[NET]: Merge TSO/UFO fields in sk_buff
[linux-2.6.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   
4   Copyright(c) 1999 - 2006 Intel Corporation. All rights reserved.
5   
6   This program is free software; you can redistribute it and/or modify it 
7   under the terms of the GNU General Public License as published by the Free 
8   Software Foundation; either version 2 of the License, or (at your option) 
9   any later version.
10   
11   This program is distributed in the hope that it will be useful, but WITHOUT 
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
14   more details.
15   
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc., 59 
18   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
19   
20   The full GNU General Public License is included in this distribution in the
21   file called LICENSE.
22   
23   Contact Information:
24   Linux NICS <linux.nics@intel.com>
25   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
26   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27
28 *******************************************************************************/
29
30 #include "e1000.h"
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #ifndef CONFIG_E1000_NAPI
35 #define DRIVERNAPI
36 #else
37 #define DRIVERNAPI "-NAPI"
38 #endif
39 #define DRV_VERSION "7.0.38-k4"DRIVERNAPI
40 char e1000_driver_version[] = DRV_VERSION;
41 static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
42
43 /* e1000_pci_tbl - PCI Device ID Table
44  *
45  * Last entry must be all 0s
46  *
47  * Macro expands to...
48  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
49  */
50 static struct pci_device_id e1000_pci_tbl[] = {
51         INTEL_E1000_ETHERNET_DEVICE(0x1000),
52         INTEL_E1000_ETHERNET_DEVICE(0x1001),
53         INTEL_E1000_ETHERNET_DEVICE(0x1004),
54         INTEL_E1000_ETHERNET_DEVICE(0x1008),
55         INTEL_E1000_ETHERNET_DEVICE(0x1009),
56         INTEL_E1000_ETHERNET_DEVICE(0x100C),
57         INTEL_E1000_ETHERNET_DEVICE(0x100D),
58         INTEL_E1000_ETHERNET_DEVICE(0x100E),
59         INTEL_E1000_ETHERNET_DEVICE(0x100F),
60         INTEL_E1000_ETHERNET_DEVICE(0x1010),
61         INTEL_E1000_ETHERNET_DEVICE(0x1011),
62         INTEL_E1000_ETHERNET_DEVICE(0x1012),
63         INTEL_E1000_ETHERNET_DEVICE(0x1013),
64         INTEL_E1000_ETHERNET_DEVICE(0x1014),
65         INTEL_E1000_ETHERNET_DEVICE(0x1015),
66         INTEL_E1000_ETHERNET_DEVICE(0x1016),
67         INTEL_E1000_ETHERNET_DEVICE(0x1017),
68         INTEL_E1000_ETHERNET_DEVICE(0x1018),
69         INTEL_E1000_ETHERNET_DEVICE(0x1019),
70         INTEL_E1000_ETHERNET_DEVICE(0x101A),
71         INTEL_E1000_ETHERNET_DEVICE(0x101D),
72         INTEL_E1000_ETHERNET_DEVICE(0x101E),
73         INTEL_E1000_ETHERNET_DEVICE(0x1026),
74         INTEL_E1000_ETHERNET_DEVICE(0x1027),
75         INTEL_E1000_ETHERNET_DEVICE(0x1028),
76         INTEL_E1000_ETHERNET_DEVICE(0x105E),
77         INTEL_E1000_ETHERNET_DEVICE(0x105F),
78         INTEL_E1000_ETHERNET_DEVICE(0x1060),
79         INTEL_E1000_ETHERNET_DEVICE(0x1075),
80         INTEL_E1000_ETHERNET_DEVICE(0x1076),
81         INTEL_E1000_ETHERNET_DEVICE(0x1077),
82         INTEL_E1000_ETHERNET_DEVICE(0x1078),
83         INTEL_E1000_ETHERNET_DEVICE(0x1079),
84         INTEL_E1000_ETHERNET_DEVICE(0x107A),
85         INTEL_E1000_ETHERNET_DEVICE(0x107B),
86         INTEL_E1000_ETHERNET_DEVICE(0x107C),
87         INTEL_E1000_ETHERNET_DEVICE(0x107D),
88         INTEL_E1000_ETHERNET_DEVICE(0x107E),
89         INTEL_E1000_ETHERNET_DEVICE(0x107F),
90         INTEL_E1000_ETHERNET_DEVICE(0x108A),
91         INTEL_E1000_ETHERNET_DEVICE(0x108B),
92         INTEL_E1000_ETHERNET_DEVICE(0x108C),
93         INTEL_E1000_ETHERNET_DEVICE(0x1096),
94         INTEL_E1000_ETHERNET_DEVICE(0x1098),
95         INTEL_E1000_ETHERNET_DEVICE(0x1099),
96         INTEL_E1000_ETHERNET_DEVICE(0x109A),
97         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
98         INTEL_E1000_ETHERNET_DEVICE(0x10B9),
99         /* required last entry */
100         {0,}
101 };
102
103 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
104
105 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
106                                     struct e1000_tx_ring *txdr);
107 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
108                                     struct e1000_rx_ring *rxdr);
109 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
110                                     struct e1000_tx_ring *tx_ring);
111 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
112                                     struct e1000_rx_ring *rx_ring);
113
114 /* Local Function Prototypes */
115
116 static int e1000_init_module(void);
117 static void e1000_exit_module(void);
118 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
119 static void __devexit e1000_remove(struct pci_dev *pdev);
120 static int e1000_alloc_queues(struct e1000_adapter *adapter);
121 static int e1000_sw_init(struct e1000_adapter *adapter);
122 static int e1000_open(struct net_device *netdev);
123 static int e1000_close(struct net_device *netdev);
124 static void e1000_configure_tx(struct e1000_adapter *adapter);
125 static void e1000_configure_rx(struct e1000_adapter *adapter);
126 static void e1000_setup_rctl(struct e1000_adapter *adapter);
127 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
128 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
129 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
130                                 struct e1000_tx_ring *tx_ring);
131 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
132                                 struct e1000_rx_ring *rx_ring);
133 static void e1000_set_multi(struct net_device *netdev);
134 static void e1000_update_phy_info(unsigned long data);
135 static void e1000_watchdog(unsigned long data);
136 static void e1000_watchdog_task(struct e1000_adapter *adapter);
137 static void e1000_82547_tx_fifo_stall(unsigned long data);
138 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
139 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
140 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
141 static int e1000_set_mac(struct net_device *netdev, void *p);
142 static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
143 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
144                                     struct e1000_tx_ring *tx_ring);
145 #ifdef CONFIG_E1000_NAPI
146 static int e1000_clean(struct net_device *poll_dev, int *budget);
147 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
148                                     struct e1000_rx_ring *rx_ring,
149                                     int *work_done, int work_to_do);
150 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
151                                        struct e1000_rx_ring *rx_ring,
152                                        int *work_done, int work_to_do);
153 #else
154 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
155                                     struct e1000_rx_ring *rx_ring);
156 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
157                                        struct e1000_rx_ring *rx_ring);
158 #endif
159 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
160                                    struct e1000_rx_ring *rx_ring,
161                                    int cleaned_count);
162 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
163                                       struct e1000_rx_ring *rx_ring,
164                                       int cleaned_count);
165 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
166 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
167                            int cmd);
168 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
169 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
170 static void e1000_tx_timeout(struct net_device *dev);
171 static void e1000_reset_task(struct net_device *dev);
172 static void e1000_smartspeed(struct e1000_adapter *adapter);
173 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
174                                        struct sk_buff *skb);
175
176 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
177 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
178 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
179 static void e1000_restore_vlan(struct e1000_adapter *adapter);
180
181 #ifdef CONFIG_PM
182 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
183 static int e1000_resume(struct pci_dev *pdev);
184 #endif
185 static void e1000_shutdown(struct pci_dev *pdev);
186
187 #ifdef CONFIG_NET_POLL_CONTROLLER
188 /* for netdump / net console */
189 static void e1000_netpoll (struct net_device *netdev);
190 #endif
191
192 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
193                      pci_channel_state_t state);
194 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
195 static void e1000_io_resume(struct pci_dev *pdev);
196
197 static struct pci_error_handlers e1000_err_handler = {
198         .error_detected = e1000_io_error_detected,
199         .slot_reset = e1000_io_slot_reset,
200         .resume = e1000_io_resume,
201 };
202
203 static struct pci_driver e1000_driver = {
204         .name     = e1000_driver_name,
205         .id_table = e1000_pci_tbl,
206         .probe    = e1000_probe,
207         .remove   = __devexit_p(e1000_remove),
208         /* Power Managment Hooks */
209 #ifdef CONFIG_PM
210         .suspend  = e1000_suspend,
211         .resume   = e1000_resume,
212 #endif
213         .shutdown = e1000_shutdown,
214         .err_handler = &e1000_err_handler
215 };
216
217 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
218 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
219 MODULE_LICENSE("GPL");
220 MODULE_VERSION(DRV_VERSION);
221
222 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
223 module_param(debug, int, 0);
224 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
225
226 /**
227  * e1000_init_module - Driver Registration Routine
228  *
229  * e1000_init_module is the first routine called when the driver is
230  * loaded. All it does is register with the PCI subsystem.
231  **/
232
233 static int __init
234 e1000_init_module(void)
235 {
236         int ret;
237         printk(KERN_INFO "%s - version %s\n",
238                e1000_driver_string, e1000_driver_version);
239
240         printk(KERN_INFO "%s\n", e1000_copyright);
241
242         ret = pci_module_init(&e1000_driver);
243
244         return ret;
245 }
246
247 module_init(e1000_init_module);
248
249 /**
250  * e1000_exit_module - Driver Exit Cleanup Routine
251  *
252  * e1000_exit_module is called just before the driver is removed
253  * from memory.
254  **/
255
256 static void __exit
257 e1000_exit_module(void)
258 {
259         pci_unregister_driver(&e1000_driver);
260 }
261
262 module_exit(e1000_exit_module);
263
264 /**
265  * e1000_irq_disable - Mask off interrupt generation on the NIC
266  * @adapter: board private structure
267  **/
268
269 static void
270 e1000_irq_disable(struct e1000_adapter *adapter)
271 {
272         atomic_inc(&adapter->irq_sem);
273         E1000_WRITE_REG(&adapter->hw, IMC, ~0);
274         E1000_WRITE_FLUSH(&adapter->hw);
275         synchronize_irq(adapter->pdev->irq);
276 }
277
278 /**
279  * e1000_irq_enable - Enable default interrupt generation settings
280  * @adapter: board private structure
281  **/
282
283 static void
284 e1000_irq_enable(struct e1000_adapter *adapter)
285 {
286         if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
287                 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
288                 E1000_WRITE_FLUSH(&adapter->hw);
289         }
290 }
291
292 static void
293 e1000_update_mng_vlan(struct e1000_adapter *adapter)
294 {
295         struct net_device *netdev = adapter->netdev;
296         uint16_t vid = adapter->hw.mng_cookie.vlan_id;
297         uint16_t old_vid = adapter->mng_vlan_id;
298         if (adapter->vlgrp) {
299                 if (!adapter->vlgrp->vlan_devices[vid]) {
300                         if (adapter->hw.mng_cookie.status &
301                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
302                                 e1000_vlan_rx_add_vid(netdev, vid);
303                                 adapter->mng_vlan_id = vid;
304                         } else
305                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
306
307                         if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
308                                         (vid != old_vid) &&
309                                         !adapter->vlgrp->vlan_devices[old_vid])
310                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
311                 } else
312                         adapter->mng_vlan_id = vid;
313         }
314 }
315
316 /**
317  * e1000_release_hw_control - release control of the h/w to f/w
318  * @adapter: address of board private structure
319  *
320  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
321  * For ASF and Pass Through versions of f/w this means that the
322  * driver is no longer loaded. For AMT version (only with 82573) i
323  * of the f/w this means that the netowrk i/f is closed.
324  *
325  **/
326
327 static void
328 e1000_release_hw_control(struct e1000_adapter *adapter)
329 {
330         uint32_t ctrl_ext;
331         uint32_t swsm;
332
333         /* Let firmware taken over control of h/w */
334         switch (adapter->hw.mac_type) {
335         case e1000_82571:
336         case e1000_82572:
337         case e1000_80003es2lan:
338                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
339                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
340                                 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
341                 break;
342         case e1000_82573:
343                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
344                 E1000_WRITE_REG(&adapter->hw, SWSM,
345                                 swsm & ~E1000_SWSM_DRV_LOAD);
346         default:
347                 break;
348         }
349 }
350
351 /**
352  * e1000_get_hw_control - get control of the h/w from f/w
353  * @adapter: address of board private structure
354  *
355  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
356  * For ASF and Pass Through versions of f/w this means that
357  * the driver is loaded. For AMT version (only with 82573)
358  * of the f/w this means that the netowrk i/f is open.
359  *
360  **/
361
362 static void
363 e1000_get_hw_control(struct e1000_adapter *adapter)
364 {
365         uint32_t ctrl_ext;
366         uint32_t swsm;
367         /* Let firmware know the driver has taken over */
368         switch (adapter->hw.mac_type) {
369         case e1000_82571:
370         case e1000_82572:
371         case e1000_80003es2lan:
372                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
373                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
374                                 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
375                 break;
376         case e1000_82573:
377                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
378                 E1000_WRITE_REG(&adapter->hw, SWSM,
379                                 swsm | E1000_SWSM_DRV_LOAD);
380                 break;
381         default:
382                 break;
383         }
384 }
385
386 int
387 e1000_up(struct e1000_adapter *adapter)
388 {
389         struct net_device *netdev = adapter->netdev;
390         int i, err;
391
392         /* hardware has been reset, we need to reload some things */
393
394         /* Reset the PHY if it was previously powered down */
395         if (adapter->hw.media_type == e1000_media_type_copper) {
396                 uint16_t mii_reg;
397                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
398                 if (mii_reg & MII_CR_POWER_DOWN)
399                         e1000_phy_hw_reset(&adapter->hw);
400         }
401
402         e1000_set_multi(netdev);
403
404         e1000_restore_vlan(adapter);
405
406         e1000_configure_tx(adapter);
407         e1000_setup_rctl(adapter);
408         e1000_configure_rx(adapter);
409         /* call E1000_DESC_UNUSED which always leaves
410          * at least 1 descriptor unused to make sure
411          * next_to_use != next_to_clean */
412         for (i = 0; i < adapter->num_rx_queues; i++) {
413                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
414                 adapter->alloc_rx_buf(adapter, ring,
415                                       E1000_DESC_UNUSED(ring));
416         }
417
418 #ifdef CONFIG_PCI_MSI
419         if (adapter->hw.mac_type > e1000_82547_rev_2) {
420                 adapter->have_msi = TRUE;
421                 if ((err = pci_enable_msi(adapter->pdev))) {
422                         DPRINTK(PROBE, ERR,
423                          "Unable to allocate MSI interrupt Error: %d\n", err);
424                         adapter->have_msi = FALSE;
425                 }
426         }
427 #endif
428         if ((err = request_irq(adapter->pdev->irq, &e1000_intr,
429                               SA_SHIRQ | SA_SAMPLE_RANDOM,
430                               netdev->name, netdev))) {
431                 DPRINTK(PROBE, ERR,
432                     "Unable to allocate interrupt Error: %d\n", err);
433                 return err;
434         }
435
436         adapter->tx_queue_len = netdev->tx_queue_len;
437
438         mod_timer(&adapter->watchdog_timer, jiffies);
439
440 #ifdef CONFIG_E1000_NAPI
441         netif_poll_enable(netdev);
442 #endif
443         e1000_irq_enable(adapter);
444
445         return 0;
446 }
447
448 void
449 e1000_down(struct e1000_adapter *adapter)
450 {
451         struct net_device *netdev = adapter->netdev;
452         boolean_t mng_mode_enabled = (adapter->hw.mac_type >= e1000_82571) &&
453                                      e1000_check_mng_mode(&adapter->hw);
454
455         e1000_irq_disable(adapter);
456
457         free_irq(adapter->pdev->irq, netdev);
458 #ifdef CONFIG_PCI_MSI
459         if (adapter->hw.mac_type > e1000_82547_rev_2 &&
460            adapter->have_msi == TRUE)
461                 pci_disable_msi(adapter->pdev);
462 #endif
463         del_timer_sync(&adapter->tx_fifo_stall_timer);
464         del_timer_sync(&adapter->watchdog_timer);
465         del_timer_sync(&adapter->phy_info_timer);
466
467 #ifdef CONFIG_E1000_NAPI
468         netif_poll_disable(netdev);
469 #endif
470         netdev->tx_queue_len = adapter->tx_queue_len;
471         adapter->link_speed = 0;
472         adapter->link_duplex = 0;
473         netif_carrier_off(netdev);
474         netif_stop_queue(netdev);
475
476         e1000_reset(adapter);
477         e1000_clean_all_tx_rings(adapter);
478         e1000_clean_all_rx_rings(adapter);
479
480         /* Power down the PHY so no link is implied when interface is down *
481          * The PHY cannot be powered down if any of the following is TRUE *
482          * (a) WoL is enabled
483          * (b) AMT is active
484          * (c) SoL/IDER session is active */
485         if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
486            adapter->hw.media_type == e1000_media_type_copper &&
487            !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN) &&
488            !mng_mode_enabled &&
489            !e1000_check_phy_reset_block(&adapter->hw)) {
490                 uint16_t mii_reg;
491                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
492                 mii_reg |= MII_CR_POWER_DOWN;
493                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
494                 mdelay(1);
495         }
496 }
497
498 void
499 e1000_reset(struct e1000_adapter *adapter)
500 {
501         uint32_t pba, manc;
502         uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
503
504         /* Repartition Pba for greater than 9k mtu
505          * To take effect CTRL.RST is required.
506          */
507
508         switch (adapter->hw.mac_type) {
509         case e1000_82547:
510         case e1000_82547_rev_2:
511                 pba = E1000_PBA_30K;
512                 break;
513         case e1000_82571:
514         case e1000_82572:
515         case e1000_80003es2lan:
516                 pba = E1000_PBA_38K;
517                 break;
518         case e1000_82573:
519                 pba = E1000_PBA_12K;
520                 break;
521         default:
522                 pba = E1000_PBA_48K;
523                 break;
524         }
525
526         if ((adapter->hw.mac_type != e1000_82573) &&
527            (adapter->netdev->mtu > E1000_RXBUFFER_8192))
528                 pba -= 8; /* allocate more FIFO for Tx */
529
530
531         if (adapter->hw.mac_type == e1000_82547) {
532                 adapter->tx_fifo_head = 0;
533                 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
534                 adapter->tx_fifo_size =
535                         (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
536                 atomic_set(&adapter->tx_fifo_stall, 0);
537         }
538
539         E1000_WRITE_REG(&adapter->hw, PBA, pba);
540
541         /* flow control settings */
542         /* Set the FC high water mark to 90% of the FIFO size.
543          * Required to clear last 3 LSB */
544         fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
545
546         adapter->hw.fc_high_water = fc_high_water_mark;
547         adapter->hw.fc_low_water = fc_high_water_mark - 8;
548         if (adapter->hw.mac_type == e1000_80003es2lan)
549                 adapter->hw.fc_pause_time = 0xFFFF;
550         else
551                 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
552         adapter->hw.fc_send_xon = 1;
553         adapter->hw.fc = adapter->hw.original_fc;
554
555         /* Allow time for pending master requests to run */
556         e1000_reset_hw(&adapter->hw);
557         if (adapter->hw.mac_type >= e1000_82544)
558                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
559         if (e1000_init_hw(&adapter->hw))
560                 DPRINTK(PROBE, ERR, "Hardware Error\n");
561         e1000_update_mng_vlan(adapter);
562         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
563         E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
564
565         e1000_reset_adaptive(&adapter->hw);
566         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
567         if (adapter->en_mng_pt) {
568                 manc = E1000_READ_REG(&adapter->hw, MANC);
569                 manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
570                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
571         }
572 }
573
574 /**
575  * e1000_probe - Device Initialization Routine
576  * @pdev: PCI device information struct
577  * @ent: entry in e1000_pci_tbl
578  *
579  * Returns 0 on success, negative on failure
580  *
581  * e1000_probe initializes an adapter identified by a pci_dev structure.
582  * The OS initialization, configuring of the adapter private structure,
583  * and a hardware reset occur.
584  **/
585
586 static int __devinit
587 e1000_probe(struct pci_dev *pdev,
588             const struct pci_device_id *ent)
589 {
590         struct net_device *netdev;
591         struct e1000_adapter *adapter;
592         unsigned long mmio_start, mmio_len;
593
594         static int cards_found = 0;
595         static int e1000_ksp3_port_a = 0; /* global ksp3 port a indication */
596         int i, err, pci_using_dac;
597         uint16_t eeprom_data;
598         uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
599         if ((err = pci_enable_device(pdev)))
600                 return err;
601
602         if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
603                 pci_using_dac = 1;
604         } else {
605                 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
606                         E1000_ERR("No usable DMA configuration, aborting\n");
607                         return err;
608                 }
609                 pci_using_dac = 0;
610         }
611
612         if ((err = pci_request_regions(pdev, e1000_driver_name)))
613                 return err;
614
615         pci_set_master(pdev);
616
617         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
618         if (!netdev) {
619                 err = -ENOMEM;
620                 goto err_alloc_etherdev;
621         }
622
623         SET_MODULE_OWNER(netdev);
624         SET_NETDEV_DEV(netdev, &pdev->dev);
625
626         pci_set_drvdata(pdev, netdev);
627         adapter = netdev_priv(netdev);
628         adapter->netdev = netdev;
629         adapter->pdev = pdev;
630         adapter->hw.back = adapter;
631         adapter->msg_enable = (1 << debug) - 1;
632
633         mmio_start = pci_resource_start(pdev, BAR_0);
634         mmio_len = pci_resource_len(pdev, BAR_0);
635
636         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
637         if (!adapter->hw.hw_addr) {
638                 err = -EIO;
639                 goto err_ioremap;
640         }
641
642         for (i = BAR_1; i <= BAR_5; i++) {
643                 if (pci_resource_len(pdev, i) == 0)
644                         continue;
645                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
646                         adapter->hw.io_base = pci_resource_start(pdev, i);
647                         break;
648                 }
649         }
650
651         netdev->open = &e1000_open;
652         netdev->stop = &e1000_close;
653         netdev->hard_start_xmit = &e1000_xmit_frame;
654         netdev->get_stats = &e1000_get_stats;
655         netdev->set_multicast_list = &e1000_set_multi;
656         netdev->set_mac_address = &e1000_set_mac;
657         netdev->change_mtu = &e1000_change_mtu;
658         netdev->do_ioctl = &e1000_ioctl;
659         e1000_set_ethtool_ops(netdev);
660         netdev->tx_timeout = &e1000_tx_timeout;
661         netdev->watchdog_timeo = 5 * HZ;
662 #ifdef CONFIG_E1000_NAPI
663         netdev->poll = &e1000_clean;
664         netdev->weight = 64;
665 #endif
666         netdev->vlan_rx_register = e1000_vlan_rx_register;
667         netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
668         netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
669 #ifdef CONFIG_NET_POLL_CONTROLLER
670         netdev->poll_controller = e1000_netpoll;
671 #endif
672         strcpy(netdev->name, pci_name(pdev));
673
674         netdev->mem_start = mmio_start;
675         netdev->mem_end = mmio_start + mmio_len;
676         netdev->base_addr = adapter->hw.io_base;
677
678         adapter->bd_number = cards_found;
679
680         /* setup the private structure */
681
682         if ((err = e1000_sw_init(adapter)))
683                 goto err_sw_init;
684
685         if ((err = e1000_check_phy_reset_block(&adapter->hw)))
686                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
687
688         /* if ksp3, indicate if it's port a being setup */
689         if (pdev->device == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 &&
690                         e1000_ksp3_port_a == 0)
691                 adapter->ksp3_port_a = 1;
692         e1000_ksp3_port_a++;
693         /* Reset for multiple KP3 adapters */
694         if (e1000_ksp3_port_a == 4)
695                 e1000_ksp3_port_a = 0;
696
697         if (adapter->hw.mac_type >= e1000_82543) {
698                 netdev->features = NETIF_F_SG |
699                                    NETIF_F_HW_CSUM |
700                                    NETIF_F_HW_VLAN_TX |
701                                    NETIF_F_HW_VLAN_RX |
702                                    NETIF_F_HW_VLAN_FILTER;
703         }
704
705 #ifdef NETIF_F_TSO
706         if ((adapter->hw.mac_type >= e1000_82544) &&
707            (adapter->hw.mac_type != e1000_82547))
708                 netdev->features |= NETIF_F_TSO;
709
710 #ifdef NETIF_F_TSO_IPV6
711         if (adapter->hw.mac_type > e1000_82547_rev_2)
712                 netdev->features |= NETIF_F_TSO_IPV6;
713 #endif
714 #endif
715         if (pci_using_dac)
716                 netdev->features |= NETIF_F_HIGHDMA;
717
718         /* hard_start_xmit is safe against parallel locking */
719         netdev->features |= NETIF_F_LLTX;
720
721         adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
722
723         /* before reading the EEPROM, reset the controller to
724          * put the device in a known good starting state */
725
726         e1000_reset_hw(&adapter->hw);
727
728         /* make sure the EEPROM is good */
729
730         if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
731                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
732                 err = -EIO;
733                 goto err_eeprom;
734         }
735
736         /* copy the MAC address out of the EEPROM */
737
738         if (e1000_read_mac_addr(&adapter->hw))
739                 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
740         memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
741         memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
742
743         if (!is_valid_ether_addr(netdev->perm_addr)) {
744                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
745                 err = -EIO;
746                 goto err_eeprom;
747         }
748
749         e1000_read_part_num(&adapter->hw, &(adapter->part_num));
750
751         e1000_get_bus_info(&adapter->hw);
752
753         init_timer(&adapter->tx_fifo_stall_timer);
754         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
755         adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
756
757         init_timer(&adapter->watchdog_timer);
758         adapter->watchdog_timer.function = &e1000_watchdog;
759         adapter->watchdog_timer.data = (unsigned long) adapter;
760
761         INIT_WORK(&adapter->watchdog_task,
762                 (void (*)(void *))e1000_watchdog_task, adapter);
763
764         init_timer(&adapter->phy_info_timer);
765         adapter->phy_info_timer.function = &e1000_update_phy_info;
766         adapter->phy_info_timer.data = (unsigned long) adapter;
767
768         INIT_WORK(&adapter->reset_task,
769                 (void (*)(void *))e1000_reset_task, netdev);
770
771         /* we're going to reset, so assume we have no link for now */
772
773         netif_carrier_off(netdev);
774         netif_stop_queue(netdev);
775
776         e1000_check_options(adapter);
777
778         /* Initial Wake on LAN setting
779          * If APM wake is enabled in the EEPROM,
780          * enable the ACPI Magic Packet filter
781          */
782
783         switch (adapter->hw.mac_type) {
784         case e1000_82542_rev2_0:
785         case e1000_82542_rev2_1:
786         case e1000_82543:
787                 break;
788         case e1000_82544:
789                 e1000_read_eeprom(&adapter->hw,
790                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
791                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
792                 break;
793         case e1000_82546:
794         case e1000_82546_rev_3:
795         case e1000_82571:
796         case e1000_80003es2lan:
797                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
798                         e1000_read_eeprom(&adapter->hw,
799                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
800                         break;
801                 }
802                 /* Fall Through */
803         default:
804                 e1000_read_eeprom(&adapter->hw,
805                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
806                 break;
807         }
808         if (eeprom_data & eeprom_apme_mask)
809                 adapter->wol |= E1000_WUFC_MAG;
810
811         /* print bus type/speed/width info */
812         {
813         struct e1000_hw *hw = &adapter->hw;
814         DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
815                 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
816                  (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
817                 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
818                  (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
819                  (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
820                  (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
821                  (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
822                 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
823                  (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
824                  (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
825                  "32-bit"));
826         }
827
828         for (i = 0; i < 6; i++)
829                 printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
830
831         /* reset the hardware with the new settings */
832         e1000_reset(adapter);
833
834         /* If the controller is 82573 and f/w is AMT, do not set
835          * DRV_LOAD until the interface is up.  For all other cases,
836          * let the f/w know that the h/w is now under the control
837          * of the driver. */
838         if (adapter->hw.mac_type != e1000_82573 ||
839             !e1000_check_mng_mode(&adapter->hw))
840                 e1000_get_hw_control(adapter);
841
842         strcpy(netdev->name, "eth%d");
843         if ((err = register_netdev(netdev)))
844                 goto err_register;
845
846         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
847
848         cards_found++;
849         return 0;
850
851 err_register:
852 err_sw_init:
853 err_eeprom:
854         iounmap(adapter->hw.hw_addr);
855 err_ioremap:
856         free_netdev(netdev);
857 err_alloc_etherdev:
858         pci_release_regions(pdev);
859         return err;
860 }
861
862 /**
863  * e1000_remove - Device Removal Routine
864  * @pdev: PCI device information struct
865  *
866  * e1000_remove is called by the PCI subsystem to alert the driver
867  * that it should release a PCI device.  The could be caused by a
868  * Hot-Plug event, or because the driver is going to be removed from
869  * memory.
870  **/
871
872 static void __devexit
873 e1000_remove(struct pci_dev *pdev)
874 {
875         struct net_device *netdev = pci_get_drvdata(pdev);
876         struct e1000_adapter *adapter = netdev_priv(netdev);
877         uint32_t manc;
878 #ifdef CONFIG_E1000_NAPI
879         int i;
880 #endif
881
882         flush_scheduled_work();
883
884         if (adapter->hw.mac_type >= e1000_82540 &&
885            adapter->hw.media_type == e1000_media_type_copper) {
886                 manc = E1000_READ_REG(&adapter->hw, MANC);
887                 if (manc & E1000_MANC_SMBUS_EN) {
888                         manc |= E1000_MANC_ARP_EN;
889                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
890                 }
891         }
892
893         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
894          * would have already happened in close and is redundant. */
895         e1000_release_hw_control(adapter);
896
897         unregister_netdev(netdev);
898 #ifdef CONFIG_E1000_NAPI
899         for (i = 0; i < adapter->num_rx_queues; i++)
900                 dev_put(&adapter->polling_netdev[i]);
901 #endif
902
903         if (!e1000_check_phy_reset_block(&adapter->hw))
904                 e1000_phy_hw_reset(&adapter->hw);
905
906         kfree(adapter->tx_ring);
907         kfree(adapter->rx_ring);
908 #ifdef CONFIG_E1000_NAPI
909         kfree(adapter->polling_netdev);
910 #endif
911
912         iounmap(adapter->hw.hw_addr);
913         pci_release_regions(pdev);
914
915         free_netdev(netdev);
916
917         pci_disable_device(pdev);
918 }
919
920 /**
921  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
922  * @adapter: board private structure to initialize
923  *
924  * e1000_sw_init initializes the Adapter private data structure.
925  * Fields are initialized based on PCI device information and
926  * OS network device settings (MTU size).
927  **/
928
929 static int __devinit
930 e1000_sw_init(struct e1000_adapter *adapter)
931 {
932         struct e1000_hw *hw = &adapter->hw;
933         struct net_device *netdev = adapter->netdev;
934         struct pci_dev *pdev = adapter->pdev;
935 #ifdef CONFIG_E1000_NAPI
936         int i;
937 #endif
938
939         /* PCI config space info */
940
941         hw->vendor_id = pdev->vendor;
942         hw->device_id = pdev->device;
943         hw->subsystem_vendor_id = pdev->subsystem_vendor;
944         hw->subsystem_id = pdev->subsystem_device;
945
946         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
947
948         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
949
950         adapter->rx_buffer_len = MAXIMUM_ETHERNET_FRAME_SIZE;
951         adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
952         hw->max_frame_size = netdev->mtu +
953                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
954         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
955
956         /* identify the MAC */
957
958         if (e1000_set_mac_type(hw)) {
959                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
960                 return -EIO;
961         }
962
963         /* initialize eeprom parameters */
964
965         if (e1000_init_eeprom_params(hw)) {
966                 E1000_ERR("EEPROM initialization failed\n");
967                 return -EIO;
968         }
969
970         switch (hw->mac_type) {
971         default:
972                 break;
973         case e1000_82541:
974         case e1000_82547:
975         case e1000_82541_rev_2:
976         case e1000_82547_rev_2:
977                 hw->phy_init_script = 1;
978                 break;
979         }
980
981         e1000_set_media_type(hw);
982
983         hw->wait_autoneg_complete = FALSE;
984         hw->tbi_compatibility_en = TRUE;
985         hw->adaptive_ifs = TRUE;
986
987         /* Copper options */
988
989         if (hw->media_type == e1000_media_type_copper) {
990                 hw->mdix = AUTO_ALL_MODES;
991                 hw->disable_polarity_correction = FALSE;
992                 hw->master_slave = E1000_MASTER_SLAVE;
993         }
994
995         adapter->num_tx_queues = 1;
996         adapter->num_rx_queues = 1;
997
998         if (e1000_alloc_queues(adapter)) {
999                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1000                 return -ENOMEM;
1001         }
1002
1003 #ifdef CONFIG_E1000_NAPI
1004         for (i = 0; i < adapter->num_rx_queues; i++) {
1005                 adapter->polling_netdev[i].priv = adapter;
1006                 adapter->polling_netdev[i].poll = &e1000_clean;
1007                 adapter->polling_netdev[i].weight = 64;
1008                 dev_hold(&adapter->polling_netdev[i]);
1009                 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1010         }
1011         spin_lock_init(&adapter->tx_queue_lock);
1012 #endif
1013
1014         atomic_set(&adapter->irq_sem, 1);
1015         spin_lock_init(&adapter->stats_lock);
1016
1017         return 0;
1018 }
1019
1020 /**
1021  * e1000_alloc_queues - Allocate memory for all rings
1022  * @adapter: board private structure to initialize
1023  *
1024  * We allocate one ring per queue at run-time since we don't know the
1025  * number of queues at compile-time.  The polling_netdev array is
1026  * intended for Multiqueue, but should work fine with a single queue.
1027  **/
1028
1029 static int __devinit
1030 e1000_alloc_queues(struct e1000_adapter *adapter)
1031 {
1032         int size;
1033
1034         size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
1035         adapter->tx_ring = kmalloc(size, GFP_KERNEL);
1036         if (!adapter->tx_ring)
1037                 return -ENOMEM;
1038         memset(adapter->tx_ring, 0, size);
1039
1040         size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
1041         adapter->rx_ring = kmalloc(size, GFP_KERNEL);
1042         if (!adapter->rx_ring) {
1043                 kfree(adapter->tx_ring);
1044                 return -ENOMEM;
1045         }
1046         memset(adapter->rx_ring, 0, size);
1047
1048 #ifdef CONFIG_E1000_NAPI
1049         size = sizeof(struct net_device) * adapter->num_rx_queues;
1050         adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
1051         if (!adapter->polling_netdev) {
1052                 kfree(adapter->tx_ring);
1053                 kfree(adapter->rx_ring);
1054                 return -ENOMEM;
1055         }
1056         memset(adapter->polling_netdev, 0, size);
1057 #endif
1058
1059         return E1000_SUCCESS;
1060 }
1061
1062 /**
1063  * e1000_open - Called when a network interface is made active
1064  * @netdev: network interface device structure
1065  *
1066  * Returns 0 on success, negative value on failure
1067  *
1068  * The open entry point is called when a network interface is made
1069  * active by the system (IFF_UP).  At this point all resources needed
1070  * for transmit and receive operations are allocated, the interrupt
1071  * handler is registered with the OS, the watchdog timer is started,
1072  * and the stack is notified that the interface is ready.
1073  **/
1074
1075 static int
1076 e1000_open(struct net_device *netdev)
1077 {
1078         struct e1000_adapter *adapter = netdev_priv(netdev);
1079         int err;
1080
1081         /* allocate transmit descriptors */
1082
1083         if ((err = e1000_setup_all_tx_resources(adapter)))
1084                 goto err_setup_tx;
1085
1086         /* allocate receive descriptors */
1087
1088         if ((err = e1000_setup_all_rx_resources(adapter)))
1089                 goto err_setup_rx;
1090
1091         if ((err = e1000_up(adapter)))
1092                 goto err_up;
1093         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1094         if ((adapter->hw.mng_cookie.status &
1095                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1096                 e1000_update_mng_vlan(adapter);
1097         }
1098
1099         /* If AMT is enabled, let the firmware know that the network
1100          * interface is now open */
1101         if (adapter->hw.mac_type == e1000_82573 &&
1102             e1000_check_mng_mode(&adapter->hw))
1103                 e1000_get_hw_control(adapter);
1104
1105         return E1000_SUCCESS;
1106
1107 err_up:
1108         e1000_free_all_rx_resources(adapter);
1109 err_setup_rx:
1110         e1000_free_all_tx_resources(adapter);
1111 err_setup_tx:
1112         e1000_reset(adapter);
1113
1114         return err;
1115 }
1116
1117 /**
1118  * e1000_close - Disables a network interface
1119  * @netdev: network interface device structure
1120  *
1121  * Returns 0, this is not allowed to fail
1122  *
1123  * The close entry point is called when an interface is de-activated
1124  * by the OS.  The hardware is still under the drivers control, but
1125  * needs to be disabled.  A global MAC reset is issued to stop the
1126  * hardware, and all transmit and receive resources are freed.
1127  **/
1128
1129 static int
1130 e1000_close(struct net_device *netdev)
1131 {
1132         struct e1000_adapter *adapter = netdev_priv(netdev);
1133
1134         e1000_down(adapter);
1135
1136         e1000_free_all_tx_resources(adapter);
1137         e1000_free_all_rx_resources(adapter);
1138
1139         if ((adapter->hw.mng_cookie.status &
1140                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1141                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1142         }
1143
1144         /* If AMT is enabled, let the firmware know that the network
1145          * interface is now closed */
1146         if (adapter->hw.mac_type == e1000_82573 &&
1147             e1000_check_mng_mode(&adapter->hw))
1148                 e1000_release_hw_control(adapter);
1149
1150         return 0;
1151 }
1152
1153 /**
1154  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1155  * @adapter: address of board private structure
1156  * @start: address of beginning of memory
1157  * @len: length of memory
1158  **/
1159 static boolean_t
1160 e1000_check_64k_bound(struct e1000_adapter *adapter,
1161                       void *start, unsigned long len)
1162 {
1163         unsigned long begin = (unsigned long) start;
1164         unsigned long end = begin + len;
1165
1166         /* First rev 82545 and 82546 need to not allow any memory
1167          * write location to cross 64k boundary due to errata 23 */
1168         if (adapter->hw.mac_type == e1000_82545 ||
1169             adapter->hw.mac_type == e1000_82546) {
1170                 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1171         }
1172
1173         return TRUE;
1174 }
1175
1176 /**
1177  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1178  * @adapter: board private structure
1179  * @txdr:    tx descriptor ring (for a specific queue) to setup
1180  *
1181  * Return 0 on success, negative on failure
1182  **/
1183
1184 static int
1185 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1186                          struct e1000_tx_ring *txdr)
1187 {
1188         struct pci_dev *pdev = adapter->pdev;
1189         int size;
1190
1191         size = sizeof(struct e1000_buffer) * txdr->count;
1192
1193         txdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus));
1194         if (!txdr->buffer_info) {
1195                 DPRINTK(PROBE, ERR,
1196                 "Unable to allocate memory for the transmit descriptor ring\n");
1197                 return -ENOMEM;
1198         }
1199         memset(txdr->buffer_info, 0, size);
1200
1201         /* round up to nearest 4K */
1202
1203         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1204         E1000_ROUNDUP(txdr->size, 4096);
1205
1206         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1207         if (!txdr->desc) {
1208 setup_tx_desc_die:
1209                 vfree(txdr->buffer_info);
1210                 DPRINTK(PROBE, ERR,
1211                 "Unable to allocate memory for the transmit descriptor ring\n");
1212                 return -ENOMEM;
1213         }
1214
1215         /* Fix for errata 23, can't cross 64kB boundary */
1216         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1217                 void *olddesc = txdr->desc;
1218                 dma_addr_t olddma = txdr->dma;
1219                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1220                                      "at %p\n", txdr->size, txdr->desc);
1221                 /* Try again, without freeing the previous */
1222                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1223                 /* Failed allocation, critical failure */
1224                 if (!txdr->desc) {
1225                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1226                         goto setup_tx_desc_die;
1227                 }
1228
1229                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1230                         /* give up */
1231                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1232                                             txdr->dma);
1233                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1234                         DPRINTK(PROBE, ERR,
1235                                 "Unable to allocate aligned memory "
1236                                 "for the transmit descriptor ring\n");
1237                         vfree(txdr->buffer_info);
1238                         return -ENOMEM;
1239                 } else {
1240                         /* Free old allocation, new allocation was successful */
1241                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1242                 }
1243         }
1244         memset(txdr->desc, 0, txdr->size);
1245
1246         txdr->next_to_use = 0;
1247         txdr->next_to_clean = 0;
1248         spin_lock_init(&txdr->tx_lock);
1249
1250         return 0;
1251 }
1252
1253 /**
1254  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1255  *                                (Descriptors) for all queues
1256  * @adapter: board private structure
1257  *
1258  * If this function returns with an error, then it's possible one or
1259  * more of the rings is populated (while the rest are not).  It is the
1260  * callers duty to clean those orphaned rings.
1261  *
1262  * Return 0 on success, negative on failure
1263  **/
1264
1265 int
1266 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1267 {
1268         int i, err = 0;
1269
1270         for (i = 0; i < adapter->num_tx_queues; i++) {
1271                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1272                 if (err) {
1273                         DPRINTK(PROBE, ERR,
1274                                 "Allocation for Tx Queue %u failed\n", i);
1275                         break;
1276                 }
1277         }
1278
1279         return err;
1280 }
1281
1282 /**
1283  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1284  * @adapter: board private structure
1285  *
1286  * Configure the Tx unit of the MAC after a reset.
1287  **/
1288
1289 static void
1290 e1000_configure_tx(struct e1000_adapter *adapter)
1291 {
1292         uint64_t tdba;
1293         struct e1000_hw *hw = &adapter->hw;
1294         uint32_t tdlen, tctl, tipg, tarc;
1295         uint32_t ipgr1, ipgr2;
1296
1297         /* Setup the HW Tx Head and Tail descriptor pointers */
1298
1299         switch (adapter->num_tx_queues) {
1300         case 1:
1301         default:
1302                 tdba = adapter->tx_ring[0].dma;
1303                 tdlen = adapter->tx_ring[0].count *
1304                         sizeof(struct e1000_tx_desc);
1305                 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1306                 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1307                 E1000_WRITE_REG(hw, TDLEN, tdlen);
1308                 E1000_WRITE_REG(hw, TDH, 0);
1309                 E1000_WRITE_REG(hw, TDT, 0);
1310                 adapter->tx_ring[0].tdh = E1000_TDH;
1311                 adapter->tx_ring[0].tdt = E1000_TDT;
1312                 break;
1313         }
1314
1315         /* Set the default values for the Tx Inter Packet Gap timer */
1316
1317         if (hw->media_type == e1000_media_type_fiber ||
1318             hw->media_type == e1000_media_type_internal_serdes)
1319                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1320         else
1321                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1322
1323         switch (hw->mac_type) {
1324         case e1000_82542_rev2_0:
1325         case e1000_82542_rev2_1:
1326                 tipg = DEFAULT_82542_TIPG_IPGT;
1327                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1328                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1329                 break;
1330         case e1000_80003es2lan:
1331                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1332                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1333                 break;
1334         default:
1335                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1336                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1337                 break;
1338         }
1339         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1340         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1341         E1000_WRITE_REG(hw, TIPG, tipg);
1342
1343         /* Set the Tx Interrupt Delay register */
1344
1345         E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1346         if (hw->mac_type >= e1000_82540)
1347                 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1348
1349         /* Program the Transmit Control Register */
1350
1351         tctl = E1000_READ_REG(hw, TCTL);
1352
1353         tctl &= ~E1000_TCTL_CT;
1354         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1355                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1356
1357 #ifdef DISABLE_MULR
1358         /* disable Multiple Reads for debugging */
1359         tctl &= ~E1000_TCTL_MULR;
1360 #endif
1361
1362         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1363                 tarc = E1000_READ_REG(hw, TARC0);
1364                 tarc |= ((1 << 25) | (1 << 21));
1365                 E1000_WRITE_REG(hw, TARC0, tarc);
1366                 tarc = E1000_READ_REG(hw, TARC1);
1367                 tarc |= (1 << 25);
1368                 if (tctl & E1000_TCTL_MULR)
1369                         tarc &= ~(1 << 28);
1370                 else
1371                         tarc |= (1 << 28);
1372                 E1000_WRITE_REG(hw, TARC1, tarc);
1373         } else if (hw->mac_type == e1000_80003es2lan) {
1374                 tarc = E1000_READ_REG(hw, TARC0);
1375                 tarc |= 1;
1376                 if (hw->media_type == e1000_media_type_internal_serdes)
1377                         tarc |= (1 << 20);
1378                 E1000_WRITE_REG(hw, TARC0, tarc);
1379                 tarc = E1000_READ_REG(hw, TARC1);
1380                 tarc |= 1;
1381                 E1000_WRITE_REG(hw, TARC1, tarc);
1382         }
1383
1384         e1000_config_collision_dist(hw);
1385
1386         /* Setup Transmit Descriptor Settings for eop descriptor */
1387         adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
1388                 E1000_TXD_CMD_IFCS;
1389
1390         if (hw->mac_type < e1000_82543)
1391                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1392         else
1393                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1394
1395         /* Cache if we're 82544 running in PCI-X because we'll
1396          * need this to apply a workaround later in the send path. */
1397         if (hw->mac_type == e1000_82544 &&
1398             hw->bus_type == e1000_bus_type_pcix)
1399                 adapter->pcix_82544 = 1;
1400
1401         E1000_WRITE_REG(hw, TCTL, tctl);
1402
1403 }
1404
1405 /**
1406  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1407  * @adapter: board private structure
1408  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1409  *
1410  * Returns 0 on success, negative on failure
1411  **/
1412
1413 static int
1414 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1415                          struct e1000_rx_ring *rxdr)
1416 {
1417         struct pci_dev *pdev = adapter->pdev;
1418         int size, desc_len;
1419
1420         size = sizeof(struct e1000_buffer) * rxdr->count;
1421         rxdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus));
1422         if (!rxdr->buffer_info) {
1423                 DPRINTK(PROBE, ERR,
1424                 "Unable to allocate memory for the receive descriptor ring\n");
1425                 return -ENOMEM;
1426         }
1427         memset(rxdr->buffer_info, 0, size);
1428
1429         size = sizeof(struct e1000_ps_page) * rxdr->count;
1430         rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1431         if (!rxdr->ps_page) {
1432                 vfree(rxdr->buffer_info);
1433                 DPRINTK(PROBE, ERR,
1434                 "Unable to allocate memory for the receive descriptor ring\n");
1435                 return -ENOMEM;
1436         }
1437         memset(rxdr->ps_page, 0, size);
1438
1439         size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1440         rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1441         if (!rxdr->ps_page_dma) {
1442                 vfree(rxdr->buffer_info);
1443                 kfree(rxdr->ps_page);
1444                 DPRINTK(PROBE, ERR,
1445                 "Unable to allocate memory for the receive descriptor ring\n");
1446                 return -ENOMEM;
1447         }
1448         memset(rxdr->ps_page_dma, 0, size);
1449
1450         if (adapter->hw.mac_type <= e1000_82547_rev_2)
1451                 desc_len = sizeof(struct e1000_rx_desc);
1452         else
1453                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1454
1455         /* Round up to nearest 4K */
1456
1457         rxdr->size = rxdr->count * desc_len;
1458         E1000_ROUNDUP(rxdr->size, 4096);
1459
1460         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1461
1462         if (!rxdr->desc) {
1463                 DPRINTK(PROBE, ERR,
1464                 "Unable to allocate memory for the receive descriptor ring\n");
1465 setup_rx_desc_die:
1466                 vfree(rxdr->buffer_info);
1467                 kfree(rxdr->ps_page);
1468                 kfree(rxdr->ps_page_dma);
1469                 return -ENOMEM;
1470         }
1471
1472         /* Fix for errata 23, can't cross 64kB boundary */
1473         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1474                 void *olddesc = rxdr->desc;
1475                 dma_addr_t olddma = rxdr->dma;
1476                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1477                                      "at %p\n", rxdr->size, rxdr->desc);
1478                 /* Try again, without freeing the previous */
1479                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1480                 /* Failed allocation, critical failure */
1481                 if (!rxdr->desc) {
1482                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1483                         DPRINTK(PROBE, ERR,
1484                                 "Unable to allocate memory "
1485                                 "for the receive descriptor ring\n");
1486                         goto setup_rx_desc_die;
1487                 }
1488
1489                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1490                         /* give up */
1491                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1492                                             rxdr->dma);
1493                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1494                         DPRINTK(PROBE, ERR,
1495                                 "Unable to allocate aligned memory "
1496                                 "for the receive descriptor ring\n");
1497                         goto setup_rx_desc_die;
1498                 } else {
1499                         /* Free old allocation, new allocation was successful */
1500                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1501                 }
1502         }
1503         memset(rxdr->desc, 0, rxdr->size);
1504
1505         rxdr->next_to_clean = 0;
1506         rxdr->next_to_use = 0;
1507
1508         return 0;
1509 }
1510
1511 /**
1512  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1513  *                                (Descriptors) for all queues
1514  * @adapter: board private structure
1515  *
1516  * If this function returns with an error, then it's possible one or
1517  * more of the rings is populated (while the rest are not).  It is the
1518  * callers duty to clean those orphaned rings.
1519  *
1520  * Return 0 on success, negative on failure
1521  **/
1522
1523 int
1524 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1525 {
1526         int i, err = 0;
1527
1528         for (i = 0; i < adapter->num_rx_queues; i++) {
1529                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1530                 if (err) {
1531                         DPRINTK(PROBE, ERR,
1532                                 "Allocation for Rx Queue %u failed\n", i);
1533                         break;
1534                 }
1535         }
1536
1537         return err;
1538 }
1539
1540 /**
1541  * e1000_setup_rctl - configure the receive control registers
1542  * @adapter: Board private structure
1543  **/
1544 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1545                         (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1546 static void
1547 e1000_setup_rctl(struct e1000_adapter *adapter)
1548 {
1549         uint32_t rctl, rfctl;
1550         uint32_t psrctl = 0;
1551 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1552         uint32_t pages = 0;
1553 #endif
1554
1555         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1556
1557         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1558
1559         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1560                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1561                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1562
1563         if (adapter->hw.mac_type > e1000_82543)
1564                 rctl |= E1000_RCTL_SECRC;
1565
1566         if (adapter->hw.tbi_compatibility_on == 1)
1567                 rctl |= E1000_RCTL_SBP;
1568         else
1569                 rctl &= ~E1000_RCTL_SBP;
1570
1571         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1572                 rctl &= ~E1000_RCTL_LPE;
1573         else
1574                 rctl |= E1000_RCTL_LPE;
1575
1576         /* Setup buffer sizes */
1577         rctl &= ~E1000_RCTL_SZ_4096;
1578         rctl |= E1000_RCTL_BSEX;
1579         switch (adapter->rx_buffer_len) {
1580                 case E1000_RXBUFFER_256:
1581                         rctl |= E1000_RCTL_SZ_256;
1582                         rctl &= ~E1000_RCTL_BSEX;
1583                         break;
1584                 case E1000_RXBUFFER_512:
1585                         rctl |= E1000_RCTL_SZ_512;
1586                         rctl &= ~E1000_RCTL_BSEX;
1587                         break;
1588                 case E1000_RXBUFFER_1024:
1589                         rctl |= E1000_RCTL_SZ_1024;
1590                         rctl &= ~E1000_RCTL_BSEX;
1591                         break;
1592                 case E1000_RXBUFFER_2048:
1593                 default:
1594                         rctl |= E1000_RCTL_SZ_2048;
1595                         rctl &= ~E1000_RCTL_BSEX;
1596                         break;
1597                 case E1000_RXBUFFER_4096:
1598                         rctl |= E1000_RCTL_SZ_4096;
1599                         break;
1600                 case E1000_RXBUFFER_8192:
1601                         rctl |= E1000_RCTL_SZ_8192;
1602                         break;
1603                 case E1000_RXBUFFER_16384:
1604                         rctl |= E1000_RCTL_SZ_16384;
1605                         break;
1606         }
1607
1608 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1609         /* 82571 and greater support packet-split where the protocol
1610          * header is placed in skb->data and the packet data is
1611          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1612          * In the case of a non-split, skb->data is linearly filled,
1613          * followed by the page buffers.  Therefore, skb->data is
1614          * sized to hold the largest protocol header.
1615          */
1616         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1617         if ((adapter->hw.mac_type > e1000_82547_rev_2) && (pages <= 3) &&
1618             PAGE_SIZE <= 16384)
1619                 adapter->rx_ps_pages = pages;
1620         else
1621                 adapter->rx_ps_pages = 0;
1622 #endif
1623         if (adapter->rx_ps_pages) {
1624                 /* Configure extra packet-split registers */
1625                 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1626                 rfctl |= E1000_RFCTL_EXTEN;
1627                 /* disable IPv6 packet split support */
1628                 rfctl |= E1000_RFCTL_IPV6_DIS;
1629                 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1630
1631                 rctl |= E1000_RCTL_DTYP_PS | E1000_RCTL_SECRC;
1632
1633                 psrctl |= adapter->rx_ps_bsize0 >>
1634                         E1000_PSRCTL_BSIZE0_SHIFT;
1635
1636                 switch (adapter->rx_ps_pages) {
1637                 case 3:
1638                         psrctl |= PAGE_SIZE <<
1639                                 E1000_PSRCTL_BSIZE3_SHIFT;
1640                 case 2:
1641                         psrctl |= PAGE_SIZE <<
1642                                 E1000_PSRCTL_BSIZE2_SHIFT;
1643                 case 1:
1644                         psrctl |= PAGE_SIZE >>
1645                                 E1000_PSRCTL_BSIZE1_SHIFT;
1646                         break;
1647                 }
1648
1649                 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1650         }
1651
1652         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1653 }
1654
1655 /**
1656  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1657  * @adapter: board private structure
1658  *
1659  * Configure the Rx unit of the MAC after a reset.
1660  **/
1661
1662 static void
1663 e1000_configure_rx(struct e1000_adapter *adapter)
1664 {
1665         uint64_t rdba;
1666         struct e1000_hw *hw = &adapter->hw;
1667         uint32_t rdlen, rctl, rxcsum, ctrl_ext;
1668
1669         if (adapter->rx_ps_pages) {
1670                 /* this is a 32 byte descriptor */
1671                 rdlen = adapter->rx_ring[0].count *
1672                         sizeof(union e1000_rx_desc_packet_split);
1673                 adapter->clean_rx = e1000_clean_rx_irq_ps;
1674                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1675         } else {
1676                 rdlen = adapter->rx_ring[0].count *
1677                         sizeof(struct e1000_rx_desc);
1678                 adapter->clean_rx = e1000_clean_rx_irq;
1679                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1680         }
1681
1682         /* disable receives while setting up the descriptors */
1683         rctl = E1000_READ_REG(hw, RCTL);
1684         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
1685
1686         /* set the Receive Delay Timer Register */
1687         E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
1688
1689         if (hw->mac_type >= e1000_82540) {
1690                 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
1691                 if (adapter->itr > 1)
1692                         E1000_WRITE_REG(hw, ITR,
1693                                 1000000000 / (adapter->itr * 256));
1694         }
1695
1696         if (hw->mac_type >= e1000_82571) {
1697                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1698                 /* Reset delay timers after every interrupt */
1699                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1700 #ifdef CONFIG_E1000_NAPI
1701                 /* Auto-Mask interrupts upon ICR read. */
1702                 ctrl_ext |= E1000_CTRL_EXT_IAME;
1703 #endif
1704                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1705                 E1000_WRITE_REG(hw, IAM, ~0);
1706                 E1000_WRITE_FLUSH(hw);
1707         }
1708
1709         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1710          * the Base and Length of the Rx Descriptor Ring */
1711         switch (adapter->num_rx_queues) {
1712         case 1:
1713         default:
1714                 rdba = adapter->rx_ring[0].dma;
1715                 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1716                 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
1717                 E1000_WRITE_REG(hw, RDLEN, rdlen);
1718                 E1000_WRITE_REG(hw, RDH, 0);
1719                 E1000_WRITE_REG(hw, RDT, 0);
1720                 adapter->rx_ring[0].rdh = E1000_RDH;
1721                 adapter->rx_ring[0].rdt = E1000_RDT;
1722                 break;
1723         }
1724
1725         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1726         if (hw->mac_type >= e1000_82543) {
1727                 rxcsum = E1000_READ_REG(hw, RXCSUM);
1728                 if (adapter->rx_csum == TRUE) {
1729                         rxcsum |= E1000_RXCSUM_TUOFL;
1730
1731                         /* Enable 82571 IPv4 payload checksum for UDP fragments
1732                          * Must be used in conjunction with packet-split. */
1733                         if ((hw->mac_type >= e1000_82571) &&
1734                             (adapter->rx_ps_pages)) {
1735                                 rxcsum |= E1000_RXCSUM_IPPCSE;
1736                         }
1737                 } else {
1738                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1739                         /* don't need to clear IPPCSE as it defaults to 0 */
1740                 }
1741                 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1742         }
1743
1744         if (hw->mac_type == e1000_82573)
1745                 E1000_WRITE_REG(hw, ERT, 0x0100);
1746
1747         /* Enable Receives */
1748         E1000_WRITE_REG(hw, RCTL, rctl);
1749 }
1750
1751 /**
1752  * e1000_free_tx_resources - Free Tx Resources per Queue
1753  * @adapter: board private structure
1754  * @tx_ring: Tx descriptor ring for a specific queue
1755  *
1756  * Free all transmit software resources
1757  **/
1758
1759 static void
1760 e1000_free_tx_resources(struct e1000_adapter *adapter,
1761                         struct e1000_tx_ring *tx_ring)
1762 {
1763         struct pci_dev *pdev = adapter->pdev;
1764
1765         e1000_clean_tx_ring(adapter, tx_ring);
1766
1767         vfree(tx_ring->buffer_info);
1768         tx_ring->buffer_info = NULL;
1769
1770         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1771
1772         tx_ring->desc = NULL;
1773 }
1774
1775 /**
1776  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1777  * @adapter: board private structure
1778  *
1779  * Free all transmit software resources
1780  **/
1781
1782 void
1783 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1784 {
1785         int i;
1786
1787         for (i = 0; i < adapter->num_tx_queues; i++)
1788                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1789 }
1790
1791 static void
1792 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1793                         struct e1000_buffer *buffer_info)
1794 {
1795         if (buffer_info->dma) {
1796                 pci_unmap_page(adapter->pdev,
1797                                 buffer_info->dma,
1798                                 buffer_info->length,
1799                                 PCI_DMA_TODEVICE);
1800         }
1801         if (buffer_info->skb)
1802                 dev_kfree_skb_any(buffer_info->skb);
1803         memset(buffer_info, 0, sizeof(struct e1000_buffer));
1804 }
1805
1806 /**
1807  * e1000_clean_tx_ring - Free Tx Buffers
1808  * @adapter: board private structure
1809  * @tx_ring: ring to be cleaned
1810  **/
1811
1812 static void
1813 e1000_clean_tx_ring(struct e1000_adapter *adapter,
1814                     struct e1000_tx_ring *tx_ring)
1815 {
1816         struct e1000_buffer *buffer_info;
1817         unsigned long size;
1818         unsigned int i;
1819
1820         /* Free all the Tx ring sk_buffs */
1821
1822         for (i = 0; i < tx_ring->count; i++) {
1823                 buffer_info = &tx_ring->buffer_info[i];
1824                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1825         }
1826
1827         size = sizeof(struct e1000_buffer) * tx_ring->count;
1828         memset(tx_ring->buffer_info, 0, size);
1829
1830         /* Zero out the descriptor ring */
1831
1832         memset(tx_ring->desc, 0, tx_ring->size);
1833
1834         tx_ring->next_to_use = 0;
1835         tx_ring->next_to_clean = 0;
1836         tx_ring->last_tx_tso = 0;
1837
1838         writel(0, adapter->hw.hw_addr + tx_ring->tdh);
1839         writel(0, adapter->hw.hw_addr + tx_ring->tdt);
1840 }
1841
1842 /**
1843  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
1844  * @adapter: board private structure
1845  **/
1846
1847 static void
1848 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
1849 {
1850         int i;
1851
1852         for (i = 0; i < adapter->num_tx_queues; i++)
1853                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1854 }
1855
1856 /**
1857  * e1000_free_rx_resources - Free Rx Resources
1858  * @adapter: board private structure
1859  * @rx_ring: ring to clean the resources from
1860  *
1861  * Free all receive software resources
1862  **/
1863
1864 static void
1865 e1000_free_rx_resources(struct e1000_adapter *adapter,
1866                         struct e1000_rx_ring *rx_ring)
1867 {
1868         struct pci_dev *pdev = adapter->pdev;
1869
1870         e1000_clean_rx_ring(adapter, rx_ring);
1871
1872         vfree(rx_ring->buffer_info);
1873         rx_ring->buffer_info = NULL;
1874         kfree(rx_ring->ps_page);
1875         rx_ring->ps_page = NULL;
1876         kfree(rx_ring->ps_page_dma);
1877         rx_ring->ps_page_dma = NULL;
1878
1879         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
1880
1881         rx_ring->desc = NULL;
1882 }
1883
1884 /**
1885  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
1886  * @adapter: board private structure
1887  *
1888  * Free all receive software resources
1889  **/
1890
1891 void
1892 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
1893 {
1894         int i;
1895
1896         for (i = 0; i < adapter->num_rx_queues; i++)
1897                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
1898 }
1899
1900 /**
1901  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1902  * @adapter: board private structure
1903  * @rx_ring: ring to free buffers from
1904  **/
1905
1906 static void
1907 e1000_clean_rx_ring(struct e1000_adapter *adapter,
1908                     struct e1000_rx_ring *rx_ring)
1909 {
1910         struct e1000_buffer *buffer_info;
1911         struct e1000_ps_page *ps_page;
1912         struct e1000_ps_page_dma *ps_page_dma;
1913         struct pci_dev *pdev = adapter->pdev;
1914         unsigned long size;
1915         unsigned int i, j;
1916
1917         /* Free all the Rx ring sk_buffs */
1918         for (i = 0; i < rx_ring->count; i++) {
1919                 buffer_info = &rx_ring->buffer_info[i];
1920                 if (buffer_info->skb) {
1921                         pci_unmap_single(pdev,
1922                                          buffer_info->dma,
1923                                          buffer_info->length,
1924                                          PCI_DMA_FROMDEVICE);
1925
1926                         dev_kfree_skb(buffer_info->skb);
1927                         buffer_info->skb = NULL;
1928                 }
1929                 ps_page = &rx_ring->ps_page[i];
1930                 ps_page_dma = &rx_ring->ps_page_dma[i];
1931                 for (j = 0; j < adapter->rx_ps_pages; j++) {
1932                         if (!ps_page->ps_page[j]) break;
1933                         pci_unmap_page(pdev,
1934                                        ps_page_dma->ps_page_dma[j],
1935                                        PAGE_SIZE, PCI_DMA_FROMDEVICE);
1936                         ps_page_dma->ps_page_dma[j] = 0;
1937                         put_page(ps_page->ps_page[j]);
1938                         ps_page->ps_page[j] = NULL;
1939                 }
1940         }
1941
1942         size = sizeof(struct e1000_buffer) * rx_ring->count;
1943         memset(rx_ring->buffer_info, 0, size);
1944         size = sizeof(struct e1000_ps_page) * rx_ring->count;
1945         memset(rx_ring->ps_page, 0, size);
1946         size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
1947         memset(rx_ring->ps_page_dma, 0, size);
1948
1949         /* Zero out the descriptor ring */
1950
1951         memset(rx_ring->desc, 0, rx_ring->size);
1952
1953         rx_ring->next_to_clean = 0;
1954         rx_ring->next_to_use = 0;
1955
1956         writel(0, adapter->hw.hw_addr + rx_ring->rdh);
1957         writel(0, adapter->hw.hw_addr + rx_ring->rdt);
1958 }
1959
1960 /**
1961  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
1962  * @adapter: board private structure
1963  **/
1964
1965 static void
1966 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
1967 {
1968         int i;
1969
1970         for (i = 0; i < adapter->num_rx_queues; i++)
1971                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
1972 }
1973
1974 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
1975  * and memory write and invalidate disabled for certain operations
1976  */
1977 static void
1978 e1000_enter_82542_rst(struct e1000_adapter *adapter)
1979 {
1980         struct net_device *netdev = adapter->netdev;
1981         uint32_t rctl;
1982
1983         e1000_pci_clear_mwi(&adapter->hw);
1984
1985         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1986         rctl |= E1000_RCTL_RST;
1987         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1988         E1000_WRITE_FLUSH(&adapter->hw);
1989         mdelay(5);
1990
1991         if (netif_running(netdev))
1992                 e1000_clean_all_rx_rings(adapter);
1993 }
1994
1995 static void
1996 e1000_leave_82542_rst(struct e1000_adapter *adapter)
1997 {
1998         struct net_device *netdev = adapter->netdev;
1999         uint32_t rctl;
2000
2001         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2002         rctl &= ~E1000_RCTL_RST;
2003         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2004         E1000_WRITE_FLUSH(&adapter->hw);
2005         mdelay(5);
2006
2007         if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2008                 e1000_pci_set_mwi(&adapter->hw);
2009
2010         if (netif_running(netdev)) {
2011                 /* No need to loop, because 82542 supports only 1 queue */
2012                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2013                 e1000_configure_rx(adapter);
2014                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2015         }
2016 }
2017
2018 /**
2019  * e1000_set_mac - Change the Ethernet Address of the NIC
2020  * @netdev: network interface device structure
2021  * @p: pointer to an address structure
2022  *
2023  * Returns 0 on success, negative on failure
2024  **/
2025
2026 static int
2027 e1000_set_mac(struct net_device *netdev, void *p)
2028 {
2029         struct e1000_adapter *adapter = netdev_priv(netdev);
2030         struct sockaddr *addr = p;
2031
2032         if (!is_valid_ether_addr(addr->sa_data))
2033                 return -EADDRNOTAVAIL;
2034
2035         /* 82542 2.0 needs to be in reset to write receive address registers */
2036
2037         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2038                 e1000_enter_82542_rst(adapter);
2039
2040         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2041         memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2042
2043         e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2044
2045         /* With 82571 controllers, LAA may be overwritten (with the default)
2046          * due to controller reset from the other port. */
2047         if (adapter->hw.mac_type == e1000_82571) {
2048                 /* activate the work around */
2049                 adapter->hw.laa_is_present = 1;
2050
2051                 /* Hold a copy of the LAA in RAR[14] This is done so that
2052                  * between the time RAR[0] gets clobbered  and the time it
2053                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2054                  * of the RARs and no incoming packets directed to this port
2055                  * are dropped. Eventaully the LAA will be in RAR[0] and
2056                  * RAR[14] */
2057                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2058                                         E1000_RAR_ENTRIES - 1);
2059         }
2060
2061         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2062                 e1000_leave_82542_rst(adapter);
2063
2064         return 0;
2065 }
2066
2067 /**
2068  * e1000_set_multi - Multicast and Promiscuous mode set
2069  * @netdev: network interface device structure
2070  *
2071  * The set_multi entry point is called whenever the multicast address
2072  * list or the network interface flags are updated.  This routine is
2073  * responsible for configuring the hardware for proper multicast,
2074  * promiscuous mode, and all-multi behavior.
2075  **/
2076
2077 static void
2078 e1000_set_multi(struct net_device *netdev)
2079 {
2080         struct e1000_adapter *adapter = netdev_priv(netdev);
2081         struct e1000_hw *hw = &adapter->hw;
2082         struct dev_mc_list *mc_ptr;
2083         uint32_t rctl;
2084         uint32_t hash_value;
2085         int i, rar_entries = E1000_RAR_ENTRIES;
2086
2087         /* reserve RAR[14] for LAA over-write work-around */
2088         if (adapter->hw.mac_type == e1000_82571)
2089                 rar_entries--;
2090
2091         /* Check for Promiscuous and All Multicast modes */
2092
2093         rctl = E1000_READ_REG(hw, RCTL);
2094
2095         if (netdev->flags & IFF_PROMISC) {
2096                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2097         } else if (netdev->flags & IFF_ALLMULTI) {
2098                 rctl |= E1000_RCTL_MPE;
2099                 rctl &= ~E1000_RCTL_UPE;
2100         } else {
2101                 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2102         }
2103
2104         E1000_WRITE_REG(hw, RCTL, rctl);
2105
2106         /* 82542 2.0 needs to be in reset to write receive address registers */
2107
2108         if (hw->mac_type == e1000_82542_rev2_0)
2109                 e1000_enter_82542_rst(adapter);
2110
2111         /* load the first 14 multicast address into the exact filters 1-14
2112          * RAR 0 is used for the station MAC adddress
2113          * if there are not 14 addresses, go ahead and clear the filters
2114          * -- with 82571 controllers only 0-13 entries are filled here
2115          */
2116         mc_ptr = netdev->mc_list;
2117
2118         for (i = 1; i < rar_entries; i++) {
2119                 if (mc_ptr) {
2120                         e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2121                         mc_ptr = mc_ptr->next;
2122                 } else {
2123                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2124                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2125                 }
2126         }
2127
2128         /* clear the old settings from the multicast hash table */
2129
2130         for (i = 0; i < E1000_NUM_MTA_REGISTERS; i++)
2131                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2132
2133         /* load any remaining addresses into the hash table */
2134
2135         for (; mc_ptr; mc_ptr = mc_ptr->next) {
2136                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2137                 e1000_mta_set(hw, hash_value);
2138         }
2139
2140         if (hw->mac_type == e1000_82542_rev2_0)
2141                 e1000_leave_82542_rst(adapter);
2142 }
2143
2144 /* Need to wait a few seconds after link up to get diagnostic information from
2145  * the phy */
2146
2147 static void
2148 e1000_update_phy_info(unsigned long data)
2149 {
2150         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2151         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2152 }
2153
2154 /**
2155  * e1000_82547_tx_fifo_stall - Timer Call-back
2156  * @data: pointer to adapter cast into an unsigned long
2157  **/
2158
2159 static void
2160 e1000_82547_tx_fifo_stall(unsigned long data)
2161 {
2162         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2163         struct net_device *netdev = adapter->netdev;
2164         uint32_t tctl;
2165
2166         if (atomic_read(&adapter->tx_fifo_stall)) {
2167                 if ((E1000_READ_REG(&adapter->hw, TDT) ==
2168                     E1000_READ_REG(&adapter->hw, TDH)) &&
2169                    (E1000_READ_REG(&adapter->hw, TDFT) ==
2170                     E1000_READ_REG(&adapter->hw, TDFH)) &&
2171                    (E1000_READ_REG(&adapter->hw, TDFTS) ==
2172                     E1000_READ_REG(&adapter->hw, TDFHS))) {
2173                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2174                         E1000_WRITE_REG(&adapter->hw, TCTL,
2175                                         tctl & ~E1000_TCTL_EN);
2176                         E1000_WRITE_REG(&adapter->hw, TDFT,
2177                                         adapter->tx_head_addr);
2178                         E1000_WRITE_REG(&adapter->hw, TDFH,
2179                                         adapter->tx_head_addr);
2180                         E1000_WRITE_REG(&adapter->hw, TDFTS,
2181                                         adapter->tx_head_addr);
2182                         E1000_WRITE_REG(&adapter->hw, TDFHS,
2183                                         adapter->tx_head_addr);
2184                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2185                         E1000_WRITE_FLUSH(&adapter->hw);
2186
2187                         adapter->tx_fifo_head = 0;
2188                         atomic_set(&adapter->tx_fifo_stall, 0);
2189                         netif_wake_queue(netdev);
2190                 } else {
2191                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2192                 }
2193         }
2194 }
2195
2196 /**
2197  * e1000_watchdog - Timer Call-back
2198  * @data: pointer to adapter cast into an unsigned long
2199  **/
2200 static void
2201 e1000_watchdog(unsigned long data)
2202 {
2203         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2204
2205         /* Do the rest outside of interrupt context */
2206         schedule_work(&adapter->watchdog_task);
2207 }
2208
2209 static void
2210 e1000_watchdog_task(struct e1000_adapter *adapter)
2211 {
2212         struct net_device *netdev = adapter->netdev;
2213         struct e1000_tx_ring *txdr = adapter->tx_ring;
2214         uint32_t link, tctl;
2215
2216         e1000_check_for_link(&adapter->hw);
2217         if (adapter->hw.mac_type == e1000_82573) {
2218                 e1000_enable_tx_pkt_filtering(&adapter->hw);
2219                 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2220                         e1000_update_mng_vlan(adapter);
2221         }
2222
2223         if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2224            !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2225                 link = !adapter->hw.serdes_link_down;
2226         else
2227                 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2228
2229         if (link) {
2230                 if (!netif_carrier_ok(netdev)) {
2231                         boolean_t txb2b = 1;
2232                         e1000_get_speed_and_duplex(&adapter->hw,
2233                                                    &adapter->link_speed,
2234                                                    &adapter->link_duplex);
2235
2236                         DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
2237                                adapter->link_speed,
2238                                adapter->link_duplex == FULL_DUPLEX ?
2239                                "Full Duplex" : "Half Duplex");
2240
2241                         /* tweak tx_queue_len according to speed/duplex
2242                          * and adjust the timeout factor */
2243                         netdev->tx_queue_len = adapter->tx_queue_len;
2244                         adapter->tx_timeout_factor = 1;
2245                         switch (adapter->link_speed) {
2246                         case SPEED_10:
2247                                 txb2b = 0;
2248                                 netdev->tx_queue_len = 10;
2249                                 adapter->tx_timeout_factor = 8;
2250                                 break;
2251                         case SPEED_100:
2252                                 txb2b = 0;
2253                                 netdev->tx_queue_len = 100;
2254                                 /* maybe add some timeout factor ? */
2255                                 break;
2256                         }
2257
2258                         if ((adapter->hw.mac_type == e1000_82571 ||
2259                              adapter->hw.mac_type == e1000_82572) &&
2260                             txb2b == 0) {
2261 #define SPEED_MODE_BIT (1 << 21)
2262                                 uint32_t tarc0;
2263                                 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
2264                                 tarc0 &= ~SPEED_MODE_BIT;
2265                                 E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
2266                         }
2267                                 
2268 #ifdef NETIF_F_TSO
2269                         /* disable TSO for pcie and 10/100 speeds, to avoid
2270                          * some hardware issues */
2271                         if (!adapter->tso_force &&
2272                             adapter->hw.bus_type == e1000_bus_type_pci_express){
2273                                 switch (adapter->link_speed) {
2274                                 case SPEED_10:
2275                                 case SPEED_100:
2276                                         DPRINTK(PROBE,INFO,
2277                                         "10/100 speed: disabling TSO\n");
2278                                         netdev->features &= ~NETIF_F_TSO;
2279                                         break;
2280                                 case SPEED_1000:
2281                                         netdev->features |= NETIF_F_TSO;
2282                                         break;
2283                                 default:
2284                                         /* oops */
2285                                         break;
2286                                 }
2287                         }
2288 #endif
2289
2290                         /* enable transmits in the hardware, need to do this
2291                          * after setting TARC0 */
2292                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2293                         tctl |= E1000_TCTL_EN;
2294                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2295
2296                         netif_carrier_on(netdev);
2297                         netif_wake_queue(netdev);
2298                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2299                         adapter->smartspeed = 0;
2300                 }
2301         } else {
2302                 if (netif_carrier_ok(netdev)) {
2303                         adapter->link_speed = 0;
2304                         adapter->link_duplex = 0;
2305                         DPRINTK(LINK, INFO, "NIC Link is Down\n");
2306                         netif_carrier_off(netdev);
2307                         netif_stop_queue(netdev);
2308                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2309
2310                         /* 80003ES2LAN workaround--
2311                          * For packet buffer work-around on link down event;
2312                          * disable receives in the ISR and
2313                          * reset device here in the watchdog
2314                          */
2315                         if (adapter->hw.mac_type == e1000_80003es2lan) {
2316                                 /* reset device */
2317                                 schedule_work(&adapter->reset_task);
2318                         }
2319                 }
2320
2321                 e1000_smartspeed(adapter);
2322         }
2323
2324         e1000_update_stats(adapter);
2325
2326         adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2327         adapter->tpt_old = adapter->stats.tpt;
2328         adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2329         adapter->colc_old = adapter->stats.colc;
2330
2331         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2332         adapter->gorcl_old = adapter->stats.gorcl;
2333         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2334         adapter->gotcl_old = adapter->stats.gotcl;
2335
2336         e1000_update_adaptive(&adapter->hw);
2337
2338         if (!netif_carrier_ok(netdev)) {
2339                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2340                         /* We've lost link, so the controller stops DMA,
2341                          * but we've got queued Tx work that's never going
2342                          * to get done, so reset controller to flush Tx.
2343                          * (Do the reset outside of interrupt context). */
2344                         adapter->tx_timeout_count++;
2345                         schedule_work(&adapter->reset_task);
2346                 }
2347         }
2348
2349         /* Dynamic mode for Interrupt Throttle Rate (ITR) */
2350         if (adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
2351                 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
2352                  * asymmetrical Tx or Rx gets ITR=8000; everyone
2353                  * else is between 2000-8000. */
2354                 uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
2355                 uint32_t dif = (adapter->gotcl > adapter->gorcl ?
2356                         adapter->gotcl - adapter->gorcl :
2357                         adapter->gorcl - adapter->gotcl) / 10000;
2358                 uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2359                 E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
2360         }
2361
2362         /* Cause software interrupt to ensure rx ring is cleaned */
2363         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2364
2365         /* Force detection of hung controller every watchdog period */
2366         adapter->detect_tx_hung = TRUE;
2367
2368         /* With 82571 controllers, LAA may be overwritten due to controller
2369          * reset from the other port. Set the appropriate LAA in RAR[0] */
2370         if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2371                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2372
2373         /* Reset the timer */
2374         mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2375 }
2376
2377 #define E1000_TX_FLAGS_CSUM             0x00000001
2378 #define E1000_TX_FLAGS_VLAN             0x00000002
2379 #define E1000_TX_FLAGS_TSO              0x00000004
2380 #define E1000_TX_FLAGS_IPV4             0x00000008
2381 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2382 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2383
2384 static int
2385 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2386           struct sk_buff *skb)
2387 {
2388 #ifdef NETIF_F_TSO
2389         struct e1000_context_desc *context_desc;
2390         struct e1000_buffer *buffer_info;
2391         unsigned int i;
2392         uint32_t cmd_length = 0;
2393         uint16_t ipcse = 0, tucse, mss;
2394         uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2395         int err;
2396
2397         if (skb_shinfo(skb)->gso_size) {
2398                 if (skb_header_cloned(skb)) {
2399                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2400                         if (err)
2401                                 return err;
2402                 }
2403
2404                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2405                 mss = skb_shinfo(skb)->gso_size;
2406                 if (skb->protocol == htons(ETH_P_IP)) {
2407                         skb->nh.iph->tot_len = 0;
2408                         skb->nh.iph->check = 0;
2409                         skb->h.th->check =
2410                                 ~csum_tcpudp_magic(skb->nh.iph->saddr,
2411                                                    skb->nh.iph->daddr,
2412                                                    0,
2413                                                    IPPROTO_TCP,
2414                                                    0);
2415                         cmd_length = E1000_TXD_CMD_IP;
2416                         ipcse = skb->h.raw - skb->data - 1;
2417 #ifdef NETIF_F_TSO_IPV6
2418                 } else if (skb->protocol == ntohs(ETH_P_IPV6)) {
2419                         skb->nh.ipv6h->payload_len = 0;
2420                         skb->h.th->check =
2421                                 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
2422                                                  &skb->nh.ipv6h->daddr,
2423                                                  0,
2424                                                  IPPROTO_TCP,
2425                                                  0);
2426                         ipcse = 0;
2427 #endif
2428                 }
2429                 ipcss = skb->nh.raw - skb->data;
2430                 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
2431                 tucss = skb->h.raw - skb->data;
2432                 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
2433                 tucse = 0;
2434
2435                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2436                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2437
2438                 i = tx_ring->next_to_use;
2439                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2440                 buffer_info = &tx_ring->buffer_info[i];
2441
2442                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2443                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2444                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2445                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2446                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2447                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2448                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2449                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2450                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2451
2452                 buffer_info->time_stamp = jiffies;
2453
2454                 if (++i == tx_ring->count) i = 0;
2455                 tx_ring->next_to_use = i;
2456
2457                 return TRUE;
2458         }
2459 #endif
2460
2461         return FALSE;
2462 }
2463
2464 static boolean_t
2465 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2466               struct sk_buff *skb)
2467 {
2468         struct e1000_context_desc *context_desc;
2469         struct e1000_buffer *buffer_info;
2470         unsigned int i;
2471         uint8_t css;
2472
2473         if (likely(skb->ip_summed == CHECKSUM_HW)) {
2474                 css = skb->h.raw - skb->data;
2475
2476                 i = tx_ring->next_to_use;
2477                 buffer_info = &tx_ring->buffer_info[i];
2478                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2479
2480                 context_desc->upper_setup.tcp_fields.tucss = css;
2481                 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
2482                 context_desc->upper_setup.tcp_fields.tucse = 0;
2483                 context_desc->tcp_seg_setup.data = 0;
2484                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2485
2486                 buffer_info->time_stamp = jiffies;
2487
2488                 if (unlikely(++i == tx_ring->count)) i = 0;
2489                 tx_ring->next_to_use = i;
2490
2491                 return TRUE;
2492         }
2493
2494         return FALSE;
2495 }
2496
2497 #define E1000_MAX_TXD_PWR       12
2498 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2499
2500 static int
2501 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2502              struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2503              unsigned int nr_frags, unsigned int mss)
2504 {
2505         struct e1000_buffer *buffer_info;
2506         unsigned int len = skb->len;
2507         unsigned int offset = 0, size, count = 0, i;
2508         unsigned int f;
2509         len -= skb->data_len;
2510
2511         i = tx_ring->next_to_use;
2512
2513         while (len) {
2514                 buffer_info = &tx_ring->buffer_info[i];
2515                 size = min(len, max_per_txd);
2516 #ifdef NETIF_F_TSO
2517                 /* Workaround for Controller erratum --
2518                  * descriptor for non-tso packet in a linear SKB that follows a
2519                  * tso gets written back prematurely before the data is fully
2520                  * DMA'd to the controller */
2521                 if (!skb->data_len && tx_ring->last_tx_tso &&
2522                     !skb_shinfo(skb)->gso_size) {
2523                         tx_ring->last_tx_tso = 0;
2524                         size -= 4;
2525                 }
2526
2527                 /* Workaround for premature desc write-backs
2528                  * in TSO mode.  Append 4-byte sentinel desc */
2529                 if (unlikely(mss && !nr_frags && size == len && size > 8))
2530                         size -= 4;
2531 #endif
2532                 /* work-around for errata 10 and it applies
2533                  * to all controllers in PCI-X mode
2534                  * The fix is to make sure that the first descriptor of a
2535                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2536                  */
2537                 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2538                                 (size > 2015) && count == 0))
2539                         size = 2015;
2540
2541                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2542                  * terminating buffers within evenly-aligned dwords. */
2543                 if (unlikely(adapter->pcix_82544 &&
2544                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2545                    size > 4))
2546                         size -= 4;
2547
2548                 buffer_info->length = size;
2549                 buffer_info->dma =
2550                         pci_map_single(adapter->pdev,
2551                                 skb->data + offset,
2552                                 size,
2553                                 PCI_DMA_TODEVICE);
2554                 buffer_info->time_stamp = jiffies;
2555
2556                 len -= size;
2557                 offset += size;
2558                 count++;
2559                 if (unlikely(++i == tx_ring->count)) i = 0;
2560         }
2561
2562         for (f = 0; f < nr_frags; f++) {
2563                 struct skb_frag_struct *frag;
2564
2565                 frag = &skb_shinfo(skb)->frags[f];
2566                 len = frag->size;
2567                 offset = frag->page_offset;
2568
2569                 while (len) {
2570                         buffer_info = &tx_ring->buffer_info[i];
2571                         size = min(len, max_per_txd);
2572 #ifdef NETIF_F_TSO
2573                         /* Workaround for premature desc write-backs
2574                          * in TSO mode.  Append 4-byte sentinel desc */
2575                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2576                                 size -= 4;
2577 #endif
2578                         /* Workaround for potential 82544 hang in PCI-X.
2579                          * Avoid terminating buffers within evenly-aligned
2580                          * dwords. */
2581                         if (unlikely(adapter->pcix_82544 &&
2582                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
2583                            size > 4))
2584                                 size -= 4;
2585
2586                         buffer_info->length = size;
2587                         buffer_info->dma =
2588                                 pci_map_page(adapter->pdev,
2589                                         frag->page,
2590                                         offset,
2591                                         size,
2592                                         PCI_DMA_TODEVICE);
2593                         buffer_info->time_stamp = jiffies;
2594
2595                         len -= size;
2596                         offset += size;
2597                         count++;
2598                         if (unlikely(++i == tx_ring->count)) i = 0;
2599                 }
2600         }
2601
2602         i = (i == 0) ? tx_ring->count - 1 : i - 1;
2603         tx_ring->buffer_info[i].skb = skb;
2604         tx_ring->buffer_info[first].next_to_watch = i;
2605
2606         return count;
2607 }
2608
2609 static void
2610 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2611                int tx_flags, int count)
2612 {
2613         struct e1000_tx_desc *tx_desc = NULL;
2614         struct e1000_buffer *buffer_info;
2615         uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2616         unsigned int i;
2617
2618         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2619                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2620                              E1000_TXD_CMD_TSE;
2621                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2622
2623                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2624                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2625         }
2626
2627         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2628                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2629                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2630         }
2631
2632         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2633                 txd_lower |= E1000_TXD_CMD_VLE;
2634                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2635         }
2636
2637         i = tx_ring->next_to_use;
2638
2639         while (count--) {
2640                 buffer_info = &tx_ring->buffer_info[i];
2641                 tx_desc = E1000_TX_DESC(*tx_ring, i);
2642                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2643                 tx_desc->lower.data =
2644                         cpu_to_le32(txd_lower | buffer_info->length);
2645                 tx_desc->upper.data = cpu_to_le32(txd_upper);
2646                 if (unlikely(++i == tx_ring->count)) i = 0;
2647         }
2648
2649         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2650
2651         /* Force memory writes to complete before letting h/w
2652          * know there are new descriptors to fetch.  (Only
2653          * applicable for weak-ordered memory model archs,
2654          * such as IA-64). */
2655         wmb();
2656
2657         tx_ring->next_to_use = i;
2658         writel(i, adapter->hw.hw_addr + tx_ring->tdt);
2659 }
2660
2661 /**
2662  * 82547 workaround to avoid controller hang in half-duplex environment.
2663  * The workaround is to avoid queuing a large packet that would span
2664  * the internal Tx FIFO ring boundary by notifying the stack to resend
2665  * the packet at a later time.  This gives the Tx FIFO an opportunity to
2666  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
2667  * to the beginning of the Tx FIFO.
2668  **/
2669
2670 #define E1000_FIFO_HDR                  0x10
2671 #define E1000_82547_PAD_LEN             0x3E0
2672
2673 static int
2674 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
2675 {
2676         uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2677         uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
2678
2679         E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
2680
2681         if (adapter->link_duplex != HALF_DUPLEX)
2682                 goto no_fifo_stall_required;
2683
2684         if (atomic_read(&adapter->tx_fifo_stall))
2685                 return 1;
2686
2687         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2688                 atomic_set(&adapter->tx_fifo_stall, 1);
2689                 return 1;
2690         }
2691
2692 no_fifo_stall_required:
2693         adapter->tx_fifo_head += skb_fifo_len;
2694         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
2695                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2696         return 0;
2697 }
2698
2699 #define MINIMUM_DHCP_PACKET_SIZE 282
2700 static int
2701 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
2702 {
2703         struct e1000_hw *hw =  &adapter->hw;
2704         uint16_t length, offset;
2705         if (vlan_tx_tag_present(skb)) {
2706                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
2707                         ( adapter->hw.mng_cookie.status &
2708                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
2709                         return 0;
2710         }
2711         if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
2712                 struct ethhdr *eth = (struct ethhdr *) skb->data;
2713                 if ((htons(ETH_P_IP) == eth->h_proto)) {
2714                         const struct iphdr *ip =
2715                                 (struct iphdr *)((uint8_t *)skb->data+14);
2716                         if (IPPROTO_UDP == ip->protocol) {
2717                                 struct udphdr *udp =
2718                                         (struct udphdr *)((uint8_t *)ip +
2719                                                 (ip->ihl << 2));
2720                                 if (ntohs(udp->dest) == 67) {
2721                                         offset = (uint8_t *)udp + 8 - skb->data;
2722                                         length = skb->len - offset;
2723
2724                                         return e1000_mng_write_dhcp_info(hw,
2725                                                         (uint8_t *)udp + 8,
2726                                                         length);
2727                                 }
2728                         }
2729                 }
2730         }
2731         return 0;
2732 }
2733
2734 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2735 static int
2736 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2737 {
2738         struct e1000_adapter *adapter = netdev_priv(netdev);
2739         struct e1000_tx_ring *tx_ring;
2740         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2741         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2742         unsigned int tx_flags = 0;
2743         unsigned int len = skb->len;
2744         unsigned long flags;
2745         unsigned int nr_frags = 0;
2746         unsigned int mss = 0;
2747         int count = 0;
2748         int tso;
2749         unsigned int f;
2750         len -= skb->data_len;
2751
2752         tx_ring = adapter->tx_ring;
2753
2754         if (unlikely(skb->len <= 0)) {
2755                 dev_kfree_skb_any(skb);
2756                 return NETDEV_TX_OK;
2757         }
2758
2759 #ifdef NETIF_F_TSO
2760         mss = skb_shinfo(skb)->gso_size;
2761         /* The controller does a simple calculation to
2762          * make sure there is enough room in the FIFO before
2763          * initiating the DMA for each buffer.  The calc is:
2764          * 4 = ceil(buffer len/mss).  To make sure we don't
2765          * overrun the FIFO, adjust the max buffer len if mss
2766          * drops. */
2767         if (mss) {
2768                 uint8_t hdr_len;
2769                 max_per_txd = min(mss << 2, max_per_txd);
2770                 max_txd_pwr = fls(max_per_txd) - 1;
2771
2772         /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
2773          * points to just header, pull a few bytes of payload from
2774          * frags into skb->data */
2775                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2776                 if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) {
2777                         switch (adapter->hw.mac_type) {
2778                                 unsigned int pull_size;
2779                         case e1000_82571:
2780                         case e1000_82572:
2781                         case e1000_82573:
2782                                 pull_size = min((unsigned int)4, skb->data_len);
2783                                 if (!__pskb_pull_tail(skb, pull_size)) {
2784                                         printk(KERN_ERR
2785                                                 "__pskb_pull_tail failed.\n");
2786                                         dev_kfree_skb_any(skb);
2787                                         return NETDEV_TX_OK;
2788                                 }
2789                                 len = skb->len - skb->data_len;
2790                                 break;
2791                         default:
2792                                 /* do nothing */
2793                                 break;
2794                         }
2795                 }
2796         }
2797
2798         /* reserve a descriptor for the offload context */
2799         if ((mss) || (skb->ip_summed == CHECKSUM_HW))
2800                 count++;
2801         count++;
2802 #else
2803         if (skb->ip_summed == CHECKSUM_HW)
2804                 count++;
2805 #endif
2806
2807 #ifdef NETIF_F_TSO
2808         /* Controller Erratum workaround */
2809         if (!skb->data_len && tx_ring->last_tx_tso &&
2810             !skb_shinfo(skb)->gso_size)
2811                 count++;
2812 #endif
2813
2814         count += TXD_USE_COUNT(len, max_txd_pwr);
2815
2816         if (adapter->pcix_82544)
2817                 count++;
2818
2819         /* work-around for errata 10 and it applies to all controllers
2820          * in PCI-X mode, so add one more descriptor to the count
2821          */
2822         if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2823                         (len > 2015)))
2824                 count++;
2825
2826         nr_frags = skb_shinfo(skb)->nr_frags;
2827         for (f = 0; f < nr_frags; f++)
2828                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
2829                                        max_txd_pwr);
2830         if (adapter->pcix_82544)
2831                 count += nr_frags;
2832
2833
2834         if (adapter->hw.tx_pkt_filtering &&
2835             (adapter->hw.mac_type == e1000_82573))
2836                 e1000_transfer_dhcp_info(adapter, skb);
2837
2838         local_irq_save(flags);
2839         if (!spin_trylock(&tx_ring->tx_lock)) {
2840                 /* Collision - tell upper layer to requeue */
2841                 local_irq_restore(flags);
2842                 return NETDEV_TX_LOCKED;
2843         }
2844
2845         /* need: count + 2 desc gap to keep tail from touching
2846          * head, otherwise try next time */
2847         if (unlikely(E1000_DESC_UNUSED(tx_ring) < count + 2)) {
2848                 netif_stop_queue(netdev);
2849                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2850                 return NETDEV_TX_BUSY;
2851         }
2852
2853         if (unlikely(adapter->hw.mac_type == e1000_82547)) {
2854                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
2855                         netif_stop_queue(netdev);
2856                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
2857                         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2858                         return NETDEV_TX_BUSY;
2859                 }
2860         }
2861
2862         if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
2863                 tx_flags |= E1000_TX_FLAGS_VLAN;
2864                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
2865         }
2866
2867         first = tx_ring->next_to_use;
2868
2869         tso = e1000_tso(adapter, tx_ring, skb);
2870         if (tso < 0) {
2871                 dev_kfree_skb_any(skb);
2872                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2873                 return NETDEV_TX_OK;
2874         }
2875
2876         if (likely(tso)) {
2877                 tx_ring->last_tx_tso = 1;
2878                 tx_flags |= E1000_TX_FLAGS_TSO;
2879         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
2880                 tx_flags |= E1000_TX_FLAGS_CSUM;
2881
2882         /* Old method was to assume IPv4 packet by default if TSO was enabled.
2883          * 82571 hardware supports TSO capabilities for IPv6 as well...
2884          * no longer assume, we must. */
2885         if (likely(skb->protocol == htons(ETH_P_IP)))
2886                 tx_flags |= E1000_TX_FLAGS_IPV4;
2887
2888         e1000_tx_queue(adapter, tx_ring, tx_flags,
2889                        e1000_tx_map(adapter, tx_ring, skb, first,
2890                                     max_per_txd, nr_frags, mss));
2891
2892         netdev->trans_start = jiffies;
2893
2894         /* Make sure there is space in the ring for the next send. */
2895         if (unlikely(E1000_DESC_UNUSED(tx_ring) < MAX_SKB_FRAGS + 2))
2896                 netif_stop_queue(netdev);
2897
2898         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2899         return NETDEV_TX_OK;
2900 }
2901
2902 /**
2903  * e1000_tx_timeout - Respond to a Tx Hang
2904  * @netdev: network interface device structure
2905  **/
2906
2907 static void
2908 e1000_tx_timeout(struct net_device *netdev)
2909 {
2910         struct e1000_adapter *adapter = netdev_priv(netdev);
2911
2912         /* Do the reset outside of interrupt context */
2913         adapter->tx_timeout_count++;
2914         schedule_work(&adapter->reset_task);
2915 }
2916
2917 static void
2918 e1000_reset_task(struct net_device *netdev)
2919 {
2920         struct e1000_adapter *adapter = netdev_priv(netdev);
2921
2922         e1000_down(adapter);
2923         e1000_up(adapter);
2924 }
2925
2926 /**
2927  * e1000_get_stats - Get System Network Statistics
2928  * @netdev: network interface device structure
2929  *
2930  * Returns the address of the device statistics structure.
2931  * The statistics are actually updated from the timer callback.
2932  **/
2933
2934 static struct net_device_stats *
2935 e1000_get_stats(struct net_device *netdev)
2936 {
2937         struct e1000_adapter *adapter = netdev_priv(netdev);
2938
2939         /* only return the current stats */
2940         return &adapter->net_stats;
2941 }
2942
2943 /**
2944  * e1000_change_mtu - Change the Maximum Transfer Unit
2945  * @netdev: network interface device structure
2946  * @new_mtu: new value for maximum frame size
2947  *
2948  * Returns 0 on success, negative on failure
2949  **/
2950
2951 static int
2952 e1000_change_mtu(struct net_device *netdev, int new_mtu)
2953 {
2954         struct e1000_adapter *adapter = netdev_priv(netdev);
2955         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
2956         uint16_t eeprom_data = 0;
2957
2958         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
2959             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2960                 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
2961                 return -EINVAL;
2962         }
2963
2964         /* Adapter-specific max frame size limits. */
2965         switch (adapter->hw.mac_type) {
2966         case e1000_undefined ... e1000_82542_rev2_1:
2967                 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
2968                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
2969                         return -EINVAL;
2970                 }
2971                 break;
2972         case e1000_82573:
2973                 /* only enable jumbo frames if ASPM is disabled completely
2974                  * this means both bits must be zero in 0x1A bits 3:2 */
2975                 e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
2976                                   &eeprom_data);
2977                 if (eeprom_data & EEPROM_WORD1A_ASPM_MASK) {
2978                         if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
2979                                 DPRINTK(PROBE, ERR,
2980                                         "Jumbo Frames not supported.\n");
2981                                 return -EINVAL;
2982                         }
2983                         break;
2984                 }
2985                 /* fall through to get support */
2986         case e1000_82571:
2987         case e1000_82572:
2988         case e1000_80003es2lan:
2989 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2990                 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2991                         DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
2992                         return -EINVAL;
2993                 }
2994                 break;
2995         default:
2996                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
2997                 break;
2998         }
2999
3000         /* NOTE: dev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3001          * means we reserve 2 more, this pushes us to allocate from the next
3002          * larger slab size
3003          * i.e. RXBUFFER_2048 --> size-4096 slab */
3004
3005         if (max_frame <= E1000_RXBUFFER_256)
3006                 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3007         else if (max_frame <= E1000_RXBUFFER_512)
3008                 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3009         else if (max_frame <= E1000_RXBUFFER_1024)
3010                 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3011         else if (max_frame <= E1000_RXBUFFER_2048)
3012                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3013         else if (max_frame <= E1000_RXBUFFER_4096)
3014                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3015         else if (max_frame <= E1000_RXBUFFER_8192)
3016                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3017         else if (max_frame <= E1000_RXBUFFER_16384)
3018                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3019
3020         /* adjust allocation if LPE protects us, and we aren't using SBP */
3021 #define MAXIMUM_ETHERNET_VLAN_SIZE 1522
3022         if (!adapter->hw.tbi_compatibility_on &&
3023             ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3024              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3025                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3026
3027         netdev->mtu = new_mtu;
3028
3029         if (netif_running(netdev)) {
3030                 e1000_down(adapter);
3031                 e1000_up(adapter);
3032         }
3033
3034         adapter->hw.max_frame_size = max_frame;
3035
3036         return 0;
3037 }
3038
3039 /**
3040  * e1000_update_stats - Update the board statistics counters
3041  * @adapter: board private structure
3042  **/
3043
3044 void
3045 e1000_update_stats(struct e1000_adapter *adapter)
3046 {
3047         struct e1000_hw *hw = &adapter->hw;
3048         struct pci_dev *pdev = adapter->pdev;
3049         unsigned long flags;
3050         uint16_t phy_tmp;
3051
3052 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3053
3054         /*
3055          * Prevent stats update while adapter is being reset, or if the pci
3056          * connection is down.
3057          */
3058         if (adapter->link_speed == 0)
3059                 return;
3060         if (pdev->error_state && pdev->error_state != pci_channel_io_normal)
3061                 return;
3062
3063         spin_lock_irqsave(&adapter->stats_lock, flags);
3064
3065         /* these counters are modified from e1000_adjust_tbi_stats,
3066          * called from the interrupt context, so they must only
3067          * be written while holding adapter->stats_lock
3068          */
3069
3070         adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3071         adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3072         adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3073         adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3074         adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3075         adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3076         adapter->stats.roc += E1000_READ_REG(hw, ROC);
3077         adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3078         adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3079         adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3080         adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3081         adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3082         adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3083
3084         adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3085         adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3086         adapter->stats.scc += E1000_READ_REG(hw, SCC);
3087         adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3088         adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3089         adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3090         adapter->stats.dc += E1000_READ_REG(hw, DC);
3091         adapter->stats.sec += E1000_READ_REG(hw, SEC);
3092         adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3093         adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3094         adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3095         adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3096         adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3097         adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3098         adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3099         adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3100         adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3101         adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3102         adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3103         adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3104         adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3105         adapter->stats.torl += E1000_READ_REG(hw, TORL);
3106         adapter->stats.torh += E1000_READ_REG(hw, TORH);
3107         adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3108         adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3109         adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3110         adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3111         adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3112         adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3113         adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3114         adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3115         adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3116         adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3117         adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3118
3119         /* used for adaptive IFS */
3120
3121         hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3122         adapter->stats.tpt += hw->tx_packet_delta;
3123         hw->collision_delta = E1000_READ_REG(hw, COLC);
3124         adapter->stats.colc += hw->collision_delta;
3125
3126         if (hw->mac_type >= e1000_82543) {
3127                 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3128                 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3129                 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3130                 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3131                 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3132                 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3133         }
3134         if (hw->mac_type > e1000_82547_rev_2) {
3135                 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3136                 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3137                 adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3138                 adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3139                 adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3140                 adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3141                 adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3142                 adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3143                 adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3144         }
3145
3146         /* Fill out the OS statistics structure */
3147
3148         adapter->net_stats.rx_packets = adapter->stats.gprc;
3149         adapter->net_stats.tx_packets = adapter->stats.gptc;
3150         adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3151         adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3152         adapter->net_stats.multicast = adapter->stats.mprc;
3153         adapter->net_stats.collisions = adapter->stats.colc;
3154
3155         /* Rx Errors */
3156
3157         /* RLEC on some newer hardware can be incorrect so build
3158         * our own version based on RUC and ROC */
3159         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3160                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3161                 adapter->stats.ruc + adapter->stats.roc +
3162                 adapter->stats.cexterr;
3163         adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3164                                               adapter->stats.roc;
3165         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3166         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3167         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3168
3169         /* Tx Errors */
3170
3171         adapter->net_stats.tx_errors = adapter->stats.ecol +
3172                                        adapter->stats.latecol;
3173         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3174         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3175         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3176
3177         /* Tx Dropped needs to be maintained elsewhere */
3178
3179         /* Phy Stats */
3180
3181         if (hw->media_type == e1000_media_type_copper) {
3182                 if ((adapter->link_speed == SPEED_1000) &&
3183                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3184                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3185                         adapter->phy_stats.idle_errors += phy_tmp;
3186                 }
3187
3188                 if ((hw->mac_type <= e1000_82546) &&
3189                    (hw->phy_type == e1000_phy_m88) &&
3190                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3191                         adapter->phy_stats.receive_errors += phy_tmp;
3192         }
3193
3194         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3195 }
3196
3197 /**
3198  * e1000_intr - Interrupt Handler
3199  * @irq: interrupt number
3200  * @data: pointer to a network interface device structure
3201  * @pt_regs: CPU registers structure
3202  **/
3203
3204 static irqreturn_t
3205 e1000_intr(int irq, void *data, struct pt_regs *regs)
3206 {
3207         struct net_device *netdev = data;
3208         struct e1000_adapter *adapter = netdev_priv(netdev);
3209         struct e1000_hw *hw = &adapter->hw;
3210         uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
3211 #ifndef CONFIG_E1000_NAPI
3212         int i;
3213 #else
3214         /* Interrupt Auto-Mask...upon reading ICR,
3215          * interrupts are masked.  No need for the
3216          * IMC write, but it does mean we should
3217          * account for it ASAP. */
3218         if (likely(hw->mac_type >= e1000_82571))
3219                 atomic_inc(&adapter->irq_sem);
3220 #endif
3221
3222         if (unlikely(!icr)) {
3223 #ifdef CONFIG_E1000_NAPI
3224                 if (hw->mac_type >= e1000_82571)
3225                         e1000_irq_enable(adapter);
3226 #endif
3227                 return IRQ_NONE;  /* Not our interrupt */
3228         }
3229
3230         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3231                 hw->get_link_status = 1;
3232                 /* 80003ES2LAN workaround--
3233                  * For packet buffer work-around on link down event;
3234                  * disable receives here in the ISR and
3235                  * reset adapter in watchdog
3236                  */
3237                 if (netif_carrier_ok(netdev) &&
3238                     (adapter->hw.mac_type == e1000_80003es2lan)) {
3239                         /* disable receives */
3240                         rctl = E1000_READ_REG(hw, RCTL);
3241                         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3242                 }
3243                 mod_timer(&adapter->watchdog_timer, jiffies);
3244         }
3245
3246 #ifdef CONFIG_E1000_NAPI
3247         if (unlikely(hw->mac_type < e1000_82571)) {
3248                 atomic_inc(&adapter->irq_sem);
3249                 E1000_WRITE_REG(hw, IMC, ~0);
3250                 E1000_WRITE_FLUSH(hw);
3251         }
3252         if (likely(netif_rx_schedule_prep(&adapter->polling_netdev[0])))
3253                 __netif_rx_schedule(&adapter->polling_netdev[0]);
3254         else
3255                 e1000_irq_enable(adapter);
3256 #else
3257         /* Writing IMC and IMS is needed for 82547.
3258          * Due to Hub Link bus being occupied, an interrupt
3259          * de-assertion message is not able to be sent.
3260          * When an interrupt assertion message is generated later,
3261          * two messages are re-ordered and sent out.
3262          * That causes APIC to think 82547 is in de-assertion
3263          * state, while 82547 is in assertion state, resulting
3264          * in dead lock. Writing IMC forces 82547 into
3265          * de-assertion state.
3266          */
3267         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
3268                 atomic_inc(&adapter->irq_sem);
3269                 E1000_WRITE_REG(hw, IMC, ~0);
3270         }
3271
3272         for (i = 0; i < E1000_MAX_INTR; i++)
3273                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3274                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3275                         break;
3276
3277         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3278                 e1000_irq_enable(adapter);
3279
3280 #endif
3281
3282         return IRQ_HANDLED;
3283 }
3284
3285 #ifdef CONFIG_E1000_NAPI
3286 /**
3287  * e1000_clean - NAPI Rx polling callback
3288  * @adapter: board private structure
3289  **/
3290
3291 static int
3292 e1000_clean(struct net_device *poll_dev, int *budget)
3293 {
3294         struct e1000_adapter *adapter;
3295         int work_to_do = min(*budget, poll_dev->quota);
3296         int tx_cleaned = 0, i = 0, work_done = 0;
3297
3298         /* Must NOT use netdev_priv macro here. */
3299         adapter = poll_dev->priv;
3300
3301         /* Keep link state information with original netdev */
3302         if (!netif_carrier_ok(adapter->netdev))
3303                 goto quit_polling;
3304
3305         while (poll_dev != &adapter->polling_netdev[i]) {
3306                 i++;
3307                 BUG_ON(i == adapter->num_rx_queues);
3308         }
3309
3310         if (likely(adapter->num_tx_queues == 1)) {
3311                 /* e1000_clean is called per-cpu.  This lock protects
3312                  * tx_ring[0] from being cleaned by multiple cpus
3313                  * simultaneously.  A failure obtaining the lock means
3314                  * tx_ring[0] is currently being cleaned anyway. */
3315                 if (spin_trylock(&adapter->tx_queue_lock)) {
3316                         tx_cleaned = e1000_clean_tx_irq(adapter,
3317                                                         &adapter->tx_ring[0]);
3318                         spin_unlock(&adapter->tx_queue_lock);
3319                 }
3320         } else
3321                 tx_cleaned = e1000_clean_tx_irq(adapter, &adapter->tx_ring[i]);
3322
3323         adapter->clean_rx(adapter, &adapter->rx_ring[i],
3324                           &work_done, work_to_do);
3325
3326         *budget -= work_done;
3327         poll_dev->quota -= work_done;
3328
3329         /* If no Tx and not enough Rx work done, exit the polling mode */
3330         if ((!tx_cleaned && (work_done == 0)) ||
3331            !netif_running(adapter->netdev)) {
3332 quit_polling:
3333                 netif_rx_complete(poll_dev);
3334                 e1000_irq_enable(adapter);
3335                 return 0;
3336         }
3337
3338         return 1;
3339 }
3340
3341 #endif
3342 /**
3343  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3344  * @adapter: board private structure
3345  **/
3346
3347 static boolean_t
3348 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3349                    struct e1000_tx_ring *tx_ring)
3350 {
3351         struct net_device *netdev = adapter->netdev;
3352         struct e1000_tx_desc *tx_desc, *eop_desc;
3353         struct e1000_buffer *buffer_info;
3354         unsigned int i, eop;
3355 #ifdef CONFIG_E1000_NAPI
3356         unsigned int count = 0;
3357 #endif
3358         boolean_t cleaned = FALSE;
3359
3360         i = tx_ring->next_to_clean;
3361         eop = tx_ring->buffer_info[i].next_to_watch;
3362         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3363
3364         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3365                 for (cleaned = FALSE; !cleaned; ) {
3366                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3367                         buffer_info = &tx_ring->buffer_info[i];
3368                         cleaned = (i == eop);
3369
3370                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3371                         memset(tx_desc, 0, sizeof(struct e1000_tx_desc));
3372
3373                         if (unlikely(++i == tx_ring->count)) i = 0;
3374                 }
3375
3376
3377                 eop = tx_ring->buffer_info[i].next_to_watch;
3378                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3379 #ifdef CONFIG_E1000_NAPI
3380 #define E1000_TX_WEIGHT 64
3381                 /* weight of a sort for tx, to avoid endless transmit cleanup */
3382                 if (count++ == E1000_TX_WEIGHT) break;
3383 #endif
3384         }
3385
3386         tx_ring->next_to_clean = i;
3387
3388 #define TX_WAKE_THRESHOLD 32
3389         if (unlikely(cleaned && netif_queue_stopped(netdev) &&
3390                      netif_carrier_ok(netdev))) {
3391                 spin_lock(&tx_ring->tx_lock);
3392                 if (netif_queue_stopped(netdev) &&
3393                     (E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))
3394                         netif_wake_queue(netdev);
3395                 spin_unlock(&tx_ring->tx_lock);
3396         }
3397
3398         if (adapter->detect_tx_hung) {
3399                 /* Detect a transmit hang in hardware, this serializes the
3400                  * check with the clearing of time_stamp and movement of i */
3401                 adapter->detect_tx_hung = FALSE;
3402                 if (tx_ring->buffer_info[eop].dma &&
3403                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3404                                (adapter->tx_timeout_factor * HZ))
3405                     && !(E1000_READ_REG(&adapter->hw, STATUS) &
3406                          E1000_STATUS_TXOFF)) {
3407
3408                         /* detected Tx unit hang */
3409                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3410                                         "  Tx Queue             <%lu>\n"
3411                                         "  TDH                  <%x>\n"
3412                                         "  TDT                  <%x>\n"
3413                                         "  next_to_use          <%x>\n"
3414                                         "  next_to_clean        <%x>\n"
3415                                         "buffer_info[next_to_clean]\n"
3416                                         "  time_stamp           <%lx>\n"
3417                                         "  next_to_watch        <%x>\n"
3418                                         "  jiffies              <%lx>\n"
3419                                         "  next_to_watch.status <%x>\n",
3420                                 (unsigned long)((tx_ring - adapter->tx_ring) /
3421                                         sizeof(struct e1000_tx_ring)),
3422                                 readl(adapter->hw.hw_addr + tx_ring->tdh),
3423                                 readl(adapter->hw.hw_addr + tx_ring->tdt),
3424                                 tx_ring->next_to_use,
3425                                 tx_ring->next_to_clean,
3426                                 tx_ring->buffer_info[eop].time_stamp,
3427                                 eop,
3428                                 jiffies,
3429                                 eop_desc->upper.fields.status);
3430                         netif_stop_queue(netdev);
3431                 }
3432         }
3433         return cleaned;
3434 }
3435
3436 /**
3437  * e1000_rx_checksum - Receive Checksum Offload for 82543
3438  * @adapter:     board private structure
3439  * @status_err:  receive descriptor status and error fields
3440  * @csum:        receive descriptor csum field
3441  * @sk_buff:     socket buffer with received data
3442  **/
3443
3444 static void
3445 e1000_rx_checksum(struct e1000_adapter *adapter,
3446                   uint32_t status_err, uint32_t csum,
3447                   struct sk_buff *skb)
3448 {
3449         uint16_t status = (uint16_t)status_err;
3450         uint8_t errors = (uint8_t)(status_err >> 24);
3451         skb->ip_summed = CHECKSUM_NONE;
3452
3453         /* 82543 or newer only */
3454         if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
3455         /* Ignore Checksum bit is set */
3456         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3457         /* TCP/UDP checksum error bit is set */
3458         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3459                 /* let the stack verify checksum errors */
3460                 adapter->hw_csum_err++;
3461                 return;
3462         }
3463         /* TCP/UDP Checksum has not been calculated */
3464         if (adapter->hw.mac_type <= e1000_82547_rev_2) {
3465                 if (!(status & E1000_RXD_STAT_TCPCS))
3466                         return;
3467         } else {
3468                 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3469                         return;
3470         }
3471         /* It must be a TCP or UDP packet with a valid checksum */
3472         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3473                 /* TCP checksum is good */
3474                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3475         } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
3476                 /* IP fragment with UDP payload */
3477                 /* Hardware complements the payload checksum, so we undo it
3478                  * and then put the value in host order for further stack use.
3479                  */
3480                 csum = ntohl(csum ^ 0xFFFF);
3481                 skb->csum = csum;
3482                 skb->ip_summed = CHECKSUM_HW;
3483         }
3484         adapter->hw_csum_good++;
3485 }
3486
3487 /**
3488  * e1000_clean_rx_irq - Send received data up the network stack; legacy
3489  * @adapter: board private structure
3490  **/
3491
3492 static boolean_t
3493 #ifdef CONFIG_E1000_NAPI
3494 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3495                    struct e1000_rx_ring *rx_ring,
3496                    int *work_done, int work_to_do)
3497 #else
3498 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3499                    struct e1000_rx_ring *rx_ring)
3500 #endif
3501 {
3502         struct net_device *netdev = adapter->netdev;
3503         struct pci_dev *pdev = adapter->pdev;
3504         struct e1000_rx_desc *rx_desc, *next_rxd;
3505         struct e1000_buffer *buffer_info, *next_buffer;
3506         unsigned long flags;
3507         uint32_t length;
3508         uint8_t last_byte;
3509         unsigned int i;
3510         int cleaned_count = 0;
3511         boolean_t cleaned = FALSE;
3512
3513         i = rx_ring->next_to_clean;
3514         rx_desc = E1000_RX_DESC(*rx_ring, i);
3515         buffer_info = &rx_ring->buffer_info[i];
3516
3517         while (rx_desc->status & E1000_RXD_STAT_DD) {
3518                 struct sk_buff *skb;
3519                 u8 status;
3520 #ifdef CONFIG_E1000_NAPI
3521                 if (*work_done >= work_to_do)
3522                         break;
3523                 (*work_done)++;
3524 #endif
3525                 status = rx_desc->status;
3526                 skb = buffer_info->skb;
3527                 buffer_info->skb = NULL;
3528
3529                 prefetch(skb->data - NET_IP_ALIGN);
3530
3531                 if (++i == rx_ring->count) i = 0;
3532                 next_rxd = E1000_RX_DESC(*rx_ring, i);
3533                 prefetch(next_rxd);
3534
3535                 next_buffer = &rx_ring->buffer_info[i];
3536
3537                 cleaned = TRUE;
3538                 cleaned_count++;
3539                 pci_unmap_single(pdev,
3540                                  buffer_info->dma,
3541                                  buffer_info->length,
3542                                  PCI_DMA_FROMDEVICE);
3543
3544                 length = le16_to_cpu(rx_desc->length);
3545
3546                 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
3547                         /* All receives must fit into a single buffer */
3548                         E1000_DBG("%s: Receive packet consumed multiple"
3549                                   " buffers\n", netdev->name);
3550                         dev_kfree_skb_irq(skb);
3551                         goto next_desc;
3552                 }
3553
3554                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3555                         last_byte = *(skb->data + length - 1);
3556                         if (TBI_ACCEPT(&adapter->hw, status,
3557                                       rx_desc->errors, length, last_byte)) {
3558                                 spin_lock_irqsave(&adapter->stats_lock, flags);
3559                                 e1000_tbi_adjust_stats(&adapter->hw,
3560                                                        &adapter->stats,
3561                                                        length, skb->data);
3562                                 spin_unlock_irqrestore(&adapter->stats_lock,
3563                                                        flags);
3564                                 length--;
3565                         } else {
3566                                 /* recycle */
3567                                 buffer_info->skb = skb;
3568                                 goto next_desc;
3569                         }
3570                 }
3571
3572                 /* code added for copybreak, this should improve
3573                  * performance for small packets with large amounts
3574                  * of reassembly being done in the stack */
3575 #define E1000_CB_LENGTH 256
3576                 if (length < E1000_CB_LENGTH) {
3577                         struct sk_buff *new_skb =
3578                             dev_alloc_skb(length + NET_IP_ALIGN);
3579                         if (new_skb) {
3580                                 skb_reserve(new_skb, NET_IP_ALIGN);
3581                                 new_skb->dev = netdev;
3582                                 memcpy(new_skb->data - NET_IP_ALIGN,
3583                                        skb->data - NET_IP_ALIGN,
3584                                        length + NET_IP_ALIGN);
3585                                 /* save the skb in buffer_info as good */
3586                                 buffer_info->skb = skb;
3587                                 skb = new_skb;
3588                                 skb_put(skb, length);
3589                         }
3590                 } else
3591                         skb_put(skb, length);
3592
3593                 /* end copybreak code */
3594
3595                 /* Receive Checksum Offload */
3596                 e1000_rx_checksum(adapter,
3597                                   (uint32_t)(status) |
3598                                   ((uint32_t)(rx_desc->errors) << 24),
3599                                   le16_to_cpu(rx_desc->csum), skb);
3600
3601                 skb->protocol = eth_type_trans(skb, netdev);
3602 #ifdef CONFIG_E1000_NAPI
3603                 if (unlikely(adapter->vlgrp &&
3604                             (status & E1000_RXD_STAT_VP))) {
3605                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3606                                                  le16_to_cpu(rx_desc->special) &
3607                                                  E1000_RXD_SPC_VLAN_MASK);
3608                 } else {
3609                         netif_receive_skb(skb);
3610                 }
3611 #else /* CONFIG_E1000_NAPI */
3612                 if (unlikely(adapter->vlgrp &&
3613                             (status & E1000_RXD_STAT_VP))) {
3614                         vlan_hwaccel_rx(skb, adapter->vlgrp,
3615                                         le16_to_cpu(rx_desc->special) &
3616                                         E1000_RXD_SPC_VLAN_MASK);
3617                 } else {
3618                         netif_rx(skb);
3619                 }
3620 #endif /* CONFIG_E1000_NAPI */
3621                 netdev->last_rx = jiffies;
3622
3623 next_desc:
3624                 rx_desc->status = 0;
3625
3626                 /* return some buffers to hardware, one at a time is too slow */
3627                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3628                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3629                         cleaned_count = 0;
3630                 }
3631
3632                 /* use prefetched values */
3633                 rx_desc = next_rxd;
3634                 buffer_info = next_buffer;
3635         }
3636         rx_ring->next_to_clean = i;
3637
3638         cleaned_count = E1000_DESC_UNUSED(rx_ring);
3639         if (cleaned_count)
3640                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3641
3642         return cleaned;
3643 }
3644
3645 /**
3646  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
3647  * @adapter: board private structure
3648  **/
3649
3650 static boolean_t
3651 #ifdef CONFIG_E1000_NAPI
3652 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3653                       struct e1000_rx_ring *rx_ring,
3654                       int *work_done, int work_to_do)
3655 #else
3656 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3657                       struct e1000_rx_ring *rx_ring)
3658 #endif
3659 {
3660         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
3661         struct net_device *netdev = adapter->netdev;
3662         struct pci_dev *pdev = adapter->pdev;
3663         struct e1000_buffer *buffer_info, *next_buffer;
3664         struct e1000_ps_page *ps_page;
3665         struct e1000_ps_page_dma *ps_page_dma;
3666         struct sk_buff *skb;
3667         unsigned int i, j;
3668         uint32_t length, staterr;
3669         int cleaned_count = 0;
3670         boolean_t cleaned = FALSE;
3671
3672         i = rx_ring->next_to_clean;
3673         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3674         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3675         buffer_info = &rx_ring->buffer_info[i];
3676
3677         while (staterr & E1000_RXD_STAT_DD) {
3678                 buffer_info = &rx_ring->buffer_info[i];
3679                 ps_page = &rx_ring->ps_page[i];
3680                 ps_page_dma = &rx_ring->ps_page_dma[i];
3681 #ifdef CONFIG_E1000_NAPI
3682                 if (unlikely(*work_done >= work_to_do))
3683                         break;
3684                 (*work_done)++;
3685 #endif
3686                 skb = buffer_info->skb;
3687
3688                 /* in the packet split case this is header only */
3689                 prefetch(skb->data - NET_IP_ALIGN);
3690
3691                 if (++i == rx_ring->count) i = 0;
3692                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
3693                 prefetch(next_rxd);
3694
3695                 next_buffer = &rx_ring->buffer_info[i];
3696
3697                 cleaned = TRUE;
3698                 cleaned_count++;
3699                 pci_unmap_single(pdev, buffer_info->dma,
3700                                  buffer_info->length,
3701                                  PCI_DMA_FROMDEVICE);
3702
3703                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
3704                         E1000_DBG("%s: Packet Split buffers didn't pick up"
3705                                   " the full packet\n", netdev->name);
3706                         dev_kfree_skb_irq(skb);
3707                         goto next_desc;
3708                 }
3709
3710                 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3711                         dev_kfree_skb_irq(skb);
3712                         goto next_desc;
3713                 }
3714
3715                 length = le16_to_cpu(rx_desc->wb.middle.length0);
3716
3717                 if (unlikely(!length)) {
3718                         E1000_DBG("%s: Last part of the packet spanning"
3719                                   " multiple descriptors\n", netdev->name);
3720                         dev_kfree_skb_irq(skb);
3721                         goto next_desc;
3722                 }
3723
3724                 /* Good Receive */
3725                 skb_put(skb, length);
3726
3727                 {
3728                 /* this looks ugly, but it seems compiler issues make it
3729                    more efficient than reusing j */
3730                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
3731
3732                 /* page alloc/put takes too long and effects small packet
3733                  * throughput, so unsplit small packets and save the alloc/put*/
3734                 if (l1 && ((length + l1) <= adapter->rx_ps_bsize0)) {
3735                         u8 *vaddr;
3736                         /* there is no documentation about how to call
3737                          * kmap_atomic, so we can't hold the mapping
3738                          * very long */
3739                         pci_dma_sync_single_for_cpu(pdev,
3740                                 ps_page_dma->ps_page_dma[0],
3741                                 PAGE_SIZE,
3742                                 PCI_DMA_FROMDEVICE);
3743                         vaddr = kmap_atomic(ps_page->ps_page[0],
3744                                             KM_SKB_DATA_SOFTIRQ);
3745                         memcpy(skb->tail, vaddr, l1);
3746                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
3747                         pci_dma_sync_single_for_device(pdev,
3748                                 ps_page_dma->ps_page_dma[0],
3749                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3750                         skb_put(skb, l1);
3751                         length += l1;
3752                         goto copydone;
3753                 } /* if */
3754                 }
3755                 
3756                 for (j = 0; j < adapter->rx_ps_pages; j++) {
3757                         if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
3758                                 break;
3759                         pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
3760                                         PAGE_SIZE, PCI_DMA_FROMDEVICE);
3761                         ps_page_dma->ps_page_dma[j] = 0;
3762                         skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
3763                                            length);
3764                         ps_page->ps_page[j] = NULL;
3765                         skb->len += length;
3766                         skb->data_len += length;
3767                         skb->truesize += length;
3768                 }
3769
3770 copydone:
3771                 e1000_rx_checksum(adapter, staterr,
3772                                   le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
3773                 skb->protocol = eth_type_trans(skb, netdev);
3774
3775                 if (likely(rx_desc->wb.upper.header_status &
3776                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
3777                         adapter->rx_hdr_split++;
3778 #ifdef CONFIG_E1000_NAPI
3779                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3780                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3781                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
3782                                 E1000_RXD_SPC_VLAN_MASK);
3783                 } else {
3784                         netif_receive_skb(skb);
3785                 }
3786 #else /* CONFIG_E1000_NAPI */
3787                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3788                         vlan_hwaccel_rx(skb, adapter->vlgrp,
3789                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
3790                                 E1000_RXD_SPC_VLAN_MASK);
3791                 } else {
3792                         netif_rx(skb);
3793                 }
3794 #endif /* CONFIG_E1000_NAPI */
3795                 netdev->last_rx = jiffies;
3796
3797 next_desc:
3798                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
3799                 buffer_info->skb = NULL;
3800
3801                 /* return some buffers to hardware, one at a time is too slow */
3802                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3803                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3804                         cleaned_count = 0;
3805                 }
3806
3807                 /* use prefetched values */
3808                 rx_desc = next_rxd;
3809                 buffer_info = next_buffer;
3810
3811                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3812         }
3813         rx_ring->next_to_clean = i;
3814
3815         cleaned_count = E1000_DESC_UNUSED(rx_ring);
3816         if (cleaned_count)
3817                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3818
3819         return cleaned;
3820 }
3821
3822 /**
3823  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
3824  * @adapter: address of board private structure
3825  **/
3826
3827 static void
3828 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
3829                        struct e1000_rx_ring *rx_ring,
3830                        int cleaned_count)
3831 {
3832         struct net_device *netdev = adapter->netdev;
3833         struct pci_dev *pdev = adapter->pdev;
3834         struct e1000_rx_desc *rx_desc;
3835         struct e1000_buffer *buffer_info;
3836         struct sk_buff *skb;
3837         unsigned int i;
3838         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
3839
3840         i = rx_ring->next_to_use;
3841         buffer_info = &rx_ring->buffer_info[i];
3842
3843         while (cleaned_count--) {
3844                 if (!(skb = buffer_info->skb))
3845                         skb = dev_alloc_skb(bufsz);
3846                 else {
3847                         skb_trim(skb, 0);
3848                         goto map_skb;
3849                 }
3850
3851                 if (unlikely(!skb)) {
3852                         /* Better luck next round */
3853                         adapter->alloc_rx_buff_failed++;
3854                         break;
3855                 }
3856
3857                 /* Fix for errata 23, can't cross 64kB boundary */
3858                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3859                         struct sk_buff *oldskb = skb;
3860                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
3861                                              "at %p\n", bufsz, skb->data);
3862                         /* Try again, without freeing the previous */
3863                         skb = dev_alloc_skb(bufsz);
3864                         /* Failed allocation, critical failure */
3865                         if (!skb) {
3866                                 dev_kfree_skb(oldskb);
3867                                 break;
3868                         }
3869
3870                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3871                                 /* give up */
3872                                 dev_kfree_skb(skb);
3873                                 dev_kfree_skb(oldskb);
3874                                 break; /* while !buffer_info->skb */
3875                         } else {
3876                                 /* Use new allocation */
3877                                 dev_kfree_skb(oldskb);
3878                         }
3879                 }
3880                 /* Make buffer alignment 2 beyond a 16 byte boundary
3881                  * this will result in a 16 byte aligned IP header after
3882                  * the 14 byte MAC header is removed
3883                  */
3884                 skb_reserve(skb, NET_IP_ALIGN);
3885
3886                 skb->dev = netdev;
3887
3888                 buffer_info->skb = skb;
3889                 buffer_info->length = adapter->rx_buffer_len;
3890 map_skb:
3891                 buffer_info->dma = pci_map_single(pdev,
3892                                                   skb->data,
3893                                                   adapter->rx_buffer_len,
3894                                                   PCI_DMA_FROMDEVICE);
3895
3896                 /* Fix for errata 23, can't cross 64kB boundary */
3897                 if (!e1000_check_64k_bound(adapter,
3898                                         (void *)(unsigned long)buffer_info->dma,
3899                                         adapter->rx_buffer_len)) {
3900                         DPRINTK(RX_ERR, ERR,
3901                                 "dma align check failed: %u bytes at %p\n",
3902                                 adapter->rx_buffer_len,
3903                                 (void *)(unsigned long)buffer_info->dma);
3904                         dev_kfree_skb(skb);
3905                         buffer_info->skb = NULL;
3906
3907                         pci_unmap_single(pdev, buffer_info->dma,
3908                                          adapter->rx_buffer_len,
3909                                          PCI_DMA_FROMDEVICE);
3910
3911                         break; /* while !buffer_info->skb */
3912                 }
3913                 rx_desc = E1000_RX_DESC(*rx_ring, i);
3914                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3915
3916                 if (unlikely(++i == rx_ring->count))
3917                         i = 0;
3918                 buffer_info = &rx_ring->buffer_info[i];
3919         }
3920
3921         if (likely(rx_ring->next_to_use != i)) {
3922                 rx_ring->next_to_use = i;
3923                 if (unlikely(i-- == 0))
3924                         i = (rx_ring->count - 1);
3925
3926                 /* Force memory writes to complete before letting h/w
3927                  * know there are new descriptors to fetch.  (Only
3928                  * applicable for weak-ordered memory model archs,
3929                  * such as IA-64). */
3930                 wmb();
3931                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
3932         }
3933 }
3934
3935 /**
3936  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
3937  * @adapter: address of board private structure
3938  **/
3939
3940 static void
3941 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
3942                           struct e1000_rx_ring *rx_ring,
3943                           int cleaned_count)
3944 {
3945         struct net_device *netdev = adapter->netdev;
3946         struct pci_dev *pdev = adapter->pdev;
3947         union e1000_rx_desc_packet_split *rx_desc;
3948         struct e1000_buffer *buffer_info;
3949         struct e1000_ps_page *ps_page;
3950         struct e1000_ps_page_dma *ps_page_dma;
3951         struct sk_buff *skb;
3952         unsigned int i, j;
3953
3954         i = rx_ring->next_to_use;
3955         buffer_info = &rx_ring->buffer_info[i];
3956         ps_page = &rx_ring->ps_page[i];
3957         ps_page_dma = &rx_ring->ps_page_dma[i];
3958
3959         while (cleaned_count--) {
3960                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3961
3962                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
3963                         if (j < adapter->rx_ps_pages) {
3964                                 if (likely(!ps_page->ps_page[j])) {
3965                                         ps_page->ps_page[j] =
3966                                                 alloc_page(GFP_ATOMIC);
3967                                         if (unlikely(!ps_page->ps_page[j])) {
3968                                                 adapter->alloc_rx_buff_failed++;
3969                                                 goto no_buffers;
3970                                         }
3971                                         ps_page_dma->ps_page_dma[j] =
3972                                                 pci_map_page(pdev,
3973                                                             ps_page->ps_page[j],
3974                                                             0, PAGE_SIZE,
3975                                                             PCI_DMA_FROMDEVICE);
3976                                 }
3977                                 /* Refresh the desc even if buffer_addrs didn't
3978                                  * change because each write-back erases
3979                                  * this info.
3980                                  */
3981                                 rx_desc->read.buffer_addr[j+1] =
3982                                      cpu_to_le64(ps_page_dma->ps_page_dma[j]);
3983                         } else
3984                                 rx_desc->read.buffer_addr[j+1] = ~0;
3985                 }
3986
3987                 skb = dev_alloc_skb(adapter->rx_ps_bsize0 + NET_IP_ALIGN);
3988
3989                 if (unlikely(!skb)) {
3990                         adapter->alloc_rx_buff_failed++;
3991                         break;
3992                 }
3993
3994                 /* Make buffer alignment 2 beyond a 16 byte boundary
3995                  * this will result in a 16 byte aligned IP header after
3996                  * the 14 byte MAC header is removed
3997                  */
3998                 skb_reserve(skb, NET_IP_ALIGN);
3999
4000                 skb->dev = netdev;
4001
4002                 buffer_info->skb = skb;
4003                 buffer_info->length = adapter->rx_ps_bsize0;
4004                 buffer_info->dma = pci_map_single(pdev, skb->data,
4005                                                   adapter->rx_ps_bsize0,
4006                                                   PCI_DMA_FROMDEVICE);
4007
4008                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
4009
4010                 if (unlikely(++i == rx_ring->count)) i = 0;
4011                 buffer_info = &rx_ring->buffer_info[i];
4012                 ps_page = &rx_ring->ps_page[i];
4013                 ps_page_dma = &rx_ring->ps_page_dma[i];
4014         }
4015
4016 no_buffers:
4017         if (likely(rx_ring->next_to_use != i)) {
4018                 rx_ring->next_to_use = i;
4019                 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4020
4021                 /* Force memory writes to complete before letting h/w
4022                  * know there are new descriptors to fetch.  (Only
4023                  * applicable for weak-ordered memory model archs,
4024                  * such as IA-64). */
4025                 wmb();
4026                 /* Hardware increments by 16 bytes, but packet split
4027                  * descriptors are 32 bytes...so we increment tail
4028                  * twice as much.
4029                  */
4030                 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
4031         }
4032 }
4033
4034 /**
4035  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4036  * @adapter:
4037  **/
4038
4039 static void
4040 e1000_smartspeed(struct e1000_adapter *adapter)
4041 {
4042         uint16_t phy_status;
4043         uint16_t phy_ctrl;
4044
4045         if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
4046            !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
4047                 return;
4048
4049         if (adapter->smartspeed == 0) {
4050                 /* If Master/Slave config fault is asserted twice,
4051                  * we assume back-to-back */
4052                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4053                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4054                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4055                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4056                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4057                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4058                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4059                         e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
4060                                             phy_ctrl);
4061                         adapter->smartspeed++;
4062                         if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4063                            !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
4064                                                &phy_ctrl)) {
4065                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4066                                              MII_CR_RESTART_AUTO_NEG);
4067                                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
4068                                                     phy_ctrl);
4069                         }
4070                 }
4071                 return;
4072         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4073                 /* If still no link, perhaps using 2/3 pair cable */
4074                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4075                 phy_ctrl |= CR_1000T_MS_ENABLE;
4076                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
4077                 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4078                    !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
4079                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4080                                      MII_CR_RESTART_AUTO_NEG);
4081                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
4082                 }
4083         }
4084         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4085         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4086                 adapter->smartspeed = 0;
4087 }
4088
4089 /**
4090  * e1000_ioctl -
4091  * @netdev:
4092  * @ifreq:
4093  * @cmd:
4094  **/
4095
4096 static int
4097 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4098 {
4099         switch (cmd) {
4100         case SIOCGMIIPHY:
4101         case SIOCGMIIREG:
4102         case SIOCSMIIREG:
4103                 return e1000_mii_ioctl(netdev, ifr, cmd);
4104         default:
4105                 return -EOPNOTSUPP;
4106         }
4107 }
4108
4109 /**
4110  * e1000_mii_ioctl -
4111  * @netdev:
4112  * @ifreq:
4113  * @cmd:
4114  **/
4115
4116 static int
4117 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4118 {
4119         struct e1000_adapter *adapter = netdev_priv(netdev);
4120         struct mii_ioctl_data *data = if_mii(ifr);
4121         int retval;
4122         uint16_t mii_reg;
4123         uint16_t spddplx;
4124         unsigned long flags;
4125
4126         if (adapter->hw.media_type != e1000_media_type_copper)
4127                 return -EOPNOTSUPP;
4128
4129         switch (cmd) {
4130         case SIOCGMIIPHY:
4131                 data->phy_id = adapter->hw.phy_addr;
4132                 break;
4133         case SIOCGMIIREG:
4134                 if (!capable(CAP_NET_ADMIN))
4135                         return -EPERM;
4136                 spin_lock_irqsave(&adapter->stats_lock, flags);
4137                 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4138                                    &data->val_out)) {
4139                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4140                         return -EIO;
4141                 }
4142                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4143                 break;
4144         case SIOCSMIIREG:
4145                 if (!capable(CAP_NET_ADMIN))
4146                         return -EPERM;
4147                 if (data->reg_num & ~(0x1F))
4148                         return -EFAULT;
4149                 mii_reg = data->val_in;
4150                 spin_lock_irqsave(&adapter->stats_lock, flags);
4151                 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
4152                                         mii_reg)) {
4153                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4154                         return -EIO;
4155                 }
4156                 if (adapter->hw.media_type == e1000_media_type_copper) {
4157                         switch (data->reg_num) {
4158                         case PHY_CTRL:
4159                                 if (mii_reg & MII_CR_POWER_DOWN)
4160                                         break;
4161                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4162                                         adapter->hw.autoneg = 1;
4163                                         adapter->hw.autoneg_advertised = 0x2F;
4164                                 } else {
4165                                         if (mii_reg & 0x40)
4166                                                 spddplx = SPEED_1000;
4167                                         else if (mii_reg & 0x2000)
4168                                                 spddplx = SPEED_100;
4169                                         else
4170                                                 spddplx = SPEED_10;
4171                                         spddplx += (mii_reg & 0x100)
4172                                                    ? DUPLEX_FULL :
4173                                                    DUPLEX_HALF;
4174                                         retval = e1000_set_spd_dplx(adapter,
4175                                                                     spddplx);
4176                                         if (retval) {
4177                                                 spin_unlock_irqrestore(
4178                                                         &adapter->stats_lock,
4179                                                         flags);
4180                                                 return retval;
4181                                         }
4182                                 }
4183                                 if (netif_running(adapter->netdev)) {
4184                                         e1000_down(adapter);
4185                                         e1000_up(adapter);
4186                                 } else
4187                                         e1000_reset(adapter);
4188                                 break;
4189                         case M88E1000_PHY_SPEC_CTRL:
4190                         case M88E1000_EXT_PHY_SPEC_CTRL:
4191                                 if (e1000_phy_reset(&adapter->hw)) {
4192                                         spin_unlock_irqrestore(
4193                                                 &adapter->stats_lock, flags);
4194                                         return -EIO;
4195                                 }
4196                                 break;
4197                         }
4198                 } else {
4199                         switch (data->reg_num) {
4200                         case PHY_CTRL:
4201                                 if (mii_reg & MII_CR_POWER_DOWN)
4202                                         break;
4203                                 if (netif_running(adapter->netdev)) {
4204                                         e1000_down(adapter);
4205                                         e1000_up(adapter);
4206                                 } else
4207                                         e1000_reset(adapter);
4208                                 break;
4209                         }
4210                 }
4211                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4212                 break;
4213         default:
4214                 return -EOPNOTSUPP;
4215         }
4216         return E1000_SUCCESS;
4217 }
4218
4219 void
4220 e1000_pci_set_mwi(struct e1000_hw *hw)
4221 {
4222         struct e1000_adapter *adapter = hw->back;
4223         int ret_val = pci_set_mwi(adapter->pdev);
4224
4225         if (ret_val)
4226                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4227 }
4228
4229 void
4230 e1000_pci_clear_mwi(struct e1000_hw *hw)
4231 {
4232         struct e1000_adapter *adapter = hw->back;
4233
4234         pci_clear_mwi(adapter->pdev);
4235 }
4236
4237 void
4238 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4239 {
4240         struct e1000_adapter *adapter = hw->back;
4241
4242         pci_read_config_word(adapter->pdev, reg, value);
4243 }
4244
4245 void
4246 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4247 {
4248         struct e1000_adapter *adapter = hw->back;
4249
4250         pci_write_config_word(adapter->pdev, reg, *value);
4251 }
4252
4253 uint32_t
4254 e1000_io_read(struct e1000_hw *hw, unsigned long port)
4255 {
4256         return inl(port);
4257 }
4258
4259 void
4260 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4261 {
4262         outl(value, port);
4263 }
4264
4265 static void
4266 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4267 {
4268         struct e1000_adapter *adapter = netdev_priv(netdev);
4269         uint32_t ctrl, rctl;
4270
4271         e1000_irq_disable(adapter);
4272         adapter->vlgrp = grp;
4273
4274         if (grp) {
4275                 /* enable VLAN tag insert/strip */
4276                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4277                 ctrl |= E1000_CTRL_VME;
4278                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4279
4280                 /* enable VLAN receive filtering */
4281                 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4282                 rctl |= E1000_RCTL_VFE;
4283                 rctl &= ~E1000_RCTL_CFIEN;
4284                 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4285                 e1000_update_mng_vlan(adapter);
4286         } else {
4287                 /* disable VLAN tag insert/strip */
4288                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4289                 ctrl &= ~E1000_CTRL_VME;
4290                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4291
4292                 /* disable VLAN filtering */
4293                 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4294                 rctl &= ~E1000_RCTL_VFE;
4295                 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4296                 if (adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) {
4297                         e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4298                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4299                 }
4300         }
4301
4302         e1000_irq_enable(adapter);
4303 }
4304
4305 static void
4306 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4307 {
4308         struct e1000_adapter *adapter = netdev_priv(netdev);
4309         uint32_t vfta, index;
4310
4311         if ((adapter->hw.mng_cookie.status &
4312              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4313             (vid == adapter->mng_vlan_id))
4314                 return;
4315         /* add VID to filter table */
4316         index = (vid >> 5) & 0x7F;
4317         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4318         vfta |= (1 << (vid & 0x1F));
4319         e1000_write_vfta(&adapter->hw, index, vfta);
4320 }
4321
4322 static void
4323 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
4324 {
4325         struct e1000_adapter *adapter = netdev_priv(netdev);
4326         uint32_t vfta, index;
4327
4328         e1000_irq_disable(adapter);
4329
4330         if (adapter->vlgrp)
4331                 adapter->vlgrp->vlan_devices[vid] = NULL;
4332
4333         e1000_irq_enable(adapter);
4334
4335         if ((adapter->hw.mng_cookie.status &
4336              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4337             (vid == adapter->mng_vlan_id)) {
4338                 /* release control to f/w */
4339                 e1000_release_hw_control(adapter);
4340                 return;
4341         }
4342
4343         /* remove VID from filter table */
4344         index = (vid >> 5) & 0x7F;
4345         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4346         vfta &= ~(1 << (vid & 0x1F));
4347         e1000_write_vfta(&adapter->hw, index, vfta);
4348 }
4349
4350 static void
4351 e1000_restore_vlan(struct e1000_adapter *adapter)
4352 {
4353         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4354
4355         if (adapter->vlgrp) {
4356                 uint16_t vid;
4357                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4358                         if (!adapter->vlgrp->vlan_devices[vid])
4359                                 continue;
4360                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
4361                 }
4362         }
4363 }
4364
4365 int
4366 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
4367 {
4368         adapter->hw.autoneg = 0;
4369
4370         /* Fiber NICs only allow 1000 gbps Full duplex */
4371         if ((adapter->hw.media_type == e1000_media_type_fiber) &&
4372                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4373                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4374                 return -EINVAL;
4375         }
4376
4377         switch (spddplx) {
4378         case SPEED_10 + DUPLEX_HALF:
4379                 adapter->hw.forced_speed_duplex = e1000_10_half;
4380                 break;
4381         case SPEED_10 + DUPLEX_FULL:
4382                 adapter->hw.forced_speed_duplex = e1000_10_full;
4383                 break;
4384         case SPEED_100 + DUPLEX_HALF:
4385                 adapter->hw.forced_speed_duplex = e1000_100_half;
4386                 break;
4387         case SPEED_100 + DUPLEX_FULL:
4388                 adapter->hw.forced_speed_duplex = e1000_100_full;
4389                 break;
4390         case SPEED_1000 + DUPLEX_FULL:
4391                 adapter->hw.autoneg = 1;
4392                 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
4393                 break;
4394         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4395         default:
4396                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4397                 return -EINVAL;
4398         }
4399         return 0;
4400 }
4401
4402 #ifdef CONFIG_PM
4403 /* Save/restore 16 or 64 dwords of PCI config space depending on which
4404  * bus we're on (PCI(X) vs. PCI-E)
4405  */
4406 #define PCIE_CONFIG_SPACE_LEN 256
4407 #define PCI_CONFIG_SPACE_LEN 64
4408 static int
4409 e1000_pci_save_state(struct e1000_adapter *adapter)
4410 {
4411         struct pci_dev *dev = adapter->pdev;
4412         int size;
4413         int i;
4414
4415         if (adapter->hw.mac_type >= e1000_82571)
4416                 size = PCIE_CONFIG_SPACE_LEN;
4417         else
4418                 size = PCI_CONFIG_SPACE_LEN;
4419
4420         WARN_ON(adapter->config_space != NULL);
4421
4422         adapter->config_space = kmalloc(size, GFP_KERNEL);
4423         if (!adapter->config_space) {
4424                 DPRINTK(PROBE, ERR, "unable to allocate %d bytes\n", size);
4425                 return -ENOMEM;
4426         }
4427         for (i = 0; i < (size / 4); i++)
4428                 pci_read_config_dword(dev, i * 4, &adapter->config_space[i]);
4429         return 0;
4430 }
4431
4432 static void
4433 e1000_pci_restore_state(struct e1000_adapter *adapter)
4434 {
4435         struct pci_dev *dev = adapter->pdev;
4436         int size;
4437         int i;
4438
4439         if (adapter->config_space == NULL)
4440                 return;
4441
4442         if (adapter->hw.mac_type >= e1000_82571)
4443                 size = PCIE_CONFIG_SPACE_LEN;
4444         else
4445                 size = PCI_CONFIG_SPACE_LEN;
4446         for (i = 0; i < (size / 4); i++)
4447                 pci_write_config_dword(dev, i * 4, adapter->config_space[i]);
4448         kfree(adapter->config_space);
4449         adapter->config_space = NULL;
4450         return;
4451 }
4452 #endif /* CONFIG_PM */
4453
4454 static int
4455 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4456 {
4457         struct net_device *netdev = pci_get_drvdata(pdev);
4458         struct e1000_adapter *adapter = netdev_priv(netdev);
4459         uint32_t ctrl, ctrl_ext, rctl, manc, status;
4460         uint32_t wufc = adapter->wol;
4461         int retval = 0;
4462
4463         netif_device_detach(netdev);
4464
4465         if (netif_running(netdev))
4466                 e1000_down(adapter);
4467
4468 #ifdef CONFIG_PM
4469         /* Implement our own version of pci_save_state(pdev) because pci-
4470          * express adapters have 256-byte config spaces. */
4471         retval = e1000_pci_save_state(adapter);
4472         if (retval)
4473                 return retval;
4474 #endif
4475
4476         status = E1000_READ_REG(&adapter->hw, STATUS);
4477         if (status & E1000_STATUS_LU)
4478                 wufc &= ~E1000_WUFC_LNKC;
4479
4480         if (wufc) {
4481                 e1000_setup_rctl(adapter);
4482                 e1000_set_multi(netdev);
4483
4484                 /* turn on all-multi mode if wake on multicast is enabled */
4485                 if (adapter->wol & E1000_WUFC_MC) {
4486                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4487                         rctl |= E1000_RCTL_MPE;
4488                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4489                 }
4490
4491                 if (adapter->hw.mac_type >= e1000_82540) {
4492                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4493                         /* advertise wake from D3Cold */
4494                         #define E1000_CTRL_ADVD3WUC 0x00100000
4495                         /* phy power management enable */
4496                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4497                         ctrl |= E1000_CTRL_ADVD3WUC |
4498                                 E1000_CTRL_EN_PHY_PWR_MGMT;
4499                         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4500                 }
4501
4502                 if (adapter->hw.media_type == e1000_media_type_fiber ||
4503                    adapter->hw.media_type == e1000_media_type_internal_serdes) {
4504                         /* keep the laser running in D3 */
4505                         ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
4506                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4507                         E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
4508                 }
4509
4510                 /* Allow time for pending master requests to run */
4511                 e1000_disable_pciex_master(&adapter->hw);
4512
4513                 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
4514                 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
4515                 pci_enable_wake(pdev, PCI_D3hot, 1);
4516                 pci_enable_wake(pdev, PCI_D3cold, 1);
4517         } else {
4518                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
4519                 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
4520                 pci_enable_wake(pdev, PCI_D3hot, 0);
4521                 pci_enable_wake(pdev, PCI_D3cold, 0);
4522         }
4523
4524         if (adapter->hw.mac_type >= e1000_82540 &&
4525            adapter->hw.media_type == e1000_media_type_copper) {
4526                 manc = E1000_READ_REG(&adapter->hw, MANC);
4527                 if (manc & E1000_MANC_SMBUS_EN) {
4528                         manc |= E1000_MANC_ARP_EN;
4529                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
4530                         pci_enable_wake(pdev, PCI_D3hot, 1);
4531                         pci_enable_wake(pdev, PCI_D3cold, 1);
4532                 }
4533         }
4534
4535         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
4536          * would have already happened in close and is redundant. */
4537         e1000_release_hw_control(adapter);
4538
4539         pci_disable_device(pdev);
4540
4541         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4542
4543         return 0;
4544 }
4545
4546 #ifdef CONFIG_PM
4547 static int
4548 e1000_resume(struct pci_dev *pdev)
4549 {
4550         struct net_device *netdev = pci_get_drvdata(pdev);
4551         struct e1000_adapter *adapter = netdev_priv(netdev);
4552         uint32_t manc, ret_val;
4553
4554         pci_set_power_state(pdev, PCI_D0);
4555         e1000_pci_restore_state(adapter);
4556         ret_val = pci_enable_device(pdev);
4557         pci_set_master(pdev);
4558
4559         pci_enable_wake(pdev, PCI_D3hot, 0);
4560         pci_enable_wake(pdev, PCI_D3cold, 0);
4561
4562         e1000_reset(adapter);
4563         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4564
4565         if (netif_running(netdev))
4566                 e1000_up(adapter);
4567
4568         netif_device_attach(netdev);
4569
4570         if (adapter->hw.mac_type >= e1000_82540 &&
4571            adapter->hw.media_type == e1000_media_type_copper) {
4572                 manc = E1000_READ_REG(&adapter->hw, MANC);
4573                 manc &= ~(E1000_MANC_ARP_EN);
4574                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4575         }
4576
4577         /* If the controller is 82573 and f/w is AMT, do not set
4578          * DRV_LOAD until the interface is up.  For all other cases,
4579          * let the f/w know that the h/w is now under the control
4580          * of the driver. */
4581         if (adapter->hw.mac_type != e1000_82573 ||
4582             !e1000_check_mng_mode(&adapter->hw))
4583                 e1000_get_hw_control(adapter);
4584
4585         return 0;
4586 }
4587 #endif
4588
4589 static void e1000_shutdown(struct pci_dev *pdev)
4590 {
4591         e1000_suspend(pdev, PMSG_SUSPEND);
4592 }
4593
4594 #ifdef CONFIG_NET_POLL_CONTROLLER
4595 /*
4596  * Polling 'interrupt' - used by things like netconsole to send skbs
4597  * without having to re-enable interrupts. It's not called while
4598  * the interrupt routine is executing.
4599  */
4600 static void
4601 e1000_netpoll(struct net_device *netdev)
4602 {
4603         struct e1000_adapter *adapter = netdev_priv(netdev);
4604         disable_irq(adapter->pdev->irq);
4605         e1000_intr(adapter->pdev->irq, netdev, NULL);
4606         e1000_clean_tx_irq(adapter, adapter->tx_ring);
4607 #ifndef CONFIG_E1000_NAPI
4608         adapter->clean_rx(adapter, adapter->rx_ring);
4609 #endif
4610         enable_irq(adapter->pdev->irq);
4611 }
4612 #endif
4613
4614 /**
4615  * e1000_io_error_detected - called when PCI error is detected
4616  * @pdev: Pointer to PCI device
4617  * @state: The current pci conneection state
4618  *
4619  * This function is called after a PCI bus error affecting
4620  * this device has been detected.
4621  */
4622 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
4623 {
4624         struct net_device *netdev = pci_get_drvdata(pdev);
4625         struct e1000_adapter *adapter = netdev->priv;
4626
4627         netif_device_detach(netdev);
4628
4629         if (netif_running(netdev))
4630                 e1000_down(adapter);
4631
4632         /* Request a slot slot reset. */
4633         return PCI_ERS_RESULT_NEED_RESET;
4634 }
4635
4636 /**
4637  * e1000_io_slot_reset - called after the pci bus has been reset.
4638  * @pdev: Pointer to PCI device
4639  *
4640  * Restart the card from scratch, as if from a cold-boot. Implementation
4641  * resembles the first-half of the e1000_resume routine.
4642  */
4643 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4644 {
4645         struct net_device *netdev = pci_get_drvdata(pdev);
4646         struct e1000_adapter *adapter = netdev->priv;
4647
4648         if (pci_enable_device(pdev)) {
4649                 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
4650                 return PCI_ERS_RESULT_DISCONNECT;
4651         }
4652         pci_set_master(pdev);
4653
4654         pci_enable_wake(pdev, 3, 0);
4655         pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
4656
4657         /* Perform card reset only on one instance of the card */
4658         if (PCI_FUNC (pdev->devfn) != 0)
4659                 return PCI_ERS_RESULT_RECOVERED;
4660
4661         e1000_reset(adapter);
4662         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4663
4664         return PCI_ERS_RESULT_RECOVERED;
4665 }
4666
4667 /**
4668  * e1000_io_resume - called when traffic can start flowing again.
4669  * @pdev: Pointer to PCI device
4670  *
4671  * This callback is called when the error recovery driver tells us that
4672  * its OK to resume normal operation. Implementation resembles the
4673  * second-half of the e1000_resume routine.
4674  */
4675 static void e1000_io_resume(struct pci_dev *pdev)
4676 {
4677         struct net_device *netdev = pci_get_drvdata(pdev);
4678         struct e1000_adapter *adapter = netdev->priv;
4679         uint32_t manc, swsm;
4680
4681         if (netif_running(netdev)) {
4682                 if (e1000_up(adapter)) {
4683                         printk("e1000: can't bring device back up after reset\n");
4684                         return;
4685                 }
4686         }
4687
4688         netif_device_attach(netdev);
4689
4690         if (adapter->hw.mac_type >= e1000_82540 &&
4691             adapter->hw.media_type == e1000_media_type_copper) {
4692                 manc = E1000_READ_REG(&adapter->hw, MANC);
4693                 manc &= ~(E1000_MANC_ARP_EN);
4694                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4695         }
4696
4697         switch (adapter->hw.mac_type) {
4698         case e1000_82573:
4699                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
4700                 E1000_WRITE_REG(&adapter->hw, SWSM,
4701                                 swsm | E1000_SWSM_DRV_LOAD);
4702                 break;
4703         default:
4704                 break;
4705         }
4706
4707         if (netif_running(netdev))
4708                 mod_timer(&adapter->watchdog_timer, jiffies);
4709 }
4710
4711 /* e1000_main.c */