[PATCH] drivers/net/e1000/: possible cleanups
[linux-2.6.git] / drivers / net / e1000 / e1000_ethtool.c
1 /*******************************************************************************
2
3   
4   Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
5   
6   This program is free software; you can redistribute it and/or modify it 
7   under the terms of the GNU General Public License as published by the Free 
8   Software Foundation; either version 2 of the License, or (at your option) 
9   any later version.
10   
11   This program is distributed in the hope that it will be useful, but WITHOUT 
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
14   more details.
15   
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc., 59 
18   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
19   
20   The full GNU General Public License is included in this distribution in the
21   file called LICENSE.
22   
23   Contact Information:
24   Linux NICS <linux.nics@intel.com>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include "e1000.h"
32
33 #include <asm/uaccess.h>
34
35 extern char e1000_driver_name[];
36 extern char e1000_driver_version[];
37
38 extern int e1000_up(struct e1000_adapter *adapter);
39 extern void e1000_down(struct e1000_adapter *adapter);
40 extern void e1000_reset(struct e1000_adapter *adapter);
41 extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
42 extern int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
43 extern int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
44 extern void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
45 extern void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
46 extern void e1000_update_stats(struct e1000_adapter *adapter);
47
48 struct e1000_stats {
49         char stat_string[ETH_GSTRING_LEN];
50         int sizeof_stat;
51         int stat_offset;
52 };
53
54 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
55                       offsetof(struct e1000_adapter, m)
56 static const struct e1000_stats e1000_gstrings_stats[] = {
57         { "rx_packets", E1000_STAT(net_stats.rx_packets) },
58         { "tx_packets", E1000_STAT(net_stats.tx_packets) },
59         { "rx_bytes", E1000_STAT(net_stats.rx_bytes) },
60         { "tx_bytes", E1000_STAT(net_stats.tx_bytes) },
61         { "rx_errors", E1000_STAT(net_stats.rx_errors) },
62         { "tx_errors", E1000_STAT(net_stats.tx_errors) },
63         { "rx_dropped", E1000_STAT(net_stats.rx_dropped) },
64         { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
65         { "multicast", E1000_STAT(net_stats.multicast) },
66         { "collisions", E1000_STAT(net_stats.collisions) },
67         { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
68         { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
69         { "rx_crc_errors", E1000_STAT(net_stats.rx_crc_errors) },
70         { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
71         { "rx_fifo_errors", E1000_STAT(net_stats.rx_fifo_errors) },
72         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
73         { "rx_missed_errors", E1000_STAT(net_stats.rx_missed_errors) },
74         { "tx_aborted_errors", E1000_STAT(net_stats.tx_aborted_errors) },
75         { "tx_carrier_errors", E1000_STAT(net_stats.tx_carrier_errors) },
76         { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
77         { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
78         { "tx_window_errors", E1000_STAT(net_stats.tx_window_errors) },
79         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
80         { "tx_deferred_ok", E1000_STAT(stats.dc) },
81         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
82         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
83         { "rx_long_length_errors", E1000_STAT(stats.roc) },
84         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
85         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
86         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
87         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
88         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
89         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
90         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
91         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
92         { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
93         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
94         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
95         { "rx_header_split", E1000_STAT(rx_hdr_split) },
96 };
97 #define E1000_STATS_LEN \
98         sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
99 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
100         "Register test  (offline)", "Eeprom test    (offline)",
101         "Interrupt test (offline)", "Loopback test  (offline)",
102         "Link test   (on/offline)"
103 };
104 #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
105
106 static int
107 e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
108 {
109         struct e1000_adapter *adapter = netdev_priv(netdev);
110         struct e1000_hw *hw = &adapter->hw;
111
112         if(hw->media_type == e1000_media_type_copper) {
113
114                 ecmd->supported = (SUPPORTED_10baseT_Half |
115                                    SUPPORTED_10baseT_Full |
116                                    SUPPORTED_100baseT_Half |
117                                    SUPPORTED_100baseT_Full |
118                                    SUPPORTED_1000baseT_Full|
119                                    SUPPORTED_Autoneg |
120                                    SUPPORTED_TP);
121
122                 ecmd->advertising = ADVERTISED_TP;
123
124                 if(hw->autoneg == 1) {
125                         ecmd->advertising |= ADVERTISED_Autoneg;
126
127                         /* the e1000 autoneg seems to match ethtool nicely */
128
129                         ecmd->advertising |= hw->autoneg_advertised;
130                 }
131
132                 ecmd->port = PORT_TP;
133                 ecmd->phy_address = hw->phy_addr;
134
135                 if(hw->mac_type == e1000_82543)
136                         ecmd->transceiver = XCVR_EXTERNAL;
137                 else
138                         ecmd->transceiver = XCVR_INTERNAL;
139
140         } else {
141                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
142                                      SUPPORTED_FIBRE |
143                                      SUPPORTED_Autoneg);
144
145                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
146                                      ADVERTISED_FIBRE |
147                                      ADVERTISED_Autoneg);
148
149                 ecmd->port = PORT_FIBRE;
150
151                 if(hw->mac_type >= e1000_82545)
152                         ecmd->transceiver = XCVR_INTERNAL;
153                 else
154                         ecmd->transceiver = XCVR_EXTERNAL;
155         }
156
157         if(netif_carrier_ok(adapter->netdev)) {
158
159                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
160                                                    &adapter->link_duplex);
161                 ecmd->speed = adapter->link_speed;
162
163                 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
164                  *          and HALF_DUPLEX != DUPLEX_HALF */
165
166                 if(adapter->link_duplex == FULL_DUPLEX)
167                         ecmd->duplex = DUPLEX_FULL;
168                 else
169                         ecmd->duplex = DUPLEX_HALF;
170         } else {
171                 ecmd->speed = -1;
172                 ecmd->duplex = -1;
173         }
174
175         ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
176                          hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
177         return 0;
178 }
179
180 static int
181 e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
182 {
183         struct e1000_adapter *adapter = netdev_priv(netdev);
184         struct e1000_hw *hw = &adapter->hw;
185
186         if(ecmd->autoneg == AUTONEG_ENABLE) {
187                 hw->autoneg = 1;
188                 if(hw->media_type == e1000_media_type_fiber)
189                         hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
190                                      ADVERTISED_FIBRE |
191                                      ADVERTISED_Autoneg;
192                 else 
193                         hw->autoneg_advertised = ADVERTISED_10baseT_Half |
194                                                   ADVERTISED_10baseT_Full |
195                                                   ADVERTISED_100baseT_Half |
196                                                   ADVERTISED_100baseT_Full |
197                                                   ADVERTISED_1000baseT_Full|
198                                                   ADVERTISED_Autoneg |
199                                                   ADVERTISED_TP;
200                 ecmd->advertising = hw->autoneg_advertised;
201         } else
202                 if(e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex))
203                         return -EINVAL;
204
205         /* reset the link */
206
207         if(netif_running(adapter->netdev)) {
208                 e1000_down(adapter);
209                 e1000_reset(adapter);
210                 e1000_up(adapter);
211         } else
212                 e1000_reset(adapter);
213
214         return 0;
215 }
216
217 static void
218 e1000_get_pauseparam(struct net_device *netdev,
219                      struct ethtool_pauseparam *pause)
220 {
221         struct e1000_adapter *adapter = netdev_priv(netdev);
222         struct e1000_hw *hw = &adapter->hw;
223
224         pause->autoneg = 
225                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
226         
227         if(hw->fc == e1000_fc_rx_pause)
228                 pause->rx_pause = 1;
229         else if(hw->fc == e1000_fc_tx_pause)
230                 pause->tx_pause = 1;
231         else if(hw->fc == e1000_fc_full) {
232                 pause->rx_pause = 1;
233                 pause->tx_pause = 1;
234         }
235 }
236
237 static int
238 e1000_set_pauseparam(struct net_device *netdev,
239                      struct ethtool_pauseparam *pause)
240 {
241         struct e1000_adapter *adapter = netdev_priv(netdev);
242         struct e1000_hw *hw = &adapter->hw;
243         
244         adapter->fc_autoneg = pause->autoneg;
245
246         if(pause->rx_pause && pause->tx_pause)
247                 hw->fc = e1000_fc_full;
248         else if(pause->rx_pause && !pause->tx_pause)
249                 hw->fc = e1000_fc_rx_pause;
250         else if(!pause->rx_pause && pause->tx_pause)
251                 hw->fc = e1000_fc_tx_pause;
252         else if(!pause->rx_pause && !pause->tx_pause)
253                 hw->fc = e1000_fc_none;
254
255         hw->original_fc = hw->fc;
256
257         if(adapter->fc_autoneg == AUTONEG_ENABLE) {
258                 if(netif_running(adapter->netdev)) {
259                         e1000_down(adapter);
260                         e1000_up(adapter);
261                 } else
262                         e1000_reset(adapter);
263         }
264         else
265                 return ((hw->media_type == e1000_media_type_fiber) ?
266                         e1000_setup_link(hw) : e1000_force_mac_fc(hw));
267         
268         return 0;
269 }
270
271 static uint32_t
272 e1000_get_rx_csum(struct net_device *netdev)
273 {
274         struct e1000_adapter *adapter = netdev_priv(netdev);
275         return adapter->rx_csum;
276 }
277
278 static int
279 e1000_set_rx_csum(struct net_device *netdev, uint32_t data)
280 {
281         struct e1000_adapter *adapter = netdev_priv(netdev);
282         adapter->rx_csum = data;
283
284         if(netif_running(netdev)) {
285                 e1000_down(adapter);
286                 e1000_up(adapter);
287         } else
288                 e1000_reset(adapter);
289         return 0;
290 }
291         
292 static uint32_t
293 e1000_get_tx_csum(struct net_device *netdev)
294 {
295         return (netdev->features & NETIF_F_HW_CSUM) != 0;
296 }
297
298 static int
299 e1000_set_tx_csum(struct net_device *netdev, uint32_t data)
300 {
301         struct e1000_adapter *adapter = netdev_priv(netdev);
302
303         if(adapter->hw.mac_type < e1000_82543) {
304                 if (!data)
305                         return -EINVAL;
306                 return 0;
307         }
308
309         if (data)
310                 netdev->features |= NETIF_F_HW_CSUM;
311         else
312                 netdev->features &= ~NETIF_F_HW_CSUM;
313
314         return 0;
315 }
316
317 #ifdef NETIF_F_TSO
318 static int
319 e1000_set_tso(struct net_device *netdev, uint32_t data)
320 {
321         struct e1000_adapter *adapter = netdev_priv(netdev);
322         if((adapter->hw.mac_type < e1000_82544) ||
323             (adapter->hw.mac_type == e1000_82547)) 
324                 return data ? -EINVAL : 0;
325
326         if (data)
327                 netdev->features |= NETIF_F_TSO;
328         else
329                 netdev->features &= ~NETIF_F_TSO;
330         return 0;
331
332 #endif /* NETIF_F_TSO */
333
334 static uint32_t
335 e1000_get_msglevel(struct net_device *netdev)
336 {
337         struct e1000_adapter *adapter = netdev_priv(netdev);
338         return adapter->msg_enable;
339 }
340
341 static void
342 e1000_set_msglevel(struct net_device *netdev, uint32_t data)
343 {
344         struct e1000_adapter *adapter = netdev_priv(netdev);
345         adapter->msg_enable = data;
346 }
347
348 static int 
349 e1000_get_regs_len(struct net_device *netdev)
350 {
351 #define E1000_REGS_LEN 32
352         return E1000_REGS_LEN * sizeof(uint32_t);
353 }
354
355 static void
356 e1000_get_regs(struct net_device *netdev,
357                struct ethtool_regs *regs, void *p)
358 {
359         struct e1000_adapter *adapter = netdev_priv(netdev);
360         struct e1000_hw *hw = &adapter->hw;
361         uint32_t *regs_buff = p;
362         uint16_t phy_data;
363
364         memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t));
365
366         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
367
368         regs_buff[0]  = E1000_READ_REG(hw, CTRL);
369         regs_buff[1]  = E1000_READ_REG(hw, STATUS);
370
371         regs_buff[2]  = E1000_READ_REG(hw, RCTL);
372         regs_buff[3]  = E1000_READ_REG(hw, RDLEN);
373         regs_buff[4]  = E1000_READ_REG(hw, RDH);
374         regs_buff[5]  = E1000_READ_REG(hw, RDT);
375         regs_buff[6]  = E1000_READ_REG(hw, RDTR);
376
377         regs_buff[7]  = E1000_READ_REG(hw, TCTL);
378         regs_buff[8]  = E1000_READ_REG(hw, TDLEN);
379         regs_buff[9]  = E1000_READ_REG(hw, TDH);
380         regs_buff[10] = E1000_READ_REG(hw, TDT);
381         regs_buff[11] = E1000_READ_REG(hw, TIDV);
382
383         regs_buff[12] = adapter->hw.phy_type;  /* PHY type (IGP=1, M88=0) */
384         if(hw->phy_type == e1000_phy_igp) {
385                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
386                                     IGP01E1000_PHY_AGC_A);
387                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
388                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
389                 regs_buff[13] = (uint32_t)phy_data; /* cable length */
390                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
391                                     IGP01E1000_PHY_AGC_B);
392                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
393                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
394                 regs_buff[14] = (uint32_t)phy_data; /* cable length */
395                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
396                                     IGP01E1000_PHY_AGC_C);
397                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
398                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
399                 regs_buff[15] = (uint32_t)phy_data; /* cable length */
400                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
401                                     IGP01E1000_PHY_AGC_D);
402                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
403                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
404                 regs_buff[16] = (uint32_t)phy_data; /* cable length */
405                 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
406                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
407                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
408                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
409                 regs_buff[18] = (uint32_t)phy_data; /* cable polarity */
410                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
411                                     IGP01E1000_PHY_PCS_INIT_REG);
412                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
413                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
414                 regs_buff[19] = (uint32_t)phy_data; /* cable polarity */
415                 regs_buff[20] = 0; /* polarity correction enabled (always) */
416                 regs_buff[22] = 0; /* phy receive errors (unavailable) */
417                 regs_buff[23] = regs_buff[18]; /* mdix mode */
418                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
419         } else {
420                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
421                 regs_buff[13] = (uint32_t)phy_data; /* cable length */
422                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
423                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
424                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
425                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
426                 regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */
427                 regs_buff[18] = regs_buff[13]; /* cable polarity */
428                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
429                 regs_buff[20] = regs_buff[17]; /* polarity correction */
430                 /* phy receive errors */
431                 regs_buff[22] = adapter->phy_stats.receive_errors;
432                 regs_buff[23] = regs_buff[13]; /* mdix mode */
433         }
434         regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
435         e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
436         regs_buff[24] = (uint32_t)phy_data;  /* phy local receiver status */
437         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
438         if(hw->mac_type >= e1000_82540 &&
439            hw->media_type == e1000_media_type_copper) {
440                 regs_buff[26] = E1000_READ_REG(hw, MANC);
441         }
442 }
443
444 static int
445 e1000_get_eeprom_len(struct net_device *netdev)
446 {
447         struct e1000_adapter *adapter = netdev_priv(netdev);
448         return adapter->hw.eeprom.word_size * 2;
449 }
450
451 static int
452 e1000_get_eeprom(struct net_device *netdev,
453                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
454 {
455         struct e1000_adapter *adapter = netdev_priv(netdev);
456         struct e1000_hw *hw = &adapter->hw;
457         uint16_t *eeprom_buff;
458         int first_word, last_word;
459         int ret_val = 0;
460         uint16_t i;
461
462         if(eeprom->len == 0)
463                 return -EINVAL;
464
465         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
466
467         first_word = eeprom->offset >> 1;
468         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
469
470         eeprom_buff = kmalloc(sizeof(uint16_t) *
471                         (last_word - first_word + 1), GFP_KERNEL);
472         if(!eeprom_buff)
473                 return -ENOMEM;
474
475         if(hw->eeprom.type == e1000_eeprom_spi)
476                 ret_val = e1000_read_eeprom(hw, first_word,
477                                             last_word - first_word + 1,
478                                             eeprom_buff);
479         else {
480                 for (i = 0; i < last_word - first_word + 1; i++)
481                         if((ret_val = e1000_read_eeprom(hw, first_word + i, 1,
482                                                         &eeprom_buff[i])))
483                                 break;
484         }
485
486         /* Device's eeprom is always little-endian, word addressable */
487         for (i = 0; i < last_word - first_word + 1; i++)
488                 le16_to_cpus(&eeprom_buff[i]);
489
490         memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1),
491                         eeprom->len);
492         kfree(eeprom_buff);
493
494         return ret_val;
495 }
496
497 static int
498 e1000_set_eeprom(struct net_device *netdev,
499                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
500 {
501         struct e1000_adapter *adapter = netdev_priv(netdev);
502         struct e1000_hw *hw = &adapter->hw;
503         uint16_t *eeprom_buff;
504         void *ptr;
505         int max_len, first_word, last_word, ret_val = 0;
506         uint16_t i;
507
508         if(eeprom->len == 0)
509                 return -EOPNOTSUPP;
510
511         if(eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
512                 return -EFAULT;
513
514         max_len = hw->eeprom.word_size * 2;
515
516         first_word = eeprom->offset >> 1;
517         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
518         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
519         if(!eeprom_buff)
520                 return -ENOMEM;
521
522         ptr = (void *)eeprom_buff;
523
524         if(eeprom->offset & 1) {
525                 /* need read/modify/write of first changed EEPROM word */
526                 /* only the second byte of the word is being modified */
527                 ret_val = e1000_read_eeprom(hw, first_word, 1,
528                                             &eeprom_buff[0]);
529                 ptr++;
530         }
531         if(((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
532                 /* need read/modify/write of last changed EEPROM word */
533                 /* only the first byte of the word is being modified */
534                 ret_val = e1000_read_eeprom(hw, last_word, 1,
535                                   &eeprom_buff[last_word - first_word]);
536         }
537
538         /* Device's eeprom is always little-endian, word addressable */
539         for (i = 0; i < last_word - first_word + 1; i++)
540                 le16_to_cpus(&eeprom_buff[i]);
541
542         memcpy(ptr, bytes, eeprom->len);
543
544         for (i = 0; i < last_word - first_word + 1; i++)
545                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
546
547         ret_val = e1000_write_eeprom(hw, first_word,
548                                      last_word - first_word + 1, eeprom_buff);
549
550         /* Update the checksum over the first part of the EEPROM if needed 
551          * and flush shadow RAM for 82573 conrollers */
552         if((ret_val == 0) && ((first_word <= EEPROM_CHECKSUM_REG) || 
553                                 (hw->mac_type == e1000_82573)))
554                 e1000_update_eeprom_checksum(hw);
555
556         kfree(eeprom_buff);
557         return ret_val;
558 }
559
560 static void
561 e1000_get_drvinfo(struct net_device *netdev,
562                        struct ethtool_drvinfo *drvinfo)
563 {
564         struct e1000_adapter *adapter = netdev_priv(netdev);
565
566         strncpy(drvinfo->driver,  e1000_driver_name, 32);
567         strncpy(drvinfo->version, e1000_driver_version, 32);
568         strncpy(drvinfo->fw_version, "N/A", 32);
569         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
570         drvinfo->n_stats = E1000_STATS_LEN;
571         drvinfo->testinfo_len = E1000_TEST_LEN;
572         drvinfo->regdump_len = e1000_get_regs_len(netdev);
573         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
574 }
575
576 static void
577 e1000_get_ringparam(struct net_device *netdev,
578                     struct ethtool_ringparam *ring)
579 {
580         struct e1000_adapter *adapter = netdev_priv(netdev);
581         e1000_mac_type mac_type = adapter->hw.mac_type;
582         struct e1000_tx_ring *txdr = adapter->tx_ring;
583         struct e1000_rx_ring *rxdr = adapter->rx_ring;
584
585         ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
586                 E1000_MAX_82544_RXD;
587         ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
588                 E1000_MAX_82544_TXD;
589         ring->rx_mini_max_pending = 0;
590         ring->rx_jumbo_max_pending = 0;
591         ring->rx_pending = rxdr->count;
592         ring->tx_pending = txdr->count;
593         ring->rx_mini_pending = 0;
594         ring->rx_jumbo_pending = 0;
595 }
596
597 static int 
598 e1000_set_ringparam(struct net_device *netdev,
599                     struct ethtool_ringparam *ring)
600 {
601         struct e1000_adapter *adapter = netdev_priv(netdev);
602         e1000_mac_type mac_type = adapter->hw.mac_type;
603         struct e1000_tx_ring *txdr, *tx_old, *tx_new;
604         struct e1000_rx_ring *rxdr, *rx_old, *rx_new;
605         int i, err, tx_ring_size, rx_ring_size;
606
607         tx_ring_size = sizeof(struct e1000_tx_ring) * adapter->num_queues;
608         rx_ring_size = sizeof(struct e1000_rx_ring) * adapter->num_queues;
609
610         if (netif_running(adapter->netdev))
611                 e1000_down(adapter);
612
613         tx_old = adapter->tx_ring;
614         rx_old = adapter->rx_ring;
615
616         adapter->tx_ring = kmalloc(tx_ring_size, GFP_KERNEL);
617         if (!adapter->tx_ring) {
618                 err = -ENOMEM;
619                 goto err_setup_rx;
620         }
621         memset(adapter->tx_ring, 0, tx_ring_size);
622
623         adapter->rx_ring = kmalloc(rx_ring_size, GFP_KERNEL);
624         if (!adapter->rx_ring) {
625                 kfree(adapter->tx_ring);
626                 err = -ENOMEM;
627                 goto err_setup_rx;
628         }
629         memset(adapter->rx_ring, 0, rx_ring_size);
630
631         txdr = adapter->tx_ring;
632         rxdr = adapter->rx_ring;
633
634         if((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
635                 return -EINVAL;
636
637         rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD);
638         rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ?
639                 E1000_MAX_RXD : E1000_MAX_82544_RXD));
640         E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE); 
641
642         txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD);
643         txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ?
644                 E1000_MAX_TXD : E1000_MAX_82544_TXD));
645         E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE); 
646
647         for (i = 0; i < adapter->num_queues; i++) {
648                 txdr[i].count = txdr->count;
649                 rxdr[i].count = rxdr->count;
650         }
651
652         if(netif_running(adapter->netdev)) {
653                 /* Try to get new resources before deleting old */
654                 if ((err = e1000_setup_all_rx_resources(adapter)))
655                         goto err_setup_rx;
656                 if ((err = e1000_setup_all_tx_resources(adapter)))
657                         goto err_setup_tx;
658
659                 /* save the new, restore the old in order to free it,
660                  * then restore the new back again */
661
662                 rx_new = adapter->rx_ring;
663                 tx_new = adapter->tx_ring;
664                 adapter->rx_ring = rx_old;
665                 adapter->tx_ring = tx_old;
666                 e1000_free_all_rx_resources(adapter);
667                 e1000_free_all_tx_resources(adapter);
668                 kfree(tx_old);
669                 kfree(rx_old);
670                 adapter->rx_ring = rx_new;
671                 adapter->tx_ring = tx_new;
672                 if((err = e1000_up(adapter)))
673                         return err;
674         }
675
676         return 0;
677 err_setup_tx:
678         e1000_free_all_rx_resources(adapter);
679 err_setup_rx:
680         adapter->rx_ring = rx_old;
681         adapter->tx_ring = tx_old;
682         e1000_up(adapter);
683         return err;
684 }
685
686 #define REG_PATTERN_TEST(R, M, W)                                              \
687 {                                                                              \
688         uint32_t pat, value;                                                   \
689         uint32_t test[] =                                                      \
690                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};              \
691         for(pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) {              \
692                 E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W));             \
693                 value = E1000_READ_REG(&adapter->hw, R);                       \
694                 if(value != (test[pat] & W & M)) {                             \
695                         DPRINTK(DRV, ERR, "pattern test reg %04X failed: got " \
696                                 "0x%08X expected 0x%08X\n",                    \
697                                 E1000_##R, value, (test[pat] & W & M));        \
698                         *data = (adapter->hw.mac_type < e1000_82543) ?         \
699                                 E1000_82542_##R : E1000_##R;                   \
700                         return 1;                                              \
701                 }                                                              \
702         }                                                                      \
703 }
704
705 #define REG_SET_AND_CHECK(R, M, W)                                             \
706 {                                                                              \
707         uint32_t value;                                                        \
708         E1000_WRITE_REG(&adapter->hw, R, W & M);                               \
709         value = E1000_READ_REG(&adapter->hw, R);                               \
710         if((W & M) != (value & M)) {                                          \
711                 DPRINTK(DRV, ERR, "set/check reg %04X test failed: got 0x%08X "\
712                         "expected 0x%08X\n", E1000_##R, (value & M), (W & M)); \
713                 *data = (adapter->hw.mac_type < e1000_82543) ?                 \
714                         E1000_82542_##R : E1000_##R;                           \
715                 return 1;                                                      \
716         }                                                                      \
717 }
718
719 static int
720 e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
721 {
722         uint32_t value, before, after;
723         uint32_t i, toggle;
724
725         /* The status register is Read Only, so a write should fail.
726          * Some bits that get toggled are ignored.
727          */
728         switch (adapter->hw.mac_type) {
729         /* there are several bits on newer hardware that are r/w */
730         case e1000_82571:
731         case e1000_82572:
732                 toggle = 0x7FFFF3FF;
733                 break;
734         case e1000_82573:
735                 toggle = 0x7FFFF033;
736                 break;
737         default:
738                 toggle = 0xFFFFF833;
739                 break;
740         }
741
742         before = E1000_READ_REG(&adapter->hw, STATUS);
743         value = (E1000_READ_REG(&adapter->hw, STATUS) & toggle);
744         E1000_WRITE_REG(&adapter->hw, STATUS, toggle);
745         after = E1000_READ_REG(&adapter->hw, STATUS) & toggle;
746         if(value != after) {
747                 DPRINTK(DRV, ERR, "failed STATUS register test got: "
748                         "0x%08X expected: 0x%08X\n", after, value);
749                 *data = 1;
750                 return 1;
751         }
752         /* restore previous status */
753         E1000_WRITE_REG(&adapter->hw, STATUS, before);
754
755         REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
756         REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
757         REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
758         REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
759         REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
760         REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
761         REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
762         REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
763         REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
764         REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
765         REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
766         REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
767         REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
768         REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
769
770         REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
771         REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0x003FFFFB);
772         REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
773
774         if(adapter->hw.mac_type >= e1000_82543) {
775
776                 REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0xFFFFFFFF);
777                 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
778                 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
779                 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
780                 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
781
782                 for(i = 0; i < E1000_RAR_ENTRIES; i++) {
783                         REG_PATTERN_TEST(RA + ((i << 1) << 2), 0xFFFFFFFF,
784                                          0xFFFFFFFF);
785                         REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
786                                          0xFFFFFFFF);
787                 }
788
789         } else {
790
791                 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
792                 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
793                 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
794                 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
795
796         }
797
798         for(i = 0; i < E1000_MC_TBL_SIZE; i++)
799                 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
800
801         *data = 0;
802         return 0;
803 }
804
805 static int
806 e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data)
807 {
808         uint16_t temp;
809         uint16_t checksum = 0;
810         uint16_t i;
811
812         *data = 0;
813         /* Read and add up the contents of the EEPROM */
814         for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
815                 if((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) {
816                         *data = 1;
817                         break;
818                 }
819                 checksum += temp;
820         }
821
822         /* If Checksum is not Correct return error else test passed */
823         if((checksum != (uint16_t) EEPROM_SUM) && !(*data))
824                 *data = 2;
825
826         return *data;
827 }
828
829 static irqreturn_t
830 e1000_test_intr(int irq,
831                 void *data,
832                 struct pt_regs *regs)
833 {
834         struct net_device *netdev = (struct net_device *) data;
835         struct e1000_adapter *adapter = netdev_priv(netdev);
836
837         adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR);
838
839         return IRQ_HANDLED;
840 }
841
842 static int
843 e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
844 {
845         struct net_device *netdev = adapter->netdev;
846         uint32_t mask, i=0, shared_int = TRUE;
847         uint32_t irq = adapter->pdev->irq;
848
849         *data = 0;
850
851         /* Hook up test interrupt handler just for this test */
852         if(!request_irq(irq, &e1000_test_intr, 0, netdev->name, netdev)) {
853                 shared_int = FALSE;
854         } else if(request_irq(irq, &e1000_test_intr, SA_SHIRQ,
855                               netdev->name, netdev)){
856                 *data = 1;
857                 return -1;
858         }
859
860         /* Disable all the interrupts */
861         E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
862         msec_delay(10);
863
864         /* Test each interrupt */
865         for(; i < 10; i++) {
866
867                 /* Interrupt to test */
868                 mask = 1 << i;
869
870                 if(!shared_int) {
871                         /* Disable the interrupt to be reported in
872                          * the cause register and then force the same
873                          * interrupt and see if one gets posted.  If
874                          * an interrupt was posted to the bus, the
875                          * test failed.
876                          */
877                         adapter->test_icr = 0;
878                         E1000_WRITE_REG(&adapter->hw, IMC, mask);
879                         E1000_WRITE_REG(&adapter->hw, ICS, mask);
880                         msec_delay(10);
881  
882                         if(adapter->test_icr & mask) {
883                                 *data = 3;
884                                 break;
885                         }
886                 }
887
888                 /* Enable the interrupt to be reported in
889                  * the cause register and then force the same
890                  * interrupt and see if one gets posted.  If
891                  * an interrupt was not posted to the bus, the
892                  * test failed.
893                  */
894                 adapter->test_icr = 0;
895                 E1000_WRITE_REG(&adapter->hw, IMS, mask);
896                 E1000_WRITE_REG(&adapter->hw, ICS, mask);
897                 msec_delay(10);
898
899                 if(!(adapter->test_icr & mask)) {
900                         *data = 4;
901                         break;
902                 }
903
904                 if(!shared_int) {
905                         /* Disable the other interrupts to be reported in
906                          * the cause register and then force the other
907                          * interrupts and see if any get posted.  If
908                          * an interrupt was posted to the bus, the
909                          * test failed.
910                          */
911                         adapter->test_icr = 0;
912                         E1000_WRITE_REG(&adapter->hw, IMC, ~mask & 0x00007FFF);
913                         E1000_WRITE_REG(&adapter->hw, ICS, ~mask & 0x00007FFF);
914                         msec_delay(10);
915
916                         if(adapter->test_icr) {
917                                 *data = 5;
918                                 break;
919                         }
920                 }
921         }
922
923         /* Disable all the interrupts */
924         E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
925         msec_delay(10);
926
927         /* Unhook test interrupt handler */
928         free_irq(irq, netdev);
929
930         return *data;
931 }
932
933 static void
934 e1000_free_desc_rings(struct e1000_adapter *adapter)
935 {
936         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
937         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
938         struct pci_dev *pdev = adapter->pdev;
939         int i;
940
941         if(txdr->desc && txdr->buffer_info) {
942                 for(i = 0; i < txdr->count; i++) {
943                         if(txdr->buffer_info[i].dma)
944                                 pci_unmap_single(pdev, txdr->buffer_info[i].dma,
945                                                  txdr->buffer_info[i].length,
946                                                  PCI_DMA_TODEVICE);
947                         if(txdr->buffer_info[i].skb)
948                                 dev_kfree_skb(txdr->buffer_info[i].skb);
949                 }
950         }
951
952         if(rxdr->desc && rxdr->buffer_info) {
953                 for(i = 0; i < rxdr->count; i++) {
954                         if(rxdr->buffer_info[i].dma)
955                                 pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
956                                                  rxdr->buffer_info[i].length,
957                                                  PCI_DMA_FROMDEVICE);
958                         if(rxdr->buffer_info[i].skb)
959                                 dev_kfree_skb(rxdr->buffer_info[i].skb);
960                 }
961         }
962
963         if(txdr->desc)
964                 pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
965         if(rxdr->desc)
966                 pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
967
968         kfree(txdr->buffer_info);
969         kfree(rxdr->buffer_info);
970         return;
971 }
972
973 static int
974 e1000_setup_desc_rings(struct e1000_adapter *adapter)
975 {
976         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
977         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
978         struct pci_dev *pdev = adapter->pdev;
979         uint32_t rctl;
980         int size, i, ret_val;
981
982         /* Setup Tx descriptor ring and Tx buffers */
983
984         if(!txdr->count)
985                 txdr->count = E1000_DEFAULT_TXD;   
986
987         size = txdr->count * sizeof(struct e1000_buffer);
988         if(!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
989                 ret_val = 1;
990                 goto err_nomem;
991         }
992         memset(txdr->buffer_info, 0, size);
993
994         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
995         E1000_ROUNDUP(txdr->size, 4096);
996         if(!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) {
997                 ret_val = 2;
998                 goto err_nomem;
999         }
1000         memset(txdr->desc, 0, txdr->size);
1001         txdr->next_to_use = txdr->next_to_clean = 0;
1002
1003         E1000_WRITE_REG(&adapter->hw, TDBAL,
1004                         ((uint64_t) txdr->dma & 0x00000000FFFFFFFF));
1005         E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32));
1006         E1000_WRITE_REG(&adapter->hw, TDLEN,
1007                         txdr->count * sizeof(struct e1000_tx_desc));
1008         E1000_WRITE_REG(&adapter->hw, TDH, 0);
1009         E1000_WRITE_REG(&adapter->hw, TDT, 0);
1010         E1000_WRITE_REG(&adapter->hw, TCTL,
1011                         E1000_TCTL_PSP | E1000_TCTL_EN |
1012                         E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1013                         E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1014
1015         for(i = 0; i < txdr->count; i++) {
1016                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1017                 struct sk_buff *skb;
1018                 unsigned int size = 1024;
1019
1020                 if(!(skb = alloc_skb(size, GFP_KERNEL))) {
1021                         ret_val = 3;
1022                         goto err_nomem;
1023                 }
1024                 skb_put(skb, size);
1025                 txdr->buffer_info[i].skb = skb;
1026                 txdr->buffer_info[i].length = skb->len;
1027                 txdr->buffer_info[i].dma =
1028                         pci_map_single(pdev, skb->data, skb->len,
1029                                        PCI_DMA_TODEVICE);
1030                 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1031                 tx_desc->lower.data = cpu_to_le32(skb->len);
1032                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1033                                                    E1000_TXD_CMD_IFCS |
1034                                                    E1000_TXD_CMD_RPS);
1035                 tx_desc->upper.data = 0;
1036         }
1037
1038         /* Setup Rx descriptor ring and Rx buffers */
1039
1040         if(!rxdr->count)
1041                 rxdr->count = E1000_DEFAULT_RXD;   
1042
1043         size = rxdr->count * sizeof(struct e1000_buffer);
1044         if(!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
1045                 ret_val = 4;
1046                 goto err_nomem;
1047         }
1048         memset(rxdr->buffer_info, 0, size);
1049
1050         rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1051         if(!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) {
1052                 ret_val = 5;
1053                 goto err_nomem;
1054         }
1055         memset(rxdr->desc, 0, rxdr->size);
1056         rxdr->next_to_use = rxdr->next_to_clean = 0;
1057
1058         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1059         E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
1060         E1000_WRITE_REG(&adapter->hw, RDBAL,
1061                         ((uint64_t) rxdr->dma & 0xFFFFFFFF));
1062         E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32));
1063         E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size);
1064         E1000_WRITE_REG(&adapter->hw, RDH, 0);
1065         E1000_WRITE_REG(&adapter->hw, RDT, 0);
1066         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1067                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1068                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1069         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1070
1071         for(i = 0; i < rxdr->count; i++) {
1072                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1073                 struct sk_buff *skb;
1074
1075                 if(!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN,
1076                                 GFP_KERNEL))) {
1077                         ret_val = 6;
1078                         goto err_nomem;
1079                 }
1080                 skb_reserve(skb, NET_IP_ALIGN);
1081                 rxdr->buffer_info[i].skb = skb;
1082                 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1083                 rxdr->buffer_info[i].dma =
1084                         pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
1085                                        PCI_DMA_FROMDEVICE);
1086                 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1087                 memset(skb->data, 0x00, skb->len);
1088         }
1089
1090         return 0;
1091
1092 err_nomem:
1093         e1000_free_desc_rings(adapter);
1094         return ret_val;
1095 }
1096
1097 static void
1098 e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1099 {
1100         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1101         e1000_write_phy_reg(&adapter->hw, 29, 0x001F);
1102         e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC);
1103         e1000_write_phy_reg(&adapter->hw, 29, 0x001A);
1104         e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0);
1105 }
1106
1107 static void
1108 e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1109 {
1110         uint16_t phy_reg;
1111
1112         /* Because we reset the PHY above, we need to re-force TX_CLK in the
1113          * Extended PHY Specific Control Register to 25MHz clock.  This
1114          * value defaults back to a 2.5MHz clock when the PHY is reset.
1115          */
1116         e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1117         phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1118         e1000_write_phy_reg(&adapter->hw,
1119                 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1120
1121         /* In addition, because of the s/w reset above, we need to enable
1122          * CRS on TX.  This must be set for both full and half duplex
1123          * operation.
1124          */
1125         e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1126         phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1127         e1000_write_phy_reg(&adapter->hw,
1128                 M88E1000_PHY_SPEC_CTRL, phy_reg);
1129 }
1130
1131 static int
1132 e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1133 {
1134         uint32_t ctrl_reg;
1135         uint16_t phy_reg;
1136
1137         /* Setup the Device Control Register for PHY loopback test. */
1138
1139         ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1140         ctrl_reg |= (E1000_CTRL_ILOS |          /* Invert Loss-Of-Signal */
1141                      E1000_CTRL_FRCSPD |        /* Set the Force Speed Bit */
1142                      E1000_CTRL_FRCDPX |        /* Set the Force Duplex Bit */
1143                      E1000_CTRL_SPD_1000 |      /* Force Speed to 1000 */
1144                      E1000_CTRL_FD);            /* Force Duplex to FULL */
1145
1146         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1147
1148         /* Read the PHY Specific Control Register (0x10) */
1149         e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1150
1151         /* Clear Auto-Crossover bits in PHY Specific Control Register
1152          * (bits 6:5).
1153          */
1154         phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1155         e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1156
1157         /* Perform software reset on the PHY */
1158         e1000_phy_reset(&adapter->hw);
1159
1160         /* Have to setup TX_CLK and TX_CRS after software reset */
1161         e1000_phy_reset_clk_and_crs(adapter);
1162
1163         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100);
1164
1165         /* Wait for reset to complete. */
1166         udelay(500);
1167
1168         /* Have to setup TX_CLK and TX_CRS after software reset */
1169         e1000_phy_reset_clk_and_crs(adapter);
1170
1171         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1172         e1000_phy_disable_receiver(adapter);
1173
1174         /* Set the loopback bit in the PHY control register. */
1175         e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1176         phy_reg |= MII_CR_LOOPBACK;
1177         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1178
1179         /* Setup TX_CLK and TX_CRS one more time. */
1180         e1000_phy_reset_clk_and_crs(adapter);
1181
1182         /* Check Phy Configuration */
1183         e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1184         if(phy_reg != 0x4100)
1185                  return 9;
1186
1187         e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1188         if(phy_reg != 0x0070)
1189                 return 10;
1190
1191         e1000_read_phy_reg(&adapter->hw, 29, &phy_reg);
1192         if(phy_reg != 0x001A)
1193                 return 11;
1194
1195         return 0;
1196 }
1197
1198 static int
1199 e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1200 {
1201         uint32_t ctrl_reg = 0;
1202         uint32_t stat_reg = 0;
1203
1204         adapter->hw.autoneg = FALSE;
1205
1206         if(adapter->hw.phy_type == e1000_phy_m88) {
1207                 /* Auto-MDI/MDIX Off */
1208                 e1000_write_phy_reg(&adapter->hw,
1209                                     M88E1000_PHY_SPEC_CTRL, 0x0808);
1210                 /* reset to update Auto-MDI/MDIX */
1211                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140);
1212                 /* autoneg off */
1213                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140);
1214         }
1215         /* force 1000, set loopback */
1216         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
1217
1218         /* Now set up the MAC to the same speed/duplex as the PHY. */
1219         ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1220         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1221         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1222                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1223                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1224                      E1000_CTRL_FD);     /* Force Duplex to FULL */
1225
1226         if(adapter->hw.media_type == e1000_media_type_copper &&
1227            adapter->hw.phy_type == e1000_phy_m88) {
1228                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1229         } else {
1230                 /* Set the ILOS bit on the fiber Nic is half
1231                  * duplex link is detected. */
1232                 stat_reg = E1000_READ_REG(&adapter->hw, STATUS);
1233                 if((stat_reg & E1000_STATUS_FD) == 0)
1234                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1235         }
1236
1237         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1238
1239         /* Disable the receiver on the PHY so when a cable is plugged in, the
1240          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1241          */
1242         if(adapter->hw.phy_type == e1000_phy_m88)
1243                 e1000_phy_disable_receiver(adapter);
1244
1245         udelay(500);
1246
1247         return 0;
1248 }
1249
1250 static int
1251 e1000_set_phy_loopback(struct e1000_adapter *adapter)
1252 {
1253         uint16_t phy_reg = 0;
1254         uint16_t count = 0;
1255
1256         switch (adapter->hw.mac_type) {
1257         case e1000_82543:
1258                 if(adapter->hw.media_type == e1000_media_type_copper) {
1259                         /* Attempt to setup Loopback mode on Non-integrated PHY.
1260                          * Some PHY registers get corrupted at random, so
1261                          * attempt this 10 times.
1262                          */
1263                         while(e1000_nonintegrated_phy_loopback(adapter) &&
1264                               count++ < 10);
1265                         if(count < 11)
1266                                 return 0;
1267                 }
1268                 break;
1269
1270         case e1000_82544:
1271         case e1000_82540:
1272         case e1000_82545:
1273         case e1000_82545_rev_3:
1274         case e1000_82546:
1275         case e1000_82546_rev_3:
1276         case e1000_82541:
1277         case e1000_82541_rev_2:
1278         case e1000_82547:
1279         case e1000_82547_rev_2:
1280         case e1000_82571:
1281         case e1000_82572:
1282         case e1000_82573:
1283                 return e1000_integrated_phy_loopback(adapter);
1284                 break;
1285
1286         default:
1287                 /* Default PHY loopback work is to read the MII
1288                  * control register and assert bit 14 (loopback mode).
1289                  */
1290                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1291                 phy_reg |= MII_CR_LOOPBACK;
1292                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1293                 return 0;
1294                 break;
1295         }
1296
1297         return 8;
1298 }
1299
1300 static int
1301 e1000_setup_loopback_test(struct e1000_adapter *adapter)
1302 {
1303         uint32_t rctl;
1304
1305         if(adapter->hw.media_type == e1000_media_type_fiber ||
1306            adapter->hw.media_type == e1000_media_type_internal_serdes) {
1307                 if(adapter->hw.mac_type == e1000_82545 ||
1308                    adapter->hw.mac_type == e1000_82546 ||
1309                    adapter->hw.mac_type == e1000_82545_rev_3 ||
1310                    adapter->hw.mac_type == e1000_82546_rev_3)
1311                         return e1000_set_phy_loopback(adapter);
1312                 else {
1313                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1314                         rctl |= E1000_RCTL_LBM_TCVR;
1315                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1316                         return 0;
1317                 }
1318         } else if(adapter->hw.media_type == e1000_media_type_copper)
1319                 return e1000_set_phy_loopback(adapter);
1320
1321         return 7;
1322 }
1323
1324 static void
1325 e1000_loopback_cleanup(struct e1000_adapter *adapter)
1326 {
1327         uint32_t rctl;
1328         uint16_t phy_reg;
1329
1330         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1331         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1332         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1333
1334         if(adapter->hw.media_type == e1000_media_type_copper ||
1335            ((adapter->hw.media_type == e1000_media_type_fiber ||
1336              adapter->hw.media_type == e1000_media_type_internal_serdes) &&
1337             (adapter->hw.mac_type == e1000_82545 ||
1338              adapter->hw.mac_type == e1000_82546 ||
1339              adapter->hw.mac_type == e1000_82545_rev_3 ||
1340              adapter->hw.mac_type == e1000_82546_rev_3))) {
1341                 adapter->hw.autoneg = TRUE;
1342                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1343                 if(phy_reg & MII_CR_LOOPBACK) {
1344                         phy_reg &= ~MII_CR_LOOPBACK;
1345                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1346                         e1000_phy_reset(&adapter->hw);
1347                 }
1348         }
1349 }
1350
1351 static void
1352 e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1353 {
1354         memset(skb->data, 0xFF, frame_size);
1355         frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size;
1356         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1357         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1358         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1359 }
1360
1361 static int
1362 e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1363 {
1364         frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size;
1365         if(*(skb->data + 3) == 0xFF) {
1366                 if((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1367                    (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1368                         return 0;
1369                 }
1370         }
1371         return 13;
1372 }
1373
1374 static int
1375 e1000_run_loopback_test(struct e1000_adapter *adapter)
1376 {
1377         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1378         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1379         struct pci_dev *pdev = adapter->pdev;
1380         int i, j, k, l, lc, good_cnt, ret_val=0;
1381         unsigned long time;
1382
1383         E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1);
1384
1385         /* Calculate the loop count based on the largest descriptor ring 
1386          * The idea is to wrap the largest ring a number of times using 64
1387          * send/receive pairs during each loop
1388          */
1389
1390         if(rxdr->count <= txdr->count)
1391                 lc = ((txdr->count / 64) * 2) + 1;
1392         else
1393                 lc = ((rxdr->count / 64) * 2) + 1;
1394
1395         k = l = 0;
1396         for(j = 0; j <= lc; j++) { /* loop count loop */
1397                 for(i = 0; i < 64; i++) { /* send the packets */
1398                         e1000_create_lbtest_frame(txdr->buffer_info[i].skb, 
1399                                         1024);
1400                         pci_dma_sync_single_for_device(pdev, 
1401                                         txdr->buffer_info[k].dma,
1402                                         txdr->buffer_info[k].length,
1403                                         PCI_DMA_TODEVICE);
1404                         if(unlikely(++k == txdr->count)) k = 0;
1405                 }
1406                 E1000_WRITE_REG(&adapter->hw, TDT, k);
1407                 msec_delay(200);
1408                 time = jiffies; /* set the start time for the receive */
1409                 good_cnt = 0;
1410                 do { /* receive the sent packets */
1411                         pci_dma_sync_single_for_cpu(pdev, 
1412                                         rxdr->buffer_info[l].dma,
1413                                         rxdr->buffer_info[l].length,
1414                                         PCI_DMA_FROMDEVICE);
1415         
1416                         ret_val = e1000_check_lbtest_frame(
1417                                         rxdr->buffer_info[l].skb,
1418                                         1024);
1419                         if(!ret_val)
1420                                 good_cnt++;
1421                         if(unlikely(++l == rxdr->count)) l = 0;
1422                         /* time + 20 msecs (200 msecs on 2.4) is more than 
1423                          * enough time to complete the receives, if it's 
1424                          * exceeded, break and error off
1425                          */
1426                 } while (good_cnt < 64 && jiffies < (time + 20));
1427                 if(good_cnt != 64) {
1428                         ret_val = 13; /* ret_val is the same as mis-compare */
1429                         break; 
1430                 }
1431                 if(jiffies >= (time + 2)) {
1432                         ret_val = 14; /* error code for time out error */
1433                         break;
1434                 }
1435         } /* end loop count loop */
1436         return ret_val;
1437 }
1438
1439 static int
1440 e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data)
1441 {
1442         if((*data = e1000_setup_desc_rings(adapter))) goto err_loopback;
1443         if((*data = e1000_setup_loopback_test(adapter))) goto err_loopback;
1444         *data = e1000_run_loopback_test(adapter);
1445         e1000_loopback_cleanup(adapter);
1446         e1000_free_desc_rings(adapter);
1447 err_loopback:
1448         return *data;
1449 }
1450
1451 static int
1452 e1000_link_test(struct e1000_adapter *adapter, uint64_t *data)
1453 {
1454         *data = 0;
1455         if (adapter->hw.media_type == e1000_media_type_internal_serdes) {
1456                 int i = 0;
1457                 adapter->hw.serdes_link_down = TRUE;
1458
1459                 /* On some blade server designs, link establishment
1460                  * could take as long as 2-3 minutes */
1461                 do {
1462                         e1000_check_for_link(&adapter->hw);
1463                         if (adapter->hw.serdes_link_down == FALSE)
1464                                 return *data;
1465                         msec_delay(20);
1466                 } while (i++ < 3750);
1467
1468                 *data = 1;
1469         } else {
1470                 e1000_check_for_link(&adapter->hw);
1471                 if(adapter->hw.autoneg)  /* if auto_neg is set wait for it */
1472                         msec_delay(4000);
1473
1474                 if(!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
1475                         *data = 1;
1476                 }
1477         }
1478         return *data;
1479 }
1480
1481 static int 
1482 e1000_diag_test_count(struct net_device *netdev)
1483 {
1484         return E1000_TEST_LEN;
1485 }
1486
1487 static void
1488 e1000_diag_test(struct net_device *netdev,
1489                    struct ethtool_test *eth_test, uint64_t *data)
1490 {
1491         struct e1000_adapter *adapter = netdev_priv(netdev);
1492         boolean_t if_running = netif_running(netdev);
1493
1494         if(eth_test->flags == ETH_TEST_FL_OFFLINE) {
1495                 /* Offline tests */
1496
1497                 /* save speed, duplex, autoneg settings */
1498                 uint16_t autoneg_advertised = adapter->hw.autoneg_advertised;
1499                 uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex;
1500                 uint8_t autoneg = adapter->hw.autoneg;
1501
1502                 /* Link test performed before hardware reset so autoneg doesn't
1503                  * interfere with test result */
1504                 if(e1000_link_test(adapter, &data[4]))
1505                         eth_test->flags |= ETH_TEST_FL_FAILED;
1506
1507                 if(if_running)
1508                         e1000_down(adapter);
1509                 else
1510                         e1000_reset(adapter);
1511
1512                 if(e1000_reg_test(adapter, &data[0]))
1513                         eth_test->flags |= ETH_TEST_FL_FAILED;
1514
1515                 e1000_reset(adapter);
1516                 if(e1000_eeprom_test(adapter, &data[1]))
1517                         eth_test->flags |= ETH_TEST_FL_FAILED;
1518
1519                 e1000_reset(adapter);
1520                 if(e1000_intr_test(adapter, &data[2]))
1521                         eth_test->flags |= ETH_TEST_FL_FAILED;
1522
1523                 e1000_reset(adapter);
1524                 if(e1000_loopback_test(adapter, &data[3]))
1525                         eth_test->flags |= ETH_TEST_FL_FAILED;
1526
1527                 /* restore speed, duplex, autoneg settings */
1528                 adapter->hw.autoneg_advertised = autoneg_advertised;
1529                 adapter->hw.forced_speed_duplex = forced_speed_duplex;
1530                 adapter->hw.autoneg = autoneg;
1531
1532                 e1000_reset(adapter);
1533                 if(if_running)
1534                         e1000_up(adapter);
1535         } else {
1536                 /* Online tests */
1537                 if(e1000_link_test(adapter, &data[4]))
1538                         eth_test->flags |= ETH_TEST_FL_FAILED;
1539
1540                 /* Offline tests aren't run; pass by default */
1541                 data[0] = 0;
1542                 data[1] = 0;
1543                 data[2] = 0;
1544                 data[3] = 0;
1545         }
1546         msleep_interruptible(4 * 1000);
1547 }
1548
1549 static void
1550 e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1551 {
1552         struct e1000_adapter *adapter = netdev_priv(netdev);
1553         struct e1000_hw *hw = &adapter->hw;
1554
1555         switch(adapter->hw.device_id) {
1556         case E1000_DEV_ID_82542:
1557         case E1000_DEV_ID_82543GC_FIBER:
1558         case E1000_DEV_ID_82543GC_COPPER:
1559         case E1000_DEV_ID_82544EI_FIBER:
1560         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1561         case E1000_DEV_ID_82545EM_FIBER:
1562         case E1000_DEV_ID_82545EM_COPPER:
1563                 wol->supported = 0;
1564                 wol->wolopts   = 0;
1565                 return;
1566
1567         case E1000_DEV_ID_82546EB_FIBER:
1568         case E1000_DEV_ID_82546GB_FIBER:
1569                 /* Wake events only supported on port A for dual fiber */
1570                 if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) {
1571                         wol->supported = 0;
1572                         wol->wolopts   = 0;
1573                         return;
1574                 }
1575                 /* Fall Through */
1576
1577         default:
1578                 wol->supported = WAKE_UCAST | WAKE_MCAST |
1579                                  WAKE_BCAST | WAKE_MAGIC;
1580
1581                 wol->wolopts = 0;
1582                 if(adapter->wol & E1000_WUFC_EX)
1583                         wol->wolopts |= WAKE_UCAST;
1584                 if(adapter->wol & E1000_WUFC_MC)
1585                         wol->wolopts |= WAKE_MCAST;
1586                 if(adapter->wol & E1000_WUFC_BC)
1587                         wol->wolopts |= WAKE_BCAST;
1588                 if(adapter->wol & E1000_WUFC_MAG)
1589                         wol->wolopts |= WAKE_MAGIC;
1590                 return;
1591         }
1592 }
1593
1594 static int
1595 e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1596 {
1597         struct e1000_adapter *adapter = netdev_priv(netdev);
1598         struct e1000_hw *hw = &adapter->hw;
1599
1600         switch(adapter->hw.device_id) {
1601         case E1000_DEV_ID_82542:
1602         case E1000_DEV_ID_82543GC_FIBER:
1603         case E1000_DEV_ID_82543GC_COPPER:
1604         case E1000_DEV_ID_82544EI_FIBER:
1605         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1606         case E1000_DEV_ID_82545EM_FIBER:
1607         case E1000_DEV_ID_82545EM_COPPER:
1608                 return wol->wolopts ? -EOPNOTSUPP : 0;
1609
1610         case E1000_DEV_ID_82546EB_FIBER:
1611         case E1000_DEV_ID_82546GB_FIBER:
1612                 /* Wake events only supported on port A for dual fiber */
1613                 if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1614                         return wol->wolopts ? -EOPNOTSUPP : 0;
1615                 /* Fall Through */
1616
1617         default:
1618                 if(wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1619                         return -EOPNOTSUPP;
1620
1621                 adapter->wol = 0;
1622
1623                 if(wol->wolopts & WAKE_UCAST)
1624                         adapter->wol |= E1000_WUFC_EX;
1625                 if(wol->wolopts & WAKE_MCAST)
1626                         adapter->wol |= E1000_WUFC_MC;
1627                 if(wol->wolopts & WAKE_BCAST)
1628                         adapter->wol |= E1000_WUFC_BC;
1629                 if(wol->wolopts & WAKE_MAGIC)
1630                         adapter->wol |= E1000_WUFC_MAG;
1631         }
1632
1633         return 0;
1634 }
1635
1636 /* toggle LED 4 times per second = 2 "blinks" per second */
1637 #define E1000_ID_INTERVAL       (HZ/4)
1638
1639 /* bit defines for adapter->led_status */
1640 #define E1000_LED_ON            0
1641
1642 static void
1643 e1000_led_blink_callback(unsigned long data)
1644 {
1645         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1646
1647         if(test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1648                 e1000_led_off(&adapter->hw);
1649         else
1650                 e1000_led_on(&adapter->hw);
1651
1652         mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1653 }
1654
1655 static int
1656 e1000_phys_id(struct net_device *netdev, uint32_t data)
1657 {
1658         struct e1000_adapter *adapter = netdev_priv(netdev);
1659
1660         if(!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ))
1661                 data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ);
1662
1663         if(adapter->hw.mac_type < e1000_82571) {
1664                 if(!adapter->blink_timer.function) {
1665                         init_timer(&adapter->blink_timer);
1666                         adapter->blink_timer.function = e1000_led_blink_callback;
1667                         adapter->blink_timer.data = (unsigned long) adapter;
1668                 }
1669                 e1000_setup_led(&adapter->hw);
1670                 mod_timer(&adapter->blink_timer, jiffies);
1671                 msleep_interruptible(data * 1000);
1672                 del_timer_sync(&adapter->blink_timer);
1673         }
1674         else {
1675                 E1000_WRITE_REG(&adapter->hw, LEDCTL, (E1000_LEDCTL_LED2_BLINK_RATE |
1676                         E1000_LEDCTL_LED1_BLINK | E1000_LEDCTL_LED2_BLINK | 
1677                         (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) |
1678                         (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED1_MODE_SHIFT) |
1679                         (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED0_MODE_SHIFT)));
1680                 msleep_interruptible(data * 1000);
1681         }
1682
1683         e1000_led_off(&adapter->hw);
1684         clear_bit(E1000_LED_ON, &adapter->led_status);
1685         e1000_cleanup_led(&adapter->hw);
1686
1687         return 0;
1688 }
1689
1690 static int
1691 e1000_nway_reset(struct net_device *netdev)
1692 {
1693         struct e1000_adapter *adapter = netdev_priv(netdev);
1694         if(netif_running(netdev)) {
1695                 e1000_down(adapter);
1696                 e1000_up(adapter);
1697         }
1698         return 0;
1699 }
1700
1701 static int 
1702 e1000_get_stats_count(struct net_device *netdev)
1703 {
1704         return E1000_STATS_LEN;
1705 }
1706
1707 static void 
1708 e1000_get_ethtool_stats(struct net_device *netdev, 
1709                 struct ethtool_stats *stats, uint64_t *data)
1710 {
1711         struct e1000_adapter *adapter = netdev_priv(netdev);
1712         int i;
1713
1714         e1000_update_stats(adapter);
1715         for(i = 0; i < E1000_STATS_LEN; i++) {
1716                 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;  
1717                 data[i] = (e1000_gstrings_stats[i].sizeof_stat == 
1718                         sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
1719         }
1720 }
1721
1722 static void 
1723 e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
1724 {
1725         int i;
1726
1727         switch(stringset) {
1728         case ETH_SS_TEST:
1729                 memcpy(data, *e1000_gstrings_test, 
1730                         E1000_TEST_LEN*ETH_GSTRING_LEN);
1731                 break;
1732         case ETH_SS_STATS:
1733                 for (i=0; i < E1000_STATS_LEN; i++) {
1734                         memcpy(data + i * ETH_GSTRING_LEN, 
1735                         e1000_gstrings_stats[i].stat_string,
1736                         ETH_GSTRING_LEN);
1737                 }
1738                 break;
1739         }
1740 }
1741
1742 static struct ethtool_ops e1000_ethtool_ops = {
1743         .get_settings           = e1000_get_settings,
1744         .set_settings           = e1000_set_settings,
1745         .get_drvinfo            = e1000_get_drvinfo,
1746         .get_regs_len           = e1000_get_regs_len,
1747         .get_regs               = e1000_get_regs,
1748         .get_wol                = e1000_get_wol,
1749         .set_wol                = e1000_set_wol,
1750         .get_msglevel           = e1000_get_msglevel,
1751         .set_msglevel           = e1000_set_msglevel,
1752         .nway_reset             = e1000_nway_reset,
1753         .get_link               = ethtool_op_get_link,
1754         .get_eeprom_len         = e1000_get_eeprom_len,
1755         .get_eeprom             = e1000_get_eeprom,
1756         .set_eeprom             = e1000_set_eeprom,
1757         .get_ringparam          = e1000_get_ringparam,
1758         .set_ringparam          = e1000_set_ringparam,
1759         .get_pauseparam         = e1000_get_pauseparam,
1760         .set_pauseparam         = e1000_set_pauseparam,
1761         .get_rx_csum            = e1000_get_rx_csum,
1762         .set_rx_csum            = e1000_set_rx_csum,
1763         .get_tx_csum            = e1000_get_tx_csum,
1764         .set_tx_csum            = e1000_set_tx_csum,
1765         .get_sg                 = ethtool_op_get_sg,
1766         .set_sg                 = ethtool_op_set_sg,
1767 #ifdef NETIF_F_TSO
1768         .get_tso                = ethtool_op_get_tso,
1769         .set_tso                = e1000_set_tso,
1770 #endif
1771         .self_test_count        = e1000_diag_test_count,
1772         .self_test              = e1000_diag_test,
1773         .get_strings            = e1000_get_strings,
1774         .phys_id                = e1000_phys_id,
1775         .get_stats_count        = e1000_get_stats_count,
1776         .get_ethtool_stats      = e1000_get_ethtool_stats,
1777         .get_perm_addr          = ethtool_op_get_perm_addr,
1778 };
1779
1780 void e1000_set_ethtool_ops(struct net_device *netdev)
1781 {
1782         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1783 }