[PATCH] e1000: Fixed the loopback test failure for 82573 based adapters
[linux-2.6.git] / drivers / net / e1000 / e1000_ethtool.c
1 /*******************************************************************************
2
3   
4   Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
5   
6   This program is free software; you can redistribute it and/or modify it 
7   under the terms of the GNU General Public License as published by the Free 
8   Software Foundation; either version 2 of the License, or (at your option) 
9   any later version.
10   
11   This program is distributed in the hope that it will be useful, but WITHOUT 
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
14   more details.
15   
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc., 59 
18   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
19   
20   The full GNU General Public License is included in this distribution in the
21   file called LICENSE.
22   
23   Contact Information:
24   Linux NICS <linux.nics@intel.com>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include "e1000.h"
32
33 #include <asm/uaccess.h>
34
35 extern char e1000_driver_name[];
36 extern char e1000_driver_version[];
37
38 extern int e1000_up(struct e1000_adapter *adapter);
39 extern void e1000_down(struct e1000_adapter *adapter);
40 extern void e1000_reset(struct e1000_adapter *adapter);
41 extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
42 extern int e1000_setup_rx_resources(struct e1000_adapter *adapter);
43 extern int e1000_setup_tx_resources(struct e1000_adapter *adapter);
44 extern void e1000_free_rx_resources(struct e1000_adapter *adapter);
45 extern void e1000_free_tx_resources(struct e1000_adapter *adapter);
46 extern void e1000_update_stats(struct e1000_adapter *adapter);
47
48 struct e1000_stats {
49         char stat_string[ETH_GSTRING_LEN];
50         int sizeof_stat;
51         int stat_offset;
52 };
53
54 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
55                       offsetof(struct e1000_adapter, m)
56 static const struct e1000_stats e1000_gstrings_stats[] = {
57         { "rx_packets", E1000_STAT(net_stats.rx_packets) },
58         { "tx_packets", E1000_STAT(net_stats.tx_packets) },
59         { "rx_bytes", E1000_STAT(net_stats.rx_bytes) },
60         { "tx_bytes", E1000_STAT(net_stats.tx_bytes) },
61         { "rx_errors", E1000_STAT(net_stats.rx_errors) },
62         { "tx_errors", E1000_STAT(net_stats.tx_errors) },
63         { "rx_dropped", E1000_STAT(net_stats.rx_dropped) },
64         { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
65         { "multicast", E1000_STAT(net_stats.multicast) },
66         { "collisions", E1000_STAT(net_stats.collisions) },
67         { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
68         { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
69         { "rx_crc_errors", E1000_STAT(net_stats.rx_crc_errors) },
70         { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
71         { "rx_fifo_errors", E1000_STAT(net_stats.rx_fifo_errors) },
72         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
73         { "rx_missed_errors", E1000_STAT(net_stats.rx_missed_errors) },
74         { "tx_aborted_errors", E1000_STAT(net_stats.tx_aborted_errors) },
75         { "tx_carrier_errors", E1000_STAT(net_stats.tx_carrier_errors) },
76         { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
77         { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
78         { "tx_window_errors", E1000_STAT(net_stats.tx_window_errors) },
79         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
80         { "tx_deferred_ok", E1000_STAT(stats.dc) },
81         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
82         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
83         { "rx_long_length_errors", E1000_STAT(stats.roc) },
84         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
85         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
86         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
87         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
88         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
89         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
90         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
91         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
92         { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
93         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
94         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) }
95 };
96 #define E1000_STATS_LEN \
97         sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
98 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
99         "Register test  (offline)", "Eeprom test    (offline)",
100         "Interrupt test (offline)", "Loopback test  (offline)",
101         "Link test   (on/offline)"
102 };
103 #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
104
105 static int
106 e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
107 {
108         struct e1000_adapter *adapter = netdev_priv(netdev);
109         struct e1000_hw *hw = &adapter->hw;
110
111         if(hw->media_type == e1000_media_type_copper) {
112
113                 ecmd->supported = (SUPPORTED_10baseT_Half |
114                                    SUPPORTED_10baseT_Full |
115                                    SUPPORTED_100baseT_Half |
116                                    SUPPORTED_100baseT_Full |
117                                    SUPPORTED_1000baseT_Full|
118                                    SUPPORTED_Autoneg |
119                                    SUPPORTED_TP);
120
121                 ecmd->advertising = ADVERTISED_TP;
122
123                 if(hw->autoneg == 1) {
124                         ecmd->advertising |= ADVERTISED_Autoneg;
125
126                         /* the e1000 autoneg seems to match ethtool nicely */
127
128                         ecmd->advertising |= hw->autoneg_advertised;
129                 }
130
131                 ecmd->port = PORT_TP;
132                 ecmd->phy_address = hw->phy_addr;
133
134                 if(hw->mac_type == e1000_82543)
135                         ecmd->transceiver = XCVR_EXTERNAL;
136                 else
137                         ecmd->transceiver = XCVR_INTERNAL;
138
139         } else {
140                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
141                                      SUPPORTED_FIBRE |
142                                      SUPPORTED_Autoneg);
143
144                 ecmd->advertising = (SUPPORTED_1000baseT_Full |
145                                      SUPPORTED_FIBRE |
146                                      SUPPORTED_Autoneg);
147
148                 ecmd->port = PORT_FIBRE;
149
150                 if(hw->mac_type >= e1000_82545)
151                         ecmd->transceiver = XCVR_INTERNAL;
152                 else
153                         ecmd->transceiver = XCVR_EXTERNAL;
154         }
155
156         if(netif_carrier_ok(adapter->netdev)) {
157
158                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
159                                                    &adapter->link_duplex);
160                 ecmd->speed = adapter->link_speed;
161
162                 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
163                  *          and HALF_DUPLEX != DUPLEX_HALF */
164
165                 if(adapter->link_duplex == FULL_DUPLEX)
166                         ecmd->duplex = DUPLEX_FULL;
167                 else
168                         ecmd->duplex = DUPLEX_HALF;
169         } else {
170                 ecmd->speed = -1;
171                 ecmd->duplex = -1;
172         }
173
174         ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
175                          hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
176         return 0;
177 }
178
179 static int
180 e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
181 {
182         struct e1000_adapter *adapter = netdev_priv(netdev);
183         struct e1000_hw *hw = &adapter->hw;
184
185         if(ecmd->autoneg == AUTONEG_ENABLE) {
186                 hw->autoneg = 1;
187                 hw->autoneg_advertised = 0x002F;
188                 ecmd->advertising = 0x002F;
189         } else
190                 if(e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex))
191                         return -EINVAL;
192
193         /* reset the link */
194
195         if(netif_running(adapter->netdev)) {
196                 e1000_down(adapter);
197                 e1000_reset(adapter);
198                 e1000_up(adapter);
199         } else
200                 e1000_reset(adapter);
201
202         return 0;
203 }
204
205 static void
206 e1000_get_pauseparam(struct net_device *netdev,
207                      struct ethtool_pauseparam *pause)
208 {
209         struct e1000_adapter *adapter = netdev_priv(netdev);
210         struct e1000_hw *hw = &adapter->hw;
211
212         pause->autoneg = 
213                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
214         
215         if(hw->fc == e1000_fc_rx_pause)
216                 pause->rx_pause = 1;
217         else if(hw->fc == e1000_fc_tx_pause)
218                 pause->tx_pause = 1;
219         else if(hw->fc == e1000_fc_full) {
220                 pause->rx_pause = 1;
221                 pause->tx_pause = 1;
222         }
223 }
224
225 static int
226 e1000_set_pauseparam(struct net_device *netdev,
227                      struct ethtool_pauseparam *pause)
228 {
229         struct e1000_adapter *adapter = netdev_priv(netdev);
230         struct e1000_hw *hw = &adapter->hw;
231         
232         adapter->fc_autoneg = pause->autoneg;
233
234         if(pause->rx_pause && pause->tx_pause)
235                 hw->fc = e1000_fc_full;
236         else if(pause->rx_pause && !pause->tx_pause)
237                 hw->fc = e1000_fc_rx_pause;
238         else if(!pause->rx_pause && pause->tx_pause)
239                 hw->fc = e1000_fc_tx_pause;
240         else if(!pause->rx_pause && !pause->tx_pause)
241                 hw->fc = e1000_fc_none;
242
243         hw->original_fc = hw->fc;
244
245         if(adapter->fc_autoneg == AUTONEG_ENABLE) {
246                 if(netif_running(adapter->netdev)) {
247                         e1000_down(adapter);
248                         e1000_up(adapter);
249                 } else
250                         e1000_reset(adapter);
251         }
252         else
253                 return ((hw->media_type == e1000_media_type_fiber) ?
254                         e1000_setup_link(hw) : e1000_force_mac_fc(hw));
255         
256         return 0;
257 }
258
259 static uint32_t
260 e1000_get_rx_csum(struct net_device *netdev)
261 {
262         struct e1000_adapter *adapter = netdev_priv(netdev);
263         return adapter->rx_csum;
264 }
265
266 static int
267 e1000_set_rx_csum(struct net_device *netdev, uint32_t data)
268 {
269         struct e1000_adapter *adapter = netdev_priv(netdev);
270         adapter->rx_csum = data;
271
272         if(netif_running(netdev)) {
273                 e1000_down(adapter);
274                 e1000_up(adapter);
275         } else
276                 e1000_reset(adapter);
277         return 0;
278 }
279         
280 static uint32_t
281 e1000_get_tx_csum(struct net_device *netdev)
282 {
283         return (netdev->features & NETIF_F_HW_CSUM) != 0;
284 }
285
286 static int
287 e1000_set_tx_csum(struct net_device *netdev, uint32_t data)
288 {
289         struct e1000_adapter *adapter = netdev_priv(netdev);
290
291         if(adapter->hw.mac_type < e1000_82543) {
292                 if (!data)
293                         return -EINVAL;
294                 return 0;
295         }
296
297         if (data)
298                 netdev->features |= NETIF_F_HW_CSUM;
299         else
300                 netdev->features &= ~NETIF_F_HW_CSUM;
301
302         return 0;
303 }
304
305 #ifdef NETIF_F_TSO
306 static int
307 e1000_set_tso(struct net_device *netdev, uint32_t data)
308 {
309         struct e1000_adapter *adapter = netdev_priv(netdev);
310         if((adapter->hw.mac_type < e1000_82544) ||
311             (adapter->hw.mac_type == e1000_82547)) 
312                 return data ? -EINVAL : 0;
313
314         if (data)
315                 netdev->features |= NETIF_F_TSO;
316         else
317                 netdev->features &= ~NETIF_F_TSO;
318         return 0;
319
320 #endif /* NETIF_F_TSO */
321
322 static uint32_t
323 e1000_get_msglevel(struct net_device *netdev)
324 {
325         struct e1000_adapter *adapter = netdev_priv(netdev);
326         return adapter->msg_enable;
327 }
328
329 static void
330 e1000_set_msglevel(struct net_device *netdev, uint32_t data)
331 {
332         struct e1000_adapter *adapter = netdev_priv(netdev);
333         adapter->msg_enable = data;
334 }
335
336 static int 
337 e1000_get_regs_len(struct net_device *netdev)
338 {
339 #define E1000_REGS_LEN 32
340         return E1000_REGS_LEN * sizeof(uint32_t);
341 }
342
343 static void
344 e1000_get_regs(struct net_device *netdev,
345                struct ethtool_regs *regs, void *p)
346 {
347         struct e1000_adapter *adapter = netdev_priv(netdev);
348         struct e1000_hw *hw = &adapter->hw;
349         uint32_t *regs_buff = p;
350         uint16_t phy_data;
351
352         memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t));
353
354         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
355
356         regs_buff[0]  = E1000_READ_REG(hw, CTRL);
357         regs_buff[1]  = E1000_READ_REG(hw, STATUS);
358
359         regs_buff[2]  = E1000_READ_REG(hw, RCTL);
360         regs_buff[3]  = E1000_READ_REG(hw, RDLEN);
361         regs_buff[4]  = E1000_READ_REG(hw, RDH);
362         regs_buff[5]  = E1000_READ_REG(hw, RDT);
363         regs_buff[6]  = E1000_READ_REG(hw, RDTR);
364
365         regs_buff[7]  = E1000_READ_REG(hw, TCTL);
366         regs_buff[8]  = E1000_READ_REG(hw, TDLEN);
367         regs_buff[9]  = E1000_READ_REG(hw, TDH);
368         regs_buff[10] = E1000_READ_REG(hw, TDT);
369         regs_buff[11] = E1000_READ_REG(hw, TIDV);
370
371         regs_buff[12] = adapter->hw.phy_type;  /* PHY type (IGP=1, M88=0) */
372         if(hw->phy_type == e1000_phy_igp) {
373                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
374                                     IGP01E1000_PHY_AGC_A);
375                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
376                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
377                 regs_buff[13] = (uint32_t)phy_data; /* cable length */
378                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
379                                     IGP01E1000_PHY_AGC_B);
380                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
381                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
382                 regs_buff[14] = (uint32_t)phy_data; /* cable length */
383                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
384                                     IGP01E1000_PHY_AGC_C);
385                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
386                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
387                 regs_buff[15] = (uint32_t)phy_data; /* cable length */
388                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
389                                     IGP01E1000_PHY_AGC_D);
390                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
391                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
392                 regs_buff[16] = (uint32_t)phy_data; /* cable length */
393                 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
394                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
395                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
396                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
397                 regs_buff[18] = (uint32_t)phy_data; /* cable polarity */
398                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
399                                     IGP01E1000_PHY_PCS_INIT_REG);
400                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
401                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
402                 regs_buff[19] = (uint32_t)phy_data; /* cable polarity */
403                 regs_buff[20] = 0; /* polarity correction enabled (always) */
404                 regs_buff[22] = 0; /* phy receive errors (unavailable) */
405                 regs_buff[23] = regs_buff[18]; /* mdix mode */
406                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
407         } else {
408                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
409                 regs_buff[13] = (uint32_t)phy_data; /* cable length */
410                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
411                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
412                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
413                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
414                 regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */
415                 regs_buff[18] = regs_buff[13]; /* cable polarity */
416                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
417                 regs_buff[20] = regs_buff[17]; /* polarity correction */
418                 /* phy receive errors */
419                 regs_buff[22] = adapter->phy_stats.receive_errors;
420                 regs_buff[23] = regs_buff[13]; /* mdix mode */
421         }
422         regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
423         e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
424         regs_buff[24] = (uint32_t)phy_data;  /* phy local receiver status */
425         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
426         if(hw->mac_type >= e1000_82540 &&
427            hw->media_type == e1000_media_type_copper) {
428                 regs_buff[26] = E1000_READ_REG(hw, MANC);
429         }
430 }
431
432 static int
433 e1000_get_eeprom_len(struct net_device *netdev)
434 {
435         struct e1000_adapter *adapter = netdev_priv(netdev);
436         return adapter->hw.eeprom.word_size * 2;
437 }
438
439 static int
440 e1000_get_eeprom(struct net_device *netdev,
441                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
442 {
443         struct e1000_adapter *adapter = netdev_priv(netdev);
444         struct e1000_hw *hw = &adapter->hw;
445         uint16_t *eeprom_buff;
446         int first_word, last_word;
447         int ret_val = 0;
448         uint16_t i;
449
450         if(eeprom->len == 0)
451                 return -EINVAL;
452
453         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
454
455         first_word = eeprom->offset >> 1;
456         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
457
458         eeprom_buff = kmalloc(sizeof(uint16_t) *
459                         (last_word - first_word + 1), GFP_KERNEL);
460         if(!eeprom_buff)
461                 return -ENOMEM;
462
463         if(hw->eeprom.type == e1000_eeprom_spi)
464                 ret_val = e1000_read_eeprom(hw, first_word,
465                                             last_word - first_word + 1,
466                                             eeprom_buff);
467         else {
468                 for (i = 0; i < last_word - first_word + 1; i++)
469                         if((ret_val = e1000_read_eeprom(hw, first_word + i, 1,
470                                                         &eeprom_buff[i])))
471                                 break;
472         }
473
474         /* Device's eeprom is always little-endian, word addressable */
475         for (i = 0; i < last_word - first_word + 1; i++)
476                 le16_to_cpus(&eeprom_buff[i]);
477
478         memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1),
479                         eeprom->len);
480         kfree(eeprom_buff);
481
482         return ret_val;
483 }
484
485 static int
486 e1000_set_eeprom(struct net_device *netdev,
487                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
488 {
489         struct e1000_adapter *adapter = netdev_priv(netdev);
490         struct e1000_hw *hw = &adapter->hw;
491         uint16_t *eeprom_buff;
492         void *ptr;
493         int max_len, first_word, last_word, ret_val = 0;
494         uint16_t i;
495
496         if(eeprom->len == 0)
497                 return -EOPNOTSUPP;
498
499         if(eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
500                 return -EFAULT;
501
502         max_len = hw->eeprom.word_size * 2;
503
504         first_word = eeprom->offset >> 1;
505         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
506         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
507         if(!eeprom_buff)
508                 return -ENOMEM;
509
510         ptr = (void *)eeprom_buff;
511
512         if(eeprom->offset & 1) {
513                 /* need read/modify/write of first changed EEPROM word */
514                 /* only the second byte of the word is being modified */
515                 ret_val = e1000_read_eeprom(hw, first_word, 1,
516                                             &eeprom_buff[0]);
517                 ptr++;
518         }
519         if(((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
520                 /* need read/modify/write of last changed EEPROM word */
521                 /* only the first byte of the word is being modified */
522                 ret_val = e1000_read_eeprom(hw, last_word, 1,
523                                   &eeprom_buff[last_word - first_word]);
524         }
525
526         /* Device's eeprom is always little-endian, word addressable */
527         for (i = 0; i < last_word - first_word + 1; i++)
528                 le16_to_cpus(&eeprom_buff[i]);
529
530         memcpy(ptr, bytes, eeprom->len);
531
532         for (i = 0; i < last_word - first_word + 1; i++)
533                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
534
535         ret_val = e1000_write_eeprom(hw, first_word,
536                                      last_word - first_word + 1, eeprom_buff);
537
538         /* Update the checksum over the first part of the EEPROM if needed */
539         if((ret_val == 0) && first_word <= EEPROM_CHECKSUM_REG)
540                 e1000_update_eeprom_checksum(hw);
541
542         kfree(eeprom_buff);
543         return ret_val;
544 }
545
546 static void
547 e1000_get_drvinfo(struct net_device *netdev,
548                        struct ethtool_drvinfo *drvinfo)
549 {
550         struct e1000_adapter *adapter = netdev_priv(netdev);
551
552         strncpy(drvinfo->driver,  e1000_driver_name, 32);
553         strncpy(drvinfo->version, e1000_driver_version, 32);
554         strncpy(drvinfo->fw_version, "N/A", 32);
555         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
556         drvinfo->n_stats = E1000_STATS_LEN;
557         drvinfo->testinfo_len = E1000_TEST_LEN;
558         drvinfo->regdump_len = e1000_get_regs_len(netdev);
559         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
560 }
561
562 static void
563 e1000_get_ringparam(struct net_device *netdev,
564                     struct ethtool_ringparam *ring)
565 {
566         struct e1000_adapter *adapter = netdev_priv(netdev);
567         e1000_mac_type mac_type = adapter->hw.mac_type;
568         struct e1000_desc_ring *txdr = &adapter->tx_ring;
569         struct e1000_desc_ring *rxdr = &adapter->rx_ring;
570
571         ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
572                 E1000_MAX_82544_RXD;
573         ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
574                 E1000_MAX_82544_TXD;
575         ring->rx_mini_max_pending = 0;
576         ring->rx_jumbo_max_pending = 0;
577         ring->rx_pending = rxdr->count;
578         ring->tx_pending = txdr->count;
579         ring->rx_mini_pending = 0;
580         ring->rx_jumbo_pending = 0;
581 }
582
583 static int 
584 e1000_set_ringparam(struct net_device *netdev,
585                     struct ethtool_ringparam *ring)
586 {
587         struct e1000_adapter *adapter = netdev_priv(netdev);
588         e1000_mac_type mac_type = adapter->hw.mac_type;
589         struct e1000_desc_ring *txdr = &adapter->tx_ring;
590         struct e1000_desc_ring *rxdr = &adapter->rx_ring;
591         struct e1000_desc_ring tx_old, tx_new, rx_old, rx_new;
592         int err;
593
594         tx_old = adapter->tx_ring;
595         rx_old = adapter->rx_ring;
596
597         if((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
598                 return -EINVAL;
599
600         if(netif_running(adapter->netdev))
601                 e1000_down(adapter);
602
603         rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD);
604         rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ?
605                 E1000_MAX_RXD : E1000_MAX_82544_RXD));
606         E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE); 
607
608         txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD);
609         txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ?
610                 E1000_MAX_TXD : E1000_MAX_82544_TXD));
611         E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE); 
612
613         if(netif_running(adapter->netdev)) {
614                 /* Try to get new resources before deleting old */
615                 if((err = e1000_setup_rx_resources(adapter)))
616                         goto err_setup_rx;
617                 if((err = e1000_setup_tx_resources(adapter)))
618                         goto err_setup_tx;
619
620                 /* save the new, restore the old in order to free it,
621                  * then restore the new back again */
622
623                 rx_new = adapter->rx_ring;
624                 tx_new = adapter->tx_ring;
625                 adapter->rx_ring = rx_old;
626                 adapter->tx_ring = tx_old;
627                 e1000_free_rx_resources(adapter);
628                 e1000_free_tx_resources(adapter);
629                 adapter->rx_ring = rx_new;
630                 adapter->tx_ring = tx_new;
631                 if((err = e1000_up(adapter)))
632                         return err;
633         }
634
635         return 0;
636 err_setup_tx:
637         e1000_free_rx_resources(adapter);
638 err_setup_rx:
639         adapter->rx_ring = rx_old;
640         adapter->tx_ring = tx_old;
641         e1000_up(adapter);
642         return err;
643 }
644
645 #define REG_PATTERN_TEST(R, M, W)                                              \
646 {                                                                              \
647         uint32_t pat, value;                                                   \
648         uint32_t test[] =                                                      \
649                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};              \
650         for(pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) {              \
651                 E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W));             \
652                 value = E1000_READ_REG(&adapter->hw, R);                       \
653                 if(value != (test[pat] & W & M)) {                             \
654                         DPRINTK(DRV, ERR, "pattern test reg %04X failed: got " \
655                                 "0x%08X expected 0x%08X\n",                    \
656                                 E1000_##R, value, (test[pat] & W & M));        \
657                         *data = (adapter->hw.mac_type < e1000_82543) ?         \
658                                 E1000_82542_##R : E1000_##R;                   \
659                         return 1;                                              \
660                 }                                                              \
661         }                                                                      \
662 }
663
664 #define REG_SET_AND_CHECK(R, M, W)                                             \
665 {                                                                              \
666         uint32_t value;                                                        \
667         E1000_WRITE_REG(&adapter->hw, R, W & M);                               \
668         value = E1000_READ_REG(&adapter->hw, R);                               \
669         if((W & M) != (value & M)) {                                          \
670                 DPRINTK(DRV, ERR, "set/check reg %04X test failed: got 0x%08X "\
671                         "expected 0x%08X\n", E1000_##R, (value & M), (W & M)); \
672                 *data = (adapter->hw.mac_type < e1000_82543) ?                 \
673                         E1000_82542_##R : E1000_##R;                           \
674                 return 1;                                                      \
675         }                                                                      \
676 }
677
678 static int
679 e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
680 {
681         uint32_t value, before, after;
682         uint32_t i, toggle;
683
684         /* The status register is Read Only, so a write should fail.
685          * Some bits that get toggled are ignored.
686          */
687         switch (adapter->hw.mac_type) {
688         case e1000_82573:
689                 toggle = 0x7FFFF033;
690                 break;
691         default:
692                 toggle = 0xFFFFF833;
693                 break;
694         }
695
696         before = E1000_READ_REG(&adapter->hw, STATUS);
697         value = (E1000_READ_REG(&adapter->hw, STATUS) & toggle);
698         E1000_WRITE_REG(&adapter->hw, STATUS, toggle);
699         after = E1000_READ_REG(&adapter->hw, STATUS) & toggle;
700         if(value != after) {
701                 DPRINTK(DRV, ERR, "failed STATUS register test got: "
702                         "0x%08X expected: 0x%08X\n", after, value);
703                 *data = 1;
704                 return 1;
705         }
706         /* restore previous status */
707         E1000_WRITE_REG(&adapter->hw, STATUS, before);
708
709         REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
710         REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
711         REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
712         REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
713         REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
714         REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
715         REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
716         REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
717         REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
718         REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
719         REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
720         REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
721         REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
722         REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
723
724         REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
725         REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0x003FFFFB);
726         REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
727
728         if(adapter->hw.mac_type >= e1000_82543) {
729
730                 REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0xFFFFFFFF);
731                 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
732                 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
733                 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
734                 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
735
736                 for(i = 0; i < E1000_RAR_ENTRIES; i++) {
737                         REG_PATTERN_TEST(RA + ((i << 1) << 2), 0xFFFFFFFF,
738                                          0xFFFFFFFF);
739                         REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
740                                          0xFFFFFFFF);
741                 }
742
743         } else {
744
745                 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
746                 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
747                 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
748                 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
749
750         }
751
752         for(i = 0; i < E1000_MC_TBL_SIZE; i++)
753                 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
754
755         *data = 0;
756         return 0;
757 }
758
759 static int
760 e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data)
761 {
762         uint16_t temp;
763         uint16_t checksum = 0;
764         uint16_t i;
765
766         *data = 0;
767         /* Read and add up the contents of the EEPROM */
768         for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
769                 if((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) {
770                         *data = 1;
771                         break;
772                 }
773                 checksum += temp;
774         }
775
776         /* If Checksum is not Correct return error else test passed */
777         if((checksum != (uint16_t) EEPROM_SUM) && !(*data))
778                 *data = 2;
779
780         return *data;
781 }
782
783 static irqreturn_t
784 e1000_test_intr(int irq,
785                 void *data,
786                 struct pt_regs *regs)
787 {
788         struct net_device *netdev = (struct net_device *) data;
789         struct e1000_adapter *adapter = netdev_priv(netdev);
790
791         adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR);
792
793         return IRQ_HANDLED;
794 }
795
796 static int
797 e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
798 {
799         struct net_device *netdev = adapter->netdev;
800         uint32_t mask, i=0, shared_int = TRUE;
801         uint32_t irq = adapter->pdev->irq;
802
803         *data = 0;
804
805         /* Hook up test interrupt handler just for this test */
806         if(!request_irq(irq, &e1000_test_intr, 0, netdev->name, netdev)) {
807                 shared_int = FALSE;
808         } else if(request_irq(irq, &e1000_test_intr, SA_SHIRQ,
809                               netdev->name, netdev)){
810                 *data = 1;
811                 return -1;
812         }
813
814         /* Disable all the interrupts */
815         E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
816         msec_delay(10);
817
818         /* Test each interrupt */
819         for(; i < 10; i++) {
820
821                 /* Interrupt to test */
822                 mask = 1 << i;
823
824                 if(!shared_int) {
825                         /* Disable the interrupt to be reported in
826                          * the cause register and then force the same
827                          * interrupt and see if one gets posted.  If
828                          * an interrupt was posted to the bus, the
829                          * test failed.
830                          */
831                         adapter->test_icr = 0;
832                         E1000_WRITE_REG(&adapter->hw, IMC, mask);
833                         E1000_WRITE_REG(&adapter->hw, ICS, mask);
834                         msec_delay(10);
835  
836                         if(adapter->test_icr & mask) {
837                                 *data = 3;
838                                 break;
839                         }
840                 }
841
842                 /* Enable the interrupt to be reported in
843                  * the cause register and then force the same
844                  * interrupt and see if one gets posted.  If
845                  * an interrupt was not posted to the bus, the
846                  * test failed.
847                  */
848                 adapter->test_icr = 0;
849                 E1000_WRITE_REG(&adapter->hw, IMS, mask);
850                 E1000_WRITE_REG(&adapter->hw, ICS, mask);
851                 msec_delay(10);
852
853                 if(!(adapter->test_icr & mask)) {
854                         *data = 4;
855                         break;
856                 }
857
858                 if(!shared_int) {
859                         /* Disable the other interrupts to be reported in
860                          * the cause register and then force the other
861                          * interrupts and see if any get posted.  If
862                          * an interrupt was posted to the bus, the
863                          * test failed.
864                          */
865                         adapter->test_icr = 0;
866                         E1000_WRITE_REG(&adapter->hw, IMC, ~mask & 0x00007FFF);
867                         E1000_WRITE_REG(&adapter->hw, ICS, ~mask & 0x00007FFF);
868                         msec_delay(10);
869
870                         if(adapter->test_icr) {
871                                 *data = 5;
872                                 break;
873                         }
874                 }
875         }
876
877         /* Disable all the interrupts */
878         E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
879         msec_delay(10);
880
881         /* Unhook test interrupt handler */
882         free_irq(irq, netdev);
883
884         return *data;
885 }
886
887 static void
888 e1000_free_desc_rings(struct e1000_adapter *adapter)
889 {
890         struct e1000_desc_ring *txdr = &adapter->test_tx_ring;
891         struct e1000_desc_ring *rxdr = &adapter->test_rx_ring;
892         struct pci_dev *pdev = adapter->pdev;
893         int i;
894
895         if(txdr->desc && txdr->buffer_info) {
896                 for(i = 0; i < txdr->count; i++) {
897                         if(txdr->buffer_info[i].dma)
898                                 pci_unmap_single(pdev, txdr->buffer_info[i].dma,
899                                                  txdr->buffer_info[i].length,
900                                                  PCI_DMA_TODEVICE);
901                         if(txdr->buffer_info[i].skb)
902                                 dev_kfree_skb(txdr->buffer_info[i].skb);
903                 }
904         }
905
906         if(rxdr->desc && rxdr->buffer_info) {
907                 for(i = 0; i < rxdr->count; i++) {
908                         if(rxdr->buffer_info[i].dma)
909                                 pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
910                                                  rxdr->buffer_info[i].length,
911                                                  PCI_DMA_FROMDEVICE);
912                         if(rxdr->buffer_info[i].skb)
913                                 dev_kfree_skb(rxdr->buffer_info[i].skb);
914                 }
915         }
916
917         if(txdr->desc)
918                 pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
919         if(rxdr->desc)
920                 pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
921
922         if(txdr->buffer_info)
923                 kfree(txdr->buffer_info);
924         if(rxdr->buffer_info)
925                 kfree(rxdr->buffer_info);
926
927         return;
928 }
929
930 static int
931 e1000_setup_desc_rings(struct e1000_adapter *adapter)
932 {
933         struct e1000_desc_ring *txdr = &adapter->test_tx_ring;
934         struct e1000_desc_ring *rxdr = &adapter->test_rx_ring;
935         struct pci_dev *pdev = adapter->pdev;
936         uint32_t rctl;
937         int size, i, ret_val;
938
939         /* Setup Tx descriptor ring and Tx buffers */
940
941         if(!txdr->count)
942                 txdr->count = E1000_DEFAULT_TXD;   
943
944         size = txdr->count * sizeof(struct e1000_buffer);
945         if(!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
946                 ret_val = 1;
947                 goto err_nomem;
948         }
949         memset(txdr->buffer_info, 0, size);
950
951         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
952         E1000_ROUNDUP(txdr->size, 4096);
953         if(!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) {
954                 ret_val = 2;
955                 goto err_nomem;
956         }
957         memset(txdr->desc, 0, txdr->size);
958         txdr->next_to_use = txdr->next_to_clean = 0;
959
960         E1000_WRITE_REG(&adapter->hw, TDBAL,
961                         ((uint64_t) txdr->dma & 0x00000000FFFFFFFF));
962         E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32));
963         E1000_WRITE_REG(&adapter->hw, TDLEN,
964                         txdr->count * sizeof(struct e1000_tx_desc));
965         E1000_WRITE_REG(&adapter->hw, TDH, 0);
966         E1000_WRITE_REG(&adapter->hw, TDT, 0);
967         E1000_WRITE_REG(&adapter->hw, TCTL,
968                         E1000_TCTL_PSP | E1000_TCTL_EN |
969                         E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
970                         E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
971
972         for(i = 0; i < txdr->count; i++) {
973                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
974                 struct sk_buff *skb;
975                 unsigned int size = 1024;
976
977                 if(!(skb = alloc_skb(size, GFP_KERNEL))) {
978                         ret_val = 3;
979                         goto err_nomem;
980                 }
981                 skb_put(skb, size);
982                 txdr->buffer_info[i].skb = skb;
983                 txdr->buffer_info[i].length = skb->len;
984                 txdr->buffer_info[i].dma =
985                         pci_map_single(pdev, skb->data, skb->len,
986                                        PCI_DMA_TODEVICE);
987                 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
988                 tx_desc->lower.data = cpu_to_le32(skb->len);
989                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
990                                                    E1000_TXD_CMD_IFCS |
991                                                    E1000_TXD_CMD_RPS);
992                 tx_desc->upper.data = 0;
993         }
994
995         /* Setup Rx descriptor ring and Rx buffers */
996
997         if(!rxdr->count)
998                 rxdr->count = E1000_DEFAULT_RXD;   
999
1000         size = rxdr->count * sizeof(struct e1000_buffer);
1001         if(!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
1002                 ret_val = 4;
1003                 goto err_nomem;
1004         }
1005         memset(rxdr->buffer_info, 0, size);
1006
1007         rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1008         if(!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) {
1009                 ret_val = 5;
1010                 goto err_nomem;
1011         }
1012         memset(rxdr->desc, 0, rxdr->size);
1013         rxdr->next_to_use = rxdr->next_to_clean = 0;
1014
1015         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1016         E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
1017         E1000_WRITE_REG(&adapter->hw, RDBAL,
1018                         ((uint64_t) rxdr->dma & 0xFFFFFFFF));
1019         E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32));
1020         E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size);
1021         E1000_WRITE_REG(&adapter->hw, RDH, 0);
1022         E1000_WRITE_REG(&adapter->hw, RDT, 0);
1023         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1024                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1025                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1026         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1027
1028         for(i = 0; i < rxdr->count; i++) {
1029                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1030                 struct sk_buff *skb;
1031
1032                 if(!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN,
1033                                 GFP_KERNEL))) {
1034                         ret_val = 6;
1035                         goto err_nomem;
1036                 }
1037                 skb_reserve(skb, NET_IP_ALIGN);
1038                 rxdr->buffer_info[i].skb = skb;
1039                 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1040                 rxdr->buffer_info[i].dma =
1041                         pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
1042                                        PCI_DMA_FROMDEVICE);
1043                 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1044                 memset(skb->data, 0x00, skb->len);
1045         }
1046
1047         return 0;
1048
1049 err_nomem:
1050         e1000_free_desc_rings(adapter);
1051         return ret_val;
1052 }
1053
1054 static void
1055 e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1056 {
1057         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1058         e1000_write_phy_reg(&adapter->hw, 29, 0x001F);
1059         e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC);
1060         e1000_write_phy_reg(&adapter->hw, 29, 0x001A);
1061         e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0);
1062 }
1063
1064 static void
1065 e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1066 {
1067         uint16_t phy_reg;
1068
1069         /* Because we reset the PHY above, we need to re-force TX_CLK in the
1070          * Extended PHY Specific Control Register to 25MHz clock.  This
1071          * value defaults back to a 2.5MHz clock when the PHY is reset.
1072          */
1073         e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1074         phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1075         e1000_write_phy_reg(&adapter->hw,
1076                 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1077
1078         /* In addition, because of the s/w reset above, we need to enable
1079          * CRS on TX.  This must be set for both full and half duplex
1080          * operation.
1081          */
1082         e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1083         phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1084         e1000_write_phy_reg(&adapter->hw,
1085                 M88E1000_PHY_SPEC_CTRL, phy_reg);
1086 }
1087
1088 static int
1089 e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1090 {
1091         uint32_t ctrl_reg;
1092         uint16_t phy_reg;
1093
1094         /* Setup the Device Control Register for PHY loopback test. */
1095
1096         ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1097         ctrl_reg |= (E1000_CTRL_ILOS |          /* Invert Loss-Of-Signal */
1098                      E1000_CTRL_FRCSPD |        /* Set the Force Speed Bit */
1099                      E1000_CTRL_FRCDPX |        /* Set the Force Duplex Bit */
1100                      E1000_CTRL_SPD_1000 |      /* Force Speed to 1000 */
1101                      E1000_CTRL_FD);            /* Force Duplex to FULL */
1102
1103         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1104
1105         /* Read the PHY Specific Control Register (0x10) */
1106         e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1107
1108         /* Clear Auto-Crossover bits in PHY Specific Control Register
1109          * (bits 6:5).
1110          */
1111         phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1112         e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1113
1114         /* Perform software reset on the PHY */
1115         e1000_phy_reset(&adapter->hw);
1116
1117         /* Have to setup TX_CLK and TX_CRS after software reset */
1118         e1000_phy_reset_clk_and_crs(adapter);
1119
1120         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100);
1121
1122         /* Wait for reset to complete. */
1123         udelay(500);
1124
1125         /* Have to setup TX_CLK and TX_CRS after software reset */
1126         e1000_phy_reset_clk_and_crs(adapter);
1127
1128         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1129         e1000_phy_disable_receiver(adapter);
1130
1131         /* Set the loopback bit in the PHY control register. */
1132         e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1133         phy_reg |= MII_CR_LOOPBACK;
1134         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1135
1136         /* Setup TX_CLK and TX_CRS one more time. */
1137         e1000_phy_reset_clk_and_crs(adapter);
1138
1139         /* Check Phy Configuration */
1140         e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1141         if(phy_reg != 0x4100)
1142                  return 9;
1143
1144         e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1145         if(phy_reg != 0x0070)
1146                 return 10;
1147
1148         e1000_read_phy_reg(&adapter->hw, 29, &phy_reg);
1149         if(phy_reg != 0x001A)
1150                 return 11;
1151
1152         return 0;
1153 }
1154
1155 static int
1156 e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1157 {
1158         uint32_t ctrl_reg = 0;
1159         uint32_t stat_reg = 0;
1160
1161         adapter->hw.autoneg = FALSE;
1162
1163         if(adapter->hw.phy_type == e1000_phy_m88) {
1164                 /* Auto-MDI/MDIX Off */
1165                 e1000_write_phy_reg(&adapter->hw,
1166                                     M88E1000_PHY_SPEC_CTRL, 0x0808);
1167                 /* reset to update Auto-MDI/MDIX */
1168                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140);
1169                 /* autoneg off */
1170                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140);
1171         }
1172         /* force 1000, set loopback */
1173         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
1174
1175         /* Now set up the MAC to the same speed/duplex as the PHY. */
1176         ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1177         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1178         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1179                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1180                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1181                      E1000_CTRL_FD);     /* Force Duplex to FULL */
1182
1183         if(adapter->hw.media_type == e1000_media_type_copper &&
1184            adapter->hw.phy_type == e1000_phy_m88) {
1185                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1186         } else {
1187                 /* Set the ILOS bit on the fiber Nic is half
1188                  * duplex link is detected. */
1189                 stat_reg = E1000_READ_REG(&adapter->hw, STATUS);
1190                 if((stat_reg & E1000_STATUS_FD) == 0)
1191                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1192         }
1193
1194         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1195
1196         /* Disable the receiver on the PHY so when a cable is plugged in, the
1197          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1198          */
1199         if(adapter->hw.phy_type == e1000_phy_m88)
1200                 e1000_phy_disable_receiver(adapter);
1201
1202         udelay(500);
1203
1204         return 0;
1205 }
1206
1207 static int
1208 e1000_set_phy_loopback(struct e1000_adapter *adapter)
1209 {
1210         uint16_t phy_reg = 0;
1211         uint16_t count = 0;
1212
1213         switch (adapter->hw.mac_type) {
1214         case e1000_82543:
1215                 if(adapter->hw.media_type == e1000_media_type_copper) {
1216                         /* Attempt to setup Loopback mode on Non-integrated PHY.
1217                          * Some PHY registers get corrupted at random, so
1218                          * attempt this 10 times.
1219                          */
1220                         while(e1000_nonintegrated_phy_loopback(adapter) &&
1221                               count++ < 10);
1222                         if(count < 11)
1223                                 return 0;
1224                 }
1225                 break;
1226
1227         case e1000_82544:
1228         case e1000_82540:
1229         case e1000_82545:
1230         case e1000_82545_rev_3:
1231         case e1000_82546:
1232         case e1000_82546_rev_3:
1233         case e1000_82541:
1234         case e1000_82541_rev_2:
1235         case e1000_82547:
1236         case e1000_82547_rev_2:
1237         case e1000_82573:
1238                 return e1000_integrated_phy_loopback(adapter);
1239                 break;
1240
1241         default:
1242                 /* Default PHY loopback work is to read the MII
1243                  * control register and assert bit 14 (loopback mode).
1244                  */
1245                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1246                 phy_reg |= MII_CR_LOOPBACK;
1247                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1248                 return 0;
1249                 break;
1250         }
1251
1252         return 8;
1253 }
1254
1255 static int
1256 e1000_setup_loopback_test(struct e1000_adapter *adapter)
1257 {
1258         uint32_t rctl;
1259
1260         if(adapter->hw.media_type == e1000_media_type_fiber ||
1261            adapter->hw.media_type == e1000_media_type_internal_serdes) {
1262                 if(adapter->hw.mac_type == e1000_82545 ||
1263                    adapter->hw.mac_type == e1000_82546 ||
1264                    adapter->hw.mac_type == e1000_82545_rev_3 ||
1265                    adapter->hw.mac_type == e1000_82546_rev_3)
1266                         return e1000_set_phy_loopback(adapter);
1267                 else {
1268                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1269                         rctl |= E1000_RCTL_LBM_TCVR;
1270                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1271                         return 0;
1272                 }
1273         } else if(adapter->hw.media_type == e1000_media_type_copper)
1274                 return e1000_set_phy_loopback(adapter);
1275
1276         return 7;
1277 }
1278
1279 static void
1280 e1000_loopback_cleanup(struct e1000_adapter *adapter)
1281 {
1282         uint32_t rctl;
1283         uint16_t phy_reg;
1284
1285         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1286         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1287         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1288
1289         if(adapter->hw.media_type == e1000_media_type_copper ||
1290            ((adapter->hw.media_type == e1000_media_type_fiber ||
1291              adapter->hw.media_type == e1000_media_type_internal_serdes) &&
1292             (adapter->hw.mac_type == e1000_82545 ||
1293              adapter->hw.mac_type == e1000_82546 ||
1294              adapter->hw.mac_type == e1000_82545_rev_3 ||
1295              adapter->hw.mac_type == e1000_82546_rev_3))) {
1296                 adapter->hw.autoneg = TRUE;
1297                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1298                 if(phy_reg & MII_CR_LOOPBACK) {
1299                         phy_reg &= ~MII_CR_LOOPBACK;
1300                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1301                         e1000_phy_reset(&adapter->hw);
1302                 }
1303         }
1304 }
1305
1306 static void
1307 e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1308 {
1309         memset(skb->data, 0xFF, frame_size);
1310         frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size;
1311         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1312         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1313         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1314 }
1315
1316 static int
1317 e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1318 {
1319         frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size;
1320         if(*(skb->data + 3) == 0xFF) {
1321                 if((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1322                    (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1323                         return 0;
1324                 }
1325         }
1326         return 13;
1327 }
1328
1329 static int
1330 e1000_run_loopback_test(struct e1000_adapter *adapter)
1331 {
1332         struct e1000_desc_ring *txdr = &adapter->test_tx_ring;
1333         struct e1000_desc_ring *rxdr = &adapter->test_rx_ring;
1334         struct pci_dev *pdev = adapter->pdev;
1335         int i, j, k, l, lc, good_cnt, ret_val=0;
1336         unsigned long time;
1337
1338         E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1);
1339
1340         /* Calculate the loop count based on the largest descriptor ring 
1341          * The idea is to wrap the largest ring a number of times using 64
1342          * send/receive pairs during each loop
1343          */
1344
1345         if(rxdr->count <= txdr->count)
1346                 lc = ((txdr->count / 64) * 2) + 1;
1347         else
1348                 lc = ((rxdr->count / 64) * 2) + 1;
1349
1350         k = l = 0;
1351         for(j = 0; j <= lc; j++) { /* loop count loop */
1352                 for(i = 0; i < 64; i++) { /* send the packets */
1353                         e1000_create_lbtest_frame(txdr->buffer_info[i].skb, 
1354                                         1024);
1355                         pci_dma_sync_single_for_device(pdev, 
1356                                         txdr->buffer_info[k].dma,
1357                                         txdr->buffer_info[k].length,
1358                                         PCI_DMA_TODEVICE);
1359                         if(unlikely(++k == txdr->count)) k = 0;
1360                 }
1361                 E1000_WRITE_REG(&adapter->hw, TDT, k);
1362                 msec_delay(200);
1363                 time = jiffies; /* set the start time for the receive */
1364                 good_cnt = 0;
1365                 do { /* receive the sent packets */
1366                         pci_dma_sync_single_for_cpu(pdev, 
1367                                         rxdr->buffer_info[l].dma,
1368                                         rxdr->buffer_info[l].length,
1369                                         PCI_DMA_FROMDEVICE);
1370         
1371                         ret_val = e1000_check_lbtest_frame(
1372                                         rxdr->buffer_info[l].skb,
1373                                         1024);
1374                         if(!ret_val)
1375                                 good_cnt++;
1376                         if(unlikely(++l == rxdr->count)) l = 0;
1377                         /* time + 20 msecs (200 msecs on 2.4) is more than 
1378                          * enough time to complete the receives, if it's 
1379                          * exceeded, break and error off
1380                          */
1381                 } while (good_cnt < 64 && jiffies < (time + 20));
1382                 if(good_cnt != 64) {
1383                         ret_val = 13; /* ret_val is the same as mis-compare */
1384                         break; 
1385                 }
1386                 if(jiffies >= (time + 2)) {
1387                         ret_val = 14; /* error code for time out error */
1388                         break;
1389                 }
1390         } /* end loop count loop */
1391         return ret_val;
1392 }
1393
1394 static int
1395 e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data)
1396 {
1397         if((*data = e1000_setup_desc_rings(adapter))) goto err_loopback;
1398         if((*data = e1000_setup_loopback_test(adapter))) goto err_loopback;
1399         *data = e1000_run_loopback_test(adapter);
1400         e1000_loopback_cleanup(adapter);
1401         e1000_free_desc_rings(adapter);
1402 err_loopback:
1403         return *data;
1404 }
1405
1406 static int
1407 e1000_link_test(struct e1000_adapter *adapter, uint64_t *data)
1408 {
1409         *data = 0;
1410         if (adapter->hw.media_type == e1000_media_type_internal_serdes) {
1411                 int i = 0;
1412                 adapter->hw.serdes_link_down = TRUE;
1413
1414                 /* On some blade server designs, link establishment
1415                  * could take as long as 2-3 minutes */
1416                 do {
1417                         e1000_check_for_link(&adapter->hw);
1418                         if (adapter->hw.serdes_link_down == FALSE)
1419                                 return *data;
1420                         msec_delay(20);
1421                 } while (i++ < 3750);
1422
1423                 *data = 1;
1424         } else {
1425                 e1000_check_for_link(&adapter->hw);
1426                 if(adapter->hw.autoneg)  /* if auto_neg is set wait for it */
1427                         msec_delay(4000);
1428
1429                 if(!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
1430                         *data = 1;
1431                 }
1432         }
1433         return *data;
1434 }
1435
1436 static int 
1437 e1000_diag_test_count(struct net_device *netdev)
1438 {
1439         return E1000_TEST_LEN;
1440 }
1441
1442 static void
1443 e1000_diag_test(struct net_device *netdev,
1444                    struct ethtool_test *eth_test, uint64_t *data)
1445 {
1446         struct e1000_adapter *adapter = netdev_priv(netdev);
1447         boolean_t if_running = netif_running(netdev);
1448
1449         if(eth_test->flags == ETH_TEST_FL_OFFLINE) {
1450                 /* Offline tests */
1451
1452                 /* save speed, duplex, autoneg settings */
1453                 uint16_t autoneg_advertised = adapter->hw.autoneg_advertised;
1454                 uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex;
1455                 uint8_t autoneg = adapter->hw.autoneg;
1456
1457                 /* Link test performed before hardware reset so autoneg doesn't
1458                  * interfere with test result */
1459                 if(e1000_link_test(adapter, &data[4]))
1460                         eth_test->flags |= ETH_TEST_FL_FAILED;
1461
1462                 if(if_running)
1463                         e1000_down(adapter);
1464                 else
1465                         e1000_reset(adapter);
1466
1467                 if(e1000_reg_test(adapter, &data[0]))
1468                         eth_test->flags |= ETH_TEST_FL_FAILED;
1469
1470                 e1000_reset(adapter);
1471                 if(e1000_eeprom_test(adapter, &data[1]))
1472                         eth_test->flags |= ETH_TEST_FL_FAILED;
1473
1474                 e1000_reset(adapter);
1475                 if(e1000_intr_test(adapter, &data[2]))
1476                         eth_test->flags |= ETH_TEST_FL_FAILED;
1477
1478                 e1000_reset(adapter);
1479                 if(e1000_loopback_test(adapter, &data[3]))
1480                         eth_test->flags |= ETH_TEST_FL_FAILED;
1481
1482                 /* restore speed, duplex, autoneg settings */
1483                 adapter->hw.autoneg_advertised = autoneg_advertised;
1484                 adapter->hw.forced_speed_duplex = forced_speed_duplex;
1485                 adapter->hw.autoneg = autoneg;
1486
1487                 e1000_reset(adapter);
1488                 if(if_running)
1489                         e1000_up(adapter);
1490         } else {
1491                 /* Online tests */
1492                 if(e1000_link_test(adapter, &data[4]))
1493                         eth_test->flags |= ETH_TEST_FL_FAILED;
1494
1495                 /* Offline tests aren't run; pass by default */
1496                 data[0] = 0;
1497                 data[1] = 0;
1498                 data[2] = 0;
1499                 data[3] = 0;
1500         }
1501 }
1502
1503 static void
1504 e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1505 {
1506         struct e1000_adapter *adapter = netdev_priv(netdev);
1507         struct e1000_hw *hw = &adapter->hw;
1508
1509         switch(adapter->hw.device_id) {
1510         case E1000_DEV_ID_82542:
1511         case E1000_DEV_ID_82543GC_FIBER:
1512         case E1000_DEV_ID_82543GC_COPPER:
1513         case E1000_DEV_ID_82544EI_FIBER:
1514         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1515         case E1000_DEV_ID_82545EM_FIBER:
1516         case E1000_DEV_ID_82545EM_COPPER:
1517                 wol->supported = 0;
1518                 wol->wolopts   = 0;
1519                 return;
1520
1521         case E1000_DEV_ID_82546EB_FIBER:
1522         case E1000_DEV_ID_82546GB_FIBER:
1523                 /* Wake events only supported on port A for dual fiber */
1524                 if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) {
1525                         wol->supported = 0;
1526                         wol->wolopts   = 0;
1527                         return;
1528                 }
1529                 /* Fall Through */
1530
1531         default:
1532                 wol->supported = WAKE_UCAST | WAKE_MCAST |
1533                                  WAKE_BCAST | WAKE_MAGIC;
1534
1535                 wol->wolopts = 0;
1536                 if(adapter->wol & E1000_WUFC_EX)
1537                         wol->wolopts |= WAKE_UCAST;
1538                 if(adapter->wol & E1000_WUFC_MC)
1539                         wol->wolopts |= WAKE_MCAST;
1540                 if(adapter->wol & E1000_WUFC_BC)
1541                         wol->wolopts |= WAKE_BCAST;
1542                 if(adapter->wol & E1000_WUFC_MAG)
1543                         wol->wolopts |= WAKE_MAGIC;
1544                 return;
1545         }
1546 }
1547
1548 static int
1549 e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1550 {
1551         struct e1000_adapter *adapter = netdev_priv(netdev);
1552         struct e1000_hw *hw = &adapter->hw;
1553
1554         switch(adapter->hw.device_id) {
1555         case E1000_DEV_ID_82542:
1556         case E1000_DEV_ID_82543GC_FIBER:
1557         case E1000_DEV_ID_82543GC_COPPER:
1558         case E1000_DEV_ID_82544EI_FIBER:
1559         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1560         case E1000_DEV_ID_82545EM_FIBER:
1561         case E1000_DEV_ID_82545EM_COPPER:
1562                 return wol->wolopts ? -EOPNOTSUPP : 0;
1563
1564         case E1000_DEV_ID_82546EB_FIBER:
1565         case E1000_DEV_ID_82546GB_FIBER:
1566                 /* Wake events only supported on port A for dual fiber */
1567                 if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1568                         return wol->wolopts ? -EOPNOTSUPP : 0;
1569                 /* Fall Through */
1570
1571         default:
1572                 if(wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1573                         return -EOPNOTSUPP;
1574
1575                 adapter->wol = 0;
1576
1577                 if(wol->wolopts & WAKE_UCAST)
1578                         adapter->wol |= E1000_WUFC_EX;
1579                 if(wol->wolopts & WAKE_MCAST)
1580                         adapter->wol |= E1000_WUFC_MC;
1581                 if(wol->wolopts & WAKE_BCAST)
1582                         adapter->wol |= E1000_WUFC_BC;
1583                 if(wol->wolopts & WAKE_MAGIC)
1584                         adapter->wol |= E1000_WUFC_MAG;
1585         }
1586
1587         return 0;
1588 }
1589
1590 /* toggle LED 4 times per second = 2 "blinks" per second */
1591 #define E1000_ID_INTERVAL       (HZ/4)
1592
1593 /* bit defines for adapter->led_status */
1594 #define E1000_LED_ON            0
1595
1596 static void
1597 e1000_led_blink_callback(unsigned long data)
1598 {
1599         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1600
1601         if(test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1602                 e1000_led_off(&adapter->hw);
1603         else
1604                 e1000_led_on(&adapter->hw);
1605
1606         mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1607 }
1608
1609 static int
1610 e1000_phys_id(struct net_device *netdev, uint32_t data)
1611 {
1612         struct e1000_adapter *adapter = netdev_priv(netdev);
1613
1614         if(!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ))
1615                 data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ);
1616
1617         if(!adapter->blink_timer.function) {
1618                 init_timer(&adapter->blink_timer);
1619                 adapter->blink_timer.function = e1000_led_blink_callback;
1620                 adapter->blink_timer.data = (unsigned long) adapter;
1621         }
1622
1623         e1000_setup_led(&adapter->hw);
1624         mod_timer(&adapter->blink_timer, jiffies);
1625
1626         msleep_interruptible(data * 1000);
1627         del_timer_sync(&adapter->blink_timer);
1628         e1000_led_off(&adapter->hw);
1629         clear_bit(E1000_LED_ON, &adapter->led_status);
1630         e1000_cleanup_led(&adapter->hw);
1631
1632         return 0;
1633 }
1634
1635 static int
1636 e1000_nway_reset(struct net_device *netdev)
1637 {
1638         struct e1000_adapter *adapter = netdev_priv(netdev);
1639         if(netif_running(netdev)) {
1640                 e1000_down(adapter);
1641                 e1000_up(adapter);
1642         }
1643         return 0;
1644 }
1645
1646 static int 
1647 e1000_get_stats_count(struct net_device *netdev)
1648 {
1649         return E1000_STATS_LEN;
1650 }
1651
1652 static void 
1653 e1000_get_ethtool_stats(struct net_device *netdev, 
1654                 struct ethtool_stats *stats, uint64_t *data)
1655 {
1656         struct e1000_adapter *adapter = netdev_priv(netdev);
1657         int i;
1658
1659         e1000_update_stats(adapter);
1660         for(i = 0; i < E1000_STATS_LEN; i++) {
1661                 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;  
1662                 data[i] = (e1000_gstrings_stats[i].sizeof_stat == 
1663                         sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
1664         }
1665 }
1666
1667 static void 
1668 e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
1669 {
1670         int i;
1671
1672         switch(stringset) {
1673         case ETH_SS_TEST:
1674                 memcpy(data, *e1000_gstrings_test, 
1675                         E1000_TEST_LEN*ETH_GSTRING_LEN);
1676                 break;
1677         case ETH_SS_STATS:
1678                 for (i=0; i < E1000_STATS_LEN; i++) {
1679                         memcpy(data + i * ETH_GSTRING_LEN, 
1680                         e1000_gstrings_stats[i].stat_string,
1681                         ETH_GSTRING_LEN);
1682                 }
1683                 break;
1684         }
1685 }
1686
1687 struct ethtool_ops e1000_ethtool_ops = {
1688         .get_settings           = e1000_get_settings,
1689         .set_settings           = e1000_set_settings,
1690         .get_drvinfo            = e1000_get_drvinfo,
1691         .get_regs_len           = e1000_get_regs_len,
1692         .get_regs               = e1000_get_regs,
1693         .get_wol                = e1000_get_wol,
1694         .set_wol                = e1000_set_wol,
1695         .get_msglevel           = e1000_get_msglevel,
1696         .set_msglevel           = e1000_set_msglevel,
1697         .nway_reset             = e1000_nway_reset,
1698         .get_link               = ethtool_op_get_link,
1699         .get_eeprom_len         = e1000_get_eeprom_len,
1700         .get_eeprom             = e1000_get_eeprom,
1701         .set_eeprom             = e1000_set_eeprom,
1702         .get_ringparam          = e1000_get_ringparam,
1703         .set_ringparam          = e1000_set_ringparam,
1704         .get_pauseparam         = e1000_get_pauseparam,
1705         .set_pauseparam         = e1000_set_pauseparam,
1706         .get_rx_csum            = e1000_get_rx_csum,
1707         .set_rx_csum            = e1000_set_rx_csum,
1708         .get_tx_csum            = e1000_get_tx_csum,
1709         .set_tx_csum            = e1000_set_tx_csum,
1710         .get_sg                 = ethtool_op_get_sg,
1711         .set_sg                 = ethtool_op_set_sg,
1712 #ifdef NETIF_F_TSO
1713         .get_tso                = ethtool_op_get_tso,
1714         .set_tso                = e1000_set_tso,
1715 #endif
1716         .self_test_count        = e1000_diag_test_count,
1717         .self_test              = e1000_diag_test,
1718         .get_strings            = e1000_get_strings,
1719         .phys_id                = e1000_phys_id,
1720         .get_stats_count        = e1000_get_stats_count,
1721         .get_ethtool_stats      = e1000_get_ethtool_stats,
1722 };
1723
1724 void e1000_set_ethtool_ops(struct net_device *netdev)
1725 {
1726         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1727 }