WRITE_REG(hw, IAM, 0xffffffff);
1944 #endif
1945                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1946                 E1000_WRITE_FLUSH(hw);
1947         }
1948
1949         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1950          * the Base and Length of the Rx Descriptor Ring */
1951         switch (adapter->num_rx_queues) {
1952         case 1:
1953         default:
1954                 rdba = adapter->rx_ring[0].dma;
1955                 E1000_WRITE_REG(hw, RDLEN, rdlen);
1956                 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
1957                 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1958                 E1000_WRITE_REG(hw, RDT, 0);
1959                 E1000_WRITE_REG(hw, RDH, 0);
1960                 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1961                 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1962                 break;
1963         }
1964
1965         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1966         if (hw->mac_type >= e1000_82543) {
1967                 rxcsum = E1000_READ_REG(hw, RXCSUM);
1968                 if (adapter->rx_csum == TRUE) {
1969                         rxcsum |= E1000_RXCSUM_TUOFL;
1970
1971                         /* Enable 82571 IPv4 payload checksum for UDP fragments
1972                          * Must be used in conjunction with packet-split. */
1973                         if ((hw->mac_type >= e1000_82571) &&
1974                             (adapter->rx_ps_pages)) {
1975                                 rxcsum |= E1000_RXCSUM_IPPCSE;
1976                         }
1977                 } else {
1978                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1979                         /* don't need to clear IPPCSE as it defaults to 0 */
1980                 }
1981                 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1982         }
1983
1984         /* enable early receives on 82573, only takes effect if using > 2048
1985          * byte total frame size.  for example only for jumbo frames */
1986 #define E1000_ERT_2048 0x100
1987         if (hw->mac_type == e1000_82573)
1988                 E1000_WRITE_REG(hw, ERT, E1000_ERT_2048);
1989
1990         /* Enable Receives */
1991         E1000_WRITE_REG(hw, RCTL, rctl);
1992 }
1993
1994 /**
1995  * e1000_free_tx_resources - Free Tx Resources per Queue
1996  * @adapter: board private structure
1997  * @tx_ring: Tx descriptor ring for a specific queue
1998  *
1999  * Free all transmit software resources
2000  **/
2001
2002 static void
2003 e1000_free_tx_resources(struct e1000_adapter *adapter,
2004                         struct e1000_tx_ring *tx_ring)
2005 {
2006         struct pci_dev *pdev = adapter->pdev;
2007
2008         e1000_clean_tx_ring(adapter, tx_ring);
2009
2010         vfree(tx_ring->buffer_info);
2011         tx_ring->buffer_info = NULL;
2012
2013         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2014
2015         tx_ring->desc = NULL;
2016 }
2017
2018 /**
2019  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
2020  * @adapter: board private structure
2021  *
2022  * Free all transmit software resources
2023  **/
2024
2025 void
2026 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
2027 {
2028         int i;
2029
2030         for (i = 0; i < adapter->num_tx_queues; i++)
2031                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
2032 }
2033
2034 static void
2035 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
2036                         struct e1000_buffer *buffer_info)
2037 {
2038         if (buffer_info->dma) {
2039                 pci_unmap_page(adapter->pdev,
2040                                 buffer_info->dma,
2041                                 buffer_info->length,
2042                                 PCI_DMA_TODEVICE);
2043                 buffer_info->dma = 0;
2044         }
2045         if (buffer_info->skb) {
2046                 dev_kfree_skb_any(buffer_info->skb);
2047                 buffer_info->skb = NULL;
2048         }
2049         /* buffer_info must be completely set up in the transmit path */
2050 }
2051
2052 /**
2053  * e1000_clean_tx_ring - Free Tx Buffers
2054  * @adapter: board private structure
2055  * @tx_ring: ring to be cleaned
2056  **/
2057
2058 static void
2059 e1000_clean_tx_ring(struct e1000_adapter *adapter,
2060                     struct e1000_tx_ring *tx_ring)
2061 {
2062         struct e1000_buffer *buffer_info;
2063         unsigned long size;
2064         unsigned int i;
2065
2066         /* Free all the Tx ring sk_buffs */
2067
2068         for (i = 0; i < tx_ring->count; i++) {
2069                 buffer_info = &tx_ring->buffer_info[i];
2070                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2071         }
2072
2073         size = sizeof(struct e1000_buffer) * tx_ring->count;
2074         memset(tx_ring->buffer_info, 0, size);
2075
2076         /* Zero out the descriptor ring */
2077
2078         memset(tx_ring->desc, 0, tx_ring->size);
2079
2080         tx_ring->next_to_use = 0;
2081         tx_ring->next_to_clean = 0;
2082         tx_ring->last_tx_tso = 0;
2083
2084         writel(0, adapter->hw.hw_addr + tx_ring->tdh);
2085         writel(0, adapter->hw.hw_addr + tx_ring->tdt);
2086 }
2087
2088 /**
2089  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2090  * @adapter: board private structure
2091  **/
2092
2093 static void
2094 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2095 {
2096         int i;
2097
2098         for (i = 0; i < adapter->num_tx_queues; i++)
2099                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2100 }
2101
2102 /**
2103  * e1000_free_rx_resources - Free Rx Resources
2104  * @adapter: board private structure
2105  * @rx_ring: ring to clean the resources from
2106  *
2107  * Free all receive software resources
2108  **/
2109
2110 static void
2111 e1000_free_rx_resources(struct e1000_adapter *adapter,
2112                         struct e1000_rx_ring *rx_ring)
2113 {
2114         struct pci_dev *pdev = adapter->pdev;
2115
2116         e1000_clean_rx_ring(adapter, rx_ring);
2117
2118         vfree(rx_ring->buffer_info);
2119         rx_ring->buffer_info = NULL;
2120         kfree(rx_ring->ps_page);
2121         rx_ring->ps_page = NULL;
2122         kfree(rx_ring->ps_page_dma);
2123         rx_ring->ps_page_dma = NULL;
2124
2125         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2126
2127         rx_ring->desc = NULL;
2128 }
2129
2130 /**
2131  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2132  * @adapter: board private structure
2133  *
2134  * Free all receive software resources
2135  **/
2136
2137 void
2138 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2139 {
2140         int i;
2141
2142         for (i = 0; i < adapter->num_rx_queues; i++)
2143                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2144 }
2145
2146 /**
2147  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2148  * @adapter: board private structure
2149  * @rx_ring: ring to free buffers from
2150  **/
2151
2152 static void
2153 e1000_clean_rx_ring(struct e1000_adapter *adapter,
2154                     struct e1000_rx_ring *rx_ring)
2155 {
2156         struct e1000_buffer *buffer_info;
2157         struct e1000_ps_page *ps_page;
2158         struct e1000_ps_page_dma *ps_page_dma;
2159         struct pci_dev *pdev = adapter->pdev;
2160         unsigned long size;
2161         unsigned int i, j;
2162
2163         /* Free all the Rx ring sk_buffs */
2164         for (i = 0; i < rx_ring->count; i++) {
2165                 buffer_info = &rx_ring->buffer_info[i];
2166                 if (buffer_info->skb) {
2167                         pci_unmap_single(pdev,
2168                                          buffer_info->dma,
2169                                          buffer_info->length,
2170                                          PCI_DMA_FROMDEVICE);
2171
2172                         dev_kfree_skb(buffer_info->skb);
2173                         buffer_info->skb = NULL;
2174                 }
2175                 ps_page = &rx_ring->ps_page[i];
2176                 ps_page_dma = &rx_ring->ps_page_dma[i];
2177                 for (j = 0; j < adapter->rx_ps_pages; j++) {
2178                         if (!ps_page->ps_page[j]) break;
2179                         pci_unmap_page(pdev,
2180                                        ps_page_dma->ps_page_dma[j],
2181                                        PAGE_SIZE, PCI_DMA_FROMDEVICE);
2182                         ps_page_dma->ps_page_dma[j] = 0;
2183                         put_page(ps_page->ps_page[j]);
2184                         ps_page->ps_page[j] = NULL;
2185                 }
2186         }
2187
2188         size = sizeof(struct e1000_buffer) * rx_ring->count;
2189         memset(rx_ring->buffer_info, 0, size);
2190         size = sizeof(struct e1000_ps_page) * rx_ring->count;
2191         memset(rx_ring->ps_page, 0, size);
2192         size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
2193         memset(rx_ring->ps_page_dma, 0, size);
2194
2195         /* Zero out the descriptor ring */
2196
2197         memset(rx_ring->desc, 0, rx_ring->size);
2198
2199         rx_ring->next_to_clean = 0;
2200         rx_ring->next_to_use = 0;
2201
2202         writel(0, adapter->hw.hw_addr + rx_ring->rdh);
2203         writel(0, adapter->hw.hw_addr + rx_ring->rdt);
2204 }
2205
2206 /**
2207  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2208  * @adapter: board private structure
2209  **/
2210
2211 static void
2212 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2213 {
2214         int i;
2215
2216         for (i = 0; i < adapter->num_rx_queues; i++)
2217                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2218 }
2219
2220 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2221  * and memory write and invalidate disabled for certain operations
2222  */
2223 static void
2224 e1000_enter_82542_rst(struct e1000_adapter *adapter)
2225 {
2226         struct net_device *netdev = adapter->netdev;
2227         uint32_t rctl;
2228
2229         e1000_pci_clear_mwi(&adapter->hw);
2230
2231         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2232         rctl |= E1000_RCTL_RST;
2233         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2234         E1000_WRITE_FLUSH(&adapter->hw);
2235         mdelay(5);
2236
2237         if (netif_running(netdev))
2238                 e1000_clean_all_rx_rings(adapter);
2239 }
2240
2241 static void
2242 e1000_leave_82542_rst(struct e1000_adapter *adapter)
2243 {
2244         struct net_device *netdev = adapter->netdev;
2245         uint32_t rctl;
2246
2247         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2248         rctl &= ~E1000_RCTL_RST;
2249         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2250         E1000_WRITE_FLUSH(&adapter->hw);
2251         mdelay(5);
2252
2253         if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2254                 e1000_pci_set_mwi(&adapter->hw);
2255
2256         if (netif_running(netdev)) {
2257                 /* No need to loop, because 82542 supports only 1 queue */
2258                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2259                 e1000_configure_rx(adapter);
2260                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2261         }
2262 }
2263
2264 /**
2265  * e1000_set_mac - Change the Ethernet Address of the NIC
2266  * @netdev: network interface device structure
2267  * @p: pointer to an address structure
2268  *
2269  * Returns 0 on success, negative on failure
2270  **/
2271
2272 static int
2273 e1000_set_mac(struct net_device *netdev, void *p)
2274 {
2275         struct e1000_adapter *adapter = netdev_priv(netdev);
2276         struct sockaddr *addr = p;
2277
2278         if (!is_valid_ether_addr(addr->sa_data))
2279                 return -EADDRNOTAVAIL;
2280
2281         /* 82542 2.0 needs to be in reset to write receive address registers */
2282
2283         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2284                 e1000_enter_82542_rst(adapter);
2285
2286         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2287         memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2288
2289         e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2290
2291         /* With 82571 controllers, LAA may be overwritten (with the default)
2292          * due to controller reset from the other port. */
2293         if (adapter->hw.mac_type == e1000_82571) {
2294                 /* activate the work around */
2295                 adapter->hw.laa_is_present = 1;
2296
2297                 /* Hold a copy of the LAA in RAR[14] This is done so that
2298                  * between the time RAR[0] gets clobbered  and the time it
2299                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2300                  * of the RARs and no incoming packets directed to this port
2301                  * are dropped. Eventaully the LAA will be in RAR[0] and
2302                  * RAR[14] */
2303                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2304                                         E1000_RAR_ENTRIES - 1);
2305         }
2306
2307         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2308                 e1000_leave_82542_rst(adapter);
2309
2310         return 0;
2311 }
2312
2313 /**
2314  * e1000_set_multi - Multicast and Promiscuous mode set
2315  * @netdev: network interface device structure
2316  *
2317  * The set_multi entry point is called whenever the multicast address
2318  * list or the network interface flags are updated.  This routine is
2319  * responsible for configuring the hardware for proper multicast,
2320  * promiscuous mode, and all-multi behavior.
2321  **/
2322
2323 static void
2324 e1000_set_multi(struct net_device *netdev)
2325 {
2326         struct e1000_adapter *adapter = netdev_priv(netdev);
2327         struct e1000_hw *hw = &adapter->hw;
2328         struct dev_mc_list *mc_ptr;
2329         uint32_t rctl;
2330         uint32_t hash_value;
2331         int i, rar_entries = E1000_RAR_ENTRIES;
2332         int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2333                                 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2334                                 E1000_NUM_MTA_REGISTERS;
2335
2336         if (adapter->hw.mac_type == e1000_ich8lan)
2337                 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2338
2339         /* reserve RAR[14] for LAA over-write work-around */
2340         if (adapter->hw.mac_type == e1000_82571)
2341                 rar_entries--;
2342
2343         /* Check for Promiscuous and All Multicast modes */
2344
2345         rctl = E1000_READ_REG(hw, RCTL);
2346
2347         if (netdev->flags & IFF_PROMISC) {
2348                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2349         } else if (netdev->flags & IFF_ALLMULTI) {
2350                 rctl |= E1000_RCTL_MPE;
2351                 rctl &= ~E1000_RCTL_UPE;
2352         } else {
2353                 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2354         }
2355
2356         E1000_WRITE_REG(hw, RCTL, rctl);
2357
2358         /* 82542 2.0 needs to be in reset to write receive address registers */
2359
2360         if (hw->mac_type == e1000_82542_rev2_0)
2361                 e1000_enter_82542_rst(adapter);
2362
2363         /* load the first 14 multicast address into the exact filters 1-14
2364          * RAR 0 is used for the station MAC adddress
2365          * if there are not 14 addresses, go ahead and clear the filters
2366          * -- with 82571 controllers only 0-13 entries are filled here
2367          */
2368         mc_ptr = netdev->mc_list;
2369
2370         for (i = 1; i < rar_entries; i++) {
2371                 if (mc_ptr) {
2372                         e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2373                         mc_ptr = mc_ptr->next;
2374                 } else {
2375                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2376                         E1000_WRITE_FLUSH(hw);
2377                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2378                         E1000_WRITE_FLUSH(hw);
2379                 }
2380         }
2381
2382         /* clear the old settings from the multicast hash table */
2383
2384         for (i = 0; i < mta_reg_count; i++) {
2385                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2386                 E1000_WRITE_FLUSH(hw);
2387         }
2388
2389         /* load any remaining addresses into the hash table */
2390
2391         for (; mc_ptr; mc_ptr = mc_ptr->next) {
2392                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2393                 e1000_mta_set(hw, hash_value);
2394         }
2395
2396         if (hw->mac_type == e1000_82542_rev2_0)
2397                 e1000_leave_82542_rst(adapter);
2398 }
2399
2400 /* Need to wait a few seconds after link up to get diagnostic information from
2401  * the phy */
2402
2403 static void
2404 e1000_update_phy_info(unsigned long data)
2405 {
2406         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2407         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2408 }
2409
2410 /**
2411  * e1000_82547_tx_fifo_stall - Timer Call-back
2412  * @data: pointer to adapter cast into an unsigned long
2413  **/
2414
2415 static void
2416 e1000_82547_tx_fifo_stall(unsigned long data)
2417 {
2418         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2419         struct net_device *netdev = adapter->netdev;
2420         uint32_t tctl;
2421
2422         if (atomic_read(&adapter->tx_fifo_stall)) {
2423                 if ((E1000_READ_REG(&adapter->hw, TDT) ==
2424                     E1000_READ_REG(&adapter->hw, TDH)) &&
2425                    (E1000_READ_REG(&adapter->hw, TDFT) ==
2426                     E1000_READ_REG(&adapter->hw, TDFH)) &&
2427                    (E1000_READ_REG(&adapter->hw, TDFTS) ==
2428                     E1000_READ_REG(&adapter->hw, TDFHS))) {
2429                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2430                         E1000_WRITE_REG(&adapter->hw, TCTL,
2431                                         tctl & ~E1000_TCTL_EN);
2432                         E1000_WRITE_REG(&adapter->hw, TDFT,
2433                                         adapter->tx_head_addr);
2434                         E1000_WRITE_REG(&adapter->hw, TDFH,
2435                                         adapter->tx_head_addr);
2436                         E1000_WRITE_REG(&adapter->hw, TDFTS,
2437                                         adapter->tx_head_addr);
2438                         E1000_WRITE_REG(&adapter->hw, TDFHS,
2439                                         adapter->tx_head_addr);
2440                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2441                         E1000_WRITE_FLUSH(&adapter->hw);
2442
2443                         adapter->tx_fifo_head = 0;
2444                         atomic_set(&adapter->tx_fifo_stall, 0);
2445                         netif_wake_queue(netdev);
2446                 } else {
2447                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2448                 }
2449         }
2450 }
2451
2452 /**
2453  * e1000_watchdog - Timer Call-back
2454  * @data: pointer to adapter cast into an unsigned long
2455  **/
2456 static void
2457 e1000_watchdog(unsigned long data)
2458 {
2459         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2460         struct net_device *netdev = adapter->netdev;
2461         struct e1000_tx_ring *txdr = adapter->tx_ring;
2462         uint32_t link, tctl;
2463         int32_t ret_val;
2464
2465         ret_val = e1000_check_for_link(&adapter->hw);
2466         if ((ret_val == E1000_ERR_PHY) &&
2467             (adapter->hw.phy_type == e1000_phy_igp_3) &&
2468             (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2469                 /* See e1000_kumeran_lock_loss_workaround() */
2470                 DPRINTK(LINK, INFO,
2471                         "Gigabit has been disabled, downgrading speed\n");
2472         }
2473
2474         if (adapter->hw.mac_type == e1000_82573) {
2475                 e1000_enable_tx_pkt_filtering(&adapter->hw);
2476                 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2477                         e1000_update_mng_vlan(adapter);
2478         }
2479
2480         if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2481            !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2482                 link = !adapter->hw.serdes_link_down;
2483         else
2484                 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2485
2486         if (link) {
2487                 if (!netif_carrier_ok(netdev)) {
2488                         boolean_t txb2b = 1;
2489                         e1000_get_speed_and_duplex(&adapter->hw,
2490                                                    &adapter->link_speed,
2491                                                    &adapter->link_duplex);
2492
2493                         DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
2494                                adapter->link_speed,
2495                                adapter->link_duplex == FULL_DUPLEX ?
2496                                "Full Duplex" : "Half Duplex");
2497
2498                         /* tweak tx_queue_len according to speed/duplex
2499                          * and adjust the timeout factor */
2500                         netdev->tx_queue_len = adapter->tx_queue_len;
2501                         adapter->tx_timeout_factor = 1;
2502                         switch (adapter->link_speed) {
2503                         case SPEED_10:
2504                                 txb2b = 0;
2505                                 netdev->tx_queue_len = 10;
2506                                 adapter->tx_timeout_factor = 8;
2507                                 break;
2508                         case SPEED_100:
2509                                 txb2b = 0;
2510                                 netdev->tx_queue_len = 100;
2511                                 /* maybe add some timeout factor ? */
2512                                 break;
2513                         }
2514
2515                         if ((adapter->hw.mac_type == e1000_82571 ||
2516                              adapter->hw.mac_type == e1000_82572) &&
2517                             txb2b == 0) {
2518                                 uint32_t tarc0;
2519                                 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
2520                                 tarc0 &= ~(1 << 21);
2521                                 E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
2522                         }
2523
2524 #ifdef NETIF_F_TSO
2525                         /* disable TSO for pcie and 10/100 speeds, to avoid
2526                          * some hardware issues */
2527                         if (!adapter->tso_force &&
2528                             adapter->hw.bus_type == e1000_bus_type_pci_express){
2529                                 switch (adapter->link_speed) {
2530                                 case SPEED_10:
2531                                 case SPEED_100:
2532                                         DPRINTK(PROBE,INFO,
2533                                         "10/100 speed: disabling TSO\n");
2534                                         netdev->features &= ~NETIF_F_TSO;
2535 #ifdef NETIF_F_TSO6
2536                                         netdev->features &= ~NETIF_F_TSO6;
2537 #endif
2538                                         break;
2539                                 case SPEED_1000:
2540                                         netdev->features |= NETIF_F_TSO;
2541 #ifdef NETIF_F_TSO6
2542                                         netdev->features |= NETIF_F_TSO6;
2543 #endif
2544                                         break;
2545                                 default:
2546                                         /* oops */
2547                                         break;
2548                                 }
2549                         }
2550 #endif
2551
2552                         /* enable transmits in the hardware, need to do this
2553                          * after setting TARC0 */
2554                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2555                         tctl |= E1000_TCTL_EN;
2556                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2557
2558                         netif_carrier_on(netdev);
2559                         netif_wake_queue(netdev);
2560                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2561                         adapter->smartspeed = 0;
2562                 }
2563         } else {
2564                 if (netif_carrier_ok(netdev)) {
2565                         adapter->link_speed = 0;
2566                         adapter->link_duplex = 0;
2567                         DPRINTK(LINK, INFO, "NIC Link is Down\n");
2568                         netif_carrier_off(netdev);
2569                         netif_stop_queue(netdev);
2570                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2571
2572                         /* 80003ES2LAN workaround--
2573                          * For packet buffer work-around on link down event;
2574                          * disable receives in the ISR and
2575                          * reset device here in the watchdog
2576                          */
2577                         if (adapter->hw.mac_type == e1000_80003es2lan)
2578                                 /* reset device */
2579                                 schedule_work(&adapter->reset_task);
2580                 }
2581
2582                 e1000_smartspeed(adapter);
2583         }
2584
2585         e1000_update_stats(adapter);
2586
2587         adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2588         adapter->tpt_old = adapter->stats.tpt;
2589         adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2590         adapter->colc_old = adapter->stats.colc;
2591
2592         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2593         adapter->gorcl_old = adapter->stats.gorcl;
2594         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2595         adapter->gotcl_old = adapter->stats.gotcl;
2596
2597         e1000_update_adaptive(&adapter->hw);
2598
2599         if (!netif_carrier_ok(netdev)) {
2600                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2601                         /* We've lost link, so the controller stops DMA,
2602                          * but we've got queued Tx work that's never going
2603                          * to get done, so reset controller to flush Tx.
2604                          * (Do the reset outside of interrupt context). */
2605                         adapter->tx_timeout_count++;
2606                         schedule_work(&adapter->reset_task);
2607                 }
2608         }
2609
2610         /* Cause software interrupt to ensure rx ring is cleaned */
2611         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2612
2613         /* Force detection of hung controller every watchdog period */
2614         adapter->detect_tx_hung = TRUE;
2615
2616         /* With 82571 controllers, LAA may be overwritten due to controller
2617          * reset from the other port. Set the appropriate LAA in RAR[0] */
2618         if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2619                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2620
2621         /* Reset the timer */
2622         mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2623 }
2624
2625 enum latency_range {
2626         lowest_latency = 0,
2627         low_latency = 1,
2628         bulk_latency = 2,
2629         latency_invalid = 255
2630 };
2631
2632 /**
2633  * e1000_update_itr - update the dynamic ITR value based on statistics
2634  *      Stores a new ITR value based on packets and byte
2635  *      counts during the last interrupt.  The advantage of per interrupt
2636  *      computation is faster updates and more accurate ITR for the current
2637  *      traffic pattern.  Constants in this function were computed
2638  *      based on theoretical maximum wire speed and thresholds were set based
2639  *      on testing data as well as attempting to minimize response time
2640  *      while increasing bulk throughput.
2641  *      this functionality is controlled by the InterruptThrottleRate module
2642  *      parameter (see e1000_param.c)
2643  * @adapter: pointer to adapter
2644  * @itr_setting: current adapter->itr
2645  * @packets: the number of packets during this measurement interval
2646  * @bytes: the number of bytes during this measurement interval
2647  **/
2648 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2649                                    uint16_t itr_setting,
2650                                    int packets,
2651                                    int bytes)
2652 {
2653         unsigned int retval = itr_setting;
2654         struct e1000_hw *hw = &adapter->hw;
2655
2656         if (unlikely(hw->mac_type < e1000_82540))
2657                 goto update_itr_done;
2658
2659         if (packets == 0)
2660                 goto update_itr_done;
2661
2662         switch (itr_setting) {
2663         case lowest_latency:
2664                 /* jumbo frames get bulk treatment*/
2665                 if (bytes/packets > 8000)
2666                         retval = bulk_latency;
2667                 else if ((packets < 5) && (bytes > 512))
2668                         retval = low_latency;
2669                 break;
2670         case low_latency:  /* 50 usec aka 20000 ints/s */
2671                 if (bytes > 10000) {
2672                         /* jumbo frames need bulk latency setting */
2673                         if (bytes/packets > 8000)
2674                                 retval = bulk_latency;
2675                         else if ((packets < 10) || ((bytes/packets) > 1200))
2676                                 retval = bulk_latency;
2677                         else if ((packets > 35))
2678                                 retval = lowest_latency;
2679                 } else if (bytes/packets > 2000)
2680                         retval = bulk_latency;
2681                 else if (packets <= 2 && bytes < 512)
2682                         retval = lowest_latency;
2683                 break;
2684         case bulk_latency: /* 250 usec aka 4000 ints/s */
2685                 if (bytes > 25000) {
2686                         if (packets > 35)
2687                                 retval = low_latency;
2688                 } else if (bytes < 6000) {
2689                         retval = low_latency;
2690                 }
2691                 break;
2692         }
2693
2694 update_itr_done:
2695         return retval;
2696 }
2697
2698 static void e1000_set_itr(struct e1000_adapter *adapter)
2699 {
2700         struct e1000_hw *hw = &adapter->hw;
2701         uint16_t current_itr;
2702         uint32_t new_itr = adapter->itr;
2703
2704         if (unlikely(hw->mac_type < e1000_82540))
2705                 return;
2706
2707         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2708         if (unlikely(adapter->link_speed != SPEED_1000)) {
2709                 current_itr = 0;
2710                 new_itr = 4000;
2711                 goto set_itr_now;
2712         }
2713
2714         adapter->tx_itr = e1000_update_itr(adapter,
2715                                     adapter->tx_itr,
2716                                     adapter->total_tx_packets,
2717                                     adapter->total_tx_bytes);
2718         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2719         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2720                 adapter->tx_itr = low_latency;
2721
2722         adapter->rx_itr = e1000_update_itr(adapter,
2723                                     adapter->rx_itr,
2724                                     adapter->total_rx_packets,
2725                                     adapter->total_rx_bytes);
2726         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2727         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2728                 adapter->rx_itr = low_latency;
2729
2730         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2731
2732         switch (current_itr) {
2733         /* counts and packets in update_itr are dependent on these numbers */
2734         case lowest_latency:
2735                 new_itr = 70000;
2736                 break;
2737         case low_latency:
2738                 new_itr = 20000; /* aka hwitr = ~200 */
2739                 break;
2740         case bulk_latency:
2741                 new_itr = 4000;
2742                 break;
2743         default:
2744                 break;
2745         }
2746
2747 set_itr_now:
2748         if (new_itr != adapter->itr) {
2749                 /* this attempts to bias the interrupt rate towards Bulk
2750                  * by adding intermediate steps when interrupt rate is
2751                  * increasing */
2752                 new_itr = new_itr > adapter->itr ?
2753                              min(adapter->itr + (new_itr >> 2), new_itr) :
2754                              new_itr;
2755                 adapter->itr = new_itr;
2756                 E1000_WRITE_REG(hw, ITR, 1000000000 / (new_itr * 256));
2757         }
2758
2759         return;
2760 }
2761
2762 #define E1000_TX_FLAGS_CSUM             0x00000001
2763 #define E1000_TX_FLAGS_VLAN             0x00000002
2764 #define E1000_TX_FLAGS_TSO              0x00000004
2765 #define E1000_TX_FLAGS_IPV4             0x00000008
2766 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2767 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2768
2769 static int
2770 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2771           struct sk_buff *skb)
2772 {
2773 #ifdef NETIF_F_TSO
2774         struct e1000_context_desc *context_desc;
2775         struct e1000_buffer *buffer_info;
2776         unsigned int i;
2777         uint32_t cmd_length = 0;
2778         uint16_t ipcse = 0, tucse, mss;
2779         uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2780         int err;
2781
2782         if (skb_is_gso(skb)) {
2783                 if (skb_header_cloned(skb)) {
2784                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2785                         if (err)
2786                                 return err;
2787                 }
2788
2789                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2790                 mss = skb_shinfo(skb)->gso_size;
2791                 if (skb->protocol == htons(ETH_P_IP)) {
2792                         skb->nh.iph->tot_len = 0;
2793                         skb->nh.iph->check = 0;
2794                         skb->h.th->check =
2795                                 ~csum_tcpudp_magic(skb->nh.iph->saddr,
2796                                                    skb->nh.iph->daddr,
2797                                                    0,
2798                                                    IPPROTO_TCP,
2799                                                    0);
2800                         cmd_length = E1000_TXD_CMD_IP;
2801                         ipcse = skb->h.raw - skb->data - 1;
2802 #ifdef NETIF_F_TSO6
2803                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2804                         skb->nh.ipv6h->payload_len = 0;
2805                         skb->h.th->check =
2806                                 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
2807                                                  &skb->nh.ipv6h->daddr,
2808                                                  0,
2809                                                  IPPROTO_TCP,
2810                                                  0);
2811                         ipcse = 0;
2812 #endif
2813                 }
2814                 ipcss = skb->nh.raw - skb->data;
2815                 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
2816                 tucss = skb->h.raw - skb->data;
2817                 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
2818                 tucse = 0;
2819
2820                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2821                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2822
2823                 i = tx_ring->next_to_use;
2824                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2825                 buffer_info = &tx_ring->buffer_info[i];
2826
2827                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2828                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2829                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2830                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2831                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2832                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2833                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2834                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2835                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2836
2837                 buffer_info->time_stamp = jiffies;
2838                 buffer_info->next_to_watch = i;
2839
2840                 if (++i == tx_ring->count) i = 0;
2841                 tx_ring->next_to_use = i;
2842
2843                 return TRUE;
2844         }
2845 #endif
2846
2847         return FALSE;
2848 }
2849
2850 static boolean_t
2851 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2852               struct sk_buff *skb)
2853 {
2854         struct e1000_context_desc *context_desc;
2855         struct e1000_buffer *buffer_info;
2856         unsigned int i;
2857         uint8_t css;
2858
2859         if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2860                 css = skb->h.raw - skb->data;
2861
2862                 i = tx_ring->next_to_use;
2863                 buffer_info = &tx_ring->buffer_info[i];
2864                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2865
2866                 context_desc->upper_setup.tcp_fields.tucss = css;
2867                 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
2868                 context_desc->upper_setup.tcp_fields.tucse = 0;
2869                 context_desc->tcp_seg_setup.data = 0;
2870                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2871
2872                 buffer_info->time_stamp = jiffies;
2873                 buffer_info->next_to_watch = i;
2874
2875                 if (unlikely(++i == tx_ring->count)) i = 0;
2876                 tx_ring->next_to_use = i;
2877
2878                 return TRUE;
2879         }
2880
2881         return FALSE;
2882 }
2883
2884 #define E1000_MAX_TXD_PWR       12
2885 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2886
2887 static int
2888 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2889              struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2890              unsigned int nr_frags, unsigned int mss)
2891 {
2892         struct e1000_buffer *buffer_info;
2893         unsigned int len = skb->len;
2894         unsigned int offset = 0, size, count = 0, i;
2895         unsigned int f;
2896         len -= skb->data_len;
2897
2898         i = tx_ring->next_to_use;
2899
2900         while (len) {
2901                 buffer_info = &tx_ring->buffer_info[i];
2902                 size = min(len, max_per_txd);
2903 #ifdef NETIF_F_TSO
2904                 /* Workaround for Controller erratum --
2905                  * descriptor for non-tso packet in a linear SKB that follows a
2906                  * tso gets written back prematurely before the data is fully
2907                  * DMA'd to the controller */
2908                 if (!skb->data_len && tx_ring->last_tx_tso &&
2909                     !skb_is_gso(skb)) {
2910                         tx_ring->last_tx_tso = 0;
2911                         size -= 4;
2912                 }
2913
2914                 /* Workaround for premature desc write-backs
2915                  * in TSO mode.  Append 4-byte sentinel desc */
2916                 if (unlikely(mss && !nr_frags && size == len && size > 8))
2917                         size -= 4;
2918 #endif
2919                 /* work-around for errata 10 and it applies
2920                  * to all controllers in PCI-X mode
2921                  * The fix is to make sure that the first descriptor of a
2922                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2923                  */
2924                 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2925                                 (size > 2015) && count == 0))
2926                         size = 2015;
2927
2928                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2929                  * terminating buffers within evenly-aligned dwords. */
2930                 if (unlikely(adapter->pcix_82544 &&
2931                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2932                    size > 4))
2933                         size -= 4;
2934
2935                 buffer_info->length = size;
2936                 buffer_info->dma =
2937                         pci_map_single(adapter->pdev,
2938                                 skb->data + offset,
2939                                 size,
2940                                 PCI_DMA_TODEVICE);
2941                 buffer_info->time_stamp = jiffies;
2942                 buffer_info->next_to_watch = i;
2943
2944                 len -= size;
2945                 offset += size;
2946                 count++;
2947                 if (unlikely(++i == tx_ring->count)) i = 0;
2948         }
2949
2950         for (f = 0; f < nr_frags; f++) {
2951                 struct skb_frag_struct *frag;
2952
2953                 frag = &skb_shinfo(skb)->frags[f];
2954                 len = frag->size;
2955                 offset = frag->page_offset;
2956
2957                 while (len) {
2958                         buffer_info = &tx_ring->buffer_info[i];
2959                         size = min(len, max_per_txd);
2960 #ifdef NETIF_F_TSO
2961                         /* Workaround for premature desc write-backs
2962                          * in TSO mode.  Append 4-byte sentinel desc */
2963                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2964                                 size -= 4;
2965 #endif
2966                         /* Workaround for potential 82544 hang in PCI-X.
2967                          * Avoid terminating buffers within evenly-aligned
2968                          * dwords. */
2969                         if (unlikely(adapter->pcix_82544 &&
2970                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
2971                            size > 4))
2972                                 size -= 4;
2973
2974                         buffer_info->length = size;
2975                         buffer_info->dma =
2976                                 pci_map_page(adapter->pdev,
2977                                         frag->page,
2978                                         offset,
2979                                         size,
2980                                         PCI_DMA_TODEVICE);
2981                         buffer_info->time_stamp = jiffies;
2982                         buffer_info->next_to_watch = i;
2983
2984                         len -= size;
2985                         offset += size;
2986                         count++;
2987                         if (unlikely(++i == tx_ring->count)) i = 0;
2988                 }
2989         }
2990
2991         i = (i == 0) ? tx_ring->count - 1 : i - 1;
2992         tx_ring->buffer_info[i].skb = skb;
2993         tx_ring->buffer_info[first].next_to_watch = i;
2994
2995         return count;
2996 }
2997
2998 static void
2999 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
3000                int tx_flags, int count)
3001 {
3002         struct e1000_tx_desc *tx_desc = NULL;
3003         struct e1000_buffer *buffer_info;
3004         uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3005         unsigned int i;
3006
3007         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
3008                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3009                              E1000_TXD_CMD_TSE;
3010                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3011
3012                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3013                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3014         }
3015
3016         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3017                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3018                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3019         }
3020
3021         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3022                 txd_lower |= E1000_TXD_CMD_VLE;
3023                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3024         }
3025
3026         i = tx_ring->next_to_use;
3027
3028         while (count--) {
3029                 buffer_info = &tx_ring->buffer_info[i];
3030                 tx_desc = E1000_TX_DESC(*tx_ring, i);
3031                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3032                 tx_desc->lower.data =
3033                         cpu_to_le32(txd_lower | buffer_info->length);
3034                 tx_desc->upper.data = cpu_to_le32(txd_upper);
3035                 if (unlikely(++i == tx_ring->count)) i = 0;
3036         }
3037
3038         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3039
3040         /* Force memory writes to complete before letting h/w
3041          * know there are new descriptors to fetch.  (Only
3042          * applicable for weak-ordered memory model archs,
3043          * such as IA-64). */
3044         wmb();
3045
3046         tx_ring->next_to_use = i;
3047         writel(i, adapter->hw.hw_addr + tx_ring->tdt);
3048         /* we need this if more than one processor can write to our tail
3049          * at a time, it syncronizes IO on IA64/Altix systems */
3050         mmiowb();
3051 }
3052
3053 /**
3054  * 82547 workaround to avoid controller hang in half-duplex environment.
3055  * The workaround is to avoid queuing a large packet that would span
3056  * the internal Tx FIFO ring boundary by notifying the stack to resend
3057  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3058  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3059  * to the beginning of the Tx FIFO.
3060  **/
3061
3062 #define E1000_FIFO_HDR                  0x10
3063 #define E1000_82547_PAD_LEN             0x3E0
3064
3065 static int
3066 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
3067 {
3068         uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3069         uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
3070
3071         E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
3072
3073         if (adapter->link_duplex != HALF_DUPLEX)
3074                 goto no_fifo_stall_required;
3075
3076         if (atomic_read(&adapter->tx_fifo_stall))
3077                 return 1;
3078
3079         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3080                 atomic_set(&adapter->tx_fifo_stall, 1);
3081                 return 1;
3082         }
3083
3084 no_fifo_stall_required:
3085         adapter->tx_fifo_head += skb_fifo_len;
3086         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3087                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3088         return 0;
3089 }
3090
3091 #define MINIMUM_DHCP_PACKET_SIZE 282
3092 static int
3093 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
3094 {
3095         struct e1000_hw *hw =  &adapter->hw;
3096         uint16_t length, offset;
3097         if (vlan_tx_tag_present(skb)) {
3098                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
3099                         ( adapter->hw.mng_cookie.status &
3100                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
3101                         return 0;
3102         }
3103         if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
3104                 struct ethhdr *eth = (struct ethhdr *) skb->data;
3105                 if ((htons(ETH_P_IP) == eth->h_proto)) {
3106                         const struct iphdr *ip =
3107                                 (struct iphdr *)((uint8_t *)skb->data+14);
3108                         if (IPPROTO_UDP == ip->protocol) {
3109                                 struct udphdr *udp =
3110                                         (struct udphdr *)((uint8_t *)ip +
3111                                                 (ip->ihl << 2));
3112                                 if (ntohs(udp->dest) == 67) {
3113                                         offset = (uint8_t *)udp + 8 - skb->data;
3114                                         length = skb->len - offset;
3115
3116                                         return e1000_mng_write_dhcp_info(hw,
3117                                                         (uint8_t *)udp + 8,
3118                                                         length);
3119                                 }
3120                         }
3121                 }
3122         }
3123         return 0;
3124 }
3125
3126 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3127 {
3128         struct e1000_adapter *adapter = netdev_priv(netdev);
3129         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3130
3131         netif_stop_queue(netdev);
3132         /* Herbert's original patch had:
3133          *  smp_mb__after_netif_stop_queue();
3134          * but since that doesn't exist yet, just open code it. */
3135         smp_mb();
3136
3137         /* We need to check again in a case another CPU has just
3138          * made room available. */
3139         if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3140                 return -EBUSY;
3141
3142         /* A reprieve! */
3143         netif_start_queue(netdev);
3144         ++adapter->restart_queue;
3145         return 0;
3146 }
3147
3148 static int e1000_maybe_stop_tx(struct net_device *netdev,
3149                                struct e1000_tx_ring *tx_ring, int size)
3150 {
3151         if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3152                 return 0;
3153         return __e1000_maybe_stop_tx(netdev, size);
3154 }
3155
3156 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3157 static int
3158 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3159 {
3160         struct e1000_adapter *adapter = netdev_priv(netdev);
3161         struct e1000_tx_ring *tx_ring;
3162         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3163         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3164         unsigned int tx_flags = 0;
3165         unsigned int len = skb->len;
3166         unsigned long flags;
3167         unsigned int nr_frags = 0;
3168         unsigned int mss = 0;
3169         int count = 0;
3170         int tso;
3171         unsigned int f;
3172         len -= skb->data_len;
3173
3174         /* This goes back to the question of how to logically map a tx queue
3175          * to a flow.  Right now, performance is impacted slightly negatively
3176          * if using multiple tx queues.  If the stack breaks away from a
3177          * single qdisc implementation, we can look at this again. */
3178         tx_ring = adapter->tx_ring;
3179
3180         if (unlikely(skb->len <= 0)) {
3181                 dev_kfree_skb_any(skb);
3182                 return NETDEV_TX_OK;
3183         }
3184
3185         /* 82571 and newer doesn't need the workaround that limited descriptor
3186          * length to 4kB */
3187         if (adapter->hw.mac_type >= e1000_82571)
3188                 max_per_txd = 8192;
3189
3190 #ifdef NETIF_F_TSO
3191         mss = skb_shinfo(skb)->gso_size;
3192         /* The controller does a simple calculation to
3193          * make sure there is enough room in the FIFO before
3194          * initiating the DMA for each buffer.  The calc is:
3195          * 4 = ceil(buffer len/mss).  To make sure we don't
3196          * overrun the FIFO, adjust the max buffer len if mss
3197          * drops. */
3198         if (mss) {
3199                 uint8_t hdr_len;
3200                 max_per_txd = min(mss << 2, max_per_txd);
3201                 max_txd_pwr = fls(max_per_txd) - 1;
3202
3203                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3204                 * points to just header, pull a few bytes of payload from
3205                 * frags into skb->data */
3206                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
3207                 if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) {
3208                         switch (adapter->hw.mac_type) {
3209                                 unsigned int pull_size;
3210                         case e1000_82571:
3211                         case e1000_82572:
3212                         case e1000_82573:
3213                         case e1000_ich8lan:
3214                                 pull_size = min((unsigned int)4, skb->data_len);
3215                                 if (!__pskb_pull_tail(skb, pull_size)) {
3216                                         DPRINTK(DRV, ERR,
3217                                                 "__pskb_pull_tail failed.\n");
3218                                         dev_kfree_skb_any(skb);
3219                                         return NETDEV_TX_OK;
3220                                 }
3221                                 len = skb->len - skb->data_len;
3222                                 break;
3223                         default:
3224                                 /* do nothing */
3225                                 break;
3226                         }
3227                 }
3228         }
3229
3230         /* reserve a descriptor for the offload context */
3231         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3232                 count++;
3233         count++;
3234 #else
3235         if (skb->ip_summed == CHECKSUM_PARTIAL)
3236                 count++;
3237 #endif
3238
3239 #ifdef NETIF_F_TSO
3240         /* Controller Erratum workaround */
3241         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3242                 count++;
3243 #endif
3244
3245         count += TXD_USE_COUNT(len, max_txd_pwr);
3246
3247         if (adapter->pcix_82544)
3248                 count++;
3249
3250         /* work-around for errata 10 and it applies to all controllers
3251          * in PCI-X mode, so add one more descriptor to the count
3252          */
3253         if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
3254                         (len > 2015)))
3255                 count++;
3256
3257         nr_frags = skb_shinfo(skb)->nr_frags;
3258         for (f = 0; f < nr_frags; f++)
3259                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3260                                        max_txd_pwr);
3261         if (adapter->pcix_82544)
3262                 count += nr_frags;
3263
3264
3265         if (adapter->hw.tx_pkt_filtering &&
3266             (adapter->hw.mac_type == e1000_82573))
3267                 e1000_transfer_dhcp_info(adapter, skb);
3268
3269         local_irq_save(flags);
3270         if (!spin_trylock(&tx_ring->tx_lock)) {
3271                 /* Collision - tell upper layer to requeue */
3272                 local_irq_restore(flags);
3273                 return NETDEV_TX_LOCKED;
3274         }
3275
3276         /* need: count + 2 desc gap to keep tail from touching
3277          * head, otherwise try next time */
3278         if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) {
3279                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3280                 return NETDEV_TX_BUSY;
3281         }
3282
3283         if (unlikely(adapter->hw.mac_type == e1000_82547)) {
3284                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3285                         netif_stop_queue(netdev);
3286                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
3287                         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3288                         return NETDEV_TX_BUSY;
3289                 }
3290         }
3291
3292         if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3293                 tx_flags |= E1000_TX_FLAGS_VLAN;
3294                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3295         }
3296
3297         first = tx_ring->next_to_use;
3298
3299         tso = e1000_tso(adapter, tx_ring, skb);
3300         if (tso < 0) {
3301                 dev_kfree_skb_any(skb);
3302                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3303                 return NETDEV_TX_OK;
3304         }
3305
3306         if (likely(tso)) {
3307                 tx_ring->last_tx_tso = 1;
3308                 tx_flags |= E1000_TX_FLAGS_TSO;
3309         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3310                 tx_flags |= E1000_TX_FLAGS_CSUM;
3311
3312         /* Old method was to assume IPv4 packet by default if TSO was enabled.
3313          * 82571 hardware supports TSO capabilities for IPv6 as well...
3314          * no longer assume, we must. */
3315         if (likely(skb->protocol == htons(ETH_P_IP)))
3316                 tx_flags |= E1000_TX_FLAGS_IPV4;
3317
3318         e1000_tx_queue(adapter, tx_ring, tx_flags,
3319                        e1000_tx_map(adapter, tx_ring, skb, first,
3320                                     max_per_txd, nr_frags, mss));
3321
3322         netdev->trans_start = jiffies;
3323
3324         /* Make sure there is space in the ring for the next send. */
3325         e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3326
3327         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3328         return NETDEV_TX_OK;
3329 }
3330
3331 /**
3332  * e1000_tx_timeout - Respond to a Tx Hang
3333  * @netdev: network interface device structure
3334  **/
3335
3336 static void
3337 e1000_tx_timeout(struct net_device *netdev)
3338 {
3339         struct e1000_adapter *adapter = netdev_priv(netdev);
3340
3341         /* Do the reset outside of interrupt context */
3342         adapter->tx_timeout_count++;
3343         schedule_work(&adapter->reset_task);
3344 }
3345
3346 static void
3347 e1000_reset_task(struct work_struct *work)
3348 {
3349         struct e1000_adapter *adapter =
3350                 container_of(work, struct e1000_adapter, reset_task);
3351
3352         e1000_reinit_locked(adapter);
3353 }
3354
3355 /**
3356  * e1000_get_stats - Get System Network Statistics
3357  * @netdev: network interface device structure
3358  *
3359  * Returns the address of the device statistics structure.
3360  * The statistics are actually updated from the timer callback.
3361  **/
3362
3363 static struct net_device_stats *
3364 e1000_get_stats(struct net_device *netdev)
3365 {
3366         struct e1000_adapter *adapter = netdev_priv(netdev);
3367
3368         /* only return the current stats */
3369         return &adapter->net_stats;
3370 }
3371
3372 /**
3373  * e1000_change_mtu - Change the Maximum Transfer Unit
3374  * @netdev: network interface device structure
3375  * @new_mtu: new value for maximum frame size
3376  *
3377  * Returns 0 on success, negative on failure
3378  **/
3379
3380 static int
3381 e1000_change_mtu(struct net_device *netdev, int new_mtu)
3382 {
3383         struct e1000_adapter *adapter = netdev_priv(netdev);
3384         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3385         uint16_t eeprom_data = 0;
3386
3387         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3388             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3389                 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3390                 return -EINVAL;
3391         }
3392
3393         /* Adapter-specific max frame size limits. */
3394         switch (adapter->hw.mac_type) {
3395         case e1000_undefined ... e1000_82542_rev2_1:
3396         case e1000_ich8lan:
3397                 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3398                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3399                         return -EINVAL;
3400                 }
3401                 break;
3402         case e1000_82573:
3403                 /* Jumbo Frames not supported if:
3404                  * - this is not an 82573L device
3405                  * - ASPM is enabled in any way (0x1A bits 3:2) */
3406                 e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
3407                                   &eeprom_data);
3408                 if ((adapter->hw.device_id != E1000_DEV_ID_82573L) ||
3409                     (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
3410                         if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3411                                 DPRINTK(PROBE, ERR,
3412                                         "Jumbo Frames not supported.\n");
3413                                 return -EINVAL;
3414                         }
3415                         break;
3416                 }
3417                 /* ERT will be enabled later to enable wire speed receives */
3418
3419                 /* fall through to get support */
3420         case e1000_82571:
3421         case e1000_82572:
3422         case e1000_80003es2lan:
3423 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3424                 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3425                         DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3426                         return -EINVAL;
3427                 }
3428                 break;
3429         default:
3430                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3431                 break;
3432         }
3433
3434         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3435          * means we reserve 2 more, this pushes us to allocate from the next
3436          * larger slab size
3437          * i.e. RXBUFFER_2048 --> size-4096 slab */
3438
3439         if (max_frame <= E1000_RXBUFFER_256)
3440                 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3441         else if (max_frame <= E1000_RXBUFFER_512)
3442                 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3443         else if (max_frame <= E1000_RXBUFFER_1024)
3444                 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3445         else if (max_frame <= E1000_RXBUFFER_2048)
3446                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3447         else if (max_frame <= E1000_RXBUFFER_4096)
3448                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3449         else if (max_frame <= E1000_RXBUFFER_8192)
3450                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3451         else if (max_frame <= E1000_RXBUFFER_16384)
3452                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3453
3454         /* adjust allocation if LPE protects us, and we aren't using SBP */
3455         if (!adapter->hw.tbi_compatibility_on &&
3456             ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3457              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3458                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3459
3460         netdev->mtu = new_mtu;
3461
3462         if (netif_running(netdev))
3463                 e1000_reinit_locked(adapter);
3464
3465         adapter->hw.max_frame_size = max_frame;
3466
3467         return 0;
3468 }
3469
3470 /**
3471  * e1000_update_stats - Update the board statistics counters
3472  * @adapter: board private structure
3473  **/
3474
3475 void
3476 e1000_update_stats(struct e1000_adapter *adapter)
3477 {
3478         struct e1000_hw *hw = &adapter->hw;
3479         struct pci_dev *pdev = adapter->pdev;
3480         unsigned long flags;
3481         uint16_t phy_tmp;
3482
3483 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3484
3485         /*
3486          * Prevent stats update while adapter is being reset, or if the pci
3487          * connection is down.
3488          */
3489         if (adapter->link_speed == 0)
3490                 return;
3491         if (pdev->error_state && pdev->error_state != pci_channel_io_normal)
3492                 return;
3493
3494         spin_lock_irqsave(&adapter->stats_lock, flags);
3495
3496         /* these counters are modified from e1000_adjust_tbi_stats,
3497          * called from the interrupt context, so they must only
3498          * be written while holding adapter->stats_lock
3499          */
3500
3501         adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3502         adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3503         adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3504         adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3505         adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3506         adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3507         adapter->stats.roc += E1000_READ_REG(hw, ROC);
3508
3509         if (adapter->hw.mac_type != e1000_ich8lan) {
3510                 adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3511                 adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3512                 adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3513                 adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3514                 adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3515                 adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3516         }
3517
3518         adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3519         adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3520         adapter->stats.scc += E1000_READ_REG(hw, SCC);
3521         adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3522         adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3523         adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3524         adapter->stats.dc += E1000_READ_REG(hw, DC);
3525         adapter->stats.sec += E1000_READ_REG(hw, SEC);
3526         adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3527         adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3528         adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3529         adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3530         adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3531         adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3532         adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3533         adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3534         adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3535         adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3536         adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3537         adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3538         adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3539         adapter->stats.torl += E1000_READ_REG(hw, TORL);
3540         adapter->stats.torh += E1000_READ_REG(hw, TORH);
3541         adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3542         adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3543         adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3544
3545         if (adapter->hw.mac_type != e1000_ich8lan) {
3546                 adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3547                 adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3548                 adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3549                 adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3550                 adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3551                 adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3552         }
3553
3554         adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3555         adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3556
3557         /* used for adaptive IFS */
3558
3559         hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3560         adapter->stats.tpt += hw->tx_packet_delta;
3561         hw->collision_delta = E1000_READ_REG(hw, COLC);
3562         adapter->stats.colc += hw->collision_delta;
3563
3564         if (hw->mac_type >= e1000_82543) {
3565                 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3566                 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3567                 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3568                 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3569                 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3570                 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3571         }
3572         if (hw->mac_type > e1000_82547_rev_2) {
3573                 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3574                 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3575
3576                 if (adapter->hw.mac_type != e1000_ich8lan) {
3577                         adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3578                         adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3579                         adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3580                         adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3581                         adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3582                         adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3583                         adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3584                 }
3585         }
3586
3587         /* Fill out the OS statistics structure */
3588         adapter->net_stats.rx_packets = adapter->stats.gprc;
3589         adapter->net_stats.tx_packets = adapter->stats.gptc;
3590         adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3591         adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3592         adapter->net_stats.multicast = adapter->stats.mprc;
3593         adapter->net_stats.collisions = adapter->stats.colc;
3594
3595         /* Rx Errors */
3596
3597         /* RLEC on some newer hardware can be incorrect so build
3598         * our own version based on RUC and ROC */
3599         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3600                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3601                 adapter->stats.ruc + adapter->stats.roc +
3602                 adapter->stats.cexterr;
3603         adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3604         adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3605         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3606         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3607         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3608
3609         /* Tx Errors */
3610         adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3611         adapter->net_stats.tx_errors = adapter->stats.txerrc;
3612         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3613         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3614         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3615         if (adapter->hw.bad_tx_carr_stats_fd &&
3616             adapter->link_duplex == FULL_DUPLEX) {
3617                 adapter->net_stats.tx_carrier_errors = 0;
3618                 adapter->stats.tncrs = 0;
3619         }
3620
3621         /* Tx Dropped needs to be maintained elsewhere */
3622
3623         /* Phy Stats */
3624         if (hw->media_type == e1000_media_type_copper) {
3625                 if ((adapter->link_speed == SPEED_1000) &&
3626                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3627                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3628                         adapter->phy_stats.idle_errors += phy_tmp;
3629                 }
3630
3631                 if ((hw->mac_type <= e1000_82546) &&
3632                    (hw->phy_type == e1000_phy_m88) &&
3633                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3634                         adapter->phy_stats.receive_errors += phy_tmp;
3635         }
3636
3637         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3638 }
3639 #ifdef CONFIG_PCI_MSI
3640
3641 /**
3642  * e1000_intr_msi - Interrupt Handler
3643  * @irq: interrupt number
3644  * @data: pointer to a network interface device structure
3645  **/
3646
3647 static
3648 irqreturn_t e1000_intr_msi(int irq, void *data)
3649 {
3650         struct net_device *netdev = data;
3651         struct e1000_adapter *adapter = netdev_priv(netdev);
3652         struct e1000_hw *hw = &adapter->hw;
3653 #ifndef CONFIG_E1000_NAPI
3654         int i;
3655 #endif
3656
3657         /* this code avoids the read of ICR but has to get 1000 interrupts
3658          * at every link change event before it will notice the change */
3659         if (++adapter->detect_link >= 1000) {
3660                 uint32_t icr = E1000_READ_REG(hw, ICR);
3661 #ifdef CONFIG_E1000_NAPI
3662                 /* read ICR disables interrupts using IAM, so keep up with our
3663                  * enable/disable accounting */
3664                 atomic_inc(&adapter->irq_sem);
3665 #endif
3666                 adapter->detect_link = 0;
3667                 if ((icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) &&
3668                     (icr & E1000_ICR_INT_ASSERTED)) {
3669                         hw->get_link_status = 1;
3670                         /* 80003ES2LAN workaround--
3671                         * For packet buffer work-around on link down event;
3672                         * disable receives here in the ISR and
3673                         * reset adapter in watchdog
3674                         */
3675                         if (netif_carrier_ok(netdev) &&
3676                             (adapter->hw.mac_type == e1000_80003es2lan)) {
3677                                 /* disable receives */
3678                                 uint32_t rctl = E1000_READ_REG(hw, RCTL);
3679                                 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3680                         }
3681                         /* guard against interrupt when we're going down */
3682                         if (!test_bit(__E1000_DOWN, &adapter->flags))
3683                                 mod_timer(&adapter->watchdog_timer,
3684                                           jiffies + 1);
3685                 }
3686         } else {
3687                 E1000_WRITE_REG(hw, ICR, (0xffffffff & ~(E1000_ICR_RXSEQ |
3688                                                          E1000_ICR_LSC)));
3689                 /* bummer we have to flush here, but things break otherwise as
3690                  * some event appears to be lost or delayed and throughput
3691                  * drops.  In almost all tests this flush is un-necessary */
3692                 E1000_WRITE_FLUSH(hw);
3693 #ifdef CONFIG_E1000_NAPI
3694                 /* Interrupt Auto-Mask (IAM)...upon writing ICR, interrupts are
3695                  * masked.  No need for the IMC write, but it does mean we
3696                  * should account for it ASAP. */
3697                 atomic_inc(&adapter->irq_sem);
3698 #endif
3699         }
3700
3701 #ifdef CONFIG_E1000_NAPI
3702         if (likely(netif_rx_schedule_prep(netdev))) {
3703                 adapter->total_tx_bytes = 0;
3704                 adapter->total_tx_packets = 0;
3705                 adapter->total_rx_bytes = 0;
3706                 adapter->total_rx_packets = 0;
3707                 __netif_rx_schedule(netdev);
3708         } else
3709                 e1000_irq_enable(adapter);
3710 #else
3711         adapter->total_tx_bytes = 0;
3712         adapter->total_rx_bytes = 0;
3713         adapter->total_tx_packets = 0;
3714         adapter->total_rx_packets = 0;
3715
3716         for (i = 0; i < E1000_MAX_INTR; i++)
3717                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3718                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3719                         break;
3720
3721         if (likely(adapter->itr_setting & 3))
3722                 e1000_set_itr(adapter);
3723 #endif
3724
3725         return IRQ_HANDLED;
3726 }
3727 #endif
3728
3729 /**
3730  * e1000_intr - Interrupt Handler
3731  * @irq: interrupt number
3732  * @data: pointer to a network interface device structure
3733  **/
3734
3735 static irqreturn_t
3736 e1000_intr(int irq, void *data)
3737 {
3738         struct net_device *netdev = data;
3739         struct e1000_adapter *adapter = netdev_priv(netdev);
3740         struct e1000_hw *hw = &adapter->hw;
3741         uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
3742 #ifndef CONFIG_E1000_NAPI
3743         int i;
3744 #endif
3745         if (unlikely(!icr))
3746                 return IRQ_NONE;  /* Not our interrupt */
3747
3748 #ifdef CONFIG_E1000_NAPI
3749         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3750          * not set, then the adapter didn't send an interrupt */
3751         if (unlikely(hw->mac_type >= e1000_82571 &&
3752                      !(icr & E1000_ICR_INT_ASSERTED)))
3753                 return IRQ_NONE;
3754
3755         /* Interrupt Auto-Mask...upon reading ICR,
3756          * interrupts are masked.  No need for the
3757          * IMC write, but it does mean we should
3758          * account for it ASAP. */
3759         if (likely(hw->mac_type >= e1000_82571))
3760                 atomic_inc(&adapter->irq_sem);
3761 #endif
3762
3763         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3764                 hw->get_link_status = 1;
3765                 /* 80003ES2LAN workaround--
3766                  * For packet buffer work-around on link down event;
3767                  * disable receives here in the ISR and
3768                  * reset adapter in watchdog
3769                  */
3770                 if (netif_carrier_ok(netdev) &&
3771                     (adapter->hw.mac_type == e1000_80003es2lan)) {
3772                         /* disable receives */
3773                         rctl = E1000_READ_REG(hw, RCTL);
3774                         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3775                 }
3776                 /* guard against interrupt when we're going down */
3777                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3778                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3779         }
3780
3781 #ifdef CONFIG_E1000_NAPI
3782         if (unlikely(hw->mac_type < e1000_82571)) {
3783                 /* disable interrupts, without the synchronize_irq bit */
3784                 atomic_inc(&adapter->irq_sem);
3785                 E1000_WRITE_REG(hw, IMC, ~0);
3786                 E1000_WRITE_FLUSH(hw);
3787         }
3788         if (likely(netif_rx_schedule_prep(netdev))) {
3789                 adapter->total_tx_bytes = 0;
3790                 adapter->total_tx_packets = 0;
3791                 adapter->total_rx_bytes = 0;
3792                 adapter->total_rx_packets = 0;
3793                 __netif_rx_schedule(netdev);
3794         } else
3795                 /* this really should not happen! if it does it is basically a
3796                  * bug, but not a hard error, so enable ints and continue */
3797                 e1000_irq_enable(adapter);
3798 #else
3799         /* Writing IMC and IMS is needed for 82547.
3800          * Due to Hub Link bus being occupied, an interrupt
3801          * de-assertion message is not able to be sent.
3802          * When an interrupt assertion message is generated later,
3803          * two messages are re-ordered and sent out.
3804          * That causes APIC to think 82547 is in de-assertion
3805          * state, while 82547 is in assertion state, resulting
3806          * in dead lock. Writing IMC forces 82547 into
3807          * de-assertion state.
3808          */
3809         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
3810                 atomic_inc(&adapter->irq_sem);
3811                 E1000_WRITE_REG(hw, IMC, ~0);
3812         }
3813
3814         adapter->total_tx_bytes = 0;
3815         adapter->total_rx_bytes = 0;
3816         adapter->total_tx_packets = 0;
3817         adapter->total_rx_packets = 0;
3818
3819         for (i = 0; i < E1000_MAX_INTR; i++)
3820                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3821                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3822                         break;
3823
3824         if (likely(adapter->itr_setting & 3))
3825                 e1000_set_itr(adapter);
3826
3827         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3828                 e1000_irq_enable(adapter);
3829
3830 #endif
3831         return IRQ_HANDLED;
3832 }
3833
3834 #ifdef CONFIG_E1000_NAPI
3835 /**
3836  * e1000_clean - NAPI Rx polling callback
3837  * @adapter: board private structure
3838  **/
3839
3840 static int
3841 e1000_clean(struct net_device *poll_dev, int *budget)
3842 {
3843         struct e1000_adapter *adapter;
3844         int work_to_do = min(*budget, poll_dev->quota);
3845         int tx_cleaned = 0, work_done = 0;
3846
3847         /* Must NOT use netdev_priv macro here. */
3848         adapter = poll_dev->priv;
3849
3850         /* Keep link state information with original netdev */
3851         if (!netif_carrier_ok(poll_dev))
3852                 goto quit_polling;
3853
3854         /* e1000_clean is called per-cpu.  This lock protects
3855          * tx_ring[0] from being cleaned by multiple cpus
3856          * simultaneously.  A failure obtaining the lock means
3857          * tx_ring[0] is currently being cleaned anyway. */
3858         if (spin_trylock(&adapter->tx_queue_lock)) {
3859                 tx_cleaned = e1000_clean_tx_irq(adapter,
3860                                                 &adapter->tx_ring[0]);
3861                 spin_unlock(&adapter->tx_queue_lock);
3862         }
3863
3864         adapter->clean_rx(adapter, &adapter->rx_ring[0],
3865                           &work_done, work_to_do);
3866
3867         *budget -= work_done;
3868         poll_dev->quota -= work_done;
3869
3870         /* If no Tx and not enough Rx work done, exit the polling mode */
3871         if ((!tx_cleaned && (work_done == 0)) ||
3872            !netif_running(poll_dev)) {
3873 quit_polling:
3874                 if (likely(adapter->itr_setting & 3))
3875                         e1000_set_itr(adapter);
3876                 netif_rx_complete(poll_dev);
3877                 e1000_irq_enable(adapter);
3878                 return 0;
3879         }
3880
3881         return 1;
3882 }
3883
3884 #endif
3885 /**
3886  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3887  * @adapter: board private structure
3888  **/
3889
3890 static boolean_t
3891 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3892                    struct e1000_tx_ring *tx_ring)
3893 {
3894         struct net_device *netdev = adapter->netdev;
3895         struct e1000_tx_desc *tx_desc, *eop_desc;
3896         struct e1000_buffer *buffer_info;
3897         unsigned int i, eop;
3898 #ifdef CONFIG_E1000_NAPI
3899         unsigned int count = 0;
3900 #endif
3901         boolean_t cleaned = FALSE;
3902         unsigned int total_tx_bytes=0, total_tx_packets=0;
3903
3904         i = tx_ring->next_to_clean;
3905         eop = tx_ring->buffer_info[i].next_to_watch;
3906         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3907
3908         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3909                 for (cleaned = FALSE; !cleaned; ) {
3910                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3911                         buffer_info = &tx_ring->buffer_info[i];
3912                         cleaned = (i == eop);
3913
3914                         if (cleaned) {
3915                                 struct sk_buff *skb = buffer_info->skb;
3916                                 unsigned int segs = skb_shinfo(skb)->gso_segs;
3917                                 total_tx_packets += segs;
3918                                 total_tx_packets++;
3919                                 total_tx_bytes += skb->len;
3920                         }
3921                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3922                         tx_desc->upper.data = 0;
3923
3924                         if (unlikely(++i == tx_ring->count)) i = 0;
3925                 }
3926
3927                 eop = tx_ring->buffer_info[i].next_to_watch;
3928                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3929 #ifdef CONFIG_E1000_NAPI
3930 #define E1000_TX_WEIGHT 64
3931                 /* weight of a sort for tx, to avoid endless transmit cleanup */
3932                 if (count++ == E1000_TX_WEIGHT) break;
3933 #endif
3934         }
3935
3936         tx_ring->next_to_clean = i;
3937
3938 #define TX_WAKE_THRESHOLD 32
3939         if (unlikely(cleaned && netif_carrier_ok(netdev) &&
3940                      E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3941                 /* Make sure that anybody stopping the queue after this
3942                  * sees the new next_to_clean.
3943                  */
3944                 smp_mb();
3945                 if (netif_queue_stopped(netdev)) {
3946                         netif_wake_queue(netdev);
3947                         ++adapter->restart_queue;
3948                 }
3949         }
3950
3951         if (adapter->detect_tx_hung) {
3952                 /* Detect a transmit hang in hardware, this serializes the
3953                  * check with the clearing of time_stamp and movement of i */
3954                 adapter->detect_tx_hung = FALSE;
3955                 if (tx_ring->buffer_info[eop].dma &&
3956                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3957                                (adapter->tx_timeout_factor * HZ))
3958                     && !(E1000_READ_REG(&adapter->hw, STATUS) &
3959                          E1000_STATUS_TXOFF)) {
3960
3961                         /* detected Tx unit hang */
3962                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3963                                         "  Tx Queue             <%lu>\n"
3964                                         "  TDH                  <%x>\n"
3965                                         "  TDT                  <%x>\n"
3966                                         "  next_to_use          <%x>\n"
3967                                         "  next_to_clean        <%x>\n"
3968                                         "buffer_info[next_to_clean]\n"
3969                                         "  time_stamp           <%lx>\n"
3970                                         "  next_to_watch        <%x>\n"
3971                                         "  jiffies              <%lx>\n"
3972                                         "  next_to_watch.status <%x>\n",
3973                                 (unsigned long)((tx_ring - adapter->tx_ring) /
3974                                         sizeof(struct e1000_tx_ring)),
3975                                 readl(adapter->hw.hw_addr + tx_ring->tdh),
3976                                 readl(adapter->hw.hw_addr + tx_ring->tdt),
3977                                 tx_ring->next_to_use,
3978                                 tx_ring->next_to_clean,
3979                                 tx_ring->buffer_info[eop].time_stamp,
3980                                 eop,
3981                                 jiffies,
3982                                 eop_desc->upper.fields.status);
3983                         netif_stop_queue(netdev);
3984                 }
3985         }
3986         adapter->total_tx_bytes += total_tx_bytes;
3987         adapter->total_tx_packets += total_tx_packets;
3988         return cleaned;
3989 }
3990
3991 /**
3992  * e1000_rx_checksum - Receive Checksum Offload for 82543
3993  * @adapter:     board private structure
3994  * @status_err:  receive descriptor status and error fields
3995  * @csum:        receive descriptor csum field
3996  * @sk_buff:     socket buffer with received data
3997  **/
3998
3999 static void
4000 e1000_rx_checksum(struct e1000_adapter *adapter,
4001                   uint32_t status_err, uint32_t csum,
4002                   struct sk_buff *skb)
4003 {
4004         uint16_t status = (uint16_t)status_err;
4005         uint8_t errors = (uint8_t)(status_err >> 24);
4006         skb->ip_summed = CHECKSUM_NONE;
4007
4008         /* 82543 or newer only */
4009         if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
4010         /* Ignore Checksum bit is set */
4011         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
4012         /* TCP/UDP checksum error bit is set */
4013         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
4014                 /* let the stack verify checksum errors */
4015                 adapter->hw_csum_err++;
4016                 return;
4017         }
4018         /* TCP/UDP Checksum has not been calculated */
4019         if (adapter->hw.mac_type <= e1000_82547_rev_2) {
4020                 if (!(status & E1000_RXD_STAT_TCPCS))
4021                         return;
4022         } else {
4023                 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
4024                         return;
4025         }
4026         /* It must be a TCP or UDP packet with a valid checksum */
4027         if (likely(status & E1000_RXD_STAT_TCPCS)) {
4028                 /* TCP checksum is good */
4029                 skb->ip_summed = CHECKSUM_UNNECESSARY;
4030         } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
4031                 /* IP fragment with UDP payload */
4032                 /* Hardware complements the payload checksum, so we undo it
4033                  * and then put the value in host order for further stack use.
4034                  */
4035                 csum = ntohl(csum ^ 0xFFFF);
4036                 skb->csum = csum;
4037                 skb->ip_summed = CHECKSUM_COMPLETE;
4038         }
4039         adapter->hw_csum_good++;
4040 }
4041
4042 /**
4043  * e1000_clean_rx_irq - Send received data up the network stack; legacy
4044  * @adapter: board private structure
4045  **/
4046
4047 static boolean_t
4048 #ifdef CONFIG_E1000_NAPI
4049 e1000_clean_rx_irq(struct e1000_adapter *adapter,
4050                    struct e1000_rx_ring *rx_ring,
4051                    int *work_done, int work_to_do)
4052 #else
4053 e1000_clean_rx_irq(struct e1000_adapter *adapter,
4054                    struct e1000_rx_ring *rx_ring)
4055 #endif
4056 {
4057         struct net_device *netdev = adapter->netdev;
4058         struct pci_dev *pdev = adapter->pdev;
4059         struct e1000_rx_desc *rx_desc, *next_rxd;
4060         struct e1000_buffer *buffer_info, *next_buffer;
4061         unsigned long flags;
4062         uint32_t length;
4063         uint8_t last_byte;
4064         unsigned int i;
4065         int cleaned_count = 0;
4066         boolean_t cleaned = FALSE;
4067         unsigned int total_rx_bytes=0, total_rx_packets=0;
4068
4069         i = rx_ring->next_to_clean;
4070         rx_desc = E1000_RX_DESC(*rx_ring, i);
4071         buffer_info = &rx_ring->buffer_info[i];
4072
4073         while (rx_desc->status & E1000_RXD_STAT_DD) {
4074                 struct sk_buff *skb;
4075                 u8 status;
4076
4077 #ifdef CONFIG_E1000_NAPI
4078                 if (*work_done >= work_to_do)
4079                         break;
4080                 (*work_done)++;
4081 #endif
4082                 status = rx_desc->status;
4083                 skb = buffer_info->skb;
4084                 buffer_info->skb = NULL;
4085
4086                 prefetch(skb->data - NET_IP_ALIGN);
4087
4088                 if (++i == rx_ring->count) i = 0;
4089                 next_rxd = E1000_RX_DESC(*rx_ring, i);
4090                 prefetch(next_rxd);
4091
4092                 next_buffer = &rx_ring->buffer_info[i];
4093
4094                 cleaned = TRUE;
4095                 cleaned_count++;
4096                 pci_unmap_single(pdev,
4097                                  buffer_info->dma,
4098                                  buffer_info->length,
4099                                  PCI_DMA_FROMDEVICE);
4100
4101                 length = le16_to_cpu(rx_desc->length);
4102
4103                 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
4104                         /* All receives must fit into a single buffer */
4105                         E1000_DBG("%s: Receive packet consumed multiple"
4106                                   " buffers\n", netdev->name);
4107                         /* recycle */
4108                         buffer_info->skb = skb;
4109                         goto next_desc;
4110                 }
4111
4112                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4113                         last_byte = *(skb->data + length - 1);
4114                         if (TBI_ACCEPT(&adapter->hw, status,
4115                                       rx_desc->errors, length, last_byte)) {
4116                                 spin_lock_irqsave(&adapter->stats_lock, flags);
4117                                 e1000_tbi_adjust_stats(&adapter->hw,
4118                                                        &adapter->stats,
4119                                                        length, skb->data);
4120                                 spin_unlock_irqrestore(&adapter->stats_lock,
4121                                                        flags);
4122                                 length--;
4123                         } else {
4124                                 /* recycle */
4125                                 buffer_info->skb = skb;
4126                                 goto next_desc;
4127                         }
4128                 }
4129
4130                 /* adjust length to remove Ethernet CRC, this must be
4131                  * done after the TBI_ACCEPT workaround above */
4132                 length -= 4;
4133
4134                 /* probably a little skewed due to removing CRC */
4135                 total_rx_bytes += length;
4136                 total_rx_packets++;
4137
4138                 /* code added for copybreak, this should improve
4139                  * performance for small packets with large amounts
4140                  * of reassembly being done in the stack */
4141 #define E1000_CB_LENGTH 256
4142                 if (length < E1000_CB_LENGTH) {
4143                         struct sk_buff *new_skb =
4144                             netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
4145                         if (new_skb) {
4146                                 skb_reserve(new_skb, NET_IP_ALIGN);
4147                                 memcpy(new_skb->data - NET_IP_ALIGN,
4148                                        skb->data - NET_IP_ALIGN,
4149                                        length + NET_IP_ALIGN);
4150                                 /* save the skb in buffer_info as good */
4151                                 buffer_info->skb = skb;
4152                                 skb = new_skb;
4153                         }
4154                         /* else just continue with the old one */
4155                 }
4156                 /* end copybreak code */
4157                 skb_put(skb, length);
4158
4159                 /* Receive Checksum Offload */
4160                 e1000_rx_checksum(adapter,
4161                                   (uint32_t)(status) |
4162                                   ((uint32_t)(rx_desc->errors) << 24),
4163                                   le16_to_cpu(rx_desc->csum), skb);
4164
4165                 skb->protocol = eth_type_trans(skb, netdev);
4166 #ifdef CONFIG_E1000_NAPI
4167                 if (unlikely(adapter->vlgrp &&
4168                             (status & E1000_RXD_STAT_VP))) {
4169                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4170                                                  le16_to_cpu(rx_desc->special) &
4171                                                  E1000_RXD_SPC_VLAN_MASK);
4172                 } else {
4173                         netif_receive_skb(skb);
4174                 }
4175 #else /* CONFIG_E1000_NAPI */
4176                 if (unlikely(adapter->vlgrp &&
4177                             (status & E1000_RXD_STAT_VP))) {
4178                         vlan_hwaccel_rx(skb, adapter->vlgrp,
4179                                         le16_to_cpu(rx_desc->special) &
4180                                         E1000_RXD_SPC_VLAN_MASK);
4181                 } else {
4182                         netif_rx(skb);
4183                 }
4184 #endif /* CONFIG_E1000_NAPI */
4185                 netdev->last_rx = jiffies;
4186
4187 next_desc:
4188                 rx_desc->status = 0;
4189
4190                 /* return some buffers to hardware, one at a time is too slow */
4191                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4192                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4193                         cleaned_count = 0;
4194                 }
4195
4196                 /* use prefetched values */
4197                 rx_desc = next_rxd;
4198                 buffer_info = next_buffer;
4199         }
4200         rx_ring->next_to_clean = i;
4201
4202         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4203         if (cleaned_count)
4204                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4205
4206         adapter->total_rx_packets += total_rx_packets;
4207         adapter->total_rx_bytes += total_rx_bytes;
4208         return cleaned;
4209 }
4210
4211 /**
4212  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
4213  * @adapter: board private structure
4214  **/
4215
4216 static boolean_t
4217 #ifdef CONFIG_E1000_NAPI
4218 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
4219                       struct e1000_rx_ring *rx_ring,
4220                       int *work_done, int work_to_do)
4221 #else
4222 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
4223                       struct e1000_rx_ring *rx_ring)
4224 #endif
4225 {
4226         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
4227         struct net_device *netdev = adapter->netdev;
4228         struct pci_dev *pdev = adapter->pdev;
4229         struct e1000_buffer *buffer_info, *next_buffer;
4230         struct e1000_ps_page *ps_page;
4231         struct e1000_ps_page_dma *ps_page_dma;
4232         struct sk_buff *skb;
4233         unsigned int i, j;
4234         uint32_t length, staterr;
4235         int cleaned_count = 0;
4236         boolean_t cleaned = FALSE;
4237         unsigned int total_rx_bytes=0, total_rx_packets=0;
4238
4239         i = rx_ring->next_to_clean;
4240         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4241         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4242         buffer_info = &rx_ring->buffer_info[i];
4243
4244         while (staterr & E1000_RXD_STAT_DD) {
4245                 ps_page = &rx_ring->ps_page[i];
4246                 ps_page_dma = &rx_ring->ps_page_dma[i];
4247 #ifdef CONFIG_E1000_NAPI
4248                 if (unlikely(*work_done >= work_to_do))
4249                         break;
4250                 (*work_done)++;
4251 #endif
4252                 skb = buffer_info->skb;
4253
4254                 /* in the packet split case this is header only */
4255                 prefetch(skb->data - NET_IP_ALIGN);
4256
4257                 if (++i == rx_ring->count) i = 0;
4258                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
4259                 prefetch(next_rxd);
4260
4261                 next_buffer = &rx_ring->buffer_info[i];
4262
4263                 cleaned = TRUE;
4264                 cleaned_count++;
4265                 pci_unmap_single(pdev, buffer_info->dma,
4266                                  buffer_info->length,
4267                                  PCI_DMA_FROMDEVICE);
4268
4269                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
4270                         E1000_DBG("%s: Packet Split buffers didn't pick up"
4271                                   " the full packet\n", netdev->name);
4272                         dev_kfree_skb_irq(skb);
4273                         goto next_desc;
4274                 }
4275
4276                 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
4277                         dev_kfree_skb_irq(skb);
4278                         goto next_desc;
4279                 }
4280
4281                 length = le16_to_cpu(rx_desc->wb.middle.length0);
4282
4283                 if (unlikely(!length)) {
4284                         E1000_DBG("%s: Last part of the packet spanning"
4285                                   " multiple descriptors\n", netdev->name);
4286                         dev_kfree_skb_irq(skb);
4287                         goto next_desc;
4288                 }
4289
4290                 /* Good Receive */
4291                 skb_put(skb, length);
4292
4293                 {
4294                 /* this looks ugly, but it seems compiler issues make it
4295                    more efficient than reusing j */
4296                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
4297
4298                 /* page alloc/put takes too long and effects small packet
4299                  * throughput, so unsplit small packets and save the alloc/put*/
4300                 if (l1 && ((length + l1) <= adapter->rx_ps_bsize0)) {
4301                         u8 *vaddr;
4302                         /* there is no documentation about how to call
4303                          * kmap_atomic, so we can't hold the mapping
4304                          * very long */
4305                         pci_dma_sync_single_for_cpu(pdev,
4306                                 ps_page_dma->ps_page_dma[0],
4307                                 PAGE_SIZE,
4308                                 PCI_DMA_FROMDEVICE);
4309                         vaddr = kmap_atomic(ps_page->ps_page[0],
4310                                             KM_SKB_DATA_SOFTIRQ);
4311                         memcpy(skb->tail, vaddr, l1);
4312                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
4313                         pci_dma_sync_single_for_device(pdev,
4314                                 ps_page_dma->ps_page_dma[0],
4315                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
4316                         /* remove the CRC */
4317                         l1 -= 4;
4318                         skb_put(skb, l1);
4319                         goto copydone;
4320                 } /* if */
4321                 }
4322
4323                 for (j = 0; j < adapter->rx_ps_pages; j++) {
4324                         if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
4325                                 break;
4326                         pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
4327                                         PAGE_SIZE, PCI_DMA_FROMDEVICE);
4328                         ps_page_dma->ps_page_dma[j] = 0;
4329                         skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
4330                                            length);
4331                         ps_page->ps_page[j] = NULL;
4332                         skb->len += length;
4333                         skb->data_len += length;
4334                         skb->truesize += length;
4335                 }
4336
4337                 /* strip the ethernet crc, problem is we're using pages now so
4338                  * this whole operation can get a little cpu intensive */
4339                 pskb_trim(skb, skb->len - 4);
4340
4341 copydone:
4342                 total_rx_bytes += skb->len;
4343                 total_rx_packets++;
4344
4345                 e1000_rx_checksum(adapter, staterr,
4346                                   le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
4347                 skb->protocol = eth_type_trans(skb, netdev);
4348
4349                 if (likely(rx_desc->wb.upper.header_status &
4350                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
4351                         adapter->rx_hdr_split++;
4352 #ifdef CONFIG_E1000_NAPI
4353                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4354                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4355                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
4356                                 E1000_RXD_SPC_VLAN_MASK);
4357                 } else {
4358                         netif_receive_skb(skb);
4359                 }
4360 #else /* CONFIG_E1000_NAPI */
4361                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4362                         vlan_hwaccel_rx(skb, adapter->vlgrp,
4363                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
4364                                 E1000_RXD_SPC_VLAN_MASK);
4365                 } else {
4366                         netif_rx(skb);
4367                 }
4368 #endif /* CONFIG_E1000_NAPI */
4369                 netdev->last_rx = jiffies;
4370
4371 next_desc:
4372                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
4373                 buffer_info->skb = NULL;
4374
4375                 /* return some buffers to hardware, one at a time is too slow */
4376                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4377                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4378                         cleaned_count = 0;
4379                 }
4380
4381                 /* use prefetched values */
4382                 rx_desc = next_rxd;
4383                 buffer_info = next_buffer;
4384
4385                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4386         }
4387         rx_ring->next_to_clean = i;
4388
4389         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4390         if (cleaned_count)
4391                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4392
4393         adapter->total_rx_packets += total_rx_packets;
4394         adapter->total_rx_bytes += total_rx_bytes;
4395         return cleaned;
4396 }
4397
4398 /**
4399  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4400  * @adapter: address of board private structure
4401  **/
4402
4403 static void
4404 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4405                        struct e1000_rx_ring *rx_ring,
4406                        int cleaned_count)
4407 {
4408         struct net_device *netdev = adapter->netdev;
4409         struct pci_dev *pdev = adapter->pdev;
4410         struct e1000_rx_desc *rx_desc;
4411         struct e1000_buffer *buffer_info;
4412         struct sk_buff *skb;
4413         unsigned int i;
4414         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4415
4416         i = rx_ring->next_to_use;
4417         buffer_info = &rx_ring->buffer_info[i];
4418
4419         while (cleaned_count--) {
4420                 skb = buffer_info->skb;
4421                 if (skb) {
4422                         skb_trim(skb, 0);
4423                         goto map_skb;
4424                 }
4425
4426                 skb = netdev_alloc_skb(netdev, bufsz);
4427                 if (unlikely(!skb)) {
4428                         /* Better luck next round */
4429                         adapter->alloc_rx_buff_failed++;
4430                         break;
4431                 }
4432
4433                 /* Fix for errata 23, can't cross 64kB boundary */
4434                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4435                         struct sk_buff *oldskb = skb;
4436                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4437                                              "at %p\n", bufsz, skb->data);
4438                         /* Try again, without freeing the previous */
4439                         skb = netdev_alloc_skb(netdev, bufsz);
4440                         /* Failed allocation, critical failure */
4441                         if (!skb) {
4442                                 dev_kfree_skb(oldskb);
4443                                 break;
4444                         }
4445
4446                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4447                                 /* give up */
4448                                 dev_kfree_skb(skb);
4449                                 dev_kfree_skb(oldskb);
4450                                 break; /* while !buffer_info->skb */
4451                         }
4452
4453                         /* Use new allocation */
4454                         dev_kfree_skb(oldskb);
4455                 }
4456                 /* Make buffer alignment 2 beyond a 16 byte boundary
4457                  * this will result in a 16 byte aligned IP header after
4458                  * the 14 byte MAC header is removed
4459                  */
4460                 skb_reserve(skb, NET_IP_ALIGN);
4461
4462                 buffer_info->skb = skb;
4463                 buffer_info->length = adapter->rx_buffer_len;
4464 map_skb:
4465                 buffer_info->dma = pci_map_single(pdev,
4466                                                   skb->data,
4467                                                   adapter->rx_buffer_len,
4468                                                   PCI_DMA_FROMDEVICE);
4469
4470                 /* Fix for errata 23, can't cross 64kB boundary */
4471                 if (!e1000_check_64k_bound(adapter,
4472                                         (void *)(unsigned long)buffer_info->dma,
4473                                         adapter->rx_buffer_len)) {
4474                         DPRINTK(RX_ERR, ERR,
4475                                 "dma align check failed: %u bytes at %p\n",
4476                                 adapter->rx_buffer_len,
4477                                 (void *)(unsigned long)buffer_info->dma);
4478                         dev_kfree_skb(skb);
4479                         buffer_info->skb = NULL;
4480
4481                         pci_unmap_single(pdev, buffer_info->dma,
4482                                          adapter->rx_buffer_len,
4483                                          PCI_DMA_FROMDEVICE);
4484
4485                         break; /* while !buffer_info->skb */
4486                 }
4487                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4488                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4489
4490                 if (unlikely(++i == rx_ring->count))
4491                         i = 0;
4492                 buffer_info = &rx_ring->buffer_info[i];
4493         }
4494
4495         if (likely(rx_ring->next_to_use != i)) {
4496                 rx_ring->next_to_use = i;
4497                 if (unlikely(i-- == 0))
4498                         i = (rx_ring->count - 1);
4499
4500                 /* Force memory writes to complete before letting h/w
4501                  * know there are new descriptors to fetch.  (Only
4502                  * applicable for weak-ordered memory model archs,
4503                  * such as IA-64). */
4504                 wmb();
4505                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4506         }
4507 }
4508
4509 /**
4510  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
4511  * @adapter: address of board private structure
4512  **/
4513
4514 static void
4515 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
4516                           struct e1000_rx_ring *rx_ring,
4517                           int cleaned_count)
4518 {
4519         struct net_device *netdev = adapter->netdev;
4520         struct pci_dev *pdev = adapter->pdev;
4521         union e1000_rx_desc_packet_split *rx_desc;
4522         struct e1000_buffer *buffer_info;
4523         struct e1000_ps_page *ps_page;
4524         struct e1000_ps_page_dma *ps_page_dma;
4525         struct sk_buff *skb;
4526         unsigned int i, j;
4527
4528         i = rx_ring->next_to_use;
4529         buffer_info = &rx_ring->buffer_info[i];
4530         ps_page = &rx_ring->ps_page[i];
4531         ps_page_dma = &rx_ring->ps_page_dma[i];
4532
4533         while (cleaned_count--) {
4534                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4535
4536                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
4537                         if (j < adapter->rx_ps_pages) {
4538                                 if (likely(!ps_page->ps_page[j])) {
4539                                         ps_page->ps_page[j] =
4540                                                 alloc_page(GFP_ATOMIC);
4541                                         if (unlikely(!ps_page->ps_page[j])) {
4542                                                 adapter->alloc_rx_buff_failed++;
4543                                                 goto no_buffers;
4544                                         }
4545                                         ps_page_dma->ps_page_dma[j] =
4546                                                 pci_map_page(pdev,
4547                                                             ps_page->ps_page[j],
4548                                                             0, PAGE_SIZE,
4549                                                             PCI_DMA_FROMDEVICE);
4550                                 }
4551                                 /* Refresh the desc even if buffer_addrs didn't
4552                                  * change because each write-back erases
4553                                  * this info.
4554                                  */
4555                                 rx_desc->read.buffer_addr[j+1] =
4556                                      cpu_to_le64(ps_page_dma->ps_page_dma[j]);
4557                         } else
4558                                 rx_desc->read.buffer_addr[j+1] = ~0;
4559                 }
4560
4561                 skb = netdev_alloc_skb(netdev,
4562                                        adapter->rx_ps_bsize0 + NET_IP_ALIGN);
4563
4564                 if (unlikely(!skb)) {
4565                         adapter->alloc_rx_buff_failed++;
4566                         break;
4567                 }
4568
4569                 /* Make buffer alignment 2 beyond a 16 byte boundary
4570                  * this will result in a 16 byte aligned IP header after
4571                  * the 14 byte MAC header is removed
4572                  */
4573                 skb_reserve(skb, NET_IP_ALIGN);
4574
4575                 buffer_info->skb = skb;
4576                 buffer_info->length = adapter->rx_ps_bsize0;
4577                 buffer_info->dma = pci_map_single(pdev, skb->data,
4578                                                   adapter->rx_ps_bsize0,
4579                                                   PCI_DMA_FROMDEVICE);
4580
4581                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
4582
4583                 if (unlikely(++i == rx_ring->count)) i = 0;
4584                 buffer_info = &rx_ring->buffer_info[i];
4585                 ps_page = &rx_ring->ps_page[i];
4586                 ps_page_dma = &rx_ring->ps_page_dma[i];
4587         }
4588
4589 no_buffers:
4590         if (likely(rx_ring->next_to_use != i)) {
4591                 rx_ring->next_to_use = i;
4592                 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4593
4594                 /* Force memory writes to complete before letting h/w
4595                  * know there are new descriptors to fetch.  (Only
4596                  * applicable for weak-ordered memory model archs,
4597                  * such as IA-64). */
4598                 wmb();
4599                 /* Hardware increments by 16 bytes, but packet split
4600                  * descriptors are 32 bytes...so we increment tail
4601                  * twice as much.
4602                  */
4603                 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
4604         }
4605 }
4606
4607 /**
4608  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4609  * @adapter:
4610  **/
4611
4612 static void
4613 e1000_smartspeed(struct e1000_adapter *adapter)
4614 {
4615         uint16_t phy_status;
4616         uint16_t phy_ctrl;
4617
4618         if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
4619            !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
4620                 return;
4621
4622         if (adapter->smartspeed == 0) {
4623                 /* If Master/Slave config fault is asserted twice,
4624                  * we assume back-to-back */
4625                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4626                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4627                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4628                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4629                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4630                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4631                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4632                         e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
4633                                             phy_ctrl);
4634                         adapter->smartspeed++;
4635                         if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4636                            !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
4637                                                &phy_ctrl)) {
4638                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4639                                              MII_CR_RESTART_AUTO_NEG);
4640                                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
4641                                                     phy_ctrl);
4642                         }
4643                 }
4644                 return;
4645         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4646                 /* If still no link, perhaps using 2/3 pair cable */
4647                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4648                 phy_ctrl |= CR_1000T_MS_ENABLE;
4649                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
4650                 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4651                    !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
4652                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4653                                      MII_CR_RESTART_AUTO_NEG);
4654                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
4655                 }
4656         }
4657         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4658         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4659                 adapter->smartspeed = 0;
4660 }
4661
4662 /**
4663  * e1000_ioctl -
4664  * @netdev:
4665  * @ifreq:
4666  * @cmd:
4667  **/
4668
4669 static int
4670 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4671 {
4672         switch (cmd) {
4673         case SIOCGMIIPHY:
4674         case SIOCGMIIREG:
4675         case SIOCSMIIREG:
4676                 return e1000_mii_ioctl(netdev, ifr, cmd);
4677         default:
4678                 return -EOPNOTSUPP;
4679         }
4680 }
4681
4682 /**
4683  * e1000_mii_ioctl -
4684  * @netdev:
4685  * @ifreq:
4686  * @cmd:
4687  **/
4688
4689 static int
4690 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4691 {
4692         struct e1000_adapter *adapter = netdev_priv(netdev);
4693         struct mii_ioctl_data *data = if_mii(ifr);
4694         int retval;
4695         uint16_t mii_reg;
4696         uint16_t spddplx;
4697         unsigned long flags;
4698
4699         if (adapter->hw.media_type != e1000_media_type_copper)
4700                 return -EOPNOTSUPP;
4701
4702         switch (cmd) {
4703         case SIOCGMIIPHY:
4704                 data->phy_id = adapter->hw.phy_addr;
4705                 break;
4706         case SIOCGMIIREG:
4707                 if (!capable(CAP_NET_ADMIN))
4708                         return -EPERM;
4709                 spin_lock_irqsave(&adapter->stats_lock, flags);
4710                 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4711                                    &data->val_out)) {
4712                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4713                         return -EIO;
4714                 }
4715                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4716                 break;
4717         case SIOCSMIIREG:
4718                 if (!capable(CAP_NET_ADMIN))
4719                         return -EPERM;
4720                 if (data->reg_num & ~(0x1F))
4721                         return -EFAULT;
4722                 mii_reg = data->val_in;
4723                 spin_lock_irqsave(&adapter->stats_lock, flags);
4724                 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
4725                                         mii_reg)) {
4726                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4727                         return -EIO;
4728                 }
4729                 if (adapter->hw.media_type == e1000_media_type_copper) {
4730                         switch (data->reg_num) {
4731                         case PHY_CTRL:
4732                                 if (mii_reg & MII_CR_POWER_DOWN)
4733                                         break;
4734                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4735                                         adapter->hw.autoneg = 1;
4736                                         adapter->hw.autoneg_advertised = 0x2F;
4737                                 } else {
4738                                         if (mii_reg & 0x40)
4739                                                 spddplx = SPEED_1000;
4740                                         else if (mii_reg & 0x2000)
4741                                                 spddplx = SPEED_100;
4742                                         else
4743                                                 spddplx = SPEED_10;
4744                                         spddplx += (mii_reg & 0x100)
4745                                                    ? DUPLEX_FULL :
4746                                                    DUPLEX_HALF;
4747                                         retval = e1000_set_spd_dplx(adapter,
4748                                                                     spddplx);
4749                                         if (retval) {
4750                                                 spin_unlock_irqrestore(
4751                                                         &adapter->stats_lock,
4752                                                         flags);
4753                                                 return retval;
4754                                         }
4755                                 }
4756                                 if (netif_running(adapter->netdev))
4757                                         e1000_reinit_locked(adapter);
4758                                 else
4759                                         e1000_reset(adapter);
4760                                 break;
4761                         case M88E1000_PHY_SPEC_CTRL:
4762                         case M88E1000_EXT_PHY_SPEC_CTRL:
4763                                 if (e1000_phy_reset(&adapter->hw)) {
4764                                         spin_unlock_irqrestore(
4765                                                 &adapter->stats_lock, flags);
4766                                         return -EIO;
4767                                 }
4768                                 break;
4769                         }
4770                 } else {
4771                         switch (data->reg_num) {
4772                         case PHY_CTRL:
4773                                 if (mii_reg & MII_CR_POWER_DOWN)
4774                                         break;
4775                                 if (netif_running(adapter->netdev))
4776                                         e1000_reinit_locked(adapter);
4777                                 else
4778                                         e1000_reset(adapter);
4779                                 break;
4780                         }
4781                 }
4782                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4783                 break;
4784         default:
4785                 return -EOPNOTSUPP;
4786         }
4787         return E1000_SUCCESS;
4788 }
4789
4790 void
4791 e1000_pci_set_mwi(struct e1000_hw *hw)
4792 {
4793         struct e1000_adapter *adapter = hw->back;
4794         int ret_val = pci_set_mwi(adapter->pdev);
4795
4796         if (ret_val)
4797                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4798 }
4799
4800 void
4801 e1000_pci_clear_mwi(struct e1000_hw *hw)
4802 {
4803         struct e1000_adapter *adapter = hw->back;
4804
4805         pci_clear_mwi(adapter->pdev);
4806 }
4807
4808 void
4809 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4810 {
4811         struct e1000_adapter *adapter = hw->back;
4812
4813         pci_read_config_word(adapter->pdev, reg, value);
4814 }
4815
4816 void
4817 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4818 {
4819         struct e1000_adapter *adapter = hw->back;
4820
4821         pci_write_config_word(adapter->pdev, reg, *value);
4822 }
4823
4824 int32_t
4825 e1000_read_pcie_cap_reg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4826 {
4827     struct e1000_adapter *adapter = hw->back;
4828     uint16_t cap_offset;
4829
4830     cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
4831     if (!cap_offset)
4832         return -E1000_ERR_CONFIG;
4833
4834     pci_read_config_word(adapter->pdev, cap_offset + reg, value);
4835
4836     return E1000_SUCCESS;
4837 }
4838
4839 void
4840 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4841 {
4842         outl(value, port);
4843 }
4844
4845 static void
4846 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4847 {
4848         struct e1000_adapter *adapter = netdev_priv(netdev);
4849         uint32_t ctrl, rctl;
4850
4851         e1000_irq_disable(adapter);
4852         adapter->vlgrp = grp;
4853
4854         if (grp) {
4855                 /* enable VLAN tag insert/strip */
4856                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4857                 ctrl |= E1000_CTRL_VME;
4858                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4859
4860                 if (adapter->hw.mac_type != e1000_ich8lan) {
4861                         /* enable VLAN receive filtering */
4862                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4863                         rctl |= E1000_RCTL_VFE;
4864                         rctl &= ~E1000_RCTL_CFIEN;
4865                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4866                         e1000_update_mng_vlan(adapter);
4867                 }
4868         } else {
4869                 /* disable VLAN tag insert/strip */
4870                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4871                 ctrl &= ~E1000_CTRL_VME;
4872                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4873
4874                 if (adapter->hw.mac_type != e1000_ich8lan) {
4875                         /* disable VLAN filtering */
4876                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4877                         rctl &= ~E1000_RCTL_VFE;
4878                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4879                         if (adapter->mng_vlan_id !=
4880                             (uint16_t)E1000_MNG_VLAN_NONE) {
4881                                 e1000_vlan_rx_kill_vid(netdev,
4882                                                        adapter->mng_vlan_id);
4883                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4884                         }
4885                 }
4886         }
4887
4888         e1000_irq_enable(adapter);
4889 }
4890
4891 static void
4892 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4893 {
4894         struct e1000_adapter *adapter = netdev_priv(netdev);
4895         uint32_t vfta, index;
4896
4897         if ((adapter->hw.mng_cookie.status &
4898              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4899             (vid == adapter->mng_vlan_id))
4900                 return;
4901         /* add VID to filter table */
4902         index = (vid >> 5) & 0x7F;
4903         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4904         vfta |= (1 << (vid & 0x1F));
4905         e1000_write_vfta(&adapter->hw, index, vfta);
4906 }
4907
4908 static void
4909 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
4910 {
4911         struct e1000_adapter *adapter = netdev_priv(netdev);
4912         uint32_t vfta, index;
4913
4914         e1000_irq_disable(adapter);
4915
4916         if (adapter->vlgrp)
4917                 adapter->vlgrp->vlan_devices[vid] = NULL;
4918
4919         e1000_irq_enable(adapter);
4920
4921         if ((adapter->hw.mng_cookie.status &
4922              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4923             (vid == adapter->mng_vlan_id)) {
4924                 /* release control to f/w */
4925                 e1000_release_hw_control(adapter);
4926                 return;
4927         }
4928
4929         /* remove VID from filter table */
4930         index = (vid >> 5) & 0x7F;
4931         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4932         vfta &= ~(1 << (vid & 0x1F));
4933         e1000_write_vfta(&adapter->hw, index, vfta);
4934 }
4935
4936 static void
4937 e1000_restore_vlan(struct e1000_adapter *adapter)
4938 {
4939         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4940
4941         if (adapter->vlgrp) {
4942                 uint16_t vid;
4943                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4944                         if (!adapter->vlgrp->vlan_devices[vid])
4945                                 continue;
4946                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
4947                 }
4948         }
4949 }
4950
4951 int
4952 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
4953 {
4954         adapter->hw.autoneg = 0;
4955
4956         /* Fiber NICs only allow 1000 gbps Full duplex */
4957         if ((adapter->hw.media_type == e1000_media_type_fiber) &&
4958                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4959                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4960                 return -EINVAL;
4961         }
4962
4963         switch (spddplx) {
4964         case SPEED_10 + DUPLEX_HALF:
4965                 adapter->hw.forced_speed_duplex = e1000_10_half;
4966                 break;
4967         case SPEED_10 + DUPLEX_FULL:
4968                 adapter->hw.forced_speed_duplex = e1000_10_full;
4969                 break;
4970         case SPEED_100 + DUPLEX_HALF:
4971                 adapter->hw.forced_speed_duplex = e1000_100_half;
4972                 break;
4973         case SPEED_100 + DUPLEX_FULL:
4974                 adapter->hw.forced_speed_duplex = e1000_100_full;
4975                 break;
4976         case SPEED_1000 + DUPLEX_FULL:
4977                 adapter->hw.autoneg = 1;
4978                 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
4979                 break;
4980         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4981         default:
4982                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4983                 return -EINVAL;
4984         }
4985         return 0;
4986 }
4987
4988 #ifdef CONFIG_PM
4989 /* Save/restore 16 or 64 dwords of PCI config space depending on which
4990  * bus we're on (PCI(X) vs. PCI-E)
4991  */
4992 #define PCIE_CONFIG_SPACE_LEN 256
4993 #define PCI_CONFIG_SPACE_LEN 64
4994 static int
4995 e1000_pci_save_state(struct e1000_adapter *adapter)
4996 {
4997         struct pci_dev *dev = adapter->pdev;
4998         int size;
4999         int i;
5000
5001         if (adapter->hw.mac_type >= e1000_82571)
5002                 size = PCIE_CONFIG_SPACE_LEN;
5003         else
5004                 size = PCI_CONFIG_SPACE_LEN;
5005
5006         WARN_ON(adapter->config_space != NULL);
5007
5008         adapter->config_space = kmalloc(size, GFP_KERNEL);
5009         if (!adapter->config_space) {
5010                 DPRINTK(PROBE, ERR, "unable to allocate %d bytes\n", size);
5011                 return -ENOMEM;
5012         }
5013         for (i = 0; i < (size / 4); i++)
5014                 pci_read_config_dword(dev, i * 4, &adapter->config_space[i]);
5015         return 0;
5016 }
5017
5018 static void
5019 e1000_pci_restore_state(struct e1000_adapter *adapter)
5020 {
5021         struct pci_dev *dev = adapter->pdev;
5022         int size;
5023         int i;
5024
5025         if (adapter->config_space == NULL)
5026                 return;
5027
5028         if (adapter->hw.mac_type >= e1000_82571)
5029                 size = PCIE_CONFIG_SPACE_LEN;
5030         else
5031                 size = PCI_CONFIG_SPACE_LEN;
5032         for (i = 0; i < (size / 4); i++)
5033                 pci_write_config_dword(dev, i * 4, adapter->config_space[i]);
5034         kfree(adapter->config_space);
5035         adapter->config_space = NULL;
5036         return;
5037 }
5038 #endif /* CONFIG_PM */
5039
5040 static int
5041 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5042 {
5043         struct net_device *netdev = pci_get_drvdata(pdev);
5044         struct e1000_adapter *adapter = netdev_priv(netdev);
5045         uint32_t ctrl, ctrl_ext, rctl, status;
5046         uint32_t wufc = adapter->wol;
5047 #ifdef CONFIG_PM
5048         int retval = 0;
5049 #endif
5050
5051         netif_device_detach(netdev);
5052
5053         if (netif_running(netdev)) {
5054                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5055                 e1000_down(adapter);
5056         }
5057
5058 #ifdef CONFIG_PM
5059         /* Implement our own version of pci_save_state(pdev) because pci-
5060          * express adapters have 256-byte config spaces. */
5061         retval = e1000_pci_save_state(adapter);
5062         if (retval)
5063                 return retval;
5064 #endif
5065
5066         status = E1000_READ_REG(&adapter->hw, STATUS);
5067         if (status & E1000_STATUS_LU)
5068                 wufc &= ~E1000_WUFC_LNKC;
5069
5070         if (wufc) {
5071                 e1000_setup_rctl(adapter);
5072                 e1000_set_multi(netdev);
5073
5074                 /* turn on all-multi mode if wake on multicast is enabled */
5075                 if (wufc & E1000_WUFC_MC) {
5076                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
5077                         rctl |= E1000_RCTL_MPE;
5078                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
5079                 }
5080
5081                 if (adapter->hw.mac_type >= e1000_82540) {
5082                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
5083                         /* advertise wake from D3Cold */
5084                         #define E1000_CTRL_ADVD3WUC 0x00100000
5085                         /* phy power management enable */
5086                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5087                         ctrl |= E1000_CTRL_ADVD3WUC |
5088                                 E1000_CTRL_EN_PHY_PWR_MGMT;
5089                         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
5090                 }
5091
5092                 if (adapter->hw.media_type == e1000_media_type_fiber ||
5093                    adapter->hw.media_type == e1000_media_type_internal_serdes) {
5094                         /* keep the laser running in D3 */
5095                         ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
5096                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5097                         E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
5098                 }
5099
5100                 /* Allow time for pending master requests to run */
5101                 e1000_disable_pciex_master(&adapter->hw);
5102
5103                 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
5104                 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
5105                 pci_enable_wake(pdev, PCI_D3hot, 1);
5106                 pci_enable_wake(pdev, PCI_D3cold, 1);
5107         } else {
5108                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
5109                 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
5110                 pci_enable_wake(pdev, PCI_D3hot, 0);
5111                 pci_enable_wake(pdev, PCI_D3cold, 0);
5112         }
5113
5114         e1000_release_manageability(adapter);
5115
5116         /* make sure adapter isn't asleep if manageability is enabled */
5117         if (adapter->en_mng_pt) {
5118                 pci_enable_wake(pdev, PCI_D3hot, 1);
5119                 pci_enable_wake(pdev, PCI_D3cold, 1);
5120         }
5121
5122         if (adapter->hw.phy_type == e1000_phy_igp_3)
5123                 e1000_phy_powerdown_workaround(&adapter->hw);
5124
5125         if (netif_running(netdev))
5126                 e1000_free_irq(adapter);
5127
5128         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
5129          * would have already happened in close and is redundant. */
5130         e1000_release_hw_control(adapter);
5131
5132         pci_disable_device(pdev);
5133
5134         pci_set_power_state(pdev, pci_choose_state(pdev, state));
5135
5136         return 0;
5137 }
5138
5139 #ifdef CONFIG_PM
5140 static int
5141 e1000_resume(struct pci_dev *pdev)
5142 {
5143         struct net_device *netdev = pci_get_drvdata(pdev);
5144         struct e1000_adapter *adapter = netdev_priv(netdev);
5145         uint32_t err;
5146
5147         pci_set_power_state(pdev, PCI_D0);
5148         e1000_pci_restore_state(adapter);
5149         if ((err = pci_enable_device(pdev))) {
5150                 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
5151                 return err;
5152         }
5153         pci_set_master(pdev);
5154
5155         pci_enable_wake(pdev, PCI_D3hot, 0);
5156         pci_enable_wake(pdev, PCI_D3cold, 0);
5157
5158         if (netif_running(netdev) && (err = e1000_request_irq(adapter)))
5159                 return err;
5160
5161         e1000_power_up_phy(adapter);
5162         e1000_reset(adapter);
5163         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
5164
5165         e1000_init_manageability(adapter);
5166
5167         if (netif_running(netdev))
5168                 e1000_up(adapter);
5169
5170         netif_device_attach(netdev);
5171
5172         /* If the controller is 82573 and f/w is AMT, do not set
5173          * DRV_LOAD until the interface is up.  For all other cases,
5174          * let the f/w know that the h/w is now under the control
5175          * of the driver. */
5176         if (adapter->hw.mac_type != e1000_82573 ||
5177             !e1000_check_mng_mode(&adapter->hw))
5178                 e1000_get_hw_control(adapter);
5179
5180         return 0;
5181 }
5182 #endif
5183
5184 static void e1000_shutdown(struct pci_dev *pdev)
5185 {
5186         e1000_suspend(pdev, PMSG_SUSPEND);
5187 }
5188
5189 #ifdef CONFIG_NET_POLL_CONTROLLER
5190 /*
5191  * Polling 'interrupt' - used by things like netconsole to send skbs
5192  * without having to re-enable interrupts. It's not called while
5193  * the interrupt routine is executing.
5194  */
5195 static void
5196 e1000_netpoll(struct net_device *netdev)
5197 {
5198         struct e1000_adapter *adapter = netdev_priv(netdev);
5199
5200         disable_irq(adapter->pdev->irq);
5201         e1000_intr(adapter->pdev->irq, netdev);
5202         e1000_clean_tx_irq(adapter, adapter->tx_ring);
5203 #ifndef CONFIG_E1000_NAPI
5204         adapter->clean_rx(adapter, adapter->rx_ring);
5205 #endif
5206         enable_irq(adapter->pdev->irq);
5207 }
5208 #endif
5209
5210 /**
5211  * e1000_io_error_detected - called when PCI error is detected
5212  * @pdev: Pointer to PCI device
5213  * @state: The current pci conneection state
5214  *
5215  * This function is called after a PCI bus error affecting
5216  * this device has been detected.
5217  */
5218 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
5219 {
5220         struct net_device *netdev = pci_get_drvdata(pdev);
5221         struct e1000_adapter *adapter = netdev->priv;
5222
5223         netif_device_detach(netdev);
5224
5225         if (netif_running(netdev))
5226                 e1000_down(adapter);
5227         pci_disable_device(pdev);
5228
5229         /* Request a slot slot reset. */
5230         return PCI_ERS_RESULT_NEED_RESET;
5231 }
5232
5233 /**
5234  * e1000_io_slot_reset - called after the pci bus has been reset.
5235  * @pdev: Pointer to PCI device
5236  *
5237  * Restart the card from scratch, as if from a cold-boot. Implementation
5238  * resembles the first-half of the e1000_resume routine.
5239  */
5240 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5241 {
5242         struct net_device *netdev = pci_get_drvdata(pdev);
5243         struct e1000_adapter *adapter = netdev->priv;
5244
5245         if (pci_enable_device(pdev)) {
5246                 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
5247                 return PCI_ERS_RESULT_DISCONNECT;
5248         }
5249         pci_set_master(pdev);
5250
5251         pci_enable_wake(pdev, PCI_D3hot, 0);
5252         pci_enable_wake(pdev, PCI_D3cold, 0);
5253
5254         e1000_reset(adapter);
5255         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
5256
5257         return PCI_ERS_RESULT_RECOVERED;
5258 }
5259
5260 /**
5261  * e1000_io_resume - called when traffic can start flowing again.
5262  * @pdev: Pointer to PCI device
5263  *
5264  * This callback is called when the error recovery driver tells us that
5265  * its OK to resume normal operation. Implementation resembles the
5266  * second-half of the e1000_resume routine.
5267  */
5268 static void e1000_io_resume(struct pci_dev *pdev)
5269 {
5270         struct net_device *netdev = pci_get_drvdata(pdev);
5271         struct e1000_adapter *adapter = netdev->priv;
5272
5273         e1000_init_manageability(adapter);
5274
5275         if (netif_running(netdev)) {
5276                 if (e1000_up(adapter)) {
5277                         printk("e1000: can't bring device back up after reset\n");
5278                         return;
5279                 }
5280         }
5281
5282         netif_device_attach(netdev);
5283
5284         /* If the controller is 82573 and f/w is AMT, do not set
5285          * DRV_LOAD until the interface is up.  For all other cases,
5286          * let the f/w know that the h/w is now under the control
5287          * of the driver. */
5288         if (adapter->hw.mac_type != e1000_82573 ||
5289             !e1000_check_mng_mode(&adapter->hw))
5290                 e1000_get_hw_control(adapter);
5291
5292 }
5293
5294 /* e1000_main.c */