bnx2x: multicasts in NPAR mode
[linux-2.6.git] / drivers / net / bnx2x / bnx2x_main.c
1 /* bnx2x_main.c: Broadcom Everest network driver.
2  *
3  * Copyright (c) 2007-2010 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  *
9  * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10  * Written by: Eliezer Tamir
11  * Based on code from Michael Chan's bnx2 driver
12  * UDP CSUM errata workaround by Arik Gendelman
13  * Slowpath and fastpath rework by Vladislav Zolotarov
14  * Statistics and Link management by Yitchak Gertner
15  *
16  */
17
18 #include <linux/module.h>
19 #include <linux/moduleparam.h>
20 #include <linux/kernel.h>
21 #include <linux/device.h>  /* for dev_info() */
22 #include <linux/timer.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/slab.h>
26 #include <linux/interrupt.h>
27 #include <linux/pci.h>
28 #include <linux/init.h>
29 #include <linux/netdevice.h>
30 #include <linux/etherdevice.h>
31 #include <linux/skbuff.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/bitops.h>
34 #include <linux/irq.h>
35 #include <linux/delay.h>
36 #include <asm/byteorder.h>
37 #include <linux/time.h>
38 #include <linux/ethtool.h>
39 #include <linux/mii.h>
40 #include <linux/if_vlan.h>
41 #include <net/ip.h>
42 #include <net/tcp.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <linux/workqueue.h>
46 #include <linux/crc32.h>
47 #include <linux/crc32c.h>
48 #include <linux/prefetch.h>
49 #include <linux/zlib.h>
50 #include <linux/io.h>
51 #include <linux/stringify.h>
52
53 #define BNX2X_MAIN
54 #include "bnx2x.h"
55 #include "bnx2x_init.h"
56 #include "bnx2x_init_ops.h"
57 #include "bnx2x_cmn.h"
58 #include "bnx2x_dcb.h"
59
60 #include <linux/firmware.h>
61 #include "bnx2x_fw_file_hdr.h"
62 /* FW files */
63 #define FW_FILE_VERSION                                 \
64         __stringify(BCM_5710_FW_MAJOR_VERSION) "."      \
65         __stringify(BCM_5710_FW_MINOR_VERSION) "."      \
66         __stringify(BCM_5710_FW_REVISION_VERSION) "."   \
67         __stringify(BCM_5710_FW_ENGINEERING_VERSION)
68 #define FW_FILE_NAME_E1         "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
69 #define FW_FILE_NAME_E1H        "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
70 #define FW_FILE_NAME_E2         "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
71
72 /* Time in jiffies before concluding the transmitter is hung */
73 #define TX_TIMEOUT              (5*HZ)
74
75 static char version[] __devinitdata =
76         "Broadcom NetXtreme II 5771x 10Gigabit Ethernet Driver "
77         DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
78
79 MODULE_AUTHOR("Eliezer Tamir");
80 MODULE_DESCRIPTION("Broadcom NetXtreme II "
81                    "BCM57710/57711/57711E/57712/57712E Driver");
82 MODULE_LICENSE("GPL");
83 MODULE_VERSION(DRV_MODULE_VERSION);
84 MODULE_FIRMWARE(FW_FILE_NAME_E1);
85 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
86 MODULE_FIRMWARE(FW_FILE_NAME_E2);
87
88 static int multi_mode = 1;
89 module_param(multi_mode, int, 0);
90 MODULE_PARM_DESC(multi_mode, " Multi queue mode "
91                              "(0 Disable; 1 Enable (default))");
92
93 int num_queues;
94 module_param(num_queues, int, 0);
95 MODULE_PARM_DESC(num_queues, " Number of queues for multi_mode=1"
96                                 " (default is as a number of CPUs)");
97
98 static int disable_tpa;
99 module_param(disable_tpa, int, 0);
100 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
101
102 static int int_mode;
103 module_param(int_mode, int, 0);
104 MODULE_PARM_DESC(int_mode, " Force interrupt mode other then MSI-X "
105                                 "(1 INT#x; 2 MSI)");
106
107 static int dropless_fc;
108 module_param(dropless_fc, int, 0);
109 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
110
111 static int poll;
112 module_param(poll, int, 0);
113 MODULE_PARM_DESC(poll, " Use polling (for debug)");
114
115 static int mrrs = -1;
116 module_param(mrrs, int, 0);
117 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
118
119 static int debug;
120 module_param(debug, int, 0);
121 MODULE_PARM_DESC(debug, " Default debug msglevel");
122
123 static struct workqueue_struct *bnx2x_wq;
124
125 #ifdef BCM_CNIC
126 static u8 ALL_ENODE_MACS[] = {0x01, 0x10, 0x18, 0x01, 0x00, 0x01};
127 #endif
128
129 enum bnx2x_board_type {
130         BCM57710 = 0,
131         BCM57711 = 1,
132         BCM57711E = 2,
133         BCM57712 = 3,
134         BCM57712E = 4
135 };
136
137 /* indexed by board_type, above */
138 static struct {
139         char *name;
140 } board_info[] __devinitdata = {
141         { "Broadcom NetXtreme II BCM57710 XGb" },
142         { "Broadcom NetXtreme II BCM57711 XGb" },
143         { "Broadcom NetXtreme II BCM57711E XGb" },
144         { "Broadcom NetXtreme II BCM57712 XGb" },
145         { "Broadcom NetXtreme II BCM57712E XGb" }
146 };
147
148 #ifndef PCI_DEVICE_ID_NX2_57712
149 #define PCI_DEVICE_ID_NX2_57712         0x1662
150 #endif
151 #ifndef PCI_DEVICE_ID_NX2_57712E
152 #define PCI_DEVICE_ID_NX2_57712E        0x1663
153 #endif
154
155 static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
156         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
157         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
158         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
159         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
160         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712E), BCM57712E },
161         { 0 }
162 };
163
164 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
165
166 /****************************************************************************
167 * General service functions
168 ****************************************************************************/
169
170 static inline void __storm_memset_dma_mapping(struct bnx2x *bp,
171                                        u32 addr, dma_addr_t mapping)
172 {
173         REG_WR(bp,  addr, U64_LO(mapping));
174         REG_WR(bp,  addr + 4, U64_HI(mapping));
175 }
176
177 static inline void __storm_memset_fill(struct bnx2x *bp,
178                                        u32 addr, size_t size, u32 val)
179 {
180         int i;
181         for (i = 0; i < size/4; i++)
182                 REG_WR(bp,  addr + (i * 4), val);
183 }
184
185 static inline void storm_memset_ustats_zero(struct bnx2x *bp,
186                                             u8 port, u16 stat_id)
187 {
188         size_t size = sizeof(struct ustorm_per_client_stats);
189
190         u32 addr = BAR_USTRORM_INTMEM +
191                         USTORM_PER_COUNTER_ID_STATS_OFFSET(port, stat_id);
192
193         __storm_memset_fill(bp, addr, size, 0);
194 }
195
196 static inline void storm_memset_tstats_zero(struct bnx2x *bp,
197                                             u8 port, u16 stat_id)
198 {
199         size_t size = sizeof(struct tstorm_per_client_stats);
200
201         u32 addr = BAR_TSTRORM_INTMEM +
202                         TSTORM_PER_COUNTER_ID_STATS_OFFSET(port, stat_id);
203
204         __storm_memset_fill(bp, addr, size, 0);
205 }
206
207 static inline void storm_memset_xstats_zero(struct bnx2x *bp,
208                                             u8 port, u16 stat_id)
209 {
210         size_t size = sizeof(struct xstorm_per_client_stats);
211
212         u32 addr = BAR_XSTRORM_INTMEM +
213                         XSTORM_PER_COUNTER_ID_STATS_OFFSET(port, stat_id);
214
215         __storm_memset_fill(bp, addr, size, 0);
216 }
217
218
219 static inline void storm_memset_spq_addr(struct bnx2x *bp,
220                                          dma_addr_t mapping, u16 abs_fid)
221 {
222         u32 addr = XSEM_REG_FAST_MEMORY +
223                         XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
224
225         __storm_memset_dma_mapping(bp, addr, mapping);
226 }
227
228 static inline void storm_memset_ov(struct bnx2x *bp, u16 ov, u16 abs_fid)
229 {
230         REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_E1HOV_OFFSET(abs_fid), ov);
231 }
232
233 static inline void storm_memset_func_cfg(struct bnx2x *bp,
234                                 struct tstorm_eth_function_common_config *tcfg,
235                                 u16 abs_fid)
236 {
237         size_t size = sizeof(struct tstorm_eth_function_common_config);
238
239         u32 addr = BAR_TSTRORM_INTMEM +
240                         TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
241
242         __storm_memset_struct(bp, addr, size, (u32 *)tcfg);
243 }
244
245 static inline void storm_memset_xstats_flags(struct bnx2x *bp,
246                                 struct stats_indication_flags *flags,
247                                 u16 abs_fid)
248 {
249         size_t size = sizeof(struct stats_indication_flags);
250
251         u32 addr = BAR_XSTRORM_INTMEM + XSTORM_STATS_FLAGS_OFFSET(abs_fid);
252
253         __storm_memset_struct(bp, addr, size, (u32 *)flags);
254 }
255
256 static inline void storm_memset_tstats_flags(struct bnx2x *bp,
257                                 struct stats_indication_flags *flags,
258                                 u16 abs_fid)
259 {
260         size_t size = sizeof(struct stats_indication_flags);
261
262         u32 addr = BAR_TSTRORM_INTMEM + TSTORM_STATS_FLAGS_OFFSET(abs_fid);
263
264         __storm_memset_struct(bp, addr, size, (u32 *)flags);
265 }
266
267 static inline void storm_memset_ustats_flags(struct bnx2x *bp,
268                                 struct stats_indication_flags *flags,
269                                 u16 abs_fid)
270 {
271         size_t size = sizeof(struct stats_indication_flags);
272
273         u32 addr = BAR_USTRORM_INTMEM + USTORM_STATS_FLAGS_OFFSET(abs_fid);
274
275         __storm_memset_struct(bp, addr, size, (u32 *)flags);
276 }
277
278 static inline void storm_memset_cstats_flags(struct bnx2x *bp,
279                                 struct stats_indication_flags *flags,
280                                 u16 abs_fid)
281 {
282         size_t size = sizeof(struct stats_indication_flags);
283
284         u32 addr = BAR_CSTRORM_INTMEM + CSTORM_STATS_FLAGS_OFFSET(abs_fid);
285
286         __storm_memset_struct(bp, addr, size, (u32 *)flags);
287 }
288
289 static inline void storm_memset_xstats_addr(struct bnx2x *bp,
290                                            dma_addr_t mapping, u16 abs_fid)
291 {
292         u32 addr = BAR_XSTRORM_INTMEM +
293                 XSTORM_ETH_STATS_QUERY_ADDR_OFFSET(abs_fid);
294
295         __storm_memset_dma_mapping(bp, addr, mapping);
296 }
297
298 static inline void storm_memset_tstats_addr(struct bnx2x *bp,
299                                            dma_addr_t mapping, u16 abs_fid)
300 {
301         u32 addr = BAR_TSTRORM_INTMEM +
302                 TSTORM_ETH_STATS_QUERY_ADDR_OFFSET(abs_fid);
303
304         __storm_memset_dma_mapping(bp, addr, mapping);
305 }
306
307 static inline void storm_memset_ustats_addr(struct bnx2x *bp,
308                                            dma_addr_t mapping, u16 abs_fid)
309 {
310         u32 addr = BAR_USTRORM_INTMEM +
311                 USTORM_ETH_STATS_QUERY_ADDR_OFFSET(abs_fid);
312
313         __storm_memset_dma_mapping(bp, addr, mapping);
314 }
315
316 static inline void storm_memset_cstats_addr(struct bnx2x *bp,
317                                            dma_addr_t mapping, u16 abs_fid)
318 {
319         u32 addr = BAR_CSTRORM_INTMEM +
320                 CSTORM_ETH_STATS_QUERY_ADDR_OFFSET(abs_fid);
321
322         __storm_memset_dma_mapping(bp, addr, mapping);
323 }
324
325 static inline void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
326                                          u16 pf_id)
327 {
328         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
329                 pf_id);
330         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
331                 pf_id);
332         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
333                 pf_id);
334         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
335                 pf_id);
336 }
337
338 static inline void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
339                                         u8 enable)
340 {
341         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
342                 enable);
343         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
344                 enable);
345         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
346                 enable);
347         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
348                 enable);
349 }
350
351 static inline void storm_memset_eq_data(struct bnx2x *bp,
352                                 struct event_ring_data *eq_data,
353                                 u16 pfid)
354 {
355         size_t size = sizeof(struct event_ring_data);
356
357         u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
358
359         __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
360 }
361
362 static inline void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
363                                         u16 pfid)
364 {
365         u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
366         REG_WR16(bp, addr, eq_prod);
367 }
368
369 static inline void storm_memset_hc_timeout(struct bnx2x *bp, u8 port,
370                                              u16 fw_sb_id, u8 sb_index,
371                                              u8 ticks)
372 {
373
374         int index_offset = CHIP_IS_E2(bp) ?
375                 offsetof(struct hc_status_block_data_e2, index_data) :
376                 offsetof(struct hc_status_block_data_e1x, index_data);
377         u32 addr = BAR_CSTRORM_INTMEM +
378                         CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
379                         index_offset +
380                         sizeof(struct hc_index_data)*sb_index +
381                         offsetof(struct hc_index_data, timeout);
382         REG_WR8(bp, addr, ticks);
383         DP(NETIF_MSG_HW, "port %x fw_sb_id %d sb_index %d ticks %d\n",
384                           port, fw_sb_id, sb_index, ticks);
385 }
386 static inline void storm_memset_hc_disable(struct bnx2x *bp, u8 port,
387                                              u16 fw_sb_id, u8 sb_index,
388                                              u8 disable)
389 {
390         u32 enable_flag = disable ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
391         int index_offset = CHIP_IS_E2(bp) ?
392                 offsetof(struct hc_status_block_data_e2, index_data) :
393                 offsetof(struct hc_status_block_data_e1x, index_data);
394         u32 addr = BAR_CSTRORM_INTMEM +
395                         CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
396                         index_offset +
397                         sizeof(struct hc_index_data)*sb_index +
398                         offsetof(struct hc_index_data, flags);
399         u16 flags = REG_RD16(bp, addr);
400         /* clear and set */
401         flags &= ~HC_INDEX_DATA_HC_ENABLED;
402         flags |= enable_flag;
403         REG_WR16(bp, addr, flags);
404         DP(NETIF_MSG_HW, "port %x fw_sb_id %d sb_index %d disable %d\n",
405                           port, fw_sb_id, sb_index, disable);
406 }
407
408 /* used only at init
409  * locking is done by mcp
410  */
411 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
412 {
413         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
414         pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
415         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
416                                PCICFG_VENDOR_ID_OFFSET);
417 }
418
419 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
420 {
421         u32 val;
422
423         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
424         pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
425         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
426                                PCICFG_VENDOR_ID_OFFSET);
427
428         return val;
429 }
430
431 #define DMAE_DP_SRC_GRC         "grc src_addr [%08x]"
432 #define DMAE_DP_SRC_PCI         "pci src_addr [%x:%08x]"
433 #define DMAE_DP_DST_GRC         "grc dst_addr [%08x]"
434 #define DMAE_DP_DST_PCI         "pci dst_addr [%x:%08x]"
435 #define DMAE_DP_DST_NONE        "dst_addr [none]"
436
437 static void bnx2x_dp_dmae(struct bnx2x *bp, struct dmae_command *dmae,
438                           int msglvl)
439 {
440         u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
441
442         switch (dmae->opcode & DMAE_COMMAND_DST) {
443         case DMAE_CMD_DST_PCI:
444                 if (src_type == DMAE_CMD_SRC_PCI)
445                         DP(msglvl, "DMAE: opcode 0x%08x\n"
446                            "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
447                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
448                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
449                            dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
450                            dmae->comp_addr_hi, dmae->comp_addr_lo,
451                            dmae->comp_val);
452                 else
453                         DP(msglvl, "DMAE: opcode 0x%08x\n"
454                            "src [%08x], len [%d*4], dst [%x:%08x]\n"
455                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
456                            dmae->opcode, dmae->src_addr_lo >> 2,
457                            dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
458                            dmae->comp_addr_hi, dmae->comp_addr_lo,
459                            dmae->comp_val);
460                 break;
461         case DMAE_CMD_DST_GRC:
462                 if (src_type == DMAE_CMD_SRC_PCI)
463                         DP(msglvl, "DMAE: opcode 0x%08x\n"
464                            "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
465                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
466                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
467                            dmae->len, dmae->dst_addr_lo >> 2,
468                            dmae->comp_addr_hi, dmae->comp_addr_lo,
469                            dmae->comp_val);
470                 else
471                         DP(msglvl, "DMAE: opcode 0x%08x\n"
472                            "src [%08x], len [%d*4], dst [%08x]\n"
473                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
474                            dmae->opcode, dmae->src_addr_lo >> 2,
475                            dmae->len, dmae->dst_addr_lo >> 2,
476                            dmae->comp_addr_hi, dmae->comp_addr_lo,
477                            dmae->comp_val);
478                 break;
479         default:
480                 if (src_type == DMAE_CMD_SRC_PCI)
481                         DP(msglvl, "DMAE: opcode 0x%08x\n"
482                            DP_LEVEL "src_addr [%x:%08x]  len [%d * 4]  "
483                                     "dst_addr [none]\n"
484                            DP_LEVEL "comp_addr [%x:%08x]  comp_val 0x%08x\n",
485                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
486                            dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
487                            dmae->comp_val);
488                 else
489                         DP(msglvl, "DMAE: opcode 0x%08x\n"
490                            DP_LEVEL "src_addr [%08x]  len [%d * 4]  "
491                                     "dst_addr [none]\n"
492                            DP_LEVEL "comp_addr [%x:%08x]  comp_val 0x%08x\n",
493                            dmae->opcode, dmae->src_addr_lo >> 2,
494                            dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
495                            dmae->comp_val);
496                 break;
497         }
498
499 }
500
501 const u32 dmae_reg_go_c[] = {
502         DMAE_REG_GO_C0, DMAE_REG_GO_C1, DMAE_REG_GO_C2, DMAE_REG_GO_C3,
503         DMAE_REG_GO_C4, DMAE_REG_GO_C5, DMAE_REG_GO_C6, DMAE_REG_GO_C7,
504         DMAE_REG_GO_C8, DMAE_REG_GO_C9, DMAE_REG_GO_C10, DMAE_REG_GO_C11,
505         DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15
506 };
507
508 /* copy command into DMAE command memory and set DMAE command go */
509 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
510 {
511         u32 cmd_offset;
512         int i;
513
514         cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
515         for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
516                 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
517
518                 DP(BNX2X_MSG_OFF, "DMAE cmd[%d].%d (0x%08x) : 0x%08x\n",
519                    idx, i, cmd_offset + i*4, *(((u32 *)dmae) + i));
520         }
521         REG_WR(bp, dmae_reg_go_c[idx], 1);
522 }
523
524 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
525 {
526         return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
527                            DMAE_CMD_C_ENABLE);
528 }
529
530 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
531 {
532         return opcode & ~DMAE_CMD_SRC_RESET;
533 }
534
535 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
536                              bool with_comp, u8 comp_type)
537 {
538         u32 opcode = 0;
539
540         opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
541                    (dst_type << DMAE_COMMAND_DST_SHIFT));
542
543         opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
544
545         opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
546         opcode |= ((BP_E1HVN(bp) << DMAE_CMD_E1HVN_SHIFT) |
547                    (BP_E1HVN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
548         opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
549
550 #ifdef __BIG_ENDIAN
551         opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
552 #else
553         opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
554 #endif
555         if (with_comp)
556                 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
557         return opcode;
558 }
559
560 static void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
561                                       struct dmae_command *dmae,
562                                       u8 src_type, u8 dst_type)
563 {
564         memset(dmae, 0, sizeof(struct dmae_command));
565
566         /* set the opcode */
567         dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
568                                          true, DMAE_COMP_PCI);
569
570         /* fill in the completion parameters */
571         dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
572         dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
573         dmae->comp_val = DMAE_COMP_VAL;
574 }
575
576 /* issue a dmae command over the init-channel and wailt for completion */
577 static int bnx2x_issue_dmae_with_comp(struct bnx2x *bp,
578                                       struct dmae_command *dmae)
579 {
580         u32 *wb_comp = bnx2x_sp(bp, wb_comp);
581         int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 40;
582         int rc = 0;
583
584         DP(BNX2X_MSG_OFF, "data before [0x%08x 0x%08x 0x%08x 0x%08x]\n",
585            bp->slowpath->wb_data[0], bp->slowpath->wb_data[1],
586            bp->slowpath->wb_data[2], bp->slowpath->wb_data[3]);
587
588         /* lock the dmae channel */
589         mutex_lock(&bp->dmae_mutex);
590
591         /* reset completion */
592         *wb_comp = 0;
593
594         /* post the command on the channel used for initializations */
595         bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
596
597         /* wait for completion */
598         udelay(5);
599         while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
600                 DP(BNX2X_MSG_OFF, "wb_comp 0x%08x\n", *wb_comp);
601
602                 if (!cnt) {
603                         BNX2X_ERR("DMAE timeout!\n");
604                         rc = DMAE_TIMEOUT;
605                         goto unlock;
606                 }
607                 cnt--;
608                 udelay(50);
609         }
610         if (*wb_comp & DMAE_PCI_ERR_FLAG) {
611                 BNX2X_ERR("DMAE PCI error!\n");
612                 rc = DMAE_PCI_ERROR;
613         }
614
615         DP(BNX2X_MSG_OFF, "data after [0x%08x 0x%08x 0x%08x 0x%08x]\n",
616            bp->slowpath->wb_data[0], bp->slowpath->wb_data[1],
617            bp->slowpath->wb_data[2], bp->slowpath->wb_data[3]);
618
619 unlock:
620         mutex_unlock(&bp->dmae_mutex);
621         return rc;
622 }
623
624 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
625                       u32 len32)
626 {
627         struct dmae_command dmae;
628
629         if (!bp->dmae_ready) {
630                 u32 *data = bnx2x_sp(bp, wb_data[0]);
631
632                 DP(BNX2X_MSG_OFF, "DMAE is not ready (dst_addr %08x  len32 %d)"
633                    "  using indirect\n", dst_addr, len32);
634                 bnx2x_init_ind_wr(bp, dst_addr, data, len32);
635                 return;
636         }
637
638         /* set opcode and fixed command fields */
639         bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
640
641         /* fill in addresses and len */
642         dmae.src_addr_lo = U64_LO(dma_addr);
643         dmae.src_addr_hi = U64_HI(dma_addr);
644         dmae.dst_addr_lo = dst_addr >> 2;
645         dmae.dst_addr_hi = 0;
646         dmae.len = len32;
647
648         bnx2x_dp_dmae(bp, &dmae, BNX2X_MSG_OFF);
649
650         /* issue the command and wait for completion */
651         bnx2x_issue_dmae_with_comp(bp, &dmae);
652 }
653
654 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
655 {
656         struct dmae_command dmae;
657
658         if (!bp->dmae_ready) {
659                 u32 *data = bnx2x_sp(bp, wb_data[0]);
660                 int i;
661
662                 DP(BNX2X_MSG_OFF, "DMAE is not ready (src_addr %08x  len32 %d)"
663                    "  using indirect\n", src_addr, len32);
664                 for (i = 0; i < len32; i++)
665                         data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
666                 return;
667         }
668
669         /* set opcode and fixed command fields */
670         bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
671
672         /* fill in addresses and len */
673         dmae.src_addr_lo = src_addr >> 2;
674         dmae.src_addr_hi = 0;
675         dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
676         dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
677         dmae.len = len32;
678
679         bnx2x_dp_dmae(bp, &dmae, BNX2X_MSG_OFF);
680
681         /* issue the command and wait for completion */
682         bnx2x_issue_dmae_with_comp(bp, &dmae);
683 }
684
685 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
686                                       u32 addr, u32 len)
687 {
688         int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
689         int offset = 0;
690
691         while (len > dmae_wr_max) {
692                 bnx2x_write_dmae(bp, phys_addr + offset,
693                                  addr + offset, dmae_wr_max);
694                 offset += dmae_wr_max * 4;
695                 len -= dmae_wr_max;
696         }
697
698         bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
699 }
700
701 /* used only for slowpath so not inlined */
702 static void bnx2x_wb_wr(struct bnx2x *bp, int reg, u32 val_hi, u32 val_lo)
703 {
704         u32 wb_write[2];
705
706         wb_write[0] = val_hi;
707         wb_write[1] = val_lo;
708         REG_WR_DMAE(bp, reg, wb_write, 2);
709 }
710
711 #ifdef USE_WB_RD
712 static u64 bnx2x_wb_rd(struct bnx2x *bp, int reg)
713 {
714         u32 wb_data[2];
715
716         REG_RD_DMAE(bp, reg, wb_data, 2);
717
718         return HILO_U64(wb_data[0], wb_data[1]);
719 }
720 #endif
721
722 static int bnx2x_mc_assert(struct bnx2x *bp)
723 {
724         char last_idx;
725         int i, rc = 0;
726         u32 row0, row1, row2, row3;
727
728         /* XSTORM */
729         last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
730                            XSTORM_ASSERT_LIST_INDEX_OFFSET);
731         if (last_idx)
732                 BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
733
734         /* print the asserts */
735         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
736
737                 row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
738                               XSTORM_ASSERT_LIST_OFFSET(i));
739                 row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
740                               XSTORM_ASSERT_LIST_OFFSET(i) + 4);
741                 row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
742                               XSTORM_ASSERT_LIST_OFFSET(i) + 8);
743                 row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
744                               XSTORM_ASSERT_LIST_OFFSET(i) + 12);
745
746                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
747                         BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x"
748                                   " 0x%08x 0x%08x 0x%08x\n",
749                                   i, row3, row2, row1, row0);
750                         rc++;
751                 } else {
752                         break;
753                 }
754         }
755
756         /* TSTORM */
757         last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
758                            TSTORM_ASSERT_LIST_INDEX_OFFSET);
759         if (last_idx)
760                 BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
761
762         /* print the asserts */
763         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
764
765                 row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
766                               TSTORM_ASSERT_LIST_OFFSET(i));
767                 row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
768                               TSTORM_ASSERT_LIST_OFFSET(i) + 4);
769                 row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
770                               TSTORM_ASSERT_LIST_OFFSET(i) + 8);
771                 row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
772                               TSTORM_ASSERT_LIST_OFFSET(i) + 12);
773
774                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
775                         BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x"
776                                   " 0x%08x 0x%08x 0x%08x\n",
777                                   i, row3, row2, row1, row0);
778                         rc++;
779                 } else {
780                         break;
781                 }
782         }
783
784         /* CSTORM */
785         last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
786                            CSTORM_ASSERT_LIST_INDEX_OFFSET);
787         if (last_idx)
788                 BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
789
790         /* print the asserts */
791         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
792
793                 row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
794                               CSTORM_ASSERT_LIST_OFFSET(i));
795                 row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
796                               CSTORM_ASSERT_LIST_OFFSET(i) + 4);
797                 row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
798                               CSTORM_ASSERT_LIST_OFFSET(i) + 8);
799                 row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
800                               CSTORM_ASSERT_LIST_OFFSET(i) + 12);
801
802                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
803                         BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x"
804                                   " 0x%08x 0x%08x 0x%08x\n",
805                                   i, row3, row2, row1, row0);
806                         rc++;
807                 } else {
808                         break;
809                 }
810         }
811
812         /* USTORM */
813         last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
814                            USTORM_ASSERT_LIST_INDEX_OFFSET);
815         if (last_idx)
816                 BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
817
818         /* print the asserts */
819         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
820
821                 row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
822                               USTORM_ASSERT_LIST_OFFSET(i));
823                 row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
824                               USTORM_ASSERT_LIST_OFFSET(i) + 4);
825                 row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
826                               USTORM_ASSERT_LIST_OFFSET(i) + 8);
827                 row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
828                               USTORM_ASSERT_LIST_OFFSET(i) + 12);
829
830                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
831                         BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x"
832                                   " 0x%08x 0x%08x 0x%08x\n",
833                                   i, row3, row2, row1, row0);
834                         rc++;
835                 } else {
836                         break;
837                 }
838         }
839
840         return rc;
841 }
842
843 static void bnx2x_fw_dump(struct bnx2x *bp)
844 {
845         u32 addr;
846         u32 mark, offset;
847         __be32 data[9];
848         int word;
849         u32 trace_shmem_base;
850         if (BP_NOMCP(bp)) {
851                 BNX2X_ERR("NO MCP - can not dump\n");
852                 return;
853         }
854
855         if (BP_PATH(bp) == 0)
856                 trace_shmem_base = bp->common.shmem_base;
857         else
858                 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
859         addr = trace_shmem_base - 0x0800 + 4;
860         mark = REG_RD(bp, addr);
861         mark = (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH)
862                         + ((mark + 0x3) & ~0x3) - 0x08000000;
863         pr_err("begin fw dump (mark 0x%x)\n", mark);
864
865         pr_err("");
866         for (offset = mark; offset <= trace_shmem_base; offset += 0x8*4) {
867                 for (word = 0; word < 8; word++)
868                         data[word] = htonl(REG_RD(bp, offset + 4*word));
869                 data[8] = 0x0;
870                 pr_cont("%s", (char *)data);
871         }
872         for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
873                 for (word = 0; word < 8; word++)
874                         data[word] = htonl(REG_RD(bp, offset + 4*word));
875                 data[8] = 0x0;
876                 pr_cont("%s", (char *)data);
877         }
878         pr_err("end of fw dump\n");
879 }
880
881 void bnx2x_panic_dump(struct bnx2x *bp)
882 {
883         int i;
884         u16 j;
885         struct hc_sp_status_block_data sp_sb_data;
886         int func = BP_FUNC(bp);
887 #ifdef BNX2X_STOP_ON_ERROR
888         u16 start = 0, end = 0;
889 #endif
890
891         bp->stats_state = STATS_STATE_DISABLED;
892         DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
893
894         BNX2X_ERR("begin crash dump -----------------\n");
895
896         /* Indices */
897         /* Common */
898         BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)"
899                   "  spq_prod_idx(0x%x)\n",
900                   bp->def_idx, bp->def_att_idx,
901                   bp->attn_state, bp->spq_prod_idx);
902         BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
903                   bp->def_status_blk->atten_status_block.attn_bits,
904                   bp->def_status_blk->atten_status_block.attn_bits_ack,
905                   bp->def_status_blk->atten_status_block.status_block_id,
906                   bp->def_status_blk->atten_status_block.attn_bits_index);
907         BNX2X_ERR("     def (");
908         for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
909                 pr_cont("0x%x%s",
910                        bp->def_status_blk->sp_sb.index_values[i],
911                        (i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
912
913         for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
914                 *((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
915                         CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
916                         i*sizeof(u32));
917
918         pr_cont("igu_sb_id(0x%x)  igu_seg_id (0x%x) "
919                          "pf_id(0x%x)  vnic_id(0x%x)  "
920                          "vf_id(0x%x)  vf_valid (0x%x)\n",
921                sp_sb_data.igu_sb_id,
922                sp_sb_data.igu_seg_id,
923                sp_sb_data.p_func.pf_id,
924                sp_sb_data.p_func.vnic_id,
925                sp_sb_data.p_func.vf_id,
926                sp_sb_data.p_func.vf_valid);
927
928
929         for_each_eth_queue(bp, i) {
930                 struct bnx2x_fastpath *fp = &bp->fp[i];
931                 int loop;
932                 struct hc_status_block_data_e2 sb_data_e2;
933                 struct hc_status_block_data_e1x sb_data_e1x;
934                 struct hc_status_block_sm  *hc_sm_p =
935                         CHIP_IS_E2(bp) ?
936                         sb_data_e2.common.state_machine :
937                         sb_data_e1x.common.state_machine;
938                 struct hc_index_data *hc_index_p =
939                         CHIP_IS_E2(bp) ?
940                         sb_data_e2.index_data :
941                         sb_data_e1x.index_data;
942                 int data_size;
943                 u32 *sb_data_p;
944
945                 /* Rx */
946                 BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)"
947                           "  rx_comp_prod(0x%x)"
948                           "  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
949                           i, fp->rx_bd_prod, fp->rx_bd_cons,
950                           fp->rx_comp_prod,
951                           fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
952                 BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)"
953                           "  fp_hc_idx(0x%x)\n",
954                           fp->rx_sge_prod, fp->last_max_sge,
955                           le16_to_cpu(fp->fp_hc_idx));
956
957                 /* Tx */
958                 BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)"
959                           "  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)"
960                           "  *tx_cons_sb(0x%x)\n",
961                           i, fp->tx_pkt_prod, fp->tx_pkt_cons, fp->tx_bd_prod,
962                           fp->tx_bd_cons, le16_to_cpu(*fp->tx_cons_sb));
963
964                 loop = CHIP_IS_E2(bp) ?
965                         HC_SB_MAX_INDICES_E2 : HC_SB_MAX_INDICES_E1X;
966
967                 /* host sb data */
968
969 #ifdef BCM_CNIC
970                 if (IS_FCOE_FP(fp))
971                         continue;
972 #endif
973                 BNX2X_ERR("     run indexes (");
974                 for (j = 0; j < HC_SB_MAX_SM; j++)
975                         pr_cont("0x%x%s",
976                                fp->sb_running_index[j],
977                                (j == HC_SB_MAX_SM - 1) ? ")" : " ");
978
979                 BNX2X_ERR("     indexes (");
980                 for (j = 0; j < loop; j++)
981                         pr_cont("0x%x%s",
982                                fp->sb_index_values[j],
983                                (j == loop - 1) ? ")" : " ");
984                 /* fw sb data */
985                 data_size = CHIP_IS_E2(bp) ?
986                         sizeof(struct hc_status_block_data_e2) :
987                         sizeof(struct hc_status_block_data_e1x);
988                 data_size /= sizeof(u32);
989                 sb_data_p = CHIP_IS_E2(bp) ?
990                         (u32 *)&sb_data_e2 :
991                         (u32 *)&sb_data_e1x;
992                 /* copy sb data in here */
993                 for (j = 0; j < data_size; j++)
994                         *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
995                                 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
996                                 j * sizeof(u32));
997
998                 if (CHIP_IS_E2(bp)) {
999                         pr_cont("pf_id(0x%x)  vf_id (0x%x)  vf_valid(0x%x) "
1000                                 "vnic_id(0x%x)  same_igu_sb_1b(0x%x)\n",
1001                                 sb_data_e2.common.p_func.pf_id,
1002                                 sb_data_e2.common.p_func.vf_id,
1003                                 sb_data_e2.common.p_func.vf_valid,
1004                                 sb_data_e2.common.p_func.vnic_id,
1005                                 sb_data_e2.common.same_igu_sb_1b);
1006                 } else {
1007                         pr_cont("pf_id(0x%x)  vf_id (0x%x)  vf_valid(0x%x) "
1008                                 "vnic_id(0x%x)  same_igu_sb_1b(0x%x)\n",
1009                                 sb_data_e1x.common.p_func.pf_id,
1010                                 sb_data_e1x.common.p_func.vf_id,
1011                                 sb_data_e1x.common.p_func.vf_valid,
1012                                 sb_data_e1x.common.p_func.vnic_id,
1013                                 sb_data_e1x.common.same_igu_sb_1b);
1014                 }
1015
1016                 /* SB_SMs data */
1017                 for (j = 0; j < HC_SB_MAX_SM; j++) {
1018                         pr_cont("SM[%d] __flags (0x%x) "
1019                                "igu_sb_id (0x%x)  igu_seg_id(0x%x) "
1020                                "time_to_expire (0x%x) "
1021                                "timer_value(0x%x)\n", j,
1022                                hc_sm_p[j].__flags,
1023                                hc_sm_p[j].igu_sb_id,
1024                                hc_sm_p[j].igu_seg_id,
1025                                hc_sm_p[j].time_to_expire,
1026                                hc_sm_p[j].timer_value);
1027                 }
1028
1029                 /* Indecies data */
1030                 for (j = 0; j < loop; j++) {
1031                         pr_cont("INDEX[%d] flags (0x%x) "
1032                                          "timeout (0x%x)\n", j,
1033                                hc_index_p[j].flags,
1034                                hc_index_p[j].timeout);
1035                 }
1036         }
1037
1038 #ifdef BNX2X_STOP_ON_ERROR
1039         /* Rings */
1040         /* Rx */
1041         for_each_rx_queue(bp, i) {
1042                 struct bnx2x_fastpath *fp = &bp->fp[i];
1043
1044                 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1045                 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1046                 for (j = start; j != end; j = RX_BD(j + 1)) {
1047                         u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1048                         struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1049
1050                         BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1051                                   i, j, rx_bd[1], rx_bd[0], sw_bd->skb);
1052                 }
1053
1054                 start = RX_SGE(fp->rx_sge_prod);
1055                 end = RX_SGE(fp->last_max_sge);
1056                 for (j = start; j != end; j = RX_SGE(j + 1)) {
1057                         u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1058                         struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1059
1060                         BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1061                                   i, j, rx_sge[1], rx_sge[0], sw_page->page);
1062                 }
1063
1064                 start = RCQ_BD(fp->rx_comp_cons - 10);
1065                 end = RCQ_BD(fp->rx_comp_cons + 503);
1066                 for (j = start; j != end; j = RCQ_BD(j + 1)) {
1067                         u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1068
1069                         BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1070                                   i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1071                 }
1072         }
1073
1074         /* Tx */
1075         for_each_tx_queue(bp, i) {
1076                 struct bnx2x_fastpath *fp = &bp->fp[i];
1077
1078                 start = TX_BD(le16_to_cpu(*fp->tx_cons_sb) - 10);
1079                 end = TX_BD(le16_to_cpu(*fp->tx_cons_sb) + 245);
1080                 for (j = start; j != end; j = TX_BD(j + 1)) {
1081                         struct sw_tx_bd *sw_bd = &fp->tx_buf_ring[j];
1082
1083                         BNX2X_ERR("fp%d: packet[%x]=[%p,%x]\n",
1084                                   i, j, sw_bd->skb, sw_bd->first_bd);
1085                 }
1086
1087                 start = TX_BD(fp->tx_bd_cons - 10);
1088                 end = TX_BD(fp->tx_bd_cons + 254);
1089                 for (j = start; j != end; j = TX_BD(j + 1)) {
1090                         u32 *tx_bd = (u32 *)&fp->tx_desc_ring[j];
1091
1092                         BNX2X_ERR("fp%d: tx_bd[%x]=[%x:%x:%x:%x]\n",
1093                                   i, j, tx_bd[0], tx_bd[1], tx_bd[2], tx_bd[3]);
1094                 }
1095         }
1096 #endif
1097         bnx2x_fw_dump(bp);
1098         bnx2x_mc_assert(bp);
1099         BNX2X_ERR("end crash dump -----------------\n");
1100 }
1101
1102 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1103 {
1104         int port = BP_PORT(bp);
1105         u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1106         u32 val = REG_RD(bp, addr);
1107         int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1108         int msi = (bp->flags & USING_MSI_FLAG) ? 1 : 0;
1109
1110         if (msix) {
1111                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1112                          HC_CONFIG_0_REG_INT_LINE_EN_0);
1113                 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1114                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1115         } else if (msi) {
1116                 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1117                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1118                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1119                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1120         } else {
1121                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1122                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1123                         HC_CONFIG_0_REG_INT_LINE_EN_0 |
1124                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1125
1126                 if (!CHIP_IS_E1(bp)) {
1127                         DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x)\n",
1128                            val, port, addr);
1129
1130                         REG_WR(bp, addr, val);
1131
1132                         val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1133                 }
1134         }
1135
1136         if (CHIP_IS_E1(bp))
1137                 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1138
1139         DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x)  mode %s\n",
1140            val, port, addr, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1141
1142         REG_WR(bp, addr, val);
1143         /*
1144          * Ensure that HC_CONFIG is written before leading/trailing edge config
1145          */
1146         mmiowb();
1147         barrier();
1148
1149         if (!CHIP_IS_E1(bp)) {
1150                 /* init leading/trailing edge */
1151                 if (IS_MF(bp)) {
1152                         val = (0xee0f | (1 << (BP_E1HVN(bp) + 4)));
1153                         if (bp->port.pmf)
1154                                 /* enable nig and gpio3 attention */
1155                                 val |= 0x1100;
1156                 } else
1157                         val = 0xffff;
1158
1159                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1160                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1161         }
1162
1163         /* Make sure that interrupts are indeed enabled from here on */
1164         mmiowb();
1165 }
1166
1167 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1168 {
1169         u32 val;
1170         int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1171         int msi = (bp->flags & USING_MSI_FLAG) ? 1 : 0;
1172
1173         val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1174
1175         if (msix) {
1176                 val &= ~(IGU_PF_CONF_INT_LINE_EN |
1177                          IGU_PF_CONF_SINGLE_ISR_EN);
1178                 val |= (IGU_PF_CONF_FUNC_EN |
1179                         IGU_PF_CONF_MSI_MSIX_EN |
1180                         IGU_PF_CONF_ATTN_BIT_EN);
1181         } else if (msi) {
1182                 val &= ~IGU_PF_CONF_INT_LINE_EN;
1183                 val |= (IGU_PF_CONF_FUNC_EN |
1184                         IGU_PF_CONF_MSI_MSIX_EN |
1185                         IGU_PF_CONF_ATTN_BIT_EN |
1186                         IGU_PF_CONF_SINGLE_ISR_EN);
1187         } else {
1188                 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1189                 val |= (IGU_PF_CONF_FUNC_EN |
1190                         IGU_PF_CONF_INT_LINE_EN |
1191                         IGU_PF_CONF_ATTN_BIT_EN |
1192                         IGU_PF_CONF_SINGLE_ISR_EN);
1193         }
1194
1195         DP(NETIF_MSG_INTR, "write 0x%x to IGU  mode %s\n",
1196            val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1197
1198         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1199
1200         barrier();
1201
1202         /* init leading/trailing edge */
1203         if (IS_MF(bp)) {
1204                 val = (0xee0f | (1 << (BP_E1HVN(bp) + 4)));
1205                 if (bp->port.pmf)
1206                         /* enable nig and gpio3 attention */
1207                         val |= 0x1100;
1208         } else
1209                 val = 0xffff;
1210
1211         REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1212         REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1213
1214         /* Make sure that interrupts are indeed enabled from here on */
1215         mmiowb();
1216 }
1217
1218 void bnx2x_int_enable(struct bnx2x *bp)
1219 {
1220         if (bp->common.int_block == INT_BLOCK_HC)
1221                 bnx2x_hc_int_enable(bp);
1222         else
1223                 bnx2x_igu_int_enable(bp);
1224 }
1225
1226 static void bnx2x_hc_int_disable(struct bnx2x *bp)
1227 {
1228         int port = BP_PORT(bp);
1229         u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1230         u32 val = REG_RD(bp, addr);
1231
1232         /*
1233          * in E1 we must use only PCI configuration space to disable
1234          * MSI/MSIX capablility
1235          * It's forbitten to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
1236          */
1237         if (CHIP_IS_E1(bp)) {
1238                 /*  Since IGU_PF_CONF_MSI_MSIX_EN still always on
1239                  *  Use mask register to prevent from HC sending interrupts
1240                  *  after we exit the function
1241                  */
1242                 REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
1243
1244                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1245                          HC_CONFIG_0_REG_INT_LINE_EN_0 |
1246                          HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1247         } else
1248                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1249                          HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1250                          HC_CONFIG_0_REG_INT_LINE_EN_0 |
1251                          HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1252
1253         DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x)\n",
1254            val, port, addr);
1255
1256         /* flush all outstanding writes */
1257         mmiowb();
1258
1259         REG_WR(bp, addr, val);
1260         if (REG_RD(bp, addr) != val)
1261                 BNX2X_ERR("BUG! proper val not read from IGU!\n");
1262 }
1263
1264 static void bnx2x_igu_int_disable(struct bnx2x *bp)
1265 {
1266         u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1267
1268         val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
1269                  IGU_PF_CONF_INT_LINE_EN |
1270                  IGU_PF_CONF_ATTN_BIT_EN);
1271
1272         DP(NETIF_MSG_INTR, "write %x to IGU\n", val);
1273
1274         /* flush all outstanding writes */
1275         mmiowb();
1276
1277         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1278         if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
1279                 BNX2X_ERR("BUG! proper val not read from IGU!\n");
1280 }
1281
1282 static void bnx2x_int_disable(struct bnx2x *bp)
1283 {
1284         if (bp->common.int_block == INT_BLOCK_HC)
1285                 bnx2x_hc_int_disable(bp);
1286         else
1287                 bnx2x_igu_int_disable(bp);
1288 }
1289
1290 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1291 {
1292         int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1293         int i, offset;
1294
1295         /* disable interrupt handling */
1296         atomic_inc(&bp->intr_sem);
1297         smp_wmb(); /* Ensure that bp->intr_sem update is SMP-safe */
1298
1299         if (disable_hw)
1300                 /* prevent the HW from sending interrupts */
1301                 bnx2x_int_disable(bp);
1302
1303         /* make sure all ISRs are done */
1304         if (msix) {
1305                 synchronize_irq(bp->msix_table[0].vector);
1306                 offset = 1;
1307 #ifdef BCM_CNIC
1308                 offset++;
1309 #endif
1310                 for_each_eth_queue(bp, i)
1311                         synchronize_irq(bp->msix_table[i + offset].vector);
1312         } else
1313                 synchronize_irq(bp->pdev->irq);
1314
1315         /* make sure sp_task is not running */
1316         cancel_delayed_work(&bp->sp_task);
1317         flush_workqueue(bnx2x_wq);
1318 }
1319
1320 /* fast path */
1321
1322 /*
1323  * General service functions
1324  */
1325
1326 /* Return true if succeeded to acquire the lock */
1327 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1328 {
1329         u32 lock_status;
1330         u32 resource_bit = (1 << resource);
1331         int func = BP_FUNC(bp);
1332         u32 hw_lock_control_reg;
1333
1334         DP(NETIF_MSG_HW, "Trying to take a lock on resource %d\n", resource);
1335
1336         /* Validating that the resource is within range */
1337         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1338                 DP(NETIF_MSG_HW,
1339                    "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1340                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1341                 return false;
1342         }
1343
1344         if (func <= 5)
1345                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1346         else
1347                 hw_lock_control_reg =
1348                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1349
1350         /* Try to acquire the lock */
1351         REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1352         lock_status = REG_RD(bp, hw_lock_control_reg);
1353         if (lock_status & resource_bit)
1354                 return true;
1355
1356         DP(NETIF_MSG_HW, "Failed to get a lock on resource %d\n", resource);
1357         return false;
1358 }
1359
1360 #ifdef BCM_CNIC
1361 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid);
1362 #endif
1363
1364 void bnx2x_sp_event(struct bnx2x_fastpath *fp,
1365                            union eth_rx_cqe *rr_cqe)
1366 {
1367         struct bnx2x *bp = fp->bp;
1368         int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1369         int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1370
1371         DP(BNX2X_MSG_SP,
1372            "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1373            fp->index, cid, command, bp->state,
1374            rr_cqe->ramrod_cqe.ramrod_type);
1375
1376         switch (command | fp->state) {
1377         case (RAMROD_CMD_ID_ETH_CLIENT_SETUP | BNX2X_FP_STATE_OPENING):
1378                 DP(NETIF_MSG_IFUP, "got MULTI[%d] setup ramrod\n", cid);
1379                 fp->state = BNX2X_FP_STATE_OPEN;
1380                 break;
1381
1382         case (RAMROD_CMD_ID_ETH_HALT | BNX2X_FP_STATE_HALTING):
1383                 DP(NETIF_MSG_IFDOWN, "got MULTI[%d] halt ramrod\n", cid);
1384                 fp->state = BNX2X_FP_STATE_HALTED;
1385                 break;
1386
1387         case (RAMROD_CMD_ID_ETH_TERMINATE | BNX2X_FP_STATE_TERMINATING):
1388                 DP(NETIF_MSG_IFDOWN, "got MULTI[%d] teminate ramrod\n", cid);
1389                 fp->state = BNX2X_FP_STATE_TERMINATED;
1390                 break;
1391
1392         default:
1393                 BNX2X_ERR("unexpected MC reply (%d)  "
1394                           "fp[%d] state is %x\n",
1395                           command, fp->index, fp->state);
1396                 break;
1397         }
1398
1399         smp_mb__before_atomic_inc();
1400         atomic_inc(&bp->spq_left);
1401         /* push the change in fp->state and towards the memory */
1402         smp_wmb();
1403
1404         return;
1405 }
1406
1407 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1408 {
1409         struct bnx2x *bp = netdev_priv(dev_instance);
1410         u16 status = bnx2x_ack_int(bp);
1411         u16 mask;
1412         int i;
1413
1414         /* Return here if interrupt is shared and it's not for us */
1415         if (unlikely(status == 0)) {
1416                 DP(NETIF_MSG_INTR, "not our interrupt!\n");
1417                 return IRQ_NONE;
1418         }
1419         DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1420
1421         /* Return here if interrupt is disabled */
1422         if (unlikely(atomic_read(&bp->intr_sem) != 0)) {
1423                 DP(NETIF_MSG_INTR, "called but intr_sem not 0, returning\n");
1424                 return IRQ_HANDLED;
1425         }
1426
1427 #ifdef BNX2X_STOP_ON_ERROR
1428         if (unlikely(bp->panic))
1429                 return IRQ_HANDLED;
1430 #endif
1431
1432         for_each_eth_queue(bp, i) {
1433                 struct bnx2x_fastpath *fp = &bp->fp[i];
1434
1435                 mask = 0x2 << (fp->index + CNIC_CONTEXT_USE);
1436                 if (status & mask) {
1437                         /* Handle Rx and Tx according to SB id */
1438                         prefetch(fp->rx_cons_sb);
1439                         prefetch(fp->tx_cons_sb);
1440                         prefetch(&fp->sb_running_index[SM_RX_ID]);
1441                         napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1442                         status &= ~mask;
1443                 }
1444         }
1445
1446 #ifdef BCM_CNIC
1447         mask = 0x2;
1448         if (status & (mask | 0x1)) {
1449                 struct cnic_ops *c_ops = NULL;
1450
1451                 rcu_read_lock();
1452                 c_ops = rcu_dereference(bp->cnic_ops);
1453                 if (c_ops)
1454                         c_ops->cnic_handler(bp->cnic_data, NULL);
1455                 rcu_read_unlock();
1456
1457                 status &= ~mask;
1458         }
1459 #endif
1460
1461         if (unlikely(status & 0x1)) {
1462                 queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1463
1464                 status &= ~0x1;
1465                 if (!status)
1466                         return IRQ_HANDLED;
1467         }
1468
1469         if (unlikely(status))
1470                 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1471                    status);
1472
1473         return IRQ_HANDLED;
1474 }
1475
1476 /* end of fast path */
1477
1478
1479 /* Link */
1480
1481 /*
1482  * General service functions
1483  */
1484
1485 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1486 {
1487         u32 lock_status;
1488         u32 resource_bit = (1 << resource);
1489         int func = BP_FUNC(bp);
1490         u32 hw_lock_control_reg;
1491         int cnt;
1492
1493         /* Validating that the resource is within range */
1494         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1495                 DP(NETIF_MSG_HW,
1496                    "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1497                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1498                 return -EINVAL;
1499         }
1500
1501         if (func <= 5) {
1502                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1503         } else {
1504                 hw_lock_control_reg =
1505                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1506         }
1507
1508         /* Validating that the resource is not already taken */
1509         lock_status = REG_RD(bp, hw_lock_control_reg);
1510         if (lock_status & resource_bit) {
1511                 DP(NETIF_MSG_HW, "lock_status 0x%x  resource_bit 0x%x\n",
1512                    lock_status, resource_bit);
1513                 return -EEXIST;
1514         }
1515
1516         /* Try for 5 second every 5ms */
1517         for (cnt = 0; cnt < 1000; cnt++) {
1518                 /* Try to acquire the lock */
1519                 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1520                 lock_status = REG_RD(bp, hw_lock_control_reg);
1521                 if (lock_status & resource_bit)
1522                         return 0;
1523
1524                 msleep(5);
1525         }
1526         DP(NETIF_MSG_HW, "Timeout\n");
1527         return -EAGAIN;
1528 }
1529
1530 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
1531 {
1532         u32 lock_status;
1533         u32 resource_bit = (1 << resource);
1534         int func = BP_FUNC(bp);
1535         u32 hw_lock_control_reg;
1536
1537         DP(NETIF_MSG_HW, "Releasing a lock on resource %d\n", resource);
1538
1539         /* Validating that the resource is within range */
1540         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1541                 DP(NETIF_MSG_HW,
1542                    "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1543                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1544                 return -EINVAL;
1545         }
1546
1547         if (func <= 5) {
1548                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1549         } else {
1550                 hw_lock_control_reg =
1551                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1552         }
1553
1554         /* Validating that the resource is currently taken */
1555         lock_status = REG_RD(bp, hw_lock_control_reg);
1556         if (!(lock_status & resource_bit)) {
1557                 DP(NETIF_MSG_HW, "lock_status 0x%x  resource_bit 0x%x\n",
1558                    lock_status, resource_bit);
1559                 return -EFAULT;
1560         }
1561
1562         REG_WR(bp, hw_lock_control_reg, resource_bit);
1563         return 0;
1564 }
1565
1566
1567 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
1568 {
1569         /* The GPIO should be swapped if swap register is set and active */
1570         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1571                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1572         int gpio_shift = gpio_num +
1573                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1574         u32 gpio_mask = (1 << gpio_shift);
1575         u32 gpio_reg;
1576         int value;
1577
1578         if (gpio_num > MISC_REGISTERS_GPIO_3) {
1579                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1580                 return -EINVAL;
1581         }
1582
1583         /* read GPIO value */
1584         gpio_reg = REG_RD(bp, MISC_REG_GPIO);
1585
1586         /* get the requested pin value */
1587         if ((gpio_reg & gpio_mask) == gpio_mask)
1588                 value = 1;
1589         else
1590                 value = 0;
1591
1592         DP(NETIF_MSG_LINK, "pin %d  value 0x%x\n", gpio_num, value);
1593
1594         return value;
1595 }
1596
1597 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
1598 {
1599         /* The GPIO should be swapped if swap register is set and active */
1600         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1601                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1602         int gpio_shift = gpio_num +
1603                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1604         u32 gpio_mask = (1 << gpio_shift);
1605         u32 gpio_reg;
1606
1607         if (gpio_num > MISC_REGISTERS_GPIO_3) {
1608                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1609                 return -EINVAL;
1610         }
1611
1612         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1613         /* read GPIO and mask except the float bits */
1614         gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
1615
1616         switch (mode) {
1617         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1618                 DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> output low\n",
1619                    gpio_num, gpio_shift);
1620                 /* clear FLOAT and set CLR */
1621                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1622                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
1623                 break;
1624
1625         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1626                 DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> output high\n",
1627                    gpio_num, gpio_shift);
1628                 /* clear FLOAT and set SET */
1629                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1630                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
1631                 break;
1632
1633         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1634                 DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> input\n",
1635                    gpio_num, gpio_shift);
1636                 /* set FLOAT */
1637                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1638                 break;
1639
1640         default:
1641                 break;
1642         }
1643
1644         REG_WR(bp, MISC_REG_GPIO, gpio_reg);
1645         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1646
1647         return 0;
1648 }
1649
1650 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
1651 {
1652         /* The GPIO should be swapped if swap register is set and active */
1653         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1654                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1655         int gpio_shift = gpio_num +
1656                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1657         u32 gpio_mask = (1 << gpio_shift);
1658         u32 gpio_reg;
1659
1660         if (gpio_num > MISC_REGISTERS_GPIO_3) {
1661                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1662                 return -EINVAL;
1663         }
1664
1665         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1666         /* read GPIO int */
1667         gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
1668
1669         switch (mode) {
1670         case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
1671                 DP(NETIF_MSG_LINK, "Clear GPIO INT %d (shift %d) -> "
1672                                    "output low\n", gpio_num, gpio_shift);
1673                 /* clear SET and set CLR */
1674                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
1675                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
1676                 break;
1677
1678         case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
1679                 DP(NETIF_MSG_LINK, "Set GPIO INT %d (shift %d) -> "
1680                                    "output high\n", gpio_num, gpio_shift);
1681                 /* clear CLR and set SET */
1682                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
1683                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
1684                 break;
1685
1686         default:
1687                 break;
1688         }
1689
1690         REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
1691         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1692
1693         return 0;
1694 }
1695
1696 static int bnx2x_set_spio(struct bnx2x *bp, int spio_num, u32 mode)
1697 {
1698         u32 spio_mask = (1 << spio_num);
1699         u32 spio_reg;
1700
1701         if ((spio_num < MISC_REGISTERS_SPIO_4) ||
1702             (spio_num > MISC_REGISTERS_SPIO_7)) {
1703                 BNX2X_ERR("Invalid SPIO %d\n", spio_num);
1704                 return -EINVAL;
1705         }
1706
1707         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
1708         /* read SPIO and mask except the float bits */
1709         spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_REGISTERS_SPIO_FLOAT);
1710
1711         switch (mode) {
1712         case MISC_REGISTERS_SPIO_OUTPUT_LOW:
1713                 DP(NETIF_MSG_LINK, "Set SPIO %d -> output low\n", spio_num);
1714                 /* clear FLOAT and set CLR */
1715                 spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
1716                 spio_reg |=  (spio_mask << MISC_REGISTERS_SPIO_CLR_POS);
1717                 break;
1718
1719         case MISC_REGISTERS_SPIO_OUTPUT_HIGH:
1720                 DP(NETIF_MSG_LINK, "Set SPIO %d -> output high\n", spio_num);
1721                 /* clear FLOAT and set SET */
1722                 spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
1723                 spio_reg |=  (spio_mask << MISC_REGISTERS_SPIO_SET_POS);
1724                 break;
1725
1726         case MISC_REGISTERS_SPIO_INPUT_HI_Z:
1727                 DP(NETIF_MSG_LINK, "Set SPIO %d -> input\n", spio_num);
1728                 /* set FLOAT */
1729                 spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
1730                 break;
1731
1732         default:
1733                 break;
1734         }
1735
1736         REG_WR(bp, MISC_REG_SPIO, spio_reg);
1737         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
1738
1739         return 0;
1740 }
1741
1742 int bnx2x_get_link_cfg_idx(struct bnx2x *bp)
1743 {
1744         u32 sel_phy_idx = 0;
1745         if (bp->link_vars.link_up) {
1746                 sel_phy_idx = EXT_PHY1;
1747                 /* In case link is SERDES, check if the EXT_PHY2 is the one */
1748                 if ((bp->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
1749                     (bp->link_params.phy[EXT_PHY2].supported & SUPPORTED_FIBRE))
1750                         sel_phy_idx = EXT_PHY2;
1751         } else {
1752
1753                 switch (bnx2x_phy_selection(&bp->link_params)) {
1754                 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
1755                 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
1756                 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
1757                        sel_phy_idx = EXT_PHY1;
1758                        break;
1759                 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
1760                 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
1761                        sel_phy_idx = EXT_PHY2;
1762                        break;
1763                 }
1764         }
1765         /*
1766         * The selected actived PHY is always after swapping (in case PHY
1767         * swapping is enabled). So when swapping is enabled, we need to reverse
1768         * the configuration
1769         */
1770
1771         if (bp->link_params.multi_phy_config &
1772             PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
1773                 if (sel_phy_idx == EXT_PHY1)
1774                         sel_phy_idx = EXT_PHY2;
1775                 else if (sel_phy_idx == EXT_PHY2)
1776                         sel_phy_idx = EXT_PHY1;
1777         }
1778         return LINK_CONFIG_IDX(sel_phy_idx);
1779 }
1780
1781 void bnx2x_calc_fc_adv(struct bnx2x *bp)
1782 {
1783         u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
1784         switch (bp->link_vars.ieee_fc &
1785                 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
1786         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
1787                 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
1788                                                    ADVERTISED_Pause);
1789                 break;
1790
1791         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
1792                 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
1793                                                   ADVERTISED_Pause);
1794                 break;
1795
1796         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
1797                 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
1798                 break;
1799
1800         default:
1801                 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
1802                                                    ADVERTISED_Pause);
1803                 break;
1804         }
1805 }
1806
1807 u8 bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
1808 {
1809         if (!BP_NOMCP(bp)) {
1810                 u8 rc;
1811                 int cfx_idx = bnx2x_get_link_cfg_idx(bp);
1812                 u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
1813                 /* Initialize link parameters structure variables */
1814                 /* It is recommended to turn off RX FC for jumbo frames
1815                    for better performance */
1816                 if ((CHIP_IS_E1x(bp)) && (bp->dev->mtu > 5000))
1817                         bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
1818                 else
1819                         bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
1820
1821                 bnx2x_acquire_phy_lock(bp);
1822
1823                 if (load_mode == LOAD_DIAG) {
1824                         bp->link_params.loopback_mode = LOOPBACK_XGXS;
1825                         bp->link_params.req_line_speed[cfx_idx] = SPEED_10000;
1826                 }
1827
1828                 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
1829
1830                 bnx2x_release_phy_lock(bp);
1831
1832                 bnx2x_calc_fc_adv(bp);
1833
1834                 if (CHIP_REV_IS_SLOW(bp) && bp->link_vars.link_up) {
1835                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
1836                         bnx2x_link_report(bp);
1837                 }
1838                 bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
1839                 return rc;
1840         }
1841         BNX2X_ERR("Bootcode is missing - can not initialize link\n");
1842         return -EINVAL;
1843 }
1844
1845 void bnx2x_link_set(struct bnx2x *bp)
1846 {
1847         if (!BP_NOMCP(bp)) {
1848                 bnx2x_acquire_phy_lock(bp);
1849                 bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
1850                 bnx2x_phy_init(&bp->link_params, &bp->link_vars);
1851                 bnx2x_release_phy_lock(bp);
1852
1853                 bnx2x_calc_fc_adv(bp);
1854         } else
1855                 BNX2X_ERR("Bootcode is missing - can not set link\n");
1856 }
1857
1858 static void bnx2x__link_reset(struct bnx2x *bp)
1859 {
1860         if (!BP_NOMCP(bp)) {
1861                 bnx2x_acquire_phy_lock(bp);
1862                 bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
1863                 bnx2x_release_phy_lock(bp);
1864         } else
1865                 BNX2X_ERR("Bootcode is missing - can not reset link\n");
1866 }
1867
1868 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
1869 {
1870         u8 rc = 0;
1871
1872         if (!BP_NOMCP(bp)) {
1873                 bnx2x_acquire_phy_lock(bp);
1874                 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
1875                                      is_serdes);
1876                 bnx2x_release_phy_lock(bp);
1877         } else
1878                 BNX2X_ERR("Bootcode is missing - can not test link\n");
1879
1880         return rc;
1881 }
1882
1883 static void bnx2x_init_port_minmax(struct bnx2x *bp)
1884 {
1885         u32 r_param = bp->link_vars.line_speed / 8;
1886         u32 fair_periodic_timeout_usec;
1887         u32 t_fair;
1888
1889         memset(&(bp->cmng.rs_vars), 0,
1890                sizeof(struct rate_shaping_vars_per_port));
1891         memset(&(bp->cmng.fair_vars), 0, sizeof(struct fairness_vars_per_port));
1892
1893         /* 100 usec in SDM ticks = 25 since each tick is 4 usec */
1894         bp->cmng.rs_vars.rs_periodic_timeout = RS_PERIODIC_TIMEOUT_USEC / 4;
1895
1896         /* this is the threshold below which no timer arming will occur
1897            1.25 coefficient is for the threshold to be a little bigger
1898            than the real time, to compensate for timer in-accuracy */
1899         bp->cmng.rs_vars.rs_threshold =
1900                                 (RS_PERIODIC_TIMEOUT_USEC * r_param * 5) / 4;
1901
1902         /* resolution of fairness timer */
1903         fair_periodic_timeout_usec = QM_ARB_BYTES / r_param;
1904         /* for 10G it is 1000usec. for 1G it is 10000usec. */
1905         t_fair = T_FAIR_COEF / bp->link_vars.line_speed;
1906
1907         /* this is the threshold below which we won't arm the timer anymore */
1908         bp->cmng.fair_vars.fair_threshold = QM_ARB_BYTES;
1909
1910         /* we multiply by 1e3/8 to get bytes/msec.
1911            We don't want the credits to pass a credit
1912            of the t_fair*FAIR_MEM (algorithm resolution) */
1913         bp->cmng.fair_vars.upper_bound = r_param * t_fair * FAIR_MEM;
1914         /* since each tick is 4 usec */
1915         bp->cmng.fair_vars.fairness_timeout = fair_periodic_timeout_usec / 4;
1916 }
1917
1918 /* Calculates the sum of vn_min_rates.
1919    It's needed for further normalizing of the min_rates.
1920    Returns:
1921      sum of vn_min_rates.
1922        or
1923      0 - if all the min_rates are 0.
1924      In the later case fainess algorithm should be deactivated.
1925      If not all min_rates are zero then those that are zeroes will be set to 1.
1926  */
1927 static void bnx2x_calc_vn_weight_sum(struct bnx2x *bp)
1928 {
1929         int all_zero = 1;
1930         int vn;
1931
1932         bp->vn_weight_sum = 0;
1933         for (vn = VN_0; vn < E1HVN_MAX; vn++) {
1934                 u32 vn_cfg = bp->mf_config[vn];
1935                 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
1936                                    FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
1937
1938                 /* Skip hidden vns */
1939                 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
1940                         continue;
1941
1942                 /* If min rate is zero - set it to 1 */
1943                 if (!vn_min_rate)
1944                         vn_min_rate = DEF_MIN_RATE;
1945                 else
1946                         all_zero = 0;
1947
1948                 bp->vn_weight_sum += vn_min_rate;
1949         }
1950
1951         /* ... only if all min rates are zeros - disable fairness */
1952         if (all_zero) {
1953                 bp->cmng.flags.cmng_enables &=
1954                                         ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
1955                 DP(NETIF_MSG_IFUP, "All MIN values are zeroes"
1956                    "  fairness will be disabled\n");
1957         } else
1958                 bp->cmng.flags.cmng_enables |=
1959                                         CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
1960 }
1961
1962 static void bnx2x_init_vn_minmax(struct bnx2x *bp, int vn)
1963 {
1964         struct rate_shaping_vars_per_vn m_rs_vn;
1965         struct fairness_vars_per_vn m_fair_vn;
1966         u32 vn_cfg = bp->mf_config[vn];
1967         int func = 2*vn + BP_PORT(bp);
1968         u16 vn_min_rate, vn_max_rate;
1969         int i;
1970
1971         /* If function is hidden - set min and max to zeroes */
1972         if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
1973                 vn_min_rate = 0;
1974                 vn_max_rate = 0;
1975
1976         } else {
1977                 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
1978                                 FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
1979                 /* If min rate is zero - set it to 1 */
1980                 if (bp->vn_weight_sum && (vn_min_rate == 0))
1981                         vn_min_rate = DEF_MIN_RATE;
1982                 vn_max_rate = ((vn_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
1983                                 FUNC_MF_CFG_MAX_BW_SHIFT) * 100;
1984         }
1985
1986         DP(NETIF_MSG_IFUP,
1987            "func %d: vn_min_rate %d  vn_max_rate %d  vn_weight_sum %d\n",
1988            func, vn_min_rate, vn_max_rate, bp->vn_weight_sum);
1989
1990         memset(&m_rs_vn, 0, sizeof(struct rate_shaping_vars_per_vn));
1991         memset(&m_fair_vn, 0, sizeof(struct fairness_vars_per_vn));
1992
1993         /* global vn counter - maximal Mbps for this vn */
1994         m_rs_vn.vn_counter.rate = vn_max_rate;
1995
1996         /* quota - number of bytes transmitted in this period */
1997         m_rs_vn.vn_counter.quota =
1998                                 (vn_max_rate * RS_PERIODIC_TIMEOUT_USEC) / 8;
1999
2000         if (bp->vn_weight_sum) {
2001                 /* credit for each period of the fairness algorithm:
2002                    number of bytes in T_FAIR (the vn share the port rate).
2003                    vn_weight_sum should not be larger than 10000, thus
2004                    T_FAIR_COEF / (8 * vn_weight_sum) will always be greater
2005                    than zero */
2006                 m_fair_vn.vn_credit_delta =
2007                         max_t(u32, (vn_min_rate * (T_FAIR_COEF /
2008                                                    (8 * bp->vn_weight_sum))),
2009                               (bp->cmng.fair_vars.fair_threshold * 2));
2010                 DP(NETIF_MSG_IFUP, "m_fair_vn.vn_credit_delta %d\n",
2011                    m_fair_vn.vn_credit_delta);
2012         }
2013
2014         /* Store it to internal memory */
2015         for (i = 0; i < sizeof(struct rate_shaping_vars_per_vn)/4; i++)
2016                 REG_WR(bp, BAR_XSTRORM_INTMEM +
2017                        XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func) + i * 4,
2018                        ((u32 *)(&m_rs_vn))[i]);
2019
2020         for (i = 0; i < sizeof(struct fairness_vars_per_vn)/4; i++)
2021                 REG_WR(bp, BAR_XSTRORM_INTMEM +
2022                        XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func) + i * 4,
2023                        ((u32 *)(&m_fair_vn))[i]);
2024 }
2025
2026 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2027 {
2028         if (CHIP_REV_IS_SLOW(bp))
2029                 return CMNG_FNS_NONE;
2030         if (IS_MF(bp))
2031                 return CMNG_FNS_MINMAX;
2032
2033         return CMNG_FNS_NONE;
2034 }
2035
2036 static void bnx2x_read_mf_cfg(struct bnx2x *bp)
2037 {
2038         int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2039
2040         if (BP_NOMCP(bp))
2041                 return; /* what should be the default bvalue in this case */
2042
2043         /* For 2 port configuration the absolute function number formula
2044          * is:
2045          *      abs_func = 2 * vn + BP_PORT + BP_PATH
2046          *
2047          *      and there are 4 functions per port
2048          *
2049          * For 4 port configuration it is
2050          *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2051          *
2052          *      and there are 2 functions per port
2053          */
2054         for (vn = VN_0; vn < E1HVN_MAX; vn++) {
2055                 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2056
2057                 if (func >= E1H_FUNC_MAX)
2058                         break;
2059
2060                 bp->mf_config[vn] =
2061                         MF_CFG_RD(bp, func_mf_config[func].config);
2062         }
2063 }
2064
2065 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2066 {
2067
2068         if (cmng_type == CMNG_FNS_MINMAX) {
2069                 int vn;
2070
2071                 /* clear cmng_enables */
2072                 bp->cmng.flags.cmng_enables = 0;
2073
2074                 /* read mf conf from shmem */
2075                 if (read_cfg)
2076                         bnx2x_read_mf_cfg(bp);
2077
2078                 /* Init rate shaping and fairness contexts */
2079                 bnx2x_init_port_minmax(bp);
2080
2081                 /* vn_weight_sum and enable fairness if not 0 */
2082                 bnx2x_calc_vn_weight_sum(bp);
2083
2084                 /* calculate and set min-max rate for each vn */
2085                 for (vn = VN_0; vn < E1HVN_MAX; vn++)
2086                         bnx2x_init_vn_minmax(bp, vn);
2087
2088                 /* always enable rate shaping and fairness */
2089                 bp->cmng.flags.cmng_enables |=
2090                                         CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2091                 if (!bp->vn_weight_sum)
2092                         DP(NETIF_MSG_IFUP, "All MIN values are zeroes"
2093                                    "  fairness will be disabled\n");
2094                 return;
2095         }
2096
2097         /* rate shaping and fairness are disabled */
2098         DP(NETIF_MSG_IFUP,
2099            "rate shaping and fairness are disabled\n");
2100 }
2101
2102 static inline void bnx2x_link_sync_notify(struct bnx2x *bp)
2103 {
2104         int port = BP_PORT(bp);
2105         int func;
2106         int vn;
2107
2108         /* Set the attention towards other drivers on the same port */
2109         for (vn = VN_0; vn < E1HVN_MAX; vn++) {
2110                 if (vn == BP_E1HVN(bp))
2111                         continue;
2112
2113                 func = ((vn << 1) | port);
2114                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_0 +
2115                        (LINK_SYNC_ATTENTION_BIT_FUNC_0 + func)*4, 1);
2116         }
2117 }
2118
2119 /* This function is called upon link interrupt */
2120 static void bnx2x_link_attn(struct bnx2x *bp)
2121 {
2122         u32 prev_link_status = bp->link_vars.link_status;
2123         /* Make sure that we are synced with the current statistics */
2124         bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2125
2126         bnx2x_link_update(&bp->link_params, &bp->link_vars);
2127
2128         if (bp->link_vars.link_up) {
2129
2130                 /* dropless flow control */
2131                 if (!CHIP_IS_E1(bp) && bp->dropless_fc) {
2132                         int port = BP_PORT(bp);
2133                         u32 pause_enabled = 0;
2134
2135                         if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2136                                 pause_enabled = 1;
2137
2138                         REG_WR(bp, BAR_USTRORM_INTMEM +
2139                                USTORM_ETH_PAUSE_ENABLED_OFFSET(port),
2140                                pause_enabled);
2141                 }
2142
2143                 if (bp->link_vars.mac_type == MAC_TYPE_BMAC) {
2144                         struct host_port_stats *pstats;
2145
2146                         pstats = bnx2x_sp(bp, port_stats);
2147                         /* reset old bmac stats */
2148                         memset(&(pstats->mac_stx[0]), 0,
2149                                sizeof(struct mac_stx));
2150                 }
2151                 if (bp->state == BNX2X_STATE_OPEN)
2152                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2153         }
2154
2155         /* indicate link status only if link status actually changed */
2156         if (prev_link_status != bp->link_vars.link_status)
2157                 bnx2x_link_report(bp);
2158
2159         if (IS_MF(bp))
2160                 bnx2x_link_sync_notify(bp);
2161
2162         if (bp->link_vars.link_up && bp->link_vars.line_speed) {
2163                 int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2164
2165                 if (cmng_fns != CMNG_FNS_NONE) {
2166                         bnx2x_cmng_fns_init(bp, false, cmng_fns);
2167                         storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2168                 } else
2169                         /* rate shaping and fairness are disabled */
2170                         DP(NETIF_MSG_IFUP,
2171                            "single function mode without fairness\n");
2172         }
2173 }
2174
2175 void bnx2x__link_status_update(struct bnx2x *bp)
2176 {
2177         if ((bp->state != BNX2X_STATE_OPEN) || (bp->flags & MF_FUNC_DIS))
2178                 return;
2179
2180         bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2181
2182         if (bp->link_vars.link_up)
2183                 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2184         else
2185                 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2186
2187         /* the link status update could be the result of a DCC event
2188            hence re-read the shmem mf configuration */
2189         bnx2x_read_mf_cfg(bp);
2190
2191         /* indicate link status */
2192         bnx2x_link_report(bp);
2193 }
2194
2195 static void bnx2x_pmf_update(struct bnx2x *bp)
2196 {
2197         int port = BP_PORT(bp);
2198         u32 val;
2199
2200         bp->port.pmf = 1;
2201         DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf);
2202
2203         /* enable nig attention */
2204         val = (0xff0f | (1 << (BP_E1HVN(bp) + 4)));
2205         if (bp->common.int_block == INT_BLOCK_HC) {
2206                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2207                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2208         } else if (CHIP_IS_E2(bp)) {
2209                 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2210                 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2211         }
2212
2213         bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2214 }
2215
2216 /* end of Link */
2217
2218 /* slow path */
2219
2220 /*
2221  * General service functions
2222  */
2223
2224 /* send the MCP a request, block until there is a reply */
2225 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2226 {
2227         int mb_idx = BP_FW_MB_IDX(bp);
2228         u32 seq = ++bp->fw_seq;
2229         u32 rc = 0;
2230         u32 cnt = 1;
2231         u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2232
2233         mutex_lock(&bp->fw_mb_mutex);
2234         SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2235         SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2236
2237         DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB\n", (command | seq));
2238
2239         do {
2240                 /* let the FW do it's magic ... */
2241                 msleep(delay);
2242
2243                 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2244
2245                 /* Give the FW up to 5 second (500*10ms) */
2246         } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2247
2248         DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2249            cnt*delay, rc, seq);
2250
2251         /* is this a reply to our command? */
2252         if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2253                 rc &= FW_MSG_CODE_MASK;
2254         else {
2255                 /* FW BUG! */
2256                 BNX2X_ERR("FW failed to respond!\n");
2257                 bnx2x_fw_dump(bp);
2258                 rc = 0;
2259         }
2260         mutex_unlock(&bp->fw_mb_mutex);
2261
2262         return rc;
2263 }
2264
2265 static u8 stat_counter_valid(struct bnx2x *bp, struct bnx2x_fastpath *fp)
2266 {
2267 #ifdef BCM_CNIC
2268         if (IS_FCOE_FP(fp) && IS_MF(bp))
2269                 return false;
2270 #endif
2271         return true;
2272 }
2273
2274 /* must be called under rtnl_lock */
2275 static void bnx2x_rxq_set_mac_filters(struct bnx2x *bp, u16 cl_id, u32 filters)
2276 {
2277         u32 mask = (1 << cl_id);
2278
2279         /* initial seeting is BNX2X_ACCEPT_NONE */
2280         u8 drop_all_ucast = 1, drop_all_bcast = 1, drop_all_mcast = 1;
2281         u8 accp_all_ucast = 0, accp_all_bcast = 0, accp_all_mcast = 0;
2282         u8 unmatched_unicast = 0;
2283
2284         if (filters & BNX2X_ACCEPT_UNMATCHED_UCAST)
2285                 unmatched_unicast = 1;
2286
2287         if (filters & BNX2X_PROMISCUOUS_MODE) {
2288                 /* promiscious - accept all, drop none */
2289                 drop_all_ucast = drop_all_bcast = drop_all_mcast = 0;
2290                 accp_all_ucast = accp_all_bcast = accp_all_mcast = 1;
2291                 if (IS_MF_SI(bp)) {
2292                         /*
2293                          * SI mode defines to accept in promiscuos mode
2294                          * only unmatched packets
2295                          */
2296                         unmatched_unicast = 1;
2297                         accp_all_ucast = 0;
2298                 }
2299         }
2300         if (filters & BNX2X_ACCEPT_UNICAST) {
2301                 /* accept matched ucast */
2302                 drop_all_ucast = 0;
2303         }
2304         if (filters & BNX2X_ACCEPT_MULTICAST)
2305                 /* accept matched mcast */
2306                 drop_all_mcast = 0;
2307
2308         if (filters & BNX2X_ACCEPT_ALL_UNICAST) {
2309                 /* accept all mcast */
2310                 drop_all_ucast = 0;
2311                 accp_all_ucast = 1;
2312         }
2313         if (filters & BNX2X_ACCEPT_ALL_MULTICAST) {
2314                 /* accept all mcast */
2315                 drop_all_mcast = 0;
2316                 accp_all_mcast = 1;
2317         }
2318         if (filters & BNX2X_ACCEPT_BROADCAST) {
2319                 /* accept (all) bcast */
2320                 drop_all_bcast = 0;
2321                 accp_all_bcast = 1;
2322         }
2323
2324         bp->mac_filters.ucast_drop_all = drop_all_ucast ?
2325                 bp->mac_filters.ucast_drop_all | mask :
2326                 bp->mac_filters.ucast_drop_all & ~mask;
2327
2328         bp->mac_filters.mcast_drop_all = drop_all_mcast ?
2329                 bp->mac_filters.mcast_drop_all | mask :
2330                 bp->mac_filters.mcast_drop_all & ~mask;
2331
2332         bp->mac_filters.bcast_drop_all = drop_all_bcast ?
2333                 bp->mac_filters.bcast_drop_all | mask :
2334                 bp->mac_filters.bcast_drop_all & ~mask;
2335
2336         bp->mac_filters.ucast_accept_all = accp_all_ucast ?
2337                 bp->mac_filters.ucast_accept_all | mask :
2338                 bp->mac_filters.ucast_accept_all & ~mask;
2339
2340         bp->mac_filters.mcast_accept_all = accp_all_mcast ?
2341                 bp->mac_filters.mcast_accept_all | mask :
2342                 bp->mac_filters.mcast_accept_all & ~mask;
2343
2344         bp->mac_filters.bcast_accept_all = accp_all_bcast ?
2345                 bp->mac_filters.bcast_accept_all | mask :
2346                 bp->mac_filters.bcast_accept_all & ~mask;
2347
2348         bp->mac_filters.unmatched_unicast = unmatched_unicast ?
2349                 bp->mac_filters.unmatched_unicast | mask :
2350                 bp->mac_filters.unmatched_unicast & ~mask;
2351 }
2352
2353 static void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2354 {
2355         struct tstorm_eth_function_common_config tcfg = {0};
2356         u16 rss_flgs;
2357
2358         /* tpa */
2359         if (p->func_flgs & FUNC_FLG_TPA)
2360                 tcfg.config_flags |=
2361                 TSTORM_ETH_FUNCTION_COMMON_CONFIG_ENABLE_TPA;
2362
2363         /* set rss flags */
2364         rss_flgs = (p->rss->mode <<
2365                 TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_MODE_SHIFT);
2366
2367         if (p->rss->cap & RSS_IPV4_CAP)
2368                 rss_flgs |= RSS_IPV4_CAP_MASK;
2369         if (p->rss->cap & RSS_IPV4_TCP_CAP)
2370                 rss_flgs |= RSS_IPV4_TCP_CAP_MASK;
2371         if (p->rss->cap & RSS_IPV6_CAP)
2372                 rss_flgs |= RSS_IPV6_CAP_MASK;
2373         if (p->rss->cap & RSS_IPV6_TCP_CAP)
2374                 rss_flgs |= RSS_IPV6_TCP_CAP_MASK;
2375
2376         tcfg.config_flags |= rss_flgs;
2377         tcfg.rss_result_mask = p->rss->result_mask;
2378
2379         storm_memset_func_cfg(bp, &tcfg, p->func_id);
2380
2381         /* Enable the function in the FW */
2382         storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
2383         storm_memset_func_en(bp, p->func_id, 1);
2384
2385         /* statistics */
2386         if (p->func_flgs & FUNC_FLG_STATS) {
2387                 struct stats_indication_flags stats_flags = {0};
2388                 stats_flags.collect_eth = 1;
2389
2390                 storm_memset_xstats_flags(bp, &stats_flags, p->func_id);
2391                 storm_memset_xstats_addr(bp, p->fw_stat_map, p->func_id);
2392
2393                 storm_memset_tstats_flags(bp, &stats_flags, p->func_id);
2394                 storm_memset_tstats_addr(bp, p->fw_stat_map, p->func_id);
2395
2396                 storm_memset_ustats_flags(bp, &stats_flags, p->func_id);
2397                 storm_memset_ustats_addr(bp, p->fw_stat_map, p->func_id);
2398
2399                 storm_memset_cstats_flags(bp, &stats_flags, p->func_id);
2400                 storm_memset_cstats_addr(bp, p->fw_stat_map, p->func_id);
2401         }
2402
2403         /* spq */
2404         if (p->func_flgs & FUNC_FLG_SPQ) {
2405                 storm_memset_spq_addr(bp, p->spq_map, p->func_id);
2406                 REG_WR(bp, XSEM_REG_FAST_MEMORY +
2407                        XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
2408         }
2409 }
2410
2411 static inline u16 bnx2x_get_cl_flags(struct bnx2x *bp,
2412                                      struct bnx2x_fastpath *fp)
2413 {
2414         u16 flags = 0;
2415
2416         /* calculate queue flags */
2417         flags |= QUEUE_FLG_CACHE_ALIGN;
2418         flags |= QUEUE_FLG_HC;
2419         flags |= IS_MF_SD(bp) ? QUEUE_FLG_OV : 0;
2420
2421         flags |= QUEUE_FLG_VLAN;
2422         DP(NETIF_MSG_IFUP, "vlan removal enabled\n");
2423
2424         if (!fp->disable_tpa)
2425                 flags |= QUEUE_FLG_TPA;
2426
2427         flags = stat_counter_valid(bp, fp) ?
2428                         (flags | QUEUE_FLG_STATS) : (flags & ~QUEUE_FLG_STATS);
2429
2430         return flags;
2431 }
2432
2433 static void bnx2x_pf_rx_cl_prep(struct bnx2x *bp,
2434         struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
2435         struct bnx2x_rxq_init_params *rxq_init)
2436 {
2437         u16 max_sge = 0;
2438         u16 sge_sz = 0;
2439         u16 tpa_agg_size = 0;
2440
2441         /* calculate queue flags */
2442         u16 flags = bnx2x_get_cl_flags(bp, fp);
2443
2444         if (!fp->disable_tpa) {
2445                 pause->sge_th_hi = 250;
2446                 pause->sge_th_lo = 150;
2447                 tpa_agg_size = min_t(u32,
2448                         (min_t(u32, 8, MAX_SKB_FRAGS) *
2449                         SGE_PAGE_SIZE * PAGES_PER_SGE), 0xffff);
2450                 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
2451                         SGE_PAGE_SHIFT;
2452                 max_sge = ((max_sge + PAGES_PER_SGE - 1) &
2453                           (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
2454                 sge_sz = (u16)min_t(u32, SGE_PAGE_SIZE * PAGES_PER_SGE,
2455                                     0xffff);
2456         }
2457
2458         /* pause - not for e1 */
2459         if (!CHIP_IS_E1(bp)) {
2460                 pause->bd_th_hi = 350;
2461                 pause->bd_th_lo = 250;
2462                 pause->rcq_th_hi = 350;
2463                 pause->rcq_th_lo = 250;
2464                 pause->sge_th_hi = 0;
2465                 pause->sge_th_lo = 0;
2466                 pause->pri_map = 1;
2467         }
2468
2469         /* rxq setup */
2470         rxq_init->flags = flags;
2471         rxq_init->cxt = &bp->context.vcxt[fp->cid].eth;
2472         rxq_init->dscr_map = fp->rx_desc_mapping;
2473         rxq_init->sge_map = fp->rx_sge_mapping;
2474         rxq_init->rcq_map = fp->rx_comp_mapping;
2475         rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
2476         rxq_init->mtu = bp->dev->mtu;
2477         rxq_init->buf_sz = bp->rx_buf_size;
2478         rxq_init->cl_qzone_id = fp->cl_qzone_id;
2479         rxq_init->cl_id = fp->cl_id;
2480         rxq_init->spcl_id = fp->cl_id;
2481         rxq_init->stat_id = fp->cl_id;
2482         rxq_init->tpa_agg_sz = tpa_agg_size;
2483         rxq_init->sge_buf_sz = sge_sz;
2484         rxq_init->max_sges_pkt = max_sge;
2485         rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
2486         rxq_init->fw_sb_id = fp->fw_sb_id;
2487
2488         if (IS_FCOE_FP(fp))
2489                 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
2490         else
2491                 rxq_init->sb_cq_index = U_SB_ETH_RX_CQ_INDEX;
2492
2493         rxq_init->cid = HW_CID(bp, fp->cid);
2494
2495         rxq_init->hc_rate = bp->rx_ticks ? (1000000 / bp->rx_ticks) : 0;
2496 }
2497
2498 static void bnx2x_pf_tx_cl_prep(struct bnx2x *bp,
2499         struct bnx2x_fastpath *fp, struct bnx2x_txq_init_params *txq_init)
2500 {
2501         u16 flags = bnx2x_get_cl_flags(bp, fp);
2502
2503         txq_init->flags = flags;
2504         txq_init->cxt = &bp->context.vcxt[fp->cid].eth;
2505         txq_init->dscr_map = fp->tx_desc_mapping;
2506         txq_init->stat_id = fp->cl_id;
2507         txq_init->cid = HW_CID(bp, fp->cid);
2508         txq_init->sb_cq_index = C_SB_ETH_TX_CQ_INDEX;
2509         txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
2510         txq_init->fw_sb_id = fp->fw_sb_id;
2511
2512         if (IS_FCOE_FP(fp)) {
2513                 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
2514                 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
2515         }
2516
2517         txq_init->hc_rate = bp->tx_ticks ? (1000000 / bp->tx_ticks) : 0;
2518 }
2519
2520 static void bnx2x_pf_init(struct bnx2x *bp)
2521 {
2522         struct bnx2x_func_init_params func_init = {0};
2523         struct bnx2x_rss_params rss = {0};
2524         struct event_ring_data eq_data = { {0} };
2525         u16 flags;
2526
2527         /* pf specific setups */
2528         if (!CHIP_IS_E1(bp))
2529                 storm_memset_ov(bp, bp->mf_ov, BP_FUNC(bp));
2530
2531         if (CHIP_IS_E2(bp)) {
2532                 /* reset IGU PF statistics: MSIX + ATTN */
2533                 /* PF */
2534                 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2535                            BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2536                            (CHIP_MODE_IS_4_PORT(bp) ?
2537                                 BP_FUNC(bp) : BP_VN(bp))*4, 0);
2538                 /* ATTN */
2539                 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2540                            BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2541                            BNX2X_IGU_STAS_MSG_PF_CNT*4 +
2542                            (CHIP_MODE_IS_4_PORT(bp) ?
2543                                 BP_FUNC(bp) : BP_VN(bp))*4, 0);
2544         }
2545
2546         /* function setup flags */
2547         flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
2548
2549         if (CHIP_IS_E1x(bp))
2550                 flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
2551         else
2552                 flags |= FUNC_FLG_TPA;
2553
2554         /* function setup */
2555
2556         /**
2557          * Although RSS is meaningless when there is a single HW queue we
2558          * still need it enabled in order to have HW Rx hash generated.
2559          */
2560         rss.cap = (RSS_IPV4_CAP | RSS_IPV4_TCP_CAP |
2561                    RSS_IPV6_CAP | RSS_IPV6_TCP_CAP);
2562         rss.mode = bp->multi_mode;
2563         rss.result_mask = MULTI_MASK;
2564         func_init.rss = &rss;
2565
2566         func_init.func_flgs = flags;
2567         func_init.pf_id = BP_FUNC(bp);
2568         func_init.func_id = BP_FUNC(bp);
2569         func_init.fw_stat_map = bnx2x_sp_mapping(bp, fw_stats);
2570         func_init.spq_map = bp->spq_mapping;
2571         func_init.spq_prod = bp->spq_prod_idx;
2572
2573         bnx2x_func_init(bp, &func_init);
2574
2575         memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
2576
2577         /*
2578         Congestion management values depend on the link rate
2579         There is no active link so initial link rate is set to 10 Gbps.
2580         When the link comes up The congestion management values are
2581         re-calculated according to the actual link rate.
2582         */
2583         bp->link_vars.line_speed = SPEED_10000;
2584         bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
2585
2586         /* Only the PMF sets the HW */
2587         if (bp->port.pmf)
2588                 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2589
2590         /* no rx until link is up */
2591         bp->rx_mode = BNX2X_RX_MODE_NONE;
2592         bnx2x_set_storm_rx_mode(bp);
2593
2594         /* init Event Queue */
2595         eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
2596         eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
2597         eq_data.producer = bp->eq_prod;
2598         eq_data.index_id = HC_SP_INDEX_EQ_CONS;
2599         eq_data.sb_id = DEF_SB_ID;
2600         storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
2601 }
2602
2603
2604 static void bnx2x_e1h_disable(struct bnx2x *bp)
2605 {
2606         int port = BP_PORT(bp);
2607
2608         netif_tx_disable(bp->dev);
2609
2610         REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
2611
2612         netif_carrier_off(bp->dev);
2613 }
2614
2615 static void bnx2x_e1h_enable(struct bnx2x *bp)
2616 {
2617         int port = BP_PORT(bp);
2618
2619         REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
2620
2621         /* Tx queue should be only reenabled */
2622         netif_tx_wake_all_queues(bp->dev);
2623
2624         /*
2625          * Should not call netif_carrier_on since it will be called if the link
2626          * is up when checking for link state
2627          */
2628 }
2629
2630 /* called due to MCP event (on pmf):
2631  *      reread new bandwidth configuration
2632  *      configure FW
2633  *      notify others function about the change
2634  */
2635 static inline void bnx2x_config_mf_bw(struct bnx2x *bp)
2636 {
2637         if (bp->link_vars.link_up) {
2638                 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
2639                 bnx2x_link_sync_notify(bp);
2640         }
2641         storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2642 }
2643
2644 static inline void bnx2x_set_mf_bw(struct bnx2x *bp)
2645 {
2646         bnx2x_config_mf_bw(bp);
2647         bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
2648 }
2649
2650 static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
2651 {
2652         DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
2653
2654         if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
2655
2656                 /*
2657                  * This is the only place besides the function initialization
2658                  * where the bp->flags can change so it is done without any
2659                  * locks
2660                  */
2661                 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2662                         DP(NETIF_MSG_IFDOWN, "mf_cfg function disabled\n");
2663                         bp->flags |= MF_FUNC_DIS;
2664
2665                         bnx2x_e1h_disable(bp);
2666                 } else {
2667                         DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2668                         bp->flags &= ~MF_FUNC_DIS;
2669
2670                         bnx2x_e1h_enable(bp);
2671                 }
2672                 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
2673         }
2674         if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
2675                 bnx2x_config_mf_bw(bp);
2676                 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
2677         }
2678
2679         /* Report results to MCP */
2680         if (dcc_event)
2681                 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
2682         else
2683                 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
2684 }
2685
2686 /* must be called under the spq lock */
2687 static inline struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
2688 {
2689         struct eth_spe *next_spe = bp->spq_prod_bd;
2690
2691         if (bp->spq_prod_bd == bp->spq_last_bd) {
2692                 bp->spq_prod_bd = bp->spq;
2693                 bp->spq_prod_idx = 0;
2694                 DP(NETIF_MSG_TIMER, "end of spq\n");
2695         } else {
2696                 bp->spq_prod_bd++;
2697                 bp->spq_prod_idx++;
2698         }
2699         return next_spe;
2700 }
2701
2702 /* must be called under the spq lock */
2703 static inline void bnx2x_sp_prod_update(struct bnx2x *bp)
2704 {
2705         int func = BP_FUNC(bp);
2706
2707         /* Make sure that BD data is updated before writing the producer */
2708         wmb();
2709
2710         REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
2711                  bp->spq_prod_idx);
2712         mmiowb();
2713 }
2714
2715 /* the slow path queue is odd since completions arrive on the fastpath ring */
2716 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
2717                   u32 data_hi, u32 data_lo, int common)
2718 {
2719         struct eth_spe *spe;
2720         u16 type;
2721
2722 #ifdef BNX2X_STOP_ON_ERROR
2723         if (unlikely(bp->panic))
2724                 return -EIO;
2725 #endif
2726
2727         spin_lock_bh(&bp->spq_lock);
2728
2729         if (!atomic_read(&bp->spq_left)) {
2730                 BNX2X_ERR("BUG! SPQ ring full!\n");
2731                 spin_unlock_bh(&bp->spq_lock);
2732                 bnx2x_panic();
2733                 return -EBUSY;
2734         }
2735
2736         spe = bnx2x_sp_get_next(bp);
2737
2738         /* CID needs port number to be encoded int it */
2739         spe->hdr.conn_and_cmd_data =
2740                         cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
2741                                     HW_CID(bp, cid));
2742
2743         if (common)
2744                 /* Common ramrods:
2745                  *      FUNC_START, FUNC_STOP, CFC_DEL, STATS, SET_MAC
2746                  *      TRAFFIC_STOP, TRAFFIC_START
2747                  */
2748                 type = (NONE_CONNECTION_TYPE << SPE_HDR_CONN_TYPE_SHIFT)
2749                         & SPE_HDR_CONN_TYPE;
2750         else
2751                 /* ETH ramrods: SETUP, HALT */
2752                 type = (ETH_CONNECTION_TYPE << SPE_HDR_CONN_TYPE_SHIFT)
2753                         & SPE_HDR_CONN_TYPE;
2754
2755         type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
2756                  SPE_HDR_FUNCTION_ID);
2757
2758         spe->hdr.type = cpu_to_le16(type);
2759
2760         spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
2761         spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
2762
2763         /* stats ramrod has it's own slot on the spq */
2764         if (command != RAMROD_CMD_ID_COMMON_STAT_QUERY)
2765                 /* It's ok if the actual decrement is issued towards the memory
2766                  * somewhere between the spin_lock and spin_unlock. Thus no
2767                  * more explict memory barrier is needed.
2768                  */
2769                 atomic_dec(&bp->spq_left);
2770
2771         DP(BNX2X_MSG_SP/*NETIF_MSG_TIMER*/,
2772            "SPQE[%x] (%x:%x)  command %d  hw_cid %x  data (%x:%x) "
2773            "type(0x%x) left %x\n",
2774            bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
2775            (u32)(U64_LO(bp->spq_mapping) +
2776            (void *)bp->spq_prod_bd - (void *)bp->spq), command,
2777            HW_CID(bp, cid), data_hi, data_lo, type, atomic_read(&bp->spq_left));
2778
2779         bnx2x_sp_prod_update(bp);
2780         spin_unlock_bh(&bp->spq_lock);
2781         return 0;
2782 }
2783
2784 /* acquire split MCP access lock register */
2785 static int bnx2x_acquire_alr(struct bnx2x *bp)
2786 {
2787         u32 j, val;
2788         int rc = 0;
2789
2790         might_sleep();
2791         for (j = 0; j < 1000; j++) {
2792                 val = (1UL << 31);
2793                 REG_WR(bp, GRCBASE_MCP + 0x9c, val);
2794                 val = REG_RD(bp, GRCBASE_MCP + 0x9c);
2795                 if (val & (1L << 31))
2796                         break;
2797
2798                 msleep(5);
2799         }
2800         if (!(val & (1L << 31))) {
2801                 BNX2X_ERR("Cannot acquire MCP access lock register\n");
2802                 rc = -EBUSY;
2803         }
2804
2805         return rc;
2806 }
2807
2808 /* release split MCP access lock register */
2809 static void bnx2x_release_alr(struct bnx2x *bp)
2810 {
2811         REG_WR(bp, GRCBASE_MCP + 0x9c, 0);
2812 }
2813
2814 #define BNX2X_DEF_SB_ATT_IDX    0x0001
2815 #define BNX2X_DEF_SB_IDX        0x0002
2816
2817 static inline u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
2818 {
2819         struct host_sp_status_block *def_sb = bp->def_status_blk;
2820         u16 rc = 0;
2821
2822         barrier(); /* status block is written to by the chip */
2823         if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
2824                 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
2825                 rc |= BNX2X_DEF_SB_ATT_IDX;
2826         }
2827
2828         if (bp->def_idx != def_sb->sp_sb.running_index) {
2829                 bp->def_idx = def_sb->sp_sb.running_index;
2830                 rc |= BNX2X_DEF_SB_IDX;
2831         }
2832
2833         /* Do not reorder: indecies reading should complete before handling */
2834         barrier();
2835         return rc;
2836 }
2837
2838 /*
2839  * slow path service functions
2840  */
2841
2842 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
2843 {
2844         int port = BP_PORT(bp);
2845         u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
2846                               MISC_REG_AEU_MASK_ATTN_FUNC_0;
2847         u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
2848                                        NIG_REG_MASK_INTERRUPT_PORT0;
2849         u32 aeu_mask;
2850         u32 nig_mask = 0;
2851         u32 reg_addr;
2852
2853         if (bp->attn_state & asserted)
2854                 BNX2X_ERR("IGU ERROR\n");
2855
2856         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
2857         aeu_mask = REG_RD(bp, aeu_addr);
2858
2859         DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
2860            aeu_mask, asserted);
2861         aeu_mask &= ~(asserted & 0x3ff);
2862         DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
2863
2864         REG_WR(bp, aeu_addr, aeu_mask);
2865         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
2866
2867         DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
2868         bp->attn_state |= asserted;
2869         DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
2870
2871         if (asserted & ATTN_HARD_WIRED_MASK) {
2872                 if (asserted & ATTN_NIG_FOR_FUNC) {
2873
2874                         bnx2x_acquire_phy_lock(bp);
2875
2876                         /* save nig interrupt mask */
2877                         nig_mask = REG_RD(bp, nig_int_mask_addr);
2878                         REG_WR(bp, nig_int_mask_addr, 0);
2879
2880                         bnx2x_link_attn(bp);
2881
2882                         /* handle unicore attn? */
2883                 }
2884                 if (asserted & ATTN_SW_TIMER_4_FUNC)
2885                         DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
2886
2887                 if (asserted & GPIO_2_FUNC)
2888                         DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
2889
2890                 if (asserted & GPIO_3_FUNC)
2891                         DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
2892
2893                 if (asserted & GPIO_4_FUNC)
2894                         DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
2895
2896                 if (port == 0) {
2897                         if (asserted & ATTN_GENERAL_ATTN_1) {
2898                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
2899                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
2900                         }
2901                         if (asserted & ATTN_GENERAL_ATTN_2) {
2902                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
2903                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
2904                         }
2905                         if (asserted & ATTN_GENERAL_ATTN_3) {
2906                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
2907                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
2908                         }
2909                 } else {
2910                         if (asserted & ATTN_GENERAL_ATTN_4) {
2911                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
2912                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
2913                         }
2914                         if (asserted & ATTN_GENERAL_ATTN_5) {
2915                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
2916                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
2917                         }
2918                         if (asserted & ATTN_GENERAL_ATTN_6) {
2919                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
2920                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
2921                         }
2922                 }
2923
2924         } /* if hardwired */
2925
2926         if (bp->common.int_block == INT_BLOCK_HC)
2927                 reg_addr = (HC_REG_COMMAND_REG + port*32 +
2928                             COMMAND_REG_ATTN_BITS_SET);
2929         else
2930                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
2931
2932         DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
2933            (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
2934         REG_WR(bp, reg_addr, asserted);
2935
2936         /* now set back the mask */
2937         if (asserted & ATTN_NIG_FOR_FUNC) {
2938                 REG_WR(bp, nig_int_mask_addr, nig_mask);
2939                 bnx2x_release_phy_lock(bp);
2940         }
2941 }
2942
2943 static inline void bnx2x_fan_failure(struct bnx2x *bp)
2944 {
2945         int port = BP_PORT(bp);
2946         u32 ext_phy_config;
2947         /* mark the failure */
2948         ext_phy_config =
2949                 SHMEM_RD(bp,
2950                          dev_info.port_hw_config[port].external_phy_config);
2951
2952         ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
2953         ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
2954         SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
2955                  ext_phy_config);
2956
2957         /* log the failure */
2958         netdev_err(bp->dev, "Fan Failure on Network Controller has caused"
2959                " the driver to shutdown the card to prevent permanent"
2960                " damage.  Please contact OEM Support for assistance\n");
2961 }
2962
2963 static inline void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
2964 {
2965         int port = BP_PORT(bp);
2966         int reg_offset;
2967         u32 val;
2968
2969         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
2970                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
2971
2972         if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
2973
2974                 val = REG_RD(bp, reg_offset);
2975                 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
2976                 REG_WR(bp, reg_offset, val);
2977
2978                 BNX2X_ERR("SPIO5 hw attention\n");
2979
2980                 /* Fan failure attention */
2981                 bnx2x_hw_reset_phy(&bp->link_params);
2982                 bnx2x_fan_failure(bp);
2983         }
2984
2985         if (attn & (AEU_INPUTS_ATTN_BITS_GPIO3_FUNCTION_0 |
2986                     AEU_INPUTS_ATTN_BITS_GPIO3_FUNCTION_1)) {
2987                 bnx2x_acquire_phy_lock(bp);
2988                 bnx2x_handle_module_detect_int(&bp->link_params);
2989                 bnx2x_release_phy_lock(bp);
2990         }
2991
2992         if (attn & HW_INTERRUT_ASSERT_SET_0) {
2993
2994                 val = REG_RD(bp, reg_offset);
2995                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
2996                 REG_WR(bp, reg_offset, val);
2997
2998                 BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
2999                           (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
3000                 bnx2x_panic();
3001         }
3002 }
3003
3004 static inline void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
3005 {
3006         u32 val;
3007
3008         if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3009
3010                 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
3011                 BNX2X_ERR("DB hw attention 0x%x\n", val);
3012                 /* DORQ discard attention */
3013                 if (val & 0x2)
3014                         BNX2X_ERR("FATAL error from DORQ\n");
3015         }
3016
3017         if (attn & HW_INTERRUT_ASSERT_SET_1) {
3018
3019                 int port = BP_PORT(bp);
3020                 int reg_offset;
3021
3022                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3023                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3024
3025                 val = REG_RD(bp, reg_offset);
3026                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
3027                 REG_WR(bp, reg_offset, val);
3028
3029                 BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
3030                           (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
3031                 bnx2x_panic();
3032         }
3033 }
3034
3035 static inline void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
3036 {
3037         u32 val;
3038
3039         if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3040
3041                 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
3042                 BNX2X_ERR("CFC hw attention 0x%x\n", val);
3043                 /* CFC error attention */
3044                 if (val & 0x2)
3045                         BNX2X_ERR("FATAL error from CFC\n");
3046         }
3047
3048         if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3049
3050                 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
3051                 BNX2X_ERR("PXP hw attention 0x%x\n", val);
3052                 /* RQ_USDMDP_FIFO_OVERFLOW */
3053                 if (val & 0x18000)
3054                         BNX2X_ERR("FATAL error from PXP\n");
3055                 if (CHIP_IS_E2(bp)) {
3056                         val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
3057                         BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
3058                 }
3059         }
3060
3061         if (attn & HW_INTERRUT_ASSERT_SET_2) {
3062
3063                 int port = BP_PORT(bp);
3064                 int reg_offset;
3065
3066                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3067                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3068
3069                 val = REG_RD(bp, reg_offset);
3070                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3071                 REG_WR(bp, reg_offset, val);
3072
3073                 BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
3074                           (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
3075                 bnx2x_panic();
3076         }
3077 }
3078
3079 static inline void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
3080 {
3081         u32 val;
3082
3083         if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3084
3085                 if (attn & BNX2X_PMF_LINK_ASSERT) {
3086                         int func = BP_FUNC(bp);
3087
3088                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
3089                         bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
3090                                         func_mf_config[BP_ABS_FUNC(bp)].config);
3091                         val = SHMEM_RD(bp,
3092                                        func_mb[BP_FW_MB_IDX(bp)].drv_status);
3093                         if (val & DRV_STATUS_DCC_EVENT_MASK)
3094                                 bnx2x_dcc_event(bp,
3095                                             (val & DRV_STATUS_DCC_EVENT_MASK));
3096
3097                         if (val & DRV_STATUS_SET_MF_BW)
3098                                 bnx2x_set_mf_bw(bp);
3099
3100                         bnx2x__link_status_update(bp);
3101                         if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
3102                                 bnx2x_pmf_update(bp);
3103
3104                         if (bp->port.pmf &&
3105                             (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
3106                                 bp->dcbx_enabled > 0)
3107                                 /* start dcbx state machine */
3108                                 bnx2x_dcbx_set_params(bp,
3109                                         BNX2X_DCBX_STATE_NEG_RECEIVED);
3110                 } else if (attn & BNX2X_MC_ASSERT_BITS) {
3111
3112                         BNX2X_ERR("MC assert!\n");
3113                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
3114                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
3115                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
3116                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
3117                         bnx2x_panic();
3118
3119                 } else if (attn & BNX2X_MCP_ASSERT) {
3120
3121                         BNX2X_ERR("MCP assert!\n");
3122                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
3123                         bnx2x_fw_dump(bp);
3124
3125                 } else
3126                         BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
3127         }
3128
3129         if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
3130                 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
3131                 if (attn & BNX2X_GRC_TIMEOUT) {
3132                         val = CHIP_IS_E1(bp) ? 0 :
3133                                         REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
3134                         BNX2X_ERR("GRC time-out 0x%08x\n", val);
3135                 }
3136                 if (attn & BNX2X_GRC_RSV) {
3137                         val = CHIP_IS_E1(bp) ? 0 :
3138                                         REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
3139                         BNX2X_ERR("GRC reserved 0x%08x\n", val);
3140                 }
3141                 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
3142         }
3143 }
3144
3145 #define BNX2X_MISC_GEN_REG      MISC_REG_GENERIC_POR_1
3146 #define LOAD_COUNTER_BITS       16 /* Number of bits for load counter */
3147 #define LOAD_COUNTER_MASK       (((u32)0x1 << LOAD_COUNTER_BITS) - 1)
3148 #define RESET_DONE_FLAG_MASK    (~LOAD_COUNTER_MASK)
3149 #define RESET_DONE_FLAG_SHIFT   LOAD_COUNTER_BITS
3150
3151 /*
3152  * should be run under rtnl lock
3153  */
3154 static inline void bnx2x_set_reset_done(struct bnx2x *bp)
3155 {
3156         u32 val = REG_RD(bp, BNX2X_MISC_GEN_REG);
3157         val &= ~(1 << RESET_DONE_FLAG_SHIFT);
3158         REG_WR(bp, BNX2X_MISC_GEN_REG, val);
3159         barrier();
3160         mmiowb();
3161 }
3162
3163 /*
3164  * should be run under rtnl lock
3165  */
3166 static inline void bnx2x_set_reset_in_progress(struct bnx2x *bp)
3167 {
3168         u32 val = REG_RD(bp, BNX2X_MISC_GEN_REG);
3169         val |= (1 << 16);
3170         REG_WR(bp, BNX2X_MISC_GEN_REG, val);
3171         barrier();
3172         mmiowb();
3173 }
3174
3175 /*
3176  * should be run under rtnl lock
3177  */
3178 bool bnx2x_reset_is_done(struct bnx2x *bp)
3179 {
3180         u32 val = REG_RD(bp, BNX2X_MISC_GEN_REG);
3181         DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
3182         return (val & RESET_DONE_FLAG_MASK) ? false : true;
3183 }
3184
3185 /*
3186  * should be run under rtnl lock
3187  */
3188 inline void bnx2x_inc_load_cnt(struct bnx2x *bp)
3189 {
3190         u32 val1, val = REG_RD(bp, BNX2X_MISC_GEN_REG);
3191
3192         DP(NETIF_MSG_HW, "Old GEN_REG_VAL=0x%08x\n", val);
3193
3194         val1 = ((val & LOAD_COUNTER_MASK) + 1) & LOAD_COUNTER_MASK;
3195         REG_WR(bp, BNX2X_MISC_GEN_REG, (val & RESET_DONE_FLAG_MASK) | val1);
3196         barrier();
3197         mmiowb();
3198 }
3199
3200 /*
3201  * should be run under rtnl lock
3202  */
3203 u32 bnx2x_dec_load_cnt(struct bnx2x *bp)
3204 {
3205         u32 val1, val = REG_RD(bp, BNX2X_MISC_GEN_REG);
3206
3207         DP(NETIF_MSG_HW, "Old GEN_REG_VAL=0x%08x\n", val);
3208
3209         val1 = ((val & LOAD_COUNTER_MASK) - 1) & LOAD_COUNTER_MASK;
3210         REG_WR(bp, BNX2X_MISC_GEN_REG, (val & RESET_DONE_FLAG_MASK) | val1);
3211         barrier();
3212         mmiowb();
3213
3214         return val1;
3215 }
3216
3217 /*
3218  * should be run under rtnl lock
3219  */
3220 static inline u32 bnx2x_get_load_cnt(struct bnx2x *bp)
3221 {
3222         return REG_RD(bp, BNX2X_MISC_GEN_REG) & LOAD_COUNTER_MASK;
3223 }
3224
3225 static inline void bnx2x_clear_load_cnt(struct bnx2x *bp)
3226 {
3227         u32 val = REG_RD(bp, BNX2X_MISC_GEN_REG);
3228         REG_WR(bp, BNX2X_MISC_GEN_REG, val & (~LOAD_COUNTER_MASK));
3229 }
3230
3231 static inline void _print_next_block(int idx, const char *blk)
3232 {
3233         if (idx)
3234                 pr_cont(", ");
3235         pr_cont("%s", blk);
3236 }
3237
3238 static inline int bnx2x_print_blocks_with_parity0(u32 sig, int par_num)
3239 {
3240         int i = 0;
3241         u32 cur_bit = 0;
3242         for (i = 0; sig; i++) {
3243                 cur_bit = ((u32)0x1 << i);
3244                 if (sig & cur_bit) {
3245                         switch (cur_bit) {
3246                         case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
3247                                 _print_next_block(par_num++, "BRB");
3248                                 break;
3249                         case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
3250                                 _print_next_block(par_num++, "PARSER");
3251                                 break;
3252                         case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
3253                                 _print_next_block(par_num++, "TSDM");
3254                                 break;
3255                         case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
3256                                 _print_next_block(par_num++, "SEARCHER");
3257                                 break;
3258                         case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
3259                                 _print_next_block(par_num++, "TSEMI");
3260                                 break;
3261                         }
3262
3263                         /* Clear the bit */
3264                         sig &= ~cur_bit;
3265                 }
3266         }
3267
3268         return par_num;
3269 }
3270
3271 static inline int bnx2x_print_blocks_with_parity1(u32 sig, int par_num)
3272 {
3273         int i = 0;
3274         u32 cur_bit = 0;
3275         for (i = 0; sig; i++) {
3276                 cur_bit = ((u32)0x1 << i);
3277                 if (sig & cur_bit) {
3278                         switch (cur_bit) {
3279                         case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
3280                                 _print_next_block(par_num++, "PBCLIENT");
3281                                 break;
3282                         case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
3283                                 _print_next_block(par_num++, "QM");
3284                                 break;
3285                         case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
3286                                 _print_next_block(par_num++, "XSDM");
3287                                 break;
3288                         case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
3289                                 _print_next_block(par_num++, "XSEMI");
3290                                 break;
3291                         case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
3292                                 _print_next_block(par_num++, "DOORBELLQ");
3293                                 break;
3294                         case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
3295                                 _print_next_block(par_num++, "VAUX PCI CORE");
3296                                 break;
3297                         case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
3298                                 _print_next_block(par_num++, "DEBUG");
3299                                 break;
3300                         case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
3301                                 _print_next_block(par_num++, "USDM");
3302                                 break;
3303                         case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
3304                                 _print_next_block(par_num++, "USEMI");
3305                                 break;
3306                         case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
3307                                 _print_next_block(par_num++, "UPB");
3308                                 break;
3309                         case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
3310                                 _print_next_block(par_num++, "CSDM");
3311                                 break;
3312                         }
3313
3314                         /* Clear the bit */
3315                         sig &= ~cur_bit;
3316                 }
3317         }
3318
3319         return par_num;
3320 }
3321
3322 static inline int bnx2x_print_blocks_with_parity2(u32 sig, int par_num)
3323 {
3324         int i = 0;
3325         u32 cur_bit = 0;
3326         for (i = 0; sig; i++) {
3327                 cur_bit = ((u32)0x1 << i);
3328                 if (sig & cur_bit) {
3329                         switch (cur_bit) {
3330                         case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
3331                                 _print_next_block(par_num++, "CSEMI");
3332                                 break;
3333                         case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
3334                                 _print_next_block(par_num++, "PXP");
3335                                 break;
3336                         case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
3337                                 _print_next_block(par_num++,
3338                                         "PXPPCICLOCKCLIENT");
3339                                 break;
3340                         case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
3341                                 _print_next_block(par_num++, "CFC");
3342                                 break;
3343                         case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
3344                                 _print_next_block(par_num++, "CDU");
3345                                 break;
3346                         case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
3347                                 _print_next_block(par_num++, "IGU");
3348                                 break;
3349                         case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
3350                                 _print_next_block(par_num++, "MISC");
3351                                 break;
3352                         }
3353
3354                         /* Clear the bit */
3355                         sig &= ~cur_bit;
3356                 }
3357         }
3358
3359         return par_num;
3360 }
3361
3362 static inline int bnx2x_print_blocks_with_parity3(u32 sig, int par_num)
3363 {
3364         int i = 0;
3365         u32 cur_bit = 0;
3366         for (i = 0; sig; i++) {
3367                 cur_bit = ((u32)0x1 << i);
3368                 if (sig & cur_bit) {
3369                         switch (cur_bit) {
3370                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
3371                                 _print_next_block(par_num++, "MCP ROM");
3372                                 break;
3373                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
3374                                 _print_next_block(par_num++, "MCP UMP RX");
3375                                 break;
3376                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
3377                                 _print_next_block(par_num++, "MCP UMP TX");
3378                                 break;
3379                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
3380                                 _print_next_block(par_num++, "MCP SCPAD");
3381                                 break;
3382                         }
3383
3384                         /* Clear the bit */
3385                         sig &= ~cur_bit;
3386                 }
3387         }
3388
3389         return par_num;
3390 }
3391
3392 static inline bool bnx2x_parity_attn(struct bnx2x *bp, u32 sig0, u32 sig1,
3393                                      u32 sig2, u32 sig3)
3394 {
3395         if ((sig0 & HW_PRTY_ASSERT_SET_0) || (sig1 & HW_PRTY_ASSERT_SET_1) ||
3396             (sig2 & HW_PRTY_ASSERT_SET_2) || (sig3 & HW_PRTY_ASSERT_SET_3)) {
3397                 int par_num = 0;
3398                 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention: "
3399                         "[0]:0x%08x [1]:0x%08x "
3400                         "[2]:0x%08x [3]:0x%08x\n",
3401                           sig0 & HW_PRTY_ASSERT_SET_0,
3402                           sig1 & HW_PRTY_ASSERT_SET_1,
3403                           sig2 & HW_PRTY_ASSERT_SET_2,
3404                           sig3 & HW_PRTY_ASSERT_SET_3);
3405                 printk(KERN_ERR"%s: Parity errors detected in blocks: ",
3406                        bp->dev->name);
3407                 par_num = bnx2x_print_blocks_with_parity0(
3408                         sig0 & HW_PRTY_ASSERT_SET_0, par_num);
3409                 par_num = bnx2x_print_blocks_with_parity1(
3410                         sig1 & HW_PRTY_ASSERT_SET_1, par_num);
3411                 par_num = bnx2x_print_blocks_with_parity2(
3412                         sig2 & HW_PRTY_ASSERT_SET_2, par_num);
3413                 par_num = bnx2x_print_blocks_with_parity3(
3414                         sig3 & HW_PRTY_ASSERT_SET_3, par_num);
3415                 printk("\n");
3416                 return true;
3417         } else
3418                 return false;
3419 }
3420
3421 bool bnx2x_chk_parity_attn(struct bnx2x *bp)
3422 {
3423         struct attn_route attn;
3424         int port = BP_PORT(bp);
3425
3426         attn.sig[0] = REG_RD(bp,
3427                 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
3428                              port*4);
3429         attn.sig[1] = REG_RD(bp,
3430                 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
3431                              port*4);
3432         attn.sig[2] = REG_RD(bp,
3433                 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
3434                              port*4);
3435         attn.sig[3] = REG_RD(bp,
3436                 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
3437                              port*4);
3438
3439         return bnx2x_parity_attn(bp, attn.sig[0], attn.sig[1], attn.sig[2],
3440                                         attn.sig[3]);
3441 }
3442
3443
3444 static inline void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
3445 {
3446         u32 val;
3447         if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
3448
3449                 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
3450                 BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
3451                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
3452                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
3453                                   "ADDRESS_ERROR\n");
3454                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
3455                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
3456                                   "INCORRECT_RCV_BEHAVIOR\n");
3457                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
3458                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
3459                                   "WAS_ERROR_ATTN\n");
3460                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
3461                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
3462                                   "VF_LENGTH_VIOLATION_ATTN\n");
3463                 if (val &
3464                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
3465                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
3466                                   "VF_GRC_SPACE_VIOLATION_ATTN\n");
3467                 if (val &
3468                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
3469                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
3470                                   "VF_MSIX_BAR_VIOLATION_ATTN\n");
3471                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
3472                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
3473                                   "TCPL_ERROR_ATTN\n");
3474                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
3475                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
3476                                   "TCPL_IN_TWO_RCBS_ATTN\n");
3477                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
3478                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
3479                                   "CSSNOOP_FIFO_OVERFLOW\n");
3480         }
3481         if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
3482                 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
3483                 BNX2X_ERR("ATC hw attention 0x%x\n", val);
3484                 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
3485                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
3486                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
3487                         BNX2X_ERR("ATC_ATC_INT_STS_REG"
3488                                   "_ATC_TCPL_TO_NOT_PEND\n");
3489                 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
3490                         BNX2X_ERR("ATC_ATC_INT_STS_REG_"
3491                                   "ATC_GPA_MULTIPLE_HITS\n");
3492                 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
3493                         BNX2X_ERR("ATC_ATC_INT_STS_REG_"
3494                                   "ATC_RCPL_TO_EMPTY_CNT\n");
3495                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
3496                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
3497                 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
3498                         BNX2X_ERR("ATC_ATC_INT_STS_REG_"
3499                                   "ATC_IREQ_LESS_THAN_STU\n");
3500         }
3501
3502         if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
3503                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
3504                 BNX2X_ERR("FATAL parity attention set4 0x%x\n",
3505                 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
3506                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
3507         }
3508
3509 }
3510
3511 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
3512 {
3513         struct attn_route attn, *group_mask;
3514         int port = BP_PORT(bp);
3515         int index;
3516         u32 reg_addr;
3517         u32 val;
3518         u32 aeu_mask;
3519
3520         /* need to take HW lock because MCP or other port might also
3521            try to handle this event */
3522         bnx2x_acquire_alr(bp);
3523
3524         if (CHIP_PARITY_ENABLED(bp) && bnx2x_chk_parity_attn(bp)) {
3525                 bp->recovery_state = BNX2X_RECOVERY_INIT;
3526                 bnx2x_set_reset_in_progress(bp);
3527                 schedule_delayed_work(&bp->reset_task, 0);
3528                 /* Disable HW interrupts */
3529                 bnx2x_int_disable(bp);
3530                 bnx2x_release_alr(bp);
3531                 /* In case of parity errors don't handle attentions so that
3532                  * other function would "see" parity errors.
3533                  */
3534                 return;
3535         }
3536
3537         attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
3538         attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
3539         attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
3540         attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
3541         if (CHIP_IS_E2(bp))
3542                 attn.sig[4] =
3543                       REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
3544         else
3545                 attn.sig[4] = 0;
3546
3547         DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
3548            attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
3549
3550         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
3551                 if (deasserted & (1 << index)) {
3552                         group_mask = &bp->attn_group[index];
3553
3554                         DP(NETIF_MSG_HW, "group[%d]: %08x %08x "
3555                                          "%08x %08x %08x\n",
3556                            index,
3557                            group_mask->sig[0], group_mask->sig[1],
3558                            group_mask->sig[2], group_mask->sig[3],
3559                            group_mask->sig[4]);
3560
3561                         bnx2x_attn_int_deasserted4(bp,
3562                                         attn.sig[4] & group_mask->sig[4]);
3563                         bnx2x_attn_int_deasserted3(bp,
3564                                         attn.sig[3] & group_mask->sig[3]);
3565                         bnx2x_attn_int_deasserted1(bp,
3566                                         attn.sig[1] & group_mask->sig[1]);
3567                         bnx2x_attn_int_deasserted2(bp,
3568                                         attn.sig[2] & group_mask->sig[2]);
3569                         bnx2x_attn_int_deasserted0(bp,
3570                                         attn.sig[0] & group_mask->sig[0]);
3571                 }
3572         }
3573
3574         bnx2x_release_alr(bp);
3575
3576         if (bp->common.int_block == INT_BLOCK_HC)
3577                 reg_addr = (HC_REG_COMMAND_REG + port*32 +
3578                             COMMAND_REG_ATTN_BITS_CLR);
3579         else
3580                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
3581
3582         val = ~deasserted;
3583         DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
3584            (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3585         REG_WR(bp, reg_addr, val);
3586
3587         if (~bp->attn_state & deasserted)
3588                 BNX2X_ERR("IGU ERROR\n");
3589
3590         reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3591                           MISC_REG_AEU_MASK_ATTN_FUNC_0;
3592
3593         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3594         aeu_mask = REG_RD(bp, reg_addr);
3595
3596         DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
3597            aeu_mask, deasserted);
3598         aeu_mask |= (deasserted & 0x3ff);
3599         DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3600
3601         REG_WR(bp, reg_addr, aeu_mask);
3602         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3603
3604         DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3605         bp->attn_state &= ~deasserted;
3606         DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3607 }
3608
3609 static void bnx2x_attn_int(struct bnx2x *bp)
3610 {
3611         /* read local copy of bits */
3612         u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
3613                                                                 attn_bits);
3614         u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
3615                                                                 attn_bits_ack);
3616         u32 attn_state = bp->attn_state;
3617
3618         /* look for changed bits */
3619         u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
3620         u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
3621
3622         DP(NETIF_MSG_HW,
3623            "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
3624            attn_bits, attn_ack, asserted, deasserted);
3625
3626         if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
3627                 BNX2X_ERR("BAD attention state\n");
3628
3629         /* handle bits that were raised */
3630         if (asserted)
3631                 bnx2x_attn_int_asserted(bp, asserted);
3632
3633         if (deasserted)
3634                 bnx2x_attn_int_deasserted(bp, deasserted);
3635 }
3636
3637 static inline void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
3638 {
3639         /* No memory barriers */
3640         storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
3641         mmiowb(); /* keep prod updates ordered */
3642 }
3643
3644 #ifdef BCM_CNIC
3645 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
3646                                       union event_ring_elem *elem)
3647 {
3648         if (!bp->cnic_eth_dev.starting_cid  ||
3649             cid < bp->cnic_eth_dev.starting_cid)
3650                 return 1;
3651
3652         DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
3653
3654         if (unlikely(elem->message.data.cfc_del_event.error)) {
3655                 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
3656                           cid);
3657                 bnx2x_panic_dump(bp);
3658         }
3659         bnx2x_cnic_cfc_comp(bp, cid);
3660         return 0;
3661 }
3662 #endif
3663
3664 static void bnx2x_eq_int(struct bnx2x *bp)
3665 {
3666         u16 hw_cons, sw_cons, sw_prod;
3667         union event_ring_elem *elem;
3668         u32 cid;
3669         u8 opcode;
3670         int spqe_cnt = 0;
3671
3672         hw_cons = le16_to_cpu(*bp->eq_cons_sb);
3673
3674         /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
3675          * when we get the the next-page we nned to adjust so the loop
3676          * condition below will be met. The next element is the size of a
3677          * regular element and hence incrementing by 1
3678          */
3679         if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
3680                 hw_cons++;
3681
3682         /* This function may never run in parralel with itself for a
3683          * specific bp, thus there is no need in "paired" read memory
3684          * barrier here.
3685          */
3686         sw_cons = bp->eq_cons;
3687         sw_prod = bp->eq_prod;
3688
3689         DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->spq_left %u\n",
3690                         hw_cons, sw_cons, atomic_read(&bp->spq_left));
3691
3692         for (; sw_cons != hw_cons;
3693               sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
3694
3695
3696                 elem = &bp->eq_ring[EQ_DESC(sw_cons)];
3697
3698                 cid = SW_CID(elem->message.data.cfc_del_event.cid);
3699                 opcode = elem->message.opcode;
3700
3701
3702                 /* handle eq element */
3703                 switch (opcode) {
3704                 case EVENT_RING_OPCODE_STAT_QUERY:
3705                         DP(NETIF_MSG_TIMER, "got statistics comp event\n");
3706                         /* nothing to do with stats comp */
3707                         continue;
3708
3709                 case EVENT_RING_OPCODE_CFC_DEL:
3710                         /* handle according to cid range */
3711                         /*
3712                          * we may want to verify here that the bp state is
3713                          * HALTING
3714                          */
3715                         DP(NETIF_MSG_IFDOWN,
3716                            "got delete ramrod for MULTI[%d]\n", cid);
3717 #ifdef BCM_CNIC
3718                         if (!bnx2x_cnic_handle_cfc_del(bp, cid, elem))
3719                                 goto next_spqe;
3720                         if (cid == BNX2X_FCOE_ETH_CID)
3721                                 bnx2x_fcoe(bp, state) = BNX2X_FP_STATE_CLOSED;
3722                         else
3723 #endif
3724                                 bnx2x_fp(bp, cid, state) =
3725                                                 BNX2X_FP_STATE_CLOSED;
3726
3727                         goto next_spqe;
3728
3729                 case EVENT_RING_OPCODE_STOP_TRAFFIC:
3730                         DP(NETIF_MSG_IFUP, "got STOP TRAFFIC\n");
3731                         bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
3732                         goto next_spqe;
3733                 case EVENT_RING_OPCODE_START_TRAFFIC:
3734                         DP(NETIF_MSG_IFUP, "got START TRAFFIC\n");
3735                         bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
3736                         goto next_spqe;
3737                 }
3738
3739                 switch (opcode | bp->state) {
3740                 case (EVENT_RING_OPCODE_FUNCTION_START |
3741                       BNX2X_STATE_OPENING_WAIT4_PORT):
3742                         DP(NETIF_MSG_IFUP, "got setup ramrod\n");
3743                         bp->state = BNX2X_STATE_FUNC_STARTED;
3744                         break;
3745
3746                 case (EVENT_RING_OPCODE_FUNCTION_STOP |
3747                       BNX2X_STATE_CLOSING_WAIT4_HALT):
3748                         DP(NETIF_MSG_IFDOWN, "got halt ramrod\n");
3749                         bp->state = BNX2X_STATE_CLOSING_WAIT4_UNLOAD;
3750                         break;
3751
3752                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
3753                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
3754                         DP(NETIF_MSG_IFUP, "got set mac ramrod\n");
3755                         bp->set_mac_pending = 0;
3756                         break;
3757
3758                 case (EVENT_RING_OPCODE_SET_MAC |
3759                       BNX2X_STATE_CLOSING_WAIT4_HALT):
3760                         DP(NETIF_MSG_IFDOWN, "got (un)set mac ramrod\n");
3761                         bp->set_mac_pending = 0;
3762                         break;
3763                 default:
3764                         /* unknown event log error and continue */
3765                         BNX2X_ERR("Unknown EQ event %d\n",
3766                                   elem->message.opcode);
3767                 }
3768 next_spqe:
3769                 spqe_cnt++;
3770         } /* for */
3771
3772         smp_mb__before_atomic_inc();
3773         atomic_add(spqe_cnt, &bp->spq_left);
3774
3775         bp->eq_cons = sw_cons;
3776         bp->eq_prod = sw_prod;
3777         /* Make sure that above mem writes were issued towards the memory */
3778         smp_wmb();
3779
3780         /* update producer */
3781         bnx2x_update_eq_prod(bp, bp->eq_prod);
3782 }
3783
3784 static void bnx2x_sp_task(struct work_struct *work)
3785 {
3786         struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
3787         u16 status;
3788
3789         /* Return here if interrupt is disabled */
3790         if (unlikely(atomic_read(&bp->intr_sem) != 0)) {
3791                 DP(NETIF_MSG_INTR, "called but intr_sem not 0, returning\n");
3792                 return;
3793         }
3794
3795         status = bnx2x_update_dsb_idx(bp);
3796 /*      if (status == 0)                                     */
3797 /*              BNX2X_ERR("spurious slowpath interrupt!\n"); */
3798
3799         DP(NETIF_MSG_INTR, "got a slowpath interrupt (status 0x%x)\n", status);
3800
3801         /* HW attentions */
3802         if (status & BNX2X_DEF_SB_ATT_IDX) {
3803                 bnx2x_attn_int(bp);
3804                 status &= ~BNX2X_DEF_SB_ATT_IDX;
3805         }
3806
3807         /* SP events: STAT_QUERY and others */
3808         if (status & BNX2X_DEF_SB_IDX) {
3809 #ifdef BCM_CNIC
3810                 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
3811
3812                 if ((!NO_FCOE(bp)) &&
3813                         (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp)))
3814                         napi_schedule(&bnx2x_fcoe(bp, napi));
3815 #endif
3816                 /* Handle EQ completions */
3817                 bnx2x_eq_int(bp);
3818
3819                 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
3820                         le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
3821
3822                 status &= ~BNX2X_DEF_SB_IDX;
3823         }
3824
3825         if (unlikely(status))
3826                 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
3827                    status);
3828
3829         bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
3830              le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
3831 }
3832
3833 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
3834 {
3835         struct net_device *dev = dev_instance;
3836         struct bnx2x *bp = netdev_priv(dev);
3837
3838         /* Return here if interrupt is disabled */
3839         if (unlikely(atomic_read(&bp->intr_sem) != 0)) {
3840                 DP(NETIF_MSG_INTR, "called but intr_sem not 0, returning\n");
3841                 return IRQ_HANDLED;
3842         }
3843
3844         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
3845                      IGU_INT_DISABLE, 0);
3846
3847 #ifdef BNX2X_STOP_ON_ERROR
3848         if (unlikely(bp->panic))
3849                 return IRQ_HANDLED;
3850 #endif
3851
3852 #ifdef BCM_CNIC
3853         {
3854                 struct cnic_ops *c_ops;
3855
3856                 rcu_read_lock();
3857                 c_ops = rcu_dereference(bp->cnic_ops);
3858                 if (c_ops)
3859                         c_ops->cnic_handler(bp->cnic_data, NULL);
3860                 rcu_read_unlock();
3861         }
3862 #endif
3863         queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
3864
3865         return IRQ_HANDLED;
3866 }
3867
3868 /* end of slow path */
3869
3870 static void bnx2x_timer(unsigned long data)
3871 {
3872         struct bnx2x *bp = (struct bnx2x *) data;
3873
3874         if (!netif_running(bp->dev))
3875                 return;
3876
3877         if (atomic_read(&bp->intr_sem) != 0)
3878                 goto timer_restart;
3879
3880         if (poll) {
3881                 struct bnx2x_fastpath *fp = &bp->fp[0];
3882                 int rc;
3883
3884                 bnx2x_tx_int(fp);
3885                 rc = bnx2x_rx_int(fp, 1000);
3886         }
3887
3888         if (!BP_NOMCP(bp)) {
3889                 int mb_idx = BP_FW_MB_IDX(bp);
3890                 u32 drv_pulse;
3891                 u32 mcp_pulse;
3892
3893                 ++bp->fw_drv_pulse_wr_seq;
3894                 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
3895                 /* TBD - add SYSTEM_TIME */
3896                 drv_pulse = bp->fw_drv_pulse_wr_seq;
3897                 SHMEM_WR(bp, func_mb[mb_idx].drv_pulse_mb, drv_pulse);
3898
3899                 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
3900                              MCP_PULSE_SEQ_MASK);
3901                 /* The delta between driver pulse and mcp response
3902                  * should be 1 (before mcp response) or 0 (after mcp response)
3903                  */
3904                 if ((drv_pulse != mcp_pulse) &&
3905                     (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
3906                         /* someone lost a heartbeat... */
3907                         BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
3908                                   drv_pulse, mcp_pulse);
3909                 }
3910         }
3911
3912         if (bp->state == BNX2X_STATE_OPEN)
3913                 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
3914
3915 timer_restart:
3916         mod_timer(&bp->timer, jiffies + bp->current_interval);
3917 }
3918
3919 /* end of Statistics */
3920
3921 /* nic init */
3922
3923 /*
3924  * nic init service functions
3925  */
3926
3927 static inline void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
3928 {
3929         u32 i;
3930         if (!(len%4) && !(addr%4))
3931                 for (i = 0; i < len; i += 4)
3932                         REG_WR(bp, addr + i, fill);
3933         else
3934                 for (i = 0; i < len; i++)
3935                         REG_WR8(bp, addr + i, fill);
3936
3937 }
3938
3939 /* helper: writes FP SP data to FW - data_size in dwords */
3940 static inline void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
3941                                        int fw_sb_id,
3942                                        u32 *sb_data_p,
3943                                        u32 data_size)
3944 {
3945         int index;
3946         for (index = 0; index < data_size; index++)
3947                 REG_WR(bp, BAR_CSTRORM_INTMEM +
3948                         CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
3949                         sizeof(u32)*index,
3950                         *(sb_data_p + index));
3951 }
3952
3953 static inline void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
3954 {
3955         u32 *sb_data_p;
3956         u32 data_size = 0;
3957         struct hc_status_block_data_e2 sb_data_e2;
3958         struct hc_status_block_data_e1x sb_data_e1x;
3959
3960         /* disable the function first */
3961         if (CHIP_IS_E2(bp)) {
3962                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
3963                 sb_data_e2.common.p_func.pf_id = HC_FUNCTION_DISABLED;
3964                 sb_data_e2.common.p_func.vf_id = HC_FUNCTION_DISABLED;
3965                 sb_data_e2.common.p_func.vf_valid = false;
3966                 sb_data_p = (u32 *)&sb_data_e2;
3967                 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
3968         } else {
3969                 memset(&sb_data_e1x, 0,
3970                        sizeof(struct hc_status_block_data_e1x));
3971                 sb_data_e1x.common.p_func.pf_id = HC_FUNCTION_DISABLED;
3972                 sb_data_e1x.common.p_func.vf_id = HC_FUNCTION_DISABLED;
3973                 sb_data_e1x.common.p_func.vf_valid = false;
3974                 sb_data_p = (u32 *)&sb_data_e1x;
3975                 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
3976         }
3977         bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
3978
3979         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
3980                         CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
3981                         CSTORM_STATUS_BLOCK_SIZE);
3982         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
3983                         CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
3984                         CSTORM_SYNC_BLOCK_SIZE);
3985 }
3986
3987 /* helper:  writes SP SB data to FW */
3988 static inline void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
3989                 struct hc_sp_status_block_data *sp_sb_data)
3990 {
3991         int func = BP_FUNC(bp);
3992         int i;
3993         for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
3994                 REG_WR(bp, BAR_CSTRORM_INTMEM +
3995                         CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
3996                         i*sizeof(u32),
3997                         *((u32 *)sp_sb_data + i));
3998 }
3999
4000 static inline void bnx2x_zero_sp_sb(struct bnx2x *bp)
4001 {
4002         int func = BP_FUNC(bp);
4003         struct hc_sp_status_block_data sp_sb_data;
4004         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
4005
4006         sp_sb_data.p_func.pf_id = HC_FUNCTION_DISABLED;
4007         sp_sb_data.p_func.vf_id = HC_FUNCTION_DISABLED;
4008         sp_sb_data.p_func.vf_valid = false;
4009
4010         bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
4011
4012         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4013                         CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
4014                         CSTORM_SP_STATUS_BLOCK_SIZE);
4015         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4016                         CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
4017                         CSTORM_SP_SYNC_BLOCK_SIZE);
4018
4019 }
4020
4021
4022 static inline
4023 void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
4024                                            int igu_sb_id, int igu_seg_id)
4025 {
4026         hc_sm->igu_sb_id = igu_sb_id;
4027         hc_sm->igu_seg_id = igu_seg_id;
4028         hc_sm->timer_value = 0xFF;
4029         hc_sm->time_to_expire = 0xFFFFFFFF;
4030 }
4031
4032 static void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
4033                           u8 vf_valid, int fw_sb_id, int igu_sb_id)
4034 {
4035         int igu_seg_id;
4036
4037         struct hc_status_block_data_e2 sb_data_e2;
4038         struct hc_status_block_data_e1x sb_data_e1x;
4039         struct hc_status_block_sm  *hc_sm_p;
4040         struct hc_index_data *hc_index_p;
4041         int data_size;
4042         u32 *sb_data_p;
4043
4044         if (CHIP_INT_MODE_IS_BC(bp))
4045                 igu_seg_id = HC_SEG_ACCESS_NORM;
4046         else
4047                 igu_seg_id = IGU_SEG_ACCESS_NORM;
4048
4049         bnx2x_zero_fp_sb(bp, fw_sb_id);
4050
4051         if (CHIP_IS_E2(bp)) {
4052                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
4053                 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
4054                 sb_data_e2.common.p_func.vf_id = vfid;
4055                 sb_data_e2.common.p_func.vf_valid = vf_valid;
4056                 sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
4057                 sb_data_e2.common.same_igu_sb_1b = true;
4058                 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
4059                 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
4060                 hc_sm_p = sb_data_e2.common.state_machine;
4061                 hc_index_p = sb_data_e2.index_data;
4062                 sb_data_p = (u32 *)&sb_data_e2;
4063                 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
4064         } else {
4065                 memset(&sb_data_e1x, 0,
4066                        sizeof(struct hc_status_block_data_e1x));
4067                 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
4068                 sb_data_e1x.common.p_func.vf_id = 0xff;
4069                 sb_data_e1x.common.p_func.vf_valid = false;
4070                 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
4071                 sb_data_e1x.common.same_igu_sb_1b = true;
4072                 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
4073                 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
4074                 hc_sm_p = sb_data_e1x.common.state_machine;
4075                 hc_index_p = sb_data_e1x.index_data;
4076                 sb_data_p = (u32 *)&sb_data_e1x;
4077                 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
4078         }
4079
4080         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
4081                                        igu_sb_id, igu_seg_id);
4082         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
4083                                        igu_sb_id, igu_seg_id);
4084
4085         DP(NETIF_MSG_HW, "Init FW SB %d\n", fw_sb_id);
4086
4087         /* write indecies to HW */
4088         bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
4089 }
4090
4091 static void bnx2x_update_coalesce_sb_index(struct bnx2x *bp, u16 fw_sb_id,
4092                                         u8 sb_index, u8 disable, u16 usec)
4093 {
4094         int port = BP_PORT(bp);
4095         u8 ticks = usec / BNX2X_BTR;
4096
4097         storm_memset_hc_timeout(bp, port, fw_sb_id, sb_index, ticks);
4098
4099         disable = disable ? 1 : (usec ? 0 : 1);
4100         storm_memset_hc_disable(bp, port, fw_sb_id, sb_index, disable);
4101 }
4102
4103 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u16 fw_sb_id,
4104                                      u16 tx_usec, u16 rx_usec)
4105 {
4106         bnx2x_update_coalesce_sb_index(bp, fw_sb_id, U_SB_ETH_RX_CQ_INDEX,
4107                                     false, rx_usec);
4108         bnx2x_update_coalesce_sb_index(bp, fw_sb_id, C_SB_ETH_TX_CQ_INDEX,
4109                                     false, tx_usec);
4110 }
4111
4112 static void bnx2x_init_def_sb(struct bnx2x *bp)
4113 {
4114         struct host_sp_status_block *def_sb = bp->def_status_blk;
4115         dma_addr_t mapping = bp->def_status_blk_mapping;
4116         int igu_sp_sb_index;
4117         int igu_seg_id;
4118         int port = BP_PORT(bp);
4119         int func = BP_FUNC(bp);
4120         int reg_offset;
4121         u64 section;
4122         int index;
4123         struct hc_sp_status_block_data sp_sb_data;
4124         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
4125
4126         if (CHIP_INT_MODE_IS_BC(bp)) {
4127                 igu_sp_sb_index = DEF_SB_IGU_ID;
4128                 igu_seg_id = HC_SEG_ACCESS_DEF;
4129         } else {
4130                 igu_sp_sb_index = bp->igu_dsb_id;
4131                 igu_seg_id = IGU_SEG_ACCESS_DEF;
4132         }
4133
4134         /* ATTN */
4135         section = ((u64)mapping) + offsetof(struct host_sp_status_block,
4136                                             atten_status_block);
4137         def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
4138
4139         bp->attn_state = 0;
4140
4141         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4142                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4143         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4144                 int sindex;
4145                 /* take care of sig[0]..sig[4] */
4146                 for (sindex = 0; sindex < 4; sindex++)
4147                         bp->attn_group[index].sig[sindex] =
4148                            REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
4149
4150                 if (CHIP_IS_E2(bp))
4151                         /*
4152                          * enable5 is separate from the rest of the registers,
4153                          * and therefore the address skip is 4
4154                          * and not 16 between the different groups
4155                          */
4156                         bp->attn_group[index].sig[4] = REG_RD(bp,
4157                                         reg_offset + 0x10 + 0x4*index);
4158                 else
4159                         bp->attn_group[index].sig[4] = 0;
4160         }
4161
4162         if (bp->common.int_block == INT_BLOCK_HC) {
4163                 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
4164                                      HC_REG_ATTN_MSG0_ADDR_L);
4165
4166                 REG_WR(bp, reg_offset, U64_LO(section));
4167                 REG_WR(bp, reg_offset + 4, U64_HI(section));
4168         } else if (CHIP_IS_E2(bp)) {
4169                 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
4170                 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
4171         }
4172
4173         section = ((u64)mapping) + offsetof(struct host_sp_status_block,
4174                                             sp_sb);
4175
4176         bnx2x_zero_sp_sb(bp);
4177
4178         sp_sb_data.host_sb_addr.lo      = U64_LO(section);
4179         sp_sb_data.host_sb_addr.hi      = U64_HI(section);
4180         sp_sb_data.igu_sb_id            = igu_sp_sb_index;
4181         sp_sb_data.igu_seg_id           = igu_seg_id;
4182         sp_sb_data.p_func.pf_id         = func;
4183         sp_sb_data.p_func.vnic_id       = BP_VN(bp);
4184         sp_sb_data.p_func.vf_id         = 0xff;
4185
4186         bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
4187
4188         bp->stats_pending = 0;
4189         bp->set_mac_pending = 0;
4190
4191         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
4192 }
4193
4194 void bnx2x_update_coalesce(struct bnx2x *bp)
4195 {
4196         int i;
4197
4198         for_each_eth_queue(bp, i)
4199                 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
4200                                          bp->rx_ticks, bp->tx_ticks);
4201 }
4202
4203 static void bnx2x_init_sp_ring(struct bnx2x *bp)
4204 {
4205         spin_lock_init(&bp->spq_lock);
4206         atomic_set(&bp->spq_left, MAX_SPQ_PENDING);
4207
4208         bp->spq_prod_idx = 0;
4209         bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
4210         bp->spq_prod_bd = bp->spq;
4211         bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
4212 }
4213
4214 static void bnx2x_init_eq_ring(struct bnx2x *bp)
4215 {
4216         int i;
4217         for (i = 1; i <= NUM_EQ_PAGES; i++) {
4218                 union event_ring_elem *elem =
4219                         &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
4220
4221                 elem->next_page.addr.hi =
4222                         cpu_to_le32(U64_HI(bp->eq_mapping +
4223                                    BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
4224                 elem->next_page.addr.lo =
4225                         cpu_to_le32(U64_LO(bp->eq_mapping +
4226                                    BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
4227         }
4228         bp->eq_cons = 0;
4229         bp->eq_prod = NUM_EQ_DESC;
4230         bp->eq_cons_sb = BNX2X_EQ_INDEX;
4231 }
4232
4233 static void bnx2x_init_ind_table(struct bnx2x *bp)
4234 {
4235         int func = BP_FUNC(bp);
4236         int i;
4237
4238         if (bp->multi_mode == ETH_RSS_MODE_DISABLED)
4239                 return;
4240
4241         DP(NETIF_MSG_IFUP,
4242            "Initializing indirection table  multi_mode %d\n", bp->multi_mode);
4243         for (i = 0; i < TSTORM_INDIRECTION_TABLE_SIZE; i++)
4244                 REG_WR8(bp, BAR_TSTRORM_INTMEM +
4245                         TSTORM_INDIRECTION_TABLE_OFFSET(func) + i,
4246                         bp->fp->cl_id + (i % (bp->num_queues -
4247                                 NONE_ETH_CONTEXT_USE)));
4248 }
4249
4250 void bnx2x_set_storm_rx_mode(struct bnx2x *bp)
4251 {
4252         int mode = bp->rx_mode;
4253         int port = BP_PORT(bp);
4254         u16 cl_id;
4255         u32 def_q_filters = 0;
4256
4257         /* All but management unicast packets should pass to the host as well */
4258         u32 llh_mask =
4259                 NIG_LLH0_BRB1_DRV_MASK_REG_LLH0_BRB1_DRV_MASK_BRCST |
4260                 NIG_LLH0_BRB1_DRV_MASK_REG_LLH0_BRB1_DRV_MASK_MLCST |
4261                 NIG_LLH0_BRB1_DRV_MASK_REG_LLH0_BRB1_DRV_MASK_VLAN |
4262                 NIG_LLH0_BRB1_DRV_MASK_REG_LLH0_BRB1_DRV_MASK_NO_VLAN;
4263
4264         switch (mode) {
4265         case BNX2X_RX_MODE_NONE: /* no Rx */
4266                 def_q_filters = BNX2X_ACCEPT_NONE;
4267 #ifdef BCM_CNIC
4268                 if (!NO_FCOE(bp)) {
4269                         cl_id = bnx2x_fcoe(bp, cl_id);
4270                         bnx2x_rxq_set_mac_filters(bp, cl_id, BNX2X_ACCEPT_NONE);
4271                 }
4272 #endif
4273                 break;
4274
4275         case BNX2X_RX_MODE_NORMAL:
4276                 def_q_filters |= BNX2X_ACCEPT_UNICAST | BNX2X_ACCEPT_BROADCAST |
4277                                 BNX2X_ACCEPT_MULTICAST;
4278 #ifdef BCM_CNIC
4279                 cl_id = bnx2x_fcoe(bp, cl_id);
4280                 bnx2x_rxq_set_mac_filters(bp, cl_id, BNX2X_ACCEPT_UNICAST |
4281                                           BNX2X_ACCEPT_MULTICAST);
4282 #endif
4283                 break;
4284
4285         case BNX2X_RX_MODE_ALLMULTI:
4286                 def_q_filters |= BNX2X_ACCEPT_UNICAST | BNX2X_ACCEPT_BROADCAST |
4287                                 BNX2X_ACCEPT_ALL_MULTICAST;
4288 #ifdef BCM_CNIC
4289                 cl_id = bnx2x_fcoe(bp, cl_id);
4290                 bnx2x_rxq_set_mac_filters(bp, cl_id, BNX2X_ACCEPT_UNICAST |
4291                                           BNX2X_ACCEPT_MULTICAST);
4292 #endif
4293                 break;
4294
4295         case BNX2X_RX_MODE_PROMISC:
4296                 def_q_filters |= BNX2X_PROMISCUOUS_MODE;
4297 #ifdef BCM_CNIC
4298                 cl_id = bnx2x_fcoe(bp, cl_id);
4299                 bnx2x_rxq_set_mac_filters(bp, cl_id, BNX2X_ACCEPT_UNICAST |
4300                                           BNX2X_ACCEPT_MULTICAST);
4301 #endif
4302                 /* pass management unicast packets as well */
4303                 llh_mask |= NIG_LLH0_BRB1_DRV_MASK_REG_LLH0_BRB1_DRV_MASK_UNCST;
4304                 break;
4305
4306         default:
4307                 BNX2X_ERR("BAD rx mode (%d)\n", mode);
4308                 break;
4309         }
4310
4311         cl_id = BP_L_ID(bp);
4312         bnx2x_rxq_set_mac_filters(bp, cl_id, def_q_filters);
4313
4314         REG_WR(bp,
4315                (port ? NIG_REG_LLH1_BRB1_DRV_MASK :
4316                        NIG_REG_LLH0_BRB1_DRV_MASK), llh_mask);
4317
4318         DP(NETIF_MSG_IFUP, "rx mode %d\n"
4319                 "drop_ucast 0x%x\ndrop_mcast 0x%x\ndrop_bcast 0x%x\n"
4320                 "accp_ucast 0x%x\naccp_mcast 0x%x\naccp_bcast 0x%x\n"
4321                 "unmatched_ucast 0x%x\n", mode,
4322                 bp->mac_filters.ucast_drop_all,
4323                 bp->mac_filters.mcast_drop_all,
4324                 bp->mac_filters.bcast_drop_all,
4325                 bp->mac_filters.ucast_accept_all,
4326                 bp->mac_filters.mcast_accept_all,
4327                 bp->mac_filters.bcast_accept_all,
4328                 bp->mac_filters.unmatched_unicast
4329         );
4330
4331         storm_memset_mac_filters(bp, &bp->mac_filters, BP_FUNC(bp));
4332 }
4333
4334 static void bnx2x_init_internal_common(struct bnx2x *bp)
4335 {
4336         int i;
4337
4338         if (!CHIP_IS_E1(bp)) {
4339
4340                 /* xstorm needs to know whether to add  ovlan to packets or not,
4341                  * in switch-independent we'll write 0 to here... */
4342                 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNCTION_MODE_OFFSET,
4343                         bp->mf_mode);
4344                 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNCTION_MODE_OFFSET,
4345                         bp->mf_mode);
4346                 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNCTION_MODE_OFFSET,
4347                         bp->mf_mode);
4348                 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNCTION_MODE_OFFSET,
4349                         bp->mf_mode);
4350         }
4351
4352         if (IS_MF_SI(bp))
4353                 /*
4354                  * In switch independent mode, the TSTORM needs to accept
4355                  * packets that failed classification, since approximate match
4356                  * mac addresses aren't written to NIG LLH
4357                  */
4358                 REG_WR8(bp, BAR_TSTRORM_INTMEM +
4359                             TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
4360
4361         /* Zero this manually as its initialization is
4362            currently missing in the initTool */
4363         for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
4364                 REG_WR(bp, BAR_USTRORM_INTMEM +
4365                        USTORM_AGG_DATA_OFFSET + i * 4, 0);
4366         if (CHIP_IS_E2(bp)) {
4367                 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
4368                         CHIP_INT_MODE_IS_BC(bp) ?
4369                         HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
4370         }
4371 }
4372
4373 static void bnx2x_init_internal_port(struct bnx2x *bp)
4374 {
4375         /* port */
4376         bnx2x_dcb_init_intmem_pfc(bp);
4377 }
4378
4379 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
4380 {
4381         switch (load_code) {
4382         case FW_MSG_CODE_DRV_LOAD_COMMON:
4383         case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
4384                 bnx2x_init_internal_common(bp);
4385                 /* no break */
4386
4387         case FW_MSG_CODE_DRV_LOAD_PORT:
4388                 bnx2x_init_internal_port(bp);
4389                 /* no break */
4390
4391         case FW_MSG_CODE_DRV_LOAD_FUNCTION:
4392                 /* internal memory per function is
4393                    initialized inside bnx2x_pf_init */
4394                 break;
4395
4396         default:
4397                 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
4398                 break;
4399         }
4400 }
4401
4402 static void bnx2x_init_fp_sb(struct bnx2x *bp, int fp_idx)
4403 {
4404         struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
4405
4406         fp->state = BNX2X_FP_STATE_CLOSED;
4407
4408         fp->index = fp->cid = fp_idx;
4409         fp->cl_id = BP_L_ID(bp) + fp_idx;
4410         fp->fw_sb_id = bp->base_fw_ndsb + fp->cl_id + CNIC_CONTEXT_USE;
4411         fp->igu_sb_id = bp->igu_base_sb + fp_idx + CNIC_CONTEXT_USE;
4412         /* qZone id equals to FW (per path) client id */
4413         fp->cl_qzone_id  = fp->cl_id +
4414                            BP_PORT(bp)*(CHIP_IS_E2(bp) ? ETH_MAX_RX_CLIENTS_E2 :
4415                                 ETH_MAX_RX_CLIENTS_E1H);
4416         /* init shortcut */
4417         fp->ustorm_rx_prods_offset = CHIP_IS_E2(bp) ?
4418                             USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id) :
4419                             USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
4420         /* Setup SB indicies */
4421         fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
4422         fp->tx_cons_sb = BNX2X_TX_SB_INDEX;
4423
4424         DP(NETIF_MSG_IFUP, "queue[%d]:  bnx2x_init_sb(%p,%p)  "
4425                                    "cl_id %d  fw_sb %d  igu_sb %d\n",
4426                    fp_idx, bp, fp->status_blk.e1x_sb, fp->cl_id, fp->fw_sb_id,
4427                    fp->igu_sb_id);
4428         bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
4429                       fp->fw_sb_id, fp->igu_sb_id);
4430
4431         bnx2x_update_fpsb_idx(fp);
4432 }
4433
4434 void bnx2x_nic_init(struct bnx2x *bp, u32 load_code)
4435 {
4436         int i;
4437
4438         for_each_eth_queue(bp, i)
4439                 bnx2x_init_fp_sb(bp, i);
4440 #ifdef BCM_CNIC
4441         if (!NO_FCOE(bp))
4442                 bnx2x_init_fcoe_fp(bp);
4443
4444         bnx2x_init_sb(bp, bp->cnic_sb_mapping,
4445                       BNX2X_VF_ID_INVALID, false,
4446                       CNIC_SB_ID(bp), CNIC_IGU_SB_ID(bp));
4447
4448 #endif
4449
4450         /* ensure status block indices were read */
4451         rmb();
4452
4453         bnx2x_init_def_sb(bp);
4454         bnx2x_update_dsb_idx(bp);
4455         bnx2x_init_rx_rings(bp);
4456         bnx2x_init_tx_rings(bp);
4457         bnx2x_init_sp_ring(bp);
4458         bnx2x_init_eq_ring(bp);
4459         bnx2x_init_internal(bp, load_code);
4460         bnx2x_pf_init(bp);
4461         bnx2x_init_ind_table(bp);
4462         bnx2x_stats_init(bp);
4463
4464         /* At this point, we are ready for interrupts */
4465         atomic_set(&bp->intr_sem, 0);
4466
4467         /* flush all before enabling interrupts */
4468         mb();
4469         mmiowb();
4470
4471         bnx2x_int_enable(bp);
4472
4473         /* Check for SPIO5 */
4474         bnx2x_attn_int_deasserted0(bp,
4475                 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
4476                                    AEU_INPUTS_ATTN_BITS_SPIO5);
4477 }
4478
4479 /* end of nic init */
4480
4481 /*
4482  * gzip service functions
4483  */
4484
4485 static int bnx2x_gunzip_init(struct bnx2x *bp)
4486 {
4487         bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
4488                                             &bp->gunzip_mapping, GFP_KERNEL);
4489         if (bp->gunzip_buf  == NULL)
4490                 goto gunzip_nomem1;
4491
4492         bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
4493         if (bp->strm  == NULL)
4494                 goto gunzip_nomem2;
4495
4496         bp->strm->workspace = kmalloc(zlib_inflate_workspacesize(),
4497                                       GFP_KERNEL);
4498         if (bp->strm->workspace == NULL)
4499                 goto gunzip_nomem3;
4500
4501         return 0;
4502
4503 gunzip_nomem3:
4504         kfree(bp->strm);
4505         bp->strm = NULL;
4506
4507 gunzip_nomem2:
4508         dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
4509                           bp->gunzip_mapping);
4510         bp->gunzip_buf = NULL;
4511
4512 gunzip_nomem1:
4513         netdev_err(bp->dev, "Cannot allocate firmware buffer for"
4514                " un-compression\n");
4515         return -ENOMEM;
4516 }
4517
4518 static void bnx2x_gunzip_end(struct bnx2x *bp)
4519 {
4520         kfree(bp->strm->workspace);
4521         kfree(bp->strm);
4522         bp->strm = NULL;
4523
4524         if (bp->gunzip_buf) {
4525                 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
4526                                   bp->gunzip_mapping);
4527                 bp->gunzip_buf = NULL;
4528         }
4529 }
4530
4531 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
4532 {
4533         int n, rc;
4534
4535         /* check gzip header */
4536         if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
4537                 BNX2X_ERR("Bad gzip header\n");
4538                 return -EINVAL;
4539         }
4540
4541         n = 10;
4542
4543 #define FNAME                           0x8
4544
4545         if (zbuf[3] & FNAME)
4546                 while ((zbuf[n++] != 0) && (n < len));
4547
4548         bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
4549         bp->strm->avail_in = len - n;
4550         bp->strm->next_out = bp->gunzip_buf;
4551         bp->strm->avail_out = FW_BUF_SIZE;
4552
4553         rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
4554         if (rc != Z_OK)
4555                 return rc;
4556
4557         rc = zlib_inflate(bp->strm, Z_FINISH);
4558         if ((rc != Z_OK) && (rc != Z_STREAM_END))
4559                 netdev_err(bp->dev, "Firmware decompression error: %s\n",
4560                            bp->strm->msg);
4561
4562         bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
4563         if (bp->gunzip_outlen & 0x3)
4564                 netdev_err(bp->dev, "Firmware decompression error:"
4565                                     " gunzip_outlen (%d) not aligned\n",
4566                                 bp->gunzip_outlen);
4567         bp->gunzip_outlen >>= 2;
4568
4569         zlib_inflateEnd(bp->strm);
4570
4571         if (rc == Z_STREAM_END)
4572                 return 0;
4573
4574         return rc;
4575 }
4576
4577 /* nic load/unload */
4578
4579 /*
4580  * General service functions
4581  */
4582
4583 /* send a NIG loopback debug packet */
4584 static void bnx2x_lb_pckt(struct bnx2x *bp)
4585 {
4586         u32 wb_write[3];
4587
4588         /* Ethernet source and destination addresses */
4589         wb_write[0] = 0x55555555;
4590         wb_write[1] = 0x55555555;
4591         wb_write[2] = 0x20;             /* SOP */
4592         REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
4593
4594         /* NON-IP protocol */
4595         wb_write[0] = 0x09000000;
4596         wb_write[1] = 0x55555555;
4597         wb_write[2] = 0x10;             /* EOP, eop_bvalid = 0 */
4598         REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
4599 }
4600
4601 /* some of the internal memories
4602  * are not directly readable from the driver
4603  * to test them we send debug packets
4604  */
4605 static int bnx2x_int_mem_test(struct bnx2x *bp)
4606 {
4607         int factor;
4608         int count, i;
4609         u32 val = 0;
4610
4611         if (CHIP_REV_IS_FPGA(bp))
4612                 factor = 120;
4613         else if (CHIP_REV_IS_EMUL(bp))
4614                 factor = 200;
4615         else
4616                 factor = 1;
4617
4618         /* Disable inputs of parser neighbor blocks */
4619         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
4620         REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
4621         REG_WR(bp, CFC_REG_DEBUG0, 0x1);
4622         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
4623
4624         /*  Write 0 to parser credits for CFC search request */
4625         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
4626
4627         /* send Ethernet packet */
4628         bnx2x_lb_pckt(bp);
4629
4630         /* TODO do i reset NIG statistic? */
4631         /* Wait until NIG register shows 1 packet of size 0x10 */
4632         count = 1000 * factor;
4633         while (count) {
4634
4635                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
4636                 val = *bnx2x_sp(bp, wb_data[0]);
4637                 if (val == 0x10)
4638                         break;
4639
4640                 msleep(10);
4641                 count--;
4642         }
4643         if (val != 0x10) {
4644                 BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
4645                 return -1;
4646         }
4647
4648         /* Wait until PRS register shows 1 packet */
4649         count = 1000 * factor;
4650         while (count) {
4651                 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
4652                 if (val == 1)
4653                         break;
4654
4655                 msleep(10);
4656                 count--;
4657         }
4658         if (val != 0x1) {
4659                 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
4660                 return -2;
4661         }
4662
4663         /* Reset and init BRB, PRS */
4664         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
4665         msleep(50);
4666         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
4667         msleep(50);
4668         bnx2x_init_block(bp, BRB1_BLOCK, COMMON_STAGE);
4669         bnx2x_init_block(bp, PRS_BLOCK, COMMON_STAGE);
4670
4671         DP(NETIF_MSG_HW, "part2\n");
4672
4673         /* Disable inputs of parser neighbor blocks */
4674         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
4675         REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
4676         REG_WR(bp, CFC_REG_DEBUG0, 0x1);
4677         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
4678
4679         /* Write 0 to parser credits for CFC search request */
4680         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
4681
4682         /* send 10 Ethernet packets */
4683         for (i = 0; i < 10; i++)
4684                 bnx2x_lb_pckt(bp);
4685
4686         /* Wait until NIG register shows 10 + 1
4687            packets of size 11*0x10 = 0xb0 */
4688         count = 1000 * factor;
4689         while (count) {
4690
4691                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
4692                 val = *bnx2x_sp(bp, wb_data[0]);
4693                 if (val == 0xb0)
4694                         break;
4695
4696                 msleep(10);
4697                 count--;
4698         }
4699         if (val != 0xb0) {
4700                 BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
4701                 return -3;
4702         }
4703
4704         /* Wait until PRS register shows 2 packets */
4705         val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
4706         if (val != 2)
4707                 BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
4708
4709         /* Write 1 to parser credits for CFC search request */
4710         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
4711
4712         /* Wait until PRS register shows 3 packets */
4713         msleep(10 * factor);
4714         /* Wait until NIG register shows 1 packet of size 0x10 */
4715         val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
4716         if (val != 3)
4717                 BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
4718
4719         /* clear NIG EOP FIFO */
4720         for (i = 0; i < 11; i++)
4721                 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
4722         val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
4723         if (val != 1) {
4724                 BNX2X_ERR("clear of NIG failed\n");
4725                 return -4;
4726         }
4727
4728         /* Reset and init BRB, PRS, NIG */
4729         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
4730         msleep(50);
4731         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
4732         msleep(50);
4733         bnx2x_init_block(bp, BRB1_BLOCK, COMMON_STAGE);
4734         bnx2x_init_block(bp, PRS_BLOCK, COMMON_STAGE);
4735 #ifndef BCM_CNIC
4736         /* set NIC mode */
4737         REG_WR(bp, PRS_REG_NIC_MODE, 1);
4738 #endif
4739
4740         /* Enable inputs of parser neighbor blocks */
4741         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
4742         REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
4743         REG_WR(bp, CFC_REG_DEBUG0, 0x0);
4744         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
4745
4746         DP(NETIF_MSG_HW, "done\n");
4747
4748         return 0; /* OK */
4749 }
4750
4751 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
4752 {
4753         REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
4754         if (CHIP_IS_E2(bp))
4755                 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
4756         else
4757                 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
4758         REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
4759         REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
4760         /*
4761          * mask read length error interrupts in brb for parser
4762          * (parsing unit and 'checksum and crc' unit)
4763          * these errors are legal (PU reads fixed length and CAC can cause
4764          * read length error on truncated packets)
4765          */
4766         REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
4767         REG_WR(bp, QM_REG_QM_INT_MASK, 0);
4768         REG_WR(bp, TM_REG_TM_INT_MASK, 0);
4769         REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
4770         REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
4771         REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
4772 /*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
4773 /*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
4774         REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
4775         REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
4776         REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
4777 /*      REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
4778 /*      REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
4779         REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
4780         REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
4781         REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
4782         REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
4783 /*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
4784 /*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
4785
4786         if (CHIP_REV_IS_FPGA(bp))
4787                 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x580000);
4788         else if (CHIP_IS_E2(bp))
4789                 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0,
4790                            (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF
4791                                 | PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT
4792                                 | PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN
4793                                 | PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED
4794                                 | PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED));
4795         else
4796                 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x480000);
4797         REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
4798         REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
4799         REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
4800 /*      REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
4801 /*      REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0); */
4802         REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
4803         REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
4804 /*      REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
4805         REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);         /* bit 3,4 masked */
4806 }
4807
4808 static void bnx2x_reset_common(struct bnx2x *bp)
4809 {
4810         /* reset_common */
4811         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
4812                0xd3ffff7f);
4813         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, 0x1403);
4814 }
4815
4816 static void bnx2x_init_pxp(struct bnx2x *bp)
4817 {
4818         u16 devctl;
4819         int r_order, w_order;
4820
4821         pci_read_config_word(bp->pdev,
4822                              bp->pcie_cap + PCI_EXP_DEVCTL, &devctl);
4823         DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
4824         w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
4825         if (bp->mrrs == -1)
4826                 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
4827         else {
4828                 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
4829                 r_order = bp->mrrs;
4830         }
4831
4832         bnx2x_init_pxp_arb(bp, r_order, w_order);
4833 }
4834
4835 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
4836 {
4837         int is_required;
4838         u32 val;
4839         int port;
4840
4841         if (BP_NOMCP(bp))
4842                 return;
4843
4844         is_required = 0;
4845         val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
4846               SHARED_HW_CFG_FAN_FAILURE_MASK;
4847
4848         if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
4849                 is_required = 1;
4850
4851         /*
4852          * The fan failure mechanism is usually related to the PHY type since
4853          * the power consumption of the board is affected by the PHY. Currently,
4854          * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
4855          */
4856         else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
4857                 for (port = PORT_0; port < PORT_MAX; port++) {
4858                         is_required |=
4859                                 bnx2x_fan_failure_det_req(
4860                                         bp,
4861                                         bp->common.shmem_base,
4862                                         bp->common.shmem2_base,
4863                                         port);
4864                 }
4865
4866         DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
4867
4868         if (is_required == 0)
4869                 return;
4870
4871         /* Fan failure is indicated by SPIO 5 */
4872         bnx2x_set_spio(bp, MISC_REGISTERS_SPIO_5,
4873                        MISC_REGISTERS_SPIO_INPUT_HI_Z);
4874
4875         /* set to active low mode */
4876         val = REG_RD(bp, MISC_REG_SPIO_INT);
4877         val |= ((1 << MISC_REGISTERS_SPIO_5) <<
4878                                         MISC_REGISTERS_SPIO_INT_OLD_SET_POS);
4879         REG_WR(bp, MISC_REG_SPIO_INT, val);
4880
4881         /* enable interrupt to signal the IGU */
4882         val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
4883         val |= (1 << MISC_REGISTERS_SPIO_5);
4884         REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
4885 }
4886
4887 static void bnx2x_pretend_func(struct bnx2x *bp, u8 pretend_func_num)
4888 {
4889         u32 offset = 0;
4890
4891         if (CHIP_IS_E1(bp))
4892                 return;
4893         if (CHIP_IS_E1H(bp) && (pretend_func_num >= E1H_FUNC_MAX))
4894                 return;
4895
4896         switch (BP_ABS_FUNC(bp)) {
4897         case 0:
4898                 offset = PXP2_REG_PGL_PRETEND_FUNC_F0;
4899                 break;
4900         case 1:
4901                 offset = PXP2_REG_PGL_PRETEND_FUNC_F1;
4902                 break;
4903         case 2:
4904                 offset = PXP2_REG_PGL_PRETEND_FUNC_F2;
4905                 break;
4906         case 3:
4907                 offset = PXP2_REG_PGL_PRETEND_FUNC_F3;
4908                 break;
4909         case 4:
4910                 offset = PXP2_REG_PGL_PRETEND_FUNC_F4;
4911                 break;
4912         case 5:
4913                 offset = PXP2_REG_PGL_PRETEND_FUNC_F5;
4914                 break;
4915         case 6:
4916                 offset = PXP2_REG_PGL_PRETEND_FUNC_F6;
4917                 break;
4918         case 7:
4919                 offset = PXP2_REG_PGL_PRETEND_FUNC_F7;
4920                 break;
4921         default:
4922                 return;
4923         }
4924
4925         REG_WR(bp, offset, pretend_func_num);
4926         REG_RD(bp, offset);
4927         DP(NETIF_MSG_HW, "Pretending to func %d\n", pretend_func_num);
4928 }
4929
4930 static void bnx2x_pf_disable(struct bnx2x *bp)
4931 {
4932         u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
4933         val &= ~IGU_PF_CONF_FUNC_EN;
4934
4935         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
4936         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
4937         REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
4938 }
4939
4940 static int bnx2x_init_hw_common(struct bnx2x *bp, u32 load_code)
4941 {
4942         u32 val, i;
4943
4944         DP(BNX2X_MSG_MCP, "starting common init  func %d\n", BP_ABS_FUNC(bp));
4945
4946         bnx2x_reset_common(bp);
4947         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
4948         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, 0xfffc);
4949
4950         bnx2x_init_block(bp, MISC_BLOCK, COMMON_STAGE);
4951         if (!CHIP_IS_E1(bp))
4952                 REG_WR(bp, MISC_REG_E1HMF_MODE, IS_MF(bp));
4953
4954         if (CHIP_IS_E2(bp)) {
4955                 u8 fid;
4956
4957                 /**
4958                  * 4-port mode or 2-port mode we need to turn of master-enable
4959                  * for everyone, after that, turn it back on for self.
4960                  * so, we disregard multi-function or not, and always disable
4961                  * for all functions on the given path, this means 0,2,4,6 for
4962                  * path 0 and 1,3,5,7 for path 1
4963                  */
4964                 for (fid = BP_PATH(bp); fid  < E2_FUNC_MAX*2; fid += 2) {
4965                         if (fid == BP_ABS_FUNC(bp)) {
4966                                 REG_WR(bp,
4967                                     PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
4968                                     1);
4969                                 continue;
4970                         }
4971
4972                         bnx2x_pretend_func(bp, fid);
4973                         /* clear pf enable */
4974                         bnx2x_pf_disable(bp);
4975                         bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
4976                 }
4977         }
4978
4979         bnx2x_init_block(bp, PXP_BLOCK, COMMON_STAGE);
4980         if (CHIP_IS_E1(bp)) {
4981                 /* enable HW interrupt from PXP on USDM overflow
4982                    bit 16 on INT_MASK_0 */
4983                 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
4984         }
4985
4986         bnx2x_init_block(bp, PXP2_BLOCK, COMMON_STAGE);
4987         bnx2x_init_pxp(bp);
4988
4989 #ifdef __BIG_ENDIAN
4990         REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
4991         REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
4992         REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
4993         REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
4994         REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
4995         /* make sure this value is 0 */
4996         REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
4997
4998 /*      REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
4999         REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
5000         REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
5001         REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
5002         REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
5003 #endif
5004
5005         bnx2x_ilt_init_page_size(bp, INITOP_SET);
5006
5007         if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
5008                 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
5009
5010         /* let the HW do it's magic ... */
5011         msleep(100);
5012         /* finish PXP init */
5013         val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
5014         if (val != 1) {
5015                 BNX2X_ERR("PXP2 CFG failed\n");
5016                 return -EBUSY;
5017         }
5018         val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
5019         if (val != 1) {
5020                 BNX2X_ERR("PXP2 RD_INIT failed\n");
5021                 return -EBUSY;
5022         }
5023
5024         /* Timers bug workaround E2 only. We need to set the entire ILT to
5025          * have entries with value "0" and valid bit on.
5026          * This needs to be done by the first PF that is loaded in a path
5027          * (i.e. common phase)
5028          */
5029         if (CHIP_IS_E2(bp)) {
5030                 struct ilt_client_info ilt_cli;
5031                 struct bnx2x_ilt ilt;
5032                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
5033                 memset(&ilt, 0, sizeof(struct bnx2x_ilt));
5034
5035                 /* initialize dummy TM client */
5036                 ilt_cli.start = 0;
5037                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
5038                 ilt_cli.client_num = ILT_CLIENT_TM;
5039
5040                 /* Step 1: set zeroes to all ilt page entries with valid bit on
5041                  * Step 2: set the timers first/last ilt entry to point
5042                  * to the entire range to prevent ILT range error for 3rd/4th
5043                  * vnic (this code assumes existance of the vnic)
5044                  *
5045                  * both steps performed by call to bnx2x_ilt_client_init_op()
5046                  * with dummy TM client
5047                  *
5048                  * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
5049                  * and his brother are split registers
5050                  */
5051                 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
5052                 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
5053                 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
5054
5055                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
5056                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
5057                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
5058         }
5059
5060
5061         REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
5062         REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
5063
5064         if (CHIP_IS_E2(bp)) {
5065                 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
5066                                 (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
5067                 bnx2x_init_block(bp, PGLUE_B_BLOCK, COMMON_STAGE);
5068
5069                 bnx2x_init_block(bp, ATC_BLOCK, COMMON_STAGE);
5070
5071                 /* let the HW do it's magic ... */
5072                 do {
5073                         msleep(200);
5074                         val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
5075                 } while (factor-- && (val != 1));
5076
5077                 if (val != 1) {
5078                         BNX2X_ERR("ATC_INIT failed\n");
5079                         return -EBUSY;
5080                 }
5081         }
5082
5083         bnx2x_init_block(bp, DMAE_BLOCK, COMMON_STAGE);
5084
5085         /* clean the DMAE memory */
5086         bp->dmae_ready = 1;
5087         bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8);
5088
5089         bnx2x_init_block(bp, TCM_BLOCK, COMMON_STAGE);
5090         bnx2x_init_block(bp, UCM_BLOCK, COMMON_STAGE);
5091         bnx2x_init_block(bp, CCM_BLOCK, COMMON_STAGE);
5092         bnx2x_init_block(bp, XCM_BLOCK, COMMON_STAGE);
5093
5094         bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
5095         bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
5096         bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
5097         bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
5098
5099         bnx2x_init_block(bp, QM_BLOCK, COMMON_STAGE);
5100
5101         if (CHIP_MODE_IS_4_PORT(bp))
5102                 bnx2x_init_block(bp, QM_4PORT_BLOCK, COMMON_STAGE);
5103
5104         /* QM queues pointers table */
5105         bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
5106
5107         /* soft reset pulse */
5108         REG_WR(bp, QM_REG_SOFT_RESET, 1);
5109         REG_WR(bp, QM_REG_SOFT_RESET, 0);
5110
5111 #ifdef BCM_CNIC
5112         bnx2x_init_block(bp, TIMERS_BLOCK, COMMON_STAGE);
5113 #endif
5114
5115         bnx2x_init_block(bp, DQ_BLOCK, COMMON_STAGE);
5116         REG_WR(bp, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
5117
5118         if (!CHIP_REV_IS_SLOW(bp)) {
5119                 /* enable hw interrupt from doorbell Q */
5120                 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
5121         }
5122
5123         bnx2x_init_block(bp, BRB1_BLOCK, COMMON_STAGE);
5124         if (CHIP_MODE_IS_4_PORT(bp)) {
5125                 REG_WR(bp, BRB1_REG_FULL_LB_XOFF_THRESHOLD, 248);
5126                 REG_WR(bp, BRB1_REG_FULL_LB_XON_THRESHOLD, 328);
5127         }
5128
5129         bnx2x_init_block(bp, PRS_BLOCK, COMMON_STAGE);
5130         REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
5131 #ifndef BCM_CNIC
5132         /* set NIC mode */
5133         REG_WR(bp, PRS_REG_NIC_MODE, 1);
5134 #endif
5135         if (!CHIP_IS_E1(bp))
5136                 REG_WR(bp, PRS_REG_E1HOV_MODE, IS_MF_SD(bp));
5137
5138         if (CHIP_IS_E2(bp)) {
5139                 /* Bit-map indicating which L2 hdrs may appear after the
5140                    basic Ethernet header */
5141                 int has_ovlan = IS_MF_SD(bp);
5142                 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, (has_ovlan ? 7 : 6));
5143                 REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, (has_ovlan ? 1 : 0));
5144         }
5145
5146         bnx2x_init_block(bp, TSDM_BLOCK, COMMON_STAGE);
5147         bnx2x_init_block(bp, CSDM_BLOCK, COMMON_STAGE);
5148         bnx2x_init_block(bp, USDM_BLOCK, COMMON_STAGE);
5149         bnx2x_init_block(bp, XSDM_BLOCK, COMMON_STAGE);
5150
5151         bnx2x_init_fill(bp, TSEM_REG_FAST_MEMORY, 0, STORM_INTMEM_SIZE(bp));
5152         bnx2x_init_fill(bp, USEM_REG_FAST_MEMORY, 0, STORM_INTMEM_SIZE(bp));
5153         bnx2x_init_fill(bp, CSEM_REG_FAST_MEMORY, 0, STORM_INTMEM_SIZE(bp));
5154         bnx2x_init_fill(bp, XSEM_REG_FAST_MEMORY, 0, STORM_INTMEM_SIZE(bp));
5155
5156         bnx2x_init_block(bp, TSEM_BLOCK, COMMON_STAGE);
5157         bnx2x_init_block(bp, USEM_BLOCK, COMMON_STAGE);
5158         bnx2x_init_block(bp, CSEM_BLOCK, COMMON_STAGE);
5159         bnx2x_init_block(bp, XSEM_BLOCK, COMMON_STAGE);
5160
5161         if (CHIP_MODE_IS_4_PORT(bp))
5162                 bnx2x_init_block(bp, XSEM_4PORT_BLOCK, COMMON_STAGE);
5163
5164         /* sync semi rtc */
5165         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
5166                0x80000000);
5167         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
5168                0x80000000);
5169
5170         bnx2x_init_block(bp, UPB_BLOCK, COMMON_STAGE);
5171         bnx2x_init_block(bp, XPB_BLOCK, COMMON_STAGE);
5172         bnx2x_init_block(bp, PBF_BLOCK, COMMON_STAGE);
5173
5174         if (CHIP_IS_E2(bp)) {
5175                 int has_ovlan = IS_MF_SD(bp);
5176                 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, (has_ovlan ? 7 : 6));
5177                 REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, (has_ovlan ? 1 : 0));
5178         }
5179
5180         REG_WR(bp, SRC_REG_SOFT_RST, 1);
5181         for (i = SRC_REG_KEYRSS0_0; i <= SRC_REG_KEYRSS1_9; i += 4)
5182                 REG_WR(bp, i, random32());
5183
5184         bnx2x_init_block(bp, SRCH_BLOCK, COMMON_STAGE);
5185 #ifdef BCM_CNIC
5186         REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
5187         REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
5188         REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
5189         REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
5190         REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
5191         REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
5192         REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
5193         REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
5194         REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
5195         REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
5196 #endif
5197         REG_WR(bp, SRC_REG_SOFT_RST, 0);
5198
5199         if (sizeof(union cdu_context) != 1024)
5200                 /* we currently assume that a context is 1024 bytes */
5201                 dev_alert(&bp->pdev->dev, "please adjust the size "
5202                                           "of cdu_context(%ld)\n",
5203                          (long)sizeof(union cdu_context));
5204
5205         bnx2x_init_block(bp, CDU_BLOCK, COMMON_STAGE);
5206         val = (4 << 24) + (0 << 12) + 1024;
5207         REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
5208
5209         bnx2x_init_block(bp, CFC_BLOCK, COMMON_STAGE);
5210         REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
5211         /* enable context validation interrupt from CFC */
5212         REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
5213
5214         /* set the thresholds to prevent CFC/CDU race */
5215         REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
5216
5217         bnx2x_init_block(bp, HC_BLOCK, COMMON_STAGE);
5218
5219         if (CHIP_IS_E2(bp) && BP_NOMCP(bp))
5220                 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
5221
5222         bnx2x_init_block(bp, IGU_BLOCK, COMMON_STAGE);
5223         bnx2x_init_block(bp, MISC_AEU_BLOCK, COMMON_STAGE);
5224
5225         bnx2x_init_block(bp, PXPCS_BLOCK, COMMON_STAGE);
5226         /* Reset PCIE errors for debug */
5227         REG_WR(bp, 0x2814, 0xffffffff);
5228         REG_WR(bp, 0x3820, 0xffffffff);
5229
5230         if (CHIP_IS_E2(bp)) {
5231                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
5232                            (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
5233                                 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
5234                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
5235                            (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
5236                                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
5237                                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
5238                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
5239                            (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
5240                                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
5241                                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
5242         }
5243
5244         bnx2x_init_block(bp, EMAC0_BLOCK, COMMON_STAGE);
5245         bnx2x_init_block(bp, EMAC1_BLOCK, COMMON_STAGE);
5246         bnx2x_init_block(bp, DBU_BLOCK, COMMON_STAGE);
5247         bnx2x_init_block(bp, DBG_BLOCK, COMMON_STAGE);
5248
5249         bnx2x_init_block(bp, NIG_BLOCK, COMMON_STAGE);
5250         if (!CHIP_IS_E1(bp)) {
5251                 REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
5252                 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
5253         }
5254         if (CHIP_IS_E2(bp)) {
5255                 /* Bit-map indicating which L2 hdrs may appear after the
5256                    basic Ethernet header */
5257                 REG_WR(bp, NIG_REG_P0_HDRS_AFTER_BASIC, (IS_MF_SD(bp) ? 7 : 6));
5258         }
5259
5260         if (CHIP_REV_IS_SLOW(bp))
5261                 msleep(200);
5262
5263         /* finish CFC init */
5264         val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
5265         if (val != 1) {
5266                 BNX2X_ERR("CFC LL_INIT failed\n");
5267                 return -EBUSY;
5268         }
5269         val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
5270         if (val != 1) {
5271                 BNX2X_ERR("CFC AC_INIT failed\n");
5272                 return -EBUSY;
5273         }
5274         val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
5275         if (val != 1) {
5276                 BNX2X_ERR("CFC CAM_INIT failed\n");
5277                 return -EBUSY;
5278         }
5279         REG_WR(bp, CFC_REG_DEBUG0, 0);
5280
5281         if (CHIP_IS_E1(bp)) {
5282                 /* read NIG statistic
5283                    to see if this is our first up since powerup */
5284                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
5285                 val = *bnx2x_sp(bp, wb_data[0]);
5286
5287                 /* do internal memory self test */
5288                 if ((val == 0) && bnx2x_int_mem_test(bp)) {
5289                         BNX2X_ERR("internal mem self test failed\n");
5290                         return -EBUSY;
5291                 }
5292         }
5293
5294         bnx2x_setup_fan_failure_detection(bp);
5295
5296         /* clear PXP2 attentions */
5297         REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
5298
5299         bnx2x_enable_blocks_attention(bp);
5300         if (CHIP_PARITY_ENABLED(bp))
5301                 bnx2x_enable_blocks_parity(bp);
5302
5303         if (!BP_NOMCP(bp)) {
5304                 /* In E2 2-PORT mode, same ext phy is used for the two paths */
5305                 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
5306                     CHIP_IS_E1x(bp)) {
5307                         u32 shmem_base[2], shmem2_base[2];
5308                         shmem_base[0] =  bp->common.shmem_base;
5309                         shmem2_base[0] = bp->common.shmem2_base;
5310                         if (CHIP_IS_E2(bp)) {
5311                                 shmem_base[1] =
5312                                         SHMEM2_RD(bp, other_shmem_base_addr);
5313                                 shmem2_base[1] =
5314                                         SHMEM2_RD(bp, other_shmem2_base_addr);
5315                         }
5316                         bnx2x_acquire_phy_lock(bp);
5317                         bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
5318                                               bp->common.chip_id);
5319                         bnx2x_release_phy_lock(bp);
5320                 }
5321         } else
5322                 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
5323
5324         return 0;
5325 }
5326
5327 static int bnx2x_init_hw_port(struct bnx2x *bp)
5328 {
5329         int port = BP_PORT(bp);
5330         int init_stage = port ? PORT1_STAGE : PORT0_STAGE;
5331         u32 low, high;
5332         u32 val;
5333
5334         DP(BNX2X_MSG_MCP, "starting port init  port %d\n", port);
5335
5336         REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
5337
5338         bnx2x_init_block(bp, PXP_BLOCK, init_stage);
5339         bnx2x_init_block(bp, PXP2_BLOCK, init_stage);
5340
5341         /* Timers bug workaround: disables the pf_master bit in pglue at
5342          * common phase, we need to enable it here before any dmae access are
5343          * attempted. Therefore we manually added the enable-master to the
5344          * port phase (it also happens in the function phase)
5345          */
5346         if (CHIP_IS_E2(bp))
5347                 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
5348
5349         bnx2x_init_block(bp, TCM_BLOCK, init_stage);
5350         bnx2x_init_block(bp, UCM_BLOCK, init_stage);
5351         bnx2x_init_block(bp, CCM_BLOCK, init_stage);
5352         bnx2x_init_block(bp, XCM_BLOCK, init_stage);
5353
5354         /* QM cid (connection) count */
5355         bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
5356
5357 #ifdef BCM_CNIC
5358         bnx2x_init_block(bp, TIMERS_BLOCK, init_stage);
5359         REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
5360         REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
5361 #endif
5362
5363         bnx2x_init_block(bp, DQ_BLOCK, init_stage);
5364
5365         if (CHIP_MODE_IS_4_PORT(bp))
5366                 bnx2x_init_block(bp, QM_4PORT_BLOCK, init_stage);
5367
5368         if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
5369                 bnx2x_init_block(bp, BRB1_BLOCK, init_stage);
5370                 if (CHIP_REV_IS_SLOW(bp) && CHIP_IS_E1(bp)) {
5371                         /* no pause for emulation and FPGA */
5372                         low = 0;
5373                         high = 513;
5374                 } else {
5375                         if (IS_MF(bp))
5376                                 low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
5377                         else if (bp->dev->mtu > 4096) {
5378                                 if (bp->flags & ONE_PORT_FLAG)
5379                                         low = 160;
5380                                 else {
5381                                         val = bp->dev->mtu;
5382                                         /* (24*1024 + val*4)/256 */
5383                                         low = 96 + (val/64) +
5384                                                         ((val % 64) ? 1 : 0);
5385                                 }
5386                         } else
5387                                 low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
5388                         high = low + 56;        /* 14*1024/256 */
5389                 }
5390                 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
5391                 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
5392         }
5393
5394         if (CHIP_MODE_IS_4_PORT(bp)) {
5395                 REG_WR(bp, BRB1_REG_PAUSE_0_XOFF_THRESHOLD_0 + port*8, 248);
5396                 REG_WR(bp, BRB1_REG_PAUSE_0_XON_THRESHOLD_0 + port*8, 328);
5397                 REG_WR(bp, (BP_PORT(bp) ? BRB1_REG_MAC_GUARANTIED_1 :
5398                                           BRB1_REG_MAC_GUARANTIED_0), 40);
5399         }
5400
5401         bnx2x_init_block(bp, PRS_BLOCK, init_stage);
5402
5403         bnx2x_init_block(bp, TSDM_BLOCK, init_stage);
5404         bnx2x_init_block(bp, CSDM_BLOCK, init_stage);
5405         bnx2x_init_block(bp, USDM_BLOCK, init_stage);
5406         bnx2x_init_block(bp, XSDM_BLOCK, init_stage);
5407
5408         bnx2x_init_block(bp, TSEM_BLOCK, init_stage);
5409         bnx2x_init_block(bp, USEM_BLOCK, init_stage);
5410         bnx2x_init_block(bp, CSEM_BLOCK, init_stage);
5411         bnx2x_init_block(bp, XSEM_BLOCK, init_stage);
5412         if (CHIP_MODE_IS_4_PORT(bp))
5413                 bnx2x_init_block(bp, XSEM_4PORT_BLOCK, init_stage);
5414
5415         bnx2x_init_block(bp, UPB_BLOCK, init_stage);
5416         bnx2x_init_block(bp, XPB_BLOCK, init_stage);
5417
5418         bnx2x_init_block(bp, PBF_BLOCK, init_stage);
5419
5420         if (!CHIP_IS_E2(bp)) {
5421                 /* configure PBF to work without PAUSE mtu 9000 */
5422                 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
5423
5424                 /* update threshold */
5425                 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
5426                 /* update init credit */
5427                 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
5428
5429                 /* probe changes */
5430                 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
5431                 udelay(50);
5432                 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
5433         }
5434
5435 #ifdef BCM_CNIC
5436         bnx2x_init_block(bp, SRCH_BLOCK, init_stage);
5437 #endif
5438         bnx2x_init_block(bp, CDU_BLOCK, init_stage);
5439         bnx2x_init_block(bp, CFC_BLOCK, init_stage);
5440
5441         if (CHIP_IS_E1(bp)) {
5442                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
5443                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
5444         }
5445         bnx2x_init_block(bp, HC_BLOCK, init_stage);
5446
5447         bnx2x_init_block(bp, IGU_BLOCK, init_stage);
5448
5449         bnx2x_init_block(bp, MISC_AEU_BLOCK, init_stage);
5450         /* init aeu_mask_attn_func_0/1:
5451          *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
5452          *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
5453          *             bits 4-7 are used for "per vn group attention" */
5454         val = IS_MF(bp) ? 0xF7 : 0x7;
5455         /* Enable DCBX attention for all but E1 */
5456         val |= CHIP_IS_E1(bp) ? 0 : 0x10;
5457         REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
5458
5459         bnx2x_init_block(bp, PXPCS_BLOCK, init_stage);
5460         bnx2x_init_block(bp, EMAC0_BLOCK, init_stage);
5461         bnx2x_init_block(bp, EMAC1_BLOCK, init_stage);
5462         bnx2x_init_block(bp, DBU_BLOCK, init_stage);
5463         bnx2x_init_block(bp, DBG_BLOCK, init_stage);
5464
5465         bnx2x_init_block(bp, NIG_BLOCK, init_stage);
5466
5467         REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
5468
5469         if (!CHIP_IS_E1(bp)) {
5470                 /* 0x2 disable mf_ov, 0x1 enable */
5471                 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
5472                        (IS_MF_SD(bp) ? 0x1 : 0x2));
5473
5474                 if (CHIP_IS_E2(bp)) {
5475                         val = 0;
5476                         switch (bp->mf_mode) {
5477                         case MULTI_FUNCTION_SD:
5478                                 val = 1;
5479                                 break;
5480                         case MULTI_FUNCTION_SI:
5481                                 val = 2;
5482                                 break;
5483                         }
5484
5485                         REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
5486                                                   NIG_REG_LLH0_CLS_TYPE), val);
5487                 }
5488                 {
5489                         REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
5490                         REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
5491                         REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
5492                 }
5493         }
5494
5495         bnx2x_init_block(bp, MCP_BLOCK, init_stage);
5496         bnx2x_init_block(bp, DMAE_BLOCK, init_stage);
5497         if (bnx2x_fan_failure_det_req(bp, bp->common.shmem_base,
5498                                       bp->common.shmem2_base, port)) {
5499                 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5500                                        MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
5501                 val = REG_RD(bp, reg_addr);
5502                 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
5503                 REG_WR(bp, reg_addr, val);
5504         }
5505         bnx2x__link_reset(bp);
5506
5507         return 0;
5508 }
5509
5510 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
5511 {
5512         int reg;
5513
5514         if (CHIP_IS_E1(bp))
5515                 reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
5516         else
5517                 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
5518
5519         bnx2x_wb_wr(bp, reg, ONCHIP_ADDR1(addr), ONCHIP_ADDR2(addr));
5520 }
5521
5522 static inline void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
5523 {
5524         bnx2x_igu_clear_sb_gen(bp, idu_sb_id, true /*PF*/);
5525 }
5526
5527 static inline void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
5528 {
5529         u32 i, base = FUNC_ILT_BASE(func);
5530         for (i = base; i < base + ILT_PER_FUNC; i++)
5531                 bnx2x_ilt_wr(bp, i, 0);
5532 }
5533
5534 static int bnx2x_init_hw_func(struct bnx2x *bp)
5535 {
5536         int port = BP_PORT(bp);
5537         int func = BP_FUNC(bp);
5538         struct bnx2x_ilt *ilt = BP_ILT(bp);
5539         u16 cdu_ilt_start;
5540         u32 addr, val;
5541         u32 main_mem_base, main_mem_size, main_mem_prty_clr;
5542         int i, main_mem_width;
5543
5544         DP(BNX2X_MSG_MCP, "starting func init  func %d\n", func);
5545
5546         /* set MSI reconfigure capability */
5547         if (bp->common.int_block == INT_BLOCK_HC) {
5548                 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
5549                 val = REG_RD(bp, addr);
5550                 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
5551                 REG_WR(bp, addr, val);
5552         }
5553
5554         ilt = BP_ILT(bp);
5555         cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
5556
5557         for (i = 0; i < L2_ILT_LINES(bp); i++) {
5558                 ilt->lines[cdu_ilt_start + i].page =
5559                         bp->context.vcxt + (ILT_PAGE_CIDS * i);
5560                 ilt->lines[cdu_ilt_start + i].page_mapping =
5561                         bp->context.cxt_mapping + (CDU_ILT_PAGE_SZ * i);
5562                 /* cdu ilt pages are allocated manually so there's no need to
5563                 set the size */
5564         }
5565         bnx2x_ilt_init_op(bp, INITOP_SET);
5566
5567 #ifdef BCM_CNIC
5568         bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
5569
5570         /* T1 hash bits value determines the T1 number of entries */
5571         REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
5572 #endif
5573
5574 #ifndef BCM_CNIC
5575         /* set NIC mode */
5576         REG_WR(bp, PRS_REG_NIC_MODE, 1);
5577 #endif  /* BCM_CNIC */
5578
5579         if (CHIP_IS_E2(bp)) {
5580                 u32 pf_conf = IGU_PF_CONF_FUNC_EN;
5581
5582                 /* Turn on a single ISR mode in IGU if driver is going to use
5583                  * INT#x or MSI
5584                  */
5585                 if (!(bp->flags & USING_MSIX_FLAG))
5586                         pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
5587                 /*
5588                  * Timers workaround bug: function init part.
5589                  * Need to wait 20msec after initializing ILT,
5590                  * needed to make sure there are no requests in
5591                  * one of the PXP internal queues with "old" ILT addresses
5592                  */
5593                 msleep(20);
5594                 /*
5595                  * Master enable - Due to WB DMAE writes performed before this
5596                  * register is re-initialized as part of the regular function
5597                  * init
5598                  */
5599                 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
5600                 /* Enable the function in IGU */
5601                 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
5602         }
5603
5604         bp->dmae_ready = 1;
5605
5606         bnx2x_init_block(bp, PGLUE_B_BLOCK, FUNC0_STAGE + func);
5607
5608         if (CHIP_IS_E2(bp))
5609                 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
5610
5611         bnx2x_init_block(bp, MISC_BLOCK, FUNC0_STAGE + func);
5612         bnx2x_init_block(bp, TCM_BLOCK, FUNC0_STAGE + func);
5613         bnx2x_init_block(bp, UCM_BLOCK, FUNC0_STAGE + func);
5614         bnx2x_init_block(bp, CCM_BLOCK, FUNC0_STAGE + func);
5615         bnx2x_init_block(bp, XCM_BLOCK, FUNC0_STAGE + func);
5616         bnx2x_init_block(bp, TSEM_BLOCK, FUNC0_STAGE + func);
5617         bnx2x_init_block(bp, USEM_BLOCK, FUNC0_STAGE + func);
5618         bnx2x_init_block(bp, CSEM_BLOCK, FUNC0_STAGE + func);
5619         bnx2x_init_block(bp, XSEM_BLOCK, FUNC0_STAGE + func);
5620
5621         if (CHIP_IS_E2(bp)) {
5622                 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_PATH_ID_OFFSET,
5623                                                                 BP_PATH(bp));
5624                 REG_WR(bp, BAR_CSTRORM_INTMEM + CSTORM_PATH_ID_OFFSET,
5625                                                                 BP_PATH(bp));
5626         }
5627
5628         if (CHIP_MODE_IS_4_PORT(bp))
5629                 bnx2x_init_block(bp, XSEM_4PORT_BLOCK, FUNC0_STAGE + func);
5630
5631         if (CHIP_IS_E2(bp))
5632                 REG_WR(bp, QM_REG_PF_EN, 1);
5633
5634         bnx2x_init_block(bp, QM_BLOCK, FUNC0_STAGE + func);
5635
5636         if (CHIP_MODE_IS_4_PORT(bp))
5637                 bnx2x_init_block(bp, QM_4PORT_BLOCK, FUNC0_STAGE + func);
5638
5639         bnx2x_init_block(bp, TIMERS_BLOCK, FUNC0_STAGE + func);
5640         bnx2x_init_block(bp, DQ_BLOCK, FUNC0_STAGE + func);
5641         bnx2x_init_block(bp, BRB1_BLOCK, FUNC0_STAGE + func);
5642         bnx2x_init_block(bp, PRS_BLOCK, FUNC0_STAGE + func);
5643         bnx2x_init_block(bp, TSDM_BLOCK, FUNC0_STAGE + func);
5644         bnx2x_init_block(bp, CSDM_BLOCK, FUNC0_STAGE + func);
5645         bnx2x_init_block(bp, USDM_BLOCK, FUNC0_STAGE + func);
5646         bnx2x_init_block(bp, XSDM_BLOCK, FUNC0_STAGE + func);
5647         bnx2x_init_block(bp, UPB_BLOCK, FUNC0_STAGE + func);
5648         bnx2x_init_block(bp, XPB_BLOCK, FUNC0_STAGE + func);
5649         bnx2x_init_block(bp, PBF_BLOCK, FUNC0_STAGE + func);
5650         if (CHIP_IS_E2(bp))
5651                 REG_WR(bp, PBF_REG_DISABLE_PF, 0);
5652
5653         bnx2x_init_block(bp, CDU_BLOCK, FUNC0_STAGE + func);
5654
5655         bnx2x_init_block(bp, CFC_BLOCK, FUNC0_STAGE + func);
5656
5657         if (CHIP_IS_E2(bp))
5658                 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
5659
5660         if (IS_MF(bp)) {
5661                 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
5662                 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
5663         }
5664
5665         bnx2x_init_block(bp, MISC_AEU_BLOCK, FUNC0_STAGE + func);
5666
5667         /* HC init per function */
5668         if (bp->common.int_block == INT_BLOCK_HC) {
5669                 if (CHIP_IS_E1H(bp)) {
5670                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
5671
5672                         REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
5673                         REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
5674                 }
5675                 bnx2x_init_block(bp, HC_BLOCK, FUNC0_STAGE + func);
5676
5677         } else {
5678                 int num_segs, sb_idx, prod_offset;
5679
5680                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
5681
5682                 if (CHIP_IS_E2(bp)) {
5683                         REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
5684                         REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
5685                 }
5686
5687                 bnx2x_init_block(bp, IGU_BLOCK, FUNC0_STAGE + func);
5688
5689                 if (CHIP_IS_E2(bp)) {
5690                         int dsb_idx = 0;
5691                         /**
5692                          * Producer memory:
5693                          * E2 mode: address 0-135 match to the mapping memory;
5694                          * 136 - PF0 default prod; 137 - PF1 default prod;
5695                          * 138 - PF2 default prod; 139 - PF3 default prod;
5696                          * 140 - PF0 attn prod;    141 - PF1 attn prod;
5697                          * 142 - PF2 attn prod;    143 - PF3 attn prod;
5698                          * 144-147 reserved.
5699                          *
5700                          * E1.5 mode - In backward compatible mode;
5701                          * for non default SB; each even line in the memory
5702                          * holds the U producer and each odd line hold
5703                          * the C producer. The first 128 producers are for
5704                          * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
5705                          * producers are for the DSB for each PF.
5706                          * Each PF has five segments: (the order inside each
5707                          * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
5708                          * 132-135 C prods; 136-139 X prods; 140-143 T prods;
5709                          * 144-147 attn prods;
5710                          */
5711                         /* non-default-status-blocks */
5712                         num_segs = CHIP_INT_MODE_IS_BC(bp) ?
5713                                 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
5714                         for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
5715                                 prod_offset = (bp->igu_base_sb + sb_idx) *
5716                                         num_segs;
5717
5718                                 for (i = 0; i < num_segs; i++) {
5719                                         addr = IGU_REG_PROD_CONS_MEMORY +
5720                                                         (prod_offset + i) * 4;
5721                                         REG_WR(bp, addr, 0);
5722                                 }
5723                                 /* send consumer update with value 0 */
5724                                 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
5725                                              USTORM_ID, 0, IGU_INT_NOP, 1);
5726                                 bnx2x_igu_clear_sb(bp,
5727                                                    bp->igu_base_sb + sb_idx);
5728                         }
5729
5730                         /* default-status-blocks */
5731                         num_segs = CHIP_INT_MODE_IS_BC(bp) ?
5732                                 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
5733
5734                         if (CHIP_MODE_IS_4_PORT(bp))
5735                                 dsb_idx = BP_FUNC(bp);
5736                         else
5737                                 dsb_idx = BP_E1HVN(bp);
5738
5739                         prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
5740                                        IGU_BC_BASE_DSB_PROD + dsb_idx :
5741                                        IGU_NORM_BASE_DSB_PROD + dsb_idx);
5742
5743                         for (i = 0; i < (num_segs * E1HVN_MAX);
5744                              i += E1HVN_MAX) {
5745                                 addr = IGU_REG_PROD_CONS_MEMORY +
5746                                                         (prod_offset + i)*4;
5747                                 REG_WR(bp, addr, 0);
5748                         }
5749                         /* send consumer update with 0 */
5750                         if (CHIP_INT_MODE_IS_BC(bp)) {
5751                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
5752                                              USTORM_ID, 0, IGU_INT_NOP, 1);
5753                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
5754                                              CSTORM_ID, 0, IGU_INT_NOP, 1);
5755                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
5756                                              XSTORM_ID, 0, IGU_INT_NOP, 1);
5757                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
5758                                              TSTORM_ID, 0, IGU_INT_NOP, 1);
5759                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
5760                                              ATTENTION_ID, 0, IGU_INT_NOP, 1);
5761                         } else {
5762                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
5763                                              USTORM_ID, 0, IGU_INT_NOP, 1);
5764                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
5765                                              ATTENTION_ID, 0, IGU_INT_NOP, 1);
5766                         }
5767                         bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
5768
5769                         /* !!! these should become driver const once
5770                            rf-tool supports split-68 const */
5771                         REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
5772                         REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
5773                         REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
5774                         REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
5775                         REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
5776                         REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
5777                 }
5778         }
5779
5780         /* Reset PCIE errors for debug */
5781         REG_WR(bp, 0x2114, 0xffffffff);
5782         REG_WR(bp, 0x2120, 0xffffffff);
5783
5784         bnx2x_init_block(bp, EMAC0_BLOCK, FUNC0_STAGE + func);
5785         bnx2x_init_block(bp, EMAC1_BLOCK, FUNC0_STAGE + func);
5786         bnx2x_init_block(bp, DBU_BLOCK, FUNC0_STAGE + func);
5787         bnx2x_init_block(bp, DBG_BLOCK, FUNC0_STAGE + func);
5788         bnx2x_init_block(bp, MCP_BLOCK, FUNC0_STAGE + func);
5789         bnx2x_init_block(bp, DMAE_BLOCK, FUNC0_STAGE + func);
5790
5791         if (CHIP_IS_E1x(bp)) {
5792                 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
5793                 main_mem_base = HC_REG_MAIN_MEMORY +
5794                                 BP_PORT(bp) * (main_mem_size * 4);
5795                 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
5796                 main_mem_width = 8;
5797
5798                 val = REG_RD(bp, main_mem_prty_clr);
5799                 if (val)
5800                         DP(BNX2X_MSG_MCP, "Hmmm... Parity errors in HC "
5801                                           "block during "
5802                                           "function init (0x%x)!\n", val);
5803
5804                 /* Clear "false" parity errors in MSI-X table */
5805                 for (i = main_mem_base;
5806                      i < main_mem_base + main_mem_size * 4;
5807                      i += main_mem_width) {
5808                         bnx2x_read_dmae(bp, i, main_mem_width / 4);
5809                         bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
5810                                          i, main_mem_width / 4);
5811                 }
5812                 /* Clear HC parity attention */
5813                 REG_RD(bp, main_mem_prty_clr);
5814         }
5815
5816         bnx2x_phy_probe(&bp->link_params);
5817
5818         return 0;
5819 }
5820
5821 int bnx2x_init_hw(struct bnx2x *bp, u32 load_code)
5822 {
5823         int rc = 0;
5824
5825         DP(BNX2X_MSG_MCP, "function %d  load_code %x\n",
5826            BP_ABS_FUNC(bp), load_code);
5827
5828         bp->dmae_ready = 0;
5829         mutex_init(&bp->dmae_mutex);
5830         rc = bnx2x_gunzip_init(bp);
5831         if (rc)
5832                 return rc;
5833
5834         switch (load_code) {
5835         case FW_MSG_CODE_DRV_LOAD_COMMON:
5836         case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5837                 rc = bnx2x_init_hw_common(bp, load_code);
5838                 if (rc)
5839                         goto init_hw_err;
5840                 /* no break */
5841
5842         case FW_MSG_CODE_DRV_LOAD_PORT:
5843                 rc = bnx2x_init_hw_port(bp);
5844                 if (rc)
5845                         goto init_hw_err;
5846                 /* no break */
5847
5848         case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5849                 rc = bnx2x_init_hw_func(bp);
5850                 if (rc)
5851                         goto init_hw_err;
5852                 break;
5853
5854         default:
5855                 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
5856                 break;
5857         }
5858
5859         if (!BP_NOMCP(bp)) {
5860                 int mb_idx = BP_FW_MB_IDX(bp);
5861
5862                 bp->fw_drv_pulse_wr_seq =
5863                                 (SHMEM_RD(bp, func_mb[mb_idx].drv_pulse_mb) &
5864                                  DRV_PULSE_SEQ_MASK);
5865                 DP(BNX2X_MSG_MCP, "drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq);
5866         }
5867
5868 init_hw_err:
5869         bnx2x_gunzip_end(bp);
5870
5871         return rc