[netdrvr] Trim trailing whitespace for several drivers
[linux-2.6.git] / drivers / net / cxgb3 / cxgb3_offload.c
1 /*
2  * Copyright (c) 2006-2007 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32
33 #include <linux/list.h>
34 #include <net/neighbour.h>
35 #include <linux/notifier.h>
36 #include <asm/atomic.h>
37 #include <linux/proc_fs.h>
38 #include <linux/if_vlan.h>
39 #include <net/netevent.h>
40 #include <linux/highmem.h>
41 #include <linux/vmalloc.h>
42
43 #include "common.h"
44 #include "regs.h"
45 #include "cxgb3_ioctl.h"
46 #include "cxgb3_ctl_defs.h"
47 #include "cxgb3_defs.h"
48 #include "l2t.h"
49 #include "firmware_exports.h"
50 #include "cxgb3_offload.h"
51
52 static LIST_HEAD(client_list);
53 static LIST_HEAD(ofld_dev_list);
54 static DEFINE_MUTEX(cxgb3_db_lock);
55
56 static DEFINE_RWLOCK(adapter_list_lock);
57 static LIST_HEAD(adapter_list);
58
59 static const unsigned int MAX_ATIDS = 64 * 1024;
60 static const unsigned int ATID_BASE = 0x10000;
61
62 static inline int offload_activated(struct t3cdev *tdev)
63 {
64         const struct adapter *adapter = tdev2adap(tdev);
65
66         return (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map));
67 }
68
69 /**
70  *      cxgb3_register_client - register an offload client
71  *      @client: the client
72  *
73  *      Add the client to the client list,
74  *      and call backs the client for each activated offload device
75  */
76 void cxgb3_register_client(struct cxgb3_client *client)
77 {
78         struct t3cdev *tdev;
79
80         mutex_lock(&cxgb3_db_lock);
81         list_add_tail(&client->client_list, &client_list);
82
83         if (client->add) {
84                 list_for_each_entry(tdev, &ofld_dev_list, ofld_dev_list) {
85                         if (offload_activated(tdev))
86                                 client->add(tdev);
87                 }
88         }
89         mutex_unlock(&cxgb3_db_lock);
90 }
91
92 EXPORT_SYMBOL(cxgb3_register_client);
93
94 /**
95  *      cxgb3_unregister_client - unregister an offload client
96  *      @client: the client
97  *
98  *      Remove the client to the client list,
99  *      and call backs the client for each activated offload device.
100  */
101 void cxgb3_unregister_client(struct cxgb3_client *client)
102 {
103         struct t3cdev *tdev;
104
105         mutex_lock(&cxgb3_db_lock);
106         list_del(&client->client_list);
107
108         if (client->remove) {
109                 list_for_each_entry(tdev, &ofld_dev_list, ofld_dev_list) {
110                         if (offload_activated(tdev))
111                                 client->remove(tdev);
112                 }
113         }
114         mutex_unlock(&cxgb3_db_lock);
115 }
116
117 EXPORT_SYMBOL(cxgb3_unregister_client);
118
119 /**
120  *      cxgb3_add_clients - activate registered clients for an offload device
121  *      @tdev: the offload device
122  *
123  *      Call backs all registered clients once a offload device is activated
124  */
125 void cxgb3_add_clients(struct t3cdev *tdev)
126 {
127         struct cxgb3_client *client;
128
129         mutex_lock(&cxgb3_db_lock);
130         list_for_each_entry(client, &client_list, client_list) {
131                 if (client->add)
132                         client->add(tdev);
133         }
134         mutex_unlock(&cxgb3_db_lock);
135 }
136
137 /**
138  *      cxgb3_remove_clients - deactivates registered clients
139  *                             for an offload device
140  *      @tdev: the offload device
141  *
142  *      Call backs all registered clients once a offload device is deactivated
143  */
144 void cxgb3_remove_clients(struct t3cdev *tdev)
145 {
146         struct cxgb3_client *client;
147
148         mutex_lock(&cxgb3_db_lock);
149         list_for_each_entry(client, &client_list, client_list) {
150                 if (client->remove)
151                         client->remove(tdev);
152         }
153         mutex_unlock(&cxgb3_db_lock);
154 }
155
156 static struct net_device *get_iff_from_mac(struct adapter *adapter,
157                                            const unsigned char *mac,
158                                            unsigned int vlan)
159 {
160         int i;
161
162         for_each_port(adapter, i) {
163                 struct vlan_group *grp;
164                 struct net_device *dev = adapter->port[i];
165                 const struct port_info *p = netdev_priv(dev);
166
167                 if (!memcmp(dev->dev_addr, mac, ETH_ALEN)) {
168                         if (vlan && vlan != VLAN_VID_MASK) {
169                                 grp = p->vlan_grp;
170                                 dev = NULL;
171                                 if (grp)
172                                         dev = vlan_group_get_device(grp, vlan);
173                         } else
174                                 while (dev->master)
175                                         dev = dev->master;
176                         return dev;
177                 }
178         }
179         return NULL;
180 }
181
182 static int cxgb_ulp_iscsi_ctl(struct adapter *adapter, unsigned int req,
183                               void *data)
184 {
185         int ret = 0;
186         struct ulp_iscsi_info *uiip = data;
187
188         switch (req) {
189         case ULP_ISCSI_GET_PARAMS:
190                 uiip->pdev = adapter->pdev;
191                 uiip->llimit = t3_read_reg(adapter, A_ULPRX_ISCSI_LLIMIT);
192                 uiip->ulimit = t3_read_reg(adapter, A_ULPRX_ISCSI_ULIMIT);
193                 uiip->tagmask = t3_read_reg(adapter, A_ULPRX_ISCSI_TAGMASK);
194                 /*
195                  * On tx, the iscsi pdu has to be <= tx page size and has to
196                  * fit into the Tx PM FIFO.
197                  */
198                 uiip->max_txsz = min(adapter->params.tp.tx_pg_size,
199                                      t3_read_reg(adapter, A_PM1_TX_CFG) >> 17);
200                 /* on rx, the iscsi pdu has to be < rx page size and the
201                    whole pdu + cpl headers has to fit into one sge buffer */
202                 uiip->max_rxsz = min_t(unsigned int,
203                                        adapter->params.tp.rx_pg_size,
204                                        (adapter->sge.qs[0].fl[1].buf_size -
205                                         sizeof(struct cpl_rx_data) * 2 -
206                                         sizeof(struct cpl_rx_data_ddp)));
207                 break;
208         case ULP_ISCSI_SET_PARAMS:
209                 t3_write_reg(adapter, A_ULPRX_ISCSI_TAGMASK, uiip->tagmask);
210                 break;
211         default:
212                 ret = -EOPNOTSUPP;
213         }
214         return ret;
215 }
216
217 /* Response queue used for RDMA events. */
218 #define ASYNC_NOTIF_RSPQ 0
219
220 static int cxgb_rdma_ctl(struct adapter *adapter, unsigned int req, void *data)
221 {
222         int ret = 0;
223
224         switch (req) {
225         case RDMA_GET_PARAMS: {
226                 struct rdma_info *rdma = data;
227                 struct pci_dev *pdev = adapter->pdev;
228
229                 rdma->udbell_physbase = pci_resource_start(pdev, 2);
230                 rdma->udbell_len = pci_resource_len(pdev, 2);
231                 rdma->tpt_base =
232                         t3_read_reg(adapter, A_ULPTX_TPT_LLIMIT);
233                 rdma->tpt_top = t3_read_reg(adapter, A_ULPTX_TPT_ULIMIT);
234                 rdma->pbl_base =
235                         t3_read_reg(adapter, A_ULPTX_PBL_LLIMIT);
236                 rdma->pbl_top = t3_read_reg(adapter, A_ULPTX_PBL_ULIMIT);
237                 rdma->rqt_base = t3_read_reg(adapter, A_ULPRX_RQ_LLIMIT);
238                 rdma->rqt_top = t3_read_reg(adapter, A_ULPRX_RQ_ULIMIT);
239                 rdma->kdb_addr = adapter->regs + A_SG_KDOORBELL;
240                 rdma->pdev = pdev;
241                 break;
242         }
243         case RDMA_CQ_OP:{
244                 unsigned long flags;
245                 struct rdma_cq_op *rdma = data;
246
247                 /* may be called in any context */
248                 spin_lock_irqsave(&adapter->sge.reg_lock, flags);
249                 ret = t3_sge_cqcntxt_op(adapter, rdma->id, rdma->op,
250                                         rdma->credits);
251                 spin_unlock_irqrestore(&adapter->sge.reg_lock, flags);
252                 break;
253         }
254         case RDMA_GET_MEM:{
255                 struct ch_mem_range *t = data;
256                 struct mc7 *mem;
257
258                 if ((t->addr & 7) || (t->len & 7))
259                         return -EINVAL;
260                 if (t->mem_id == MEM_CM)
261                         mem = &adapter->cm;
262                 else if (t->mem_id == MEM_PMRX)
263                         mem = &adapter->pmrx;
264                 else if (t->mem_id == MEM_PMTX)
265                         mem = &adapter->pmtx;
266                 else
267                         return -EINVAL;
268
269                 ret =
270                         t3_mc7_bd_read(mem, t->addr / 8, t->len / 8,
271                                         (u64 *) t->buf);
272                 if (ret)
273                         return ret;
274                 break;
275         }
276         case RDMA_CQ_SETUP:{
277                 struct rdma_cq_setup *rdma = data;
278
279                 spin_lock_irq(&adapter->sge.reg_lock);
280                 ret =
281                         t3_sge_init_cqcntxt(adapter, rdma->id,
282                                         rdma->base_addr, rdma->size,
283                                         ASYNC_NOTIF_RSPQ,
284                                         rdma->ovfl_mode, rdma->credits,
285                                         rdma->credit_thres);
286                 spin_unlock_irq(&adapter->sge.reg_lock);
287                 break;
288         }
289         case RDMA_CQ_DISABLE:
290                 spin_lock_irq(&adapter->sge.reg_lock);
291                 ret = t3_sge_disable_cqcntxt(adapter, *(unsigned int *)data);
292                 spin_unlock_irq(&adapter->sge.reg_lock);
293                 break;
294         case RDMA_CTRL_QP_SETUP:{
295                 struct rdma_ctrlqp_setup *rdma = data;
296
297                 spin_lock_irq(&adapter->sge.reg_lock);
298                 ret = t3_sge_init_ecntxt(adapter, FW_RI_SGEEC_START, 0,
299                                                 SGE_CNTXT_RDMA,
300                                                 ASYNC_NOTIF_RSPQ,
301                                                 rdma->base_addr, rdma->size,
302                                                 FW_RI_TID_START, 1, 0);
303                 spin_unlock_irq(&adapter->sge.reg_lock);
304                 break;
305         }
306         default:
307                 ret = -EOPNOTSUPP;
308         }
309         return ret;
310 }
311
312 static int cxgb_offload_ctl(struct t3cdev *tdev, unsigned int req, void *data)
313 {
314         struct adapter *adapter = tdev2adap(tdev);
315         struct tid_range *tid;
316         struct mtutab *mtup;
317         struct iff_mac *iffmacp;
318         struct ddp_params *ddpp;
319         struct adap_ports *ports;
320         struct ofld_page_info *rx_page_info;
321         struct tp_params *tp = &adapter->params.tp;
322         int i;
323
324         switch (req) {
325         case GET_MAX_OUTSTANDING_WR:
326                 *(unsigned int *)data = FW_WR_NUM;
327                 break;
328         case GET_WR_LEN:
329                 *(unsigned int *)data = WR_FLITS;
330                 break;
331         case GET_TX_MAX_CHUNK:
332                 *(unsigned int *)data = 1 << 20;        /* 1MB */
333                 break;
334         case GET_TID_RANGE:
335                 tid = data;
336                 tid->num = t3_mc5_size(&adapter->mc5) -
337                     adapter->params.mc5.nroutes -
338                     adapter->params.mc5.nfilters - adapter->params.mc5.nservers;
339                 tid->base = 0;
340                 break;
341         case GET_STID_RANGE:
342                 tid = data;
343                 tid->num = adapter->params.mc5.nservers;
344                 tid->base = t3_mc5_size(&adapter->mc5) - tid->num -
345                     adapter->params.mc5.nfilters - adapter->params.mc5.nroutes;
346                 break;
347         case GET_L2T_CAPACITY:
348                 *(unsigned int *)data = 2048;
349                 break;
350         case GET_MTUS:
351                 mtup = data;
352                 mtup->size = NMTUS;
353                 mtup->mtus = adapter->params.mtus;
354                 break;
355         case GET_IFF_FROM_MAC:
356                 iffmacp = data;
357                 iffmacp->dev = get_iff_from_mac(adapter, iffmacp->mac_addr,
358                                                 iffmacp->vlan_tag &
359                                                 VLAN_VID_MASK);
360                 break;
361         case GET_DDP_PARAMS:
362                 ddpp = data;
363                 ddpp->llimit = t3_read_reg(adapter, A_ULPRX_TDDP_LLIMIT);
364                 ddpp->ulimit = t3_read_reg(adapter, A_ULPRX_TDDP_ULIMIT);
365                 ddpp->tag_mask = t3_read_reg(adapter, A_ULPRX_TDDP_TAGMASK);
366                 break;
367         case GET_PORTS:
368                 ports = data;
369                 ports->nports = adapter->params.nports;
370                 for_each_port(adapter, i)
371                         ports->lldevs[i] = adapter->port[i];
372                 break;
373         case ULP_ISCSI_GET_PARAMS:
374         case ULP_ISCSI_SET_PARAMS:
375                 if (!offload_running(adapter))
376                         return -EAGAIN;
377                 return cxgb_ulp_iscsi_ctl(adapter, req, data);
378         case RDMA_GET_PARAMS:
379         case RDMA_CQ_OP:
380         case RDMA_CQ_SETUP:
381         case RDMA_CQ_DISABLE:
382         case RDMA_CTRL_QP_SETUP:
383         case RDMA_GET_MEM:
384                 if (!offload_running(adapter))
385                         return -EAGAIN;
386                 return cxgb_rdma_ctl(adapter, req, data);
387         case GET_RX_PAGE_INFO:
388                 rx_page_info = data;
389                 rx_page_info->page_size = tp->rx_pg_size;
390                 rx_page_info->num = tp->rx_num_pgs;
391                 break;
392         default:
393                 return -EOPNOTSUPP;
394         }
395         return 0;
396 }
397
398 /*
399  * Dummy handler for Rx offload packets in case we get an offload packet before
400  * proper processing is setup.  This complains and drops the packet as it isn't
401  * normal to get offload packets at this stage.
402  */
403 static int rx_offload_blackhole(struct t3cdev *dev, struct sk_buff **skbs,
404                                 int n)
405 {
406         while (n--)
407                 dev_kfree_skb_any(skbs[n]);
408         return 0;
409 }
410
411 static void dummy_neigh_update(struct t3cdev *dev, struct neighbour *neigh)
412 {
413 }
414
415 void cxgb3_set_dummy_ops(struct t3cdev *dev)
416 {
417         dev->recv = rx_offload_blackhole;
418         dev->neigh_update = dummy_neigh_update;
419 }
420
421 /*
422  * Free an active-open TID.
423  */
424 void *cxgb3_free_atid(struct t3cdev *tdev, int atid)
425 {
426         struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
427         union active_open_entry *p = atid2entry(t, atid);
428         void *ctx = p->t3c_tid.ctx;
429
430         spin_lock_bh(&t->atid_lock);
431         p->next = t->afree;
432         t->afree = p;
433         t->atids_in_use--;
434         spin_unlock_bh(&t->atid_lock);
435
436         return ctx;
437 }
438
439 EXPORT_SYMBOL(cxgb3_free_atid);
440
441 /*
442  * Free a server TID and return it to the free pool.
443  */
444 void cxgb3_free_stid(struct t3cdev *tdev, int stid)
445 {
446         struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
447         union listen_entry *p = stid2entry(t, stid);
448
449         spin_lock_bh(&t->stid_lock);
450         p->next = t->sfree;
451         t->sfree = p;
452         t->stids_in_use--;
453         spin_unlock_bh(&t->stid_lock);
454 }
455
456 EXPORT_SYMBOL(cxgb3_free_stid);
457
458 void cxgb3_insert_tid(struct t3cdev *tdev, struct cxgb3_client *client,
459                       void *ctx, unsigned int tid)
460 {
461         struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
462
463         t->tid_tab[tid].client = client;
464         t->tid_tab[tid].ctx = ctx;
465         atomic_inc(&t->tids_in_use);
466 }
467
468 EXPORT_SYMBOL(cxgb3_insert_tid);
469
470 /*
471  * Populate a TID_RELEASE WR.  The skb must be already propely sized.
472  */
473 static inline void mk_tid_release(struct sk_buff *skb, unsigned int tid)
474 {
475         struct cpl_tid_release *req;
476
477         skb->priority = CPL_PRIORITY_SETUP;
478         req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
479         req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
480         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
481 }
482
483 static void t3_process_tid_release_list(struct work_struct *work)
484 {
485         struct t3c_data *td = container_of(work, struct t3c_data,
486                                            tid_release_task);
487         struct sk_buff *skb;
488         struct t3cdev *tdev = td->dev;
489
490
491         spin_lock_bh(&td->tid_release_lock);
492         while (td->tid_release_list) {
493                 struct t3c_tid_entry *p = td->tid_release_list;
494
495                 td->tid_release_list = (struct t3c_tid_entry *)p->ctx;
496                 spin_unlock_bh(&td->tid_release_lock);
497
498                 skb = alloc_skb(sizeof(struct cpl_tid_release),
499                                 GFP_KERNEL | __GFP_NOFAIL);
500                 mk_tid_release(skb, p - td->tid_maps.tid_tab);
501                 cxgb3_ofld_send(tdev, skb);
502                 p->ctx = NULL;
503                 spin_lock_bh(&td->tid_release_lock);
504         }
505         spin_unlock_bh(&td->tid_release_lock);
506 }
507
508 /* use ctx as a next pointer in the tid release list */
509 void cxgb3_queue_tid_release(struct t3cdev *tdev, unsigned int tid)
510 {
511         struct t3c_data *td = T3C_DATA(tdev);
512         struct t3c_tid_entry *p = &td->tid_maps.tid_tab[tid];
513
514         spin_lock_bh(&td->tid_release_lock);
515         p->ctx = (void *)td->tid_release_list;
516         p->client = NULL;
517         td->tid_release_list = p;
518         if (!p->ctx)
519                 schedule_work(&td->tid_release_task);
520         spin_unlock_bh(&td->tid_release_lock);
521 }
522
523 EXPORT_SYMBOL(cxgb3_queue_tid_release);
524
525 /*
526  * Remove a tid from the TID table.  A client may defer processing its last
527  * CPL message if it is locked at the time it arrives, and while the message
528  * sits in the client's backlog the TID may be reused for another connection.
529  * To handle this we atomically switch the TID association if it still points
530  * to the original client context.
531  */
532 void cxgb3_remove_tid(struct t3cdev *tdev, void *ctx, unsigned int tid)
533 {
534         struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
535
536         BUG_ON(tid >= t->ntids);
537         if (tdev->type == T3A)
538                 (void)cmpxchg(&t->tid_tab[tid].ctx, ctx, NULL);
539         else {
540                 struct sk_buff *skb;
541
542                 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
543                 if (likely(skb)) {
544                         mk_tid_release(skb, tid);
545                         cxgb3_ofld_send(tdev, skb);
546                         t->tid_tab[tid].ctx = NULL;
547                 } else
548                         cxgb3_queue_tid_release(tdev, tid);
549         }
550         atomic_dec(&t->tids_in_use);
551 }
552
553 EXPORT_SYMBOL(cxgb3_remove_tid);
554
555 int cxgb3_alloc_atid(struct t3cdev *tdev, struct cxgb3_client *client,
556                      void *ctx)
557 {
558         int atid = -1;
559         struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
560
561         spin_lock_bh(&t->atid_lock);
562         if (t->afree &&
563             t->atids_in_use + atomic_read(&t->tids_in_use) + MC5_MIN_TIDS <=
564             t->ntids) {
565                 union active_open_entry *p = t->afree;
566
567                 atid = (p - t->atid_tab) + t->atid_base;
568                 t->afree = p->next;
569                 p->t3c_tid.ctx = ctx;
570                 p->t3c_tid.client = client;
571                 t->atids_in_use++;
572         }
573         spin_unlock_bh(&t->atid_lock);
574         return atid;
575 }
576
577 EXPORT_SYMBOL(cxgb3_alloc_atid);
578
579 int cxgb3_alloc_stid(struct t3cdev *tdev, struct cxgb3_client *client,
580                      void *ctx)
581 {
582         int stid = -1;
583         struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
584
585         spin_lock_bh(&t->stid_lock);
586         if (t->sfree) {
587                 union listen_entry *p = t->sfree;
588
589                 stid = (p - t->stid_tab) + t->stid_base;
590                 t->sfree = p->next;
591                 p->t3c_tid.ctx = ctx;
592                 p->t3c_tid.client = client;
593                 t->stids_in_use++;
594         }
595         spin_unlock_bh(&t->stid_lock);
596         return stid;
597 }
598
599 EXPORT_SYMBOL(cxgb3_alloc_stid);
600
601 /* Get the t3cdev associated with a net_device */
602 struct t3cdev *dev2t3cdev(struct net_device *dev)
603 {
604         const struct port_info *pi = netdev_priv(dev);
605
606         return (struct t3cdev *)pi->adapter;
607 }
608
609 EXPORT_SYMBOL(dev2t3cdev);
610
611 static int do_smt_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
612 {
613         struct cpl_smt_write_rpl *rpl = cplhdr(skb);
614
615         if (rpl->status != CPL_ERR_NONE)
616                 printk(KERN_ERR
617                        "Unexpected SMT_WRITE_RPL status %u for entry %u\n",
618                        rpl->status, GET_TID(rpl));
619
620         return CPL_RET_BUF_DONE;
621 }
622
623 static int do_l2t_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
624 {
625         struct cpl_l2t_write_rpl *rpl = cplhdr(skb);
626
627         if (rpl->status != CPL_ERR_NONE)
628                 printk(KERN_ERR
629                        "Unexpected L2T_WRITE_RPL status %u for entry %u\n",
630                        rpl->status, GET_TID(rpl));
631
632         return CPL_RET_BUF_DONE;
633 }
634
635 static int do_rte_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
636 {
637         struct cpl_rte_write_rpl *rpl = cplhdr(skb);
638
639         if (rpl->status != CPL_ERR_NONE)
640                 printk(KERN_ERR
641                        "Unexpected RTE_WRITE_RPL status %u for entry %u\n",
642                        rpl->status, GET_TID(rpl));
643
644         return CPL_RET_BUF_DONE;
645 }
646
647 static int do_act_open_rpl(struct t3cdev *dev, struct sk_buff *skb)
648 {
649         struct cpl_act_open_rpl *rpl = cplhdr(skb);
650         unsigned int atid = G_TID(ntohl(rpl->atid));
651         struct t3c_tid_entry *t3c_tid;
652
653         t3c_tid = lookup_atid(&(T3C_DATA(dev))->tid_maps, atid);
654         if (t3c_tid && t3c_tid->ctx && t3c_tid->client &&
655             t3c_tid->client->handlers &&
656             t3c_tid->client->handlers[CPL_ACT_OPEN_RPL]) {
657                 return t3c_tid->client->handlers[CPL_ACT_OPEN_RPL] (dev, skb,
658                                                                     t3c_tid->
659                                                                     ctx);
660         } else {
661                 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
662                        dev->name, CPL_ACT_OPEN_RPL);
663                 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
664         }
665 }
666
667 static int do_stid_rpl(struct t3cdev *dev, struct sk_buff *skb)
668 {
669         union opcode_tid *p = cplhdr(skb);
670         unsigned int stid = G_TID(ntohl(p->opcode_tid));
671         struct t3c_tid_entry *t3c_tid;
672
673         t3c_tid = lookup_stid(&(T3C_DATA(dev))->tid_maps, stid);
674         if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
675             t3c_tid->client->handlers[p->opcode]) {
676                 return t3c_tid->client->handlers[p->opcode] (dev, skb,
677                                                              t3c_tid->ctx);
678         } else {
679                 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
680                        dev->name, p->opcode);
681                 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
682         }
683 }
684
685 static int do_hwtid_rpl(struct t3cdev *dev, struct sk_buff *skb)
686 {
687         union opcode_tid *p = cplhdr(skb);
688         unsigned int hwtid = G_TID(ntohl(p->opcode_tid));
689         struct t3c_tid_entry *t3c_tid;
690
691         t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
692         if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
693             t3c_tid->client->handlers[p->opcode]) {
694                 return t3c_tid->client->handlers[p->opcode]
695                     (dev, skb, t3c_tid->ctx);
696         } else {
697                 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
698                        dev->name, p->opcode);
699                 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
700         }
701 }
702
703 static int do_cr(struct t3cdev *dev, struct sk_buff *skb)
704 {
705         struct cpl_pass_accept_req *req = cplhdr(skb);
706         unsigned int stid = G_PASS_OPEN_TID(ntohl(req->tos_tid));
707         struct tid_info *t = &(T3C_DATA(dev))->tid_maps;
708         struct t3c_tid_entry *t3c_tid;
709         unsigned int tid = GET_TID(req);
710
711         if (unlikely(tid >= t->ntids)) {
712                 printk("%s: passive open TID %u too large\n",
713                        dev->name, tid);
714                 t3_fatal_err(tdev2adap(dev));
715                 return CPL_RET_BUF_DONE;
716         }
717
718         t3c_tid = lookup_stid(t, stid);
719         if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
720             t3c_tid->client->handlers[CPL_PASS_ACCEPT_REQ]) {
721                 return t3c_tid->client->handlers[CPL_PASS_ACCEPT_REQ]
722                     (dev, skb, t3c_tid->ctx);
723         } else {
724                 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
725                        dev->name, CPL_PASS_ACCEPT_REQ);
726                 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
727         }
728 }
729
730 /*
731  * Returns an sk_buff for a reply CPL message of size len.  If the input
732  * sk_buff has no other users it is trimmed and reused, otherwise a new buffer
733  * is allocated.  The input skb must be of size at least len.  Note that this
734  * operation does not destroy the original skb data even if it decides to reuse
735  * the buffer.
736  */
737 static struct sk_buff *cxgb3_get_cpl_reply_skb(struct sk_buff *skb, size_t len,
738                                                gfp_t gfp)
739 {
740         if (likely(!skb_cloned(skb))) {
741                 BUG_ON(skb->len < len);
742                 __skb_trim(skb, len);
743                 skb_get(skb);
744         } else {
745                 skb = alloc_skb(len, gfp);
746                 if (skb)
747                         __skb_put(skb, len);
748         }
749         return skb;
750 }
751
752 static int do_abort_req_rss(struct t3cdev *dev, struct sk_buff *skb)
753 {
754         union opcode_tid *p = cplhdr(skb);
755         unsigned int hwtid = G_TID(ntohl(p->opcode_tid));
756         struct t3c_tid_entry *t3c_tid;
757
758         t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
759         if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
760             t3c_tid->client->handlers[p->opcode]) {
761                 return t3c_tid->client->handlers[p->opcode]
762                     (dev, skb, t3c_tid->ctx);
763         } else {
764                 struct cpl_abort_req_rss *req = cplhdr(skb);
765                 struct cpl_abort_rpl *rpl;
766                 struct sk_buff *reply_skb;
767                 unsigned int tid = GET_TID(req);
768                 u8 cmd = req->status;
769
770                 if (req->status == CPL_ERR_RTX_NEG_ADVICE ||
771                     req->status == CPL_ERR_PERSIST_NEG_ADVICE)
772                         goto out;
773
774                 reply_skb = cxgb3_get_cpl_reply_skb(skb,
775                                                     sizeof(struct
776                                                            cpl_abort_rpl),
777                                                     GFP_ATOMIC);
778
779                 if (!reply_skb) {
780                         printk("do_abort_req_rss: couldn't get skb!\n");
781                         goto out;
782                 }
783                 reply_skb->priority = CPL_PRIORITY_DATA;
784                 __skb_put(reply_skb, sizeof(struct cpl_abort_rpl));
785                 rpl = cplhdr(reply_skb);
786                 rpl->wr.wr_hi =
787                     htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_RPL));
788                 rpl->wr.wr_lo = htonl(V_WR_TID(tid));
789                 OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_ABORT_RPL, tid));
790                 rpl->cmd = cmd;
791                 cxgb3_ofld_send(dev, reply_skb);
792 out:
793                 return CPL_RET_BUF_DONE;
794         }
795 }
796
797 static int do_act_establish(struct t3cdev *dev, struct sk_buff *skb)
798 {
799         struct cpl_act_establish *req = cplhdr(skb);
800         unsigned int atid = G_PASS_OPEN_TID(ntohl(req->tos_tid));
801         struct tid_info *t = &(T3C_DATA(dev))->tid_maps;
802         struct t3c_tid_entry *t3c_tid;
803         unsigned int tid = GET_TID(req);
804
805         if (unlikely(tid >= t->ntids)) {
806                 printk("%s: active establish TID %u too large\n",
807                        dev->name, tid);
808                 t3_fatal_err(tdev2adap(dev));
809                 return CPL_RET_BUF_DONE;
810         }
811
812         t3c_tid = lookup_atid(t, atid);
813         if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
814             t3c_tid->client->handlers[CPL_ACT_ESTABLISH]) {
815                 return t3c_tid->client->handlers[CPL_ACT_ESTABLISH]
816                     (dev, skb, t3c_tid->ctx);
817         } else {
818                 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
819                        dev->name, CPL_ACT_ESTABLISH);
820                 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
821         }
822 }
823
824 static int do_trace(struct t3cdev *dev, struct sk_buff *skb)
825 {
826         struct cpl_trace_pkt *p = cplhdr(skb);
827
828         skb->protocol = htons(0xffff);
829         skb->dev = dev->lldev;
830         skb_pull(skb, sizeof(*p));
831         skb_reset_mac_header(skb);
832         netif_receive_skb(skb);
833         return 0;
834 }
835
836 /*
837  * That skb would better have come from process_responses() where we abuse
838  * ->priority and ->csum to carry our data.  NB: if we get to per-arch
839  * ->csum, the things might get really interesting here.
840  */
841
842 static inline u32 get_hwtid(struct sk_buff *skb)
843 {
844         return ntohl((__force __be32)skb->priority) >> 8 & 0xfffff;
845 }
846
847 static inline u32 get_opcode(struct sk_buff *skb)
848 {
849         return G_OPCODE(ntohl((__force __be32)skb->csum));
850 }
851
852 static int do_term(struct t3cdev *dev, struct sk_buff *skb)
853 {
854         unsigned int hwtid = get_hwtid(skb);
855         unsigned int opcode = get_opcode(skb);
856         struct t3c_tid_entry *t3c_tid;
857
858         t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
859         if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
860             t3c_tid->client->handlers[opcode]) {
861                 return t3c_tid->client->handlers[opcode] (dev, skb,
862                                                           t3c_tid->ctx);
863         } else {
864                 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
865                        dev->name, opcode);
866                 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
867         }
868 }
869
870 static int nb_callback(struct notifier_block *self, unsigned long event,
871                        void *ctx)
872 {
873         switch (event) {
874         case (NETEVENT_NEIGH_UPDATE):{
875                 cxgb_neigh_update((struct neighbour *)ctx);
876                 break;
877         }
878         case (NETEVENT_PMTU_UPDATE):
879                 break;
880         case (NETEVENT_REDIRECT):{
881                 struct netevent_redirect *nr = ctx;
882                 cxgb_redirect(nr->old, nr->new);
883                 cxgb_neigh_update(nr->new->neighbour);
884                 break;
885         }
886         default:
887                 break;
888         }
889         return 0;
890 }
891
892 static struct notifier_block nb = {
893         .notifier_call = nb_callback
894 };
895
896 /*
897  * Process a received packet with an unknown/unexpected CPL opcode.
898  */
899 static int do_bad_cpl(struct t3cdev *dev, struct sk_buff *skb)
900 {
901         printk(KERN_ERR "%s: received bad CPL command 0x%x\n", dev->name,
902                *skb->data);
903         return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
904 }
905
906 /*
907  * Handlers for each CPL opcode
908  */
909 static cpl_handler_func cpl_handlers[NUM_CPL_CMDS];
910
911 /*
912  * Add a new handler to the CPL dispatch table.  A NULL handler may be supplied
913  * to unregister an existing handler.
914  */
915 void t3_register_cpl_handler(unsigned int opcode, cpl_handler_func h)
916 {
917         if (opcode < NUM_CPL_CMDS)
918                 cpl_handlers[opcode] = h ? h : do_bad_cpl;
919         else
920                 printk(KERN_ERR "T3C: handler registration for "
921                        "opcode %x failed\n", opcode);
922 }
923
924 EXPORT_SYMBOL(t3_register_cpl_handler);
925
926 /*
927  * T3CDEV's receive method.
928  */
929 int process_rx(struct t3cdev *dev, struct sk_buff **skbs, int n)
930 {
931         while (n--) {
932                 struct sk_buff *skb = *skbs++;
933                 unsigned int opcode = get_opcode(skb);
934                 int ret = cpl_handlers[opcode] (dev, skb);
935
936 #if VALIDATE_TID
937                 if (ret & CPL_RET_UNKNOWN_TID) {
938                         union opcode_tid *p = cplhdr(skb);
939
940                         printk(KERN_ERR "%s: CPL message (opcode %u) had "
941                                "unknown TID %u\n", dev->name, opcode,
942                                G_TID(ntohl(p->opcode_tid)));
943                 }
944 #endif
945                 if (ret & CPL_RET_BUF_DONE)
946                         kfree_skb(skb);
947         }
948         return 0;
949 }
950
951 /*
952  * Sends an sk_buff to a T3C driver after dealing with any active network taps.
953  */
954 int cxgb3_ofld_send(struct t3cdev *dev, struct sk_buff *skb)
955 {
956         int r;
957
958         local_bh_disable();
959         r = dev->send(dev, skb);
960         local_bh_enable();
961         return r;
962 }
963
964 EXPORT_SYMBOL(cxgb3_ofld_send);
965
966 static int is_offloading(struct net_device *dev)
967 {
968         struct adapter *adapter;
969         int i;
970
971         read_lock_bh(&adapter_list_lock);
972         list_for_each_entry(adapter, &adapter_list, adapter_list) {
973                 for_each_port(adapter, i) {
974                         if (dev == adapter->port[i]) {
975                                 read_unlock_bh(&adapter_list_lock);
976                                 return 1;
977                         }
978                 }
979         }
980         read_unlock_bh(&adapter_list_lock);
981         return 0;
982 }
983
984 void cxgb_neigh_update(struct neighbour *neigh)
985 {
986         struct net_device *dev = neigh->dev;
987
988         if (dev && (is_offloading(dev))) {
989                 struct t3cdev *tdev = dev2t3cdev(dev);
990
991                 BUG_ON(!tdev);
992                 t3_l2t_update(tdev, neigh);
993         }
994 }
995
996 static void set_l2t_ix(struct t3cdev *tdev, u32 tid, struct l2t_entry *e)
997 {
998         struct sk_buff *skb;
999         struct cpl_set_tcb_field *req;
1000
1001         skb = alloc_skb(sizeof(*req), GFP_ATOMIC);
1002         if (!skb) {
1003                 printk(KERN_ERR "%s: cannot allocate skb!\n", __FUNCTION__);
1004                 return;
1005         }
1006         skb->priority = CPL_PRIORITY_CONTROL;
1007         req = (struct cpl_set_tcb_field *)skb_put(skb, sizeof(*req));
1008         req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1009         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, tid));
1010         req->reply = 0;
1011         req->cpu_idx = 0;
1012         req->word = htons(W_TCB_L2T_IX);
1013         req->mask = cpu_to_be64(V_TCB_L2T_IX(M_TCB_L2T_IX));
1014         req->val = cpu_to_be64(V_TCB_L2T_IX(e->idx));
1015         tdev->send(tdev, skb);
1016 }
1017
1018 void cxgb_redirect(struct dst_entry *old, struct dst_entry *new)
1019 {
1020         struct net_device *olddev, *newdev;
1021         struct tid_info *ti;
1022         struct t3cdev *tdev;
1023         u32 tid;
1024         int update_tcb;
1025         struct l2t_entry *e;
1026         struct t3c_tid_entry *te;
1027
1028         olddev = old->neighbour->dev;
1029         newdev = new->neighbour->dev;
1030         if (!is_offloading(olddev))
1031                 return;
1032         if (!is_offloading(newdev)) {
1033                 printk(KERN_WARNING "%s: Redirect to non-offload "
1034                        "device ignored.\n", __FUNCTION__);
1035                 return;
1036         }
1037         tdev = dev2t3cdev(olddev);
1038         BUG_ON(!tdev);
1039         if (tdev != dev2t3cdev(newdev)) {
1040                 printk(KERN_WARNING "%s: Redirect to different "
1041                        "offload device ignored.\n", __FUNCTION__);
1042                 return;
1043         }
1044
1045         /* Add new L2T entry */
1046         e = t3_l2t_get(tdev, new->neighbour, newdev);
1047         if (!e) {
1048                 printk(KERN_ERR "%s: couldn't allocate new l2t entry!\n",
1049                        __FUNCTION__);
1050                 return;
1051         }
1052
1053         /* Walk tid table and notify clients of dst change. */
1054         ti = &(T3C_DATA(tdev))->tid_maps;
1055         for (tid = 0; tid < ti->ntids; tid++) {
1056                 te = lookup_tid(ti, tid);
1057                 BUG_ON(!te);
1058                 if (te && te->ctx && te->client && te->client->redirect) {
1059                         update_tcb = te->client->redirect(te->ctx, old, new, e);
1060                         if (update_tcb) {
1061                                 l2t_hold(L2DATA(tdev), e);
1062                                 set_l2t_ix(tdev, tid, e);
1063                         }
1064                 }
1065         }
1066         l2t_release(L2DATA(tdev), e);
1067 }
1068
1069 /*
1070  * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1071  * The allocated memory is cleared.
1072  */
1073 void *cxgb_alloc_mem(unsigned long size)
1074 {
1075         void *p = kmalloc(size, GFP_KERNEL);
1076
1077         if (!p)
1078                 p = vmalloc(size);
1079         if (p)
1080                 memset(p, 0, size);
1081         return p;
1082 }
1083
1084 /*
1085  * Free memory allocated through t3_alloc_mem().
1086  */
1087 void cxgb_free_mem(void *addr)
1088 {
1089         if (is_vmalloc_addr(addr))
1090                 vfree(addr);
1091         else
1092                 kfree(addr);
1093 }
1094
1095 /*
1096  * Allocate and initialize the TID tables.  Returns 0 on success.
1097  */
1098 static int init_tid_tabs(struct tid_info *t, unsigned int ntids,
1099                          unsigned int natids, unsigned int nstids,
1100                          unsigned int atid_base, unsigned int stid_base)
1101 {
1102         unsigned long size = ntids * sizeof(*t->tid_tab) +
1103             natids * sizeof(*t->atid_tab) + nstids * sizeof(*t->stid_tab);
1104
1105         t->tid_tab = cxgb_alloc_mem(size);
1106         if (!t->tid_tab)
1107                 return -ENOMEM;
1108
1109         t->stid_tab = (union listen_entry *)&t->tid_tab[ntids];
1110         t->atid_tab = (union active_open_entry *)&t->stid_tab[nstids];
1111         t->ntids = ntids;
1112         t->nstids = nstids;
1113         t->stid_base = stid_base;
1114         t->sfree = NULL;
1115         t->natids = natids;
1116         t->atid_base = atid_base;
1117         t->afree = NULL;
1118         t->stids_in_use = t->atids_in_use = 0;
1119         atomic_set(&t->tids_in_use, 0);
1120         spin_lock_init(&t->stid_lock);
1121         spin_lock_init(&t->atid_lock);
1122
1123         /*
1124          * Setup the free lists for stid_tab and atid_tab.
1125          */
1126         if (nstids) {
1127                 while (--nstids)
1128                         t->stid_tab[nstids - 1].next = &t->stid_tab[nstids];
1129                 t->sfree = t->stid_tab;
1130         }
1131         if (natids) {
1132                 while (--natids)
1133                         t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1134                 t->afree = t->atid_tab;
1135         }
1136         return 0;
1137 }
1138
1139 static void free_tid_maps(struct tid_info *t)
1140 {
1141         cxgb_free_mem(t->tid_tab);
1142 }
1143
1144 static inline void add_adapter(struct adapter *adap)
1145 {
1146         write_lock_bh(&adapter_list_lock);
1147         list_add_tail(&adap->adapter_list, &adapter_list);
1148         write_unlock_bh(&adapter_list_lock);
1149 }
1150
1151 static inline void remove_adapter(struct adapter *adap)
1152 {
1153         write_lock_bh(&adapter_list_lock);
1154         list_del(&adap->adapter_list);
1155         write_unlock_bh(&adapter_list_lock);
1156 }
1157
1158 int cxgb3_offload_activate(struct adapter *adapter)
1159 {
1160         struct t3cdev *dev = &adapter->tdev;
1161         int natids, err;
1162         struct t3c_data *t;
1163         struct tid_range stid_range, tid_range;
1164         struct mtutab mtutab;
1165         unsigned int l2t_capacity;
1166
1167         t = kcalloc(1, sizeof(*t), GFP_KERNEL);
1168         if (!t)
1169                 return -ENOMEM;
1170
1171         err = -EOPNOTSUPP;
1172         if (dev->ctl(dev, GET_TX_MAX_CHUNK, &t->tx_max_chunk) < 0 ||
1173             dev->ctl(dev, GET_MAX_OUTSTANDING_WR, &t->max_wrs) < 0 ||
1174             dev->ctl(dev, GET_L2T_CAPACITY, &l2t_capacity) < 0 ||
1175             dev->ctl(dev, GET_MTUS, &mtutab) < 0 ||
1176             dev->ctl(dev, GET_TID_RANGE, &tid_range) < 0 ||
1177             dev->ctl(dev, GET_STID_RANGE, &stid_range) < 0)
1178                 goto out_free;
1179
1180         err = -ENOMEM;
1181         L2DATA(dev) = t3_init_l2t(l2t_capacity);
1182         if (!L2DATA(dev))
1183                 goto out_free;
1184
1185         natids = min(tid_range.num / 2, MAX_ATIDS);
1186         err = init_tid_tabs(&t->tid_maps, tid_range.num, natids,
1187                             stid_range.num, ATID_BASE, stid_range.base);
1188         if (err)
1189                 goto out_free_l2t;
1190
1191         t->mtus = mtutab.mtus;
1192         t->nmtus = mtutab.size;
1193
1194         INIT_WORK(&t->tid_release_task, t3_process_tid_release_list);
1195         spin_lock_init(&t->tid_release_lock);
1196         INIT_LIST_HEAD(&t->list_node);
1197         t->dev = dev;
1198
1199         T3C_DATA(dev) = t;
1200         dev->recv = process_rx;
1201         dev->neigh_update = t3_l2t_update;
1202
1203         /* Register netevent handler once */
1204         if (list_empty(&adapter_list))
1205                 register_netevent_notifier(&nb);
1206
1207         add_adapter(adapter);
1208         return 0;
1209
1210 out_free_l2t:
1211         t3_free_l2t(L2DATA(dev));
1212         L2DATA(dev) = NULL;
1213 out_free:
1214         kfree(t);
1215         return err;
1216 }
1217
1218 void cxgb3_offload_deactivate(struct adapter *adapter)
1219 {
1220         struct t3cdev *tdev = &adapter->tdev;
1221         struct t3c_data *t = T3C_DATA(tdev);
1222
1223         remove_adapter(adapter);
1224         if (list_empty(&adapter_list))
1225                 unregister_netevent_notifier(&nb);
1226
1227         free_tid_maps(&t->tid_maps);
1228         T3C_DATA(tdev) = NULL;
1229         t3_free_l2t(L2DATA(tdev));
1230         L2DATA(tdev) = NULL;
1231         kfree(t);
1232 }
1233
1234 static inline void register_tdev(struct t3cdev *tdev)
1235 {
1236         static int unit;
1237
1238         mutex_lock(&cxgb3_db_lock);
1239         snprintf(tdev->name, sizeof(tdev->name), "ofld_dev%d", unit++);
1240         list_add_tail(&tdev->ofld_dev_list, &ofld_dev_list);
1241         mutex_unlock(&cxgb3_db_lock);
1242 }
1243
1244 static inline void unregister_tdev(struct t3cdev *tdev)
1245 {
1246         mutex_lock(&cxgb3_db_lock);
1247         list_del(&tdev->ofld_dev_list);
1248         mutex_unlock(&cxgb3_db_lock);
1249 }
1250
1251 void __devinit cxgb3_adapter_ofld(struct adapter *adapter)
1252 {
1253         struct t3cdev *tdev = &adapter->tdev;
1254
1255         INIT_LIST_HEAD(&tdev->ofld_dev_list);
1256
1257         cxgb3_set_dummy_ops(tdev);
1258         tdev->send = t3_offload_tx;
1259         tdev->ctl = cxgb_offload_ctl;
1260         tdev->type = adapter->params.rev == 0 ? T3A : T3B;
1261
1262         register_tdev(tdev);
1263 }
1264
1265 void __devexit cxgb3_adapter_unofld(struct adapter *adapter)
1266 {
1267         struct t3cdev *tdev = &adapter->tdev;
1268
1269         tdev->recv = NULL;
1270         tdev->neigh_update = NULL;
1271
1272         unregister_tdev(tdev);
1273 }
1274
1275 void __init cxgb3_offload_init(void)
1276 {
1277         int i;
1278
1279         for (i = 0; i < NUM_CPL_CMDS; ++i)
1280                 cpl_handlers[i] = do_bad_cpl;
1281
1282         t3_register_cpl_handler(CPL_SMT_WRITE_RPL, do_smt_write_rpl);
1283         t3_register_cpl_handler(CPL_L2T_WRITE_RPL, do_l2t_write_rpl);
1284         t3_register_cpl_handler(CPL_RTE_WRITE_RPL, do_rte_write_rpl);
1285         t3_register_cpl_handler(CPL_PASS_OPEN_RPL, do_stid_rpl);
1286         t3_register_cpl_handler(CPL_CLOSE_LISTSRV_RPL, do_stid_rpl);
1287         t3_register_cpl_handler(CPL_PASS_ACCEPT_REQ, do_cr);
1288         t3_register_cpl_handler(CPL_PASS_ESTABLISH, do_hwtid_rpl);
1289         t3_register_cpl_handler(CPL_ABORT_RPL_RSS, do_hwtid_rpl);
1290         t3_register_cpl_handler(CPL_ABORT_RPL, do_hwtid_rpl);
1291         t3_register_cpl_handler(CPL_RX_URG_NOTIFY, do_hwtid_rpl);
1292         t3_register_cpl_handler(CPL_RX_DATA, do_hwtid_rpl);
1293         t3_register_cpl_handler(CPL_TX_DATA_ACK, do_hwtid_rpl);
1294         t3_register_cpl_handler(CPL_TX_DMA_ACK, do_hwtid_rpl);
1295         t3_register_cpl_handler(CPL_ACT_OPEN_RPL, do_act_open_rpl);
1296         t3_register_cpl_handler(CPL_PEER_CLOSE, do_hwtid_rpl);
1297         t3_register_cpl_handler(CPL_CLOSE_CON_RPL, do_hwtid_rpl);
1298         t3_register_cpl_handler(CPL_ABORT_REQ_RSS, do_abort_req_rss);
1299         t3_register_cpl_handler(CPL_ACT_ESTABLISH, do_act_establish);
1300         t3_register_cpl_handler(CPL_SET_TCB_RPL, do_hwtid_rpl);
1301         t3_register_cpl_handler(CPL_GET_TCB_RPL, do_hwtid_rpl);
1302         t3_register_cpl_handler(CPL_RDMA_TERMINATE, do_term);
1303         t3_register_cpl_handler(CPL_RDMA_EC_STATUS, do_hwtid_rpl);
1304         t3_register_cpl_handler(CPL_TRACE_PKT, do_trace);
1305         t3_register_cpl_handler(CPL_RX_DATA_DDP, do_hwtid_rpl);
1306         t3_register_cpl_handler(CPL_RX_DDP_COMPLETE, do_hwtid_rpl);
1307         t3_register_cpl_handler(CPL_ISCSI_HDR, do_hwtid_rpl);
1308 }