10505de00bcc87dab3fbfbc0b1b53fefcf15eed0
[linux-2.6.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #ifndef CONFIG_E1000_NAPI
35 #define DRIVERNAPI
36 #else
37 #define DRIVERNAPI "-NAPI"
38 #endif
39 #define DRV_VERSION "7.3.20-k2"DRIVERNAPI
40 char e1000_driver_version[] = DRV_VERSION;
41 static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
42
43 /* e1000_pci_tbl - PCI Device ID Table
44  *
45  * Last entry must be all 0s
46  *
47  * Macro expands to...
48  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
49  */
50 static struct pci_device_id e1000_pci_tbl[] = {
51         INTEL_E1000_ETHERNET_DEVICE(0x1000),
52         INTEL_E1000_ETHERNET_DEVICE(0x1001),
53         INTEL_E1000_ETHERNET_DEVICE(0x1004),
54         INTEL_E1000_ETHERNET_DEVICE(0x1008),
55         INTEL_E1000_ETHERNET_DEVICE(0x1009),
56         INTEL_E1000_ETHERNET_DEVICE(0x100C),
57         INTEL_E1000_ETHERNET_DEVICE(0x100D),
58         INTEL_E1000_ETHERNET_DEVICE(0x100E),
59         INTEL_E1000_ETHERNET_DEVICE(0x100F),
60         INTEL_E1000_ETHERNET_DEVICE(0x1010),
61         INTEL_E1000_ETHERNET_DEVICE(0x1011),
62         INTEL_E1000_ETHERNET_DEVICE(0x1012),
63         INTEL_E1000_ETHERNET_DEVICE(0x1013),
64         INTEL_E1000_ETHERNET_DEVICE(0x1014),
65         INTEL_E1000_ETHERNET_DEVICE(0x1015),
66         INTEL_E1000_ETHERNET_DEVICE(0x1016),
67         INTEL_E1000_ETHERNET_DEVICE(0x1017),
68         INTEL_E1000_ETHERNET_DEVICE(0x1018),
69         INTEL_E1000_ETHERNET_DEVICE(0x1019),
70         INTEL_E1000_ETHERNET_DEVICE(0x101A),
71         INTEL_E1000_ETHERNET_DEVICE(0x101D),
72         INTEL_E1000_ETHERNET_DEVICE(0x101E),
73         INTEL_E1000_ETHERNET_DEVICE(0x1026),
74         INTEL_E1000_ETHERNET_DEVICE(0x1027),
75         INTEL_E1000_ETHERNET_DEVICE(0x1028),
76         INTEL_E1000_ETHERNET_DEVICE(0x1049),
77         INTEL_E1000_ETHERNET_DEVICE(0x104A),
78         INTEL_E1000_ETHERNET_DEVICE(0x104B),
79         INTEL_E1000_ETHERNET_DEVICE(0x104C),
80         INTEL_E1000_ETHERNET_DEVICE(0x104D),
81         INTEL_E1000_ETHERNET_DEVICE(0x105E),
82         INTEL_E1000_ETHERNET_DEVICE(0x105F),
83         INTEL_E1000_ETHERNET_DEVICE(0x1060),
84         INTEL_E1000_ETHERNET_DEVICE(0x1075),
85         INTEL_E1000_ETHERNET_DEVICE(0x1076),
86         INTEL_E1000_ETHERNET_DEVICE(0x1077),
87         INTEL_E1000_ETHERNET_DEVICE(0x1078),
88         INTEL_E1000_ETHERNET_DEVICE(0x1079),
89         INTEL_E1000_ETHERNET_DEVICE(0x107A),
90         INTEL_E1000_ETHERNET_DEVICE(0x107B),
91         INTEL_E1000_ETHERNET_DEVICE(0x107C),
92         INTEL_E1000_ETHERNET_DEVICE(0x107D),
93         INTEL_E1000_ETHERNET_DEVICE(0x107E),
94         INTEL_E1000_ETHERNET_DEVICE(0x107F),
95         INTEL_E1000_ETHERNET_DEVICE(0x108A),
96         INTEL_E1000_ETHERNET_DEVICE(0x108B),
97         INTEL_E1000_ETHERNET_DEVICE(0x108C),
98         INTEL_E1000_ETHERNET_DEVICE(0x1096),
99         INTEL_E1000_ETHERNET_DEVICE(0x1098),
100         INTEL_E1000_ETHERNET_DEVICE(0x1099),
101         INTEL_E1000_ETHERNET_DEVICE(0x109A),
102         INTEL_E1000_ETHERNET_DEVICE(0x10A4),
103         INTEL_E1000_ETHERNET_DEVICE(0x10A5),
104         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
105         INTEL_E1000_ETHERNET_DEVICE(0x10B9),
106         INTEL_E1000_ETHERNET_DEVICE(0x10BA),
107         INTEL_E1000_ETHERNET_DEVICE(0x10BB),
108         INTEL_E1000_ETHERNET_DEVICE(0x10BC),
109         INTEL_E1000_ETHERNET_DEVICE(0x10C4),
110         INTEL_E1000_ETHERNET_DEVICE(0x10C5),
111         INTEL_E1000_ETHERNET_DEVICE(0x10D5),
112         INTEL_E1000_ETHERNET_DEVICE(0x10D9),
113         INTEL_E1000_ETHERNET_DEVICE(0x10DA),
114         /* required last entry */
115         {0,}
116 };
117
118 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
119
120 int e1000_up(struct e1000_adapter *adapter);
121 void e1000_down(struct e1000_adapter *adapter);
122 void e1000_reinit_locked(struct e1000_adapter *adapter);
123 void e1000_reset(struct e1000_adapter *adapter);
124 int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
125 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
126 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
127 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
128 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
129 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
130                              struct e1000_tx_ring *txdr);
131 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
132                              struct e1000_rx_ring *rxdr);
133 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
134                              struct e1000_tx_ring *tx_ring);
135 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
136                              struct e1000_rx_ring *rx_ring);
137 void e1000_update_stats(struct e1000_adapter *adapter);
138
139 static int e1000_init_module(void);
140 static void e1000_exit_module(void);
141 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
142 static void __devexit e1000_remove(struct pci_dev *pdev);
143 static int e1000_alloc_queues(struct e1000_adapter *adapter);
144 static int e1000_sw_init(struct e1000_adapter *adapter);
145 static int e1000_open(struct net_device *netdev);
146 static int e1000_close(struct net_device *netdev);
147 static void e1000_configure_tx(struct e1000_adapter *adapter);
148 static void e1000_configure_rx(struct e1000_adapter *adapter);
149 static void e1000_setup_rctl(struct e1000_adapter *adapter);
150 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
151 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
152 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
153                                 struct e1000_tx_ring *tx_ring);
154 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
155                                 struct e1000_rx_ring *rx_ring);
156 static void e1000_set_multi(struct net_device *netdev);
157 static void e1000_update_phy_info(unsigned long data);
158 static void e1000_watchdog(unsigned long data);
159 static void e1000_82547_tx_fifo_stall(unsigned long data);
160 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
161 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
162 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
163 static int e1000_set_mac(struct net_device *netdev, void *p);
164 static irqreturn_t e1000_intr(int irq, void *data);
165 static irqreturn_t e1000_intr_msi(int irq, void *data);
166 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
167                                     struct e1000_tx_ring *tx_ring);
168 #ifdef CONFIG_E1000_NAPI
169 static int e1000_clean(struct napi_struct *napi, int budget);
170 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
171                                     struct e1000_rx_ring *rx_ring,
172                                     int *work_done, int work_to_do);
173 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
174                                        struct e1000_rx_ring *rx_ring,
175                                        int *work_done, int work_to_do);
176 #else
177 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
178                                     struct e1000_rx_ring *rx_ring);
179 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
180                                        struct e1000_rx_ring *rx_ring);
181 #endif
182 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
183                                    struct e1000_rx_ring *rx_ring,
184                                    int cleaned_count);
185 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
186                                       struct e1000_rx_ring *rx_ring,
187                                       int cleaned_count);
188 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
189 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
190                            int cmd);
191 void e1000_set_ethtool_ops(struct net_device *netdev);
192 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
193 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
194 static void e1000_tx_timeout(struct net_device *dev);
195 static void e1000_reset_task(struct work_struct *work);
196 static void e1000_smartspeed(struct e1000_adapter *adapter);
197 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
198                                        struct sk_buff *skb);
199
200 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
201 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
202 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
203 static void e1000_restore_vlan(struct e1000_adapter *adapter);
204
205 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
206 #ifdef CONFIG_PM
207 static int e1000_resume(struct pci_dev *pdev);
208 #endif
209 static void e1000_shutdown(struct pci_dev *pdev);
210
211 #ifdef CONFIG_NET_POLL_CONTROLLER
212 /* for netdump / net console */
213 static void e1000_netpoll (struct net_device *netdev);
214 #endif
215
216 extern void e1000_check_options(struct e1000_adapter *adapter);
217
218 #define COPYBREAK_DEFAULT 256
219 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
220 module_param(copybreak, uint, 0644);
221 MODULE_PARM_DESC(copybreak,
222         "Maximum size of packet that is copied to a new buffer on receive");
223
224 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
225                      pci_channel_state_t state);
226 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
227 static void e1000_io_resume(struct pci_dev *pdev);
228
229 static struct pci_error_handlers e1000_err_handler = {
230         .error_detected = e1000_io_error_detected,
231         .slot_reset = e1000_io_slot_reset,
232         .resume = e1000_io_resume,
233 };
234
235 static struct pci_driver e1000_driver = {
236         .name     = e1000_driver_name,
237         .id_table = e1000_pci_tbl,
238         .probe    = e1000_probe,
239         .remove   = __devexit_p(e1000_remove),
240 #ifdef CONFIG_PM
241         /* Power Managment Hooks */
242         .suspend  = e1000_suspend,
243         .resume   = e1000_resume,
244 #endif
245         .shutdown = e1000_shutdown,
246         .err_handler = &e1000_err_handler
247 };
248
249 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
250 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
251 MODULE_LICENSE("GPL");
252 MODULE_VERSION(DRV_VERSION);
253
254 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
255 module_param(debug, int, 0);
256 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
257
258 /**
259  * e1000_init_module - Driver Registration Routine
260  *
261  * e1000_init_module is the first routine called when the driver is
262  * loaded. All it does is register with the PCI subsystem.
263  **/
264
265 static int __init
266 e1000_init_module(void)
267 {
268         int ret;
269         printk(KERN_INFO "%s - version %s\n",
270                e1000_driver_string, e1000_driver_version);
271
272         printk(KERN_INFO "%s\n", e1000_copyright);
273
274         ret = pci_register_driver(&e1000_driver);
275         if (copybreak != COPYBREAK_DEFAULT) {
276                 if (copybreak == 0)
277                         printk(KERN_INFO "e1000: copybreak disabled\n");
278                 else
279                         printk(KERN_INFO "e1000: copybreak enabled for "
280                                "packets <= %u bytes\n", copybreak);
281         }
282         return ret;
283 }
284
285 module_init(e1000_init_module);
286
287 /**
288  * e1000_exit_module - Driver Exit Cleanup Routine
289  *
290  * e1000_exit_module is called just before the driver is removed
291  * from memory.
292  **/
293
294 static void __exit
295 e1000_exit_module(void)
296 {
297         pci_unregister_driver(&e1000_driver);
298 }
299
300 module_exit(e1000_exit_module);
301
302 static int e1000_request_irq(struct e1000_adapter *adapter)
303 {
304         struct net_device *netdev = adapter->netdev;
305         void (*handler) = &e1000_intr;
306         int irq_flags = IRQF_SHARED;
307         int err;
308
309         if (adapter->hw.mac_type >= e1000_82571) {
310                 adapter->have_msi = !pci_enable_msi(adapter->pdev);
311                 if (adapter->have_msi) {
312                         handler = &e1000_intr_msi;
313                         irq_flags = 0;
314                 }
315         }
316
317         err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
318                           netdev);
319         if (err) {
320                 if (adapter->have_msi)
321                         pci_disable_msi(adapter->pdev);
322                 DPRINTK(PROBE, ERR,
323                         "Unable to allocate interrupt Error: %d\n", err);
324         }
325
326         return err;
327 }
328
329 static void e1000_free_irq(struct e1000_adapter *adapter)
330 {
331         struct net_device *netdev = adapter->netdev;
332
333         free_irq(adapter->pdev->irq, netdev);
334
335         if (adapter->have_msi)
336                 pci_disable_msi(adapter->pdev);
337 }
338
339 /**
340  * e1000_irq_disable - Mask off interrupt generation on the NIC
341  * @adapter: board private structure
342  **/
343
344 static void
345 e1000_irq_disable(struct e1000_adapter *adapter)
346 {
347         atomic_inc(&adapter->irq_sem);
348         E1000_WRITE_REG(&adapter->hw, IMC, ~0);
349         E1000_WRITE_FLUSH(&adapter->hw);
350         synchronize_irq(adapter->pdev->irq);
351 }
352
353 /**
354  * e1000_irq_enable - Enable default interrupt generation settings
355  * @adapter: board private structure
356  **/
357
358 static void
359 e1000_irq_enable(struct e1000_adapter *adapter)
360 {
361         if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
362                 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
363                 E1000_WRITE_FLUSH(&adapter->hw);
364         }
365 }
366
367 static void
368 e1000_update_mng_vlan(struct e1000_adapter *adapter)
369 {
370         struct net_device *netdev = adapter->netdev;
371         uint16_t vid = adapter->hw.mng_cookie.vlan_id;
372         uint16_t old_vid = adapter->mng_vlan_id;
373         if (adapter->vlgrp) {
374                 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
375                         if (adapter->hw.mng_cookie.status &
376                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
377                                 e1000_vlan_rx_add_vid(netdev, vid);
378                                 adapter->mng_vlan_id = vid;
379                         } else
380                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
381
382                         if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
383                                         (vid != old_vid) &&
384                             !vlan_group_get_device(adapter->vlgrp, old_vid))
385                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
386                 } else
387                         adapter->mng_vlan_id = vid;
388         }
389 }
390
391 /**
392  * e1000_release_hw_control - release control of the h/w to f/w
393  * @adapter: address of board private structure
394  *
395  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
396  * For ASF and Pass Through versions of f/w this means that the
397  * driver is no longer loaded. For AMT version (only with 82573) i
398  * of the f/w this means that the network i/f is closed.
399  *
400  **/
401
402 static void
403 e1000_release_hw_control(struct e1000_adapter *adapter)
404 {
405         uint32_t ctrl_ext;
406         uint32_t swsm;
407
408         /* Let firmware taken over control of h/w */
409         switch (adapter->hw.mac_type) {
410         case e1000_82573:
411                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
412                 E1000_WRITE_REG(&adapter->hw, SWSM,
413                                 swsm & ~E1000_SWSM_DRV_LOAD);
414                 break;
415         case e1000_82571:
416         case e1000_82572:
417         case e1000_80003es2lan:
418         case e1000_ich8lan:
419                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
420                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
421                                 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
422                 break;
423         default:
424                 break;
425         }
426 }
427
428 /**
429  * e1000_get_hw_control - get control of the h/w from f/w
430  * @adapter: address of board private structure
431  *
432  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
433  * For ASF and Pass Through versions of f/w this means that
434  * the driver is loaded. For AMT version (only with 82573)
435  * of the f/w this means that the network i/f is open.
436  *
437  **/
438
439 static void
440 e1000_get_hw_control(struct e1000_adapter *adapter)
441 {
442         uint32_t ctrl_ext;
443         uint32_t swsm;
444
445         /* Let firmware know the driver has taken over */
446         switch (adapter->hw.mac_type) {
447         case e1000_82573:
448                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
449                 E1000_WRITE_REG(&adapter->hw, SWSM,
450                                 swsm | E1000_SWSM_DRV_LOAD);
451                 break;
452         case e1000_82571:
453         case e1000_82572:
454         case e1000_80003es2lan:
455         case e1000_ich8lan:
456                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
457                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
458                                 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
459                 break;
460         default:
461                 break;
462         }
463 }
464
465 static void
466 e1000_init_manageability(struct e1000_adapter *adapter)
467 {
468         if (adapter->en_mng_pt) {
469                 uint32_t manc = E1000_READ_REG(&adapter->hw, MANC);
470
471                 /* disable hardware interception of ARP */
472                 manc &= ~(E1000_MANC_ARP_EN);
473
474                 /* enable receiving management packets to the host */
475                 /* this will probably generate destination unreachable messages
476                  * from the host OS, but the packets will be handled on SMBUS */
477                 if (adapter->hw.has_manc2h) {
478                         uint32_t manc2h = E1000_READ_REG(&adapter->hw, MANC2H);
479
480                         manc |= E1000_MANC_EN_MNG2HOST;
481 #define E1000_MNG2HOST_PORT_623 (1 << 5)
482 #define E1000_MNG2HOST_PORT_664 (1 << 6)
483                         manc2h |= E1000_MNG2HOST_PORT_623;
484                         manc2h |= E1000_MNG2HOST_PORT_664;
485                         E1000_WRITE_REG(&adapter->hw, MANC2H, manc2h);
486                 }
487
488                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
489         }
490 }
491
492 static void
493 e1000_release_manageability(struct e1000_adapter *adapter)
494 {
495         if (adapter->en_mng_pt) {
496                 uint32_t manc = E1000_READ_REG(&adapter->hw, MANC);
497
498                 /* re-enable hardware interception of ARP */
499                 manc |= E1000_MANC_ARP_EN;
500
501                 if (adapter->hw.has_manc2h)
502                         manc &= ~E1000_MANC_EN_MNG2HOST;
503
504                 /* don't explicitly have to mess with MANC2H since
505                  * MANC has an enable disable that gates MANC2H */
506
507                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
508         }
509 }
510
511 /**
512  * e1000_configure - configure the hardware for RX and TX
513  * @adapter = private board structure
514  **/
515 static void e1000_configure(struct e1000_adapter *adapter)
516 {
517         struct net_device *netdev = adapter->netdev;
518         int i;
519
520         e1000_set_multi(netdev);
521
522         e1000_restore_vlan(adapter);
523         e1000_init_manageability(adapter);
524
525         e1000_configure_tx(adapter);
526         e1000_setup_rctl(adapter);
527         e1000_configure_rx(adapter);
528         /* call E1000_DESC_UNUSED which always leaves
529          * at least 1 descriptor unused to make sure
530          * next_to_use != next_to_clean */
531         for (i = 0; i < adapter->num_rx_queues; i++) {
532                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
533                 adapter->alloc_rx_buf(adapter, ring,
534                                       E1000_DESC_UNUSED(ring));
535         }
536
537         adapter->tx_queue_len = netdev->tx_queue_len;
538 }
539
540 int e1000_up(struct e1000_adapter *adapter)
541 {
542         /* hardware has been reset, we need to reload some things */
543         e1000_configure(adapter);
544
545         clear_bit(__E1000_DOWN, &adapter->flags);
546
547 #ifdef CONFIG_E1000_NAPI
548         napi_enable(&adapter->napi);
549 #endif
550         e1000_irq_enable(adapter);
551
552         /* fire a link change interrupt to start the watchdog */
553         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_LSC);
554         return 0;
555 }
556
557 /**
558  * e1000_power_up_phy - restore link in case the phy was powered down
559  * @adapter: address of board private structure
560  *
561  * The phy may be powered down to save power and turn off link when the
562  * driver is unloaded and wake on lan is not enabled (among others)
563  * *** this routine MUST be followed by a call to e1000_reset ***
564  *
565  **/
566
567 void e1000_power_up_phy(struct e1000_adapter *adapter)
568 {
569         uint16_t mii_reg = 0;
570
571         /* Just clear the power down bit to wake the phy back up */
572         if (adapter->hw.media_type == e1000_media_type_copper) {
573                 /* according to the manual, the phy will retain its
574                  * settings across a power-down/up cycle */
575                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
576                 mii_reg &= ~MII_CR_POWER_DOWN;
577                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
578         }
579 }
580
581 static void e1000_power_down_phy(struct e1000_adapter *adapter)
582 {
583         /* Power down the PHY so no link is implied when interface is down *
584          * The PHY cannot be powered down if any of the following is TRUE *
585          * (a) WoL is enabled
586          * (b) AMT is active
587          * (c) SoL/IDER session is active */
588         if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
589            adapter->hw.media_type == e1000_media_type_copper) {
590                 uint16_t mii_reg = 0;
591
592                 switch (adapter->hw.mac_type) {
593                 case e1000_82540:
594                 case e1000_82545:
595                 case e1000_82545_rev_3:
596                 case e1000_82546:
597                 case e1000_82546_rev_3:
598                 case e1000_82541:
599                 case e1000_82541_rev_2:
600                 case e1000_82547:
601                 case e1000_82547_rev_2:
602                         if (E1000_READ_REG(&adapter->hw, MANC) &
603                             E1000_MANC_SMBUS_EN)
604                                 goto out;
605                         break;
606                 case e1000_82571:
607                 case e1000_82572:
608                 case e1000_82573:
609                 case e1000_80003es2lan:
610                 case e1000_ich8lan:
611                         if (e1000_check_mng_mode(&adapter->hw) ||
612                             e1000_check_phy_reset_block(&adapter->hw))
613                                 goto out;
614                         break;
615                 default:
616                         goto out;
617                 }
618                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
619                 mii_reg |= MII_CR_POWER_DOWN;
620                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
621                 mdelay(1);
622         }
623 out:
624         return;
625 }
626
627 void
628 e1000_down(struct e1000_adapter *adapter)
629 {
630         struct net_device *netdev = adapter->netdev;
631
632         /* signal that we're down so the interrupt handler does not
633          * reschedule our watchdog timer */
634         set_bit(__E1000_DOWN, &adapter->flags);
635
636 #ifdef CONFIG_E1000_NAPI
637         napi_disable(&adapter->napi);
638 #endif
639         e1000_irq_disable(adapter);
640
641         del_timer_sync(&adapter->tx_fifo_stall_timer);
642         del_timer_sync(&adapter->watchdog_timer);
643         del_timer_sync(&adapter->phy_info_timer);
644
645         netdev->tx_queue_len = adapter->tx_queue_len;
646         adapter->link_speed = 0;
647         adapter->link_duplex = 0;
648         netif_carrier_off(netdev);
649         netif_stop_queue(netdev);
650
651         e1000_reset(adapter);
652         e1000_clean_all_tx_rings(adapter);
653         e1000_clean_all_rx_rings(adapter);
654 }
655
656 void
657 e1000_reinit_locked(struct e1000_adapter *adapter)
658 {
659         WARN_ON(in_interrupt());
660         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
661                 msleep(1);
662         e1000_down(adapter);
663         e1000_up(adapter);
664         clear_bit(__E1000_RESETTING, &adapter->flags);
665 }
666
667 void
668 e1000_reset(struct e1000_adapter *adapter)
669 {
670         uint32_t pba = 0, tx_space, min_tx_space, min_rx_space;
671         uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
672         boolean_t legacy_pba_adjust = FALSE;
673
674         /* Repartition Pba for greater than 9k mtu
675          * To take effect CTRL.RST is required.
676          */
677
678         switch (adapter->hw.mac_type) {
679         case e1000_82542_rev2_0:
680         case e1000_82542_rev2_1:
681         case e1000_82543:
682         case e1000_82544:
683         case e1000_82540:
684         case e1000_82541:
685         case e1000_82541_rev_2:
686                 legacy_pba_adjust = TRUE;
687                 pba = E1000_PBA_48K;
688                 break;
689         case e1000_82545:
690         case e1000_82545_rev_3:
691         case e1000_82546:
692         case e1000_82546_rev_3:
693                 pba = E1000_PBA_48K;
694                 break;
695         case e1000_82547:
696         case e1000_82547_rev_2:
697                 legacy_pba_adjust = TRUE;
698                 pba = E1000_PBA_30K;
699                 break;
700         case e1000_82571:
701         case e1000_82572:
702         case e1000_80003es2lan:
703                 pba = E1000_PBA_38K;
704                 break;
705         case e1000_82573:
706                 pba = E1000_PBA_20K;
707                 break;
708         case e1000_ich8lan:
709                 pba = E1000_PBA_8K;
710         case e1000_undefined:
711         case e1000_num_macs:
712                 break;
713         }
714
715         if (legacy_pba_adjust == TRUE) {
716                 if (adapter->netdev->mtu > E1000_RXBUFFER_8192)
717                         pba -= 8; /* allocate more FIFO for Tx */
718
719                 if (adapter->hw.mac_type == e1000_82547) {
720                         adapter->tx_fifo_head = 0;
721                         adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
722                         adapter->tx_fifo_size =
723                                 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
724                         atomic_set(&adapter->tx_fifo_stall, 0);
725                 }
726         } else if (adapter->hw.max_frame_size > MAXIMUM_ETHERNET_FRAME_SIZE) {
727                 /* adjust PBA for jumbo frames */
728                 E1000_WRITE_REG(&adapter->hw, PBA, pba);
729
730                 /* To maintain wire speed transmits, the Tx FIFO should be
731                  * large enough to accomodate two full transmit packets,
732                  * rounded up to the next 1KB and expressed in KB.  Likewise,
733                  * the Rx FIFO should be large enough to accomodate at least
734                  * one full receive packet and is similarly rounded up and
735                  * expressed in KB. */
736                 pba = E1000_READ_REG(&adapter->hw, PBA);
737                 /* upper 16 bits has Tx packet buffer allocation size in KB */
738                 tx_space = pba >> 16;
739                 /* lower 16 bits has Rx packet buffer allocation size in KB */
740                 pba &= 0xffff;
741                 /* don't include ethernet FCS because hardware appends/strips */
742                 min_rx_space = adapter->netdev->mtu + ENET_HEADER_SIZE +
743                                VLAN_TAG_SIZE;
744                 min_tx_space = min_rx_space;
745                 min_tx_space *= 2;
746                 min_tx_space = ALIGN(min_tx_space, 1024);
747                 min_tx_space >>= 10;
748                 min_rx_space = ALIGN(min_rx_space, 1024);
749                 min_rx_space >>= 10;
750
751                 /* If current Tx allocation is less than the min Tx FIFO size,
752                  * and the min Tx FIFO size is less than the current Rx FIFO
753                  * allocation, take space away from current Rx allocation */
754                 if (tx_space < min_tx_space &&
755                     ((min_tx_space - tx_space) < pba)) {
756                         pba = pba - (min_tx_space - tx_space);
757
758                         /* PCI/PCIx hardware has PBA alignment constraints */
759                         switch (adapter->hw.mac_type) {
760                         case e1000_82545 ... e1000_82546_rev_3:
761                                 pba &= ~(E1000_PBA_8K - 1);
762                                 break;
763                         default:
764                                 break;
765                         }
766
767                         /* if short on rx space, rx wins and must trump tx
768                          * adjustment or use Early Receive if available */
769                         if (pba < min_rx_space) {
770                                 switch (adapter->hw.mac_type) {
771                                 case e1000_82573:
772                                         /* ERT enabled in e1000_configure_rx */
773                                         break;
774                                 default:
775                                         pba = min_rx_space;
776                                         break;
777                                 }
778                         }
779                 }
780         }
781
782         E1000_WRITE_REG(&adapter->hw, PBA, pba);
783
784         /* flow control settings */
785         /* Set the FC high water mark to 90% of the FIFO size.
786          * Required to clear last 3 LSB */
787         fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
788         /* We can't use 90% on small FIFOs because the remainder
789          * would be less than 1 full frame.  In this case, we size
790          * it to allow at least a full frame above the high water
791          *  mark. */
792         if (pba < E1000_PBA_16K)
793                 fc_high_water_mark = (pba * 1024) - 1600;
794
795         adapter->hw.fc_high_water = fc_high_water_mark;
796         adapter->hw.fc_low_water = fc_high_water_mark - 8;
797         if (adapter->hw.mac_type == e1000_80003es2lan)
798                 adapter->hw.fc_pause_time = 0xFFFF;
799         else
800                 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
801         adapter->hw.fc_send_xon = 1;
802         adapter->hw.fc = adapter->hw.original_fc;
803
804         /* Allow time for pending master requests to run */
805         e1000_reset_hw(&adapter->hw);
806         if (adapter->hw.mac_type >= e1000_82544)
807                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
808
809         if (e1000_init_hw(&adapter->hw))
810                 DPRINTK(PROBE, ERR, "Hardware Error\n");
811         e1000_update_mng_vlan(adapter);
812
813         /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
814         if (adapter->hw.mac_type >= e1000_82544 &&
815             adapter->hw.mac_type <= e1000_82547_rev_2 &&
816             adapter->hw.autoneg == 1 &&
817             adapter->hw.autoneg_advertised == ADVERTISE_1000_FULL) {
818                 uint32_t ctrl = E1000_READ_REG(&adapter->hw, CTRL);
819                 /* clear phy power management bit if we are in gig only mode,
820                  * which if enabled will attempt negotiation to 100Mb, which
821                  * can cause a loss of link at power off or driver unload */
822                 ctrl &= ~E1000_CTRL_SWDPIN3;
823                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
824         }
825
826         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
827         E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
828
829         e1000_reset_adaptive(&adapter->hw);
830         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
831
832         if (!adapter->smart_power_down &&
833             (adapter->hw.mac_type == e1000_82571 ||
834              adapter->hw.mac_type == e1000_82572)) {
835                 uint16_t phy_data = 0;
836                 /* speed up time to link by disabling smart power down, ignore
837                  * the return value of this function because there is nothing
838                  * different we would do if it failed */
839                 e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
840                                    &phy_data);
841                 phy_data &= ~IGP02E1000_PM_SPD;
842                 e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
843                                     phy_data);
844         }
845
846         e1000_release_manageability(adapter);
847 }
848
849 /**
850  * e1000_probe - Device Initialization Routine
851  * @pdev: PCI device information struct
852  * @ent: entry in e1000_pci_tbl
853  *
854  * Returns 0 on success, negative on failure
855  *
856  * e1000_probe initializes an adapter identified by a pci_dev structure.
857  * The OS initialization, configuring of the adapter private structure,
858  * and a hardware reset occur.
859  **/
860
861 static int __devinit
862 e1000_probe(struct pci_dev *pdev,
863             const struct pci_device_id *ent)
864 {
865         struct net_device *netdev;
866         struct e1000_adapter *adapter;
867         unsigned long mmio_start, mmio_len;
868         unsigned long flash_start, flash_len;
869
870         static int cards_found = 0;
871         static int global_quad_port_a = 0; /* global ksp3 port a indication */
872         int i, err, pci_using_dac;
873         uint16_t eeprom_data = 0;
874         uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
875         DECLARE_MAC_BUF(mac);
876
877         if ((err = pci_enable_device(pdev)))
878                 return err;
879
880         if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
881             !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
882                 pci_using_dac = 1;
883         } else {
884                 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) &&
885                     (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
886                         E1000_ERR("No usable DMA configuration, aborting\n");
887                         goto err_dma;
888                 }
889                 pci_using_dac = 0;
890         }
891
892         if ((err = pci_request_regions(pdev, e1000_driver_name)))
893                 goto err_pci_reg;
894
895         pci_set_master(pdev);
896
897         err = -ENOMEM;
898         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
899         if (!netdev)
900                 goto err_alloc_etherdev;
901
902         SET_NETDEV_DEV(netdev, &pdev->dev);
903
904         pci_set_drvdata(pdev, netdev);
905         adapter = netdev_priv(netdev);
906         adapter->netdev = netdev;
907         adapter->pdev = pdev;
908         adapter->hw.back = adapter;
909         adapter->msg_enable = (1 << debug) - 1;
910
911         mmio_start = pci_resource_start(pdev, BAR_0);
912         mmio_len = pci_resource_len(pdev, BAR_0);
913
914         err = -EIO;
915         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
916         if (!adapter->hw.hw_addr)
917                 goto err_ioremap;
918
919         for (i = BAR_1; i <= BAR_5; i++) {
920                 if (pci_resource_len(pdev, i) == 0)
921                         continue;
922                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
923                         adapter->hw.io_base = pci_resource_start(pdev, i);
924                         break;
925                 }
926         }
927
928         netdev->open = &e1000_open;
929         netdev->stop = &e1000_close;
930         netdev->hard_start_xmit = &e1000_xmit_frame;
931         netdev->get_stats = &e1000_get_stats;
932         netdev->set_multicast_list = &e1000_set_multi;
933         netdev->set_mac_address = &e1000_set_mac;
934         netdev->change_mtu = &e1000_change_mtu;
935         netdev->do_ioctl = &e1000_ioctl;
936         e1000_set_ethtool_ops(netdev);
937         netdev->tx_timeout = &e1000_tx_timeout;
938         netdev->watchdog_timeo = 5 * HZ;
939 #ifdef CONFIG_E1000_NAPI
940         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
941 #endif
942         netdev->vlan_rx_register = e1000_vlan_rx_register;
943         netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
944         netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
945 #ifdef CONFIG_NET_POLL_CONTROLLER
946         netdev->poll_controller = e1000_netpoll;
947 #endif
948         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
949
950         netdev->mem_start = mmio_start;
951         netdev->mem_end = mmio_start + mmio_len;
952         netdev->base_addr = adapter->hw.io_base;
953
954         adapter->bd_number = cards_found;
955
956         /* setup the private structure */
957
958         if ((err = e1000_sw_init(adapter)))
959                 goto err_sw_init;
960
961         err = -EIO;
962         /* Flash BAR mapping must happen after e1000_sw_init
963          * because it depends on mac_type */
964         if ((adapter->hw.mac_type == e1000_ich8lan) &&
965            (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
966                 flash_start = pci_resource_start(pdev, 1);
967                 flash_len = pci_resource_len(pdev, 1);
968                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
969                 if (!adapter->hw.flash_address)
970                         goto err_flashmap;
971         }
972
973         if (e1000_check_phy_reset_block(&adapter->hw))
974                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
975
976         if (adapter->hw.mac_type >= e1000_82543) {
977                 netdev->features = NETIF_F_SG |
978                                    NETIF_F_HW_CSUM |
979                                    NETIF_F_HW_VLAN_TX |
980                                    NETIF_F_HW_VLAN_RX |
981                                    NETIF_F_HW_VLAN_FILTER;
982                 if (adapter->hw.mac_type == e1000_ich8lan)
983                         netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
984         }
985
986         if ((adapter->hw.mac_type >= e1000_82544) &&
987            (adapter->hw.mac_type != e1000_82547))
988                 netdev->features |= NETIF_F_TSO;
989
990         if (adapter->hw.mac_type > e1000_82547_rev_2)
991                 netdev->features |= NETIF_F_TSO6;
992         if (pci_using_dac)
993                 netdev->features |= NETIF_F_HIGHDMA;
994
995         netdev->features |= NETIF_F_LLTX;
996
997         adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
998
999         /* initialize eeprom parameters */
1000
1001         if (e1000_init_eeprom_params(&adapter->hw)) {
1002                 E1000_ERR("EEPROM initialization failed\n");
1003                 goto err_eeprom;
1004         }
1005
1006         /* before reading the EEPROM, reset the controller to
1007          * put the device in a known good starting state */
1008
1009         e1000_reset_hw(&adapter->hw);
1010
1011         /* make sure the EEPROM is good */
1012
1013         if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
1014                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
1015                 goto err_eeprom;
1016         }
1017
1018         /* copy the MAC address out of the EEPROM */
1019
1020         if (e1000_read_mac_addr(&adapter->hw))
1021                 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
1022         memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
1023         memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
1024
1025         if (!is_valid_ether_addr(netdev->perm_addr)) {
1026                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
1027                 goto err_eeprom;
1028         }
1029
1030         e1000_get_bus_info(&adapter->hw);
1031
1032         init_timer(&adapter->tx_fifo_stall_timer);
1033         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
1034         adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
1035
1036         init_timer(&adapter->watchdog_timer);
1037         adapter->watchdog_timer.function = &e1000_watchdog;
1038         adapter->watchdog_timer.data = (unsigned long) adapter;
1039
1040         init_timer(&adapter->phy_info_timer);
1041         adapter->phy_info_timer.function = &e1000_update_phy_info;
1042         adapter->phy_info_timer.data = (unsigned long) adapter;
1043
1044         INIT_WORK(&adapter->reset_task, e1000_reset_task);
1045
1046         e1000_check_options(adapter);
1047
1048         /* Initial Wake on LAN setting
1049          * If APM wake is enabled in the EEPROM,
1050          * enable the ACPI Magic Packet filter
1051          */
1052
1053         switch (adapter->hw.mac_type) {
1054         case e1000_82542_rev2_0:
1055         case e1000_82542_rev2_1:
1056         case e1000_82543:
1057                 break;
1058         case e1000_82544:
1059                 e1000_read_eeprom(&adapter->hw,
1060                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1061                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1062                 break;
1063         case e1000_ich8lan:
1064                 e1000_read_eeprom(&adapter->hw,
1065                         EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
1066                 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
1067                 break;
1068         case e1000_82546:
1069         case e1000_82546_rev_3:
1070         case e1000_82571:
1071         case e1000_80003es2lan:
1072                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
1073                         e1000_read_eeprom(&adapter->hw,
1074                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1075                         break;
1076                 }
1077                 /* Fall Through */
1078         default:
1079                 e1000_read_eeprom(&adapter->hw,
1080                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1081                 break;
1082         }
1083         if (eeprom_data & eeprom_apme_mask)
1084                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1085
1086         /* now that we have the eeprom settings, apply the special cases
1087          * where the eeprom may be wrong or the board simply won't support
1088          * wake on lan on a particular port */
1089         switch (pdev->device) {
1090         case E1000_DEV_ID_82546GB_PCIE:
1091                 adapter->eeprom_wol = 0;
1092                 break;
1093         case E1000_DEV_ID_82546EB_FIBER:
1094         case E1000_DEV_ID_82546GB_FIBER:
1095         case E1000_DEV_ID_82571EB_FIBER:
1096                 /* Wake events only supported on port A for dual fiber
1097                  * regardless of eeprom setting */
1098                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
1099                         adapter->eeprom_wol = 0;
1100                 break;
1101         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1102         case E1000_DEV_ID_82571EB_QUAD_COPPER:
1103         case E1000_DEV_ID_82571EB_QUAD_FIBER:
1104         case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1105         case E1000_DEV_ID_82571PT_QUAD_COPPER:
1106                 /* if quad port adapter, disable WoL on all but port A */
1107                 if (global_quad_port_a != 0)
1108                         adapter->eeprom_wol = 0;
1109                 else
1110                         adapter->quad_port_a = 1;
1111                 /* Reset for multiple quad port adapters */
1112                 if (++global_quad_port_a == 4)
1113                         global_quad_port_a = 0;
1114                 break;
1115         }
1116
1117         /* initialize the wol settings based on the eeprom settings */
1118         adapter->wol = adapter->eeprom_wol;
1119
1120         /* print bus type/speed/width info */
1121         {
1122         struct e1000_hw *hw = &adapter->hw;
1123         DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
1124                 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
1125                  (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
1126                 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1127                  (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
1128                  (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
1129                  (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
1130                  (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
1131                 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
1132                  (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
1133                  (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
1134                  "32-bit"));
1135         }
1136
1137         printk("%s\n", print_mac(mac, netdev->dev_addr));
1138
1139         /* reset the hardware with the new settings */
1140         e1000_reset(adapter);
1141
1142         /* If the controller is 82573 and f/w is AMT, do not set
1143          * DRV_LOAD until the interface is up.  For all other cases,
1144          * let the f/w know that the h/w is now under the control
1145          * of the driver. */
1146         if (adapter->hw.mac_type != e1000_82573 ||
1147             !e1000_check_mng_mode(&adapter->hw))
1148                 e1000_get_hw_control(adapter);
1149
1150         /* tell the stack to leave us alone until e1000_open() is called */
1151         netif_carrier_off(netdev);
1152         netif_stop_queue(netdev);
1153
1154         strcpy(netdev->name, "eth%d");
1155         if ((err = register_netdev(netdev)))
1156                 goto err_register;
1157
1158         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1159
1160         cards_found++;
1161         return 0;
1162
1163 err_register:
1164         e1000_release_hw_control(adapter);
1165 err_eeprom:
1166         if (!e1000_check_phy_reset_block(&adapter->hw))
1167                 e1000_phy_hw_reset(&adapter->hw);
1168
1169         if (adapter->hw.flash_address)
1170                 iounmap(adapter->hw.flash_address);
1171 err_flashmap:
1172 #ifdef CONFIG_E1000_NAPI
1173         for (i = 0; i < adapter->num_rx_queues; i++)
1174                 dev_put(&adapter->polling_netdev[i]);
1175 #endif
1176
1177         kfree(adapter->tx_ring);
1178         kfree(adapter->rx_ring);
1179 #ifdef CONFIG_E1000_NAPI
1180         kfree(adapter->polling_netdev);
1181 #endif
1182 err_sw_init:
1183         iounmap(adapter->hw.hw_addr);
1184 err_ioremap:
1185         free_netdev(netdev);
1186 err_alloc_etherdev:
1187         pci_release_regions(pdev);
1188 err_pci_reg:
1189 err_dma:
1190         pci_disable_device(pdev);
1191         return err;
1192 }
1193
1194 /**
1195  * e1000_remove - Device Removal Routine
1196  * @pdev: PCI device information struct
1197  *
1198  * e1000_remove is called by the PCI subsystem to alert the driver
1199  * that it should release a PCI device.  The could be caused by a
1200  * Hot-Plug event, or because the driver is going to be removed from
1201  * memory.
1202  **/
1203
1204 static void __devexit
1205 e1000_remove(struct pci_dev *pdev)
1206 {
1207         struct net_device *netdev = pci_get_drvdata(pdev);
1208         struct e1000_adapter *adapter = netdev_priv(netdev);
1209 #ifdef CONFIG_E1000_NAPI
1210         int i;
1211 #endif
1212
1213         cancel_work_sync(&adapter->reset_task);
1214
1215         e1000_release_manageability(adapter);
1216
1217         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1218          * would have already happened in close and is redundant. */
1219         e1000_release_hw_control(adapter);
1220
1221 #ifdef CONFIG_E1000_NAPI
1222         for (i = 0; i < adapter->num_rx_queues; i++)
1223                 dev_put(&adapter->polling_netdev[i]);
1224 #endif
1225
1226         unregister_netdev(netdev);
1227
1228         if (!e1000_check_phy_reset_block(&adapter->hw))
1229                 e1000_phy_hw_reset(&adapter->hw);
1230
1231         kfree(adapter->tx_ring);
1232         kfree(adapter->rx_ring);
1233 #ifdef CONFIG_E1000_NAPI
1234         kfree(adapter->polling_netdev);
1235 #endif
1236
1237         iounmap(adapter->hw.hw_addr);
1238         if (adapter->hw.flash_address)
1239                 iounmap(adapter->hw.flash_address);
1240         pci_release_regions(pdev);
1241
1242         free_netdev(netdev);
1243
1244         pci_disable_device(pdev);
1245 }
1246
1247 /**
1248  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1249  * @adapter: board private structure to initialize
1250  *
1251  * e1000_sw_init initializes the Adapter private data structure.
1252  * Fields are initialized based on PCI device information and
1253  * OS network device settings (MTU size).
1254  **/
1255
1256 static int __devinit
1257 e1000_sw_init(struct e1000_adapter *adapter)
1258 {
1259         struct e1000_hw *hw = &adapter->hw;
1260         struct net_device *netdev = adapter->netdev;
1261         struct pci_dev *pdev = adapter->pdev;
1262 #ifdef CONFIG_E1000_NAPI
1263         int i;
1264 #endif
1265
1266         /* PCI config space info */
1267
1268         hw->vendor_id = pdev->vendor;
1269         hw->device_id = pdev->device;
1270         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1271         hw->subsystem_id = pdev->subsystem_device;
1272         hw->revision_id = pdev->revision;
1273
1274         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1275
1276         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1277         adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
1278         hw->max_frame_size = netdev->mtu +
1279                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1280         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1281
1282         /* identify the MAC */
1283
1284         if (e1000_set_mac_type(hw)) {
1285                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1286                 return -EIO;
1287         }
1288
1289         switch (hw->mac_type) {
1290         default:
1291                 break;
1292         case e1000_82541:
1293         case e1000_82547:
1294         case e1000_82541_rev_2:
1295         case e1000_82547_rev_2:
1296                 hw->phy_init_script = 1;
1297                 break;
1298         }
1299
1300         e1000_set_media_type(hw);
1301
1302         hw->wait_autoneg_complete = FALSE;
1303         hw->tbi_compatibility_en = TRUE;
1304         hw->adaptive_ifs = TRUE;
1305
1306         /* Copper options */
1307
1308         if (hw->media_type == e1000_media_type_copper) {
1309                 hw->mdix = AUTO_ALL_MODES;
1310                 hw->disable_polarity_correction = FALSE;
1311                 hw->master_slave = E1000_MASTER_SLAVE;
1312         }
1313
1314         adapter->num_tx_queues = 1;
1315         adapter->num_rx_queues = 1;
1316
1317         if (e1000_alloc_queues(adapter)) {
1318                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1319                 return -ENOMEM;
1320         }
1321
1322 #ifdef CONFIG_E1000_NAPI
1323         for (i = 0; i < adapter->num_rx_queues; i++) {
1324                 adapter->polling_netdev[i].priv = adapter;
1325                 dev_hold(&adapter->polling_netdev[i]);
1326                 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1327         }
1328         spin_lock_init(&adapter->tx_queue_lock);
1329 #endif
1330
1331         /* Explicitly disable IRQ since the NIC can be in any state. */
1332         atomic_set(&adapter->irq_sem, 0);
1333         e1000_irq_disable(adapter);
1334
1335         spin_lock_init(&adapter->stats_lock);
1336
1337         set_bit(__E1000_DOWN, &adapter->flags);
1338
1339         return 0;
1340 }
1341
1342 /**
1343  * e1000_alloc_queues - Allocate memory for all rings
1344  * @adapter: board private structure to initialize
1345  *
1346  * We allocate one ring per queue at run-time since we don't know the
1347  * number of queues at compile-time.  The polling_netdev array is
1348  * intended for Multiqueue, but should work fine with a single queue.
1349  **/
1350
1351 static int __devinit
1352 e1000_alloc_queues(struct e1000_adapter *adapter)
1353 {
1354         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1355                                    sizeof(struct e1000_tx_ring), GFP_KERNEL);
1356         if (!adapter->tx_ring)
1357                 return -ENOMEM;
1358
1359         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1360                                    sizeof(struct e1000_rx_ring), GFP_KERNEL);
1361         if (!adapter->rx_ring) {
1362                 kfree(adapter->tx_ring);
1363                 return -ENOMEM;
1364         }
1365
1366 #ifdef CONFIG_E1000_NAPI
1367         adapter->polling_netdev = kcalloc(adapter->num_rx_queues,
1368                                           sizeof(struct net_device),
1369                                           GFP_KERNEL);
1370         if (!adapter->polling_netdev) {
1371                 kfree(adapter->tx_ring);
1372                 kfree(adapter->rx_ring);
1373                 return -ENOMEM;
1374         }
1375 #endif
1376
1377         return E1000_SUCCESS;
1378 }
1379
1380 /**
1381  * e1000_open - Called when a network interface is made active
1382  * @netdev: network interface device structure
1383  *
1384  * Returns 0 on success, negative value on failure
1385  *
1386  * The open entry point is called when a network interface is made
1387  * active by the system (IFF_UP).  At this point all resources needed
1388  * for transmit and receive operations are allocated, the interrupt
1389  * handler is registered with the OS, the watchdog timer is started,
1390  * and the stack is notified that the interface is ready.
1391  **/
1392
1393 static int
1394 e1000_open(struct net_device *netdev)
1395 {
1396         struct e1000_adapter *adapter = netdev_priv(netdev);
1397         int err;
1398
1399         /* disallow open during test */
1400         if (test_bit(__E1000_TESTING, &adapter->flags))
1401                 return -EBUSY;
1402
1403         /* allocate transmit descriptors */
1404         err = e1000_setup_all_tx_resources(adapter);
1405         if (err)
1406                 goto err_setup_tx;
1407
1408         /* allocate receive descriptors */
1409         err = e1000_setup_all_rx_resources(adapter);
1410         if (err)
1411                 goto err_setup_rx;
1412
1413         e1000_power_up_phy(adapter);
1414
1415         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1416         if ((adapter->hw.mng_cookie.status &
1417                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1418                 e1000_update_mng_vlan(adapter);
1419         }
1420
1421         /* If AMT is enabled, let the firmware know that the network
1422          * interface is now open */
1423         if (adapter->hw.mac_type == e1000_82573 &&
1424             e1000_check_mng_mode(&adapter->hw))
1425                 e1000_get_hw_control(adapter);
1426
1427         /* before we allocate an interrupt, we must be ready to handle it.
1428          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1429          * as soon as we call pci_request_irq, so we have to setup our
1430          * clean_rx handler before we do so.  */
1431         e1000_configure(adapter);
1432
1433         err = e1000_request_irq(adapter);
1434         if (err)
1435                 goto err_req_irq;
1436
1437         /* From here on the code is the same as e1000_up() */
1438         clear_bit(__E1000_DOWN, &adapter->flags);
1439
1440 #ifdef CONFIG_E1000_NAPI
1441         napi_enable(&adapter->napi);
1442 #endif
1443
1444         e1000_irq_enable(adapter);
1445
1446         /* fire a link status change interrupt to start the watchdog */
1447         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_LSC);
1448
1449         return E1000_SUCCESS;
1450
1451 err_req_irq:
1452         e1000_release_hw_control(adapter);
1453         e1000_power_down_phy(adapter);
1454         e1000_free_all_rx_resources(adapter);
1455 err_setup_rx:
1456         e1000_free_all_tx_resources(adapter);
1457 err_setup_tx:
1458         e1000_reset(adapter);
1459
1460         return err;
1461 }
1462
1463 /**
1464  * e1000_close - Disables a network interface
1465  * @netdev: network interface device structure
1466  *
1467  * Returns 0, this is not allowed to fail
1468  *
1469  * The close entry point is called when an interface is de-activated
1470  * by the OS.  The hardware is still under the drivers control, but
1471  * needs to be disabled.  A global MAC reset is issued to stop the
1472  * hardware, and all transmit and receive resources are freed.
1473  **/
1474
1475 static int
1476 e1000_close(struct net_device *netdev)
1477 {
1478         struct e1000_adapter *adapter = netdev_priv(netdev);
1479
1480         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1481         e1000_down(adapter);
1482         e1000_power_down_phy(adapter);
1483         e1000_free_irq(adapter);
1484
1485         e1000_free_all_tx_resources(adapter);
1486         e1000_free_all_rx_resources(adapter);
1487
1488         /* kill manageability vlan ID if supported, but not if a vlan with
1489          * the same ID is registered on the host OS (let 8021q kill it) */
1490         if ((adapter->hw.mng_cookie.status &
1491                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1492              !(adapter->vlgrp &&
1493                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
1494                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1495         }
1496
1497         /* If AMT is enabled, let the firmware know that the network
1498          * interface is now closed */
1499         if (adapter->hw.mac_type == e1000_82573 &&
1500             e1000_check_mng_mode(&adapter->hw))
1501                 e1000_release_hw_control(adapter);
1502
1503         return 0;
1504 }
1505
1506 /**
1507  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1508  * @adapter: address of board private structure
1509  * @start: address of beginning of memory
1510  * @len: length of memory
1511  **/
1512 static boolean_t
1513 e1000_check_64k_bound(struct e1000_adapter *adapter,
1514                       void *start, unsigned long len)
1515 {
1516         unsigned long begin = (unsigned long) start;
1517         unsigned long end = begin + len;
1518
1519         /* First rev 82545 and 82546 need to not allow any memory
1520          * write location to cross 64k boundary due to errata 23 */
1521         if (adapter->hw.mac_type == e1000_82545 ||
1522             adapter->hw.mac_type == e1000_82546) {
1523                 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1524         }
1525
1526         return TRUE;
1527 }
1528
1529 /**
1530  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1531  * @adapter: board private structure
1532  * @txdr:    tx descriptor ring (for a specific queue) to setup
1533  *
1534  * Return 0 on success, negative on failure
1535  **/
1536
1537 static int
1538 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1539                          struct e1000_tx_ring *txdr)
1540 {
1541         struct pci_dev *pdev = adapter->pdev;
1542         int size;
1543
1544         size = sizeof(struct e1000_buffer) * txdr->count;
1545         txdr->buffer_info = vmalloc(size);
1546         if (!txdr->buffer_info) {
1547                 DPRINTK(PROBE, ERR,
1548                 "Unable to allocate memory for the transmit descriptor ring\n");
1549                 return -ENOMEM;
1550         }
1551         memset(txdr->buffer_info, 0, size);
1552
1553         /* round up to nearest 4K */
1554
1555         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1556         txdr->size = ALIGN(txdr->size, 4096);
1557
1558         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1559         if (!txdr->desc) {
1560 setup_tx_desc_die:
1561                 vfree(txdr->buffer_info);
1562                 DPRINTK(PROBE, ERR,
1563                 "Unable to allocate memory for the transmit descriptor ring\n");
1564                 return -ENOMEM;
1565         }
1566
1567         /* Fix for errata 23, can't cross 64kB boundary */
1568         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1569                 void *olddesc = txdr->desc;
1570                 dma_addr_t olddma = txdr->dma;
1571                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1572                                      "at %p\n", txdr->size, txdr->desc);
1573                 /* Try again, without freeing the previous */
1574                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1575                 /* Failed allocation, critical failure */
1576                 if (!txdr->desc) {
1577                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1578                         goto setup_tx_desc_die;
1579                 }
1580
1581                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1582                         /* give up */
1583                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1584                                             txdr->dma);
1585                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1586                         DPRINTK(PROBE, ERR,
1587                                 "Unable to allocate aligned memory "
1588                                 "for the transmit descriptor ring\n");
1589                         vfree(txdr->buffer_info);
1590                         return -ENOMEM;
1591                 } else {
1592                         /* Free old allocation, new allocation was successful */
1593                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1594                 }
1595         }
1596         memset(txdr->desc, 0, txdr->size);
1597
1598         txdr->next_to_use = 0;
1599         txdr->next_to_clean = 0;
1600         spin_lock_init(&txdr->tx_lock);
1601
1602         return 0;
1603 }
1604
1605 /**
1606  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1607  *                                (Descriptors) for all queues
1608  * @adapter: board private structure
1609  *
1610  * Return 0 on success, negative on failure
1611  **/
1612
1613 int
1614 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1615 {
1616         int i, err = 0;
1617
1618         for (i = 0; i < adapter->num_tx_queues; i++) {
1619                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1620                 if (err) {
1621                         DPRINTK(PROBE, ERR,
1622                                 "Allocation for Tx Queue %u failed\n", i);
1623                         for (i-- ; i >= 0; i--)
1624                                 e1000_free_tx_resources(adapter,
1625                                                         &adapter->tx_ring[i]);
1626                         break;
1627                 }
1628         }
1629
1630         return err;
1631 }
1632
1633 /**
1634  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1635  * @adapter: board private structure
1636  *
1637  * Configure the Tx unit of the MAC after a reset.
1638  **/
1639
1640 static void
1641 e1000_configure_tx(struct e1000_adapter *adapter)
1642 {
1643         uint64_t tdba;
1644         struct e1000_hw *hw = &adapter->hw;
1645         uint32_t tdlen, tctl, tipg, tarc;
1646         uint32_t ipgr1, ipgr2;
1647
1648         /* Setup the HW Tx Head and Tail descriptor pointers */
1649
1650         switch (adapter->num_tx_queues) {
1651         case 1:
1652         default:
1653                 tdba = adapter->tx_ring[0].dma;
1654                 tdlen = adapter->tx_ring[0].count *
1655                         sizeof(struct e1000_tx_desc);
1656                 E1000_WRITE_REG(hw, TDLEN, tdlen);
1657                 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1658                 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1659                 E1000_WRITE_REG(hw, TDT, 0);
1660                 E1000_WRITE_REG(hw, TDH, 0);
1661                 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1662                 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1663                 break;
1664         }
1665
1666         /* Set the default values for the Tx Inter Packet Gap timer */
1667         if (adapter->hw.mac_type <= e1000_82547_rev_2 &&
1668             (hw->media_type == e1000_media_type_fiber ||
1669              hw->media_type == e1000_media_type_internal_serdes))
1670                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1671         else
1672                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1673
1674         switch (hw->mac_type) {
1675         case e1000_82542_rev2_0:
1676         case e1000_82542_rev2_1:
1677                 tipg = DEFAULT_82542_TIPG_IPGT;
1678                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1679                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1680                 break;
1681         case e1000_80003es2lan:
1682                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1683                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1684                 break;
1685         default:
1686                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1687                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1688                 break;
1689         }
1690         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1691         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1692         E1000_WRITE_REG(hw, TIPG, tipg);
1693
1694         /* Set the Tx Interrupt Delay register */
1695
1696         E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1697         if (hw->mac_type >= e1000_82540)
1698                 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1699
1700         /* Program the Transmit Control Register */
1701
1702         tctl = E1000_READ_REG(hw, TCTL);
1703         tctl &= ~E1000_TCTL_CT;
1704         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1705                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1706
1707         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1708                 tarc = E1000_READ_REG(hw, TARC0);
1709                 /* set the speed mode bit, we'll clear it if we're not at
1710                  * gigabit link later */
1711                 tarc |= (1 << 21);
1712                 E1000_WRITE_REG(hw, TARC0, tarc);
1713         } else if (hw->mac_type == e1000_80003es2lan) {
1714                 tarc = E1000_READ_REG(hw, TARC0);
1715                 tarc |= 1;
1716                 E1000_WRITE_REG(hw, TARC0, tarc);
1717                 tarc = E1000_READ_REG(hw, TARC1);
1718                 tarc |= 1;
1719                 E1000_WRITE_REG(hw, TARC1, tarc);
1720         }
1721
1722         e1000_config_collision_dist(hw);
1723
1724         /* Setup Transmit Descriptor Settings for eop descriptor */
1725         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1726
1727         /* only set IDE if we are delaying interrupts using the timers */
1728         if (adapter->tx_int_delay)
1729                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1730
1731         if (hw->mac_type < e1000_82543)
1732                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1733         else
1734                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1735
1736         /* Cache if we're 82544 running in PCI-X because we'll
1737          * need this to apply a workaround later in the send path. */
1738         if (hw->mac_type == e1000_82544 &&
1739             hw->bus_type == e1000_bus_type_pcix)
1740                 adapter->pcix_82544 = 1;
1741
1742         E1000_WRITE_REG(hw, TCTL, tctl);
1743
1744 }
1745
1746 /**
1747  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1748  * @adapter: board private structure
1749  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1750  *
1751  * Returns 0 on success, negative on failure
1752  **/
1753
1754 static int
1755 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1756                          struct e1000_rx_ring *rxdr)
1757 {
1758         struct pci_dev *pdev = adapter->pdev;
1759         int size, desc_len;
1760
1761         size = sizeof(struct e1000_buffer) * rxdr->count;
1762         rxdr->buffer_info = vmalloc(size);
1763         if (!rxdr->buffer_info) {
1764                 DPRINTK(PROBE, ERR,
1765                 "Unable to allocate memory for the receive descriptor ring\n");
1766                 return -ENOMEM;
1767         }
1768         memset(rxdr->buffer_info, 0, size);
1769
1770         rxdr->ps_page = kcalloc(rxdr->count, sizeof(struct e1000_ps_page),
1771                                 GFP_KERNEL);
1772         if (!rxdr->ps_page) {
1773                 vfree(rxdr->buffer_info);
1774                 DPRINTK(PROBE, ERR,
1775                 "Unable to allocate memory for the receive descriptor ring\n");
1776                 return -ENOMEM;
1777         }
1778
1779         rxdr->ps_page_dma = kcalloc(rxdr->count,
1780                                     sizeof(struct e1000_ps_page_dma),
1781                                     GFP_KERNEL);
1782         if (!rxdr->ps_page_dma) {
1783                 vfree(rxdr->buffer_info);
1784                 kfree(rxdr->ps_page);
1785                 DPRINTK(PROBE, ERR,
1786                 "Unable to allocate memory for the receive descriptor ring\n");
1787                 return -ENOMEM;
1788         }
1789
1790         if (adapter->hw.mac_type <= e1000_82547_rev_2)
1791                 desc_len = sizeof(struct e1000_rx_desc);
1792         else
1793                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1794
1795         /* Round up to nearest 4K */
1796
1797         rxdr->size = rxdr->count * desc_len;
1798         rxdr->size = ALIGN(rxdr->size, 4096);
1799
1800         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1801
1802         if (!rxdr->desc) {
1803                 DPRINTK(PROBE, ERR,
1804                 "Unable to allocate memory for the receive descriptor ring\n");
1805 setup_rx_desc_die:
1806                 vfree(rxdr->buffer_info);
1807                 kfree(rxdr->ps_page);
1808                 kfree(rxdr->ps_page_dma);
1809                 return -ENOMEM;
1810         }
1811
1812         /* Fix for errata 23, can't cross 64kB boundary */
1813         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1814                 void *olddesc = rxdr->desc;
1815                 dma_addr_t olddma = rxdr->dma;
1816                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1817                                      "at %p\n", rxdr->size, rxdr->desc);
1818                 /* Try again, without freeing the previous */
1819                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1820                 /* Failed allocation, critical failure */
1821                 if (!rxdr->desc) {
1822                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1823                         DPRINTK(PROBE, ERR,
1824                                 "Unable to allocate memory "
1825                                 "for the receive descriptor ring\n");
1826                         goto setup_rx_desc_die;
1827                 }
1828
1829                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1830                         /* give up */
1831                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1832                                             rxdr->dma);
1833                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1834                         DPRINTK(PROBE, ERR,
1835                                 "Unable to allocate aligned memory "
1836                                 "for the receive descriptor ring\n");
1837                         goto setup_rx_desc_die;
1838                 } else {
1839                         /* Free old allocation, new allocation was successful */
1840                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1841                 }
1842         }
1843         memset(rxdr->desc, 0, rxdr->size);
1844
1845         rxdr->next_to_clean = 0;
1846         rxdr->next_to_use = 0;
1847
1848         return 0;
1849 }
1850
1851 /**
1852  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1853  *                                (Descriptors) for all queues
1854  * @adapter: board private structure
1855  *
1856  * Return 0 on success, negative on failure
1857  **/
1858
1859 int
1860 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1861 {
1862         int i, err = 0;
1863
1864         for (i = 0; i < adapter->num_rx_queues; i++) {
1865                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1866                 if (err) {
1867                         DPRINTK(PROBE, ERR,
1868                                 "Allocation for Rx Queue %u failed\n", i);
1869                         for (i-- ; i >= 0; i--)
1870                                 e1000_free_rx_resources(adapter,
1871                                                         &adapter->rx_ring[i]);
1872                         break;
1873                 }
1874         }
1875
1876         return err;
1877 }
1878
1879 /**
1880  * e1000_setup_rctl - configure the receive control registers
1881  * @adapter: Board private structure
1882  **/
1883 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1884                         (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1885 static void
1886 e1000_setup_rctl(struct e1000_adapter *adapter)
1887 {
1888         uint32_t rctl, rfctl;
1889         uint32_t psrctl = 0;
1890 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1891         uint32_t pages = 0;
1892 #endif
1893
1894         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1895
1896         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1897
1898         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1899                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1900                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1901
1902         if (adapter->hw.tbi_compatibility_on == 1)
1903                 rctl |= E1000_RCTL_SBP;
1904         else
1905                 rctl &= ~E1000_RCTL_SBP;
1906
1907         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1908                 rctl &= ~E1000_RCTL_LPE;
1909         else
1910                 rctl |= E1000_RCTL_LPE;
1911
1912         /* Setup buffer sizes */
1913         rctl &= ~E1000_RCTL_SZ_4096;
1914         rctl |= E1000_RCTL_BSEX;
1915         switch (adapter->rx_buffer_len) {
1916                 case E1000_RXBUFFER_256:
1917                         rctl |= E1000_RCTL_SZ_256;
1918                         rctl &= ~E1000_RCTL_BSEX;
1919                         break;
1920                 case E1000_RXBUFFER_512:
1921                         rctl |= E1000_RCTL_SZ_512;
1922                         rctl &= ~E1000_RCTL_BSEX;
1923                         break;
1924                 case E1000_RXBUFFER_1024:
1925                         rctl |= E1000_RCTL_SZ_1024;
1926                         rctl &= ~E1000_RCTL_BSEX;
1927                         break;
1928                 case E1000_RXBUFFER_2048:
1929                 default:
1930                         rctl |= E1000_RCTL_SZ_2048;
1931                         rctl &= ~E1000_RCTL_BSEX;
1932                         break;
1933                 case E1000_RXBUFFER_4096:
1934                         rctl |= E1000_RCTL_SZ_4096;
1935                         break;
1936                 case E1000_RXBUFFER_8192:
1937                         rctl |= E1000_RCTL_SZ_8192;
1938                         break;
1939                 case E1000_RXBUFFER_16384:
1940                         rctl |= E1000_RCTL_SZ_16384;
1941                         break;
1942         }
1943
1944 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1945         /* 82571 and greater support packet-split where the protocol
1946          * header is placed in skb->data and the packet data is
1947          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1948          * In the case of a non-split, skb->data is linearly filled,
1949          * followed by the page buffers.  Therefore, skb->data is
1950          * sized to hold the largest protocol header.
1951          */
1952         /* allocations using alloc_page take too long for regular MTU
1953          * so only enable packet split for jumbo frames */
1954         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1955         if ((adapter->hw.mac_type >= e1000_82571) && (pages <= 3) &&
1956             PAGE_SIZE <= 16384 && (rctl & E1000_RCTL_LPE))
1957                 adapter->rx_ps_pages = pages;
1958         else
1959                 adapter->rx_ps_pages = 0;
1960 #endif
1961         if (adapter->rx_ps_pages) {
1962                 /* Configure extra packet-split registers */
1963                 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1964                 rfctl |= E1000_RFCTL_EXTEN;
1965                 /* disable packet split support for IPv6 extension headers,
1966                  * because some malformed IPv6 headers can hang the RX */
1967                 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
1968                           E1000_RFCTL_NEW_IPV6_EXT_DIS);
1969
1970                 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1971
1972                 rctl |= E1000_RCTL_DTYP_PS;
1973
1974                 psrctl |= adapter->rx_ps_bsize0 >>
1975                         E1000_PSRCTL_BSIZE0_SHIFT;
1976
1977                 switch (adapter->rx_ps_pages) {
1978                 case 3:
1979                         psrctl |= PAGE_SIZE <<
1980                                 E1000_PSRCTL_BSIZE3_SHIFT;
1981                 case 2:
1982                         psrctl |= PAGE_SIZE <<
1983                                 E1000_PSRCTL_BSIZE2_SHIFT;
1984                 case 1:
1985                         psrctl |= PAGE_SIZE >>
1986                                 E1000_PSRCTL_BSIZE1_SHIFT;
1987                         break;
1988                 }
1989
1990                 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1991         }
1992
1993         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1994 }
1995
1996 /**
1997  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1998  * @adapter: board private structure
1999  *
2000  * Configure the Rx unit of the MAC after a reset.
2001  **/
2002
2003 static void
2004 e1000_configure_rx(struct e1000_adapter *adapter)
2005 {
2006         uint64_t rdba;
2007         struct e1000_hw *hw = &adapter->hw;
2008         uint32_t rdlen, rctl, rxcsum, ctrl_ext;
2009
2010         if (adapter->rx_ps_pages) {
2011                 /* this is a 32 byte descriptor */
2012                 rdlen = adapter->rx_ring[0].count *
2013                         sizeof(union e1000_rx_desc_packet_split);
2014                 adapter->clean_rx = e1000_clean_rx_irq_ps;
2015                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2016         } else {
2017                 rdlen = adapter->rx_ring[0].count *
2018                         sizeof(struct e1000_rx_desc);
2019                 adapter->clean_rx = e1000_clean_rx_irq;
2020                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2021         }
2022
2023         /* disable receives while setting up the descriptors */
2024         rctl = E1000_READ_REG(hw, RCTL);
2025         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
2026
2027         /* set the Receive Delay Timer Register */
2028         E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
2029
2030         if (hw->mac_type >= e1000_82540) {
2031                 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
2032                 if (adapter->itr_setting != 0)
2033                         E1000_WRITE_REG(hw, ITR,
2034                                 1000000000 / (adapter->itr * 256));
2035         }
2036
2037         if (hw->mac_type >= e1000_82571) {
2038                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
2039                 /* Reset delay timers after every interrupt */
2040                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
2041 #ifdef CONFIG_E1000_NAPI
2042                 /* Auto-Mask interrupts upon ICR access */
2043                 ctrl_ext |= E1000_CTRL_EXT_IAME;
2044                 E1000_WRITE_REG(hw, IAM, 0xffffffff);
2045 #endif
2046                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
2047                 E1000_WRITE_FLUSH(hw);
2048         }
2049
2050         /* Setup the HW Rx Head and Tail Descriptor Pointers and
2051          * the Base and Length of the Rx Descriptor Ring */
2052         switch (adapter->num_rx_queues) {
2053         case 1:
2054         default:
2055                 rdba = adapter->rx_ring[0].dma;
2056                 E1000_WRITE_REG(hw, RDLEN, rdlen);
2057                 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
2058                 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
2059                 E1000_WRITE_REG(hw, RDT, 0);
2060                 E1000_WRITE_REG(hw, RDH, 0);
2061                 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
2062                 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
2063                 break;
2064         }
2065
2066         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
2067         if (hw->mac_type >= e1000_82543) {
2068                 rxcsum = E1000_READ_REG(hw, RXCSUM);
2069                 if (adapter->rx_csum == TRUE) {
2070                         rxcsum |= E1000_RXCSUM_TUOFL;
2071
2072                         /* Enable 82571 IPv4 payload checksum for UDP fragments
2073                          * Must be used in conjunction with packet-split. */
2074                         if ((hw->mac_type >= e1000_82571) &&
2075                             (adapter->rx_ps_pages)) {
2076                                 rxcsum |= E1000_RXCSUM_IPPCSE;
2077                         }
2078                 } else {
2079                         rxcsum &= ~E1000_RXCSUM_TUOFL;
2080                         /* don't need to clear IPPCSE as it defaults to 0 */
2081                 }
2082                 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
2083         }
2084
2085         /* enable early receives on 82573, only takes effect if using > 2048
2086          * byte total frame size.  for example only for jumbo frames */
2087 #define E1000_ERT_2048 0x100
2088         if (hw->mac_type == e1000_82573)
2089                 E1000_WRITE_REG(hw, ERT, E1000_ERT_2048);
2090
2091         /* Enable Receives */
2092         E1000_WRITE_REG(hw, RCTL, rctl);
2093 }
2094
2095 /**
2096  * e1000_free_tx_resources - Free Tx Resources per Queue
2097  * @adapter: board private structure
2098  * @tx_ring: Tx descriptor ring for a specific queue
2099  *
2100  * Free all transmit software resources
2101  **/
2102
2103 static void
2104 e1000_free_tx_resources(struct e1000_adapter *adapter,
2105                         struct e1000_tx_ring *tx_ring)
2106 {
2107         struct pci_dev *pdev = adapter->pdev;
2108
2109         e1000_clean_tx_ring(adapter, tx_ring);
2110
2111         vfree(tx_ring->buffer_info);
2112         tx_ring->buffer_info = NULL;
2113
2114         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2115
2116         tx_ring->desc = NULL;
2117 }
2118
2119 /**
2120  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
2121  * @adapter: board private structure
2122  *
2123  * Free all transmit software resources
2124  **/
2125
2126 void
2127 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
2128 {
2129         int i;
2130
2131         for (i = 0; i < adapter->num_tx_queues; i++)
2132                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
2133 }
2134
2135 static void
2136 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
2137                         struct e1000_buffer *buffer_info)
2138 {
2139         if (buffer_info->dma) {
2140                 pci_unmap_page(adapter->pdev,
2141                                 buffer_info->dma,
2142                                 buffer_info->length,
2143                                 PCI_DMA_TODEVICE);
2144                 buffer_info->dma = 0;
2145         }
2146         if (buffer_info->skb) {
2147                 dev_kfree_skb_any(buffer_info->skb);
2148                 buffer_info->skb = NULL;
2149         }
2150         /* buffer_info must be completely set up in the transmit path */
2151 }
2152
2153 /**
2154  * e1000_clean_tx_ring - Free Tx Buffers
2155  * @adapter: board private structure
2156  * @tx_ring: ring to be cleaned
2157  **/
2158
2159 static void
2160 e1000_clean_tx_ring(struct e1000_adapter *adapter,
2161                     struct e1000_tx_ring *tx_ring)
2162 {
2163         struct e1000_buffer *buffer_info;
2164         unsigned long size;
2165         unsigned int i;
2166
2167         /* Free all the Tx ring sk_buffs */
2168
2169         for (i = 0; i < tx_ring->count; i++) {
2170                 buffer_info = &tx_ring->buffer_info[i];
2171                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2172         }
2173
2174         size = sizeof(struct e1000_buffer) * tx_ring->count;
2175         memset(tx_ring->buffer_info, 0, size);
2176
2177         /* Zero out the descriptor ring */
2178
2179         memset(tx_ring->desc, 0, tx_ring->size);
2180
2181         tx_ring->next_to_use = 0;
2182         tx_ring->next_to_clean = 0;
2183         tx_ring->last_tx_tso = 0;
2184
2185         writel(0, adapter->hw.hw_addr + tx_ring->tdh);
2186         writel(0, adapter->hw.hw_addr + tx_ring->tdt);
2187 }
2188
2189 /**
2190  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2191  * @adapter: board private structure
2192  **/
2193
2194 static void
2195 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2196 {
2197         int i;
2198
2199         for (i = 0; i < adapter->num_tx_queues; i++)
2200                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2201 }
2202
2203 /**
2204  * e1000_free_rx_resources - Free Rx Resources
2205  * @adapter: board private structure
2206  * @rx_ring: ring to clean the resources from
2207  *
2208  * Free all receive software resources
2209  **/
2210
2211 static void
2212 e1000_free_rx_resources(struct e1000_adapter *adapter,
2213                         struct e1000_rx_ring *rx_ring)
2214 {
2215         struct pci_dev *pdev = adapter->pdev;
2216
2217         e1000_clean_rx_ring(adapter, rx_ring);
2218
2219         vfree(rx_ring->buffer_info);
2220         rx_ring->buffer_info = NULL;
2221         kfree(rx_ring->ps_page);
2222         rx_ring->ps_page = NULL;
2223         kfree(rx_ring->ps_page_dma);
2224         rx_ring->ps_page_dma = NULL;
2225
2226         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2227
2228         rx_ring->desc = NULL;
2229 }
2230
2231 /**
2232  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2233  * @adapter: board private structure
2234  *
2235  * Free all receive software resources
2236  **/
2237
2238 void
2239 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2240 {
2241         int i;
2242
2243         for (i = 0; i < adapter->num_rx_queues; i++)
2244                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2245 }
2246
2247 /**
2248  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2249  * @adapter: board private structure
2250  * @rx_ring: ring to free buffers from
2251  **/
2252
2253 static void
2254 e1000_clean_rx_ring(struct e1000_adapter *adapter,
2255                     struct e1000_rx_ring *rx_ring)
2256 {
2257         struct e1000_buffer *buffer_info;
2258         struct e1000_ps_page *ps_page;
2259         struct e1000_ps_page_dma *ps_page_dma;
2260         struct pci_dev *pdev = adapter->pdev;
2261         unsigned long size;
2262         unsigned int i, j;
2263
2264         /* Free all the Rx ring sk_buffs */
2265         for (i = 0; i < rx_ring->count; i++) {
2266                 buffer_info = &rx_ring->buffer_info[i];
2267                 if (buffer_info->skb) {
2268                         pci_unmap_single(pdev,
2269                                          buffer_info->dma,
2270                                          buffer_info->length,
2271                                          PCI_DMA_FROMDEVICE);
2272
2273                         dev_kfree_skb(buffer_info->skb);
2274                         buffer_info->skb = NULL;
2275                 }
2276                 ps_page = &rx_ring->ps_page[i];
2277                 ps_page_dma = &rx_ring->ps_page_dma[i];
2278                 for (j = 0; j < adapter->rx_ps_pages; j++) {
2279                         if (!ps_page->ps_page[j]) break;
2280                         pci_unmap_page(pdev,
2281                                        ps_page_dma->ps_page_dma[j],
2282                                        PAGE_SIZE, PCI_DMA_FROMDEVICE);
2283                         ps_page_dma->ps_page_dma[j] = 0;
2284                         put_page(ps_page->ps_page[j]);
2285                         ps_page->ps_page[j] = NULL;
2286                 }
2287         }
2288
2289         size = sizeof(struct e1000_buffer) * rx_ring->count;
2290         memset(rx_ring->buffer_info, 0, size);
2291         size = sizeof(struct e1000_ps_page) * rx_ring->count;
2292         memset(rx_ring->ps_page, 0, size);
2293         size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
2294         memset(rx_ring->ps_page_dma, 0, size);
2295
2296         /* Zero out the descriptor ring */
2297
2298         memset(rx_ring->desc, 0, rx_ring->size);
2299
2300         rx_ring->next_to_clean = 0;
2301         rx_ring->next_to_use = 0;
2302
2303         writel(0, adapter->hw.hw_addr + rx_ring->rdh);
2304         writel(0, adapter->hw.hw_addr + rx_ring->rdt);
2305 }
2306
2307 /**
2308  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2309  * @adapter: board private structure
2310  **/
2311
2312 static void
2313 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2314 {
2315         int i;
2316
2317         for (i = 0; i < adapter->num_rx_queues; i++)
2318                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2319 }
2320
2321 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2322  * and memory write and invalidate disabled for certain operations
2323  */
2324 static void
2325 e1000_enter_82542_rst(struct e1000_adapter *adapter)
2326 {
2327         struct net_device *netdev = adapter->netdev;
2328         uint32_t rctl;
2329
2330         e1000_pci_clear_mwi(&adapter->hw);
2331
2332         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2333         rctl |= E1000_RCTL_RST;
2334         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2335         E1000_WRITE_FLUSH(&adapter->hw);
2336         mdelay(5);
2337
2338         if (netif_running(netdev))
2339                 e1000_clean_all_rx_rings(adapter);
2340 }
2341
2342 static void
2343 e1000_leave_82542_rst(struct e1000_adapter *adapter)
2344 {
2345         struct net_device *netdev = adapter->netdev;
2346         uint32_t rctl;
2347
2348         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2349         rctl &= ~E1000_RCTL_RST;
2350         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2351         E1000_WRITE_FLUSH(&adapter->hw);
2352         mdelay(5);
2353
2354         if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2355                 e1000_pci_set_mwi(&adapter->hw);
2356
2357         if (netif_running(netdev)) {
2358                 /* No need to loop, because 82542 supports only 1 queue */
2359                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2360                 e1000_configure_rx(adapter);
2361                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2362         }
2363 }
2364
2365 /**
2366  * e1000_set_mac - Change the Ethernet Address of the NIC
2367  * @netdev: network interface device structure
2368  * @p: pointer to an address structure
2369  *
2370  * Returns 0 on success, negative on failure
2371  **/
2372
2373 static int
2374 e1000_set_mac(struct net_device *netdev, void *p)
2375 {
2376         struct e1000_adapter *adapter = netdev_priv(netdev);
2377         struct sockaddr *addr = p;
2378
2379         if (!is_valid_ether_addr(addr->sa_data))
2380                 return -EADDRNOTAVAIL;
2381
2382         /* 82542 2.0 needs to be in reset to write receive address registers */
2383
2384         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2385                 e1000_enter_82542_rst(adapter);
2386
2387         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2388         memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2389
2390         e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2391
2392         /* With 82571 controllers, LAA may be overwritten (with the default)
2393          * due to controller reset from the other port. */
2394         if (adapter->hw.mac_type == e1000_82571) {
2395                 /* activate the work around */
2396                 adapter->hw.laa_is_present = 1;
2397
2398                 /* Hold a copy of the LAA in RAR[14] This is done so that
2399                  * between the time RAR[0] gets clobbered  and the time it
2400                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2401                  * of the RARs and no incoming packets directed to this port
2402                  * are dropped. Eventaully the LAA will be in RAR[0] and
2403                  * RAR[14] */
2404                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2405                                         E1000_RAR_ENTRIES - 1);
2406         }
2407
2408         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2409                 e1000_leave_82542_rst(adapter);
2410
2411         return 0;
2412 }
2413
2414 /**
2415  * e1000_set_multi - Multicast and Promiscuous mode set
2416  * @netdev: network interface device structure
2417  *
2418  * The set_multi entry point is called whenever the multicast address
2419  * list or the network interface flags are updated.  This routine is
2420  * responsible for configuring the hardware for proper multicast,
2421  * promiscuous mode, and all-multi behavior.
2422  **/
2423
2424 static void
2425 e1000_set_multi(struct net_device *netdev)
2426 {
2427         struct e1000_adapter *adapter = netdev_priv(netdev);
2428         struct e1000_hw *hw = &adapter->hw;
2429         struct dev_mc_list *mc_ptr;
2430         uint32_t rctl;
2431         uint32_t hash_value;
2432         int i, rar_entries = E1000_RAR_ENTRIES;
2433         int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2434                                 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2435                                 E1000_NUM_MTA_REGISTERS;
2436
2437         if (adapter->hw.mac_type == e1000_ich8lan)
2438                 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2439
2440         /* reserve RAR[14] for LAA over-write work-around */
2441         if (adapter->hw.mac_type == e1000_82571)
2442                 rar_entries--;
2443
2444         /* Check for Promiscuous and All Multicast modes */
2445
2446         rctl = E1000_READ_REG(hw, RCTL);
2447
2448         if (netdev->flags & IFF_PROMISC) {
2449                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2450         } else if (netdev->flags & IFF_ALLMULTI) {
2451                 rctl |= E1000_RCTL_MPE;
2452                 rctl &= ~E1000_RCTL_UPE;
2453         } else {
2454                 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2455         }
2456
2457         E1000_WRITE_REG(hw, RCTL, rctl);
2458
2459         /* 82542 2.0 needs to be in reset to write receive address registers */
2460
2461         if (hw->mac_type == e1000_82542_rev2_0)
2462                 e1000_enter_82542_rst(adapter);
2463
2464         /* load the first 14 multicast address into the exact filters 1-14
2465          * RAR 0 is used for the station MAC adddress
2466          * if there are not 14 addresses, go ahead and clear the filters
2467          * -- with 82571 controllers only 0-13 entries are filled here
2468          */
2469         mc_ptr = netdev->mc_list;
2470
2471         for (i = 1; i < rar_entries; i++) {
2472                 if (mc_ptr) {
2473                         e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2474                         mc_ptr = mc_ptr->next;
2475                 } else {
2476                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2477                         E1000_WRITE_FLUSH(hw);
2478                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2479                         E1000_WRITE_FLUSH(hw);
2480                 }
2481         }
2482
2483         /* clear the old settings from the multicast hash table */
2484
2485         for (i = 0; i < mta_reg_count; i++) {
2486                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2487                 E1000_WRITE_FLUSH(hw);
2488         }
2489
2490         /* load any remaining addresses into the hash table */
2491
2492         for (; mc_ptr; mc_ptr = mc_ptr->next) {
2493                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2494                 e1000_mta_set(hw, hash_value);
2495         }
2496
2497         if (hw->mac_type == e1000_82542_rev2_0)
2498                 e1000_leave_82542_rst(adapter);
2499 }
2500
2501 /* Need to wait a few seconds after link up to get diagnostic information from
2502  * the phy */
2503
2504 static void
2505 e1000_update_phy_info(unsigned long data)
2506 {
2507         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2508         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2509 }
2510
2511 /**
2512  * e1000_82547_tx_fifo_stall - Timer Call-back
2513  * @data: pointer to adapter cast into an unsigned long
2514  **/
2515
2516 static void
2517 e1000_82547_tx_fifo_stall(unsigned long data)
2518 {
2519         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2520         struct net_device *netdev = adapter->netdev;
2521         uint32_t tctl;
2522
2523         if (atomic_read(&adapter->tx_fifo_stall)) {
2524                 if ((E1000_READ_REG(&adapter->hw, TDT) ==
2525                     E1000_READ_REG(&adapter->hw, TDH)) &&
2526                    (E1000_READ_REG(&adapter->hw, TDFT) ==
2527                     E1000_READ_REG(&adapter->hw, TDFH)) &&
2528                    (E1000_READ_REG(&adapter->hw, TDFTS) ==
2529                     E1000_READ_REG(&adapter->hw, TDFHS))) {
2530                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2531                         E1000_WRITE_REG(&adapter->hw, TCTL,
2532                                         tctl & ~E1000_TCTL_EN);
2533                         E1000_WRITE_REG(&adapter->hw, TDFT,
2534                                         adapter->tx_head_addr);
2535                         E1000_WRITE_REG(&adapter->hw, TDFH,
2536                                         adapter->tx_head_addr);
2537                         E1000_WRITE_REG(&adapter->hw, TDFTS,
2538                                         adapter->tx_head_addr);
2539                         E1000_WRITE_REG(&adapter->hw, TDFHS,
2540                                         adapter->tx_head_addr);
2541                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2542                         E1000_WRITE_FLUSH(&adapter->hw);
2543
2544                         adapter->tx_fifo_head = 0;
2545                         atomic_set(&adapter->tx_fifo_stall, 0);
2546                         netif_wake_queue(netdev);
2547                 } else {
2548                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2549                 }
2550         }
2551 }
2552
2553 /**
2554  * e1000_watchdog - Timer Call-back
2555  * @data: pointer to adapter cast into an unsigned long
2556  **/
2557 static void
2558 e1000_watchdog(unsigned long data)
2559 {
2560         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2561         struct net_device *netdev = adapter->netdev;
2562         struct e1000_tx_ring *txdr = adapter->tx_ring;
2563         uint32_t link, tctl;
2564         int32_t ret_val;
2565
2566         ret_val = e1000_check_for_link(&adapter->hw);
2567         if ((ret_val == E1000_ERR_PHY) &&
2568             (adapter->hw.phy_type == e1000_phy_igp_3) &&
2569             (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2570                 /* See e1000_kumeran_lock_loss_workaround() */
2571                 DPRINTK(LINK, INFO,
2572                         "Gigabit has been disabled, downgrading speed\n");
2573         }
2574
2575         if (adapter->hw.mac_type == e1000_82573) {
2576                 e1000_enable_tx_pkt_filtering(&adapter->hw);
2577                 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2578                         e1000_update_mng_vlan(adapter);
2579         }
2580
2581         if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2582            !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2583                 link = !adapter->hw.serdes_link_down;
2584         else
2585                 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2586
2587         if (link) {
2588                 if (!netif_carrier_ok(netdev)) {
2589                         uint32_t ctrl;
2590                         boolean_t txb2b = 1;
2591                         e1000_get_speed_and_duplex(&adapter->hw,
2592                                                    &adapter->link_speed,
2593                                                    &adapter->link_duplex);
2594
2595                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
2596                         DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s, "
2597                                 "Flow Control: %s\n",
2598                                 adapter->link_speed,
2599                                 adapter->link_duplex == FULL_DUPLEX ?
2600                                 "Full Duplex" : "Half Duplex",
2601                                 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2602                                 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2603                                 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2604                                 E1000_CTRL_TFCE) ? "TX" : "None" )));
2605
2606                         /* tweak tx_queue_len according to speed/duplex
2607                          * and adjust the timeout factor */
2608                         netdev->tx_queue_len = adapter->tx_queue_len;
2609                         adapter->tx_timeout_factor = 1;
2610                         switch (adapter->link_speed) {
2611                         case SPEED_10:
2612                                 txb2b = 0;
2613                                 netdev->tx_queue_len = 10;
2614                                 adapter->tx_timeout_factor = 8;
2615                                 break;
2616                         case SPEED_100:
2617                                 txb2b = 0;
2618                                 netdev->tx_queue_len = 100;
2619                                 /* maybe add some timeout factor ? */
2620                                 break;
2621                         }
2622
2623                         if ((adapter->hw.mac_type == e1000_82571 ||
2624                              adapter->hw.mac_type == e1000_82572) &&
2625                             txb2b == 0) {
2626                                 uint32_t tarc0;
2627                                 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
2628                                 tarc0 &= ~(1 << 21);
2629                                 E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
2630                         }
2631
2632                         /* disable TSO for pcie and 10/100 speeds, to avoid
2633                          * some hardware issues */
2634                         if (!adapter->tso_force &&
2635                             adapter->hw.bus_type == e1000_bus_type_pci_express){
2636                                 switch (adapter->link_speed) {
2637                                 case SPEED_10:
2638                                 case SPEED_100:
2639                                         DPRINTK(PROBE,INFO,
2640                                         "10/100 speed: disabling TSO\n");
2641                                         netdev->features &= ~NETIF_F_TSO;
2642                                         netdev->features &= ~NETIF_F_TSO6;
2643                                         break;
2644                                 case SPEED_1000:
2645                                         netdev->features |= NETIF_F_TSO;
2646                                         netdev->features |= NETIF_F_TSO6;
2647                                         break;
2648                                 default:
2649                                         /* oops */
2650                                         break;
2651                                 }
2652                         }
2653
2654                         /* enable transmits in the hardware, need to do this
2655                          * after setting TARC0 */
2656                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2657                         tctl |= E1000_TCTL_EN;
2658                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2659
2660                         netif_carrier_on(netdev);
2661                         netif_wake_queue(netdev);
2662                         mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2663                         adapter->smartspeed = 0;
2664                 } else {
2665                         /* make sure the receive unit is started */
2666                         if (adapter->hw.rx_needs_kicking) {
2667                                 struct e1000_hw *hw = &adapter->hw;
2668                                 uint32_t rctl = E1000_READ_REG(hw, RCTL);
2669                                 E1000_WRITE_REG(hw, RCTL, rctl | E1000_RCTL_EN);
2670                         }
2671                 }
2672         } else {
2673                 if (netif_carrier_ok(netdev)) {
2674                         adapter->link_speed = 0;
2675                         adapter->link_duplex = 0;
2676                         DPRINTK(LINK, INFO, "NIC Link is Down\n");
2677                         netif_carrier_off(netdev);
2678                         netif_stop_queue(netdev);
2679                         mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2680
2681                         /* 80003ES2LAN workaround--
2682                          * For packet buffer work-around on link down event;
2683                          * disable receives in the ISR and
2684                          * reset device here in the watchdog
2685                          */
2686                         if (adapter->hw.mac_type == e1000_80003es2lan)
2687                                 /* reset device */
2688                                 schedule_work(&adapter->reset_task);
2689                 }
2690
2691                 e1000_smartspeed(adapter);
2692         }
2693
2694         e1000_update_stats(adapter);
2695
2696         adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2697         adapter->tpt_old = adapter->stats.tpt;
2698         adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2699         adapter->colc_old = adapter->stats.colc;
2700
2701         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2702         adapter->gorcl_old = adapter->stats.gorcl;
2703         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2704         adapter->gotcl_old = adapter->stats.gotcl;
2705
2706         e1000_update_adaptive(&adapter->hw);
2707
2708         if (!netif_carrier_ok(netdev)) {
2709                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2710                         /* We've lost link, so the controller stops DMA,
2711                          * but we've got queued Tx work that's never going
2712                          * to get done, so reset controller to flush Tx.
2713                          * (Do the reset outside of interrupt context). */
2714                         adapter->tx_timeout_count++;
2715                         schedule_work(&adapter->reset_task);
2716                 }
2717         }
2718
2719         /* Cause software interrupt to ensure rx ring is cleaned */
2720         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2721
2722         /* Force detection of hung controller every watchdog period */
2723         adapter->detect_tx_hung = TRUE;
2724
2725         /* With 82571 controllers, LAA may be overwritten due to controller
2726          * reset from the other port. Set the appropriate LAA in RAR[0] */
2727         if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2728                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2729
2730         /* Reset the timer */
2731         mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 2 * HZ));
2732 }
2733
2734 enum latency_range {
2735         lowest_latency = 0,
2736         low_latency = 1,
2737         bulk_latency = 2,
2738         latency_invalid = 255
2739 };
2740
2741 /**
2742  * e1000_update_itr - update the dynamic ITR value based on statistics
2743  *      Stores a new ITR value based on packets and byte
2744  *      counts during the last interrupt.  The advantage of per interrupt
2745  *      computation is faster updates and more accurate ITR for the current
2746  *      traffic pattern.  Constants in this function were computed
2747  *      based on theoretical maximum wire speed and thresholds were set based
2748  *      on testing data as well as attempting to minimize response time
2749  *      while increasing bulk throughput.
2750  *      this functionality is controlled by the InterruptThrottleRate module
2751  *      parameter (see e1000_param.c)
2752  * @adapter: pointer to adapter
2753  * @itr_setting: current adapter->itr
2754  * @packets: the number of packets during this measurement interval
2755  * @bytes: the number of bytes during this measurement interval
2756  **/
2757 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2758                                    uint16_t itr_setting,
2759                                    int packets,
2760                                    int bytes)
2761 {
2762         unsigned int retval = itr_setting;
2763         struct e1000_hw *hw = &adapter->hw;
2764
2765         if (unlikely(hw->mac_type < e1000_82540))
2766                 goto update_itr_done;
2767
2768         if (packets == 0)
2769                 goto update_itr_done;
2770
2771         switch (itr_setting) {
2772         case lowest_latency:
2773                 /* jumbo frames get bulk treatment*/
2774                 if (bytes/packets > 8000)
2775                         retval = bulk_latency;
2776                 else if ((packets < 5) && (bytes > 512))
2777                         retval = low_latency;
2778                 break;
2779         case low_latency:  /* 50 usec aka 20000 ints/s */
2780                 if (bytes > 10000) {
2781                         /* jumbo frames need bulk latency setting */
2782                         if (bytes/packets > 8000)
2783                                 retval = bulk_latency;
2784                         else if ((packets < 10) || ((bytes/packets) > 1200))
2785                                 retval = bulk_latency;
2786                         else if ((packets > 35))
2787                                 retval = lowest_latency;
2788                 } else if (bytes/packets > 2000)
2789                         retval = bulk_latency;
2790                 else if (packets <= 2 && bytes < 512)
2791                         retval = lowest_latency;
2792                 break;
2793         case bulk_latency: /* 250 usec aka 4000 ints/s */
2794                 if (bytes > 25000) {
2795                         if (packets > 35)
2796                                 retval = low_latency;
2797                 } else if (bytes < 6000) {
2798                         retval = low_latency;
2799                 }
2800                 break;
2801         }
2802
2803 update_itr_done:
2804         return retval;
2805 }
2806
2807 static void e1000_set_itr(struct e1000_adapter *adapter)
2808 {
2809         struct e1000_hw *hw = &adapter->hw;
2810         uint16_t current_itr;
2811         uint32_t new_itr = adapter->itr;
2812
2813         if (unlikely(hw->mac_type < e1000_82540))
2814                 return;
2815
2816         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2817         if (unlikely(adapter->link_speed != SPEED_1000)) {
2818                 current_itr = 0;
2819                 new_itr = 4000;
2820                 goto set_itr_now;
2821         }
2822
2823         adapter->tx_itr = e1000_update_itr(adapter,
2824                                     adapter->tx_itr,
2825                                     adapter->total_tx_packets,
2826                                     adapter->total_tx_bytes);
2827         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2828         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2829                 adapter->tx_itr = low_latency;
2830
2831         adapter->rx_itr = e1000_update_itr(adapter,
2832                                     adapter->rx_itr,
2833                                     adapter->total_rx_packets,
2834                                     adapter->total_rx_bytes);
2835         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2836         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2837                 adapter->rx_itr = low_latency;
2838
2839         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2840
2841         switch (current_itr) {
2842         /* counts and packets in update_itr are dependent on these numbers */
2843         case lowest_latency:
2844                 new_itr = 70000;
2845                 break;
2846         case low_latency:
2847                 new_itr = 20000; /* aka hwitr = ~200 */
2848                 break;
2849         case bulk_latency:
2850                 new_itr = 4000;
2851                 break;
2852         default:
2853                 break;
2854         }
2855
2856 set_itr_now:
2857         if (new_itr != adapter->itr) {
2858                 /* this attempts to bias the interrupt rate towards Bulk
2859                  * by adding intermediate steps when interrupt rate is
2860                  * increasing */
2861                 new_itr = new_itr > adapter->itr ?
2862                              min(adapter->itr + (new_itr >> 2), new_itr) :
2863                              new_itr;
2864                 adapter->itr = new_itr;
2865                 E1000_WRITE_REG(hw, ITR, 1000000000 / (new_itr * 256));
2866         }
2867
2868         return;
2869 }
2870
2871 #define E1000_TX_FLAGS_CSUM             0x00000001
2872 #define E1000_TX_FLAGS_VLAN             0x00000002
2873 #define E1000_TX_FLAGS_TSO              0x00000004
2874 #define E1000_TX_FLAGS_IPV4             0x00000008
2875 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2876 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2877
2878 static int
2879 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2880           struct sk_buff *skb)
2881 {
2882         struct e1000_context_desc *context_desc;
2883         struct e1000_buffer *buffer_info;
2884         unsigned int i;
2885         uint32_t cmd_length = 0;
2886         uint16_t ipcse = 0, tucse, mss;
2887         uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2888         int err;
2889
2890         if (skb_is_gso(skb)) {
2891                 if (skb_header_cloned(skb)) {
2892                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2893                         if (err)
2894                                 return err;
2895                 }
2896
2897                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2898                 mss = skb_shinfo(skb)->gso_size;
2899                 if (skb->protocol == htons(ETH_P_IP)) {
2900                         struct iphdr *iph = ip_hdr(skb);
2901                         iph->tot_len = 0;
2902                         iph->check = 0;
2903                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2904                                                                  iph->daddr, 0,
2905                                                                  IPPROTO_TCP,
2906                                                                  0);
2907                         cmd_length = E1000_TXD_CMD_IP;
2908                         ipcse = skb_transport_offset(skb) - 1;
2909                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2910                         ipv6_hdr(skb)->payload_len = 0;
2911                         tcp_hdr(skb)->check =
2912                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2913                                                  &ipv6_hdr(skb)->daddr,
2914                                                  0, IPPROTO_TCP, 0);
2915                         ipcse = 0;
2916                 }
2917                 ipcss = skb_network_offset(skb);
2918                 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2919                 tucss = skb_transport_offset(skb);
2920                 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2921                 tucse = 0;
2922
2923                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2924                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2925
2926                 i = tx_ring->next_to_use;
2927                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2928                 buffer_info = &tx_ring->buffer_info[i];
2929
2930                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2931                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2932                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2933                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2934                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2935                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2936                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2937                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2938                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2939
2940                 buffer_info->time_stamp = jiffies;
2941                 buffer_info->next_to_watch = i;
2942
2943                 if (++i == tx_ring->count) i = 0;
2944                 tx_ring->next_to_use = i;
2945
2946                 return TRUE;
2947         }
2948         return FALSE;
2949 }
2950
2951 static boolean_t
2952 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2953               struct sk_buff *skb)
2954 {
2955         struct e1000_context_desc *context_desc;
2956         struct e1000_buffer *buffer_info;
2957         unsigned int i;
2958         uint8_t css;
2959
2960         if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2961                 css = skb_transport_offset(skb);
2962
2963                 i = tx_ring->next_to_use;
2964                 buffer_info = &tx_ring->buffer_info[i];
2965                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2966
2967                 context_desc->lower_setup.ip_config = 0;
2968                 context_desc->upper_setup.tcp_fields.tucss = css;
2969                 context_desc->upper_setup.tcp_fields.tucso =
2970                         css + skb->csum_offset;
2971                 context_desc->upper_setup.tcp_fields.tucse = 0;
2972                 context_desc->tcp_seg_setup.data = 0;
2973                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2974
2975                 buffer_info->time_stamp = jiffies;
2976                 buffer_info->next_to_watch = i;
2977
2978                 if (unlikely(++i == tx_ring->count)) i = 0;
2979                 tx_ring->next_to_use = i;
2980
2981                 return TRUE;
2982         }
2983
2984         return FALSE;
2985 }
2986
2987 #define E1000_MAX_TXD_PWR       12
2988 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2989
2990 static int
2991 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2992              struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2993              unsigned int nr_frags, unsigned int mss)
2994 {
2995         struct e1000_buffer *buffer_info;
2996         unsigned int len = skb->len;
2997         unsigned int offset = 0, size, count = 0, i;
2998         unsigned int f;
2999         len -= skb->data_len;
3000
3001         i = tx_ring->next_to_use;
3002
3003         while (len) {
3004                 buffer_info = &tx_ring->buffer_info[i];
3005                 size = min(len, max_per_txd);
3006                 /* Workaround for Controller erratum --
3007                  * descriptor for non-tso packet in a linear SKB that follows a
3008                  * tso gets written back prematurely before the data is fully
3009                  * DMA'd to the controller */
3010                 if (!skb->data_len && tx_ring->last_tx_tso &&
3011                     !skb_is_gso(skb)) {
3012                         tx_ring->last_tx_tso = 0;
3013                         size -= 4;
3014                 }
3015
3016                 /* Workaround for premature desc write-backs
3017                  * in TSO mode.  Append 4-byte sentinel desc */
3018                 if (unlikely(mss && !nr_frags && size == len && size > 8))
3019                         size -= 4;
3020                 /* work-around for errata 10 and it applies
3021                  * to all controllers in PCI-X mode
3022                  * The fix is to make sure that the first descriptor of a
3023                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
3024                  */
3025                 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
3026                                 (size > 2015) && count == 0))
3027                         size = 2015;
3028
3029                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
3030                  * terminating buffers within evenly-aligned dwords. */
3031                 if (unlikely(adapter->pcix_82544 &&
3032                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
3033                    size > 4))
3034                         size -= 4;
3035
3036                 buffer_info->length = size;
3037                 buffer_info->dma =
3038                         pci_map_single(adapter->pdev,
3039                                 skb->data + offset,
3040                                 size,
3041                                 PCI_DMA_TODEVICE);
3042                 buffer_info->time_stamp = jiffies;
3043                 buffer_info->next_to_watch = i;
3044
3045                 len -= size;
3046                 offset += size;
3047                 count++;
3048                 if (unlikely(++i == tx_ring->count)) i = 0;
3049         }
3050
3051         for (f = 0; f < nr_frags; f++) {
3052                 struct skb_frag_struct *frag;
3053
3054                 frag = &skb_shinfo(skb)->frags[f];
3055                 len = frag->size;
3056                 offset = frag->page_offset;
3057
3058                 while (len) {
3059                         buffer_info = &tx_ring->buffer_info[i];
3060                         size = min(len, max_per_txd);
3061                         /* Workaround for premature desc write-backs
3062                          * in TSO mode.  Append 4-byte sentinel desc */
3063                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
3064                                 size -= 4;
3065                         /* Workaround for potential 82544 hang in PCI-X.
3066                          * Avoid terminating buffers within evenly-aligned
3067                          * dwords. */
3068                         if (unlikely(adapter->pcix_82544 &&
3069                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
3070                            size > 4))
3071                                 size -= 4;
3072
3073                         buffer_info->length = size;
3074                         buffer_info->dma =
3075                                 pci_map_page(adapter->pdev,
3076                                         frag->page,
3077                                         offset,
3078                                         size,
3079                                         PCI_DMA_TODEVICE);
3080                         buffer_info->time_stamp = jiffies;
3081                         buffer_info->next_to_watch = i;
3082
3083                         len -= size;
3084                         offset += size;
3085                         count++;
3086                         if (unlikely(++i == tx_ring->count)) i = 0;
3087                 }
3088         }
3089
3090         i = (i == 0) ? tx_ring->count - 1 : i - 1;
3091         tx_ring->buffer_info[i].skb = skb;
3092         tx_ring->buffer_info[first].next_to_watch = i;
3093
3094         return count;
3095 }
3096
3097 static void
3098 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
3099                int tx_flags, int count)
3100 {
3101         struct e1000_tx_desc *tx_desc = NULL;
3102         struct e1000_buffer *buffer_info;
3103         uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3104         unsigned int i;
3105
3106         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
3107                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3108                              E1000_TXD_CMD_TSE;
3109                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3110
3111                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3112                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3113         }
3114
3115         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3116                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3117                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3118         }
3119
3120         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3121                 txd_lower |= E1000_TXD_CMD_VLE;
3122                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3123         }
3124
3125         i = tx_ring->next_to_use;
3126
3127         while (count--) {
3128                 buffer_info = &tx_ring->buffer_info[i];
3129                 tx_desc = E1000_TX_DESC(*tx_ring, i);
3130                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3131                 tx_desc->lower.data =
3132                         cpu_to_le32(txd_lower | buffer_info->length);
3133                 tx_desc->upper.data = cpu_to_le32(txd_upper);
3134                 if (unlikely(++i == tx_ring->count)) i = 0;
3135         }
3136
3137         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3138
3139         /* Force memory writes to complete before letting h/w
3140          * know there are new descriptors to fetch.  (Only
3141          * applicable for weak-ordered memory model archs,
3142          * such as IA-64). */
3143         wmb();
3144
3145         tx_ring->next_to_use = i;
3146         writel(i, adapter->hw.hw_addr + tx_ring->tdt);
3147         /* we need this if more than one processor can write to our tail
3148          * at a time, it syncronizes IO on IA64/Altix systems */
3149         mmiowb();
3150 }
3151
3152 /**
3153  * 82547 workaround to avoid controller hang in half-duplex environment.
3154  * The workaround is to avoid queuing a large packet that would span
3155  * the internal Tx FIFO ring boundary by notifying the stack to resend
3156  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3157  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3158  * to the beginning of the Tx FIFO.
3159  **/
3160
3161 #define E1000_FIFO_HDR                  0x10
3162 #define E1000_82547_PAD_LEN             0x3E0
3163
3164 static int
3165 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
3166 {
3167         uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3168         uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
3169
3170         skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3171
3172         if (adapter->link_duplex != HALF_DUPLEX)
3173                 goto no_fifo_stall_required;
3174
3175         if (atomic_read(&adapter->tx_fifo_stall))
3176                 return 1;
3177
3178         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3179                 atomic_set(&adapter->tx_fifo_stall, 1);
3180                 return 1;
3181         }
3182
3183 no_fifo_stall_required:
3184         adapter->tx_fifo_head += skb_fifo_len;
3185         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3186                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3187         return 0;
3188 }
3189
3190 #define MINIMUM_DHCP_PACKET_SIZE 282
3191 static int
3192 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
3193 {
3194         struct e1000_hw *hw =  &adapter->hw;
3195         uint16_t length, offset;
3196         if (vlan_tx_tag_present(skb)) {
3197                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
3198                         ( adapter->hw.mng_cookie.status &
3199                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
3200                         return 0;
3201         }
3202         if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
3203                 struct ethhdr *eth = (struct ethhdr *) skb->data;
3204                 if ((htons(ETH_P_IP) == eth->h_proto)) {
3205                         const struct iphdr *ip =
3206                                 (struct iphdr *)((uint8_t *)skb->data+14);
3207                         if (IPPROTO_UDP == ip->protocol) {
3208                                 struct udphdr *udp =
3209                                         (struct udphdr *)((uint8_t *)ip +
3210                                                 (ip->ihl << 2));
3211                                 if (ntohs(udp->dest) == 67) {
3212                                         offset = (uint8_t *)udp + 8 - skb->data;
3213                                         length = skb->len - offset;
3214
3215                                         return e1000_mng_write_dhcp_info(hw,
3216                                                         (uint8_t *)udp + 8,
3217                                                         length);
3218                                 }
3219                         }
3220                 }
3221         }
3222         return 0;
3223 }
3224
3225 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3226 {
3227         struct e1000_adapter *adapter = netdev_priv(netdev);
3228         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3229
3230         netif_stop_queue(netdev);
3231         /* Herbert's original patch had:
3232          *  smp_mb__after_netif_stop_queue();
3233          * but since that doesn't exist yet, just open code it. */
3234         smp_mb();
3235
3236         /* We need to check again in a case another CPU has just
3237          * made room available. */
3238         if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3239                 return -EBUSY;
3240
3241         /* A reprieve! */
3242         netif_start_queue(netdev);
3243         ++adapter->restart_queue;
3244         return 0;
3245 }
3246
3247 static int e1000_maybe_stop_tx(struct net_device *netdev,
3248                                struct e1000_tx_ring *tx_ring, int size)
3249 {
3250         if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3251                 return 0;
3252         return __e1000_maybe_stop_tx(netdev, size);
3253 }
3254
3255 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3256 static int
3257 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3258 {
3259         struct e1000_adapter *adapter = netdev_priv(netdev);
3260         struct e1000_tx_ring *tx_ring;
3261         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3262         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3263         unsigned int tx_flags = 0;
3264         unsigned int len = skb->len;
3265         unsigned long flags;
3266         unsigned int nr_frags = 0;
3267         unsigned int mss = 0;
3268         int count = 0;
3269         int tso;
3270         unsigned int f;
3271         len -= skb->data_len;
3272
3273         /* This goes back to the question of how to logically map a tx queue
3274          * to a flow.  Right now, performance is impacted slightly negatively
3275          * if using multiple tx queues.  If the stack breaks away from a
3276          * single qdisc implementation, we can look at this again. */
3277         tx_ring = adapter->tx_ring;
3278
3279         if (unlikely(skb->len <= 0)) {
3280                 dev_kfree_skb_any(skb);
3281                 return NETDEV_TX_OK;
3282         }
3283
3284         /* 82571 and newer doesn't need the workaround that limited descriptor
3285          * length to 4kB */
3286         if (adapter->hw.mac_type >= e1000_82571)
3287                 max_per_txd = 8192;
3288
3289         mss = skb_shinfo(skb)->gso_size;
3290         /* The controller does a simple calculation to
3291          * make sure there is enough room in the FIFO before
3292          * initiating the DMA for each buffer.  The calc is:
3293          * 4 = ceil(buffer len/mss).  To make sure we don't
3294          * overrun the FIFO, adjust the max buffer len if mss
3295          * drops. */
3296         if (mss) {
3297                 uint8_t hdr_len;
3298                 max_per_txd = min(mss << 2, max_per_txd);
3299                 max_txd_pwr = fls(max_per_txd) - 1;
3300
3301                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3302                 * points to just header, pull a few bytes of payload from
3303                 * frags into skb->data */
3304                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3305                 if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) {
3306                         switch (adapter->hw.mac_type) {
3307                                 unsigned int pull_size;
3308                         case e1000_82544:
3309                                 /* Make sure we have room to chop off 4 bytes,
3310                                  * and that the end alignment will work out to
3311                                  * this hardware's requirements
3312                                  * NOTE: this is a TSO only workaround
3313                                  * if end byte alignment not correct move us
3314                                  * into the next dword */
3315                                 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
3316                                         break;
3317                                 /* fall through */
3318                         case e1000_82571:
3319                         case e1000_82572:
3320                         case e1000_82573:
3321                         case e1000_ich8lan:
3322                                 pull_size = min((unsigned int)4, skb->data_len);
3323                                 if (!__pskb_pull_tail(skb, pull_size)) {
3324                                         DPRINTK(DRV, ERR,
3325                                                 "__pskb_pull_tail failed.\n");
3326                                         dev_kfree_skb_any(skb);
3327                                         return NETDEV_TX_OK;
3328                                 }
3329                                 len = skb->len - skb->data_len;
3330                                 break;
3331                         default:
3332                                 /* do nothing */
3333                                 break;
3334                         }
3335                 }
3336         }
3337
3338         /* reserve a descriptor for the offload context */
3339         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3340                 count++;
3341         count++;
3342
3343         /* Controller Erratum workaround */
3344         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3345                 count++;
3346
3347         count += TXD_USE_COUNT(len, max_txd_pwr);
3348
3349         if (adapter->pcix_82544)
3350                 count++;
3351
3352         /* work-around for errata 10 and it applies to all controllers
3353          * in PCI-X mode, so add one more descriptor to the count
3354          */
3355         if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
3356                         (len > 2015)))
3357                 count++;
3358
3359         nr_frags = skb_shinfo(skb)->nr_frags;
3360         for (f = 0; f < nr_frags; f++)
3361                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3362                                        max_txd_pwr);
3363         if (adapter->pcix_82544)
3364                 count += nr_frags;
3365
3366
3367         if (adapter->hw.tx_pkt_filtering &&
3368             (adapter->hw.mac_type == e1000_82573))
3369                 e1000_transfer_dhcp_info(adapter, skb);
3370
3371         if (!spin_trylock_irqsave(&tx_ring->tx_lock, flags))
3372                 /* Collision - tell upper layer to requeue */
3373                 return NETDEV_TX_LOCKED;
3374
3375         /* need: count + 2 desc gap to keep tail from touching
3376          * head, otherwise try next time */
3377         if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) {
3378                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3379                 return NETDEV_TX_BUSY;
3380         }
3381
3382         if (unlikely(adapter->hw.mac_type == e1000_82547)) {
3383                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3384                         netif_stop_queue(netdev);
3385                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
3386                         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3387                         return NETDEV_TX_BUSY;
3388                 }
3389         }
3390
3391         if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3392                 tx_flags |= E1000_TX_FLAGS_VLAN;
3393                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3394         }
3395
3396         first = tx_ring->next_to_use;
3397
3398         tso = e1000_tso(adapter, tx_ring, skb);
3399         if (tso < 0) {
3400                 dev_kfree_skb_any(skb);
3401                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3402                 return NETDEV_TX_OK;
3403         }
3404
3405         if (likely(tso)) {
3406                 tx_ring->last_tx_tso = 1;
3407                 tx_flags |= E1000_TX_FLAGS_TSO;
3408         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3409                 tx_flags |= E1000_TX_FLAGS_CSUM;
3410
3411         /* Old method was to assume IPv4 packet by default if TSO was enabled.
3412          * 82571 hardware supports TSO capabilities for IPv6 as well...
3413          * no longer assume, we must. */
3414         if (likely(skb->protocol == htons(ETH_P_IP)))
3415                 tx_flags |= E1000_TX_FLAGS_IPV4;
3416
3417         e1000_tx_queue(adapter, tx_ring, tx_flags,
3418                        e1000_tx_map(adapter, tx_ring, skb, first,
3419                                     max_per_txd, nr_frags, mss));
3420
3421         netdev->trans_start = jiffies;
3422
3423         /* Make sure there is space in the ring for the next send. */
3424         e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3425
3426         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3427         return NETDEV_TX_OK;
3428 }
3429
3430 /**
3431  * e1000_tx_timeout - Respond to a Tx Hang
3432  * @netdev: network interface device structure
3433  **/
3434
3435 static void
3436 e1000_tx_timeout(struct net_device *netdev)
3437 {
3438         struct e1000_adapter *adapter = netdev_priv(netdev);
3439
3440         /* Do the reset outside of interrupt context */
3441         adapter->tx_timeout_count++;
3442         schedule_work(&adapter->reset_task);
3443 }
3444
3445 static void
3446 e1000_reset_task(struct work_struct *work)
3447 {
3448         struct e1000_adapter *adapter =
3449                 container_of(work, struct e1000_adapter, reset_task);
3450
3451         e1000_reinit_locked(adapter);
3452 }
3453
3454 /**
3455  * e1000_get_stats - Get System Network Statistics
3456  * @netdev: network interface device structure
3457  *
3458  * Returns the address of the device statistics structure.
3459  * The statistics are actually updated from the timer callback.
3460  **/
3461
3462 static struct net_device_stats *
3463 e1000_get_stats(struct net_device *netdev)
3464 {
3465         struct e1000_adapter *adapter = netdev_priv(netdev);
3466
3467         /* only return the current stats */
3468         return &adapter->net_stats;
3469 }
3470
3471 /**
3472  * e1000_change_mtu - Change the Maximum Transfer Unit
3473  * @netdev: network interface device structure
3474  * @new_mtu: new value for maximum frame size
3475  *
3476  * Returns 0 on success, negative on failure
3477  **/
3478
3479 static int
3480 e1000_change_mtu(struct net_device *netdev, int new_mtu)
3481 {
3482         struct e1000_adapter *adapter = netdev_priv(netdev);
3483         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3484         uint16_t eeprom_data = 0;
3485
3486         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3487             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3488                 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3489                 return -EINVAL;
3490         }
3491
3492         /* Adapter-specific max frame size limits. */
3493         switch (adapter->hw.mac_type) {
3494         case e1000_undefined ... e1000_82542_rev2_1:
3495         case e1000_ich8lan:
3496                 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3497                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3498                         return -EINVAL;
3499                 }
3500                 break;
3501         case e1000_82573:
3502                 /* Jumbo Frames not supported if:
3503                  * - this is not an 82573L device
3504                  * - ASPM is enabled in any way (0x1A bits 3:2) */
3505                 e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
3506                                   &eeprom_data);
3507                 if ((adapter->hw.device_id != E1000_DEV_ID_82573L) ||
3508                     (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
3509                         if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3510                                 DPRINTK(PROBE, ERR,
3511                                         "Jumbo Frames not supported.\n");
3512                                 return -EINVAL;
3513                         }
3514                         break;
3515                 }
3516                 /* ERT will be enabled later to enable wire speed receives */
3517
3518                 /* fall through to get support */
3519         case e1000_82571:
3520         case e1000_82572:
3521         case e1000_80003es2lan:
3522 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3523                 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3524                         DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3525                         return -EINVAL;
3526                 }
3527                 break;
3528         default:
3529                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3530                 break;
3531         }
3532
3533         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3534          * means we reserve 2 more, this pushes us to allocate from the next
3535          * larger slab size
3536          * i.e. RXBUFFER_2048 --> size-4096 slab */
3537
3538         if (max_frame <= E1000_RXBUFFER_256)
3539                 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3540         else if (max_frame <= E1000_RXBUFFER_512)
3541                 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3542         else if (max_frame <= E1000_RXBUFFER_1024)
3543                 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3544         else if (max_frame <= E1000_RXBUFFER_2048)
3545                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3546         else if (max_frame <= E1000_RXBUFFER_4096)
3547                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3548         else if (max_frame <= E1000_RXBUFFER_8192)
3549                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3550         else if (max_frame <= E1000_RXBUFFER_16384)
3551                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3552
3553         /* adjust allocation if LPE protects us, and we aren't using SBP */
3554         if (!adapter->hw.tbi_compatibility_on &&
3555             ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3556              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3557                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3558
3559         netdev->mtu = new_mtu;
3560         adapter->hw.max_frame_size = max_frame;
3561
3562         if (netif_running(netdev))
3563                 e1000_reinit_locked(adapter);
3564
3565         return 0;
3566 }
3567
3568 /**
3569  * e1000_update_stats - Update the board statistics counters
3570  * @adapter: board private structure
3571  **/
3572
3573 void
3574 e1000_update_stats(struct e1000_adapter *adapter)
3575 {
3576         struct e1000_hw *hw = &adapter->hw;
3577         struct pci_dev *pdev = adapter->pdev;
3578         unsigned long flags;
3579         uint16_t phy_tmp;
3580
3581 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3582
3583         /*
3584          * Prevent stats update while adapter is being reset, or if the pci
3585          * connection is down.
3586          */
3587         if (adapter->link_speed == 0)
3588                 return;
3589         if (pci_channel_offline(pdev))
3590                 return;
3591
3592         spin_lock_irqsave(&adapter->stats_lock, flags);
3593
3594         /* these counters are modified from e1000_adjust_tbi_stats,
3595          * called from the interrupt context, so they must only
3596          * be written while holding adapter->stats_lock
3597          */
3598
3599         adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3600         adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3601         adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3602         adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3603         adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3604         adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3605         adapter->stats.roc += E1000_READ_REG(hw, ROC);
3606
3607         if (adapter->hw.mac_type != e1000_ich8lan) {
3608                 adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3609                 adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3610                 adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3611                 adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3612                 adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3613                 adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3614         }
3615
3616         adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3617         adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3618         adapter->stats.scc += E1000_READ_REG(hw, SCC);
3619         adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3620         adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3621         adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3622         adapter->stats.dc += E1000_READ_REG(hw, DC);
3623         adapter->stats.sec += E1000_READ_REG(hw, SEC);
3624         adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3625         adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3626         adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3627         adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3628         adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3629         adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3630         adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3631         adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3632         adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3633         adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3634         adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3635         adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3636         adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3637         adapter->stats.torl += E1000_READ_REG(hw, TORL);
3638         adapter->stats.torh += E1000_READ_REG(hw, TORH);
3639         adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3640         adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3641         adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3642
3643         if (adapter->hw.mac_type != e1000_ich8lan) {
3644                 adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3645                 adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3646                 adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3647                 adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3648                 adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3649                 adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3650         }
3651
3652         adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3653         adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3654
3655         /* used for adaptive IFS */
3656
3657         hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3658         adapter->stats.tpt += hw->tx_packet_delta;
3659         hw->collision_delta = E1000_READ_REG(hw, COLC);
3660         adapter->stats.colc += hw->collision_delta;
3661
3662         if (hw->mac_type >= e1000_82543) {
3663                 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3664                 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3665                 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3666                 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3667                 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3668                 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3669         }
3670         if (hw->mac_type > e1000_82547_rev_2) {
3671                 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3672                 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3673
3674                 if (adapter->hw.mac_type != e1000_ich8lan) {
3675                         adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3676                         adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3677                         adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3678                         adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3679                         adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3680                         adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3681                         adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3682                 }
3683         }
3684
3685         /* Fill out the OS statistics structure */
3686         adapter->net_stats.rx_packets = adapter->stats.gprc;
3687         adapter->net_stats.tx_packets = adapter->stats.gptc;
3688         adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3689         adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3690         adapter->net_stats.multicast = adapter->stats.mprc;
3691         adapter->net_stats.collisions = adapter->stats.colc;
3692
3693         /* Rx Errors */
3694
3695         /* RLEC on some newer hardware can be incorrect so build
3696         * our own version based on RUC and ROC */
3697         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3698                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3699                 adapter->stats.ruc + adapter->stats.roc +
3700                 adapter->stats.cexterr;
3701         adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3702         adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3703         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3704         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3705         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3706
3707         /* Tx Errors */
3708         adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3709         adapter->net_stats.tx_errors = adapter->stats.txerrc;
3710         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3711         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3712         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3713         if (adapter->hw.bad_tx_carr_stats_fd &&
3714             adapter->link_duplex == FULL_DUPLEX) {
3715                 adapter->net_stats.tx_carrier_errors = 0;
3716                 adapter->stats.tncrs = 0;
3717         }
3718
3719         /* Tx Dropped needs to be maintained elsewhere */
3720
3721         /* Phy Stats */
3722         if (hw->media_type == e1000_media_type_copper) {
3723                 if ((adapter->link_speed == SPEED_1000) &&
3724                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3725                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3726                         adapter->phy_stats.idle_errors += phy_tmp;
3727                 }
3728
3729                 if ((hw->mac_type <= e1000_82546) &&
3730                    (hw->phy_type == e1000_phy_m88) &&
3731                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3732                         adapter->phy_stats.receive_errors += phy_tmp;
3733         }
3734
3735         /* Management Stats */
3736         if (adapter->hw.has_smbus) {
3737                 adapter->stats.mgptc += E1000_READ_REG(hw, MGTPTC);
3738                 adapter->stats.mgprc += E1000_READ_REG(hw, MGTPRC);
3739                 adapter->stats.mgpdc += E1000_READ_REG(hw, MGTPDC);
3740         }
3741
3742         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3743 }
3744
3745 /**
3746  * e1000_intr_msi - Interrupt Handler
3747  * @irq: interrupt number
3748  * @data: pointer to a network interface device structure
3749  **/
3750
3751 static irqreturn_t
3752 e1000_intr_msi(int irq, void *data)
3753 {
3754         struct net_device *netdev = data;
3755         struct e1000_adapter *adapter = netdev_priv(netdev);
3756         struct e1000_hw *hw = &adapter->hw;
3757 #ifndef CONFIG_E1000_NAPI
3758         int i;
3759 #endif
3760         uint32_t icr = E1000_READ_REG(hw, ICR);
3761
3762 #ifdef CONFIG_E1000_NAPI
3763         /* read ICR disables interrupts using IAM, so keep up with our
3764          * enable/disable accounting */
3765         atomic_inc(&adapter->irq_sem);
3766 #endif
3767         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3768                 hw->get_link_status = 1;
3769                 /* 80003ES2LAN workaround-- For packet buffer work-around on
3770                  * link down event; disable receives here in the ISR and reset
3771                  * adapter in watchdog */
3772                 if (netif_carrier_ok(netdev) &&
3773                     (adapter->hw.mac_type == e1000_80003es2lan)) {
3774                         /* disable receives */
3775                         uint32_t rctl = E1000_READ_REG(hw, RCTL);
3776                         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3777                 }
3778                 /* guard against interrupt when we're going down */
3779                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3780                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3781         }
3782
3783 #ifdef CONFIG_E1000_NAPI
3784         if (likely(netif_rx_schedule_prep(netdev, &adapter->napi))) {
3785                 adapter->total_tx_bytes = 0;
3786                 adapter->total_tx_packets = 0;
3787                 adapter->total_rx_bytes = 0;
3788                 adapter->total_rx_packets = 0;
3789                 __netif_rx_schedule(netdev, &adapter->napi);
3790         } else
3791                 e1000_irq_enable(adapter);
3792 #else
3793         adapter->total_tx_bytes = 0;
3794         adapter->total_rx_bytes = 0;
3795         adapter->total_tx_packets = 0;
3796         adapter->total_rx_packets = 0;
3797
3798         for (i = 0; i < E1000_MAX_INTR; i++)
3799                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3800                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3801                         break;
3802
3803         if (likely(adapter->itr_setting & 3))
3804                 e1000_set_itr(adapter);
3805 #endif
3806
3807         return IRQ_HANDLED;
3808 }
3809
3810 /**
3811  * e1000_intr - Interrupt Handler
3812  * @irq: interrupt number
3813  * @data: pointer to a network interface device structure
3814  **/
3815
3816 static irqreturn_t
3817 e1000_intr(int irq, void *data)
3818 {
3819         struct net_device *netdev = data;
3820         struct e1000_adapter *adapter = netdev_priv(netdev);
3821         struct e1000_hw *hw = &adapter->hw;
3822         uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
3823 #ifndef CONFIG_E1000_NAPI
3824         int i;
3825 #endif
3826         if (unlikely(!icr))
3827                 return IRQ_NONE;  /* Not our interrupt */
3828
3829 #ifdef CONFIG_E1000_NAPI
3830         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3831          * not set, then the adapter didn't send an interrupt */
3832         if (unlikely(hw->mac_type >= e1000_82571 &&
3833                      !(icr & E1000_ICR_INT_ASSERTED)))
3834                 return IRQ_NONE;
3835
3836         /* Interrupt Auto-Mask...upon reading ICR,
3837          * interrupts are masked.  No need for the
3838          * IMC write, but it does mean we should
3839          * account for it ASAP. */
3840         if (likely(hw->mac_type >= e1000_82571))
3841                 atomic_inc(&adapter->irq_sem);
3842 #endif
3843
3844         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3845                 hw->get_link_status = 1;
3846                 /* 80003ES2LAN workaround--
3847                  * For packet buffer work-around on link down event;
3848                  * disable receives here in the ISR and
3849                  * reset adapter in watchdog
3850                  */
3851                 if (netif_carrier_ok(netdev) &&
3852                     (adapter->hw.mac_type == e1000_80003es2lan)) {
3853                         /* disable receives */
3854                         rctl = E1000_READ_REG(hw, RCTL);
3855                         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3856                 }
3857                 /* guard against interrupt when we're going down */
3858                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3859                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3860         }
3861
3862 #ifdef CONFIG_E1000_NAPI
3863         if (unlikely(hw->mac_type < e1000_82571)) {
3864                 /* disable interrupts, without the synchronize_irq bit */
3865                 atomic_inc(&adapter->irq_sem);
3866                 E1000_WRITE_REG(hw, IMC, ~0);
3867                 E1000_WRITE_FLUSH(hw);
3868         }
3869         if (likely(netif_rx_schedule_prep(netdev, &adapter->napi))) {
3870                 adapter->total_tx_bytes = 0;
3871                 adapter->total_tx_packets = 0;
3872                 adapter->total_rx_bytes = 0;
3873                 adapter->total_rx_packets = 0;
3874                 __netif_rx_schedule(netdev, &adapter->napi);
3875         } else
3876                 /* this really should not happen! if it does it is basically a
3877                  * bug, but not a hard error, so enable ints and continue */
3878                 e1000_irq_enable(adapter);
3879 #else
3880         /* Writing IMC and IMS is needed for 82547.
3881          * Due to Hub Link bus being occupied, an interrupt
3882          * de-assertion message is not able to be sent.
3883          * When an interrupt assertion message is generated later,
3884          * two messages are re-ordered and sent out.
3885          * That causes APIC to think 82547 is in de-assertion
3886          * state, while 82547 is in assertion state, resulting
3887          * in dead lock. Writing IMC forces 82547 into
3888          * de-assertion state.
3889          */
3890         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
3891                 atomic_inc(&adapter->irq_sem);
3892                 E1000_WRITE_REG(hw, IMC, ~0);
3893         }
3894
3895         adapter->total_tx_bytes = 0;
3896         adapter->total_rx_bytes = 0;
3897         adapter->total_tx_packets = 0;
3898         adapter->total_rx_packets = 0;
3899
3900         for (i = 0; i < E1000_MAX_INTR; i++)
3901                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3902                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3903                         break;
3904
3905         if (likely(adapter->itr_setting & 3))
3906                 e1000_set_itr(adapter);
3907
3908         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3909                 e1000_irq_enable(adapter);
3910
3911 #endif
3912         return IRQ_HANDLED;
3913 }
3914
3915 #ifdef CONFIG_E1000_NAPI
3916 /**
3917  * e1000_clean - NAPI Rx polling callback
3918  * @adapter: board private structure
3919  **/
3920
3921 static int
3922 e1000_clean(struct napi_struct *napi, int budget)
3923 {
3924         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3925         struct net_device *poll_dev = adapter->netdev;
3926         int tx_cleaned = 0, work_done = 0;
3927
3928         /* Must NOT use netdev_priv macro here. */
3929         adapter = poll_dev->priv;
3930
3931         /* Keep link state information with original netdev */
3932         if (!netif_carrier_ok(poll_dev))
3933                 goto quit_polling;
3934
3935         /* e1000_clean is called per-cpu.  This lock protects
3936          * tx_ring[0] from being cleaned by multiple cpus
3937          * simultaneously.  A failure obtaining the lock means
3938          * tx_ring[0] is currently being cleaned anyway. */
3939         if (spin_trylock(&adapter->tx_queue_lock)) {
3940                 tx_cleaned = e1000_clean_tx_irq(adapter,
3941                                                 &adapter->tx_ring[0]);
3942                 spin_unlock(&adapter->tx_queue_lock);
3943         }
3944
3945         adapter->clean_rx(adapter, &adapter->rx_ring[0],
3946                           &work_done, budget);
3947
3948         /* If no Tx and not enough Rx work done, exit the polling mode */
3949         if ((!tx_cleaned && (work_done < budget)) ||
3950            !netif_running(poll_dev)) {
3951 quit_polling:
3952                 if (likely(adapter->itr_setting & 3))
3953                         e1000_set_itr(adapter);
3954                 netif_rx_complete(poll_dev, napi);
3955                 e1000_irq_enable(adapter);
3956         }
3957
3958         return work_done;
3959 }
3960
3961 #endif
3962 /**
3963  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3964  * @adapter: board private structure
3965  **/
3966
3967 static boolean_t
3968 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3969                    struct e1000_tx_ring *tx_ring)
3970 {
3971         struct net_device *netdev = adapter->netdev;
3972         struct e1000_tx_desc *tx_desc, *eop_desc;
3973         struct e1000_buffer *buffer_info;
3974         unsigned int i, eop;
3975 #ifdef CONFIG_E1000_NAPI
3976         unsigned int count = 0;
3977 #endif
3978         boolean_t cleaned = FALSE;
3979         unsigned int total_tx_bytes=0, total_tx_packets=0;
3980
3981         i = tx_ring->next_to_clean;
3982         eop = tx_ring->buffer_info[i].next_to_watch;
3983         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3984
3985         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3986                 for (cleaned = FALSE; !cleaned; ) {
3987                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3988                         buffer_info = &tx_ring->buffer_info[i];
3989                         cleaned = (i == eop);
3990
3991                         if (cleaned) {
3992                                 struct sk_buff *skb = buffer_info->skb;
3993                                 unsigned int segs, bytecount;
3994                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
3995                                 /* multiply data chunks by size of headers */
3996                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
3997                                             skb->len;
3998                                 total_tx_packets += segs;
3999                                 total_tx_bytes += bytecount;
4000                         }
4001                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
4002                         tx_desc->upper.data = 0;
4003
4004                         if (unlikely(++i == tx_ring->count)) i = 0;
4005                 }
4006
4007                 eop = tx_ring->buffer_info[i].next_to_watch;
4008                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
4009 #ifdef CONFIG_E1000_NAPI
4010 #define E1000_TX_WEIGHT 64
4011                 /* weight of a sort for tx, to avoid endless transmit cleanup */
4012                 if (count++ == E1000_TX_WEIGHT) break;
4013 #endif
4014         }
4015
4016         tx_ring->next_to_clean = i;
4017
4018 #define TX_WAKE_THRESHOLD 32
4019         if (unlikely(cleaned && netif_carrier_ok(netdev) &&
4020                      E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
4021                 /* Make sure that anybody stopping the queue after this
4022                  * sees the new next_to_clean.
4023                  */
4024                 smp_mb();
4025                 if (netif_queue_stopped(netdev)) {
4026                         netif_wake_queue(netdev);
4027                         ++adapter->restart_queue;
4028                 }
4029         }
4030
4031         if (adapter->detect_tx_hung) {
4032                 /* Detect a transmit hang in hardware, this serializes the
4033                  * check with the clearing of time_stamp and movement of i */
4034                 adapter->detect_tx_hung = FALSE;
4035                 if (tx_ring->buffer_info[eop].dma &&
4036                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
4037                                (adapter->tx_timeout_factor * HZ))
4038                     && !(E1000_READ_REG(&adapter->hw, STATUS) &
4039                          E1000_STATUS_TXOFF)) {
4040
4041                         /* detected Tx unit hang */
4042                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
4043                                         "  Tx Queue             <%lu>\n"
4044                                         "  TDH                  <%x>\n"
4045                                         "  TDT                  <%x>\n"
4046                                         "  next_to_use          <%x>\n"
4047                                         "  next_to_clean        <%x>\n"
4048                                         "buffer_info[next_to_clean]\n"
4049                                         "  time_stamp           <%lx>\n"
4050                                         "  next_to_watch        <%x>\n"
4051                                         "  jiffies              <%lx>\n"
4052                                         "  next_to_watch.status <%x>\n",
4053                                 (unsigned long)((tx_ring - adapter->tx_ring) /
4054                                         sizeof(struct e1000_tx_ring)),
4055                                 readl(adapter->hw.hw_addr + tx_ring->tdh),
4056                                 readl(adapter->hw.hw_addr + tx_ring->tdt),
4057                                 tx_ring->next_to_use,
4058                                 tx_ring->next_to_clean,
4059                                 tx_ring->buffer_info[eop].time_stamp,
4060                                 eop,
4061                                 jiffies,
4062                                 eop_desc->upper.fields.status);
4063                         netif_stop_queue(netdev);
4064                 }
4065         }
4066         adapter->total_tx_bytes += total_tx_bytes;
4067         adapter->total_tx_packets += total_tx_packets;
4068         return cleaned;
4069 }
4070
4071 /**
4072  * e1000_rx_checksum - Receive Checksum Offload for 82543
4073  * @adapter:     board private structure
4074  * @status_err:  receive descriptor status and error fields
4075  * @csum:        receive descriptor csum field
4076  * @sk_buff:     socket buffer with received data
4077  **/
4078
4079 static void
4080 e1000_rx_checksum(struct e1000_adapter *adapter,
4081                   uint32_t status_err, uint32_t csum,
4082                   struct sk_buff *skb)
4083 {
4084         uint16_t status = (uint16_t)status_err;
4085         uint8_t errors = (uint8_t)(status_err >> 24);
4086         skb->ip_summed = CHECKSUM_NONE;
4087
4088         /* 82543 or newer only */
4089         if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
4090         /* Ignore Checksum bit is set */
4091         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
4092         /* TCP/UDP checksum error bit is set */
4093         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
4094                 /* let the stack verify checksum errors */
4095                 adapter->hw_csum_err++;
4096                 return;
4097         }
4098         /* TCP/UDP Checksum has not been calculated */
4099         if (adapter->hw.mac_type <= e1000_82547_rev_2) {
4100                 if (!(status & E1000_RXD_STAT_TCPCS))
4101                         return;
4102         } else {
4103                 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
4104                         return;
4105         }
4106         /* It must be a TCP or UDP packet with a valid checksum */
4107         if (likely(status & E1000_RXD_STAT_TCPCS)) {
4108                 /* TCP checksum is good */
4109                 skb->ip_summed = CHECKSUM_UNNECESSARY;
4110         } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
4111                 /* IP fragment with UDP payload */
4112                 /* Hardware complements the payload checksum, so we undo it
4113                  * and then put the value in host order for further stack use.
4114                  */
4115                 csum = ntohl(csum ^ 0xFFFF);
4116                 skb->csum = csum;
4117                 skb->ip_summed = CHECKSUM_COMPLETE;
4118         }
4119         adapter->hw_csum_good++;
4120 }
4121
4122 /**
4123  * e1000_clean_rx_irq - Send received data up the network stack; legacy
4124  * @adapter: board private structure
4125  **/
4126
4127 static boolean_t
4128 #ifdef CONFIG_E1000_NAPI
4129 e1000_clean_rx_irq(struct e1000_adapter *adapter,
4130                    struct e1000_rx_ring *rx_ring,
4131                    int *work_done, int work_to_do)
4132 #else
4133 e1000_clean_rx_irq(struct e1000_adapter *adapter,
4134                    struct e1000_rx_ring *rx_ring)
4135 #endif
4136 {
4137         struct net_device *netdev = adapter->netdev;
4138         struct pci_dev *pdev = adapter->pdev;
4139         struct e1000_rx_desc *rx_desc, *next_rxd;
4140         struct e1000_buffer *buffer_info, *next_buffer;
4141         unsigned long flags;
4142         uint32_t length;
4143         uint8_t last_byte;
4144         unsigned int i;
4145         int cleaned_count = 0;
4146         boolean_t cleaned = FALSE;
4147         unsigned int total_rx_bytes=0, total_rx_packets=0;
4148
4149         i = rx_ring->next_to_clean;
4150         rx_desc = E1000_RX_DESC(*rx_ring, i);
4151         buffer_info = &rx_ring->buffer_info[i];
4152
4153         while (rx_desc->status & E1000_RXD_STAT_DD) {
4154                 struct sk_buff *skb;
4155                 u8 status;
4156
4157 #ifdef CONFIG_E1000_NAPI
4158                 if (*work_done >= work_to_do)
4159                         break;
4160                 (*work_done)++;
4161 #endif
4162                 status = rx_desc->status;
4163                 skb = buffer_info->skb;
4164                 buffer_info->skb = NULL;
4165
4166                 prefetch(skb->data - NET_IP_ALIGN);
4167
4168                 if (++i == rx_ring->count) i = 0;
4169                 next_rxd = E1000_RX_DESC(*rx_ring, i);
4170                 prefetch(next_rxd);
4171
4172                 next_buffer = &rx_ring->buffer_info[i];
4173
4174                 cleaned = TRUE;
4175                 cleaned_count++;
4176                 pci_unmap_single(pdev,
4177                                  buffer_info->dma,
4178                                  buffer_info->length,
4179                                  PCI_DMA_FROMDEVICE);
4180
4181                 length = le16_to_cpu(rx_desc->length);
4182
4183                 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
4184                         /* All receives must fit into a single buffer */
4185                         E1000_DBG("%s: Receive packet consumed multiple"
4186                                   " buffers\n", netdev->name);
4187                         /* recycle */
4188                         buffer_info->skb = skb;
4189                         goto next_desc;
4190                 }
4191
4192                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4193                         last_byte = *(skb->data + length - 1);
4194                         if (TBI_ACCEPT(&adapter->hw, status,
4195                                       rx_desc->errors, length, last_byte)) {
4196                                 spin_lock_irqsave(&adapter->stats_lock, flags);
4197                                 e1000_tbi_adjust_stats(&adapter->hw,
4198                                                        &adapter->stats,
4199                                                        length, skb->data);
4200                                 spin_unlock_irqrestore(&adapter->stats_lock,
4201                                                        flags);
4202                                 length--;
4203                         } else {
4204                                 /* recycle */
4205                                 buffer_info->skb = skb;
4206                                 goto next_desc;
4207                         }
4208                 }
4209
4210                 /* adjust length to remove Ethernet CRC, this must be
4211                  * done after the TBI_ACCEPT workaround above */
4212                 length -= 4;
4213
4214                 /* probably a little skewed due to removing CRC */
4215                 total_rx_bytes += length;
4216                 total_rx_packets++;
4217
4218                 /* code added for copybreak, this should improve
4219                  * performance for small packets with large amounts
4220                  * of reassembly being done in the stack */
4221                 if (length < copybreak) {
4222                         struct sk_buff *new_skb =
4223                             netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
4224                         if (new_skb) {
4225                                 skb_reserve(new_skb, NET_IP_ALIGN);
4226                                 skb_copy_to_linear_data_offset(new_skb,
4227                                                                -NET_IP_ALIGN,
4228                                                                (skb->data -
4229                                                                 NET_IP_ALIGN),
4230                                                                (length +
4231                                                                 NET_IP_ALIGN));
4232                                 /* save the skb in buffer_info as good */
4233                                 buffer_info->skb = skb;
4234                                 skb = new_skb;
4235                         }
4236                         /* else just continue with the old one */
4237                 }
4238                 /* end copybreak code */
4239                 skb_put(skb, length);
4240
4241                 /* Receive Checksum Offload */
4242                 e1000_rx_checksum(adapter,
4243                                   (uint32_t)(status) |
4244                                   ((uint32_t)(rx_desc->errors) << 24),
4245                                   le16_to_cpu(rx_desc->csum), skb);
4246
4247                 skb->protocol = eth_type_trans(skb, netdev);
4248 #ifdef CONFIG_E1000_NAPI
4249                 if (unlikely(adapter->vlgrp &&
4250                             (status & E1000_RXD_STAT_VP))) {
4251                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4252                                                  le16_to_cpu(rx_desc->special) &
4253                                                  E1000_RXD_SPC_VLAN_MASK);
4254                 } else {
4255                         netif_receive_skb(skb);
4256                 }
4257 #else /* CONFIG_E1000_NAPI */
4258                 if (unlikely(adapter->vlgrp &&
4259                             (status & E1000_RXD_STAT_VP))) {
4260                         vlan_hwaccel_rx(skb, adapter->vlgrp,
4261                                         le16_to_cpu(rx_desc->special) &
4262                                         E1000_RXD_SPC_VLAN_MASK);
4263                 } else {
4264                         netif_rx(skb);
4265                 }
4266 #endif /* CONFIG_E1000_NAPI */
4267                 netdev->last_rx = jiffies;
4268
4269 next_desc:
4270                 rx_desc->status = 0;
4271
4272                 /* return some buffers to hardware, one at a time is too slow */
4273                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4274                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4275                         cleaned_count = 0;
4276                 }
4277
4278                 /* use prefetched values */
4279                 rx_desc = next_rxd;
4280                 buffer_info = next_buffer;
4281         }
4282         rx_ring->next_to_clean = i;
4283
4284         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4285         if (cleaned_count)
4286                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4287
4288         adapter->total_rx_packets += total_rx_packets;
4289         adapter->total_rx_bytes += total_rx_bytes;
4290         return cleaned;
4291 }
4292
4293 /**
4294  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
4295  * @adapter: board private structure
4296  **/
4297
4298 static boolean_t
4299 #ifdef CONFIG_E1000_NAPI
4300 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
4301                       struct e1000_rx_ring *rx_ring,
4302                       int *work_done, int work_to_do)
4303 #else
4304 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
4305                       struct e1000_rx_ring *rx_ring)
4306 #endif
4307 {
4308         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
4309         struct net_device *netdev = adapter->netdev;
4310         struct pci_dev *pdev = adapter->pdev;
4311         struct e1000_buffer *buffer_info, *next_buffer;
4312         struct e1000_ps_page *ps_page;
4313         struct e1000_ps_page_dma *ps_page_dma;
4314         struct sk_buff *skb;
4315         unsigned int i, j;
4316         uint32_t length, staterr;
4317         int cleaned_count = 0;
4318         boolean_t cleaned = FALSE;
4319         unsigned int total_rx_bytes=0, total_rx_packets=0;
4320
4321         i = rx_ring->next_to_clean;
4322         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4323         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4324         buffer_info = &rx_ring->buffer_info[i];
4325
4326         while (staterr & E1000_RXD_STAT_DD) {
4327                 ps_page = &rx_ring->ps_page[i];
4328                 ps_page_dma = &rx_ring->ps_page_dma[i];
4329 #ifdef CONFIG_E1000_NAPI
4330                 if (unlikely(*work_done >= work_to_do))
4331                         break;
4332                 (*work_done)++;
4333 #endif
4334                 skb = buffer_info->skb;
4335
4336                 /* in the packet split case this is header only */
4337                 prefetch(skb->data - NET_IP_ALIGN);
4338
4339                 if (++i == rx_ring->count) i = 0;
4340                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
4341                 prefetch(next_rxd);
4342
4343                 next_buffer = &rx_ring->buffer_info[i];
4344
4345                 cleaned = TRUE;
4346                 cleaned_count++;
4347                 pci_unmap_single(pdev, buffer_info->dma,
4348                                  buffer_info->length,
4349                                  PCI_DMA_FROMDEVICE);
4350
4351                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
4352                         E1000_DBG("%s: Packet Split buffers didn't pick up"
4353                                   " the full packet\n", netdev->name);
4354                         dev_kfree_skb_irq(skb);
4355                         goto next_desc;
4356                 }
4357
4358                 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
4359                         dev_kfree_skb_irq(skb);
4360                         goto next_desc;
4361                 }
4362
4363                 length = le16_to_cpu(rx_desc->wb.middle.length0);
4364
4365                 if (unlikely(!length)) {
4366                         E1000_DBG("%s: Last part of the packet spanning"
4367                                   " multiple descriptors\n", netdev->name);
4368                         dev_kfree_skb_irq(skb);
4369                         goto next_desc;
4370                 }
4371
4372                 /* Good Receive */
4373                 skb_put(skb, length);
4374
4375                 {
4376                 /* this looks ugly, but it seems compiler issues make it
4377                    more efficient than reusing j */
4378                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
4379
4380                 /* page alloc/put takes too long and effects small packet
4381                  * throughput, so unsplit small packets and save the alloc/put*/
4382                 if (l1 && (l1 <= copybreak) && ((length + l1) <= adapter->rx_ps_bsize0)) {
4383                         u8 *vaddr;
4384                         /* there is no documentation about how to call
4385                          * kmap_atomic, so we can't hold the mapping
4386                          * very long */
4387                         pci_dma_sync_single_for_cpu(pdev,
4388                                 ps_page_dma->ps_page_dma[0],
4389                                 PAGE_SIZE,
4390                                 PCI_DMA_FROMDEVICE);
4391                         vaddr = kmap_atomic(ps_page->ps_page[0],
4392                                             KM_SKB_DATA_SOFTIRQ);
4393                         memcpy(skb_tail_pointer(skb), vaddr, l1);
4394                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
4395                         pci_dma_sync_single_for_device(pdev,
4396                                 ps_page_dma->ps_page_dma[0],
4397                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
4398                         /* remove the CRC */
4399                         l1 -= 4;
4400                         skb_put(skb, l1);
4401                         goto copydone;
4402                 } /* if */
4403                 }
4404
4405                 for (j = 0; j < adapter->rx_ps_pages; j++) {
4406                         if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
4407                                 break;
4408                         pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
4409                                         PAGE_SIZE, PCI_DMA_FROMDEVICE);
4410                         ps_page_dma->ps_page_dma[j] = 0;
4411                         skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
4412                                            length);
4413                         ps_page->ps_page[j] = NULL;
4414                         skb->len += length;
4415                         skb->data_len += length;
4416                         skb->truesize += length;
4417                 }
4418
4419                 /* strip the ethernet crc, problem is we're using pages now so
4420                  * this whole operation can get a little cpu intensive */
4421                 pskb_trim(skb, skb->len - 4);
4422
4423 copydone:
4424                 total_rx_bytes += skb->len;
4425                 total_rx_packets++;
4426
4427                 e1000_rx_checksum(adapter, staterr,
4428                                   le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
4429                 skb->protocol = eth_type_trans(skb, netdev);
4430
4431                 if (likely(rx_desc->wb.upper.header_status &
4432                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
4433                         adapter->rx_hdr_split++;
4434 #ifdef CONFIG_E1000_NAPI
4435                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4436                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4437                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
4438                                 E1000_RXD_SPC_VLAN_MASK);
4439                 } else {
4440                         netif_receive_skb(skb);
4441                 }
4442 #else /* CONFIG_E1000_NAPI */
4443                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4444                         vlan_hwaccel_rx(skb, adapter->vlgrp,
4445                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
4446                                 E1000_RXD_SPC_VLAN_MASK);
4447                 } else {
4448                         netif_rx(skb);
4449                 }
4450 #endif /* CONFIG_E1000_NAPI */
4451                 netdev->last_rx = jiffies;
4452
4453 next_desc:
4454                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
4455                 buffer_info->skb = NULL;
4456
4457                 /* return some buffers to hardware, one at a time is too slow */
4458                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4459                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4460                         cleaned_count = 0;
4461                 }
4462
4463                 /* use prefetched values */
4464                 rx_desc = next_rxd;
4465                 buffer_info = next_buffer;
4466
4467                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4468         }
4469         rx_ring->next_to_clean = i;
4470
4471         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4472         if (cleaned_count)
4473                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4474
4475         adapter->total_rx_packets += total_rx_packets;
4476         adapter->total_rx_bytes += total_rx_bytes;
4477         return cleaned;
4478 }
4479
4480 /**
4481  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4482  * @adapter: address of board private structure
4483  **/
4484
4485 static void
4486 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4487                        struct e1000_rx_ring *rx_ring,
4488                        int cleaned_count)
4489 {
4490         struct net_device *netdev = adapter->netdev;
4491         struct pci_dev *pdev = adapter->pdev;
4492         struct e1000_rx_desc *rx_desc;
4493         struct e1000_buffer *buffer_info;
4494         struct sk_buff *skb;
4495         unsigned int i;
4496         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4497
4498         i = rx_ring->next_to_use;
4499         buffer_info = &rx_ring->buffer_info[i];
4500
4501         while (cleaned_count--) {
4502                 skb = buffer_info->skb;
4503                 if (skb) {
4504                         skb_trim(skb, 0);
4505                         goto map_skb;
4506                 }
4507
4508                 skb = netdev_alloc_skb(netdev, bufsz);
4509                 if (unlikely(!skb)) {
4510                         /* Better luck next round */
4511                         adapter->alloc_rx_buff_failed++;
4512                         break;
4513                 }
4514
4515                 /* Fix for errata 23, can't cross 64kB boundary */
4516                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4517                         struct sk_buff *oldskb = skb;
4518                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4519                                              "at %p\n", bufsz, skb->data);
4520                         /* Try again, without freeing the previous */
4521                         skb = netdev_alloc_skb(netdev, bufsz);
4522                         /* Failed allocation, critical failure */
4523                         if (!skb) {
4524                                 dev_kfree_skb(oldskb);
4525                                 break;
4526                         }
4527
4528                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4529                                 /* give up */
4530                                 dev_kfree_skb(skb);
4531                                 dev_kfree_skb(oldskb);
4532                                 break; /* while !buffer_info->skb */
4533                         }
4534
4535                         /* Use new allocation */
4536                         dev_kfree_skb(oldskb);
4537                 }
4538                 /* Make buffer alignment 2 beyond a 16 byte boundary
4539                  * this will result in a 16 byte aligned IP header after
4540                  * the 14 byte MAC header is removed
4541                  */
4542                 skb_reserve(skb, NET_IP_ALIGN);
4543
4544                 buffer_info->skb = skb;
4545                 buffer_info->length = adapter->rx_buffer_len;
4546 map_skb:
4547                 buffer_info->dma = pci_map_single(pdev,
4548                                                   skb->data,
4549                                                   adapter->rx_buffer_len,
4550                                                   PCI_DMA_FROMDEVICE);
4551
4552                 /* Fix for errata 23, can't cross 64kB boundary */
4553                 if (!e1000_check_64k_bound(adapter,
4554                                         (void *)(unsigned long)buffer_info->dma,
4555                                         adapter->rx_buffer_len)) {
4556                         DPRINTK(RX_ERR, ERR,
4557                                 "dma align check failed: %u bytes at %p\n",
4558                                 adapter->rx_buffer_len,
4559                                 (void *)(unsigned long)buffer_info->dma);
4560                         dev_kfree_skb(skb);
4561                         buffer_info->skb = NULL;
4562
4563                         pci_unmap_single(pdev, buffer_info->dma,
4564                                          adapter->rx_buffer_len,
4565                                          PCI_DMA_FROMDEVICE);
4566
4567                         break; /* while !buffer_info->skb */
4568                 }
4569                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4570                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4571
4572                 if (unlikely(++i == rx_ring->count))
4573                         i = 0;
4574                 buffer_info = &rx_ring->buffer_info[i];
4575         }
4576
4577         if (likely(rx_ring->next_to_use != i)) {
4578                 rx_ring->next_to_use = i;
4579                 if (unlikely(i-- == 0))
4580                         i = (rx_ring->count - 1);
4581
4582                 /* Force memory writes to complete before letting h/w
4583                  * know there are new descriptors to fetch.  (Only
4584                  * applicable for weak-ordered memory model archs,
4585                  * such as IA-64). */
4586                 wmb();
4587                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4588         }
4589 }
4590
4591 /**
4592  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
4593  * @adapter: address of board private structure
4594  **/
4595
4596 static void
4597 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
4598                           struct e1000_rx_ring *rx_ring,
4599                           int cleaned_count)
4600 {
4601         struct net_device *netdev = adapter->netdev;
4602         struct pci_dev *pdev = adapter->pdev;
4603         union e1000_rx_desc_packet_split *rx_desc;
4604         struct e1000_buffer *buffer_info;
4605         struct e1000_ps_page *ps_page;
4606         struct e1000_ps_page_dma *ps_page_dma;
4607         struct sk_buff *skb;
4608         unsigned int i, j;
4609
4610         i = rx_ring->next_to_use;
4611         buffer_info = &rx_ring->buffer_info[i];
4612         ps_page = &rx_ring->ps_page[i];
4613         ps_page_dma = &rx_ring->ps_page_dma[i];
4614
4615         while (cleaned_count--) {
4616                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4617
4618                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
4619                         if (j < adapter->rx_ps_pages) {
4620                                 if (likely(!ps_page->ps_page[j])) {
4621                                         ps_page->ps_page[j] =
4622                                                 alloc_page(GFP_ATOMIC);
4623                                         if (unlikely(!ps_page->ps_page[j])) {
4624                                                 adapter->alloc_rx_buff_failed++;
4625                                                 goto no_buffers;
4626                                         }
4627                                         ps_page_dma->ps_page_dma[j] =
4628                                                 pci_map_page(pdev,
4629                                                             ps_page->ps_page[j],
4630                                                             0, PAGE_SIZE,
4631                                                             PCI_DMA_FROMDEVICE);
4632                                 }
4633                                 /* Refresh the desc even if buffer_addrs didn't
4634                                  * change because each write-back erases
4635                                  * this info.
4636                                  */
4637                                 rx_desc->read.buffer_addr[j+1] =
4638                                      cpu_to_le64(ps_page_dma->ps_page_dma[j]);
4639                         } else
4640                                 rx_desc->read.buffer_addr[j+1] = ~0;
4641                 }
4642
4643                 skb = netdev_alloc_skb(netdev,
4644                                        adapter->rx_ps_bsize0 + NET_IP_ALIGN);
4645
4646                 if (unlikely(!skb)) {
4647                         adapter->alloc_rx_buff_failed++;
4648                         break;
4649                 }
4650
4651                 /* Make buffer alignment 2 beyond a 16 byte boundary
4652                  * this will result in a 16 byte aligned IP header after
4653                  * the 14 byte MAC header is removed
4654                  */
4655                 skb_reserve(skb, NET_IP_ALIGN);
4656
4657                 buffer_info->skb = skb;
4658                 buffer_info->length = adapter->rx_ps_bsize0;
4659                 buffer_info->dma = pci_map_single(pdev, skb->data,
4660                                                   adapter->rx_ps_bsize0,
4661                                                   PCI_DMA_FROMDEVICE);
4662
4663                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
4664
4665                 if (unlikely(++i == rx_ring->count)) i = 0;
4666                 buffer_info = &rx_ring->buffer_info[i];
4667                 ps_page = &rx_ring->ps_page[i];
4668                 ps_page_dma = &rx_ring->ps_page_dma[i];
4669         }
4670
4671 no_buffers:
4672         if (likely(rx_ring->next_to_use != i)) {
4673                 rx_ring->next_to_use = i;
4674                 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4675
4676                 /* Force memory writes to complete before letting h/w
4677                  * know there are new descriptors to fetch.  (Only
4678                  * applicable for weak-ordered memory model archs,
4679                  * such as IA-64). */
4680                 wmb();
4681                 /* Hardware increments by 16 bytes, but packet split
4682                  * descriptors are 32 bytes...so we increment tail
4683                  * twice as much.
4684                  */
4685                 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
4686         }
4687 }
4688
4689 /**
4690  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4691  * @adapter:
4692  **/
4693
4694 static void
4695 e1000_smartspeed(struct e1000_adapter *adapter)
4696 {
4697         uint16_t phy_status;
4698         uint16_t phy_ctrl;
4699
4700         if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
4701            !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
4702                 return;
4703
4704         if (adapter->smartspeed == 0) {
4705                 /* If Master/Slave config fault is asserted twice,
4706                  * we assume back-to-back */
4707                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4708                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4709                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4710                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4711                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4712                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4713                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4714                         e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
4715                                             phy_ctrl);
4716                         adapter->smartspeed++;
4717                         if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4718                            !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
4719                                                &phy_ctrl)) {
4720                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4721                                              MII_CR_RESTART_AUTO_NEG);
4722                                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
4723                                                     phy_ctrl);
4724                         }
4725                 }
4726                 return;
4727         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4728                 /* If still no link, perhaps using 2/3 pair cable */
4729                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4730                 phy_ctrl |= CR_1000T_MS_ENABLE;
4731                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
4732                 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4733                    !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
4734                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4735                                      MII_CR_RESTART_AUTO_NEG);
4736                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
4737                 }
4738         }
4739         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4740         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4741                 adapter->smartspeed = 0;
4742 }
4743
4744 /**
4745  * e1000_ioctl -
4746  * @netdev:
4747  * @ifreq:
4748  * @cmd:
4749  **/
4750
4751 static int
4752 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4753 {
4754         switch (cmd) {
4755         case SIOCGMIIPHY:
4756         case SIOCGMIIREG:
4757         case SIOCSMIIREG:
4758                 return e1000_mii_ioctl(netdev, ifr, cmd);
4759         default:
4760                 return -EOPNOTSUPP;
4761         }
4762 }
4763
4764 /**
4765  * e1000_mii_ioctl -
4766  * @netdev:
4767  * @ifreq:
4768  * @cmd:
4769  **/
4770
4771 static int
4772 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4773 {
4774         struct e1000_adapter *adapter = netdev_priv(netdev);
4775         struct mii_ioctl_data *data = if_mii(ifr);
4776         int retval;
4777         uint16_t mii_reg;
4778         uint16_t spddplx;
4779         unsigned long flags;
4780
4781         if (adapter->hw.media_type != e1000_media_type_copper)
4782                 return -EOPNOTSUPP;
4783
4784         switch (cmd) {
4785         case SIOCGMIIPHY:
4786                 data->phy_id = adapter->hw.phy_addr;
4787                 break;
4788         case SIOCGMIIREG:
4789                 if (!capable(CAP_NET_ADMIN))
4790                         return -EPERM;
4791                 spin_lock_irqsave(&adapter->stats_lock, flags);
4792                 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4793                                    &data->val_out)) {
4794                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4795                         return -EIO;
4796                 }
4797                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4798                 break;
4799         case SIOCSMIIREG:
4800                 if (!capable(CAP_NET_ADMIN))
4801                         return -EPERM;
4802                 if (data->reg_num & ~(0x1F))
4803                         return -EFAULT;
4804                 mii_reg = data->val_in;
4805                 spin_lock_irqsave(&adapter->stats_lock, flags);
4806                 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
4807                                         mii_reg)) {
4808                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4809                         return -EIO;
4810                 }
4811                 if (adapter->hw.media_type == e1000_media_type_copper) {
4812                         switch (data->reg_num) {
4813                         case PHY_CTRL:
4814                                 if (mii_reg & MII_CR_POWER_DOWN)
4815                                         break;
4816                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4817                                         adapter->hw.autoneg = 1;
4818                                         adapter->hw.autoneg_advertised = 0x2F;
4819                                 } else {
4820                                         if (mii_reg & 0x40)
4821                                                 spddplx = SPEED_1000;
4822                                         else if (mii_reg & 0x2000)
4823                                                 spddplx = SPEED_100;
4824                                         else
4825                                                 spddplx = SPEED_10;
4826                                         spddplx += (mii_reg & 0x100)
4827                                                    ? DUPLEX_FULL :
4828                                                    DUPLEX_HALF;
4829                                         retval = e1000_set_spd_dplx(adapter,
4830                                                                     spddplx);
4831                                         if (retval) {
4832                                                 spin_unlock_irqrestore(
4833                                                         &adapter->stats_lock,
4834                                                         flags);
4835                                                 return retval;
4836                                         }
4837                                 }
4838                                 if (netif_running(adapter->netdev))
4839                                         e1000_reinit_locked(adapter);
4840                                 else
4841                                         e1000_reset(adapter);
4842                                 break;
4843                         case M88E1000_PHY_SPEC_CTRL:
4844                         case M88E1000_EXT_PHY_SPEC_CTRL:
4845                                 if (e1000_phy_reset(&adapter->hw)) {
4846                                         spin_unlock_irqrestore(
4847                                                 &adapter->stats_lock, flags);
4848                                         return -EIO;
4849                                 }
4850                                 break;
4851                         }
4852                 } else {
4853                         switch (data->reg_num) {
4854                         case PHY_CTRL:
4855                                 if (mii_reg & MII_CR_POWER_DOWN)
4856                                         break;
4857                                 if (netif_running(adapter->netdev))
4858                                         e1000_reinit_locked(adapter);
4859                                 else
4860                                         e1000_reset(adapter);
4861                                 break;
4862                         }
4863                 }
4864                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4865                 break;
4866         default:
4867                 return -EOPNOTSUPP;
4868         }
4869         return E1000_SUCCESS;
4870 }
4871
4872 void
4873 e1000_pci_set_mwi(struct e1000_hw *hw)
4874 {
4875         struct e1000_adapter *adapter = hw->back;
4876         int ret_val = pci_set_mwi(adapter->pdev);
4877
4878         if (ret_val)
4879                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4880 }
4881
4882 void
4883 e1000_pci_clear_mwi(struct e1000_hw *hw)
4884 {
4885         struct e1000_adapter *adapter = hw->back;
4886
4887         pci_clear_mwi(adapter->pdev);
4888 }
4889
4890 void
4891 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4892 {
4893         struct e1000_adapter *adapter = hw->back;
4894
4895         pci_read_config_word(adapter->pdev, reg, value);
4896 }
4897
4898 void
4899 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4900 {
4901         struct e1000_adapter *adapter = hw->back;
4902
4903         pci_write_config_word(adapter->pdev, reg, *value);
4904 }
4905
4906 int
4907 e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4908 {
4909         struct e1000_adapter *adapter = hw->back;
4910         return pcix_get_mmrbc(adapter->pdev);
4911 }
4912
4913 void
4914 e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4915 {
4916         struct e1000_adapter *adapter = hw->back;
4917         pcix_set_mmrbc(adapter->pdev, mmrbc);
4918 }
4919
4920 int32_t
4921 e1000_read_pcie_cap_reg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4922 {
4923     struct e1000_adapter *adapter = hw->back;
4924     uint16_t cap_offset;
4925
4926     cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
4927     if (!cap_offset)
4928         return -E1000_ERR_CONFIG;
4929
4930     pci_read_config_word(adapter->pdev, cap_offset + reg, value);
4931
4932     return E1000_SUCCESS;
4933 }
4934
4935 void
4936 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4937 {
4938         outl(value, port);
4939 }
4940
4941 static void
4942 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4943 {
4944         struct e1000_adapter *adapter = netdev_priv(netdev);
4945         uint32_t ctrl, rctl;
4946
4947         e1000_irq_disable(adapter);
4948         adapter->vlgrp = grp;
4949
4950         if (grp) {
4951                 /* enable VLAN tag insert/strip */
4952                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4953                 ctrl |= E1000_CTRL_VME;
4954                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4955
4956                 if (adapter->hw.mac_type != e1000_ich8lan) {
4957                         /* enable VLAN receive filtering */
4958                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4959                         rctl |= E1000_RCTL_VFE;
4960                         rctl &= ~E1000_RCTL_CFIEN;
4961                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4962                         e1000_update_mng_vlan(adapter);
4963                 }
4964         } else {
4965                 /* disable VLAN tag insert/strip */
4966                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4967                 ctrl &= ~E1000_CTRL_VME;
4968                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4969
4970                 if (adapter->hw.mac_type != e1000_ich8lan) {
4971                         /* disable VLAN filtering */
4972                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4973                         rctl &= ~E1000_RCTL_VFE;
4974                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4975                         if (adapter->mng_vlan_id !=
4976                             (uint16_t)E1000_MNG_VLAN_NONE) {
4977                                 e1000_vlan_rx_kill_vid(netdev,
4978                                                        adapter->mng_vlan_id);
4979                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4980                         }
4981                 }
4982         }
4983
4984         e1000_irq_enable(adapter);
4985 }
4986
4987 static void
4988 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4989 {
4990         struct e1000_adapter *adapter = netdev_priv(netdev);
4991         uint32_t vfta, index;
4992
4993         if ((adapter->hw.mng_cookie.status &
4994              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4995             (vid == adapter->mng_vlan_id))
4996                 return;
4997         /* add VID to filter table */
4998         index = (vid >> 5) & 0x7F;
4999         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
5000         vfta |= (1 << (vid & 0x1F));
5001         e1000_write_vfta(&adapter->hw, index, vfta);
5002 }
5003
5004 static void
5005 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
5006 {
5007         struct e1000_adapter *adapter = netdev_priv(netdev);
5008         uint32_t vfta, index;
5009
5010         e1000_irq_disable(adapter);
5011         vlan_group_set_device(adapter->vlgrp, vid, NULL);
5012         e1000_irq_enable(adapter);
5013
5014         if ((adapter->hw.mng_cookie.status &
5015              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
5016             (vid == adapter->mng_vlan_id)) {
5017                 /* release control to f/w */
5018                 e1000_release_hw_control(adapter);
5019                 return;
5020         }
5021
5022         /* remove VID from filter table */
5023         index = (vid >> 5) & 0x7F;
5024         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
5025         vfta &= ~(1 << (vid & 0x1F));
5026         e1000_write_vfta(&adapter->hw, index, vfta);
5027 }
5028
5029 static void
5030 e1000_restore_vlan(struct e1000_adapter *adapter)
5031 {
5032         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
5033
5034         if (adapter->vlgrp) {
5035                 uint16_t vid;
5036                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
5037                         if (!vlan_group_get_device(adapter->vlgrp, vid))
5038                                 continue;
5039                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
5040                 }
5041         }
5042 }
5043
5044 int
5045 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
5046 {
5047         adapter->hw.autoneg = 0;
5048
5049         /* Fiber NICs only allow 1000 gbps Full duplex */
5050         if ((adapter->hw.media_type == e1000_media_type_fiber) &&
5051                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
5052                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
5053                 return -EINVAL;
5054         }
5055
5056         switch (spddplx) {
5057         case SPEED_10 + DUPLEX_HALF:
5058                 adapter->hw.forced_speed_duplex = e1000_10_half;
5059                 break;
5060         case SPEED_10 + DUPLEX_FULL:
5061                 adapter->hw.forced_speed_duplex = e1000_10_full;
5062                 break;
5063         case SPEED_100 + DUPLEX_HALF:
5064                 adapter->hw.forced_speed_duplex = e1000_100_half;
5065                 break;
5066         case SPEED_100 + DUPLEX_FULL:
5067                 adapter->hw.forced_speed_duplex = e1000_100_full;
5068                 break;
5069         case SPEED_1000 + DUPLEX_FULL:
5070                 adapter->hw.autoneg = 1;
5071                 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
5072                 break;
5073         case SPEED_1000 + DUPLEX_HALF: /* not supported */
5074         default:
5075                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
5076                 return -EINVAL;
5077         }
5078         return 0;
5079 }
5080
5081 static int
5082 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5083 {
5084         struct net_device *netdev = pci_get_drvdata(pdev);
5085         struct e1000_adapter *adapter = netdev_priv(netdev);
5086         uint32_t ctrl, ctrl_ext, rctl, status;
5087         uint32_t wufc = adapter->wol;
5088 #ifdef CONFIG_PM
5089         int retval = 0;
5090 #endif
5091
5092         netif_device_detach(netdev);
5093
5094         if (netif_running(netdev)) {
5095                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5096                 e1000_down(adapter);
5097         }
5098
5099 #ifdef CONFIG_PM
5100         retval = pci_save_state(pdev);
5101         if (retval)
5102                 return retval;
5103 #endif
5104
5105         status = E1000_READ_REG(&adapter->hw, STATUS);
5106         if (status & E1000_STATUS_LU)
5107                 wufc &= ~E1000_WUFC_LNKC;
5108
5109         if (wufc) {
5110                 e1000_setup_rctl(adapter);
5111                 e1000_set_multi(netdev);
5112
5113                 /* turn on all-multi mode if wake on multicast is enabled */
5114                 if (wufc & E1000_WUFC_MC) {
5115                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
5116                         rctl |= E1000_RCTL_MPE;
5117                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
5118                 }
5119
5120                 if (adapter->hw.mac_type >= e1000_82540) {
5121                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
5122                         /* advertise wake from D3Cold */
5123                         #define E1000_CTRL_ADVD3WUC 0x00100000
5124                         /* phy power management enable */
5125                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5126                         ctrl |= E1000_CTRL_ADVD3WUC |
5127                                 E1000_CTRL_EN_PHY_PWR_MGMT;
5128                         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
5129                 }
5130
5131                 if (adapter->hw.media_type == e1000_media_type_fiber ||
5132                    adapter->hw.media_type == e1000_media_type_internal_serdes) {
5133                         /* keep the laser running in D3 */
5134                         ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
5135                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5136                         E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
5137                 }
5138
5139                 /* Allow time for pending master requests to run */
5140                 e1000_disable_pciex_master(&adapter->hw);
5141
5142                 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
5143                 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
5144                 pci_enable_wake(pdev, PCI_D3hot, 1);
5145                 pci_enable_wake(pdev, PCI_D3cold, 1);
5146         } else {
5147                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
5148                 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
5149                 pci_enable_wake(pdev, PCI_D3hot, 0);
5150                 pci_enable_wake(pdev, PCI_D3cold, 0);
5151         }
5152
5153         e1000_release_manageability(adapter);
5154
5155         /* make sure adapter isn't asleep if manageability is enabled */
5156         if (adapter->en_mng_pt) {
5157                 pci_enable_wake(pdev, PCI_D3hot, 1);
5158                 pci_enable_wake(pdev, PCI_D3cold, 1);
5159         }
5160
5161         if (adapter->hw.phy_type == e1000_phy_igp_3)
5162                 e1000_phy_powerdown_workaround(&adapter->hw);
5163
5164         if (netif_running(netdev))
5165                 e1000_free_irq(adapter);
5166
5167         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
5168          * would have already happened in close and is redundant. */
5169         e1000_release_hw_control(adapter);
5170
5171         pci_disable_device(pdev);
5172
5173         pci_set_power_state(pdev, pci_choose_state(pdev, state));
5174
5175         return 0;
5176 }
5177
5178 #ifdef CONFIG_PM
5179 static int
5180 e1000_resume(struct pci_dev *pdev)
5181 {
5182         struct net_device *netdev = pci_get_drvdata(pdev);
5183         struct e1000_adapter *adapter = netdev_priv(netdev);
5184         uint32_t err;
5185
5186         pci_set_power_state(pdev, PCI_D0);
5187         pci_restore_state(pdev);
5188         if ((err = pci_enable_device(pdev))) {
5189                 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
5190                 return err;
5191         }
5192         pci_set_master(pdev);
5193
5194         pci_enable_wake(pdev, PCI_D3hot, 0);
5195         pci_enable_wake(pdev, PCI_D3cold, 0);
5196
5197         if (netif_running(netdev) && (err = e1000_request_irq(adapter)))
5198                 return err;
5199
5200         e1000_power_up_phy(adapter);
5201         e1000_reset(adapter);
5202         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
5203
5204         e1000_init_manageability(adapter);
5205
5206         if (netif_running(netdev))
5207                 e1000_up(adapter);
5208
5209         netif_device_attach(netdev);
5210
5211         /* If the controller is 82573 and f/w is AMT, do not set
5212          * DRV_LOAD until the interface is up.  For all other cases,
5213          * let the f/w know that the h/w is now under the control
5214          * of the driver. */
5215         if (adapter->hw.mac_type != e1000_82573 ||
5216             !e1000_check_mng_mode(&adapter->hw))
5217                 e1000_get_hw_control(adapter);
5218
5219         return 0;
5220 }
5221 #endif
5222
5223 static void e1000_shutdown(struct pci_dev *pdev)
5224 {
5225         e1000_suspend(pdev, PMSG_SUSPEND);
5226 }
5227
5228 #ifdef CONFIG_NET_POLL_CONTROLLER
5229 /*
5230  * Polling 'interrupt' - used by things like netconsole to send skbs
5231  * without having to re-enable interrupts. It's not called while
5232  * the interrupt routine is executing.
5233  */
5234 static void
5235 e1000_netpoll(struct net_device *netdev)
5236 {
5237         struct e1000_adapter *adapter = netdev_priv(netdev);
5238
5239         disable_irq(adapter->pdev->irq);
5240         e1000_intr(adapter->pdev->irq, netdev);
5241         e1000_clean_tx_irq(adapter, adapter->tx_ring);
5242 #ifndef CONFIG_E1000_NAPI
5243         adapter->clean_rx(adapter, adapter->rx_ring);
5244 #endif
5245         enable_irq(adapter->pdev->irq);
5246 }
5247 #endif
5248
5249 /**
5250  * e1000_io_error_detected - called when PCI error is detected
5251  * @pdev: Pointer to PCI device
5252  * @state: The current pci conneection state
5253  *
5254  * This function is called after a PCI bus error affecting
5255  * this device has been detected.
5256  */
5257 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
5258 {
5259         struct net_device *netdev = pci_get_drvdata(pdev);
5260         struct e1000_adapter *adapter = netdev->priv;
5261
5262         netif_device_detach(netdev);
5263
5264         if (netif_running(netdev))
5265                 e1000_down(adapter);
5266         pci_disable_device(pdev);
5267
5268         /* Request a slot slot reset. */
5269         return PCI_ERS_RESULT_NEED_RESET;
5270 }
5271
5272 /**
5273  * e1000_io_slot_reset - called after the pci bus has been reset.
5274  * @pdev: Pointer to PCI device
5275  *
5276  * Restart the card from scratch, as if from a cold-boot. Implementation
5277  * resembles the first-half of the e1000_resume routine.
5278  */
5279 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5280 {
5281         struct net_device *netdev = pci_get_drvdata(pdev);
5282         struct e1000_adapter *adapter = netdev->priv;
5283
5284         if (pci_enable_device(pdev)) {
5285                 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
5286                 return PCI_ERS_RESULT_DISCONNECT;
5287         }
5288         pci_set_master(pdev);
5289
5290         pci_enable_wake(pdev, PCI_D3hot, 0);
5291         pci_enable_wake(pdev, PCI_D3cold, 0);
5292
5293         e1000_reset(adapter);
5294         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
5295
5296         return PCI_ERS_RESULT_RECOVERED;
5297 }
5298
5299 /**
5300  * e1000_io_resume - called when traffic can start flowing again.
5301  * @pdev: Pointer to PCI device
5302  *
5303  * This callback is called when the error recovery driver tells us that
5304  * its OK to resume normal operation. Implementation resembles the
5305  * second-half of the e1000_resume routine.
5306  */
5307 static void e1000_io_resume(struct pci_dev *pdev)
5308 {
5309         struct net_device *netdev = pci_get_drvdata(pdev);
5310         struct e1000_adapter *adapter = netdev->priv;
5311
5312         e1000_init_manageability(adapter);
5313
5314         if (netif_running(netdev)) {
5315                 if (e1000_up(adapter)) {
5316                         printk("e1000: can't bring device back up after reset\n");
5317                         return;
5318                 }
5319         }
5320
5321         netif_device_attach(netdev);
5322
5323         /* If the controller is 82573 and f/w is AMT, do not set
5324          * DRV_LOAD until the interface is up.  For all other cases,
5325          * let the f/w know that the h/w is now under the control
5326          * of the driver. */
5327         if (adapter->hw.mac_type != e1000_82573 ||
5328             !e1000_check_mng_mode(&adapter->hw))
5329                 e1000_get_hw_control(adapter);
5330
5331 }
5332
5333 /* e1000_main.c */