e1000: multi-queue defines/modification to data structures
[linux-2.6.git] / drivers / net / e1000 / e1000_ethtool.c
1 /*******************************************************************************
2
3   
4   Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
5   
6   This program is free software; you can redistribute it and/or modify it 
7   under the terms of the GNU General Public License as published by the Free 
8   Software Foundation; either version 2 of the License, or (at your option) 
9   any later version.
10   
11   This program is distributed in the hope that it will be useful, but WITHOUT 
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
14   more details.
15   
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc., 59 
18   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
19   
20   The full GNU General Public License is included in this distribution in the
21   file called LICENSE.
22   
23   Contact Information:
24   Linux NICS <linux.nics@intel.com>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include "e1000.h"
32
33 #include <asm/uaccess.h>
34
35 extern char e1000_driver_name[];
36 extern char e1000_driver_version[];
37
38 extern int e1000_up(struct e1000_adapter *adapter);
39 extern void e1000_down(struct e1000_adapter *adapter);
40 extern void e1000_reset(struct e1000_adapter *adapter);
41 extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
42 extern int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
43 extern int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
44 extern void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
45 extern void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
46 extern void e1000_update_stats(struct e1000_adapter *adapter);
47
48 struct e1000_stats {
49         char stat_string[ETH_GSTRING_LEN];
50         int sizeof_stat;
51         int stat_offset;
52 };
53
54 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
55                       offsetof(struct e1000_adapter, m)
56 static const struct e1000_stats e1000_gstrings_stats[] = {
57         { "rx_packets", E1000_STAT(net_stats.rx_packets) },
58         { "tx_packets", E1000_STAT(net_stats.tx_packets) },
59         { "rx_bytes", E1000_STAT(net_stats.rx_bytes) },
60         { "tx_bytes", E1000_STAT(net_stats.tx_bytes) },
61         { "rx_errors", E1000_STAT(net_stats.rx_errors) },
62         { "tx_errors", E1000_STAT(net_stats.tx_errors) },
63         { "rx_dropped", E1000_STAT(net_stats.rx_dropped) },
64         { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
65         { "multicast", E1000_STAT(net_stats.multicast) },
66         { "collisions", E1000_STAT(net_stats.collisions) },
67         { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
68         { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
69         { "rx_crc_errors", E1000_STAT(net_stats.rx_crc_errors) },
70         { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
71         { "rx_fifo_errors", E1000_STAT(net_stats.rx_fifo_errors) },
72         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
73         { "rx_missed_errors", E1000_STAT(net_stats.rx_missed_errors) },
74         { "tx_aborted_errors", E1000_STAT(net_stats.tx_aborted_errors) },
75         { "tx_carrier_errors", E1000_STAT(net_stats.tx_carrier_errors) },
76         { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
77         { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
78         { "tx_window_errors", E1000_STAT(net_stats.tx_window_errors) },
79         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
80         { "tx_deferred_ok", E1000_STAT(stats.dc) },
81         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
82         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
83         { "rx_long_length_errors", E1000_STAT(stats.roc) },
84         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
85         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
86         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
87         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
88         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
89         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
90         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
91         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
92         { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
93         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
94         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) }
95 };
96 #define E1000_STATS_LEN \
97         sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
98 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
99         "Register test  (offline)", "Eeprom test    (offline)",
100         "Interrupt test (offline)", "Loopback test  (offline)",
101         "Link test   (on/offline)"
102 };
103 #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
104
105 static int
106 e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
107 {
108         struct e1000_adapter *adapter = netdev_priv(netdev);
109         struct e1000_hw *hw = &adapter->hw;
110
111         if(hw->media_type == e1000_media_type_copper) {
112
113                 ecmd->supported = (SUPPORTED_10baseT_Half |
114                                    SUPPORTED_10baseT_Full |
115                                    SUPPORTED_100baseT_Half |
116                                    SUPPORTED_100baseT_Full |
117                                    SUPPORTED_1000baseT_Full|
118                                    SUPPORTED_Autoneg |
119                                    SUPPORTED_TP);
120
121                 ecmd->advertising = ADVERTISED_TP;
122
123                 if(hw->autoneg == 1) {
124                         ecmd->advertising |= ADVERTISED_Autoneg;
125
126                         /* the e1000 autoneg seems to match ethtool nicely */
127
128                         ecmd->advertising |= hw->autoneg_advertised;
129                 }
130
131                 ecmd->port = PORT_TP;
132                 ecmd->phy_address = hw->phy_addr;
133
134                 if(hw->mac_type == e1000_82543)
135                         ecmd->transceiver = XCVR_EXTERNAL;
136                 else
137                         ecmd->transceiver = XCVR_INTERNAL;
138
139         } else {
140                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
141                                      SUPPORTED_FIBRE |
142                                      SUPPORTED_Autoneg);
143
144                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
145                                      ADVERTISED_FIBRE |
146                                      ADVERTISED_Autoneg);
147
148                 ecmd->port = PORT_FIBRE;
149
150                 if(hw->mac_type >= e1000_82545)
151                         ecmd->transceiver = XCVR_INTERNAL;
152                 else
153                         ecmd->transceiver = XCVR_EXTERNAL;
154         }
155
156         if(netif_carrier_ok(adapter->netdev)) {
157
158                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
159                                                    &adapter->link_duplex);
160                 ecmd->speed = adapter->link_speed;
161
162                 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
163                  *          and HALF_DUPLEX != DUPLEX_HALF */
164
165                 if(adapter->link_duplex == FULL_DUPLEX)
166                         ecmd->duplex = DUPLEX_FULL;
167                 else
168                         ecmd->duplex = DUPLEX_HALF;
169         } else {
170                 ecmd->speed = -1;
171                 ecmd->duplex = -1;
172         }
173
174         ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
175                          hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
176         return 0;
177 }
178
179 static int
180 e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
181 {
182         struct e1000_adapter *adapter = netdev_priv(netdev);
183         struct e1000_hw *hw = &adapter->hw;
184
185         if(ecmd->autoneg == AUTONEG_ENABLE) {
186                 hw->autoneg = 1;
187                 if(hw->media_type == e1000_media_type_fiber)
188                         hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
189                                      ADVERTISED_FIBRE |
190                                      ADVERTISED_Autoneg;
191                 else 
192                         hw->autoneg_advertised = ADVERTISED_10baseT_Half |
193                                                   ADVERTISED_10baseT_Full |
194                                                   ADVERTISED_100baseT_Half |
195                                                   ADVERTISED_100baseT_Full |
196                                                   ADVERTISED_1000baseT_Full|
197                                                   ADVERTISED_Autoneg |
198                                                   ADVERTISED_TP;
199                 ecmd->advertising = hw->autoneg_advertised;
200         } else
201                 if(e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex))
202                         return -EINVAL;
203
204         /* reset the link */
205
206         if(netif_running(adapter->netdev)) {
207                 e1000_down(adapter);
208                 e1000_reset(adapter);
209                 e1000_up(adapter);
210         } else
211                 e1000_reset(adapter);
212
213         return 0;
214 }
215
216 static void
217 e1000_get_pauseparam(struct net_device *netdev,
218                      struct ethtool_pauseparam *pause)
219 {
220         struct e1000_adapter *adapter = netdev_priv(netdev);
221         struct e1000_hw *hw = &adapter->hw;
222
223         pause->autoneg = 
224                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
225         
226         if(hw->fc == e1000_fc_rx_pause)
227                 pause->rx_pause = 1;
228         else if(hw->fc == e1000_fc_tx_pause)
229                 pause->tx_pause = 1;
230         else if(hw->fc == e1000_fc_full) {
231                 pause->rx_pause = 1;
232                 pause->tx_pause = 1;
233         }
234 }
235
236 static int
237 e1000_set_pauseparam(struct net_device *netdev,
238                      struct ethtool_pauseparam *pause)
239 {
240         struct e1000_adapter *adapter = netdev_priv(netdev);
241         struct e1000_hw *hw = &adapter->hw;
242         
243         adapter->fc_autoneg = pause->autoneg;
244
245         if(pause->rx_pause && pause->tx_pause)
246                 hw->fc = e1000_fc_full;
247         else if(pause->rx_pause && !pause->tx_pause)
248                 hw->fc = e1000_fc_rx_pause;
249         else if(!pause->rx_pause && pause->tx_pause)
250                 hw->fc = e1000_fc_tx_pause;
251         else if(!pause->rx_pause && !pause->tx_pause)
252                 hw->fc = e1000_fc_none;
253
254         hw->original_fc = hw->fc;
255
256         if(adapter->fc_autoneg == AUTONEG_ENABLE) {
257                 if(netif_running(adapter->netdev)) {
258                         e1000_down(adapter);
259                         e1000_up(adapter);
260                 } else
261                         e1000_reset(adapter);
262         }
263         else
264                 return ((hw->media_type == e1000_media_type_fiber) ?
265                         e1000_setup_link(hw) : e1000_force_mac_fc(hw));
266         
267         return 0;
268 }
269
270 static uint32_t
271 e1000_get_rx_csum(struct net_device *netdev)
272 {
273         struct e1000_adapter *adapter = netdev_priv(netdev);
274         return adapter->rx_csum;
275 }
276
277 static int
278 e1000_set_rx_csum(struct net_device *netdev, uint32_t data)
279 {
280         struct e1000_adapter *adapter = netdev_priv(netdev);
281         adapter->rx_csum = data;
282
283         if(netif_running(netdev)) {
284                 e1000_down(adapter);
285                 e1000_up(adapter);
286         } else
287                 e1000_reset(adapter);
288         return 0;
289 }
290         
291 static uint32_t
292 e1000_get_tx_csum(struct net_device *netdev)
293 {
294         return (netdev->features & NETIF_F_HW_CSUM) != 0;
295 }
296
297 static int
298 e1000_set_tx_csum(struct net_device *netdev, uint32_t data)
299 {
300         struct e1000_adapter *adapter = netdev_priv(netdev);
301
302         if(adapter->hw.mac_type < e1000_82543) {
303                 if (!data)
304                         return -EINVAL;
305                 return 0;
306         }
307
308         if (data)
309                 netdev->features |= NETIF_F_HW_CSUM;
310         else
311                 netdev->features &= ~NETIF_F_HW_CSUM;
312
313         return 0;
314 }
315
316 #ifdef NETIF_F_TSO
317 static int
318 e1000_set_tso(struct net_device *netdev, uint32_t data)
319 {
320         struct e1000_adapter *adapter = netdev_priv(netdev);
321         if((adapter->hw.mac_type < e1000_82544) ||
322             (adapter->hw.mac_type == e1000_82547)) 
323                 return data ? -EINVAL : 0;
324
325         if (data)
326                 netdev->features |= NETIF_F_TSO;
327         else
328                 netdev->features &= ~NETIF_F_TSO;
329         return 0;
330
331 #endif /* NETIF_F_TSO */
332
333 static uint32_t
334 e1000_get_msglevel(struct net_device *netdev)
335 {
336         struct e1000_adapter *adapter = netdev_priv(netdev);
337         return adapter->msg_enable;
338 }
339
340 static void
341 e1000_set_msglevel(struct net_device *netdev, uint32_t data)
342 {
343         struct e1000_adapter *adapter = netdev_priv(netdev);
344         adapter->msg_enable = data;
345 }
346
347 static int 
348 e1000_get_regs_len(struct net_device *netdev)
349 {
350 #define E1000_REGS_LEN 32
351         return E1000_REGS_LEN * sizeof(uint32_t);
352 }
353
354 static void
355 e1000_get_regs(struct net_device *netdev,
356                struct ethtool_regs *regs, void *p)
357 {
358         struct e1000_adapter *adapter = netdev_priv(netdev);
359         struct e1000_hw *hw = &adapter->hw;
360         uint32_t *regs_buff = p;
361         uint16_t phy_data;
362
363         memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t));
364
365         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
366
367         regs_buff[0]  = E1000_READ_REG(hw, CTRL);
368         regs_buff[1]  = E1000_READ_REG(hw, STATUS);
369
370         regs_buff[2]  = E1000_READ_REG(hw, RCTL);
371         regs_buff[3]  = E1000_READ_REG(hw, RDLEN);
372         regs_buff[4]  = E1000_READ_REG(hw, RDH);
373         regs_buff[5]  = E1000_READ_REG(hw, RDT);
374         regs_buff[6]  = E1000_READ_REG(hw, RDTR);
375
376         regs_buff[7]  = E1000_READ_REG(hw, TCTL);
377         regs_buff[8]  = E1000_READ_REG(hw, TDLEN);
378         regs_buff[9]  = E1000_READ_REG(hw, TDH);
379         regs_buff[10] = E1000_READ_REG(hw, TDT);
380         regs_buff[11] = E1000_READ_REG(hw, TIDV);
381
382         regs_buff[12] = adapter->hw.phy_type;  /* PHY type (IGP=1, M88=0) */
383         if(hw->phy_type == e1000_phy_igp) {
384                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
385                                     IGP01E1000_PHY_AGC_A);
386                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
387                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
388                 regs_buff[13] = (uint32_t)phy_data; /* cable length */
389                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
390                                     IGP01E1000_PHY_AGC_B);
391                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
392                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
393                 regs_buff[14] = (uint32_t)phy_data; /* cable length */
394                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
395                                     IGP01E1000_PHY_AGC_C);
396                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
397                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
398                 regs_buff[15] = (uint32_t)phy_data; /* cable length */
399                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
400                                     IGP01E1000_PHY_AGC_D);
401                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
402                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
403                 regs_buff[16] = (uint32_t)phy_data; /* cable length */
404                 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
405                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
406                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
407                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
408                 regs_buff[18] = (uint32_t)phy_data; /* cable polarity */
409                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
410                                     IGP01E1000_PHY_PCS_INIT_REG);
411                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
412                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
413                 regs_buff[19] = (uint32_t)phy_data; /* cable polarity */
414                 regs_buff[20] = 0; /* polarity correction enabled (always) */
415                 regs_buff[22] = 0; /* phy receive errors (unavailable) */
416                 regs_buff[23] = regs_buff[18]; /* mdix mode */
417                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
418         } else {
419                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
420                 regs_buff[13] = (uint32_t)phy_data; /* cable length */
421                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
422                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
423                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
424                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
425                 regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */
426                 regs_buff[18] = regs_buff[13]; /* cable polarity */
427                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
428                 regs_buff[20] = regs_buff[17]; /* polarity correction */
429                 /* phy receive errors */
430                 regs_buff[22] = adapter->phy_stats.receive_errors;
431                 regs_buff[23] = regs_buff[13]; /* mdix mode */
432         }
433         regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
434         e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
435         regs_buff[24] = (uint32_t)phy_data;  /* phy local receiver status */
436         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
437         if(hw->mac_type >= e1000_82540 &&
438            hw->media_type == e1000_media_type_copper) {
439                 regs_buff[26] = E1000_READ_REG(hw, MANC);
440         }
441 }
442
443 static int
444 e1000_get_eeprom_len(struct net_device *netdev)
445 {
446         struct e1000_adapter *adapter = netdev_priv(netdev);
447         return adapter->hw.eeprom.word_size * 2;
448 }
449
450 static int
451 e1000_get_eeprom(struct net_device *netdev,
452                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
453 {
454         struct e1000_adapter *adapter = netdev_priv(netdev);
455         struct e1000_hw *hw = &adapter->hw;
456         uint16_t *eeprom_buff;
457         int first_word, last_word;
458         int ret_val = 0;
459         uint16_t i;
460
461         if(eeprom->len == 0)
462                 return -EINVAL;
463
464         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
465
466         first_word = eeprom->offset >> 1;
467         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
468
469         eeprom_buff = kmalloc(sizeof(uint16_t) *
470                         (last_word - first_word + 1), GFP_KERNEL);
471         if(!eeprom_buff)
472                 return -ENOMEM;
473
474         if(hw->eeprom.type == e1000_eeprom_spi)
475                 ret_val = e1000_read_eeprom(hw, first_word,
476                                             last_word - first_word + 1,
477                                             eeprom_buff);
478         else {
479                 for (i = 0; i < last_word - first_word + 1; i++)
480                         if((ret_val = e1000_read_eeprom(hw, first_word + i, 1,
481                                                         &eeprom_buff[i])))
482                                 break;
483         }
484
485         /* Device's eeprom is always little-endian, word addressable */
486         for (i = 0; i < last_word - first_word + 1; i++)
487                 le16_to_cpus(&eeprom_buff[i]);
488
489         memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1),
490                         eeprom->len);
491         kfree(eeprom_buff);
492
493         return ret_val;
494 }
495
496 static int
497 e1000_set_eeprom(struct net_device *netdev,
498                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
499 {
500         struct e1000_adapter *adapter = netdev_priv(netdev);
501         struct e1000_hw *hw = &adapter->hw;
502         uint16_t *eeprom_buff;
503         void *ptr;
504         int max_len, first_word, last_word, ret_val = 0;
505         uint16_t i;
506
507         if(eeprom->len == 0)
508                 return -EOPNOTSUPP;
509
510         if(eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
511                 return -EFAULT;
512
513         max_len = hw->eeprom.word_size * 2;
514
515         first_word = eeprom->offset >> 1;
516         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
517         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
518         if(!eeprom_buff)
519                 return -ENOMEM;
520
521         ptr = (void *)eeprom_buff;
522
523         if(eeprom->offset & 1) {
524                 /* need read/modify/write of first changed EEPROM word */
525                 /* only the second byte of the word is being modified */
526                 ret_val = e1000_read_eeprom(hw, first_word, 1,
527                                             &eeprom_buff[0]);
528                 ptr++;
529         }
530         if(((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
531                 /* need read/modify/write of last changed EEPROM word */
532                 /* only the first byte of the word is being modified */
533                 ret_val = e1000_read_eeprom(hw, last_word, 1,
534                                   &eeprom_buff[last_word - first_word]);
535         }
536
537         /* Device's eeprom is always little-endian, word addressable */
538         for (i = 0; i < last_word - first_word + 1; i++)
539                 le16_to_cpus(&eeprom_buff[i]);
540
541         memcpy(ptr, bytes, eeprom->len);
542
543         for (i = 0; i < last_word - first_word + 1; i++)
544                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
545
546         ret_val = e1000_write_eeprom(hw, first_word,
547                                      last_word - first_word + 1, eeprom_buff);
548
549         /* Update the checksum over the first part of the EEPROM if needed */
550         if((ret_val == 0) && first_word <= EEPROM_CHECKSUM_REG)
551                 e1000_update_eeprom_checksum(hw);
552
553         kfree(eeprom_buff);
554         return ret_val;
555 }
556
557 static void
558 e1000_get_drvinfo(struct net_device *netdev,
559                        struct ethtool_drvinfo *drvinfo)
560 {
561         struct e1000_adapter *adapter = netdev_priv(netdev);
562
563         strncpy(drvinfo->driver,  e1000_driver_name, 32);
564         strncpy(drvinfo->version, e1000_driver_version, 32);
565         strncpy(drvinfo->fw_version, "N/A", 32);
566         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
567         drvinfo->n_stats = E1000_STATS_LEN;
568         drvinfo->testinfo_len = E1000_TEST_LEN;
569         drvinfo->regdump_len = e1000_get_regs_len(netdev);
570         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
571 }
572
573 static void
574 e1000_get_ringparam(struct net_device *netdev,
575                     struct ethtool_ringparam *ring)
576 {
577         struct e1000_adapter *adapter = netdev_priv(netdev);
578         e1000_mac_type mac_type = adapter->hw.mac_type;
579         struct e1000_tx_ring *txdr = adapter->tx_ring;
580         struct e1000_rx_ring *rxdr = adapter->rx_ring;
581
582         ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
583                 E1000_MAX_82544_RXD;
584         ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
585                 E1000_MAX_82544_TXD;
586         ring->rx_mini_max_pending = 0;
587         ring->rx_jumbo_max_pending = 0;
588         ring->rx_pending = rxdr->count;
589         ring->tx_pending = txdr->count;
590         ring->rx_mini_pending = 0;
591         ring->rx_jumbo_pending = 0;
592 }
593
594 static int 
595 e1000_set_ringparam(struct net_device *netdev,
596                     struct ethtool_ringparam *ring)
597 {
598         struct e1000_adapter *adapter = netdev_priv(netdev);
599         e1000_mac_type mac_type = adapter->hw.mac_type;
600         struct e1000_tx_ring *txdr, *tx_old, *tx_new;
601         struct e1000_rx_ring *rxdr, *rx_old, *rx_new;
602         int i, err, tx_ring_size, rx_ring_size;
603
604         tx_ring_size = sizeof(struct e1000_tx_ring) * adapter->num_queues;
605         rx_ring_size = sizeof(struct e1000_rx_ring) * adapter->num_queues;
606
607         if (netif_running(adapter->netdev))
608                 e1000_down(adapter);
609
610         tx_old = adapter->tx_ring;
611         rx_old = adapter->rx_ring;
612
613         adapter->tx_ring = kmalloc(tx_ring_size, GFP_KERNEL);
614         if (!adapter->tx_ring) {
615                 err = -ENOMEM;
616                 goto err_setup_rx;
617         }
618         memset(adapter->tx_ring, 0, tx_ring_size);
619
620         adapter->rx_ring = kmalloc(rx_ring_size, GFP_KERNEL);
621         if (!adapter->rx_ring) {
622                 kfree(adapter->tx_ring);
623                 err = -ENOMEM;
624                 goto err_setup_rx;
625         }
626         memset(adapter->rx_ring, 0, rx_ring_size);
627
628         txdr = adapter->tx_ring;
629         rxdr = adapter->rx_ring;
630
631         if((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
632                 return -EINVAL;
633
634         rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD);
635         rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ?
636                 E1000_MAX_RXD : E1000_MAX_82544_RXD));
637         E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE); 
638
639         txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD);
640         txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ?
641                 E1000_MAX_TXD : E1000_MAX_82544_TXD));
642         E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE); 
643
644         for (i = 0; i < adapter->num_queues; i++) {
645                 txdr[i].count = txdr->count;
646                 rxdr[i].count = rxdr->count;
647         }
648
649         if(netif_running(adapter->netdev)) {
650                 /* Try to get new resources before deleting old */
651                 if ((err = e1000_setup_all_rx_resources(adapter)))
652                         goto err_setup_rx;
653                 if ((err = e1000_setup_all_tx_resources(adapter)))
654                         goto err_setup_tx;
655
656                 /* save the new, restore the old in order to free it,
657                  * then restore the new back again */
658
659                 rx_new = adapter->rx_ring;
660                 tx_new = adapter->tx_ring;
661                 adapter->rx_ring = rx_old;
662                 adapter->tx_ring = tx_old;
663                 e1000_free_all_rx_resources(adapter);
664                 e1000_free_all_tx_resources(adapter);
665                 kfree(tx_old);
666                 kfree(rx_old);
667                 adapter->rx_ring = rx_new;
668                 adapter->tx_ring = tx_new;
669                 if((err = e1000_up(adapter)))
670                         return err;
671         }
672
673         return 0;
674 err_setup_tx:
675         e1000_free_all_rx_resources(adapter);
676 err_setup_rx:
677         adapter->rx_ring = rx_old;
678         adapter->tx_ring = tx_old;
679         e1000_up(adapter);
680         return err;
681 }
682
683 #define REG_PATTERN_TEST(R, M, W)                                              \
684 {                                                                              \
685         uint32_t pat, value;                                                   \
686         uint32_t test[] =                                                      \
687                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};              \
688         for(pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) {              \
689                 E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W));             \
690                 value = E1000_READ_REG(&adapter->hw, R);                       \
691                 if(value != (test[pat] & W & M)) {                             \
692                         DPRINTK(DRV, ERR, "pattern test reg %04X failed: got " \
693                                 "0x%08X expected 0x%08X\n",                    \
694                                 E1000_##R, value, (test[pat] & W & M));        \
695                         *data = (adapter->hw.mac_type < e1000_82543) ?         \
696                                 E1000_82542_##R : E1000_##R;                   \
697                         return 1;                                              \
698                 }                                                              \
699         }                                                                      \
700 }
701
702 #define REG_SET_AND_CHECK(R, M, W)                                             \
703 {                                                                              \
704         uint32_t value;                                                        \
705         E1000_WRITE_REG(&adapter->hw, R, W & M);                               \
706         value = E1000_READ_REG(&adapter->hw, R);                               \
707         if((W & M) != (value & M)) {                                          \
708                 DPRINTK(DRV, ERR, "set/check reg %04X test failed: got 0x%08X "\
709                         "expected 0x%08X\n", E1000_##R, (value & M), (W & M)); \
710                 *data = (adapter->hw.mac_type < e1000_82543) ?                 \
711                         E1000_82542_##R : E1000_##R;                           \
712                 return 1;                                                      \
713         }                                                                      \
714 }
715
716 static int
717 e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
718 {
719         uint32_t value, before, after;
720         uint32_t i, toggle;
721
722         /* The status register is Read Only, so a write should fail.
723          * Some bits that get toggled are ignored.
724          */
725         switch (adapter->hw.mac_type) {
726         /* there are several bits on newer hardware that are r/w */
727         case e1000_82571:
728         case e1000_82572:
729                 toggle = 0x7FFFF3FF;
730                 break;
731         case e1000_82573:
732                 toggle = 0x7FFFF033;
733                 break;
734         default:
735                 toggle = 0xFFFFF833;
736                 break;
737         }
738
739         before = E1000_READ_REG(&adapter->hw, STATUS);
740         value = (E1000_READ_REG(&adapter->hw, STATUS) & toggle);
741         E1000_WRITE_REG(&adapter->hw, STATUS, toggle);
742         after = E1000_READ_REG(&adapter->hw, STATUS) & toggle;
743         if(value != after) {
744                 DPRINTK(DRV, ERR, "failed STATUS register test got: "
745                         "0x%08X expected: 0x%08X\n", after, value);
746                 *data = 1;
747                 return 1;
748         }
749         /* restore previous status */
750         E1000_WRITE_REG(&adapter->hw, STATUS, before);
751
752         REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
753         REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
754         REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
755         REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
756         REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
757         REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
758         REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
759         REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
760         REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
761         REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
762         REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
763         REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
764         REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
765         REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
766
767         REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
768         REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0x003FFFFB);
769         REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
770
771         if(adapter->hw.mac_type >= e1000_82543) {
772
773                 REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0xFFFFFFFF);
774                 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
775                 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
776                 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
777                 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
778
779                 for(i = 0; i < E1000_RAR_ENTRIES; i++) {
780                         REG_PATTERN_TEST(RA + ((i << 1) << 2), 0xFFFFFFFF,
781                                          0xFFFFFFFF);
782                         REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
783                                          0xFFFFFFFF);
784                 }
785
786         } else {
787
788                 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
789                 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
790                 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
791                 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
792
793         }
794
795         for(i = 0; i < E1000_MC_TBL_SIZE; i++)
796                 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
797
798         *data = 0;
799         return 0;
800 }
801
802 static int
803 e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data)
804 {
805         uint16_t temp;
806         uint16_t checksum = 0;
807         uint16_t i;
808
809         *data = 0;
810         /* Read and add up the contents of the EEPROM */
811         for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
812                 if((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) {
813                         *data = 1;
814                         break;
815                 }
816                 checksum += temp;
817         }
818
819         /* If Checksum is not Correct return error else test passed */
820         if((checksum != (uint16_t) EEPROM_SUM) && !(*data))
821                 *data = 2;
822
823         return *data;
824 }
825
826 static irqreturn_t
827 e1000_test_intr(int irq,
828                 void *data,
829                 struct pt_regs *regs)
830 {
831         struct net_device *netdev = (struct net_device *) data;
832         struct e1000_adapter *adapter = netdev_priv(netdev);
833
834         adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR);
835
836         return IRQ_HANDLED;
837 }
838
839 static int
840 e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
841 {
842         struct net_device *netdev = adapter->netdev;
843         uint32_t mask, i=0, shared_int = TRUE;
844         uint32_t irq = adapter->pdev->irq;
845
846         *data = 0;
847
848         /* Hook up test interrupt handler just for this test */
849         if(!request_irq(irq, &e1000_test_intr, 0, netdev->name, netdev)) {
850                 shared_int = FALSE;
851         } else if(request_irq(irq, &e1000_test_intr, SA_SHIRQ,
852                               netdev->name, netdev)){
853                 *data = 1;
854                 return -1;
855         }
856
857         /* Disable all the interrupts */
858         E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
859         msec_delay(10);
860
861         /* Test each interrupt */
862         for(; i < 10; i++) {
863
864                 /* Interrupt to test */
865                 mask = 1 << i;
866
867                 if(!shared_int) {
868                         /* Disable the interrupt to be reported in
869                          * the cause register and then force the same
870                          * interrupt and see if one gets posted.  If
871                          * an interrupt was posted to the bus, the
872                          * test failed.
873                          */
874                         adapter->test_icr = 0;
875                         E1000_WRITE_REG(&adapter->hw, IMC, mask);
876                         E1000_WRITE_REG(&adapter->hw, ICS, mask);
877                         msec_delay(10);
878  
879                         if(adapter->test_icr & mask) {
880                                 *data = 3;
881                                 break;
882                         }
883                 }
884
885                 /* Enable the interrupt to be reported in
886                  * the cause register and then force the same
887                  * interrupt and see if one gets posted.  If
888                  * an interrupt was not posted to the bus, the
889                  * test failed.
890                  */
891                 adapter->test_icr = 0;
892                 E1000_WRITE_REG(&adapter->hw, IMS, mask);
893                 E1000_WRITE_REG(&adapter->hw, ICS, mask);
894                 msec_delay(10);
895
896                 if(!(adapter->test_icr & mask)) {
897                         *data = 4;
898                         break;
899                 }
900
901                 if(!shared_int) {
902                         /* Disable the other interrupts to be reported in
903                          * the cause register and then force the other
904                          * interrupts and see if any get posted.  If
905                          * an interrupt was posted to the bus, the
906                          * test failed.
907                          */
908                         adapter->test_icr = 0;
909                         E1000_WRITE_REG(&adapter->hw, IMC, ~mask & 0x00007FFF);
910                         E1000_WRITE_REG(&adapter->hw, ICS, ~mask & 0x00007FFF);
911                         msec_delay(10);
912
913                         if(adapter->test_icr) {
914                                 *data = 5;
915                                 break;
916                         }
917                 }
918         }
919
920         /* Disable all the interrupts */
921         E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
922         msec_delay(10);
923
924         /* Unhook test interrupt handler */
925         free_irq(irq, netdev);
926
927         return *data;
928 }
929
930 static void
931 e1000_free_desc_rings(struct e1000_adapter *adapter)
932 {
933         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
934         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
935         struct pci_dev *pdev = adapter->pdev;
936         int i;
937
938         if(txdr->desc && txdr->buffer_info) {
939                 for(i = 0; i < txdr->count; i++) {
940                         if(txdr->buffer_info[i].dma)
941                                 pci_unmap_single(pdev, txdr->buffer_info[i].dma,
942                                                  txdr->buffer_info[i].length,
943                                                  PCI_DMA_TODEVICE);
944                         if(txdr->buffer_info[i].skb)
945                                 dev_kfree_skb(txdr->buffer_info[i].skb);
946                 }
947         }
948
949         if(rxdr->desc && rxdr->buffer_info) {
950                 for(i = 0; i < rxdr->count; i++) {
951                         if(rxdr->buffer_info[i].dma)
952                                 pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
953                                                  rxdr->buffer_info[i].length,
954                                                  PCI_DMA_FROMDEVICE);
955                         if(rxdr->buffer_info[i].skb)
956                                 dev_kfree_skb(rxdr->buffer_info[i].skb);
957                 }
958         }
959
960         if(txdr->desc)
961                 pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
962         if(rxdr->desc)
963                 pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
964
965         if(txdr->buffer_info)
966                 kfree(txdr->buffer_info);
967         if(rxdr->buffer_info)
968                 kfree(rxdr->buffer_info);
969
970         return;
971 }
972
973 static int
974 e1000_setup_desc_rings(struct e1000_adapter *adapter)
975 {
976         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
977         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
978         struct pci_dev *pdev = adapter->pdev;
979         uint32_t rctl;
980         int size, i, ret_val;
981
982         /* Setup Tx descriptor ring and Tx buffers */
983
984         if(!txdr->count)
985                 txdr->count = E1000_DEFAULT_TXD;   
986
987         size = txdr->count * sizeof(struct e1000_buffer);
988         if(!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
989                 ret_val = 1;
990                 goto err_nomem;
991         }
992         memset(txdr->buffer_info, 0, size);
993
994         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
995         E1000_ROUNDUP(txdr->size, 4096);
996         if(!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) {
997                 ret_val = 2;
998                 goto err_nomem;
999         }
1000         memset(txdr->desc, 0, txdr->size);
1001         txdr->next_to_use = txdr->next_to_clean = 0;
1002
1003         E1000_WRITE_REG(&adapter->hw, TDBAL,
1004                         ((uint64_t) txdr->dma & 0x00000000FFFFFFFF));
1005         E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32));
1006         E1000_WRITE_REG(&adapter->hw, TDLEN,
1007                         txdr->count * sizeof(struct e1000_tx_desc));
1008         E1000_WRITE_REG(&adapter->hw, TDH, 0);
1009         E1000_WRITE_REG(&adapter->hw, TDT, 0);
1010         E1000_WRITE_REG(&adapter->hw, TCTL,
1011                         E1000_TCTL_PSP | E1000_TCTL_EN |
1012                         E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1013                         E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1014
1015         for(i = 0; i < txdr->count; i++) {
1016                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1017                 struct sk_buff *skb;
1018                 unsigned int size = 1024;
1019
1020                 if(!(skb = alloc_skb(size, GFP_KERNEL))) {
1021                         ret_val = 3;
1022                         goto err_nomem;
1023                 }
1024                 skb_put(skb, size);
1025                 txdr->buffer_info[i].skb = skb;
1026                 txdr->buffer_info[i].length = skb->len;
1027                 txdr->buffer_info[i].dma =
1028                         pci_map_single(pdev, skb->data, skb->len,
1029                                        PCI_DMA_TODEVICE);
1030                 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1031                 tx_desc->lower.data = cpu_to_le32(skb->len);
1032                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1033                                                    E1000_TXD_CMD_IFCS |
1034                                                    E1000_TXD_CMD_RPS);
1035                 tx_desc->upper.data = 0;
1036         }
1037
1038         /* Setup Rx descriptor ring and Rx buffers */
1039
1040         if(!rxdr->count)
1041                 rxdr->count = E1000_DEFAULT_RXD;   
1042
1043         size = rxdr->count * sizeof(struct e1000_buffer);
1044         if(!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
1045                 ret_val = 4;
1046                 goto err_nomem;
1047         }
1048         memset(rxdr->buffer_info, 0, size);
1049
1050         rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1051         if(!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) {
1052                 ret_val = 5;
1053                 goto err_nomem;
1054         }
1055         memset(rxdr->desc, 0, rxdr->size);
1056         rxdr->next_to_use = rxdr->next_to_clean = 0;
1057
1058         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1059         E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
1060         E1000_WRITE_REG(&adapter->hw, RDBAL,
1061                         ((uint64_t) rxdr->dma & 0xFFFFFFFF));
1062         E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32));
1063         E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size);
1064         E1000_WRITE_REG(&adapter->hw, RDH, 0);
1065         E1000_WRITE_REG(&adapter->hw, RDT, 0);
1066         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1067                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1068                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1069         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1070
1071         for(i = 0; i < rxdr->count; i++) {
1072                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1073                 struct sk_buff *skb;
1074
1075                 if(!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN,
1076                                 GFP_KERNEL))) {
1077                         ret_val = 6;
1078                         goto err_nomem;
1079                 }
1080                 skb_reserve(skb, NET_IP_ALIGN);
1081                 rxdr->buffer_info[i].skb = skb;
1082                 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1083                 rxdr->buffer_info[i].dma =
1084                         pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
1085                                        PCI_DMA_FROMDEVICE);
1086                 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1087                 memset(skb->data, 0x00, skb->len);
1088         }
1089
1090         return 0;
1091
1092 err_nomem:
1093         e1000_free_desc_rings(adapter);
1094         return ret_val;
1095 }
1096
1097 static void
1098 e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1099 {
1100         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1101         e1000_write_phy_reg(&adapter->hw, 29, 0x001F);
1102         e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC);
1103         e1000_write_phy_reg(&adapter->hw, 29, 0x001A);
1104         e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0);
1105 }
1106
1107 static void
1108 e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1109 {
1110         uint16_t phy_reg;
1111
1112         /* Because we reset the PHY above, we need to re-force TX_CLK in the
1113          * Extended PHY Specific Control Register to 25MHz clock.  This
1114          * value defaults back to a 2.5MHz clock when the PHY is reset.
1115          */
1116         e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1117         phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1118         e1000_write_phy_reg(&adapter->hw,
1119                 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1120
1121         /* In addition, because of the s/w reset above, we need to enable
1122          * CRS on TX.  This must be set for both full and half duplex
1123          * operation.
1124          */
1125         e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1126         phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1127         e1000_write_phy_reg(&adapter->hw,
1128                 M88E1000_PHY_SPEC_CTRL, phy_reg);
1129 }
1130
1131 static int
1132 e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1133 {
1134         uint32_t ctrl_reg;
1135         uint16_t phy_reg;
1136
1137         /* Setup the Device Control Register for PHY loopback test. */
1138
1139         ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1140         ctrl_reg |= (E1000_CTRL_ILOS |          /* Invert Loss-Of-Signal */
1141                      E1000_CTRL_FRCSPD |        /* Set the Force Speed Bit */
1142                      E1000_CTRL_FRCDPX |        /* Set the Force Duplex Bit */
1143                      E1000_CTRL_SPD_1000 |      /* Force Speed to 1000 */
1144                      E1000_CTRL_FD);            /* Force Duplex to FULL */
1145
1146         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1147
1148         /* Read the PHY Specific Control Register (0x10) */
1149         e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1150
1151         /* Clear Auto-Crossover bits in PHY Specific Control Register
1152          * (bits 6:5).
1153          */
1154         phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1155         e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1156
1157         /* Perform software reset on the PHY */
1158         e1000_phy_reset(&adapter->hw);
1159
1160         /* Have to setup TX_CLK and TX_CRS after software reset */
1161         e1000_phy_reset_clk_and_crs(adapter);
1162
1163         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100);
1164
1165         /* Wait for reset to complete. */
1166         udelay(500);
1167
1168         /* Have to setup TX_CLK and TX_CRS after software reset */
1169         e1000_phy_reset_clk_and_crs(adapter);
1170
1171         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1172         e1000_phy_disable_receiver(adapter);
1173
1174         /* Set the loopback bit in the PHY control register. */
1175         e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1176         phy_reg |= MII_CR_LOOPBACK;
1177         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1178
1179         /* Setup TX_CLK and TX_CRS one more time. */
1180         e1000_phy_reset_clk_and_crs(adapter);
1181
1182         /* Check Phy Configuration */
1183         e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1184         if(phy_reg != 0x4100)
1185                  return 9;
1186
1187         e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1188         if(phy_reg != 0x0070)
1189                 return 10;
1190
1191         e1000_read_phy_reg(&adapter->hw, 29, &phy_reg);
1192         if(phy_reg != 0x001A)
1193                 return 11;
1194
1195         return 0;
1196 }
1197
1198 static int
1199 e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1200 {
1201         uint32_t ctrl_reg = 0;
1202         uint32_t stat_reg = 0;
1203
1204         adapter->hw.autoneg = FALSE;
1205
1206         if(adapter->hw.phy_type == e1000_phy_m88) {
1207                 /* Auto-MDI/MDIX Off */
1208                 e1000_write_phy_reg(&adapter->hw,
1209                                     M88E1000_PHY_SPEC_CTRL, 0x0808);
1210                 /* reset to update Auto-MDI/MDIX */
1211                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140);
1212                 /* autoneg off */
1213                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140);
1214         }
1215         /* force 1000, set loopback */
1216         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
1217
1218         /* Now set up the MAC to the same speed/duplex as the PHY. */
1219         ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1220         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1221         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1222                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1223                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1224                      E1000_CTRL_FD);     /* Force Duplex to FULL */
1225
1226         if(adapter->hw.media_type == e1000_media_type_copper &&
1227            adapter->hw.phy_type == e1000_phy_m88) {
1228                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1229         } else {
1230                 /* Set the ILOS bit on the fiber Nic is half
1231                  * duplex link is detected. */
1232                 stat_reg = E1000_READ_REG(&adapter->hw, STATUS);
1233                 if((stat_reg & E1000_STATUS_FD) == 0)
1234                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1235         }
1236
1237         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1238
1239         /* Disable the receiver on the PHY so when a cable is plugged in, the
1240          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1241          */
1242         if(adapter->hw.phy_type == e1000_phy_m88)
1243                 e1000_phy_disable_receiver(adapter);
1244
1245         udelay(500);
1246
1247         return 0;
1248 }
1249
1250 static int
1251 e1000_set_phy_loopback(struct e1000_adapter *adapter)
1252 {
1253         uint16_t phy_reg = 0;
1254         uint16_t count = 0;
1255
1256         switch (adapter->hw.mac_type) {
1257         case e1000_82543:
1258                 if(adapter->hw.media_type == e1000_media_type_copper) {
1259                         /* Attempt to setup Loopback mode on Non-integrated PHY.
1260                          * Some PHY registers get corrupted at random, so
1261                          * attempt this 10 times.
1262                          */
1263                         while(e1000_nonintegrated_phy_loopback(adapter) &&
1264                               count++ < 10);
1265                         if(count < 11)
1266                                 return 0;
1267                 }
1268                 break;
1269
1270         case e1000_82544:
1271         case e1000_82540:
1272         case e1000_82545:
1273         case e1000_82545_rev_3:
1274         case e1000_82546:
1275         case e1000_82546_rev_3:
1276         case e1000_82541:
1277         case e1000_82541_rev_2:
1278         case e1000_82547:
1279         case e1000_82547_rev_2:
1280         case e1000_82571:
1281         case e1000_82572:
1282         case e1000_82573:
1283                 return e1000_integrated_phy_loopback(adapter);
1284                 break;
1285
1286         default:
1287                 /* Default PHY loopback work is to read the MII
1288                  * control register and assert bit 14 (loopback mode).
1289                  */
1290                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1291                 phy_reg |= MII_CR_LOOPBACK;
1292                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1293                 return 0;
1294                 break;
1295         }
1296
1297         return 8;
1298 }
1299
1300 static int
1301 e1000_setup_loopback_test(struct e1000_adapter *adapter)
1302 {
1303         uint32_t rctl;
1304
1305         if(adapter->hw.media_type == e1000_media_type_fiber ||
1306            adapter->hw.media_type == e1000_media_type_internal_serdes) {
1307                 if(adapter->hw.mac_type == e1000_82545 ||
1308                    adapter->hw.mac_type == e1000_82546 ||
1309                    adapter->hw.mac_type == e1000_82545_rev_3 ||
1310                    adapter->hw.mac_type == e1000_82546_rev_3)
1311                         return e1000_set_phy_loopback(adapter);
1312                 else {
1313                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1314                         rctl |= E1000_RCTL_LBM_TCVR;
1315                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1316                         return 0;
1317                 }
1318         } else if(adapter->hw.media_type == e1000_media_type_copper)
1319                 return e1000_set_phy_loopback(adapter);
1320
1321         return 7;
1322 }
1323
1324 static void
1325 e1000_loopback_cleanup(struct e1000_adapter *adapter)
1326 {
1327         uint32_t rctl;
1328         uint16_t phy_reg;
1329
1330         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1331         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1332         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1333
1334         if(adapter->hw.media_type == e1000_media_type_copper ||
1335            ((adapter->hw.media_type == e1000_media_type_fiber ||
1336              adapter->hw.media_type == e1000_media_type_internal_serdes) &&
1337             (adapter->hw.mac_type == e1000_82545 ||
1338              adapter->hw.mac_type == e1000_82546 ||
1339              adapter->hw.mac_type == e1000_82545_rev_3 ||
1340              adapter->hw.mac_type == e1000_82546_rev_3))) {
1341                 adapter->hw.autoneg = TRUE;
1342                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1343                 if(phy_reg & MII_CR_LOOPBACK) {
1344                         phy_reg &= ~MII_CR_LOOPBACK;
1345                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1346                         e1000_phy_reset(&adapter->hw);
1347                 }
1348         }
1349 }
1350
1351 static void
1352 e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1353 {
1354         memset(skb->data, 0xFF, frame_size);
1355         frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size;
1356         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1357         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1358         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1359 }
1360
1361 static int
1362 e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1363 {
1364         frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size;
1365         if(*(skb->data + 3) == 0xFF) {
1366                 if((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1367                    (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1368                         return 0;
1369                 }
1370         }
1371         return 13;
1372 }
1373
1374 static int
1375 e1000_run_loopback_test(struct e1000_adapter *adapter)
1376 {
1377         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1378         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1379         struct pci_dev *pdev = adapter->pdev;
1380         int i, j, k, l, lc, good_cnt, ret_val=0;
1381         unsigned long time;
1382
1383         E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1);
1384
1385         /* Calculate the loop count based on the largest descriptor ring 
1386          * The idea is to wrap the largest ring a number of times using 64
1387          * send/receive pairs during each loop
1388          */
1389
1390         if(rxdr->count <= txdr->count)
1391                 lc = ((txdr->count / 64) * 2) + 1;
1392         else
1393                 lc = ((rxdr->count / 64) * 2) + 1;
1394
1395         k = l = 0;
1396         for(j = 0; j <= lc; j++) { /* loop count loop */
1397                 for(i = 0; i < 64; i++) { /* send the packets */
1398                         e1000_create_lbtest_frame(txdr->buffer_info[i].skb, 
1399                                         1024);
1400                         pci_dma_sync_single_for_device(pdev, 
1401                                         txdr->buffer_info[k].dma,
1402                                         txdr->buffer_info[k].length,
1403                                         PCI_DMA_TODEVICE);
1404                         if(unlikely(++k == txdr->count)) k = 0;
1405                 }
1406                 E1000_WRITE_REG(&adapter->hw, TDT, k);
1407                 msec_delay(200);
1408                 time = jiffies; /* set the start time for the receive */
1409                 good_cnt = 0;
1410                 do { /* receive the sent packets */
1411                         pci_dma_sync_single_for_cpu(pdev, 
1412                                         rxdr->buffer_info[l].dma,
1413                                         rxdr->buffer_info[l].length,
1414                                         PCI_DMA_FROMDEVICE);
1415         
1416                         ret_val = e1000_check_lbtest_frame(
1417                                         rxdr->buffer_info[l].skb,
1418                                         1024);
1419                         if(!ret_val)
1420                                 good_cnt++;
1421                         if(unlikely(++l == rxdr->count)) l = 0;
1422                         /* time + 20 msecs (200 msecs on 2.4) is more than 
1423                          * enough time to complete the receives, if it's 
1424                          * exceeded, break and error off
1425                          */
1426                 } while (good_cnt < 64 && jiffies < (time + 20));
1427                 if(good_cnt != 64) {
1428                         ret_val = 13; /* ret_val is the same as mis-compare */
1429                         break; 
1430                 }
1431                 if(jiffies >= (time + 2)) {
1432                         ret_val = 14; /* error code for time out error */
1433                         break;
1434                 }
1435         } /* end loop count loop */
1436         return ret_val;
1437 }
1438
1439 static int
1440 e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data)
1441 {
1442         if((*data = e1000_setup_desc_rings(adapter))) goto err_loopback;
1443         if((*data = e1000_setup_loopback_test(adapter))) goto err_loopback;
1444         *data = e1000_run_loopback_test(adapter);
1445         e1000_loopback_cleanup(adapter);
1446         e1000_free_desc_rings(adapter);
1447 err_loopback:
1448         return *data;
1449 }
1450
1451 static int
1452 e1000_link_test(struct e1000_adapter *adapter, uint64_t *data)
1453 {
1454         *data = 0;
1455         if (adapter->hw.media_type == e1000_media_type_internal_serdes) {
1456                 int i = 0;
1457                 adapter->hw.serdes_link_down = TRUE;
1458
1459                 /* On some blade server designs, link establishment
1460                  * could take as long as 2-3 minutes */
1461                 do {
1462                         e1000_check_for_link(&adapter->hw);
1463                         if (adapter->hw.serdes_link_down == FALSE)
1464                                 return *data;
1465                         msec_delay(20);
1466                 } while (i++ < 3750);
1467
1468                 *data = 1;
1469         } else {
1470                 e1000_check_for_link(&adapter->hw);
1471                 if(adapter->hw.autoneg)  /* if auto_neg is set wait for it */
1472                         msec_delay(4000);
1473
1474                 if(!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
1475                         *data = 1;
1476                 }
1477         }
1478         return *data;
1479 }
1480
1481 static int 
1482 e1000_diag_test_count(struct net_device *netdev)
1483 {
1484         return E1000_TEST_LEN;
1485 }
1486
1487 static void
1488 e1000_diag_test(struct net_device *netdev,
1489                    struct ethtool_test *eth_test, uint64_t *data)
1490 {
1491         struct e1000_adapter *adapter = netdev_priv(netdev);
1492         boolean_t if_running = netif_running(netdev);
1493
1494         if(eth_test->flags == ETH_TEST_FL_OFFLINE) {
1495                 /* Offline tests */
1496
1497                 /* save speed, duplex, autoneg settings */
1498                 uint16_t autoneg_advertised = adapter->hw.autoneg_advertised;
1499                 uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex;
1500                 uint8_t autoneg = adapter->hw.autoneg;
1501
1502                 /* Link test performed before hardware reset so autoneg doesn't
1503                  * interfere with test result */
1504                 if(e1000_link_test(adapter, &data[4]))
1505                         eth_test->flags |= ETH_TEST_FL_FAILED;
1506
1507                 if(if_running)
1508                         e1000_down(adapter);
1509                 else
1510                         e1000_reset(adapter);
1511
1512                 if(e1000_reg_test(adapter, &data[0]))
1513                         eth_test->flags |= ETH_TEST_FL_FAILED;
1514
1515                 e1000_reset(adapter);
1516                 if(e1000_eeprom_test(adapter, &data[1]))
1517                         eth_test->flags |= ETH_TEST_FL_FAILED;
1518
1519                 e1000_reset(adapter);
1520                 if(e1000_intr_test(adapter, &data[2]))
1521                         eth_test->flags |= ETH_TEST_FL_FAILED;
1522
1523                 e1000_reset(adapter);
1524                 if(e1000_loopback_test(adapter, &data[3]))
1525                         eth_test->flags |= ETH_TEST_FL_FAILED;
1526
1527                 /* restore speed, duplex, autoneg settings */
1528                 adapter->hw.autoneg_advertised = autoneg_advertised;
1529                 adapter->hw.forced_speed_duplex = forced_speed_duplex;
1530                 adapter->hw.autoneg = autoneg;
1531
1532                 e1000_reset(adapter);
1533                 if(if_running)
1534                         e1000_up(adapter);
1535         } else {
1536                 /* Online tests */
1537                 if(e1000_link_test(adapter, &data[4]))
1538                         eth_test->flags |= ETH_TEST_FL_FAILED;
1539
1540                 /* Offline tests aren't run; pass by default */
1541                 data[0] = 0;
1542                 data[1] = 0;
1543                 data[2] = 0;
1544                 data[3] = 0;
1545         }
1546 }
1547
1548 static void
1549 e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1550 {
1551         struct e1000_adapter *adapter = netdev_priv(netdev);
1552         struct e1000_hw *hw = &adapter->hw;
1553
1554         switch(adapter->hw.device_id) {
1555         case E1000_DEV_ID_82542:
1556         case E1000_DEV_ID_82543GC_FIBER:
1557         case E1000_DEV_ID_82543GC_COPPER:
1558         case E1000_DEV_ID_82544EI_FIBER:
1559         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1560         case E1000_DEV_ID_82545EM_FIBER:
1561         case E1000_DEV_ID_82545EM_COPPER:
1562                 wol->supported = 0;
1563                 wol->wolopts   = 0;
1564                 return;
1565
1566         case E1000_DEV_ID_82546EB_FIBER:
1567         case E1000_DEV_ID_82546GB_FIBER:
1568                 /* Wake events only supported on port A for dual fiber */
1569                 if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) {
1570                         wol->supported = 0;
1571                         wol->wolopts   = 0;
1572                         return;
1573                 }
1574                 /* Fall Through */
1575
1576         default:
1577                 wol->supported = WAKE_UCAST | WAKE_MCAST |
1578                                  WAKE_BCAST | WAKE_MAGIC;
1579
1580                 wol->wolopts = 0;
1581                 if(adapter->wol & E1000_WUFC_EX)
1582                         wol->wolopts |= WAKE_UCAST;
1583                 if(adapter->wol & E1000_WUFC_MC)
1584                         wol->wolopts |= WAKE_MCAST;
1585                 if(adapter->wol & E1000_WUFC_BC)
1586                         wol->wolopts |= WAKE_BCAST;
1587                 if(adapter->wol & E1000_WUFC_MAG)
1588                         wol->wolopts |= WAKE_MAGIC;
1589                 return;
1590         }
1591 }
1592
1593 static int
1594 e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1595 {
1596         struct e1000_adapter *adapter = netdev_priv(netdev);
1597         struct e1000_hw *hw = &adapter->hw;
1598
1599         switch(adapter->hw.device_id) {
1600         case E1000_DEV_ID_82542:
1601         case E1000_DEV_ID_82543GC_FIBER:
1602         case E1000_DEV_ID_82543GC_COPPER:
1603         case E1000_DEV_ID_82544EI_FIBER:
1604         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1605         case E1000_DEV_ID_82545EM_FIBER:
1606         case E1000_DEV_ID_82545EM_COPPER:
1607                 return wol->wolopts ? -EOPNOTSUPP : 0;
1608
1609         case E1000_DEV_ID_82546EB_FIBER:
1610         case E1000_DEV_ID_82546GB_FIBER:
1611                 /* Wake events only supported on port A for dual fiber */
1612                 if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1613                         return wol->wolopts ? -EOPNOTSUPP : 0;
1614                 /* Fall Through */
1615
1616         default:
1617                 if(wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1618                         return -EOPNOTSUPP;
1619
1620                 adapter->wol = 0;
1621
1622                 if(wol->wolopts & WAKE_UCAST)
1623                         adapter->wol |= E1000_WUFC_EX;
1624                 if(wol->wolopts & WAKE_MCAST)
1625                         adapter->wol |= E1000_WUFC_MC;
1626                 if(wol->wolopts & WAKE_BCAST)
1627                         adapter->wol |= E1000_WUFC_BC;
1628                 if(wol->wolopts & WAKE_MAGIC)
1629                         adapter->wol |= E1000_WUFC_MAG;
1630         }
1631
1632         return 0;
1633 }
1634
1635 /* toggle LED 4 times per second = 2 "blinks" per second */
1636 #define E1000_ID_INTERVAL       (HZ/4)
1637
1638 /* bit defines for adapter->led_status */
1639 #define E1000_LED_ON            0
1640
1641 static void
1642 e1000_led_blink_callback(unsigned long data)
1643 {
1644         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1645
1646         if(test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1647                 e1000_led_off(&adapter->hw);
1648         else
1649                 e1000_led_on(&adapter->hw);
1650
1651         mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1652 }
1653
1654 static int
1655 e1000_phys_id(struct net_device *netdev, uint32_t data)
1656 {
1657         struct e1000_adapter *adapter = netdev_priv(netdev);
1658
1659         if(!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ))
1660                 data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ);
1661
1662         if(adapter->hw.mac_type < e1000_82571) {
1663                 if(!adapter->blink_timer.function) {
1664                         init_timer(&adapter->blink_timer);
1665                         adapter->blink_timer.function = e1000_led_blink_callback;
1666                         adapter->blink_timer.data = (unsigned long) adapter;
1667                 }
1668                 e1000_setup_led(&adapter->hw);
1669                 mod_timer(&adapter->blink_timer, jiffies);
1670                 msleep_interruptible(data * 1000);
1671                 del_timer_sync(&adapter->blink_timer);
1672         }
1673         else {
1674                 E1000_WRITE_REG(&adapter->hw, LEDCTL, (E1000_LEDCTL_LED2_BLINK_RATE |
1675                         E1000_LEDCTL_LED1_BLINK | E1000_LEDCTL_LED2_BLINK | 
1676                         (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) |
1677                         (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED1_MODE_SHIFT) |
1678                         (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED0_MODE_SHIFT)));
1679                 msleep_interruptible(data * 1000);
1680         }
1681
1682         e1000_led_off(&adapter->hw);
1683         clear_bit(E1000_LED_ON, &adapter->led_status);
1684         e1000_cleanup_led(&adapter->hw);
1685
1686         return 0;
1687 }
1688
1689 static int
1690 e1000_nway_reset(struct net_device *netdev)
1691 {
1692         struct e1000_adapter *adapter = netdev_priv(netdev);
1693         if(netif_running(netdev)) {
1694                 e1000_down(adapter);
1695                 e1000_up(adapter);
1696         }
1697         return 0;
1698 }
1699
1700 static int 
1701 e1000_get_stats_count(struct net_device *netdev)
1702 {
1703         return E1000_STATS_LEN;
1704 }
1705
1706 static void 
1707 e1000_get_ethtool_stats(struct net_device *netdev, 
1708                 struct ethtool_stats *stats, uint64_t *data)
1709 {
1710         struct e1000_adapter *adapter = netdev_priv(netdev);
1711         int i;
1712
1713         e1000_update_stats(adapter);
1714         for(i = 0; i < E1000_STATS_LEN; i++) {
1715                 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;  
1716                 data[i] = (e1000_gstrings_stats[i].sizeof_stat == 
1717                         sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
1718         }
1719 }
1720
1721 static void 
1722 e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
1723 {
1724         int i;
1725
1726         switch(stringset) {
1727         case ETH_SS_TEST:
1728                 memcpy(data, *e1000_gstrings_test, 
1729                         E1000_TEST_LEN*ETH_GSTRING_LEN);
1730                 break;
1731         case ETH_SS_STATS:
1732                 for (i=0; i < E1000_STATS_LEN; i++) {
1733                         memcpy(data + i * ETH_GSTRING_LEN, 
1734                         e1000_gstrings_stats[i].stat_string,
1735                         ETH_GSTRING_LEN);
1736                 }
1737                 break;
1738         }
1739 }
1740
1741 struct ethtool_ops e1000_ethtool_ops = {
1742         .get_settings           = e1000_get_settings,
1743         .set_settings           = e1000_set_settings,
1744         .get_drvinfo            = e1000_get_drvinfo,
1745         .get_regs_len           = e1000_get_regs_len,
1746         .get_regs               = e1000_get_regs,
1747         .get_wol                = e1000_get_wol,
1748         .set_wol                = e1000_set_wol,
1749         .get_msglevel           = e1000_get_msglevel,
1750         .set_msglevel           = e1000_set_msglevel,
1751         .nway_reset             = e1000_nway_reset,
1752         .get_link               = ethtool_op_get_link,
1753         .get_eeprom_len         = e1000_get_eeprom_len,
1754         .get_eeprom             = e1000_get_eeprom,
1755         .set_eeprom             = e1000_set_eeprom,
1756         .get_ringparam          = e1000_get_ringparam,
1757         .set_ringparam          = e1000_set_ringparam,
1758         .get_pauseparam         = e1000_get_pauseparam,
1759         .set_pauseparam         = e1000_set_pauseparam,
1760         .get_rx_csum            = e1000_get_rx_csum,
1761         .set_rx_csum            = e1000_set_rx_csum,
1762         .get_tx_csum            = e1000_get_tx_csum,
1763         .set_tx_csum            = e1000_set_tx_csum,
1764         .get_sg                 = ethtool_op_get_sg,
1765         .set_sg                 = ethtool_op_set_sg,
1766 #ifdef NETIF_F_TSO
1767         .get_tso                = ethtool_op_get_tso,
1768         .set_tso                = e1000_set_tso,
1769 #endif
1770         .self_test_count        = e1000_diag_test_count,
1771         .self_test              = e1000_diag_test,
1772         .get_strings            = e1000_get_strings,
1773         .phys_id                = e1000_phys_id,
1774         .get_stats_count        = e1000_get_stats_count,
1775         .get_ethtool_stats      = e1000_get_ethtool_stats,
1776         .get_perm_addr          = ethtool_op_get_perm_addr,
1777 };
1778
1779 void e1000_set_ethtool_ops(struct net_device *netdev)
1780 {
1781         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1782 }