net: convert print_mac to %pM
[linux-2.6.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #define DRV_VERSION "7.3.20-k3-NAPI"
35 const char e1000_driver_version[] = DRV_VERSION;
36 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
37
38 /* e1000_pci_tbl - PCI Device ID Table
39  *
40  * Last entry must be all 0s
41  *
42  * Macro expands to...
43  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
44  */
45 static struct pci_device_id e1000_pci_tbl[] = {
46         INTEL_E1000_ETHERNET_DEVICE(0x1000),
47         INTEL_E1000_ETHERNET_DEVICE(0x1001),
48         INTEL_E1000_ETHERNET_DEVICE(0x1004),
49         INTEL_E1000_ETHERNET_DEVICE(0x1008),
50         INTEL_E1000_ETHERNET_DEVICE(0x1009),
51         INTEL_E1000_ETHERNET_DEVICE(0x100C),
52         INTEL_E1000_ETHERNET_DEVICE(0x100D),
53         INTEL_E1000_ETHERNET_DEVICE(0x100E),
54         INTEL_E1000_ETHERNET_DEVICE(0x100F),
55         INTEL_E1000_ETHERNET_DEVICE(0x1010),
56         INTEL_E1000_ETHERNET_DEVICE(0x1011),
57         INTEL_E1000_ETHERNET_DEVICE(0x1012),
58         INTEL_E1000_ETHERNET_DEVICE(0x1013),
59         INTEL_E1000_ETHERNET_DEVICE(0x1014),
60         INTEL_E1000_ETHERNET_DEVICE(0x1015),
61         INTEL_E1000_ETHERNET_DEVICE(0x1016),
62         INTEL_E1000_ETHERNET_DEVICE(0x1017),
63         INTEL_E1000_ETHERNET_DEVICE(0x1018),
64         INTEL_E1000_ETHERNET_DEVICE(0x1019),
65         INTEL_E1000_ETHERNET_DEVICE(0x101A),
66         INTEL_E1000_ETHERNET_DEVICE(0x101D),
67         INTEL_E1000_ETHERNET_DEVICE(0x101E),
68         INTEL_E1000_ETHERNET_DEVICE(0x1026),
69         INTEL_E1000_ETHERNET_DEVICE(0x1027),
70         INTEL_E1000_ETHERNET_DEVICE(0x1028),
71         INTEL_E1000_ETHERNET_DEVICE(0x1075),
72         INTEL_E1000_ETHERNET_DEVICE(0x1076),
73         INTEL_E1000_ETHERNET_DEVICE(0x1077),
74         INTEL_E1000_ETHERNET_DEVICE(0x1078),
75         INTEL_E1000_ETHERNET_DEVICE(0x1079),
76         INTEL_E1000_ETHERNET_DEVICE(0x107A),
77         INTEL_E1000_ETHERNET_DEVICE(0x107B),
78         INTEL_E1000_ETHERNET_DEVICE(0x107C),
79         INTEL_E1000_ETHERNET_DEVICE(0x108A),
80         INTEL_E1000_ETHERNET_DEVICE(0x1099),
81         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
82         /* required last entry */
83         {0,}
84 };
85
86 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
87
88 int e1000_up(struct e1000_adapter *adapter);
89 void e1000_down(struct e1000_adapter *adapter);
90 void e1000_reinit_locked(struct e1000_adapter *adapter);
91 void e1000_reset(struct e1000_adapter *adapter);
92 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx);
93 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
94 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
95 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
96 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
97 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
98                              struct e1000_tx_ring *txdr);
99 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
100                              struct e1000_rx_ring *rxdr);
101 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
102                              struct e1000_tx_ring *tx_ring);
103 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
104                              struct e1000_rx_ring *rx_ring);
105 void e1000_update_stats(struct e1000_adapter *adapter);
106
107 static int e1000_init_module(void);
108 static void e1000_exit_module(void);
109 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
110 static void __devexit e1000_remove(struct pci_dev *pdev);
111 static int e1000_alloc_queues(struct e1000_adapter *adapter);
112 static int e1000_sw_init(struct e1000_adapter *adapter);
113 static int e1000_open(struct net_device *netdev);
114 static int e1000_close(struct net_device *netdev);
115 static void e1000_configure_tx(struct e1000_adapter *adapter);
116 static void e1000_configure_rx(struct e1000_adapter *adapter);
117 static void e1000_setup_rctl(struct e1000_adapter *adapter);
118 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
119 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
120 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
121                                 struct e1000_tx_ring *tx_ring);
122 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
123                                 struct e1000_rx_ring *rx_ring);
124 static void e1000_set_rx_mode(struct net_device *netdev);
125 static void e1000_update_phy_info(unsigned long data);
126 static void e1000_watchdog(unsigned long data);
127 static void e1000_82547_tx_fifo_stall(unsigned long data);
128 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
129 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
130 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
131 static int e1000_set_mac(struct net_device *netdev, void *p);
132 static irqreturn_t e1000_intr(int irq, void *data);
133 static irqreturn_t e1000_intr_msi(int irq, void *data);
134 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
135                                struct e1000_tx_ring *tx_ring);
136 static int e1000_clean(struct napi_struct *napi, int budget);
137 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
138                                struct e1000_rx_ring *rx_ring,
139                                int *work_done, int work_to_do);
140 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
141                                    struct e1000_rx_ring *rx_ring,
142                                    int cleaned_count);
143 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
144 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
145                            int cmd);
146 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
147 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
148 static void e1000_tx_timeout(struct net_device *dev);
149 static void e1000_reset_task(struct work_struct *work);
150 static void e1000_smartspeed(struct e1000_adapter *adapter);
151 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
152                                        struct sk_buff *skb);
153
154 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
155 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
156 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
157 static void e1000_restore_vlan(struct e1000_adapter *adapter);
158
159 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
160 #ifdef CONFIG_PM
161 static int e1000_resume(struct pci_dev *pdev);
162 #endif
163 static void e1000_shutdown(struct pci_dev *pdev);
164
165 #ifdef CONFIG_NET_POLL_CONTROLLER
166 /* for netdump / net console */
167 static void e1000_netpoll (struct net_device *netdev);
168 #endif
169
170 #define COPYBREAK_DEFAULT 256
171 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
172 module_param(copybreak, uint, 0644);
173 MODULE_PARM_DESC(copybreak,
174         "Maximum size of packet that is copied to a new buffer on receive");
175
176 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
177                      pci_channel_state_t state);
178 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
179 static void e1000_io_resume(struct pci_dev *pdev);
180
181 static struct pci_error_handlers e1000_err_handler = {
182         .error_detected = e1000_io_error_detected,
183         .slot_reset = e1000_io_slot_reset,
184         .resume = e1000_io_resume,
185 };
186
187 static struct pci_driver e1000_driver = {
188         .name     = e1000_driver_name,
189         .id_table = e1000_pci_tbl,
190         .probe    = e1000_probe,
191         .remove   = __devexit_p(e1000_remove),
192 #ifdef CONFIG_PM
193         /* Power Managment Hooks */
194         .suspend  = e1000_suspend,
195         .resume   = e1000_resume,
196 #endif
197         .shutdown = e1000_shutdown,
198         .err_handler = &e1000_err_handler
199 };
200
201 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
202 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
203 MODULE_LICENSE("GPL");
204 MODULE_VERSION(DRV_VERSION);
205
206 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
207 module_param(debug, int, 0);
208 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
209
210 /**
211  * e1000_init_module - Driver Registration Routine
212  *
213  * e1000_init_module is the first routine called when the driver is
214  * loaded. All it does is register with the PCI subsystem.
215  **/
216
217 static int __init e1000_init_module(void)
218 {
219         int ret;
220         printk(KERN_INFO "%s - version %s\n",
221                e1000_driver_string, e1000_driver_version);
222
223         printk(KERN_INFO "%s\n", e1000_copyright);
224
225         ret = pci_register_driver(&e1000_driver);
226         if (copybreak != COPYBREAK_DEFAULT) {
227                 if (copybreak == 0)
228                         printk(KERN_INFO "e1000: copybreak disabled\n");
229                 else
230                         printk(KERN_INFO "e1000: copybreak enabled for "
231                                "packets <= %u bytes\n", copybreak);
232         }
233         return ret;
234 }
235
236 module_init(e1000_init_module);
237
238 /**
239  * e1000_exit_module - Driver Exit Cleanup Routine
240  *
241  * e1000_exit_module is called just before the driver is removed
242  * from memory.
243  **/
244
245 static void __exit e1000_exit_module(void)
246 {
247         pci_unregister_driver(&e1000_driver);
248 }
249
250 module_exit(e1000_exit_module);
251
252 static int e1000_request_irq(struct e1000_adapter *adapter)
253 {
254         struct e1000_hw *hw = &adapter->hw;
255         struct net_device *netdev = adapter->netdev;
256         irq_handler_t handler = e1000_intr;
257         int irq_flags = IRQF_SHARED;
258         int err;
259
260         if (hw->mac_type >= e1000_82571) {
261                 adapter->have_msi = !pci_enable_msi(adapter->pdev);
262                 if (adapter->have_msi) {
263                         handler = e1000_intr_msi;
264                         irq_flags = 0;
265                 }
266         }
267
268         err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
269                           netdev);
270         if (err) {
271                 if (adapter->have_msi)
272                         pci_disable_msi(adapter->pdev);
273                 DPRINTK(PROBE, ERR,
274                         "Unable to allocate interrupt Error: %d\n", err);
275         }
276
277         return err;
278 }
279
280 static void e1000_free_irq(struct e1000_adapter *adapter)
281 {
282         struct net_device *netdev = adapter->netdev;
283
284         free_irq(adapter->pdev->irq, netdev);
285
286         if (adapter->have_msi)
287                 pci_disable_msi(adapter->pdev);
288 }
289
290 /**
291  * e1000_irq_disable - Mask off interrupt generation on the NIC
292  * @adapter: board private structure
293  **/
294
295 static void e1000_irq_disable(struct e1000_adapter *adapter)
296 {
297         struct e1000_hw *hw = &adapter->hw;
298
299         ew32(IMC, ~0);
300         E1000_WRITE_FLUSH();
301         synchronize_irq(adapter->pdev->irq);
302 }
303
304 /**
305  * e1000_irq_enable - Enable default interrupt generation settings
306  * @adapter: board private structure
307  **/
308
309 static void e1000_irq_enable(struct e1000_adapter *adapter)
310 {
311         struct e1000_hw *hw = &adapter->hw;
312
313         ew32(IMS, IMS_ENABLE_MASK);
314         E1000_WRITE_FLUSH();
315 }
316
317 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
318 {
319         struct e1000_hw *hw = &adapter->hw;
320         struct net_device *netdev = adapter->netdev;
321         u16 vid = hw->mng_cookie.vlan_id;
322         u16 old_vid = adapter->mng_vlan_id;
323         if (adapter->vlgrp) {
324                 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
325                         if (hw->mng_cookie.status &
326                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
327                                 e1000_vlan_rx_add_vid(netdev, vid);
328                                 adapter->mng_vlan_id = vid;
329                         } else
330                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
331
332                         if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
333                                         (vid != old_vid) &&
334                             !vlan_group_get_device(adapter->vlgrp, old_vid))
335                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
336                 } else
337                         adapter->mng_vlan_id = vid;
338         }
339 }
340
341 /**
342  * e1000_release_hw_control - release control of the h/w to f/w
343  * @adapter: address of board private structure
344  *
345  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
346  * For ASF and Pass Through versions of f/w this means that the
347  * driver is no longer loaded. For AMT version (only with 82573) i
348  * of the f/w this means that the network i/f is closed.
349  *
350  **/
351
352 static void e1000_release_hw_control(struct e1000_adapter *adapter)
353 {
354         u32 ctrl_ext;
355         u32 swsm;
356         struct e1000_hw *hw = &adapter->hw;
357
358         /* Let firmware taken over control of h/w */
359         switch (hw->mac_type) {
360         case e1000_82573:
361                 swsm = er32(SWSM);
362                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
363                 break;
364         case e1000_82571:
365         case e1000_82572:
366         case e1000_80003es2lan:
367         case e1000_ich8lan:
368                 ctrl_ext = er32(CTRL_EXT);
369                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
370                 break;
371         default:
372                 break;
373         }
374 }
375
376 /**
377  * e1000_get_hw_control - get control of the h/w from f/w
378  * @adapter: address of board private structure
379  *
380  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
381  * For ASF and Pass Through versions of f/w this means that
382  * the driver is loaded. For AMT version (only with 82573)
383  * of the f/w this means that the network i/f is open.
384  *
385  **/
386
387 static void e1000_get_hw_control(struct e1000_adapter *adapter)
388 {
389         u32 ctrl_ext;
390         u32 swsm;
391         struct e1000_hw *hw = &adapter->hw;
392
393         /* Let firmware know the driver has taken over */
394         switch (hw->mac_type) {
395         case e1000_82573:
396                 swsm = er32(SWSM);
397                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
398                 break;
399         case e1000_82571:
400         case e1000_82572:
401         case e1000_80003es2lan:
402         case e1000_ich8lan:
403                 ctrl_ext = er32(CTRL_EXT);
404                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
405                 break;
406         default:
407                 break;
408         }
409 }
410
411 static void e1000_init_manageability(struct e1000_adapter *adapter)
412 {
413         struct e1000_hw *hw = &adapter->hw;
414
415         if (adapter->en_mng_pt) {
416                 u32 manc = er32(MANC);
417
418                 /* disable hardware interception of ARP */
419                 manc &= ~(E1000_MANC_ARP_EN);
420
421                 /* enable receiving management packets to the host */
422                 /* this will probably generate destination unreachable messages
423                  * from the host OS, but the packets will be handled on SMBUS */
424                 if (hw->has_manc2h) {
425                         u32 manc2h = er32(MANC2H);
426
427                         manc |= E1000_MANC_EN_MNG2HOST;
428 #define E1000_MNG2HOST_PORT_623 (1 << 5)
429 #define E1000_MNG2HOST_PORT_664 (1 << 6)
430                         manc2h |= E1000_MNG2HOST_PORT_623;
431                         manc2h |= E1000_MNG2HOST_PORT_664;
432                         ew32(MANC2H, manc2h);
433                 }
434
435                 ew32(MANC, manc);
436         }
437 }
438
439 static void e1000_release_manageability(struct e1000_adapter *adapter)
440 {
441         struct e1000_hw *hw = &adapter->hw;
442
443         if (adapter->en_mng_pt) {
444                 u32 manc = er32(MANC);
445
446                 /* re-enable hardware interception of ARP */
447                 manc |= E1000_MANC_ARP_EN;
448
449                 if (hw->has_manc2h)
450                         manc &= ~E1000_MANC_EN_MNG2HOST;
451
452                 /* don't explicitly have to mess with MANC2H since
453                  * MANC has an enable disable that gates MANC2H */
454
455                 ew32(MANC, manc);
456         }
457 }
458
459 /**
460  * e1000_configure - configure the hardware for RX and TX
461  * @adapter = private board structure
462  **/
463 static void e1000_configure(struct e1000_adapter *adapter)
464 {
465         struct net_device *netdev = adapter->netdev;
466         int i;
467
468         e1000_set_rx_mode(netdev);
469
470         e1000_restore_vlan(adapter);
471         e1000_init_manageability(adapter);
472
473         e1000_configure_tx(adapter);
474         e1000_setup_rctl(adapter);
475         e1000_configure_rx(adapter);
476         /* call E1000_DESC_UNUSED which always leaves
477          * at least 1 descriptor unused to make sure
478          * next_to_use != next_to_clean */
479         for (i = 0; i < adapter->num_rx_queues; i++) {
480                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
481                 adapter->alloc_rx_buf(adapter, ring,
482                                       E1000_DESC_UNUSED(ring));
483         }
484
485         adapter->tx_queue_len = netdev->tx_queue_len;
486 }
487
488 int e1000_up(struct e1000_adapter *adapter)
489 {
490         struct e1000_hw *hw = &adapter->hw;
491
492         /* hardware has been reset, we need to reload some things */
493         e1000_configure(adapter);
494
495         clear_bit(__E1000_DOWN, &adapter->flags);
496
497         napi_enable(&adapter->napi);
498
499         e1000_irq_enable(adapter);
500
501         /* fire a link change interrupt to start the watchdog */
502         ew32(ICS, E1000_ICS_LSC);
503         return 0;
504 }
505
506 /**
507  * e1000_power_up_phy - restore link in case the phy was powered down
508  * @adapter: address of board private structure
509  *
510  * The phy may be powered down to save power and turn off link when the
511  * driver is unloaded and wake on lan is not enabled (among others)
512  * *** this routine MUST be followed by a call to e1000_reset ***
513  *
514  **/
515
516 void e1000_power_up_phy(struct e1000_adapter *adapter)
517 {
518         struct e1000_hw *hw = &adapter->hw;
519         u16 mii_reg = 0;
520
521         /* Just clear the power down bit to wake the phy back up */
522         if (hw->media_type == e1000_media_type_copper) {
523                 /* according to the manual, the phy will retain its
524                  * settings across a power-down/up cycle */
525                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
526                 mii_reg &= ~MII_CR_POWER_DOWN;
527                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
528         }
529 }
530
531 static void e1000_power_down_phy(struct e1000_adapter *adapter)
532 {
533         struct e1000_hw *hw = &adapter->hw;
534
535         /* Power down the PHY so no link is implied when interface is down *
536          * The PHY cannot be powered down if any of the following is true *
537          * (a) WoL is enabled
538          * (b) AMT is active
539          * (c) SoL/IDER session is active */
540         if (!adapter->wol && hw->mac_type >= e1000_82540 &&
541            hw->media_type == e1000_media_type_copper) {
542                 u16 mii_reg = 0;
543
544                 switch (hw->mac_type) {
545                 case e1000_82540:
546                 case e1000_82545:
547                 case e1000_82545_rev_3:
548                 case e1000_82546:
549                 case e1000_82546_rev_3:
550                 case e1000_82541:
551                 case e1000_82541_rev_2:
552                 case e1000_82547:
553                 case e1000_82547_rev_2:
554                         if (er32(MANC) & E1000_MANC_SMBUS_EN)
555                                 goto out;
556                         break;
557                 case e1000_82571:
558                 case e1000_82572:
559                 case e1000_82573:
560                 case e1000_80003es2lan:
561                 case e1000_ich8lan:
562                         if (e1000_check_mng_mode(hw) ||
563                             e1000_check_phy_reset_block(hw))
564                                 goto out;
565                         break;
566                 default:
567                         goto out;
568                 }
569                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
570                 mii_reg |= MII_CR_POWER_DOWN;
571                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
572                 mdelay(1);
573         }
574 out:
575         return;
576 }
577
578 void e1000_down(struct e1000_adapter *adapter)
579 {
580         struct net_device *netdev = adapter->netdev;
581
582         /* signal that we're down so the interrupt handler does not
583          * reschedule our watchdog timer */
584         set_bit(__E1000_DOWN, &adapter->flags);
585
586         napi_disable(&adapter->napi);
587
588         e1000_irq_disable(adapter);
589
590         del_timer_sync(&adapter->tx_fifo_stall_timer);
591         del_timer_sync(&adapter->watchdog_timer);
592         del_timer_sync(&adapter->phy_info_timer);
593
594         netdev->tx_queue_len = adapter->tx_queue_len;
595         adapter->link_speed = 0;
596         adapter->link_duplex = 0;
597         netif_carrier_off(netdev);
598         netif_stop_queue(netdev);
599
600         e1000_reset(adapter);
601         e1000_clean_all_tx_rings(adapter);
602         e1000_clean_all_rx_rings(adapter);
603 }
604
605 void e1000_reinit_locked(struct e1000_adapter *adapter)
606 {
607         WARN_ON(in_interrupt());
608         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
609                 msleep(1);
610         e1000_down(adapter);
611         e1000_up(adapter);
612         clear_bit(__E1000_RESETTING, &adapter->flags);
613 }
614
615 void e1000_reset(struct e1000_adapter *adapter)
616 {
617         struct e1000_hw *hw = &adapter->hw;
618         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
619         u16 fc_high_water_mark = E1000_FC_HIGH_DIFF;
620         bool legacy_pba_adjust = false;
621
622         /* Repartition Pba for greater than 9k mtu
623          * To take effect CTRL.RST is required.
624          */
625
626         switch (hw->mac_type) {
627         case e1000_82542_rev2_0:
628         case e1000_82542_rev2_1:
629         case e1000_82543:
630         case e1000_82544:
631         case e1000_82540:
632         case e1000_82541:
633         case e1000_82541_rev_2:
634                 legacy_pba_adjust = true;
635                 pba = E1000_PBA_48K;
636                 break;
637         case e1000_82545:
638         case e1000_82545_rev_3:
639         case e1000_82546:
640         case e1000_82546_rev_3:
641                 pba = E1000_PBA_48K;
642                 break;
643         case e1000_82547:
644         case e1000_82547_rev_2:
645                 legacy_pba_adjust = true;
646                 pba = E1000_PBA_30K;
647                 break;
648         case e1000_82571:
649         case e1000_82572:
650         case e1000_80003es2lan:
651                 pba = E1000_PBA_38K;
652                 break;
653         case e1000_82573:
654                 pba = E1000_PBA_20K;
655                 break;
656         case e1000_ich8lan:
657                 pba = E1000_PBA_8K;
658         case e1000_undefined:
659         case e1000_num_macs:
660                 break;
661         }
662
663         if (legacy_pba_adjust) {
664                 if (adapter->netdev->mtu > E1000_RXBUFFER_8192)
665                         pba -= 8; /* allocate more FIFO for Tx */
666
667                 if (hw->mac_type == e1000_82547) {
668                         adapter->tx_fifo_head = 0;
669                         adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
670                         adapter->tx_fifo_size =
671                                 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
672                         atomic_set(&adapter->tx_fifo_stall, 0);
673                 }
674         } else if (hw->max_frame_size > MAXIMUM_ETHERNET_FRAME_SIZE) {
675                 /* adjust PBA for jumbo frames */
676                 ew32(PBA, pba);
677
678                 /* To maintain wire speed transmits, the Tx FIFO should be
679                  * large enough to accomodate two full transmit packets,
680                  * rounded up to the next 1KB and expressed in KB.  Likewise,
681                  * the Rx FIFO should be large enough to accomodate at least
682                  * one full receive packet and is similarly rounded up and
683                  * expressed in KB. */
684                 pba = er32(PBA);
685                 /* upper 16 bits has Tx packet buffer allocation size in KB */
686                 tx_space = pba >> 16;
687                 /* lower 16 bits has Rx packet buffer allocation size in KB */
688                 pba &= 0xffff;
689                 /* don't include ethernet FCS because hardware appends/strips */
690                 min_rx_space = adapter->netdev->mtu + ENET_HEADER_SIZE +
691                                VLAN_TAG_SIZE;
692                 min_tx_space = min_rx_space;
693                 min_tx_space *= 2;
694                 min_tx_space = ALIGN(min_tx_space, 1024);
695                 min_tx_space >>= 10;
696                 min_rx_space = ALIGN(min_rx_space, 1024);
697                 min_rx_space >>= 10;
698
699                 /* If current Tx allocation is less than the min Tx FIFO size,
700                  * and the min Tx FIFO size is less than the current Rx FIFO
701                  * allocation, take space away from current Rx allocation */
702                 if (tx_space < min_tx_space &&
703                     ((min_tx_space - tx_space) < pba)) {
704                         pba = pba - (min_tx_space - tx_space);
705
706                         /* PCI/PCIx hardware has PBA alignment constraints */
707                         switch (hw->mac_type) {
708                         case e1000_82545 ... e1000_82546_rev_3:
709                                 pba &= ~(E1000_PBA_8K - 1);
710                                 break;
711                         default:
712                                 break;
713                         }
714
715                         /* if short on rx space, rx wins and must trump tx
716                          * adjustment or use Early Receive if available */
717                         if (pba < min_rx_space) {
718                                 switch (hw->mac_type) {
719                                 case e1000_82573:
720                                         /* ERT enabled in e1000_configure_rx */
721                                         break;
722                                 default:
723                                         pba = min_rx_space;
724                                         break;
725                                 }
726                         }
727                 }
728         }
729
730         ew32(PBA, pba);
731
732         /* flow control settings */
733         /* Set the FC high water mark to 90% of the FIFO size.
734          * Required to clear last 3 LSB */
735         fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
736         /* We can't use 90% on small FIFOs because the remainder
737          * would be less than 1 full frame.  In this case, we size
738          * it to allow at least a full frame above the high water
739          *  mark. */
740         if (pba < E1000_PBA_16K)
741                 fc_high_water_mark = (pba * 1024) - 1600;
742
743         hw->fc_high_water = fc_high_water_mark;
744         hw->fc_low_water = fc_high_water_mark - 8;
745         if (hw->mac_type == e1000_80003es2lan)
746                 hw->fc_pause_time = 0xFFFF;
747         else
748                 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
749         hw->fc_send_xon = 1;
750         hw->fc = hw->original_fc;
751
752         /* Allow time for pending master requests to run */
753         e1000_reset_hw(hw);
754         if (hw->mac_type >= e1000_82544)
755                 ew32(WUC, 0);
756
757         if (e1000_init_hw(hw))
758                 DPRINTK(PROBE, ERR, "Hardware Error\n");
759         e1000_update_mng_vlan(adapter);
760
761         /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
762         if (hw->mac_type >= e1000_82544 &&
763             hw->mac_type <= e1000_82547_rev_2 &&
764             hw->autoneg == 1 &&
765             hw->autoneg_advertised == ADVERTISE_1000_FULL) {
766                 u32 ctrl = er32(CTRL);
767                 /* clear phy power management bit if we are in gig only mode,
768                  * which if enabled will attempt negotiation to 100Mb, which
769                  * can cause a loss of link at power off or driver unload */
770                 ctrl &= ~E1000_CTRL_SWDPIN3;
771                 ew32(CTRL, ctrl);
772         }
773
774         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
775         ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
776
777         e1000_reset_adaptive(hw);
778         e1000_phy_get_info(hw, &adapter->phy_info);
779
780         if (!adapter->smart_power_down &&
781             (hw->mac_type == e1000_82571 ||
782              hw->mac_type == e1000_82572)) {
783                 u16 phy_data = 0;
784                 /* speed up time to link by disabling smart power down, ignore
785                  * the return value of this function because there is nothing
786                  * different we would do if it failed */
787                 e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
788                                    &phy_data);
789                 phy_data &= ~IGP02E1000_PM_SPD;
790                 e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
791                                     phy_data);
792         }
793
794         e1000_release_manageability(adapter);
795 }
796
797 /**
798  *  Dump the eeprom for users having checksum issues
799  **/
800 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
801 {
802         struct net_device *netdev = adapter->netdev;
803         struct ethtool_eeprom eeprom;
804         const struct ethtool_ops *ops = netdev->ethtool_ops;
805         u8 *data;
806         int i;
807         u16 csum_old, csum_new = 0;
808
809         eeprom.len = ops->get_eeprom_len(netdev);
810         eeprom.offset = 0;
811
812         data = kmalloc(eeprom.len, GFP_KERNEL);
813         if (!data) {
814                 printk(KERN_ERR "Unable to allocate memory to dump EEPROM"
815                        " data\n");
816                 return;
817         }
818
819         ops->get_eeprom(netdev, &eeprom, data);
820
821         csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
822                    (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
823         for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
824                 csum_new += data[i] + (data[i + 1] << 8);
825         csum_new = EEPROM_SUM - csum_new;
826
827         printk(KERN_ERR "/*********************/\n");
828         printk(KERN_ERR "Current EEPROM Checksum : 0x%04x\n", csum_old);
829         printk(KERN_ERR "Calculated              : 0x%04x\n", csum_new);
830
831         printk(KERN_ERR "Offset    Values\n");
832         printk(KERN_ERR "========  ======\n");
833         print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
834
835         printk(KERN_ERR "Include this output when contacting your support "
836                "provider.\n");
837         printk(KERN_ERR "This is not a software error! Something bad "
838                "happened to your hardware or\n");
839         printk(KERN_ERR "EEPROM image. Ignoring this "
840                "problem could result in further problems,\n");
841         printk(KERN_ERR "possibly loss of data, corruption or system hangs!\n");
842         printk(KERN_ERR "The MAC Address will be reset to 00:00:00:00:00:00, "
843                "which is invalid\n");
844         printk(KERN_ERR "and requires you to set the proper MAC "
845                "address manually before continuing\n");
846         printk(KERN_ERR "to enable this network device.\n");
847         printk(KERN_ERR "Please inspect the EEPROM dump and report the issue "
848                "to your hardware vendor\n");
849         printk(KERN_ERR "or Intel Customer Support.\n");
850         printk(KERN_ERR "/*********************/\n");
851
852         kfree(data);
853 }
854
855 /**
856  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
857  * @pdev: PCI device information struct
858  *
859  * Return true if an adapter needs ioport resources
860  **/
861 static int e1000_is_need_ioport(struct pci_dev *pdev)
862 {
863         switch (pdev->device) {
864         case E1000_DEV_ID_82540EM:
865         case E1000_DEV_ID_82540EM_LOM:
866         case E1000_DEV_ID_82540EP:
867         case E1000_DEV_ID_82540EP_LOM:
868         case E1000_DEV_ID_82540EP_LP:
869         case E1000_DEV_ID_82541EI:
870         case E1000_DEV_ID_82541EI_MOBILE:
871         case E1000_DEV_ID_82541ER:
872         case E1000_DEV_ID_82541ER_LOM:
873         case E1000_DEV_ID_82541GI:
874         case E1000_DEV_ID_82541GI_LF:
875         case E1000_DEV_ID_82541GI_MOBILE:
876         case E1000_DEV_ID_82544EI_COPPER:
877         case E1000_DEV_ID_82544EI_FIBER:
878         case E1000_DEV_ID_82544GC_COPPER:
879         case E1000_DEV_ID_82544GC_LOM:
880         case E1000_DEV_ID_82545EM_COPPER:
881         case E1000_DEV_ID_82545EM_FIBER:
882         case E1000_DEV_ID_82546EB_COPPER:
883         case E1000_DEV_ID_82546EB_FIBER:
884         case E1000_DEV_ID_82546EB_QUAD_COPPER:
885                 return true;
886         default:
887                 return false;
888         }
889 }
890
891 /**
892  * e1000_probe - Device Initialization Routine
893  * @pdev: PCI device information struct
894  * @ent: entry in e1000_pci_tbl
895  *
896  * Returns 0 on success, negative on failure
897  *
898  * e1000_probe initializes an adapter identified by a pci_dev structure.
899  * The OS initialization, configuring of the adapter private structure,
900  * and a hardware reset occur.
901  **/
902 static int __devinit e1000_probe(struct pci_dev *pdev,
903                                  const struct pci_device_id *ent)
904 {
905         struct net_device *netdev;
906         struct e1000_adapter *adapter;
907         struct e1000_hw *hw;
908
909         static int cards_found = 0;
910         static int global_quad_port_a = 0; /* global ksp3 port a indication */
911         int i, err, pci_using_dac;
912         u16 eeprom_data = 0;
913         u16 eeprom_apme_mask = E1000_EEPROM_APME;
914         int bars, need_ioport;
915
916         /* do not allocate ioport bars when not needed */
917         need_ioport = e1000_is_need_ioport(pdev);
918         if (need_ioport) {
919                 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
920                 err = pci_enable_device(pdev);
921         } else {
922                 bars = pci_select_bars(pdev, IORESOURCE_MEM);
923                 err = pci_enable_device(pdev);
924         }
925         if (err)
926                 return err;
927
928         if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK) &&
929             !pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK)) {
930                 pci_using_dac = 1;
931         } else {
932                 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
933                 if (err) {
934                         err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
935                         if (err) {
936                                 E1000_ERR("No usable DMA configuration, "
937                                           "aborting\n");
938                                 goto err_dma;
939                         }
940                 }
941                 pci_using_dac = 0;
942         }
943
944         err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
945         if (err)
946                 goto err_pci_reg;
947
948         pci_set_master(pdev);
949
950         err = -ENOMEM;
951         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
952         if (!netdev)
953                 goto err_alloc_etherdev;
954
955         SET_NETDEV_DEV(netdev, &pdev->dev);
956
957         pci_set_drvdata(pdev, netdev);
958         adapter = netdev_priv(netdev);
959         adapter->netdev = netdev;
960         adapter->pdev = pdev;
961         adapter->msg_enable = (1 << debug) - 1;
962         adapter->bars = bars;
963         adapter->need_ioport = need_ioport;
964
965         hw = &adapter->hw;
966         hw->back = adapter;
967
968         err = -EIO;
969         hw->hw_addr = ioremap(pci_resource_start(pdev, BAR_0),
970                               pci_resource_len(pdev, BAR_0));
971         if (!hw->hw_addr)
972                 goto err_ioremap;
973
974         if (adapter->need_ioport) {
975                 for (i = BAR_1; i <= BAR_5; i++) {
976                         if (pci_resource_len(pdev, i) == 0)
977                                 continue;
978                         if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
979                                 hw->io_base = pci_resource_start(pdev, i);
980                                 break;
981                         }
982                 }
983         }
984
985         netdev->open = &e1000_open;
986         netdev->stop = &e1000_close;
987         netdev->hard_start_xmit = &e1000_xmit_frame;
988         netdev->get_stats = &e1000_get_stats;
989         netdev->set_rx_mode = &e1000_set_rx_mode;
990         netdev->set_mac_address = &e1000_set_mac;
991         netdev->change_mtu = &e1000_change_mtu;
992         netdev->do_ioctl = &e1000_ioctl;
993         e1000_set_ethtool_ops(netdev);
994         netdev->tx_timeout = &e1000_tx_timeout;
995         netdev->watchdog_timeo = 5 * HZ;
996         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
997         netdev->vlan_rx_register = e1000_vlan_rx_register;
998         netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
999         netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
1000 #ifdef CONFIG_NET_POLL_CONTROLLER
1001         netdev->poll_controller = e1000_netpoll;
1002 #endif
1003         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1004
1005         adapter->bd_number = cards_found;
1006
1007         /* setup the private structure */
1008
1009         err = e1000_sw_init(adapter);
1010         if (err)
1011                 goto err_sw_init;
1012
1013         err = -EIO;
1014         /* Flash BAR mapping must happen after e1000_sw_init
1015          * because it depends on mac_type */
1016         if ((hw->mac_type == e1000_ich8lan) &&
1017            (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
1018                 hw->flash_address =
1019                         ioremap(pci_resource_start(pdev, 1),
1020                                 pci_resource_len(pdev, 1));
1021                 if (!hw->flash_address)
1022                         goto err_flashmap;
1023         }
1024
1025         if (e1000_check_phy_reset_block(hw))
1026                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
1027
1028         if (hw->mac_type >= e1000_82543) {
1029                 netdev->features = NETIF_F_SG |
1030                                    NETIF_F_HW_CSUM |
1031                                    NETIF_F_HW_VLAN_TX |
1032                                    NETIF_F_HW_VLAN_RX |
1033                                    NETIF_F_HW_VLAN_FILTER;
1034                 if (hw->mac_type == e1000_ich8lan)
1035                         netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
1036         }
1037
1038         if ((hw->mac_type >= e1000_82544) &&
1039            (hw->mac_type != e1000_82547))
1040                 netdev->features |= NETIF_F_TSO;
1041
1042         if (hw->mac_type > e1000_82547_rev_2)
1043                 netdev->features |= NETIF_F_TSO6;
1044         if (pci_using_dac)
1045                 netdev->features |= NETIF_F_HIGHDMA;
1046
1047         netdev->features |= NETIF_F_LLTX;
1048
1049         netdev->vlan_features |= NETIF_F_TSO;
1050         netdev->vlan_features |= NETIF_F_TSO6;
1051         netdev->vlan_features |= NETIF_F_HW_CSUM;
1052         netdev->vlan_features |= NETIF_F_SG;
1053
1054         adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1055
1056         /* initialize eeprom parameters */
1057         if (e1000_init_eeprom_params(hw)) {
1058                 E1000_ERR("EEPROM initialization failed\n");
1059                 goto err_eeprom;
1060         }
1061
1062         /* before reading the EEPROM, reset the controller to
1063          * put the device in a known good starting state */
1064
1065         e1000_reset_hw(hw);
1066
1067         /* make sure the EEPROM is good */
1068         if (e1000_validate_eeprom_checksum(hw) < 0) {
1069                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
1070                 e1000_dump_eeprom(adapter);
1071                 /*
1072                  * set MAC address to all zeroes to invalidate and temporary
1073                  * disable this device for the user. This blocks regular
1074                  * traffic while still permitting ethtool ioctls from reaching
1075                  * the hardware as well as allowing the user to run the
1076                  * interface after manually setting a hw addr using
1077                  * `ip set address`
1078                  */
1079                 memset(hw->mac_addr, 0, netdev->addr_len);
1080         } else {
1081                 /* copy the MAC address out of the EEPROM */
1082                 if (e1000_read_mac_addr(hw))
1083                         DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
1084         }
1085         /* don't block initalization here due to bad MAC address */
1086         memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1087         memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
1088
1089         if (!is_valid_ether_addr(netdev->perm_addr))
1090                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
1091
1092         e1000_get_bus_info(hw);
1093
1094         init_timer(&adapter->tx_fifo_stall_timer);
1095         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
1096         adapter->tx_fifo_stall_timer.data = (unsigned long)adapter;
1097
1098         init_timer(&adapter->watchdog_timer);
1099         adapter->watchdog_timer.function = &e1000_watchdog;
1100         adapter->watchdog_timer.data = (unsigned long) adapter;
1101
1102         init_timer(&adapter->phy_info_timer);
1103         adapter->phy_info_timer.function = &e1000_update_phy_info;
1104         adapter->phy_info_timer.data = (unsigned long)adapter;
1105
1106         INIT_WORK(&adapter->reset_task, e1000_reset_task);
1107
1108         e1000_check_options(adapter);
1109
1110         /* Initial Wake on LAN setting
1111          * If APM wake is enabled in the EEPROM,
1112          * enable the ACPI Magic Packet filter
1113          */
1114
1115         switch (hw->mac_type) {
1116         case e1000_82542_rev2_0:
1117         case e1000_82542_rev2_1:
1118         case e1000_82543:
1119                 break;
1120         case e1000_82544:
1121                 e1000_read_eeprom(hw,
1122                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1123                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1124                 break;
1125         case e1000_ich8lan:
1126                 e1000_read_eeprom(hw,
1127                         EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
1128                 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
1129                 break;
1130         case e1000_82546:
1131         case e1000_82546_rev_3:
1132         case e1000_82571:
1133         case e1000_80003es2lan:
1134                 if (er32(STATUS) & E1000_STATUS_FUNC_1){
1135                         e1000_read_eeprom(hw,
1136                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1137                         break;
1138                 }
1139                 /* Fall Through */
1140         default:
1141                 e1000_read_eeprom(hw,
1142                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1143                 break;
1144         }
1145         if (eeprom_data & eeprom_apme_mask)
1146                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1147
1148         /* now that we have the eeprom settings, apply the special cases
1149          * where the eeprom may be wrong or the board simply won't support
1150          * wake on lan on a particular port */
1151         switch (pdev->device) {
1152         case E1000_DEV_ID_82546GB_PCIE:
1153                 adapter->eeprom_wol = 0;
1154                 break;
1155         case E1000_DEV_ID_82546EB_FIBER:
1156         case E1000_DEV_ID_82546GB_FIBER:
1157         case E1000_DEV_ID_82571EB_FIBER:
1158                 /* Wake events only supported on port A for dual fiber
1159                  * regardless of eeprom setting */
1160                 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1161                         adapter->eeprom_wol = 0;
1162                 break;
1163         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1164         case E1000_DEV_ID_82571EB_QUAD_COPPER:
1165         case E1000_DEV_ID_82571EB_QUAD_FIBER:
1166         case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1167         case E1000_DEV_ID_82571PT_QUAD_COPPER:
1168                 /* if quad port adapter, disable WoL on all but port A */
1169                 if (global_quad_port_a != 0)
1170                         adapter->eeprom_wol = 0;
1171                 else
1172                         adapter->quad_port_a = 1;
1173                 /* Reset for multiple quad port adapters */
1174                 if (++global_quad_port_a == 4)
1175                         global_quad_port_a = 0;
1176                 break;
1177         }
1178
1179         /* initialize the wol settings based on the eeprom settings */
1180         adapter->wol = adapter->eeprom_wol;
1181
1182         /* print bus type/speed/width info */
1183         DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
1184                 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
1185                  (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
1186                 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1187                  (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
1188                  (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
1189                  (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
1190                  (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
1191                 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
1192                  (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
1193                  (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
1194                  "32-bit"));
1195
1196         printk("%pM\n", netdev->dev_addr);
1197
1198         if (hw->bus_type == e1000_bus_type_pci_express) {
1199                 DPRINTK(PROBE, WARNING, "This device (id %04x:%04x) will no "
1200                         "longer be supported by this driver in the future.\n",
1201                         pdev->vendor, pdev->device);
1202                 DPRINTK(PROBE, WARNING, "please use the \"e1000e\" "
1203                         "driver instead.\n");
1204         }
1205
1206         /* reset the hardware with the new settings */
1207         e1000_reset(adapter);
1208
1209         /* If the controller is 82573 and f/w is AMT, do not set
1210          * DRV_LOAD until the interface is up.  For all other cases,
1211          * let the f/w know that the h/w is now under the control
1212          * of the driver. */
1213         if (hw->mac_type != e1000_82573 ||
1214             !e1000_check_mng_mode(hw))
1215                 e1000_get_hw_control(adapter);
1216
1217         /* tell the stack to leave us alone until e1000_open() is called */
1218         netif_carrier_off(netdev);
1219         netif_stop_queue(netdev);
1220
1221         strcpy(netdev->name, "eth%d");
1222         err = register_netdev(netdev);
1223         if (err)
1224                 goto err_register;
1225
1226         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1227
1228         cards_found++;
1229         return 0;
1230
1231 err_register:
1232         e1000_release_hw_control(adapter);
1233 err_eeprom:
1234         if (!e1000_check_phy_reset_block(hw))
1235                 e1000_phy_hw_reset(hw);
1236
1237         if (hw->flash_address)
1238                 iounmap(hw->flash_address);
1239 err_flashmap:
1240         for (i = 0; i < adapter->num_rx_queues; i++)
1241                 dev_put(&adapter->polling_netdev[i]);
1242
1243         kfree(adapter->tx_ring);
1244         kfree(adapter->rx_ring);
1245         kfree(adapter->polling_netdev);
1246 err_sw_init:
1247         iounmap(hw->hw_addr);
1248 err_ioremap:
1249         free_netdev(netdev);
1250 err_alloc_etherdev:
1251         pci_release_selected_regions(pdev, bars);
1252 err_pci_reg:
1253 err_dma:
1254         pci_disable_device(pdev);
1255         return err;
1256 }
1257
1258 /**
1259  * e1000_remove - Device Removal Routine
1260  * @pdev: PCI device information struct
1261  *
1262  * e1000_remove is called by the PCI subsystem to alert the driver
1263  * that it should release a PCI device.  The could be caused by a
1264  * Hot-Plug event, or because the driver is going to be removed from
1265  * memory.
1266  **/
1267
1268 static void __devexit e1000_remove(struct pci_dev *pdev)
1269 {
1270         struct net_device *netdev = pci_get_drvdata(pdev);
1271         struct e1000_adapter *adapter = netdev_priv(netdev);
1272         struct e1000_hw *hw = &adapter->hw;
1273         int i;
1274
1275         cancel_work_sync(&adapter->reset_task);
1276
1277         e1000_release_manageability(adapter);
1278
1279         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1280          * would have already happened in close and is redundant. */
1281         e1000_release_hw_control(adapter);
1282
1283         for (i = 0; i < adapter->num_rx_queues; i++)
1284                 dev_put(&adapter->polling_netdev[i]);
1285
1286         unregister_netdev(netdev);
1287
1288         if (!e1000_check_phy_reset_block(hw))
1289                 e1000_phy_hw_reset(hw);
1290
1291         kfree(adapter->tx_ring);
1292         kfree(adapter->rx_ring);
1293         kfree(adapter->polling_netdev);
1294
1295         iounmap(hw->hw_addr);
1296         if (hw->flash_address)
1297                 iounmap(hw->flash_address);
1298         pci_release_selected_regions(pdev, adapter->bars);
1299
1300         free_netdev(netdev);
1301
1302         pci_disable_device(pdev);
1303 }
1304
1305 /**
1306  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1307  * @adapter: board private structure to initialize
1308  *
1309  * e1000_sw_init initializes the Adapter private data structure.
1310  * Fields are initialized based on PCI device information and
1311  * OS network device settings (MTU size).
1312  **/
1313
1314 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
1315 {
1316         struct e1000_hw *hw = &adapter->hw;
1317         struct net_device *netdev = adapter->netdev;
1318         struct pci_dev *pdev = adapter->pdev;
1319         int i;
1320
1321         /* PCI config space info */
1322
1323         hw->vendor_id = pdev->vendor;
1324         hw->device_id = pdev->device;
1325         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1326         hw->subsystem_id = pdev->subsystem_device;
1327         hw->revision_id = pdev->revision;
1328
1329         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1330
1331         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1332         hw->max_frame_size = netdev->mtu +
1333                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1334         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1335
1336         /* identify the MAC */
1337
1338         if (e1000_set_mac_type(hw)) {
1339                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1340                 return -EIO;
1341         }
1342
1343         switch (hw->mac_type) {
1344         default:
1345                 break;
1346         case e1000_82541:
1347         case e1000_82547:
1348         case e1000_82541_rev_2:
1349         case e1000_82547_rev_2:
1350                 hw->phy_init_script = 1;
1351                 break;
1352         }
1353
1354         e1000_set_media_type(hw);
1355
1356         hw->wait_autoneg_complete = false;
1357         hw->tbi_compatibility_en = true;
1358         hw->adaptive_ifs = true;
1359
1360         /* Copper options */
1361
1362         if (hw->media_type == e1000_media_type_copper) {
1363                 hw->mdix = AUTO_ALL_MODES;
1364                 hw->disable_polarity_correction = false;
1365                 hw->master_slave = E1000_MASTER_SLAVE;
1366         }
1367
1368         adapter->num_tx_queues = 1;
1369         adapter->num_rx_queues = 1;
1370
1371         if (e1000_alloc_queues(adapter)) {
1372                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1373                 return -ENOMEM;
1374         }
1375
1376         for (i = 0; i < adapter->num_rx_queues; i++) {
1377                 adapter->polling_netdev[i].priv = adapter;
1378                 dev_hold(&adapter->polling_netdev[i]);
1379                 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1380         }
1381         spin_lock_init(&adapter->tx_queue_lock);
1382
1383         /* Explicitly disable IRQ since the NIC can be in any state. */
1384         e1000_irq_disable(adapter);
1385
1386         spin_lock_init(&adapter->stats_lock);
1387
1388         set_bit(__E1000_DOWN, &adapter->flags);
1389
1390         return 0;
1391 }
1392
1393 /**
1394  * e1000_alloc_queues - Allocate memory for all rings
1395  * @adapter: board private structure to initialize
1396  *
1397  * We allocate one ring per queue at run-time since we don't know the
1398  * number of queues at compile-time.  The polling_netdev array is
1399  * intended for Multiqueue, but should work fine with a single queue.
1400  **/
1401
1402 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1403 {
1404         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1405                                    sizeof(struct e1000_tx_ring), GFP_KERNEL);
1406         if (!adapter->tx_ring)
1407                 return -ENOMEM;
1408
1409         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1410                                    sizeof(struct e1000_rx_ring), GFP_KERNEL);
1411         if (!adapter->rx_ring) {
1412                 kfree(adapter->tx_ring);
1413                 return -ENOMEM;
1414         }
1415
1416         adapter->polling_netdev = kcalloc(adapter->num_rx_queues,
1417                                           sizeof(struct net_device),
1418                                           GFP_KERNEL);
1419         if (!adapter->polling_netdev) {
1420                 kfree(adapter->tx_ring);
1421                 kfree(adapter->rx_ring);
1422                 return -ENOMEM;
1423         }
1424
1425         return E1000_SUCCESS;
1426 }
1427
1428 /**
1429  * e1000_open - Called when a network interface is made active
1430  * @netdev: network interface device structure
1431  *
1432  * Returns 0 on success, negative value on failure
1433  *
1434  * The open entry point is called when a network interface is made
1435  * active by the system (IFF_UP).  At this point all resources needed
1436  * for transmit and receive operations are allocated, the interrupt
1437  * handler is registered with the OS, the watchdog timer is started,
1438  * and the stack is notified that the interface is ready.
1439  **/
1440
1441 static int e1000_open(struct net_device *netdev)
1442 {
1443         struct e1000_adapter *adapter = netdev_priv(netdev);
1444         struct e1000_hw *hw = &adapter->hw;
1445         int err;
1446
1447         /* disallow open during test */
1448         if (test_bit(__E1000_TESTING, &adapter->flags))
1449                 return -EBUSY;
1450
1451         /* allocate transmit descriptors */
1452         err = e1000_setup_all_tx_resources(adapter);
1453         if (err)
1454                 goto err_setup_tx;
1455
1456         /* allocate receive descriptors */
1457         err = e1000_setup_all_rx_resources(adapter);
1458         if (err)
1459                 goto err_setup_rx;
1460
1461         e1000_power_up_phy(adapter);
1462
1463         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1464         if ((hw->mng_cookie.status &
1465                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1466                 e1000_update_mng_vlan(adapter);
1467         }
1468
1469         /* If AMT is enabled, let the firmware know that the network
1470          * interface is now open */
1471         if (hw->mac_type == e1000_82573 &&
1472             e1000_check_mng_mode(hw))
1473                 e1000_get_hw_control(adapter);
1474
1475         /* before we allocate an interrupt, we must be ready to handle it.
1476          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1477          * as soon as we call pci_request_irq, so we have to setup our
1478          * clean_rx handler before we do so.  */
1479         e1000_configure(adapter);
1480
1481         err = e1000_request_irq(adapter);
1482         if (err)
1483                 goto err_req_irq;
1484
1485         /* From here on the code is the same as e1000_up() */
1486         clear_bit(__E1000_DOWN, &adapter->flags);
1487
1488         napi_enable(&adapter->napi);
1489
1490         e1000_irq_enable(adapter);
1491
1492         netif_start_queue(netdev);
1493
1494         /* fire a link status change interrupt to start the watchdog */
1495         ew32(ICS, E1000_ICS_LSC);
1496
1497         return E1000_SUCCESS;
1498
1499 err_req_irq:
1500         e1000_release_hw_control(adapter);
1501         e1000_power_down_phy(adapter);
1502         e1000_free_all_rx_resources(adapter);
1503 err_setup_rx:
1504         e1000_free_all_tx_resources(adapter);
1505 err_setup_tx:
1506         e1000_reset(adapter);
1507
1508         return err;
1509 }
1510
1511 /**
1512  * e1000_close - Disables a network interface
1513  * @netdev: network interface device structure
1514  *
1515  * Returns 0, this is not allowed to fail
1516  *
1517  * The close entry point is called when an interface is de-activated
1518  * by the OS.  The hardware is still under the drivers control, but
1519  * needs to be disabled.  A global MAC reset is issued to stop the
1520  * hardware, and all transmit and receive resources are freed.
1521  **/
1522
1523 static int e1000_close(struct net_device *netdev)
1524 {
1525         struct e1000_adapter *adapter = netdev_priv(netdev);
1526         struct e1000_hw *hw = &adapter->hw;
1527
1528         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1529         e1000_down(adapter);
1530         e1000_power_down_phy(adapter);
1531         e1000_free_irq(adapter);
1532
1533         e1000_free_all_tx_resources(adapter);
1534         e1000_free_all_rx_resources(adapter);
1535
1536         /* kill manageability vlan ID if supported, but not if a vlan with
1537          * the same ID is registered on the host OS (let 8021q kill it) */
1538         if ((hw->mng_cookie.status &
1539                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1540              !(adapter->vlgrp &&
1541                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
1542                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1543         }
1544
1545         /* If AMT is enabled, let the firmware know that the network
1546          * interface is now closed */
1547         if (hw->mac_type == e1000_82573 &&
1548             e1000_check_mng_mode(hw))
1549                 e1000_release_hw_control(adapter);
1550
1551         return 0;
1552 }
1553
1554 /**
1555  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1556  * @adapter: address of board private structure
1557  * @start: address of beginning of memory
1558  * @len: length of memory
1559  **/
1560 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1561                                   unsigned long len)
1562 {
1563         struct e1000_hw *hw = &adapter->hw;
1564         unsigned long begin = (unsigned long)start;
1565         unsigned long end = begin + len;
1566
1567         /* First rev 82545 and 82546 need to not allow any memory
1568          * write location to cross 64k boundary due to errata 23 */
1569         if (hw->mac_type == e1000_82545 ||
1570             hw->mac_type == e1000_82546) {
1571                 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1572         }
1573
1574         return true;
1575 }
1576
1577 /**
1578  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1579  * @adapter: board private structure
1580  * @txdr:    tx descriptor ring (for a specific queue) to setup
1581  *
1582  * Return 0 on success, negative on failure
1583  **/
1584
1585 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1586                                     struct e1000_tx_ring *txdr)
1587 {
1588         struct pci_dev *pdev = adapter->pdev;
1589         int size;
1590
1591         size = sizeof(struct e1000_buffer) * txdr->count;
1592         txdr->buffer_info = vmalloc(size);
1593         if (!txdr->buffer_info) {
1594                 DPRINTK(PROBE, ERR,
1595                 "Unable to allocate memory for the transmit descriptor ring\n");
1596                 return -ENOMEM;
1597         }
1598         memset(txdr->buffer_info, 0, size);
1599
1600         /* round up to nearest 4K */
1601
1602         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1603         txdr->size = ALIGN(txdr->size, 4096);
1604
1605         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1606         if (!txdr->desc) {
1607 setup_tx_desc_die:
1608                 vfree(txdr->buffer_info);
1609                 DPRINTK(PROBE, ERR,
1610                 "Unable to allocate memory for the transmit descriptor ring\n");
1611                 return -ENOMEM;
1612         }
1613
1614         /* Fix for errata 23, can't cross 64kB boundary */
1615         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1616                 void *olddesc = txdr->desc;
1617                 dma_addr_t olddma = txdr->dma;
1618                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1619                                      "at %p\n", txdr->size, txdr->desc);
1620                 /* Try again, without freeing the previous */
1621                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1622                 /* Failed allocation, critical failure */
1623                 if (!txdr->desc) {
1624                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1625                         goto setup_tx_desc_die;
1626                 }
1627
1628                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1629                         /* give up */
1630                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1631                                             txdr->dma);
1632                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1633                         DPRINTK(PROBE, ERR,
1634                                 "Unable to allocate aligned memory "
1635                                 "for the transmit descriptor ring\n");
1636                         vfree(txdr->buffer_info);
1637                         return -ENOMEM;
1638                 } else {
1639                         /* Free old allocation, new allocation was successful */
1640                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1641                 }
1642         }
1643         memset(txdr->desc, 0, txdr->size);
1644
1645         txdr->next_to_use = 0;
1646         txdr->next_to_clean = 0;
1647         spin_lock_init(&txdr->tx_lock);
1648
1649         return 0;
1650 }
1651
1652 /**
1653  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1654  *                                (Descriptors) for all queues
1655  * @adapter: board private structure
1656  *
1657  * Return 0 on success, negative on failure
1658  **/
1659
1660 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1661 {
1662         int i, err = 0;
1663
1664         for (i = 0; i < adapter->num_tx_queues; i++) {
1665                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1666                 if (err) {
1667                         DPRINTK(PROBE, ERR,
1668                                 "Allocation for Tx Queue %u failed\n", i);
1669                         for (i-- ; i >= 0; i--)
1670                                 e1000_free_tx_resources(adapter,
1671                                                         &adapter->tx_ring[i]);
1672                         break;
1673                 }
1674         }
1675
1676         return err;
1677 }
1678
1679 /**
1680  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1681  * @adapter: board private structure
1682  *
1683  * Configure the Tx unit of the MAC after a reset.
1684  **/
1685
1686 static void e1000_configure_tx(struct e1000_adapter *adapter)
1687 {
1688         u64 tdba;
1689         struct e1000_hw *hw = &adapter->hw;
1690         u32 tdlen, tctl, tipg, tarc;
1691         u32 ipgr1, ipgr2;
1692
1693         /* Setup the HW Tx Head and Tail descriptor pointers */
1694
1695         switch (adapter->num_tx_queues) {
1696         case 1:
1697         default:
1698                 tdba = adapter->tx_ring[0].dma;
1699                 tdlen = adapter->tx_ring[0].count *
1700                         sizeof(struct e1000_tx_desc);
1701                 ew32(TDLEN, tdlen);
1702                 ew32(TDBAH, (tdba >> 32));
1703                 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1704                 ew32(TDT, 0);
1705                 ew32(TDH, 0);
1706                 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1707                 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1708                 break;
1709         }
1710
1711         /* Set the default values for the Tx Inter Packet Gap timer */
1712         if (hw->mac_type <= e1000_82547_rev_2 &&
1713             (hw->media_type == e1000_media_type_fiber ||
1714              hw->media_type == e1000_media_type_internal_serdes))
1715                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1716         else
1717                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1718
1719         switch (hw->mac_type) {
1720         case e1000_82542_rev2_0:
1721         case e1000_82542_rev2_1:
1722                 tipg = DEFAULT_82542_TIPG_IPGT;
1723                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1724                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1725                 break;
1726         case e1000_80003es2lan:
1727                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1728                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1729                 break;
1730         default:
1731                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1732                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1733                 break;
1734         }
1735         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1736         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1737         ew32(TIPG, tipg);
1738
1739         /* Set the Tx Interrupt Delay register */
1740
1741         ew32(TIDV, adapter->tx_int_delay);
1742         if (hw->mac_type >= e1000_82540)
1743                 ew32(TADV, adapter->tx_abs_int_delay);
1744
1745         /* Program the Transmit Control Register */
1746
1747         tctl = er32(TCTL);
1748         tctl &= ~E1000_TCTL_CT;
1749         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1750                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1751
1752         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1753                 tarc = er32(TARC0);
1754                 /* set the speed mode bit, we'll clear it if we're not at
1755                  * gigabit link later */
1756                 tarc |= (1 << 21);
1757                 ew32(TARC0, tarc);
1758         } else if (hw->mac_type == e1000_80003es2lan) {
1759                 tarc = er32(TARC0);
1760                 tarc |= 1;
1761                 ew32(TARC0, tarc);
1762                 tarc = er32(TARC1);
1763                 tarc |= 1;
1764                 ew32(TARC1, tarc);
1765         }
1766
1767         e1000_config_collision_dist(hw);
1768
1769         /* Setup Transmit Descriptor Settings for eop descriptor */
1770         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1771
1772         /* only set IDE if we are delaying interrupts using the timers */
1773         if (adapter->tx_int_delay)
1774                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1775
1776         if (hw->mac_type < e1000_82543)
1777                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1778         else
1779                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1780
1781         /* Cache if we're 82544 running in PCI-X because we'll
1782          * need this to apply a workaround later in the send path. */
1783         if (hw->mac_type == e1000_82544 &&
1784             hw->bus_type == e1000_bus_type_pcix)
1785                 adapter->pcix_82544 = 1;
1786
1787         ew32(TCTL, tctl);
1788
1789 }
1790
1791 /**
1792  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1793  * @adapter: board private structure
1794  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1795  *
1796  * Returns 0 on success, negative on failure
1797  **/
1798
1799 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1800                                     struct e1000_rx_ring *rxdr)
1801 {
1802         struct e1000_hw *hw = &adapter->hw;
1803         struct pci_dev *pdev = adapter->pdev;
1804         int size, desc_len;
1805
1806         size = sizeof(struct e1000_buffer) * rxdr->count;
1807         rxdr->buffer_info = vmalloc(size);
1808         if (!rxdr->buffer_info) {
1809                 DPRINTK(PROBE, ERR,
1810                 "Unable to allocate memory for the receive descriptor ring\n");
1811                 return -ENOMEM;
1812         }
1813         memset(rxdr->buffer_info, 0, size);
1814
1815         if (hw->mac_type <= e1000_82547_rev_2)
1816                 desc_len = sizeof(struct e1000_rx_desc);
1817         else
1818                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1819
1820         /* Round up to nearest 4K */
1821
1822         rxdr->size = rxdr->count * desc_len;
1823         rxdr->size = ALIGN(rxdr->size, 4096);
1824
1825         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1826
1827         if (!rxdr->desc) {
1828                 DPRINTK(PROBE, ERR,
1829                 "Unable to allocate memory for the receive descriptor ring\n");
1830 setup_rx_desc_die:
1831                 vfree(rxdr->buffer_info);
1832                 return -ENOMEM;
1833         }
1834
1835         /* Fix for errata 23, can't cross 64kB boundary */
1836         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1837                 void *olddesc = rxdr->desc;
1838                 dma_addr_t olddma = rxdr->dma;
1839                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1840                                      "at %p\n", rxdr->size, rxdr->desc);
1841                 /* Try again, without freeing the previous */
1842                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1843                 /* Failed allocation, critical failure */
1844                 if (!rxdr->desc) {
1845                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1846                         DPRINTK(PROBE, ERR,
1847                                 "Unable to allocate memory "
1848                                 "for the receive descriptor ring\n");
1849                         goto setup_rx_desc_die;
1850                 }
1851
1852                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1853                         /* give up */
1854                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1855                                             rxdr->dma);
1856                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1857                         DPRINTK(PROBE, ERR,
1858                                 "Unable to allocate aligned memory "
1859                                 "for the receive descriptor ring\n");
1860                         goto setup_rx_desc_die;
1861                 } else {
1862                         /* Free old allocation, new allocation was successful */
1863                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1864                 }
1865         }
1866         memset(rxdr->desc, 0, rxdr->size);
1867
1868         rxdr->next_to_clean = 0;
1869         rxdr->next_to_use = 0;
1870
1871         return 0;
1872 }
1873
1874 /**
1875  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1876  *                                (Descriptors) for all queues
1877  * @adapter: board private structure
1878  *
1879  * Return 0 on success, negative on failure
1880  **/
1881
1882 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1883 {
1884         int i, err = 0;
1885
1886         for (i = 0; i < adapter->num_rx_queues; i++) {
1887                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1888                 if (err) {
1889                         DPRINTK(PROBE, ERR,
1890                                 "Allocation for Rx Queue %u failed\n", i);
1891                         for (i-- ; i >= 0; i--)
1892                                 e1000_free_rx_resources(adapter,
1893                                                         &adapter->rx_ring[i]);
1894                         break;
1895                 }
1896         }
1897
1898         return err;
1899 }
1900
1901 /**
1902  * e1000_setup_rctl - configure the receive control registers
1903  * @adapter: Board private structure
1904  **/
1905 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1906                         (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1907 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1908 {
1909         struct e1000_hw *hw = &adapter->hw;
1910         u32 rctl;
1911
1912         rctl = er32(RCTL);
1913
1914         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1915
1916         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1917                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1918                 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1919
1920         if (hw->tbi_compatibility_on == 1)
1921                 rctl |= E1000_RCTL_SBP;
1922         else
1923                 rctl &= ~E1000_RCTL_SBP;
1924
1925         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1926                 rctl &= ~E1000_RCTL_LPE;
1927         else
1928                 rctl |= E1000_RCTL_LPE;
1929
1930         /* Setup buffer sizes */
1931         rctl &= ~E1000_RCTL_SZ_4096;
1932         rctl |= E1000_RCTL_BSEX;
1933         switch (adapter->rx_buffer_len) {
1934                 case E1000_RXBUFFER_256:
1935                         rctl |= E1000_RCTL_SZ_256;
1936                         rctl &= ~E1000_RCTL_BSEX;
1937                         break;
1938                 case E1000_RXBUFFER_512:
1939                         rctl |= E1000_RCTL_SZ_512;
1940                         rctl &= ~E1000_RCTL_BSEX;
1941                         break;
1942                 case E1000_RXBUFFER_1024:
1943                         rctl |= E1000_RCTL_SZ_1024;
1944                         rctl &= ~E1000_RCTL_BSEX;
1945                         break;
1946                 case E1000_RXBUFFER_2048:
1947                 default:
1948                         rctl |= E1000_RCTL_SZ_2048;
1949                         rctl &= ~E1000_RCTL_BSEX;
1950                         break;
1951                 case E1000_RXBUFFER_4096:
1952                         rctl |= E1000_RCTL_SZ_4096;
1953                         break;
1954                 case E1000_RXBUFFER_8192:
1955                         rctl |= E1000_RCTL_SZ_8192;
1956                         break;
1957                 case E1000_RXBUFFER_16384:
1958                         rctl |= E1000_RCTL_SZ_16384;
1959                         break;
1960         }
1961
1962         ew32(RCTL, rctl);
1963 }
1964
1965 /**
1966  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1967  * @adapter: board private structure
1968  *
1969  * Configure the Rx unit of the MAC after a reset.
1970  **/
1971
1972 static void e1000_configure_rx(struct e1000_adapter *adapter)
1973 {
1974         u64 rdba;
1975         struct e1000_hw *hw = &adapter->hw;
1976         u32 rdlen, rctl, rxcsum, ctrl_ext;
1977
1978         rdlen = adapter->rx_ring[0].count *
1979                 sizeof(struct e1000_rx_desc);
1980         adapter->clean_rx = e1000_clean_rx_irq;
1981         adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1982
1983         /* disable receives while setting up the descriptors */
1984         rctl = er32(RCTL);
1985         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1986
1987         /* set the Receive Delay Timer Register */
1988         ew32(RDTR, adapter->rx_int_delay);
1989
1990         if (hw->mac_type >= e1000_82540) {
1991                 ew32(RADV, adapter->rx_abs_int_delay);
1992                 if (adapter->itr_setting != 0)
1993                         ew32(ITR, 1000000000 / (adapter->itr * 256));
1994         }
1995
1996         if (hw->mac_type >= e1000_82571) {
1997                 ctrl_ext = er32(CTRL_EXT);
1998                 /* Reset delay timers after every interrupt */
1999                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
2000                 /* Auto-Mask interrupts upon ICR access */
2001                 ctrl_ext |= E1000_CTRL_EXT_IAME;
2002                 ew32(IAM, 0xffffffff);
2003                 ew32(CTRL_EXT, ctrl_ext);
2004                 E1000_WRITE_FLUSH();
2005         }
2006
2007         /* Setup the HW Rx Head and Tail Descriptor Pointers and
2008          * the Base and Length of the Rx Descriptor Ring */
2009         switch (adapter->num_rx_queues) {
2010         case 1:
2011         default:
2012                 rdba = adapter->rx_ring[0].dma;
2013                 ew32(RDLEN, rdlen);
2014                 ew32(RDBAH, (rdba >> 32));
2015                 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
2016                 ew32(RDT, 0);
2017                 ew32(RDH, 0);
2018                 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
2019                 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
2020                 break;
2021         }
2022
2023         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
2024         if (hw->mac_type >= e1000_82543) {
2025                 rxcsum = er32(RXCSUM);
2026                 if (adapter->rx_csum)
2027                         rxcsum |= E1000_RXCSUM_TUOFL;
2028                 else
2029                         /* don't need to clear IPPCSE as it defaults to 0 */
2030                         rxcsum &= ~E1000_RXCSUM_TUOFL;
2031                 ew32(RXCSUM, rxcsum);
2032         }
2033
2034         /* Enable Receives */
2035         ew32(RCTL, rctl);
2036 }
2037
2038 /**
2039  * e1000_free_tx_resources - Free Tx Resources per Queue
2040  * @adapter: board private structure
2041  * @tx_ring: Tx descriptor ring for a specific queue
2042  *
2043  * Free all transmit software resources
2044  **/
2045
2046 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
2047                                     struct e1000_tx_ring *tx_ring)
2048 {
2049         struct pci_dev *pdev = adapter->pdev;
2050
2051         e1000_clean_tx_ring(adapter, tx_ring);
2052
2053         vfree(tx_ring->buffer_info);
2054         tx_ring->buffer_info = NULL;
2055
2056         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2057
2058         tx_ring->desc = NULL;
2059 }
2060
2061 /**
2062  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
2063  * @adapter: board private structure
2064  *
2065  * Free all transmit software resources
2066  **/
2067
2068 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
2069 {
2070         int i;
2071
2072         for (i = 0; i < adapter->num_tx_queues; i++)
2073                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
2074 }
2075
2076 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
2077                                              struct e1000_buffer *buffer_info)
2078 {
2079         if (buffer_info->dma) {
2080                 pci_unmap_page(adapter->pdev,
2081                                 buffer_info->dma,
2082                                 buffer_info->length,
2083                                 PCI_DMA_TODEVICE);
2084                 buffer_info->dma = 0;
2085         }
2086         if (buffer_info->skb) {
2087                 dev_kfree_skb_any(buffer_info->skb);
2088                 buffer_info->skb = NULL;
2089         }
2090         /* buffer_info must be completely set up in the transmit path */
2091 }
2092
2093 /**
2094  * e1000_clean_tx_ring - Free Tx Buffers
2095  * @adapter: board private structure
2096  * @tx_ring: ring to be cleaned
2097  **/
2098
2099 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
2100                                 struct e1000_tx_ring *tx_ring)
2101 {
2102         struct e1000_hw *hw = &adapter->hw;
2103         struct e1000_buffer *buffer_info;
2104         unsigned long size;
2105         unsigned int i;
2106
2107         /* Free all the Tx ring sk_buffs */
2108
2109         for (i = 0; i < tx_ring->count; i++) {
2110                 buffer_info = &tx_ring->buffer_info[i];
2111                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2112         }
2113
2114         size = sizeof(struct e1000_buffer) * tx_ring->count;
2115         memset(tx_ring->buffer_info, 0, size);
2116
2117         /* Zero out the descriptor ring */
2118
2119         memset(tx_ring->desc, 0, tx_ring->size);
2120
2121         tx_ring->next_to_use = 0;
2122         tx_ring->next_to_clean = 0;
2123         tx_ring->last_tx_tso = 0;
2124
2125         writel(0, hw->hw_addr + tx_ring->tdh);
2126         writel(0, hw->hw_addr + tx_ring->tdt);
2127 }
2128
2129 /**
2130  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2131  * @adapter: board private structure
2132  **/
2133
2134 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2135 {
2136         int i;
2137
2138         for (i = 0; i < adapter->num_tx_queues; i++)
2139                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2140 }
2141
2142 /**
2143  * e1000_free_rx_resources - Free Rx Resources
2144  * @adapter: board private structure
2145  * @rx_ring: ring to clean the resources from
2146  *
2147  * Free all receive software resources
2148  **/
2149
2150 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2151                                     struct e1000_rx_ring *rx_ring)
2152 {
2153         struct pci_dev *pdev = adapter->pdev;
2154
2155         e1000_clean_rx_ring(adapter, rx_ring);
2156
2157         vfree(rx_ring->buffer_info);
2158         rx_ring->buffer_info = NULL;
2159
2160         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2161
2162         rx_ring->desc = NULL;
2163 }
2164
2165 /**
2166  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2167  * @adapter: board private structure
2168  *
2169  * Free all receive software resources
2170  **/
2171
2172 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2173 {
2174         int i;
2175
2176         for (i = 0; i < adapter->num_rx_queues; i++)
2177                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2178 }
2179
2180 /**
2181  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2182  * @adapter: board private structure
2183  * @rx_ring: ring to free buffers from
2184  **/
2185
2186 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2187                                 struct e1000_rx_ring *rx_ring)
2188 {
2189         struct e1000_hw *hw = &adapter->hw;
2190         struct e1000_buffer *buffer_info;
2191         struct pci_dev *pdev = adapter->pdev;
2192         unsigned long size;
2193         unsigned int i;
2194
2195         /* Free all the Rx ring sk_buffs */
2196         for (i = 0; i < rx_ring->count; i++) {
2197                 buffer_info = &rx_ring->buffer_info[i];
2198                 if (buffer_info->skb) {
2199                         pci_unmap_single(pdev,
2200                                          buffer_info->dma,
2201                                          buffer_info->length,
2202                                          PCI_DMA_FROMDEVICE);
2203
2204                         dev_kfree_skb(buffer_info->skb);
2205                         buffer_info->skb = NULL;
2206                 }
2207         }
2208
2209         size = sizeof(struct e1000_buffer) * rx_ring->count;
2210         memset(rx_ring->buffer_info, 0, size);
2211
2212         /* Zero out the descriptor ring */
2213
2214         memset(rx_ring->desc, 0, rx_ring->size);
2215
2216         rx_ring->next_to_clean = 0;
2217         rx_ring->next_to_use = 0;
2218
2219         writel(0, hw->hw_addr + rx_ring->rdh);
2220         writel(0, hw->hw_addr + rx_ring->rdt);
2221 }
2222
2223 /**
2224  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2225  * @adapter: board private structure
2226  **/
2227
2228 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2229 {
2230         int i;
2231
2232         for (i = 0; i < adapter->num_rx_queues; i++)
2233                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2234 }
2235
2236 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2237  * and memory write and invalidate disabled for certain operations
2238  */
2239 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2240 {
2241         struct e1000_hw *hw = &adapter->hw;
2242         struct net_device *netdev = adapter->netdev;
2243         u32 rctl;
2244
2245         e1000_pci_clear_mwi(hw);
2246
2247         rctl = er32(RCTL);
2248         rctl |= E1000_RCTL_RST;
2249         ew32(RCTL, rctl);
2250         E1000_WRITE_FLUSH();
2251         mdelay(5);
2252
2253         if (netif_running(netdev))
2254                 e1000_clean_all_rx_rings(adapter);
2255 }
2256
2257 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2258 {
2259         struct e1000_hw *hw = &adapter->hw;
2260         struct net_device *netdev = adapter->netdev;
2261         u32 rctl;
2262
2263         rctl = er32(RCTL);
2264         rctl &= ~E1000_RCTL_RST;
2265         ew32(RCTL, rctl);
2266         E1000_WRITE_FLUSH();
2267         mdelay(5);
2268
2269         if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2270                 e1000_pci_set_mwi(hw);
2271
2272         if (netif_running(netdev)) {
2273                 /* No need to loop, because 82542 supports only 1 queue */
2274                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2275                 e1000_configure_rx(adapter);
2276                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2277         }
2278 }
2279
2280 /**
2281  * e1000_set_mac - Change the Ethernet Address of the NIC
2282  * @netdev: network interface device structure
2283  * @p: pointer to an address structure
2284  *
2285  * Returns 0 on success, negative on failure
2286  **/
2287
2288 static int e1000_set_mac(struct net_device *netdev, void *p)
2289 {
2290         struct e1000_adapter *adapter = netdev_priv(netdev);
2291         struct e1000_hw *hw = &adapter->hw;
2292         struct sockaddr *addr = p;
2293
2294         if (!is_valid_ether_addr(addr->sa_data))
2295                 return -EADDRNOTAVAIL;
2296
2297         /* 82542 2.0 needs to be in reset to write receive address registers */
2298
2299         if (hw->mac_type == e1000_82542_rev2_0)
2300                 e1000_enter_82542_rst(adapter);
2301
2302         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2303         memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2304
2305         e1000_rar_set(hw, hw->mac_addr, 0);
2306
2307         /* With 82571 controllers, LAA may be overwritten (with the default)
2308          * due to controller reset from the other port. */
2309         if (hw->mac_type == e1000_82571) {
2310                 /* activate the work around */
2311                 hw->laa_is_present = 1;
2312
2313                 /* Hold a copy of the LAA in RAR[14] This is done so that
2314                  * between the time RAR[0] gets clobbered  and the time it
2315                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2316                  * of the RARs and no incoming packets directed to this port
2317                  * are dropped. Eventaully the LAA will be in RAR[0] and
2318                  * RAR[14] */
2319                 e1000_rar_set(hw, hw->mac_addr,
2320                                         E1000_RAR_ENTRIES - 1);
2321         }
2322
2323         if (hw->mac_type == e1000_82542_rev2_0)
2324                 e1000_leave_82542_rst(adapter);
2325
2326         return 0;
2327 }
2328
2329 /**
2330  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2331  * @netdev: network interface device structure
2332  *
2333  * The set_rx_mode entry point is called whenever the unicast or multicast
2334  * address lists or the network interface flags are updated. This routine is
2335  * responsible for configuring the hardware for proper unicast, multicast,
2336  * promiscuous mode, and all-multi behavior.
2337  **/
2338
2339 static void e1000_set_rx_mode(struct net_device *netdev)
2340 {
2341         struct e1000_adapter *adapter = netdev_priv(netdev);
2342         struct e1000_hw *hw = &adapter->hw;
2343         struct dev_addr_list *uc_ptr;
2344         struct dev_addr_list *mc_ptr;
2345         u32 rctl;
2346         u32 hash_value;
2347         int i, rar_entries = E1000_RAR_ENTRIES;
2348         int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2349                                 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2350                                 E1000_NUM_MTA_REGISTERS;
2351
2352         if (hw->mac_type == e1000_ich8lan)
2353                 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2354
2355         /* reserve RAR[14] for LAA over-write work-around */
2356         if (hw->mac_type == e1000_82571)
2357                 rar_entries--;
2358
2359         /* Check for Promiscuous and All Multicast modes */
2360
2361         rctl = er32(RCTL);
2362
2363         if (netdev->flags & IFF_PROMISC) {
2364                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2365                 rctl &= ~E1000_RCTL_VFE;
2366         } else {
2367                 if (netdev->flags & IFF_ALLMULTI) {
2368                         rctl |= E1000_RCTL_MPE;
2369                 } else {
2370                         rctl &= ~E1000_RCTL_MPE;
2371                 }
2372                 if (adapter->hw.mac_type != e1000_ich8lan)
2373                         rctl |= E1000_RCTL_VFE;
2374         }
2375
2376         uc_ptr = NULL;
2377         if (netdev->uc_count > rar_entries - 1) {
2378                 rctl |= E1000_RCTL_UPE;
2379         } else if (!(netdev->flags & IFF_PROMISC)) {
2380                 rctl &= ~E1000_RCTL_UPE;
2381                 uc_ptr = netdev->uc_list;
2382         }
2383
2384         ew32(RCTL, rctl);
2385
2386         /* 82542 2.0 needs to be in reset to write receive address registers */
2387
2388         if (hw->mac_type == e1000_82542_rev2_0)
2389                 e1000_enter_82542_rst(adapter);
2390
2391         /* load the first 14 addresses into the exact filters 1-14. Unicast
2392          * addresses take precedence to avoid disabling unicast filtering
2393          * when possible.
2394          *
2395          * RAR 0 is used for the station MAC adddress
2396          * if there are not 14 addresses, go ahead and clear the filters
2397          * -- with 82571 controllers only 0-13 entries are filled here
2398          */
2399         mc_ptr = netdev->mc_list;
2400
2401         for (i = 1; i < rar_entries; i++) {
2402                 if (uc_ptr) {
2403                         e1000_rar_set(hw, uc_ptr->da_addr, i);
2404                         uc_ptr = uc_ptr->next;
2405                 } else if (mc_ptr) {
2406                         e1000_rar_set(hw, mc_ptr->da_addr, i);
2407                         mc_ptr = mc_ptr->next;
2408                 } else {
2409                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2410                         E1000_WRITE_FLUSH();
2411                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2412                         E1000_WRITE_FLUSH();
2413                 }
2414         }
2415         WARN_ON(uc_ptr != NULL);
2416
2417         /* clear the old settings from the multicast hash table */
2418
2419         for (i = 0; i < mta_reg_count; i++) {
2420                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2421                 E1000_WRITE_FLUSH();
2422         }
2423
2424         /* load any remaining addresses into the hash table */
2425
2426         for (; mc_ptr; mc_ptr = mc_ptr->next) {
2427                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->da_addr);
2428                 e1000_mta_set(hw, hash_value);
2429         }
2430
2431         if (hw->mac_type == e1000_82542_rev2_0)
2432                 e1000_leave_82542_rst(adapter);
2433 }
2434
2435 /* Need to wait a few seconds after link up to get diagnostic information from
2436  * the phy */
2437
2438 static void e1000_update_phy_info(unsigned long data)
2439 {
2440         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2441         struct e1000_hw *hw = &adapter->hw;
2442         e1000_phy_get_info(hw, &adapter->phy_info);
2443 }
2444
2445 /**
2446  * e1000_82547_tx_fifo_stall - Timer Call-back
2447  * @data: pointer to adapter cast into an unsigned long
2448  **/
2449
2450 static void e1000_82547_tx_fifo_stall(unsigned long data)
2451 {
2452         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2453         struct e1000_hw *hw = &adapter->hw;
2454         struct net_device *netdev = adapter->netdev;
2455         u32 tctl;
2456
2457         if (atomic_read(&adapter->tx_fifo_stall)) {
2458                 if ((er32(TDT) == er32(TDH)) &&
2459                    (er32(TDFT) == er32(TDFH)) &&
2460                    (er32(TDFTS) == er32(TDFHS))) {
2461                         tctl = er32(TCTL);
2462                         ew32(TCTL, tctl & ~E1000_TCTL_EN);
2463                         ew32(TDFT, adapter->tx_head_addr);
2464                         ew32(TDFH, adapter->tx_head_addr);
2465                         ew32(TDFTS, adapter->tx_head_addr);
2466                         ew32(TDFHS, adapter->tx_head_addr);
2467                         ew32(TCTL, tctl);
2468                         E1000_WRITE_FLUSH();
2469
2470                         adapter->tx_fifo_head = 0;
2471                         atomic_set(&adapter->tx_fifo_stall, 0);
2472                         netif_wake_queue(netdev);
2473                 } else {
2474                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2475                 }
2476         }
2477 }
2478
2479 /**
2480  * e1000_watchdog - Timer Call-back
2481  * @data: pointer to adapter cast into an unsigned long
2482  **/
2483 static void e1000_watchdog(unsigned long data)
2484 {
2485         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2486         struct e1000_hw *hw = &adapter->hw;
2487         struct net_device *netdev = adapter->netdev;
2488         struct e1000_tx_ring *txdr = adapter->tx_ring;
2489         u32 link, tctl;
2490         s32 ret_val;
2491
2492         ret_val = e1000_check_for_link(hw);
2493         if ((ret_val == E1000_ERR_PHY) &&
2494             (hw->phy_type == e1000_phy_igp_3) &&
2495             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2496                 /* See e1000_kumeran_lock_loss_workaround() */
2497                 DPRINTK(LINK, INFO,
2498                         "Gigabit has been disabled, downgrading speed\n");
2499         }
2500
2501         if (hw->mac_type == e1000_82573) {
2502                 e1000_enable_tx_pkt_filtering(hw);
2503                 if (adapter->mng_vlan_id != hw->mng_cookie.vlan_id)
2504                         e1000_update_mng_vlan(adapter);
2505         }
2506
2507         if ((hw->media_type == e1000_media_type_internal_serdes) &&
2508            !(er32(TXCW) & E1000_TXCW_ANE))
2509                 link = !hw->serdes_link_down;
2510         else
2511                 link = er32(STATUS) & E1000_STATUS_LU;
2512
2513         if (link) {
2514                 if (!netif_carrier_ok(netdev)) {
2515                         u32 ctrl;
2516                         bool txb2b = true;
2517                         e1000_get_speed_and_duplex(hw,
2518                                                    &adapter->link_speed,
2519                                                    &adapter->link_duplex);
2520
2521                         ctrl = er32(CTRL);
2522                         DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s, "
2523                                 "Flow Control: %s\n",
2524                                 adapter->link_speed,
2525                                 adapter->link_duplex == FULL_DUPLEX ?
2526                                 "Full Duplex" : "Half Duplex",
2527                                 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2528                                 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2529                                 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2530                                 E1000_CTRL_TFCE) ? "TX" : "None" )));
2531
2532                         /* tweak tx_queue_len according to speed/duplex
2533                          * and adjust the timeout factor */
2534                         netdev->tx_queue_len = adapter->tx_queue_len;
2535                         adapter->tx_timeout_factor = 1;
2536                         switch (adapter->link_speed) {
2537                         case SPEED_10:
2538                                 txb2b = false;
2539                                 netdev->tx_queue_len = 10;
2540                                 adapter->tx_timeout_factor = 8;
2541                                 break;
2542                         case SPEED_100:
2543                                 txb2b = false;
2544                                 netdev->tx_queue_len = 100;
2545                                 /* maybe add some timeout factor ? */
2546                                 break;
2547                         }
2548
2549                         if ((hw->mac_type == e1000_82571 ||
2550                              hw->mac_type == e1000_82572) &&
2551                             !txb2b) {
2552                                 u32 tarc0;
2553                                 tarc0 = er32(TARC0);
2554                                 tarc0 &= ~(1 << 21);
2555                                 ew32(TARC0, tarc0);
2556                         }
2557
2558                         /* disable TSO for pcie and 10/100 speeds, to avoid
2559                          * some hardware issues */
2560                         if (!adapter->tso_force &&
2561                             hw->bus_type == e1000_bus_type_pci_express){
2562                                 switch (adapter->link_speed) {
2563                                 case SPEED_10:
2564                                 case SPEED_100:
2565                                         DPRINTK(PROBE,INFO,
2566                                         "10/100 speed: disabling TSO\n");
2567                                         netdev->features &= ~NETIF_F_TSO;
2568                                         netdev->features &= ~NETIF_F_TSO6;
2569                                         break;
2570                                 case SPEED_1000:
2571                                         netdev->features |= NETIF_F_TSO;
2572                                         netdev->features |= NETIF_F_TSO6;
2573                                         break;
2574                                 default:
2575                                         /* oops */
2576                                         break;
2577                                 }
2578                         }
2579
2580                         /* enable transmits in the hardware, need to do this
2581                          * after setting TARC0 */
2582                         tctl = er32(TCTL);
2583                         tctl |= E1000_TCTL_EN;
2584                         ew32(TCTL, tctl);
2585
2586                         netif_carrier_on(netdev);
2587                         netif_wake_queue(netdev);
2588                         mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2589                         adapter->smartspeed = 0;
2590                 } else {
2591                         /* make sure the receive unit is started */
2592                         if (hw->rx_needs_kicking) {
2593                                 u32 rctl = er32(RCTL);
2594                                 ew32(RCTL, rctl | E1000_RCTL_EN);
2595                         }
2596                 }
2597         } else {
2598                 if (netif_carrier_ok(netdev)) {
2599                         adapter->link_speed = 0;
2600                         adapter->link_duplex = 0;
2601                         DPRINTK(LINK, INFO, "NIC Link is Down\n");
2602                         netif_carrier_off(netdev);
2603                         netif_stop_queue(netdev);
2604                         mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2605
2606                         /* 80003ES2LAN workaround--
2607                          * For packet buffer work-around on link down event;
2608                          * disable receives in the ISR and
2609                          * reset device here in the watchdog
2610                          */
2611                         if (hw->mac_type == e1000_80003es2lan)
2612                                 /* reset device */
2613                                 schedule_work(&adapter->reset_task);
2614                 }
2615
2616                 e1000_smartspeed(adapter);
2617         }
2618
2619         e1000_update_stats(adapter);
2620
2621         hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2622         adapter->tpt_old = adapter->stats.tpt;
2623         hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2624         adapter->colc_old = adapter->stats.colc;
2625
2626         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2627         adapter->gorcl_old = adapter->stats.gorcl;
2628         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2629         adapter->gotcl_old = adapter->stats.gotcl;
2630
2631         e1000_update_adaptive(hw);
2632
2633         if (!netif_carrier_ok(netdev)) {
2634                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2635                         /* We've lost link, so the controller stops DMA,
2636                          * but we've got queued Tx work that's never going
2637                          * to get done, so reset controller to flush Tx.
2638                          * (Do the reset outside of interrupt context). */
2639                         adapter->tx_timeout_count++;
2640                         schedule_work(&adapter->reset_task);
2641                 }
2642         }
2643
2644         /* Cause software interrupt to ensure rx ring is cleaned */
2645         ew32(ICS, E1000_ICS_RXDMT0);
2646
2647         /* Force detection of hung controller every watchdog period */
2648         adapter->detect_tx_hung = true;
2649
2650         /* With 82571 controllers, LAA may be overwritten due to controller
2651          * reset from the other port. Set the appropriate LAA in RAR[0] */
2652         if (hw->mac_type == e1000_82571 && hw->laa_is_present)
2653                 e1000_rar_set(hw, hw->mac_addr, 0);
2654
2655         /* Reset the timer */
2656         mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 2 * HZ));
2657 }
2658
2659 enum latency_range {
2660         lowest_latency = 0,
2661         low_latency = 1,
2662         bulk_latency = 2,
2663         latency_invalid = 255
2664 };
2665
2666 /**
2667  * e1000_update_itr - update the dynamic ITR value based on statistics
2668  *      Stores a new ITR value based on packets and byte
2669  *      counts during the last interrupt.  The advantage of per interrupt
2670  *      computation is faster updates and more accurate ITR for the current
2671  *      traffic pattern.  Constants in this function were computed
2672  *      based on theoretical maximum wire speed and thresholds were set based
2673  *      on testing data as well as attempting to minimize response time
2674  *      while increasing bulk throughput.
2675  *      this functionality is controlled by the InterruptThrottleRate module
2676  *      parameter (see e1000_param.c)
2677  * @adapter: pointer to adapter
2678  * @itr_setting: current adapter->itr
2679  * @packets: the number of packets during this measurement interval
2680  * @bytes: the number of bytes during this measurement interval
2681  **/
2682 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2683                                      u16 itr_setting, int packets, int bytes)
2684 {
2685         unsigned int retval = itr_setting;
2686         struct e1000_hw *hw = &adapter->hw;
2687
2688         if (unlikely(hw->mac_type < e1000_82540))
2689                 goto update_itr_done;
2690
2691         if (packets == 0)
2692                 goto update_itr_done;
2693
2694         switch (itr_setting) {
2695         case lowest_latency:
2696                 /* jumbo frames get bulk treatment*/
2697                 if (bytes/packets > 8000)
2698                         retval = bulk_latency;
2699                 else if ((packets < 5) && (bytes > 512))
2700                         retval = low_latency;
2701                 break;
2702         case low_latency:  /* 50 usec aka 20000 ints/s */
2703                 if (bytes > 10000) {
2704                         /* jumbo frames need bulk latency setting */
2705                         if (bytes/packets > 8000)
2706                                 retval = bulk_latency;
2707                         else if ((packets < 10) || ((bytes/packets) > 1200))
2708                                 retval = bulk_latency;
2709                         else if ((packets > 35))
2710                                 retval = lowest_latency;
2711                 } else if (bytes/packets > 2000)
2712                         retval = bulk_latency;
2713                 else if (packets <= 2 && bytes < 512)
2714                         retval = lowest_latency;
2715                 break;
2716         case bulk_latency: /* 250 usec aka 4000 ints/s */
2717                 if (bytes > 25000) {
2718                         if (packets > 35)
2719                                 retval = low_latency;
2720                 } else if (bytes < 6000) {
2721                         retval = low_latency;
2722                 }
2723                 break;
2724         }
2725
2726 update_itr_done:
2727         return retval;
2728 }
2729
2730 static void e1000_set_itr(struct e1000_adapter *adapter)
2731 {
2732         struct e1000_hw *hw = &adapter->hw;
2733         u16 current_itr;
2734         u32 new_itr = adapter->itr;
2735
2736         if (unlikely(hw->mac_type < e1000_82540))
2737                 return;
2738
2739         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2740         if (unlikely(adapter->link_speed != SPEED_1000)) {
2741                 current_itr = 0;
2742                 new_itr = 4000;
2743                 goto set_itr_now;
2744         }
2745
2746         adapter->tx_itr = e1000_update_itr(adapter,
2747                                     adapter->tx_itr,
2748                                     adapter->total_tx_packets,
2749                                     adapter->total_tx_bytes);
2750         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2751         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2752                 adapter->tx_itr = low_latency;
2753
2754         adapter->rx_itr = e1000_update_itr(adapter,
2755                                     adapter->rx_itr,
2756                                     adapter->total_rx_packets,
2757                                     adapter->total_rx_bytes);
2758         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2759         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2760                 adapter->rx_itr = low_latency;
2761
2762         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2763
2764         switch (current_itr) {
2765         /* counts and packets in update_itr are dependent on these numbers */
2766         case lowest_latency:
2767                 new_itr = 70000;
2768                 break;
2769         case low_latency:
2770                 new_itr = 20000; /* aka hwitr = ~200 */
2771                 break;
2772         case bulk_latency:
2773                 new_itr = 4000;
2774                 break;
2775         default:
2776                 break;
2777         }
2778
2779 set_itr_now:
2780         if (new_itr != adapter->itr) {
2781                 /* this attempts to bias the interrupt rate towards Bulk
2782                  * by adding intermediate steps when interrupt rate is
2783                  * increasing */
2784                 new_itr = new_itr > adapter->itr ?
2785                              min(adapter->itr + (new_itr >> 2), new_itr) :
2786                              new_itr;
2787                 adapter->itr = new_itr;
2788                 ew32(ITR, 1000000000 / (new_itr * 256));
2789         }
2790
2791         return;
2792 }
2793
2794 #define E1000_TX_FLAGS_CSUM             0x00000001
2795 #define E1000_TX_FLAGS_VLAN             0x00000002
2796 #define E1000_TX_FLAGS_TSO              0x00000004
2797 #define E1000_TX_FLAGS_IPV4             0x00000008
2798 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2799 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2800
2801 static int e1000_tso(struct e1000_adapter *adapter,
2802                      struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2803 {
2804         struct e1000_context_desc *context_desc;
2805         struct e1000_buffer *buffer_info;
2806         unsigned int i;
2807         u32 cmd_length = 0;
2808         u16 ipcse = 0, tucse, mss;
2809         u8 ipcss, ipcso, tucss, tucso, hdr_len;
2810         int err;
2811
2812         if (skb_is_gso(skb)) {
2813                 if (skb_header_cloned(skb)) {
2814                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2815                         if (err)
2816                                 return err;
2817                 }
2818
2819                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2820                 mss = skb_shinfo(skb)->gso_size;
2821                 if (skb->protocol == htons(ETH_P_IP)) {
2822                         struct iphdr *iph = ip_hdr(skb);
2823                         iph->tot_len = 0;
2824                         iph->check = 0;
2825                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2826                                                                  iph->daddr, 0,
2827                                                                  IPPROTO_TCP,
2828                                                                  0);
2829                         cmd_length = E1000_TXD_CMD_IP;
2830                         ipcse = skb_transport_offset(skb) - 1;
2831                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2832                         ipv6_hdr(skb)->payload_len = 0;
2833                         tcp_hdr(skb)->check =
2834                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2835                                                  &ipv6_hdr(skb)->daddr,
2836                                                  0, IPPROTO_TCP, 0);
2837                         ipcse = 0;
2838                 }
2839                 ipcss = skb_network_offset(skb);
2840                 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2841                 tucss = skb_transport_offset(skb);
2842                 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2843                 tucse = 0;
2844
2845                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2846                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2847
2848                 i = tx_ring->next_to_use;
2849                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2850                 buffer_info = &tx_ring->buffer_info[i];
2851
2852                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2853                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2854                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2855                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2856                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2857                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2858                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2859                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2860                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2861
2862                 buffer_info->time_stamp = jiffies;
2863                 buffer_info->next_to_watch = i;
2864
2865                 if (++i == tx_ring->count) i = 0;
2866                 tx_ring->next_to_use = i;
2867
2868                 return true;
2869         }
2870         return false;
2871 }
2872
2873 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2874                           struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2875 {
2876         struct e1000_context_desc *context_desc;
2877         struct e1000_buffer *buffer_info;
2878         unsigned int i;
2879         u8 css;
2880         u32 cmd_len = E1000_TXD_CMD_DEXT;
2881
2882         if (skb->ip_summed != CHECKSUM_PARTIAL)
2883                 return false;
2884
2885         switch (skb->protocol) {
2886         case __constant_htons(ETH_P_IP):
2887                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2888                         cmd_len |= E1000_TXD_CMD_TCP;
2889                 break;
2890         case __constant_htons(ETH_P_IPV6):
2891                 /* XXX not handling all IPV6 headers */
2892                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2893                         cmd_len |= E1000_TXD_CMD_TCP;
2894                 break;
2895         default:
2896                 if (unlikely(net_ratelimit()))
2897                         DPRINTK(DRV, WARNING,
2898                                 "checksum_partial proto=%x!\n", skb->protocol);
2899                 break;
2900         }
2901
2902         css = skb_transport_offset(skb);
2903
2904         i = tx_ring->next_to_use;
2905         buffer_info = &tx_ring->buffer_info[i];
2906         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2907
2908         context_desc->lower_setup.ip_config = 0;
2909         context_desc->upper_setup.tcp_fields.tucss = css;
2910         context_desc->upper_setup.tcp_fields.tucso =
2911                 css + skb->csum_offset;
2912         context_desc->upper_setup.tcp_fields.tucse = 0;
2913         context_desc->tcp_seg_setup.data = 0;
2914         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2915
2916         buffer_info->time_stamp = jiffies;
2917         buffer_info->next_to_watch = i;
2918
2919         if (unlikely(++i == tx_ring->count)) i = 0;
2920         tx_ring->next_to_use = i;
2921
2922         return true;
2923 }
2924
2925 #define E1000_MAX_TXD_PWR       12
2926 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2927
2928 static int e1000_tx_map(struct e1000_adapter *adapter,
2929                         struct e1000_tx_ring *tx_ring,
2930                         struct sk_buff *skb, unsigned int first,
2931                         unsigned int max_per_txd, unsigned int nr_frags,
2932                         unsigned int mss)
2933 {
2934         struct e1000_hw *hw = &adapter->hw;
2935         struct e1000_buffer *buffer_info;
2936         unsigned int len = skb->len;
2937         unsigned int offset = 0, size, count = 0, i;
2938         unsigned int f;
2939         len -= skb->data_len;
2940
2941         i = tx_ring->next_to_use;
2942
2943         while (len) {
2944                 buffer_info = &tx_ring->buffer_info[i];
2945                 size = min(len, max_per_txd);
2946                 /* Workaround for Controller erratum --
2947                  * descriptor for non-tso packet in a linear SKB that follows a
2948                  * tso gets written back prematurely before the data is fully
2949                  * DMA'd to the controller */
2950                 if (!skb->data_len && tx_ring->last_tx_tso &&
2951                     !skb_is_gso(skb)) {
2952                         tx_ring->last_tx_tso = 0;
2953                         size -= 4;
2954                 }
2955
2956                 /* Workaround for premature desc write-backs
2957                  * in TSO mode.  Append 4-byte sentinel desc */
2958                 if (unlikely(mss && !nr_frags && size == len && size > 8))
2959                         size -= 4;
2960                 /* work-around for errata 10 and it applies
2961                  * to all controllers in PCI-X mode
2962                  * The fix is to make sure that the first descriptor of a
2963                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2964                  */
2965                 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2966                                 (size > 2015) && count == 0))
2967                         size = 2015;
2968
2969                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2970                  * terminating buffers within evenly-aligned dwords. */
2971                 if (unlikely(adapter->pcix_82544 &&
2972                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2973                    size > 4))
2974                         size -= 4;
2975
2976                 buffer_info->length = size;
2977                 buffer_info->dma =
2978                         pci_map_single(adapter->pdev,
2979                                 skb->data + offset,
2980                                 size,
2981                                 PCI_DMA_TODEVICE);
2982                 buffer_info->time_stamp = jiffies;
2983                 buffer_info->next_to_watch = i;
2984
2985                 len -= size;
2986                 offset += size;
2987                 count++;
2988                 if (unlikely(++i == tx_ring->count)) i = 0;
2989         }
2990
2991         for (f = 0; f < nr_frags; f++) {
2992                 struct skb_frag_struct *frag;
2993
2994                 frag = &skb_shinfo(skb)->frags[f];
2995                 len = frag->size;
2996                 offset = frag->page_offset;
2997
2998                 while (len) {
2999                         buffer_info = &tx_ring->buffer_info[i];
3000                         size = min(len, max_per_txd);
3001                         /* Workaround for premature desc write-backs
3002                          * in TSO mode.  Append 4-byte sentinel desc */
3003                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
3004                                 size -= 4;
3005                         /* Workaround for potential 82544 hang in PCI-X.
3006                          * Avoid terminating buffers within evenly-aligned
3007                          * dwords. */
3008                         if (unlikely(adapter->pcix_82544 &&
3009                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
3010                            size > 4))
3011                                 size -= 4;
3012
3013                         buffer_info->length = size;
3014                         buffer_info->dma =
3015                                 pci_map_page(adapter->pdev,
3016                                         frag->page,
3017                                         offset,
3018                                         size,
3019                                         PCI_DMA_TODEVICE);
3020                         buffer_info->time_stamp = jiffies;
3021                         buffer_info->next_to_watch = i;
3022
3023                         len -= size;
3024                         offset += size;
3025                         count++;
3026                         if (unlikely(++i == tx_ring->count)) i = 0;
3027                 }
3028         }
3029
3030         i = (i == 0) ? tx_ring->count - 1 : i - 1;
3031         tx_ring->buffer_info[i].skb = skb;
3032         tx_ring->buffer_info[first].next_to_watch = i;
3033
3034         return count;
3035 }
3036
3037 static void e1000_tx_queue(struct e1000_adapter *adapter,
3038                            struct e1000_tx_ring *tx_ring, int tx_flags,
3039                            int count)
3040 {
3041         struct e1000_hw *hw = &adapter->hw;
3042         struct e1000_tx_desc *tx_desc = NULL;
3043         struct e1000_buffer *buffer_info;
3044         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3045         unsigned int i;
3046
3047         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
3048                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3049                              E1000_TXD_CMD_TSE;
3050                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3051
3052                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3053                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3054         }
3055
3056         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3057                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3058                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3059         }
3060
3061         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3062                 txd_lower |= E1000_TXD_CMD_VLE;
3063                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3064         }
3065
3066         i = tx_ring->next_to_use;
3067
3068         while (count--) {
3069                 buffer_info = &tx_ring->buffer_info[i];
3070                 tx_desc = E1000_TX_DESC(*tx_ring, i);
3071                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3072                 tx_desc->lower.data =
3073                         cpu_to_le32(txd_lower | buffer_info->length);
3074                 tx_desc->upper.data = cpu_to_le32(txd_upper);
3075                 if (unlikely(++i == tx_ring->count)) i = 0;
3076         }
3077
3078         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3079
3080         /* Force memory writes to complete before letting h/w
3081          * know there are new descriptors to fetch.  (Only
3082          * applicable for weak-ordered memory model archs,
3083          * such as IA-64). */
3084         wmb();
3085
3086         tx_ring->next_to_use = i;
3087         writel(i, hw->hw_addr + tx_ring->tdt);
3088         /* we need this if more than one processor can write to our tail
3089          * at a time, it syncronizes IO on IA64/Altix systems */
3090         mmiowb();
3091 }
3092
3093 /**
3094  * 82547 workaround to avoid controller hang in half-duplex environment.
3095  * The workaround is to avoid queuing a large packet that would span
3096  * the internal Tx FIFO ring boundary by notifying the stack to resend
3097  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3098  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3099  * to the beginning of the Tx FIFO.
3100  **/
3101
3102 #define E1000_FIFO_HDR                  0x10
3103 #define E1000_82547_PAD_LEN             0x3E0
3104
3105 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3106                                        struct sk_buff *skb)
3107 {
3108         u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3109         u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3110
3111         skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3112
3113         if (adapter->link_duplex != HALF_DUPLEX)
3114                 goto no_fifo_stall_required;
3115
3116         if (atomic_read(&adapter->tx_fifo_stall))
3117                 return 1;
3118
3119         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3120                 atomic_set(&adapter->tx_fifo_stall, 1);
3121                 return 1;
3122         }
3123
3124 no_fifo_stall_required:
3125         adapter->tx_fifo_head += skb_fifo_len;
3126         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3127                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3128         return 0;
3129 }
3130
3131 #define MINIMUM_DHCP_PACKET_SIZE 282
3132 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
3133                                     struct sk_buff *skb)
3134 {
3135         struct e1000_hw *hw =  &adapter->hw;
3136         u16 length, offset;
3137         if (vlan_tx_tag_present(skb)) {
3138                 if (!((vlan_tx_tag_get(skb) == hw->mng_cookie.vlan_id) &&
3139                         ( hw->mng_cookie.status &
3140                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
3141                         return 0;
3142         }
3143         if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
3144                 struct ethhdr *eth = (struct ethhdr *)skb->data;
3145                 if ((htons(ETH_P_IP) == eth->h_proto)) {
3146                         const struct iphdr *ip =
3147                                 (struct iphdr *)((u8 *)skb->data+14);
3148                         if (IPPROTO_UDP == ip->protocol) {
3149                                 struct udphdr *udp =
3150                                         (struct udphdr *)((u8 *)ip +
3151                                                 (ip->ihl << 2));
3152                                 if (ntohs(udp->dest) == 67) {
3153                                         offset = (u8 *)udp + 8 - skb->data;
3154                                         length = skb->len - offset;
3155
3156                                         return e1000_mng_write_dhcp_info(hw,
3157                                                         (u8 *)udp + 8,
3158                                                         length);
3159                                 }
3160                         }
3161                 }
3162         }
3163         return 0;
3164 }
3165
3166 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3167 {
3168         struct e1000_adapter *adapter = netdev_priv(netdev);
3169         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3170
3171         netif_stop_queue(netdev);
3172         /* Herbert's original patch had:
3173          *  smp_mb__after_netif_stop_queue();
3174          * but since that doesn't exist yet, just open code it. */
3175         smp_mb();
3176
3177         /* We need to check again in a case another CPU has just
3178          * made room available. */
3179         if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3180                 return -EBUSY;
3181
3182         /* A reprieve! */
3183         netif_start_queue(netdev);
3184         ++adapter->restart_queue;
3185         return 0;
3186 }
3187
3188 static int e1000_maybe_stop_tx(struct net_device *netdev,
3189                                struct e1000_tx_ring *tx_ring, int size)
3190 {
3191         if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3192                 return 0;
3193         return __e1000_maybe_stop_tx(netdev, size);
3194 }
3195
3196 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3197 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3198 {
3199         struct e1000_adapter *adapter = netdev_priv(netdev);
3200         struct e1000_hw *hw = &adapter->hw;
3201         struct e1000_tx_ring *tx_ring;
3202         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3203         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3204         unsigned int tx_flags = 0;
3205         unsigned int len = skb->len - skb->data_len;
3206         unsigned long flags;
3207         unsigned int nr_frags;
3208         unsigned int mss;
3209         int count = 0;
3210         int tso;
3211         unsigned int f;
3212
3213         /* This goes back to the question of how to logically map a tx queue
3214          * to a flow.  Right now, performance is impacted slightly negatively
3215          * if using multiple tx queues.  If the stack breaks away from a
3216          * single qdisc implementation, we can look at this again. */
3217         tx_ring = adapter->tx_ring;
3218
3219         if (unlikely(skb->len <= 0)) {
3220                 dev_kfree_skb_any(skb);
3221                 return NETDEV_TX_OK;
3222         }
3223
3224         /* 82571 and newer doesn't need the workaround that limited descriptor
3225          * length to 4kB */
3226         if (hw->mac_type >= e1000_82571)
3227                 max_per_txd = 8192;
3228
3229         mss = skb_shinfo(skb)->gso_size;
3230         /* The controller does a simple calculation to
3231          * make sure there is enough room in the FIFO before
3232          * initiating the DMA for each buffer.  The calc is:
3233          * 4 = ceil(buffer len/mss).  To make sure we don't
3234          * overrun the FIFO, adjust the max buffer len if mss
3235          * drops. */
3236         if (mss) {
3237                 u8 hdr_len;
3238                 max_per_txd = min(mss << 2, max_per_txd);
3239                 max_txd_pwr = fls(max_per_txd) - 1;
3240
3241                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3242                 * points to just header, pull a few bytes of payload from
3243                 * frags into skb->data */
3244                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3245                 if (skb->data_len && hdr_len == len) {
3246                         switch (hw->mac_type) {
3247                                 unsigned int pull_size;
3248                         case e1000_82544:
3249                                 /* Make sure we have room to chop off 4 bytes,
3250                                  * and that the end alignment will work out to
3251                                  * this hardware's requirements
3252                                  * NOTE: this is a TSO only workaround
3253                                  * if end byte alignment not correct move us
3254                                  * into the next dword */
3255                                 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
3256                                         break;
3257                                 /* fall through */
3258                         case e1000_82571:
3259                         case e1000_82572:
3260                         case e1000_82573:
3261                         case e1000_ich8lan:
3262                                 pull_size = min((unsigned int)4, skb->data_len);
3263                                 if (!__pskb_pull_tail(skb, pull_size)) {
3264                                         DPRINTK(DRV, ERR,
3265                                                 "__pskb_pull_tail failed.\n");
3266                                         dev_kfree_skb_any(skb);
3267                                         return NETDEV_TX_OK;
3268                                 }
3269                                 len = skb->len - skb->data_len;
3270                                 break;
3271                         default:
3272                                 /* do nothing */
3273                                 break;
3274                         }
3275                 }
3276         }
3277
3278         /* reserve a descriptor for the offload context */
3279         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3280                 count++;
3281         count++;
3282
3283         /* Controller Erratum workaround */
3284         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3285                 count++;
3286
3287         count += TXD_USE_COUNT(len, max_txd_pwr);
3288
3289         if (adapter->pcix_82544)
3290                 count++;
3291
3292         /* work-around for errata 10 and it applies to all controllers
3293          * in PCI-X mode, so add one more descriptor to the count
3294          */
3295         if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3296                         (len > 2015)))
3297                 count++;
3298
3299         nr_frags = skb_shinfo(skb)->nr_frags;
3300         for (f = 0; f < nr_frags; f++)
3301                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3302                                        max_txd_pwr);
3303         if (adapter->pcix_82544)
3304                 count += nr_frags;
3305
3306
3307         if (hw->tx_pkt_filtering &&
3308             (hw->mac_type == e1000_82573))
3309                 e1000_transfer_dhcp_info(adapter, skb);
3310
3311         if (!spin_trylock_irqsave(&tx_ring->tx_lock, flags))
3312                 /* Collision - tell upper layer to requeue */
3313                 return NETDEV_TX_LOCKED;
3314
3315         /* need: count + 2 desc gap to keep tail from touching
3316          * head, otherwise try next time */
3317         if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) {
3318                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3319                 return NETDEV_TX_BUSY;
3320         }
3321
3322         if (unlikely(hw->mac_type == e1000_82547)) {
3323                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3324                         netif_stop_queue(netdev);
3325                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
3326                         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3327                         return NETDEV_TX_BUSY;
3328                 }
3329         }
3330
3331         if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3332                 tx_flags |= E1000_TX_FLAGS_VLAN;
3333                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3334         }
3335
3336         first = tx_ring->next_to_use;
3337
3338         tso = e1000_tso(adapter, tx_ring, skb);
3339         if (tso < 0) {
3340                 dev_kfree_skb_any(skb);
3341                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3342                 return NETDEV_TX_OK;
3343         }
3344
3345         if (likely(tso)) {
3346                 tx_ring->last_tx_tso = 1;
3347                 tx_flags |= E1000_TX_FLAGS_TSO;
3348         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3349                 tx_flags |= E1000_TX_FLAGS_CSUM;
3350
3351         /* Old method was to assume IPv4 packet by default if TSO was enabled.
3352          * 82571 hardware supports TSO capabilities for IPv6 as well...
3353          * no longer assume, we must. */
3354         if (likely(skb->protocol == htons(ETH_P_IP)))
3355                 tx_flags |= E1000_TX_FLAGS_IPV4;
3356
3357         e1000_tx_queue(adapter, tx_ring, tx_flags,
3358                        e1000_tx_map(adapter, tx_ring, skb, first,
3359                                     max_per_txd, nr_frags, mss));
3360
3361         netdev->trans_start = jiffies;
3362
3363         /* Make sure there is space in the ring for the next send. */
3364         e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3365
3366         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3367         return NETDEV_TX_OK;
3368 }
3369
3370 /**
3371  * e1000_tx_timeout - Respond to a Tx Hang
3372  * @netdev: network interface device structure
3373  **/
3374
3375 static void e1000_tx_timeout(struct net_device *netdev)
3376 {
3377         struct e1000_adapter *adapter = netdev_priv(netdev);
3378
3379         /* Do the reset outside of interrupt context */
3380         adapter->tx_timeout_count++;
3381         schedule_work(&adapter->reset_task);
3382 }
3383
3384 static void e1000_reset_task(struct work_struct *work)
3385 {
3386         struct e1000_adapter *adapter =
3387                 container_of(work, struct e1000_adapter, reset_task);
3388
3389         e1000_reinit_locked(adapter);
3390 }
3391
3392 /**
3393  * e1000_get_stats - Get System Network Statistics
3394  * @netdev: network interface device structure
3395  *
3396  * Returns the address of the device statistics structure.
3397  * The statistics are actually updated from the timer callback.
3398  **/
3399
3400 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3401 {
3402         struct e1000_adapter *adapter = netdev_priv(netdev);
3403
3404         /* only return the current stats */
3405         return &adapter->net_stats;
3406 }
3407
3408 /**
3409  * e1000_change_mtu - Change the Maximum Transfer Unit
3410  * @netdev: network interface device structure
3411  * @new_mtu: new value for maximum frame size
3412  *
3413  * Returns 0 on success, negative on failure
3414  **/
3415
3416 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3417 {
3418         struct e1000_adapter *adapter = netdev_priv(netdev);
3419         struct e1000_hw *hw = &adapter->hw;
3420         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3421         u16 eeprom_data = 0;
3422
3423         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3424             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3425                 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3426                 return -EINVAL;
3427         }
3428
3429         /* Adapter-specific max frame size limits. */
3430         switch (hw->mac_type) {
3431         case e1000_undefined ... e1000_82542_rev2_1:
3432         case e1000_ich8lan:
3433                 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3434                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3435                         return -EINVAL;
3436                 }
3437                 break;
3438         case e1000_82573:
3439                 /* Jumbo Frames not supported if:
3440                  * - this is not an 82573L device
3441                  * - ASPM is enabled in any way (0x1A bits 3:2) */
3442                 e1000_read_eeprom(hw, EEPROM_INIT_3GIO_3, 1,
3443                                   &eeprom_data);
3444                 if ((hw->device_id != E1000_DEV_ID_82573L) ||
3445                     (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
3446                         if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3447                                 DPRINTK(PROBE, ERR,
3448                                         "Jumbo Frames not supported.\n");
3449                                 return -EINVAL;
3450                         }
3451                         break;
3452                 }
3453                 /* ERT will be enabled later to enable wire speed receives */
3454
3455                 /* fall through to get support */
3456         case e1000_82571:
3457         case e1000_82572:
3458         case e1000_80003es2lan:
3459 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3460                 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3461                         DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3462                         return -EINVAL;
3463                 }
3464                 break;
3465         default:
3466                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3467                 break;
3468         }
3469
3470         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3471          * means we reserve 2 more, this pushes us to allocate from the next
3472          * larger slab size
3473          * i.e. RXBUFFER_2048 --> size-4096 slab */
3474
3475         if (max_frame <= E1000_RXBUFFER_256)
3476                 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3477         else if (max_frame <= E1000_RXBUFFER_512)
3478                 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3479         else if (max_frame <= E1000_RXBUFFER_1024)
3480                 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3481         else if (max_frame <= E1000_RXBUFFER_2048)
3482                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3483         else if (max_frame <= E1000_RXBUFFER_4096)
3484                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3485         else if (max_frame <= E1000_RXBUFFER_8192)
3486                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3487         else if (max_frame <= E1000_RXBUFFER_16384)
3488                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3489
3490         /* adjust allocation if LPE protects us, and we aren't using SBP */
3491         if (!hw->tbi_compatibility_on &&
3492             ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3493              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3494                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3495
3496         netdev->mtu = new_mtu;
3497         hw->max_frame_size = max_frame;
3498
3499         if (netif_running(netdev))
3500                 e1000_reinit_locked(adapter);
3501
3502         return 0;
3503 }
3504
3505 /**
3506  * e1000_update_stats - Update the board statistics counters
3507  * @adapter: board private structure
3508  **/
3509
3510 void e1000_update_stats(struct e1000_adapter *adapter)
3511 {
3512         struct e1000_hw *hw = &adapter->hw;
3513         struct pci_dev *pdev = adapter->pdev;
3514         unsigned long flags;
3515         u16 phy_tmp;
3516
3517 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3518
3519         /*
3520          * Prevent stats update while adapter is being reset, or if the pci
3521          * connection is down.
3522          */
3523         if (adapter->link_speed == 0)
3524                 return;
3525         if (pci_channel_offline(pdev))
3526                 return;
3527
3528         spin_lock_irqsave(&adapter->stats_lock, flags);
3529
3530         /* these counters are modified from e1000_tbi_adjust_stats,
3531          * called from the interrupt context, so they must only
3532          * be written while holding adapter->stats_lock
3533          */
3534
3535         adapter->stats.crcerrs += er32(CRCERRS);
3536         adapter->stats.gprc += er32(GPRC);
3537         adapter->stats.gorcl += er32(GORCL);
3538         adapter->stats.gorch += er32(GORCH);
3539         adapter->stats.bprc += er32(BPRC);
3540         adapter->stats.mprc += er32(MPRC);
3541         adapter->stats.roc += er32(ROC);
3542
3543         if (hw->mac_type != e1000_ich8lan) {
3544                 adapter->stats.prc64 += er32(PRC64);
3545                 adapter->stats.prc127 += er32(PRC127);
3546                 adapter->stats.prc255 += er32(PRC255);
3547                 adapter->stats.prc511 += er32(PRC511);
3548                 adapter->stats.prc1023 += er32(PRC1023);
3549                 adapter->stats.prc1522 += er32(PRC1522);
3550         }
3551
3552         adapter->stats.symerrs += er32(SYMERRS);
3553         adapter->stats.mpc += er32(MPC);
3554         adapter->stats.scc += er32(SCC);
3555         adapter->stats.ecol += er32(ECOL);
3556         adapter->stats.mcc += er32(MCC);
3557         adapter->stats.latecol += er32(LATECOL);
3558         adapter->stats.dc += er32(DC);
3559         adapter->stats.sec += er32(SEC);
3560         adapter->stats.rlec += er32(RLEC);
3561         adapter->stats.xonrxc += er32(XONRXC);
3562         adapter->stats.xontxc += er32(XONTXC);
3563         adapter->stats.xoffrxc += er32(XOFFRXC);
3564         adapter->stats.xofftxc += er32(XOFFTXC);
3565         adapter->stats.fcruc += er32(FCRUC);
3566         adapter->stats.gptc += er32(GPTC);
3567         adapter->stats.gotcl += er32(GOTCL);
3568         adapter->stats.gotch += er32(GOTCH);
3569         adapter->stats.rnbc += er32(RNBC);
3570         adapter->stats.ruc += er32(RUC);
3571         adapter->stats.rfc += er32(RFC);
3572         adapter->stats.rjc += er32(RJC);
3573         adapter->stats.torl += er32(TORL);
3574         adapter->stats.torh += er32(TORH);
3575         adapter->stats.totl += er32(TOTL);
3576         adapter->stats.toth += er32(TOTH);
3577         adapter->stats.tpr += er32(TPR);
3578
3579         if (hw->mac_type != e1000_ich8lan) {
3580                 adapter->stats.ptc64 += er32(PTC64);
3581                 adapter->stats.ptc127 += er32(PTC127);
3582                 adapter->stats.ptc255 += er32(PTC255);
3583                 adapter->stats.ptc511 += er32(PTC511);
3584                 adapter->stats.ptc1023 += er32(PTC1023);
3585                 adapter->stats.ptc1522 += er32(PTC1522);
3586         }
3587
3588         adapter->stats.mptc += er32(MPTC);
3589         adapter->stats.bptc += er32(BPTC);
3590
3591         /* used for adaptive IFS */
3592
3593         hw->tx_packet_delta = er32(TPT);
3594         adapter->stats.tpt += hw->tx_packet_delta;
3595         hw->collision_delta = er32(COLC);
3596         adapter->stats.colc += hw->collision_delta;
3597
3598         if (hw->mac_type >= e1000_82543) {
3599                 adapter->stats.algnerrc += er32(ALGNERRC);
3600                 adapter->stats.rxerrc += er32(RXERRC);
3601                 adapter->stats.tncrs += er32(TNCRS);
3602                 adapter->stats.cexterr += er32(CEXTERR);
3603                 adapter->stats.tsctc += er32(TSCTC);
3604                 adapter->stats.tsctfc += er32(TSCTFC);
3605         }
3606         if (hw->mac_type > e1000_82547_rev_2) {
3607                 adapter->stats.iac += er32(IAC);
3608                 adapter->stats.icrxoc += er32(ICRXOC);
3609
3610                 if (hw->mac_type != e1000_ich8lan) {
3611                         adapter->stats.icrxptc += er32(ICRXPTC);
3612                         adapter->stats.icrxatc += er32(ICRXATC);
3613                         adapter->stats.ictxptc += er32(ICTXPTC);
3614                         adapter->stats.ictxatc += er32(ICTXATC);
3615                         adapter->stats.ictxqec += er32(ICTXQEC);
3616                         adapter->stats.ictxqmtc += er32(ICTXQMTC);
3617                         adapter->stats.icrxdmtc += er32(ICRXDMTC);
3618                 }
3619         }
3620
3621         /* Fill out the OS statistics structure */
3622         adapter->net_stats.multicast = adapter->stats.mprc;
3623         adapter->net_stats.collisions = adapter->stats.colc;
3624
3625         /* Rx Errors */
3626
3627         /* RLEC on some newer hardware can be incorrect so build
3628         * our own version based on RUC and ROC */
3629         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3630                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3631                 adapter->stats.ruc + adapter->stats.roc +
3632                 adapter->stats.cexterr;
3633         adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3634         adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3635         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3636         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3637         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3638
3639         /* Tx Errors */
3640         adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3641         adapter->net_stats.tx_errors = adapter->stats.txerrc;
3642         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3643         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3644         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3645         if (hw->bad_tx_carr_stats_fd &&
3646             adapter->link_duplex == FULL_DUPLEX) {
3647                 adapter->net_stats.tx_carrier_errors = 0;
3648                 adapter->stats.tncrs = 0;
3649         }
3650
3651         /* Tx Dropped needs to be maintained elsewhere */
3652
3653         /* Phy Stats */
3654         if (hw->media_type == e1000_media_type_copper) {
3655                 if ((adapter->link_speed == SPEED_1000) &&
3656                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3657                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3658                         adapter->phy_stats.idle_errors += phy_tmp;
3659                 }
3660
3661                 if ((hw->mac_type <= e1000_82546) &&
3662                    (hw->phy_type == e1000_phy_m88) &&
3663                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3664                         adapter->phy_stats.receive_errors += phy_tmp;
3665         }
3666
3667         /* Management Stats */
3668         if (hw->has_smbus) {
3669                 adapter->stats.mgptc += er32(MGTPTC);
3670                 adapter->stats.mgprc += er32(MGTPRC);
3671                 adapter->stats.mgpdc += er32(MGTPDC);
3672         }
3673
3674         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3675 }
3676
3677 /**
3678  * e1000_intr_msi - Interrupt Handler
3679  * @irq: interrupt number
3680  * @data: pointer to a network interface device structure
3681  **/
3682
3683 static irqreturn_t e1000_intr_msi(int irq, void *data)
3684 {
3685         struct net_device *netdev = data;
3686         struct e1000_adapter *adapter = netdev_priv(netdev);
3687         struct e1000_hw *hw = &adapter->hw;
3688         u32 icr = er32(ICR);
3689
3690         /* in NAPI mode read ICR disables interrupts using IAM */
3691
3692         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3693                 hw->get_link_status = 1;
3694                 /* 80003ES2LAN workaround-- For packet buffer work-around on
3695                  * link down event; disable receives here in the ISR and reset
3696                  * adapter in watchdog */
3697                 if (netif_carrier_ok(netdev) &&
3698                     (hw->mac_type == e1000_80003es2lan)) {
3699                         /* disable receives */
3700                         u32 rctl = er32(RCTL);
3701                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3702                 }
3703                 /* guard against interrupt when we're going down */
3704                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3705                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3706         }
3707
3708         if (likely(netif_rx_schedule_prep(netdev, &adapter->napi))) {
3709                 adapter->total_tx_bytes = 0;
3710                 adapter->total_tx_packets = 0;
3711                 adapter->total_rx_bytes = 0;
3712                 adapter->total_rx_packets = 0;
3713                 __netif_rx_schedule(netdev, &adapter->napi);
3714         } else
3715                 e1000_irq_enable(adapter);
3716
3717         return IRQ_HANDLED;
3718 }
3719
3720 /**
3721  * e1000_intr - Interrupt Handler
3722  * @irq: interrupt number
3723  * @data: pointer to a network interface device structure
3724  **/
3725
3726 static irqreturn_t e1000_intr(int irq, void *data)
3727 {
3728         struct net_device *netdev = data;
3729         struct e1000_adapter *adapter = netdev_priv(netdev);
3730         struct e1000_hw *hw = &adapter->hw;
3731         u32 rctl, icr = er32(ICR);
3732
3733         if (unlikely(!icr))
3734                 return IRQ_NONE;  /* Not our interrupt */
3735
3736         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3737          * not set, then the adapter didn't send an interrupt */
3738         if (unlikely(hw->mac_type >= e1000_82571 &&
3739                      !(icr & E1000_ICR_INT_ASSERTED)))
3740                 return IRQ_NONE;
3741
3742         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
3743          * need for the IMC write */
3744
3745         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3746                 hw->get_link_status = 1;
3747                 /* 80003ES2LAN workaround--
3748                  * For packet buffer work-around on link down event;
3749                  * disable receives here in the ISR and
3750                  * reset adapter in watchdog
3751                  */
3752                 if (netif_carrier_ok(netdev) &&
3753                     (hw->mac_type == e1000_80003es2lan)) {
3754                         /* disable receives */
3755                         rctl = er32(RCTL);
3756                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3757                 }
3758                 /* guard against interrupt when we're going down */
3759                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3760                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3761         }
3762
3763         if (unlikely(hw->mac_type < e1000_82571)) {
3764                 /* disable interrupts, without the synchronize_irq bit */
3765                 ew32(IMC, ~0);
3766                 E1000_WRITE_FLUSH();
3767         }
3768         if (likely(netif_rx_schedule_prep(netdev, &adapter->napi))) {
3769                 adapter->total_tx_bytes = 0;
3770                 adapter->total_tx_packets = 0;
3771                 adapter->total_rx_bytes = 0;
3772                 adapter->total_rx_packets = 0;
3773                 __netif_rx_schedule(netdev, &adapter->napi);
3774         } else
3775                 /* this really should not happen! if it does it is basically a
3776                  * bug, but not a hard error, so enable ints and continue */
3777                 e1000_irq_enable(adapter);
3778
3779         return IRQ_HANDLED;
3780 }
3781
3782 /**
3783  * e1000_clean - NAPI Rx polling callback
3784  * @adapter: board private structure
3785  **/
3786 static int e1000_clean(struct napi_struct *napi, int budget)
3787 {
3788         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3789         struct net_device *poll_dev = adapter->netdev;
3790         int tx_cleaned = 0, work_done = 0;
3791
3792         /* Must NOT use netdev_priv macro here. */
3793         adapter = poll_dev->priv;
3794
3795         /* e1000_clean is called per-cpu.  This lock protects
3796          * tx_ring[0] from being cleaned by multiple cpus
3797          * simultaneously.  A failure obtaining the lock means
3798          * tx_ring[0] is currently being cleaned anyway. */
3799         if (spin_trylock(&adapter->tx_queue_lock)) {
3800                 tx_cleaned = e1000_clean_tx_irq(adapter,
3801                                                 &adapter->tx_ring[0]);
3802                 spin_unlock(&adapter->tx_queue_lock);
3803         }
3804
3805         adapter->clean_rx(adapter, &adapter->rx_ring[0],
3806                           &work_done, budget);
3807
3808         if (tx_cleaned)
3809                 work_done = budget;
3810
3811         /* If budget not fully consumed, exit the polling mode */
3812         if (work_done < budget) {
3813                 if (likely(adapter->itr_setting & 3))
3814                         e1000_set_itr(adapter);
3815                 netif_rx_complete(poll_dev, napi);
3816                 e1000_irq_enable(adapter);
3817         }
3818
3819         return work_done;
3820 }
3821
3822 /**
3823  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3824  * @adapter: board private structure
3825  **/
3826 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3827                                struct e1000_tx_ring *tx_ring)
3828 {
3829         struct e1000_hw *hw = &adapter->hw;
3830         struct net_device *netdev = adapter->netdev;
3831         struct e1000_tx_desc *tx_desc, *eop_desc;
3832         struct e1000_buffer *buffer_info;
3833         unsigned int i, eop;
3834         unsigned int count = 0;
3835         bool cleaned = false;
3836         unsigned int total_tx_bytes=0, total_tx_packets=0;
3837
3838         i = tx_ring->next_to_clean;
3839         eop = tx_ring->buffer_info[i].next_to_watch;
3840         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3841
3842         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3843                 for (cleaned = false; !cleaned; ) {
3844                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3845                         buffer_info = &tx_ring->buffer_info[i];
3846                         cleaned = (i == eop);
3847
3848                         if (cleaned) {
3849                                 struct sk_buff *skb = buffer_info->skb;
3850                                 unsigned int segs, bytecount;
3851                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
3852                                 /* multiply data chunks by size of headers */
3853                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
3854                                             skb->len;
3855                                 total_tx_packets += segs;
3856                                 total_tx_bytes += bytecount;
3857                         }
3858                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3859                         tx_desc->upper.data = 0;
3860
3861                         if (unlikely(++i == tx_ring->count)) i = 0;
3862                 }
3863
3864                 eop = tx_ring->buffer_info[i].next_to_watch;
3865                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3866 #define E1000_TX_WEIGHT 64
3867                 /* weight of a sort for tx, to avoid endless transmit cleanup */
3868                 if (count++ == E1000_TX_WEIGHT)
3869                         break;
3870         }
3871
3872         tx_ring->next_to_clean = i;
3873
3874 #define TX_WAKE_THRESHOLD 32
3875         if (unlikely(cleaned && netif_carrier_ok(netdev) &&
3876                      E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3877                 /* Make sure that anybody stopping the queue after this
3878                  * sees the new next_to_clean.
3879                  */
3880                 smp_mb();
3881                 if (netif_queue_stopped(netdev)) {
3882                         netif_wake_queue(netdev);
3883                         ++adapter->restart_queue;
3884                 }
3885         }
3886
3887         if (adapter->detect_tx_hung) {
3888                 /* Detect a transmit hang in hardware, this serializes the
3889                  * check with the clearing of time_stamp and movement of i */
3890                 adapter->detect_tx_hung = false;
3891                 if (tx_ring->buffer_info[eop].dma &&
3892                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3893                                (adapter->tx_timeout_factor * HZ))
3894                     && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3895
3896                         /* detected Tx unit hang */
3897                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3898                                         "  Tx Queue             <%lu>\n"
3899                                         "  TDH                  <%x>\n"
3900                                         "  TDT                  <%x>\n"
3901                                         "  next_to_use          <%x>\n"
3902                                         "  next_to_clean        <%x>\n"
3903                                         "buffer_info[next_to_clean]\n"
3904                                         "  time_stamp           <%lx>\n"
3905                                         "  next_to_watch        <%x>\n"
3906                                         "  jiffies              <%lx>\n"
3907                                         "  next_to_watch.status <%x>\n",
3908                                 (unsigned long)((tx_ring - adapter->tx_ring) /
3909                                         sizeof(struct e1000_tx_ring)),
3910                                 readl(hw->hw_addr + tx_ring->tdh),
3911                                 readl(hw->hw_addr + tx_ring->tdt),
3912                                 tx_ring->next_to_use,
3913                                 tx_ring->next_to_clean,
3914                                 tx_ring->buffer_info[eop].time_stamp,
3915                                 eop,
3916                                 jiffies,
3917                                 eop_desc->upper.fields.status);
3918                         netif_stop_queue(netdev);
3919                 }
3920         }
3921         adapter->total_tx_bytes += total_tx_bytes;
3922         adapter->total_tx_packets += total_tx_packets;
3923         adapter->net_stats.tx_bytes += total_tx_bytes;
3924         adapter->net_stats.tx_packets += total_tx_packets;
3925         return cleaned;
3926 }
3927
3928 /**
3929  * e1000_rx_checksum - Receive Checksum Offload for 82543
3930  * @adapter:     board private structure
3931  * @status_err:  receive descriptor status and error fields
3932  * @csum:        receive descriptor csum field
3933  * @sk_buff:     socket buffer with received data
3934  **/
3935
3936 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3937                               u32 csum, struct sk_buff *skb)
3938 {
3939         struct e1000_hw *hw = &adapter->hw;
3940         u16 status = (u16)status_err;
3941         u8 errors = (u8)(status_err >> 24);
3942         skb->ip_summed = CHECKSUM_NONE;
3943
3944         /* 82543 or newer only */
3945         if (unlikely(hw->mac_type < e1000_82543)) return;
3946         /* Ignore Checksum bit is set */
3947         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3948         /* TCP/UDP checksum error bit is set */
3949         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3950                 /* let the stack verify checksum errors */
3951                 adapter->hw_csum_err++;
3952                 return;
3953         }
3954         /* TCP/UDP Checksum has not been calculated */
3955         if (hw->mac_type <= e1000_82547_rev_2) {
3956                 if (!(status & E1000_RXD_STAT_TCPCS))
3957                         return;
3958         } else {
3959                 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3960                         return;
3961         }
3962         /* It must be a TCP or UDP packet with a valid checksum */
3963         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3964                 /* TCP checksum is good */
3965                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3966         } else if (hw->mac_type > e1000_82547_rev_2) {
3967                 /* IP fragment with UDP payload */
3968                 /* Hardware complements the payload checksum, so we undo it
3969                  * and then put the value in host order for further stack use.
3970                  */
3971                 __sum16 sum = (__force __sum16)htons(csum);
3972                 skb->csum = csum_unfold(~sum);
3973                 skb->ip_summed = CHECKSUM_COMPLETE;
3974         }
3975         adapter->hw_csum_good++;
3976 }
3977
3978 /**
3979  * e1000_clean_rx_irq - Send received data up the network stack; legacy
3980  * @adapter: board private structure
3981  **/
3982 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
3983                                struct e1000_rx_ring *rx_ring,
3984                                int *work_done, int work_to_do)
3985 {
3986         struct e1000_hw *hw = &adapter->hw;
3987         struct net_device *netdev = adapter->netdev;
3988         struct pci_dev *pdev = adapter->pdev;
3989         struct e1000_rx_desc *rx_desc, *next_rxd;
3990         struct e1000_buffer *buffer_info, *next_buffer;
3991         unsigned long flags;
3992         u32 length;
3993         u8 last_byte;
3994         unsigned int i;
3995         int cleaned_count = 0;
3996         bool cleaned = false;
3997         unsigned int total_rx_bytes=0, total_rx_packets=0;
3998
3999         i = rx_ring->next_to_clean;
4000         rx_desc = E1000_RX_DESC(*rx_ring, i);
4001         buffer_info = &rx_ring->buffer_info[i];
4002
4003         while (rx_desc->status & E1000_RXD_STAT_DD) {
4004                 struct sk_buff *skb;
4005                 u8 status;
4006
4007                 if (*work_done >= work_to_do)
4008                         break;
4009                 (*work_done)++;
4010
4011                 status = rx_desc->status;
4012                 skb = buffer_info->skb;
4013                 buffer_info->skb = NULL;
4014
4015                 prefetch(skb->data - NET_IP_ALIGN);
4016
4017                 if (++i == rx_ring->count) i = 0;
4018                 next_rxd = E1000_RX_DESC(*rx_ring, i);
4019                 prefetch(next_rxd);
4020
4021                 next_buffer = &rx_ring->buffer_info[i];
4022
4023                 cleaned = true;
4024                 cleaned_count++;
4025                 pci_unmap_single(pdev,
4026                                  buffer_info->dma,
4027                                  buffer_info->length,
4028                                  PCI_DMA_FROMDEVICE);
4029
4030                 length = le16_to_cpu(rx_desc->length);
4031
4032                 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
4033                         /* All receives must fit into a single buffer */
4034                         E1000_DBG("%s: Receive packet consumed multiple"
4035                                   " buffers\n", netdev->name);
4036                         /* recycle */
4037                         buffer_info->skb = skb;
4038                         goto next_desc;
4039                 }
4040
4041                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4042                         last_byte = *(skb->data + length - 1);
4043                         if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4044                                        last_byte)) {
4045                                 spin_lock_irqsave(&adapter->stats_lock, flags);
4046                                 e1000_tbi_adjust_stats(hw, &adapter->stats,
4047                                                        length, skb->data);
4048                                 spin_unlock_irqrestore(&adapter->stats_lock,
4049                                                        flags);
4050                                 length--;
4051                         } else {
4052                                 /* recycle */
4053                                 buffer_info->skb = skb;
4054                                 goto next_desc;
4055                         }
4056                 }
4057
4058                 /* adjust length to remove Ethernet CRC, this must be
4059                  * done after the TBI_ACCEPT workaround above */
4060                 length -= 4;
4061
4062                 /* probably a little skewed due to removing CRC */
4063                 total_rx_bytes += length;
4064                 total_rx_packets++;
4065
4066                 /* code added for copybreak, this should improve
4067                  * performance for small packets with large amounts
4068                  * of reassembly being done in the stack */
4069                 if (length < copybreak) {
4070                         struct sk_buff *new_skb =
4071                             netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
4072                         if (new_skb) {
4073                                 skb_reserve(new_skb, NET_IP_ALIGN);
4074                                 skb_copy_to_linear_data_offset(new_skb,
4075                                                                -NET_IP_ALIGN,
4076                                                                (skb->data -
4077                                                                 NET_IP_ALIGN),
4078                                                                (length +
4079                                                                 NET_IP_ALIGN));
4080                                 /* save the skb in buffer_info as good */
4081                                 buffer_info->skb = skb;
4082                                 skb = new_skb;
4083                         }
4084                         /* else just continue with the old one */
4085                 }
4086                 /* end copybreak code */
4087                 skb_put(skb, length);
4088
4089                 /* Receive Checksum Offload */
4090                 e1000_rx_checksum(adapter,
4091                                   (u32)(status) |
4092                                   ((u32)(rx_desc->errors) << 24),
4093                                   le16_to_cpu(rx_desc->csum), skb);
4094
4095                 skb->protocol = eth_type_trans(skb, netdev);
4096
4097                 if (unlikely(adapter->vlgrp &&
4098                             (status & E1000_RXD_STAT_VP))) {
4099                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4100                                                  le16_to_cpu(rx_desc->special));
4101                 } else {
4102                         netif_receive_skb(skb);
4103                 }
4104
4105                 netdev->last_rx = jiffies;
4106
4107 next_desc:
4108                 rx_desc->status = 0;
4109
4110                 /* return some buffers to hardware, one at a time is too slow */
4111                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4112                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4113                         cleaned_count = 0;
4114                 }
4115
4116                 /* use prefetched values */
4117                 rx_desc = next_rxd;
4118                 buffer_info = next_buffer;
4119         }
4120         rx_ring->next_to_clean = i;
4121
4122         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4123         if (cleaned_count)
4124                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4125
4126         adapter->total_rx_packets += total_rx_packets;
4127         adapter->total_rx_bytes += total_rx_bytes;
4128         adapter->net_stats.rx_bytes += total_rx_bytes;
4129         adapter->net_stats.rx_packets += total_rx_packets;
4130         return cleaned;
4131 }
4132
4133 /**
4134  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4135  * @adapter: address of board private structure
4136  **/
4137
4138 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4139                                    struct e1000_rx_ring *rx_ring,
4140                                    int cleaned_count)
4141 {
4142         struct e1000_hw *hw = &adapter->hw;
4143         struct net_device *netdev = adapter->netdev;
4144         struct pci_dev *pdev = adapter->pdev;
4145         struct e1000_rx_desc *rx_desc;
4146         struct e1000_buffer *buffer_info;
4147         struct sk_buff *skb;
4148         unsigned int i;
4149         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4150
4151         i = rx_ring->next_to_use;
4152         buffer_info = &rx_ring->buffer_info[i];
4153
4154         while (cleaned_count--) {
4155                 skb = buffer_info->skb;
4156                 if (skb) {
4157                         skb_trim(skb, 0);
4158                         goto map_skb;
4159                 }
4160
4161                 skb = netdev_alloc_skb(netdev, bufsz);
4162                 if (unlikely(!skb)) {
4163                         /* Better luck next round */
4164                         adapter->alloc_rx_buff_failed++;
4165                         break;
4166                 }
4167
4168                 /* Fix for errata 23, can't cross 64kB boundary */
4169                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4170                         struct sk_buff *oldskb = skb;
4171                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4172                                              "at %p\n", bufsz, skb->data);
4173                         /* Try again, without freeing the previous */
4174                         skb = netdev_alloc_skb(netdev, bufsz);
4175                         /* Failed allocation, critical failure */
4176                         if (!skb) {
4177                                 dev_kfree_skb(oldskb);
4178                                 break;
4179                         }
4180
4181                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4182                                 /* give up */
4183                                 dev_kfree_skb(skb);
4184                                 dev_kfree_skb(oldskb);
4185                                 break; /* while !buffer_info->skb */
4186                         }
4187
4188                         /* Use new allocation */
4189                         dev_kfree_skb(oldskb);
4190                 }
4191                 /* Make buffer alignment 2 beyond a 16 byte boundary
4192                  * this will result in a 16 byte aligned IP header after
4193                  * the 14 byte MAC header is removed
4194                  */
4195                 skb_reserve(skb, NET_IP_ALIGN);
4196
4197                 buffer_info->skb = skb;
4198                 buffer_info->length = adapter->rx_buffer_len;
4199 map_skb:
4200                 buffer_info->dma = pci_map_single(pdev,
4201                                                   skb->data,
4202                                                   adapter->rx_buffer_len,
4203                                                   PCI_DMA_FROMDEVICE);
4204
4205                 /* Fix for errata 23, can't cross 64kB boundary */
4206                 if (!e1000_check_64k_bound(adapter,
4207                                         (void *)(unsigned long)buffer_info->dma,
4208                                         adapter->rx_buffer_len)) {
4209                         DPRINTK(RX_ERR, ERR,
4210                                 "dma align check failed: %u bytes at %p\n",
4211                                 adapter->rx_buffer_len,
4212                                 (void *)(unsigned long)buffer_info->dma);
4213                         dev_kfree_skb(skb);
4214                         buffer_info->skb = NULL;
4215
4216                         pci_unmap_single(pdev, buffer_info->dma,
4217                                          adapter->rx_buffer_len,
4218                                          PCI_DMA_FROMDEVICE);
4219
4220                         break; /* while !buffer_info->skb */
4221                 }
4222                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4223                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4224
4225                 if (unlikely(++i == rx_ring->count))
4226                         i = 0;
4227                 buffer_info = &rx_ring->buffer_info[i];
4228         }
4229
4230         if (likely(rx_ring->next_to_use != i)) {
4231                 rx_ring->next_to_use = i;
4232                 if (unlikely(i-- == 0))
4233                         i = (rx_ring->count - 1);
4234
4235                 /* Force memory writes to complete before letting h/w
4236                  * know there are new descriptors to fetch.  (Only
4237                  * applicable for weak-ordered memory model archs,
4238                  * such as IA-64). */
4239                 wmb();
4240                 writel(i, hw->hw_addr + rx_ring->rdt);
4241         }
4242 }
4243
4244 /**
4245  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4246  * @adapter:
4247  **/
4248
4249 static void e1000_smartspeed(struct e1000_adapter *adapter)
4250 {
4251         struct e1000_hw *hw = &adapter->hw;
4252         u16 phy_status;
4253         u16 phy_ctrl;
4254
4255         if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4256            !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4257                 return;
4258
4259         if (adapter->smartspeed == 0) {
4260                 /* If Master/Slave config fault is asserted twice,
4261                  * we assume back-to-back */
4262                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4263                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4264                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4265                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4266                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4267                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4268                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4269                         e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4270                                             phy_ctrl);
4271                         adapter->smartspeed++;
4272                         if (!e1000_phy_setup_autoneg(hw) &&
4273                            !e1000_read_phy_reg(hw, PHY_CTRL,
4274                                                &phy_ctrl)) {
4275                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4276                                              MII_CR_RESTART_AUTO_NEG);
4277                                 e1000_write_phy_reg(hw, PHY_CTRL,
4278                                                     phy_ctrl);
4279                         }
4280                 }
4281                 return;
4282         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4283                 /* If still no link, perhaps using 2/3 pair cable */
4284                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4285                 phy_ctrl |= CR_1000T_MS_ENABLE;
4286                 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4287                 if (!e1000_phy_setup_autoneg(hw) &&
4288                    !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4289                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4290                                      MII_CR_RESTART_AUTO_NEG);
4291                         e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4292                 }
4293         }
4294         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4295         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4296                 adapter->smartspeed = 0;
4297 }
4298
4299 /**
4300  * e1000_ioctl -
4301  * @netdev:
4302  * @ifreq:
4303  * @cmd:
4304  **/
4305
4306 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4307 {
4308         switch (cmd) {
4309         case SIOCGMIIPHY:
4310         case SIOCGMIIREG:
4311         case SIOCSMIIREG:
4312                 return e1000_mii_ioctl(netdev, ifr, cmd);
4313         default:
4314                 return -EOPNOTSUPP;
4315         }
4316 }
4317
4318 /**
4319  * e1000_mii_ioctl -
4320  * @netdev:
4321  * @ifreq:
4322  * @cmd:
4323  **/
4324
4325 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4326                            int cmd)
4327 {
4328         struct e1000_adapter *adapter = netdev_priv(netdev);
4329         struct e1000_hw *hw = &adapter->hw;
4330         struct mii_ioctl_data *data = if_mii(ifr);
4331         int retval;
4332         u16 mii_reg;
4333         u16 spddplx;
4334         unsigned long flags;
4335
4336         if (hw->media_type != e1000_media_type_copper)
4337                 return -EOPNOTSUPP;
4338
4339         switch (cmd) {
4340         case SIOCGMIIPHY:
4341                 data->phy_id = hw->phy_addr;
4342                 break;
4343         case SIOCGMIIREG:
4344                 if (!capable(CAP_NET_ADMIN))
4345                         return -EPERM;
4346                 spin_lock_irqsave(&adapter->stats_lock, flags);
4347                 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4348                                    &data->val_out)) {
4349                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4350                         return -EIO;
4351                 }
4352                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4353                 break;
4354         case SIOCSMIIREG:
4355                 if (!capable(CAP_NET_ADMIN))
4356                         return -EPERM;
4357                 if (data->reg_num & ~(0x1F))
4358                         return -EFAULT;
4359                 mii_reg = data->val_in;
4360                 spin_lock_irqsave(&adapter->stats_lock, flags);
4361                 if (e1000_write_phy_reg(hw, data->reg_num,
4362                                         mii_reg)) {
4363                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4364                         return -EIO;
4365                 }
4366                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4367                 if (hw->media_type == e1000_media_type_copper) {
4368                         switch (data->reg_num) {
4369                         case PHY_CTRL:
4370                                 if (mii_reg & MII_CR_POWER_DOWN)
4371                                         break;
4372                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4373                                         hw->autoneg = 1;
4374                                         hw->autoneg_advertised = 0x2F;
4375                                 } else {
4376                                         if (mii_reg & 0x40)
4377                                                 spddplx = SPEED_1000;
4378                                         else if (mii_reg & 0x2000)
4379                                                 spddplx = SPEED_100;
4380                                         else
4381                                                 spddplx = SPEED_10;
4382                                         spddplx += (mii_reg & 0x100)
4383                                                    ? DUPLEX_FULL :
4384                                                    DUPLEX_HALF;
4385                                         retval = e1000_set_spd_dplx(adapter,
4386                                                                     spddplx);
4387                                         if (retval)
4388                                                 return retval;
4389                                 }
4390                                 if (netif_running(adapter->netdev))
4391                                         e1000_reinit_locked(adapter);
4392                                 else
4393                                         e1000_reset(adapter);
4394                                 break;
4395                         case M88E1000_PHY_SPEC_CTRL:
4396                         case M88E1000_EXT_PHY_SPEC_CTRL:
4397                                 if (e1000_phy_reset(hw))
4398                                         return -EIO;
4399                                 break;
4400                         }
4401                 } else {
4402                         switch (data->reg_num) {
4403                         case PHY_CTRL:
4404                                 if (mii_reg & MII_CR_POWER_DOWN)
4405                                         break;
4406                                 if (netif_running(adapter->netdev))
4407                                         e1000_reinit_locked(adapter);
4408                                 else
4409                                         e1000_reset(adapter);
4410                                 break;
4411                         }
4412                 }
4413                 break;
4414         default:
4415                 return -EOPNOTSUPP;
4416         }
4417         return E1000_SUCCESS;
4418 }
4419
4420 void e1000_pci_set_mwi(struct e1000_hw *hw)
4421 {
4422         struct e1000_adapter *adapter = hw->back;
4423         int ret_val = pci_set_mwi(adapter->pdev);
4424
4425         if (ret_val)
4426                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4427 }
4428
4429 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4430 {
4431         struct e1000_adapter *adapter = hw->back;
4432
4433         pci_clear_mwi(adapter->pdev);
4434 }
4435
4436 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4437 {
4438         struct e1000_adapter *adapter = hw->back;
4439         return pcix_get_mmrbc(adapter->pdev);
4440 }
4441
4442 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4443 {
4444         struct e1000_adapter *adapter = hw->back;
4445         pcix_set_mmrbc(adapter->pdev, mmrbc);
4446 }
4447
4448 s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
4449 {
4450     struct e1000_adapter *adapter = hw->back;
4451     u16 cap_offset;
4452
4453     cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
4454     if (!cap_offset)
4455         return -E1000_ERR_CONFIG;
4456
4457     pci_read_config_word(adapter->pdev, cap_offset + reg, value);
4458
4459     return E1000_SUCCESS;
4460 }
4461
4462 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4463 {
4464         outl(value, port);
4465 }
4466
4467 static void e1000_vlan_rx_register(struct net_device *netdev,
4468                                    struct vlan_group *grp)
4469 {
4470         struct e1000_adapter *adapter = netdev_priv(netdev);
4471         struct e1000_hw *hw = &adapter->hw;
4472         u32 ctrl, rctl;
4473
4474         if (!test_bit(__E1000_DOWN, &adapter->flags))
4475                 e1000_irq_disable(adapter);
4476         adapter->vlgrp = grp;
4477
4478         if (grp) {
4479                 /* enable VLAN tag insert/strip */
4480                 ctrl = er32(CTRL);
4481                 ctrl |= E1000_CTRL_VME;
4482                 ew32(CTRL, ctrl);
4483
4484                 if (adapter->hw.mac_type != e1000_ich8lan) {
4485                         /* enable VLAN receive filtering */
4486                         rctl = er32(RCTL);
4487                         rctl &= ~E1000_RCTL_CFIEN;
4488                         ew32(RCTL, rctl);
4489                         e1000_update_mng_vlan(adapter);
4490                 }
4491         } else {
4492                 /* disable VLAN tag insert/strip */
4493                 ctrl = er32(CTRL);
4494                 ctrl &= ~E1000_CTRL_VME;
4495                 ew32(CTRL, ctrl);
4496
4497                 if (adapter->hw.mac_type != e1000_ich8lan) {
4498                         if (adapter->mng_vlan_id !=
4499                             (u16)E1000_MNG_VLAN_NONE) {
4500                                 e1000_vlan_rx_kill_vid(netdev,
4501                                                        adapter->mng_vlan_id);
4502                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4503                         }
4504                 }
4505         }
4506
4507         if (!test_bit(__E1000_DOWN, &adapter->flags))
4508                 e1000_irq_enable(adapter);
4509 }
4510
4511 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4512 {
4513         struct e1000_adapter *adapter = netdev_priv(netdev);
4514         struct e1000_hw *hw = &adapter->hw;
4515         u32 vfta, index;
4516
4517         if ((hw->mng_cookie.status &
4518              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4519             (vid == adapter->mng_vlan_id))
4520                 return;
4521         /* add VID to filter table */
4522         index = (vid >> 5) & 0x7F;
4523         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4524         vfta |= (1 << (vid & 0x1F));
4525         e1000_write_vfta(hw, index, vfta);
4526 }
4527
4528 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4529 {
4530         struct e1000_adapter *adapter = netdev_priv(netdev);
4531         struct e1000_hw *hw = &adapter->hw;
4532         u32 vfta, index;
4533
4534         if (!test_bit(__E1000_DOWN, &adapter->flags))
4535                 e1000_irq_disable(adapter);
4536         vlan_group_set_device(adapter->vlgrp, vid, NULL);
4537         if (!test_bit(__E1000_DOWN, &adapter->flags))
4538                 e1000_irq_enable(adapter);
4539
4540         if ((hw->mng_cookie.status &
4541              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4542             (vid == adapter->mng_vlan_id)) {
4543                 /* release control to f/w */
4544                 e1000_release_hw_control(adapter);
4545                 return;
4546         }
4547
4548         /* remove VID from filter table */
4549         index = (vid >> 5) & 0x7F;
4550         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4551         vfta &= ~(1 << (vid & 0x1F));
4552         e1000_write_vfta(hw, index, vfta);
4553 }
4554
4555 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4556 {
4557         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4558
4559         if (adapter->vlgrp) {
4560                 u16 vid;
4561                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4562                         if (!vlan_group_get_device(adapter->vlgrp, vid))
4563                                 continue;
4564                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
4565                 }
4566         }
4567 }
4568
4569 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
4570 {
4571         struct e1000_hw *hw = &adapter->hw;
4572
4573         hw->autoneg = 0;
4574
4575         /* Fiber NICs only allow 1000 gbps Full duplex */
4576         if ((hw->media_type == e1000_media_type_fiber) &&
4577                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4578                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4579                 return -EINVAL;
4580         }
4581
4582         switch (spddplx) {
4583         case SPEED_10 + DUPLEX_HALF:
4584                 hw->forced_speed_duplex = e1000_10_half;
4585                 break;
4586         case SPEED_10 + DUPLEX_FULL:
4587                 hw->forced_speed_duplex = e1000_10_full;
4588                 break;
4589         case SPEED_100 + DUPLEX_HALF:
4590                 hw->forced_speed_duplex = e1000_100_half;
4591                 break;
4592         case SPEED_100 + DUPLEX_FULL:
4593                 hw->forced_speed_duplex = e1000_100_full;
4594                 break;
4595         case SPEED_1000 + DUPLEX_FULL:
4596                 hw->autoneg = 1;
4597                 hw->autoneg_advertised = ADVERTISE_1000_FULL;
4598                 break;
4599         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4600         default:
4601                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4602                 return -EINVAL;
4603         }
4604         return 0;
4605 }
4606
4607 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4608 {
4609         struct net_device *netdev = pci_get_drvdata(pdev);
4610         struct e1000_adapter *adapter = netdev_priv(netdev);
4611         struct e1000_hw *hw = &adapter->hw;
4612         u32 ctrl, ctrl_ext, rctl, status;
4613         u32 wufc = adapter->wol;
4614 #ifdef CONFIG_PM
4615         int retval = 0;
4616 #endif
4617
4618         netif_device_detach(netdev);
4619
4620         if (netif_running(netdev)) {
4621                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4622                 e1000_down(adapter);
4623         }
4624
4625 #ifdef CONFIG_PM
4626         retval = pci_save_state(pdev);
4627         if (retval)
4628                 return retval;
4629 #endif
4630
4631         status = er32(STATUS);
4632         if (status & E1000_STATUS_LU)
4633                 wufc &= ~E1000_WUFC_LNKC;
4634
4635         if (wufc) {
4636                 e1000_setup_rctl(adapter);
4637                 e1000_set_rx_mode(netdev);
4638
4639                 /* turn on all-multi mode if wake on multicast is enabled */
4640                 if (wufc & E1000_WUFC_MC) {
4641                         rctl = er32(RCTL);
4642                         rctl |= E1000_RCTL_MPE;
4643                         ew32(RCTL, rctl);
4644                 }
4645
4646                 if (hw->mac_type >= e1000_82540) {
4647                         ctrl = er32(CTRL);
4648                         /* advertise wake from D3Cold */
4649                         #define E1000_CTRL_ADVD3WUC 0x00100000
4650                         /* phy power management enable */
4651                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4652                         ctrl |= E1000_CTRL_ADVD3WUC |
4653                                 E1000_CTRL_EN_PHY_PWR_MGMT;
4654                         ew32(CTRL, ctrl);
4655                 }
4656
4657                 if (hw->media_type == e1000_media_type_fiber ||
4658                    hw->media_type == e1000_media_type_internal_serdes) {
4659                         /* keep the laser running in D3 */
4660                         ctrl_ext = er32(CTRL_EXT);
4661                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4662                         ew32(CTRL_EXT, ctrl_ext);
4663                 }
4664
4665                 /* Allow time for pending master requests to run */
4666                 e1000_disable_pciex_master(hw);
4667
4668                 ew32(WUC, E1000_WUC_PME_EN);
4669                 ew32(WUFC, wufc);
4670                 pci_enable_wake(pdev, PCI_D3hot, 1);
4671                 pci_enable_wake(pdev, PCI_D3cold, 1);
4672         } else {
4673                 ew32(WUC, 0);
4674                 ew32(WUFC, 0);
4675                 pci_enable_wake(pdev, PCI_D3hot, 0);
4676                 pci_enable_wake(pdev, PCI_D3cold, 0);
4677         }
4678
4679         e1000_release_manageability(adapter);
4680
4681         /* make sure adapter isn't asleep if manageability is enabled */
4682         if (adapter->en_mng_pt) {
4683                 pci_enable_wake(pdev, PCI_D3hot, 1);
4684                 pci_enable_wake(pdev, PCI_D3cold, 1);
4685         }
4686
4687         if (hw->phy_type == e1000_phy_igp_3)
4688                 e1000_phy_powerdown_workaround(hw);
4689
4690         if (netif_running(netdev))
4691                 e1000_free_irq(adapter);
4692
4693         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
4694          * would have already happened in close and is redundant. */
4695         e1000_release_hw_control(adapter);
4696
4697         pci_disable_device(pdev);
4698
4699         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4700
4701         return 0;
4702 }
4703
4704 #ifdef CONFIG_PM
4705 static int e1000_resume(struct pci_dev *pdev)
4706 {
4707         struct net_device *netdev = pci_get_drvdata(pdev);
4708         struct e1000_adapter *adapter = netdev_priv(netdev);
4709         struct e1000_hw *hw = &adapter->hw;
4710         u32 err;
4711
4712         pci_set_power_state(pdev, PCI_D0);
4713         pci_restore_state(pdev);
4714
4715         if (adapter->need_ioport)
4716                 err = pci_enable_device(pdev);
4717         else
4718                 err = pci_enable_device_mem(pdev);
4719         if (err) {
4720                 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
4721                 return err;
4722         }
4723         pci_set_master(pdev);
4724
4725         pci_enable_wake(pdev, PCI_D3hot, 0);
4726         pci_enable_wake(pdev, PCI_D3cold, 0);
4727
4728         if (netif_running(netdev)) {
4729                 err = e1000_request_irq(adapter);
4730                 if (err)
4731                         return err;
4732         }
4733
4734         e1000_power_up_phy(adapter);
4735         e1000_reset(adapter);
4736         ew32(WUS, ~0);
4737
4738         e1000_init_manageability(adapter);
4739
4740         if (netif_running(netdev))
4741                 e1000_up(adapter);
4742
4743         netif_device_attach(netdev);
4744
4745         /* If the controller is 82573 and f/w is AMT, do not set
4746          * DRV_LOAD until the interface is up.  For all other cases,
4747          * let the f/w know that the h/w is now under the control
4748          * of the driver. */
4749         if (hw->mac_type != e1000_82573 ||
4750             !e1000_check_mng_mode(hw))
4751                 e1000_get_hw_control(adapter);
4752
4753         return 0;
4754 }
4755 #endif
4756
4757 static void e1000_shutdown(struct pci_dev *pdev)
4758 {
4759         e1000_suspend(pdev, PMSG_SUSPEND);
4760 }
4761
4762 #ifdef CONFIG_NET_POLL_CONTROLLER
4763 /*
4764  * Polling 'interrupt' - used by things like netconsole to send skbs
4765  * without having to re-enable interrupts. It's not called while
4766  * the interrupt routine is executing.
4767  */
4768 static void e1000_netpoll(struct net_device *netdev)
4769 {
4770         struct e1000_adapter *adapter = netdev_priv(netdev);
4771
4772         disable_irq(adapter->pdev->irq);
4773         e1000_intr(adapter->pdev->irq, netdev);
4774         enable_irq(adapter->pdev->irq);
4775 }
4776 #endif
4777
4778 /**
4779  * e1000_io_error_detected - called when PCI error is detected
4780  * @pdev: Pointer to PCI device
4781  * @state: The current pci conneection state
4782  *
4783  * This function is called after a PCI bus error affecting
4784  * this device has been detected.
4785  */
4786 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4787                                                 pci_channel_state_t state)
4788 {
4789         struct net_device *netdev = pci_get_drvdata(pdev);
4790         struct e1000_adapter *adapter = netdev->priv;
4791
4792         netif_device_detach(netdev);
4793
4794         if (netif_running(netdev))
4795                 e1000_down(adapter);
4796         pci_disable_device(pdev);
4797
4798         /* Request a slot slot reset. */
4799         return PCI_ERS_RESULT_NEED_RESET;
4800 }
4801
4802 /**
4803  * e1000_io_slot_reset - called after the pci bus has been reset.
4804  * @pdev: Pointer to PCI device
4805  *
4806  * Restart the card from scratch, as if from a cold-boot. Implementation
4807  * resembles the first-half of the e1000_resume routine.
4808  */
4809 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4810 {
4811         struct net_device *netdev = pci_get_drvdata(pdev);
4812         struct e1000_adapter *adapter = netdev->priv;
4813         struct e1000_hw *hw = &adapter->hw;
4814         int err;
4815
4816         if (adapter->need_ioport)
4817                 err = pci_enable_device(pdev);
4818         else
4819                 err = pci_enable_device_mem(pdev);
4820         if (err) {
4821                 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
4822                 return PCI_ERS_RESULT_DISCONNECT;
4823         }
4824         pci_set_master(pdev);
4825
4826         pci_enable_wake(pdev, PCI_D3hot, 0);
4827         pci_enable_wake(pdev, PCI_D3cold, 0);
4828
4829         e1000_reset(adapter);
4830         ew32(WUS, ~0);
4831
4832         return PCI_ERS_RESULT_RECOVERED;
4833 }
4834
4835 /**
4836  * e1000_io_resume - called when traffic can start flowing again.
4837  * @pdev: Pointer to PCI device
4838  *
4839  * This callback is called when the error recovery driver tells us that
4840  * its OK to resume normal operation. Implementation resembles the
4841  * second-half of the e1000_resume routine.
4842  */
4843 static void e1000_io_resume(struct pci_dev *pdev)
4844 {
4845         struct net_device *netdev = pci_get_drvdata(pdev);
4846         struct e1000_adapter *adapter = netdev->priv;
4847         struct e1000_hw *hw = &adapter->hw;
4848
4849         e1000_init_manageability(adapter);
4850
4851         if (netif_running(netdev)) {
4852                 if (e1000_up(adapter)) {
4853                         printk("e1000: can't bring device back up after reset\n");
4854                         return;
4855                 }
4856         }
4857
4858         netif_device_attach(netdev);
4859
4860         /* If the controller is 82573 and f/w is AMT, do not set
4861          * DRV_LOAD until the interface is up.  For all other cases,
4862          * let the f/w know that the h/w is now under the control
4863          * of the driver. */
4864         if (hw->mac_type != e1000_82573 ||
4865             !e1000_check_mng_mode(hw))
4866                 e1000_get_hw_control(adapter);
4867
4868 }
4869
4870 /* e1000_main.c */