bnx2x: fix link notification
[linux-2.6.git] / drivers / net / bnx2x / bnx2x_main.c
1 /* bnx2x_main.c: Broadcom Everest network driver.
2  *
3  * Copyright (c) 2007-2010 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  *
9  * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10  * Written by: Eliezer Tamir
11  * Based on code from Michael Chan's bnx2 driver
12  * UDP CSUM errata workaround by Arik Gendelman
13  * Slowpath and fastpath rework by Vladislav Zolotarov
14  * Statistics and Link management by Yitchak Gertner
15  *
16  */
17
18 #include <linux/module.h>
19 #include <linux/moduleparam.h>
20 #include <linux/kernel.h>
21 #include <linux/device.h>  /* for dev_info() */
22 #include <linux/timer.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/slab.h>
26 #include <linux/interrupt.h>
27 #include <linux/pci.h>
28 #include <linux/init.h>
29 #include <linux/netdevice.h>
30 #include <linux/etherdevice.h>
31 #include <linux/skbuff.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/bitops.h>
34 #include <linux/irq.h>
35 #include <linux/delay.h>
36 #include <asm/byteorder.h>
37 #include <linux/time.h>
38 #include <linux/ethtool.h>
39 #include <linux/mii.h>
40 #include <linux/if_vlan.h>
41 #include <net/ip.h>
42 #include <net/tcp.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <linux/workqueue.h>
46 #include <linux/crc32.h>
47 #include <linux/crc32c.h>
48 #include <linux/prefetch.h>
49 #include <linux/zlib.h>
50 #include <linux/io.h>
51 #include <linux/stringify.h>
52
53 #define BNX2X_MAIN
54 #include "bnx2x.h"
55 #include "bnx2x_init.h"
56 #include "bnx2x_init_ops.h"
57 #include "bnx2x_cmn.h"
58 #include "bnx2x_dcb.h"
59
60 #include <linux/firmware.h>
61 #include "bnx2x_fw_file_hdr.h"
62 /* FW files */
63 #define FW_FILE_VERSION                                 \
64         __stringify(BCM_5710_FW_MAJOR_VERSION) "."      \
65         __stringify(BCM_5710_FW_MINOR_VERSION) "."      \
66         __stringify(BCM_5710_FW_REVISION_VERSION) "."   \
67         __stringify(BCM_5710_FW_ENGINEERING_VERSION)
68 #define FW_FILE_NAME_E1         "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
69 #define FW_FILE_NAME_E1H        "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
70 #define FW_FILE_NAME_E2         "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
71
72 /* Time in jiffies before concluding the transmitter is hung */
73 #define TX_TIMEOUT              (5*HZ)
74
75 static char version[] __devinitdata =
76         "Broadcom NetXtreme II 5771x 10Gigabit Ethernet Driver "
77         DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
78
79 MODULE_AUTHOR("Eliezer Tamir");
80 MODULE_DESCRIPTION("Broadcom NetXtreme II "
81                    "BCM57710/57711/57711E/57712/57712E Driver");
82 MODULE_LICENSE("GPL");
83 MODULE_VERSION(DRV_MODULE_VERSION);
84 MODULE_FIRMWARE(FW_FILE_NAME_E1);
85 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
86 MODULE_FIRMWARE(FW_FILE_NAME_E2);
87
88 static int multi_mode = 1;
89 module_param(multi_mode, int, 0);
90 MODULE_PARM_DESC(multi_mode, " Multi queue mode "
91                              "(0 Disable; 1 Enable (default))");
92
93 int num_queues;
94 module_param(num_queues, int, 0);
95 MODULE_PARM_DESC(num_queues, " Number of queues for multi_mode=1"
96                                 " (default is as a number of CPUs)");
97
98 static int disable_tpa;
99 module_param(disable_tpa, int, 0);
100 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
101
102 static int int_mode;
103 module_param(int_mode, int, 0);
104 MODULE_PARM_DESC(int_mode, " Force interrupt mode other then MSI-X "
105                                 "(1 INT#x; 2 MSI)");
106
107 static int dropless_fc;
108 module_param(dropless_fc, int, 0);
109 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
110
111 static int poll;
112 module_param(poll, int, 0);
113 MODULE_PARM_DESC(poll, " Use polling (for debug)");
114
115 static int mrrs = -1;
116 module_param(mrrs, int, 0);
117 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
118
119 static int debug;
120 module_param(debug, int, 0);
121 MODULE_PARM_DESC(debug, " Default debug msglevel");
122
123 static struct workqueue_struct *bnx2x_wq;
124
125 #ifdef BCM_CNIC
126 static u8 ALL_ENODE_MACS[] = {0x01, 0x10, 0x18, 0x01, 0x00, 0x01};
127 #endif
128
129 enum bnx2x_board_type {
130         BCM57710 = 0,
131         BCM57711 = 1,
132         BCM57711E = 2,
133         BCM57712 = 3,
134         BCM57712E = 4
135 };
136
137 /* indexed by board_type, above */
138 static struct {
139         char *name;
140 } board_info[] __devinitdata = {
141         { "Broadcom NetXtreme II BCM57710 XGb" },
142         { "Broadcom NetXtreme II BCM57711 XGb" },
143         { "Broadcom NetXtreme II BCM57711E XGb" },
144         { "Broadcom NetXtreme II BCM57712 XGb" },
145         { "Broadcom NetXtreme II BCM57712E XGb" }
146 };
147
148 #ifndef PCI_DEVICE_ID_NX2_57712
149 #define PCI_DEVICE_ID_NX2_57712         0x1662
150 #endif
151 #ifndef PCI_DEVICE_ID_NX2_57712E
152 #define PCI_DEVICE_ID_NX2_57712E        0x1663
153 #endif
154
155 static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
156         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
157         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
158         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
159         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
160         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712E), BCM57712E },
161         { 0 }
162 };
163
164 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
165
166 /****************************************************************************
167 * General service functions
168 ****************************************************************************/
169
170 static inline void __storm_memset_dma_mapping(struct bnx2x *bp,
171                                        u32 addr, dma_addr_t mapping)
172 {
173         REG_WR(bp,  addr, U64_LO(mapping));
174         REG_WR(bp,  addr + 4, U64_HI(mapping));
175 }
176
177 static inline void __storm_memset_fill(struct bnx2x *bp,
178                                        u32 addr, size_t size, u32 val)
179 {
180         int i;
181         for (i = 0; i < size/4; i++)
182                 REG_WR(bp,  addr + (i * 4), val);
183 }
184
185 static inline void storm_memset_ustats_zero(struct bnx2x *bp,
186                                             u8 port, u16 stat_id)
187 {
188         size_t size = sizeof(struct ustorm_per_client_stats);
189
190         u32 addr = BAR_USTRORM_INTMEM +
191                         USTORM_PER_COUNTER_ID_STATS_OFFSET(port, stat_id);
192
193         __storm_memset_fill(bp, addr, size, 0);
194 }
195
196 static inline void storm_memset_tstats_zero(struct bnx2x *bp,
197                                             u8 port, u16 stat_id)
198 {
199         size_t size = sizeof(struct tstorm_per_client_stats);
200
201         u32 addr = BAR_TSTRORM_INTMEM +
202                         TSTORM_PER_COUNTER_ID_STATS_OFFSET(port, stat_id);
203
204         __storm_memset_fill(bp, addr, size, 0);
205 }
206
207 static inline void storm_memset_xstats_zero(struct bnx2x *bp,
208                                             u8 port, u16 stat_id)
209 {
210         size_t size = sizeof(struct xstorm_per_client_stats);
211
212         u32 addr = BAR_XSTRORM_INTMEM +
213                         XSTORM_PER_COUNTER_ID_STATS_OFFSET(port, stat_id);
214
215         __storm_memset_fill(bp, addr, size, 0);
216 }
217
218
219 static inline void storm_memset_spq_addr(struct bnx2x *bp,
220                                          dma_addr_t mapping, u16 abs_fid)
221 {
222         u32 addr = XSEM_REG_FAST_MEMORY +
223                         XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
224
225         __storm_memset_dma_mapping(bp, addr, mapping);
226 }
227
228 static inline void storm_memset_ov(struct bnx2x *bp, u16 ov, u16 abs_fid)
229 {
230         REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_E1HOV_OFFSET(abs_fid), ov);
231 }
232
233 static inline void storm_memset_func_cfg(struct bnx2x *bp,
234                                 struct tstorm_eth_function_common_config *tcfg,
235                                 u16 abs_fid)
236 {
237         size_t size = sizeof(struct tstorm_eth_function_common_config);
238
239         u32 addr = BAR_TSTRORM_INTMEM +
240                         TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
241
242         __storm_memset_struct(bp, addr, size, (u32 *)tcfg);
243 }
244
245 static inline void storm_memset_xstats_flags(struct bnx2x *bp,
246                                 struct stats_indication_flags *flags,
247                                 u16 abs_fid)
248 {
249         size_t size = sizeof(struct stats_indication_flags);
250
251         u32 addr = BAR_XSTRORM_INTMEM + XSTORM_STATS_FLAGS_OFFSET(abs_fid);
252
253         __storm_memset_struct(bp, addr, size, (u32 *)flags);
254 }
255
256 static inline void storm_memset_tstats_flags(struct bnx2x *bp,
257                                 struct stats_indication_flags *flags,
258                                 u16 abs_fid)
259 {
260         size_t size = sizeof(struct stats_indication_flags);
261
262         u32 addr = BAR_TSTRORM_INTMEM + TSTORM_STATS_FLAGS_OFFSET(abs_fid);
263
264         __storm_memset_struct(bp, addr, size, (u32 *)flags);
265 }
266
267 static inline void storm_memset_ustats_flags(struct bnx2x *bp,
268                                 struct stats_indication_flags *flags,
269                                 u16 abs_fid)
270 {
271         size_t size = sizeof(struct stats_indication_flags);
272
273         u32 addr = BAR_USTRORM_INTMEM + USTORM_STATS_FLAGS_OFFSET(abs_fid);
274
275         __storm_memset_struct(bp, addr, size, (u32 *)flags);
276 }
277
278 static inline void storm_memset_cstats_flags(struct bnx2x *bp,
279                                 struct stats_indication_flags *flags,
280                                 u16 abs_fid)
281 {
282         size_t size = sizeof(struct stats_indication_flags);
283
284         u32 addr = BAR_CSTRORM_INTMEM + CSTORM_STATS_FLAGS_OFFSET(abs_fid);
285
286         __storm_memset_struct(bp, addr, size, (u32 *)flags);
287 }
288
289 static inline void storm_memset_xstats_addr(struct bnx2x *bp,
290                                            dma_addr_t mapping, u16 abs_fid)
291 {
292         u32 addr = BAR_XSTRORM_INTMEM +
293                 XSTORM_ETH_STATS_QUERY_ADDR_OFFSET(abs_fid);
294
295         __storm_memset_dma_mapping(bp, addr, mapping);
296 }
297
298 static inline void storm_memset_tstats_addr(struct bnx2x *bp,
299                                            dma_addr_t mapping, u16 abs_fid)
300 {
301         u32 addr = BAR_TSTRORM_INTMEM +
302                 TSTORM_ETH_STATS_QUERY_ADDR_OFFSET(abs_fid);
303
304         __storm_memset_dma_mapping(bp, addr, mapping);
305 }
306
307 static inline void storm_memset_ustats_addr(struct bnx2x *bp,
308                                            dma_addr_t mapping, u16 abs_fid)
309 {
310         u32 addr = BAR_USTRORM_INTMEM +
311                 USTORM_ETH_STATS_QUERY_ADDR_OFFSET(abs_fid);
312
313         __storm_memset_dma_mapping(bp, addr, mapping);
314 }
315
316 static inline void storm_memset_cstats_addr(struct bnx2x *bp,
317                                            dma_addr_t mapping, u16 abs_fid)
318 {
319         u32 addr = BAR_CSTRORM_INTMEM +
320                 CSTORM_ETH_STATS_QUERY_ADDR_OFFSET(abs_fid);
321
322         __storm_memset_dma_mapping(bp, addr, mapping);
323 }
324
325 static inline void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
326                                          u16 pf_id)
327 {
328         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
329                 pf_id);
330         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
331                 pf_id);
332         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
333                 pf_id);
334         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
335                 pf_id);
336 }
337
338 static inline void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
339                                         u8 enable)
340 {
341         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
342                 enable);
343         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
344                 enable);
345         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
346                 enable);
347         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
348                 enable);
349 }
350
351 static inline void storm_memset_eq_data(struct bnx2x *bp,
352                                 struct event_ring_data *eq_data,
353                                 u16 pfid)
354 {
355         size_t size = sizeof(struct event_ring_data);
356
357         u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
358
359         __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
360 }
361
362 static inline void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
363                                         u16 pfid)
364 {
365         u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
366         REG_WR16(bp, addr, eq_prod);
367 }
368
369 static inline void storm_memset_hc_timeout(struct bnx2x *bp, u8 port,
370                                              u16 fw_sb_id, u8 sb_index,
371                                              u8 ticks)
372 {
373
374         int index_offset = CHIP_IS_E2(bp) ?
375                 offsetof(struct hc_status_block_data_e2, index_data) :
376                 offsetof(struct hc_status_block_data_e1x, index_data);
377         u32 addr = BAR_CSTRORM_INTMEM +
378                         CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
379                         index_offset +
380                         sizeof(struct hc_index_data)*sb_index +
381                         offsetof(struct hc_index_data, timeout);
382         REG_WR8(bp, addr, ticks);
383         DP(NETIF_MSG_HW, "port %x fw_sb_id %d sb_index %d ticks %d\n",
384                           port, fw_sb_id, sb_index, ticks);
385 }
386 static inline void storm_memset_hc_disable(struct bnx2x *bp, u8 port,
387                                              u16 fw_sb_id, u8 sb_index,
388                                              u8 disable)
389 {
390         u32 enable_flag = disable ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
391         int index_offset = CHIP_IS_E2(bp) ?
392                 offsetof(struct hc_status_block_data_e2, index_data) :
393                 offsetof(struct hc_status_block_data_e1x, index_data);
394         u32 addr = BAR_CSTRORM_INTMEM +
395                         CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
396                         index_offset +
397                         sizeof(struct hc_index_data)*sb_index +
398                         offsetof(struct hc_index_data, flags);
399         u16 flags = REG_RD16(bp, addr);
400         /* clear and set */
401         flags &= ~HC_INDEX_DATA_HC_ENABLED;
402         flags |= enable_flag;
403         REG_WR16(bp, addr, flags);
404         DP(NETIF_MSG_HW, "port %x fw_sb_id %d sb_index %d disable %d\n",
405                           port, fw_sb_id, sb_index, disable);
406 }
407
408 /* used only at init
409  * locking is done by mcp
410  */
411 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
412 {
413         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
414         pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
415         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
416                                PCICFG_VENDOR_ID_OFFSET);
417 }
418
419 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
420 {
421         u32 val;
422
423         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
424         pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
425         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
426                                PCICFG_VENDOR_ID_OFFSET);
427
428         return val;
429 }
430
431 #define DMAE_DP_SRC_GRC         "grc src_addr [%08x]"
432 #define DMAE_DP_SRC_PCI         "pci src_addr [%x:%08x]"
433 #define DMAE_DP_DST_GRC         "grc dst_addr [%08x]"
434 #define DMAE_DP_DST_PCI         "pci dst_addr [%x:%08x]"
435 #define DMAE_DP_DST_NONE        "dst_addr [none]"
436
437 static void bnx2x_dp_dmae(struct bnx2x *bp, struct dmae_command *dmae,
438                           int msglvl)
439 {
440         u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
441
442         switch (dmae->opcode & DMAE_COMMAND_DST) {
443         case DMAE_CMD_DST_PCI:
444                 if (src_type == DMAE_CMD_SRC_PCI)
445                         DP(msglvl, "DMAE: opcode 0x%08x\n"
446                            "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
447                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
448                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
449                            dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
450                            dmae->comp_addr_hi, dmae->comp_addr_lo,
451                            dmae->comp_val);
452                 else
453                         DP(msglvl, "DMAE: opcode 0x%08x\n"
454                            "src [%08x], len [%d*4], dst [%x:%08x]\n"
455                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
456                            dmae->opcode, dmae->src_addr_lo >> 2,
457                            dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
458                            dmae->comp_addr_hi, dmae->comp_addr_lo,
459                            dmae->comp_val);
460                 break;
461         case DMAE_CMD_DST_GRC:
462                 if (src_type == DMAE_CMD_SRC_PCI)
463                         DP(msglvl, "DMAE: opcode 0x%08x\n"
464                            "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
465                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
466                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
467                            dmae->len, dmae->dst_addr_lo >> 2,
468                            dmae->comp_addr_hi, dmae->comp_addr_lo,
469                            dmae->comp_val);
470                 else
471                         DP(msglvl, "DMAE: opcode 0x%08x\n"
472                            "src [%08x], len [%d*4], dst [%08x]\n"
473                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
474                            dmae->opcode, dmae->src_addr_lo >> 2,
475                            dmae->len, dmae->dst_addr_lo >> 2,
476                            dmae->comp_addr_hi, dmae->comp_addr_lo,
477                            dmae->comp_val);
478                 break;
479         default:
480                 if (src_type == DMAE_CMD_SRC_PCI)
481                         DP(msglvl, "DMAE: opcode 0x%08x\n"
482                            DP_LEVEL "src_addr [%x:%08x]  len [%d * 4]  "
483                                     "dst_addr [none]\n"
484                            DP_LEVEL "comp_addr [%x:%08x]  comp_val 0x%08x\n",
485                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
486                            dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
487                            dmae->comp_val);
488                 else
489                         DP(msglvl, "DMAE: opcode 0x%08x\n"
490                            DP_LEVEL "src_addr [%08x]  len [%d * 4]  "
491                                     "dst_addr [none]\n"
492                            DP_LEVEL "comp_addr [%x:%08x]  comp_val 0x%08x\n",
493                            dmae->opcode, dmae->src_addr_lo >> 2,
494                            dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
495                            dmae->comp_val);
496                 break;
497         }
498
499 }
500
501 const u32 dmae_reg_go_c[] = {
502         DMAE_REG_GO_C0, DMAE_REG_GO_C1, DMAE_REG_GO_C2, DMAE_REG_GO_C3,
503         DMAE_REG_GO_C4, DMAE_REG_GO_C5, DMAE_REG_GO_C6, DMAE_REG_GO_C7,
504         DMAE_REG_GO_C8, DMAE_REG_GO_C9, DMAE_REG_GO_C10, DMAE_REG_GO_C11,
505         DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15
506 };
507
508 /* copy command into DMAE command memory and set DMAE command go */
509 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
510 {
511         u32 cmd_offset;
512         int i;
513
514         cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
515         for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
516                 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
517
518                 DP(BNX2X_MSG_OFF, "DMAE cmd[%d].%d (0x%08x) : 0x%08x\n",
519                    idx, i, cmd_offset + i*4, *(((u32 *)dmae) + i));
520         }
521         REG_WR(bp, dmae_reg_go_c[idx], 1);
522 }
523
524 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
525 {
526         return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
527                            DMAE_CMD_C_ENABLE);
528 }
529
530 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
531 {
532         return opcode & ~DMAE_CMD_SRC_RESET;
533 }
534
535 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
536                              bool with_comp, u8 comp_type)
537 {
538         u32 opcode = 0;
539
540         opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
541                    (dst_type << DMAE_COMMAND_DST_SHIFT));
542
543         opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
544
545         opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
546         opcode |= ((BP_E1HVN(bp) << DMAE_CMD_E1HVN_SHIFT) |
547                    (BP_E1HVN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
548         opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
549
550 #ifdef __BIG_ENDIAN
551         opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
552 #else
553         opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
554 #endif
555         if (with_comp)
556                 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
557         return opcode;
558 }
559
560 static void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
561                                       struct dmae_command *dmae,
562                                       u8 src_type, u8 dst_type)
563 {
564         memset(dmae, 0, sizeof(struct dmae_command));
565
566         /* set the opcode */
567         dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
568                                          true, DMAE_COMP_PCI);
569
570         /* fill in the completion parameters */
571         dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
572         dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
573         dmae->comp_val = DMAE_COMP_VAL;
574 }
575
576 /* issue a dmae command over the init-channel and wailt for completion */
577 static int bnx2x_issue_dmae_with_comp(struct bnx2x *bp,
578                                       struct dmae_command *dmae)
579 {
580         u32 *wb_comp = bnx2x_sp(bp, wb_comp);
581         int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 40;
582         int rc = 0;
583
584         DP(BNX2X_MSG_OFF, "data before [0x%08x 0x%08x 0x%08x 0x%08x]\n",
585            bp->slowpath->wb_data[0], bp->slowpath->wb_data[1],
586            bp->slowpath->wb_data[2], bp->slowpath->wb_data[3]);
587
588         /* lock the dmae channel */
589         mutex_lock(&bp->dmae_mutex);
590
591         /* reset completion */
592         *wb_comp = 0;
593
594         /* post the command on the channel used for initializations */
595         bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
596
597         /* wait for completion */
598         udelay(5);
599         while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
600                 DP(BNX2X_MSG_OFF, "wb_comp 0x%08x\n", *wb_comp);
601
602                 if (!cnt) {
603                         BNX2X_ERR("DMAE timeout!\n");
604                         rc = DMAE_TIMEOUT;
605                         goto unlock;
606                 }
607                 cnt--;
608                 udelay(50);
609         }
610         if (*wb_comp & DMAE_PCI_ERR_FLAG) {
611                 BNX2X_ERR("DMAE PCI error!\n");
612                 rc = DMAE_PCI_ERROR;
613         }
614
615         DP(BNX2X_MSG_OFF, "data after [0x%08x 0x%08x 0x%08x 0x%08x]\n",
616            bp->slowpath->wb_data[0], bp->slowpath->wb_data[1],
617            bp->slowpath->wb_data[2], bp->slowpath->wb_data[3]);
618
619 unlock:
620         mutex_unlock(&bp->dmae_mutex);
621         return rc;
622 }
623
624 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
625                       u32 len32)
626 {
627         struct dmae_command dmae;
628
629         if (!bp->dmae_ready) {
630                 u32 *data = bnx2x_sp(bp, wb_data[0]);
631
632                 DP(BNX2X_MSG_OFF, "DMAE is not ready (dst_addr %08x  len32 %d)"
633                    "  using indirect\n", dst_addr, len32);
634                 bnx2x_init_ind_wr(bp, dst_addr, data, len32);
635                 return;
636         }
637
638         /* set opcode and fixed command fields */
639         bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
640
641         /* fill in addresses and len */
642         dmae.src_addr_lo = U64_LO(dma_addr);
643         dmae.src_addr_hi = U64_HI(dma_addr);
644         dmae.dst_addr_lo = dst_addr >> 2;
645         dmae.dst_addr_hi = 0;
646         dmae.len = len32;
647
648         bnx2x_dp_dmae(bp, &dmae, BNX2X_MSG_OFF);
649
650         /* issue the command and wait for completion */
651         bnx2x_issue_dmae_with_comp(bp, &dmae);
652 }
653
654 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
655 {
656         struct dmae_command dmae;
657
658         if (!bp->dmae_ready) {
659                 u32 *data = bnx2x_sp(bp, wb_data[0]);
660                 int i;
661
662                 DP(BNX2X_MSG_OFF, "DMAE is not ready (src_addr %08x  len32 %d)"
663                    "  using indirect\n", src_addr, len32);
664                 for (i = 0; i < len32; i++)
665                         data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
666                 return;
667         }
668
669         /* set opcode and fixed command fields */
670         bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
671
672         /* fill in addresses and len */
673         dmae.src_addr_lo = src_addr >> 2;
674         dmae.src_addr_hi = 0;
675         dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
676         dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
677         dmae.len = len32;
678
679         bnx2x_dp_dmae(bp, &dmae, BNX2X_MSG_OFF);
680
681         /* issue the command and wait for completion */
682         bnx2x_issue_dmae_with_comp(bp, &dmae);
683 }
684
685 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
686                                       u32 addr, u32 len)
687 {
688         int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
689         int offset = 0;
690
691         while (len > dmae_wr_max) {
692                 bnx2x_write_dmae(bp, phys_addr + offset,
693                                  addr + offset, dmae_wr_max);
694                 offset += dmae_wr_max * 4;
695                 len -= dmae_wr_max;
696         }
697
698         bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
699 }
700
701 /* used only for slowpath so not inlined */
702 static void bnx2x_wb_wr(struct bnx2x *bp, int reg, u32 val_hi, u32 val_lo)
703 {
704         u32 wb_write[2];
705
706         wb_write[0] = val_hi;
707         wb_write[1] = val_lo;
708         REG_WR_DMAE(bp, reg, wb_write, 2);
709 }
710
711 #ifdef USE_WB_RD
712 static u64 bnx2x_wb_rd(struct bnx2x *bp, int reg)
713 {
714         u32 wb_data[2];
715
716         REG_RD_DMAE(bp, reg, wb_data, 2);
717
718         return HILO_U64(wb_data[0], wb_data[1]);
719 }
720 #endif
721
722 static int bnx2x_mc_assert(struct bnx2x *bp)
723 {
724         char last_idx;
725         int i, rc = 0;
726         u32 row0, row1, row2, row3;
727
728         /* XSTORM */
729         last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
730                            XSTORM_ASSERT_LIST_INDEX_OFFSET);
731         if (last_idx)
732                 BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
733
734         /* print the asserts */
735         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
736
737                 row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
738                               XSTORM_ASSERT_LIST_OFFSET(i));
739                 row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
740                               XSTORM_ASSERT_LIST_OFFSET(i) + 4);
741                 row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
742                               XSTORM_ASSERT_LIST_OFFSET(i) + 8);
743                 row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
744                               XSTORM_ASSERT_LIST_OFFSET(i) + 12);
745
746                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
747                         BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x"
748                                   " 0x%08x 0x%08x 0x%08x\n",
749                                   i, row3, row2, row1, row0);
750                         rc++;
751                 } else {
752                         break;
753                 }
754         }
755
756         /* TSTORM */
757         last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
758                            TSTORM_ASSERT_LIST_INDEX_OFFSET);
759         if (last_idx)
760                 BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
761
762         /* print the asserts */
763         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
764
765                 row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
766                               TSTORM_ASSERT_LIST_OFFSET(i));
767                 row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
768                               TSTORM_ASSERT_LIST_OFFSET(i) + 4);
769                 row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
770                               TSTORM_ASSERT_LIST_OFFSET(i) + 8);
771                 row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
772                               TSTORM_ASSERT_LIST_OFFSET(i) + 12);
773
774                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
775                         BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x"
776                                   " 0x%08x 0x%08x 0x%08x\n",
777                                   i, row3, row2, row1, row0);
778                         rc++;
779                 } else {
780                         break;
781                 }
782         }
783
784         /* CSTORM */
785         last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
786                            CSTORM_ASSERT_LIST_INDEX_OFFSET);
787         if (last_idx)
788                 BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
789
790         /* print the asserts */
791         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
792
793                 row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
794                               CSTORM_ASSERT_LIST_OFFSET(i));
795                 row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
796                               CSTORM_ASSERT_LIST_OFFSET(i) + 4);
797                 row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
798                               CSTORM_ASSERT_LIST_OFFSET(i) + 8);
799                 row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
800                               CSTORM_ASSERT_LIST_OFFSET(i) + 12);
801
802                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
803                         BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x"
804                                   " 0x%08x 0x%08x 0x%08x\n",
805                                   i, row3, row2, row1, row0);
806                         rc++;
807                 } else {
808                         break;
809                 }
810         }
811
812         /* USTORM */
813         last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
814                            USTORM_ASSERT_LIST_INDEX_OFFSET);
815         if (last_idx)
816                 BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
817
818         /* print the asserts */
819         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
820
821                 row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
822                               USTORM_ASSERT_LIST_OFFSET(i));
823                 row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
824                               USTORM_ASSERT_LIST_OFFSET(i) + 4);
825                 row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
826                               USTORM_ASSERT_LIST_OFFSET(i) + 8);
827                 row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
828                               USTORM_ASSERT_LIST_OFFSET(i) + 12);
829
830                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
831                         BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x"
832                                   " 0x%08x 0x%08x 0x%08x\n",
833                                   i, row3, row2, row1, row0);
834                         rc++;
835                 } else {
836                         break;
837                 }
838         }
839
840         return rc;
841 }
842
843 static void bnx2x_fw_dump(struct bnx2x *bp)
844 {
845         u32 addr;
846         u32 mark, offset;
847         __be32 data[9];
848         int word;
849         u32 trace_shmem_base;
850         if (BP_NOMCP(bp)) {
851                 BNX2X_ERR("NO MCP - can not dump\n");
852                 return;
853         }
854
855         if (BP_PATH(bp) == 0)
856                 trace_shmem_base = bp->common.shmem_base;
857         else
858                 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
859         addr = trace_shmem_base - 0x0800 + 4;
860         mark = REG_RD(bp, addr);
861         mark = (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH)
862                         + ((mark + 0x3) & ~0x3) - 0x08000000;
863         pr_err("begin fw dump (mark 0x%x)\n", mark);
864
865         pr_err("");
866         for (offset = mark; offset <= trace_shmem_base; offset += 0x8*4) {
867                 for (word = 0; word < 8; word++)
868                         data[word] = htonl(REG_RD(bp, offset + 4*word));
869                 data[8] = 0x0;
870                 pr_cont("%s", (char *)data);
871         }
872         for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
873                 for (word = 0; word < 8; word++)
874                         data[word] = htonl(REG_RD(bp, offset + 4*word));
875                 data[8] = 0x0;
876                 pr_cont("%s", (char *)data);
877         }
878         pr_err("end of fw dump\n");
879 }
880
881 void bnx2x_panic_dump(struct bnx2x *bp)
882 {
883         int i;
884         u16 j;
885         struct hc_sp_status_block_data sp_sb_data;
886         int func = BP_FUNC(bp);
887 #ifdef BNX2X_STOP_ON_ERROR
888         u16 start = 0, end = 0;
889 #endif
890
891         bp->stats_state = STATS_STATE_DISABLED;
892         DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
893
894         BNX2X_ERR("begin crash dump -----------------\n");
895
896         /* Indices */
897         /* Common */
898         BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)"
899                   "  spq_prod_idx(0x%x)\n",
900                   bp->def_idx, bp->def_att_idx,
901                   bp->attn_state, bp->spq_prod_idx);
902         BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
903                   bp->def_status_blk->atten_status_block.attn_bits,
904                   bp->def_status_blk->atten_status_block.attn_bits_ack,
905                   bp->def_status_blk->atten_status_block.status_block_id,
906                   bp->def_status_blk->atten_status_block.attn_bits_index);
907         BNX2X_ERR("     def (");
908         for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
909                 pr_cont("0x%x%s",
910                        bp->def_status_blk->sp_sb.index_values[i],
911                        (i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
912
913         for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
914                 *((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
915                         CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
916                         i*sizeof(u32));
917
918         pr_cont("igu_sb_id(0x%x)  igu_seg_id (0x%x) "
919                          "pf_id(0x%x)  vnic_id(0x%x)  "
920                          "vf_id(0x%x)  vf_valid (0x%x)\n",
921                sp_sb_data.igu_sb_id,
922                sp_sb_data.igu_seg_id,
923                sp_sb_data.p_func.pf_id,
924                sp_sb_data.p_func.vnic_id,
925                sp_sb_data.p_func.vf_id,
926                sp_sb_data.p_func.vf_valid);
927
928
929         for_each_eth_queue(bp, i) {
930                 struct bnx2x_fastpath *fp = &bp->fp[i];
931                 int loop;
932                 struct hc_status_block_data_e2 sb_data_e2;
933                 struct hc_status_block_data_e1x sb_data_e1x;
934                 struct hc_status_block_sm  *hc_sm_p =
935                         CHIP_IS_E2(bp) ?
936                         sb_data_e2.common.state_machine :
937                         sb_data_e1x.common.state_machine;
938                 struct hc_index_data *hc_index_p =
939                         CHIP_IS_E2(bp) ?
940                         sb_data_e2.index_data :
941                         sb_data_e1x.index_data;
942                 int data_size;
943                 u32 *sb_data_p;
944
945                 /* Rx */
946                 BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)"
947                           "  rx_comp_prod(0x%x)"
948                           "  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
949                           i, fp->rx_bd_prod, fp->rx_bd_cons,
950                           fp->rx_comp_prod,
951                           fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
952                 BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)"
953                           "  fp_hc_idx(0x%x)\n",
954                           fp->rx_sge_prod, fp->last_max_sge,
955                           le16_to_cpu(fp->fp_hc_idx));
956
957                 /* Tx */
958                 BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)"
959                           "  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)"
960                           "  *tx_cons_sb(0x%x)\n",
961                           i, fp->tx_pkt_prod, fp->tx_pkt_cons, fp->tx_bd_prod,
962                           fp->tx_bd_cons, le16_to_cpu(*fp->tx_cons_sb));
963
964                 loop = CHIP_IS_E2(bp) ?
965                         HC_SB_MAX_INDICES_E2 : HC_SB_MAX_INDICES_E1X;
966
967                 /* host sb data */
968
969 #ifdef BCM_CNIC
970                 if (IS_FCOE_FP(fp))
971                         continue;
972 #endif
973                 BNX2X_ERR("     run indexes (");
974                 for (j = 0; j < HC_SB_MAX_SM; j++)
975                         pr_cont("0x%x%s",
976                                fp->sb_running_index[j],
977                                (j == HC_SB_MAX_SM - 1) ? ")" : " ");
978
979                 BNX2X_ERR("     indexes (");
980                 for (j = 0; j < loop; j++)
981                         pr_cont("0x%x%s",
982                                fp->sb_index_values[j],
983                                (j == loop - 1) ? ")" : " ");
984                 /* fw sb data */
985                 data_size = CHIP_IS_E2(bp) ?
986                         sizeof(struct hc_status_block_data_e2) :
987                         sizeof(struct hc_status_block_data_e1x);
988                 data_size /= sizeof(u32);
989                 sb_data_p = CHIP_IS_E2(bp) ?
990                         (u32 *)&sb_data_e2 :
991                         (u32 *)&sb_data_e1x;
992                 /* copy sb data in here */
993                 for (j = 0; j < data_size; j++)
994                         *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
995                                 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
996                                 j * sizeof(u32));
997
998                 if (CHIP_IS_E2(bp)) {
999                         pr_cont("pf_id(0x%x)  vf_id (0x%x)  vf_valid(0x%x) "
1000                                 "vnic_id(0x%x)  same_igu_sb_1b(0x%x)\n",
1001                                 sb_data_e2.common.p_func.pf_id,
1002                                 sb_data_e2.common.p_func.vf_id,
1003                                 sb_data_e2.common.p_func.vf_valid,
1004                                 sb_data_e2.common.p_func.vnic_id,
1005                                 sb_data_e2.common.same_igu_sb_1b);
1006                 } else {
1007                         pr_cont("pf_id(0x%x)  vf_id (0x%x)  vf_valid(0x%x) "
1008                                 "vnic_id(0x%x)  same_igu_sb_1b(0x%x)\n",
1009                                 sb_data_e1x.common.p_func.pf_id,
1010                                 sb_data_e1x.common.p_func.vf_id,
1011                                 sb_data_e1x.common.p_func.vf_valid,
1012                                 sb_data_e1x.common.p_func.vnic_id,
1013                                 sb_data_e1x.common.same_igu_sb_1b);
1014                 }
1015
1016                 /* SB_SMs data */
1017                 for (j = 0; j < HC_SB_MAX_SM; j++) {
1018                         pr_cont("SM[%d] __flags (0x%x) "
1019                                "igu_sb_id (0x%x)  igu_seg_id(0x%x) "
1020                                "time_to_expire (0x%x) "
1021                                "timer_value(0x%x)\n", j,
1022                                hc_sm_p[j].__flags,
1023                                hc_sm_p[j].igu_sb_id,
1024                                hc_sm_p[j].igu_seg_id,
1025                                hc_sm_p[j].time_to_expire,
1026                                hc_sm_p[j].timer_value);
1027                 }
1028
1029                 /* Indecies data */
1030                 for (j = 0; j < loop; j++) {
1031                         pr_cont("INDEX[%d] flags (0x%x) "
1032                                          "timeout (0x%x)\n", j,
1033                                hc_index_p[j].flags,
1034                                hc_index_p[j].timeout);
1035                 }
1036         }
1037
1038 #ifdef BNX2X_STOP_ON_ERROR
1039         /* Rings */
1040         /* Rx */
1041         for_each_rx_queue(bp, i) {
1042                 struct bnx2x_fastpath *fp = &bp->fp[i];
1043
1044                 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1045                 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1046                 for (j = start; j != end; j = RX_BD(j + 1)) {
1047                         u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1048                         struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1049
1050                         BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1051                                   i, j, rx_bd[1], rx_bd[0], sw_bd->skb);
1052                 }
1053
1054                 start = RX_SGE(fp->rx_sge_prod);
1055                 end = RX_SGE(fp->last_max_sge);
1056                 for (j = start; j != end; j = RX_SGE(j + 1)) {
1057                         u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1058                         struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1059
1060                         BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1061                                   i, j, rx_sge[1], rx_sge[0], sw_page->page);
1062                 }
1063
1064                 start = RCQ_BD(fp->rx_comp_cons - 10);
1065                 end = RCQ_BD(fp->rx_comp_cons + 503);
1066                 for (j = start; j != end; j = RCQ_BD(j + 1)) {
1067                         u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1068
1069                         BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1070                                   i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1071                 }
1072         }
1073
1074         /* Tx */
1075         for_each_tx_queue(bp, i) {
1076                 struct bnx2x_fastpath *fp = &bp->fp[i];
1077
1078                 start = TX_BD(le16_to_cpu(*fp->tx_cons_sb) - 10);
1079                 end = TX_BD(le16_to_cpu(*fp->tx_cons_sb) + 245);
1080                 for (j = start; j != end; j = TX_BD(j + 1)) {
1081                         struct sw_tx_bd *sw_bd = &fp->tx_buf_ring[j];
1082
1083                         BNX2X_ERR("fp%d: packet[%x]=[%p,%x]\n",
1084                                   i, j, sw_bd->skb, sw_bd->first_bd);
1085                 }
1086
1087                 start = TX_BD(fp->tx_bd_cons - 10);
1088                 end = TX_BD(fp->tx_bd_cons + 254);
1089                 for (j = start; j != end; j = TX_BD(j + 1)) {
1090                         u32 *tx_bd = (u32 *)&fp->tx_desc_ring[j];
1091
1092                         BNX2X_ERR("fp%d: tx_bd[%x]=[%x:%x:%x:%x]\n",
1093                                   i, j, tx_bd[0], tx_bd[1], tx_bd[2], tx_bd[3]);
1094                 }
1095         }
1096 #endif
1097         bnx2x_fw_dump(bp);
1098         bnx2x_mc_assert(bp);
1099         BNX2X_ERR("end crash dump -----------------\n");
1100 }
1101
1102 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1103 {
1104         int port = BP_PORT(bp);
1105         u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1106         u32 val = REG_RD(bp, addr);
1107         int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1108         int msi = (bp->flags & USING_MSI_FLAG) ? 1 : 0;
1109
1110         if (msix) {
1111                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1112                          HC_CONFIG_0_REG_INT_LINE_EN_0);
1113                 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1114                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1115         } else if (msi) {
1116                 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1117                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1118                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1119                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1120         } else {
1121                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1122                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1123                         HC_CONFIG_0_REG_INT_LINE_EN_0 |
1124                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1125
1126                 if (!CHIP_IS_E1(bp)) {
1127                         DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x)\n",
1128                            val, port, addr);
1129
1130                         REG_WR(bp, addr, val);
1131
1132                         val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1133                 }
1134         }
1135
1136         if (CHIP_IS_E1(bp))
1137                 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1138
1139         DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x)  mode %s\n",
1140            val, port, addr, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1141
1142         REG_WR(bp, addr, val);
1143         /*
1144          * Ensure that HC_CONFIG is written before leading/trailing edge config
1145          */
1146         mmiowb();
1147         barrier();
1148
1149         if (!CHIP_IS_E1(bp)) {
1150                 /* init leading/trailing edge */
1151                 if (IS_MF(bp)) {
1152                         val = (0xee0f | (1 << (BP_E1HVN(bp) + 4)));
1153                         if (bp->port.pmf)
1154                                 /* enable nig and gpio3 attention */
1155                                 val |= 0x1100;
1156                 } else
1157                         val = 0xffff;
1158
1159                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1160                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1161         }
1162
1163         /* Make sure that interrupts are indeed enabled from here on */
1164         mmiowb();
1165 }
1166
1167 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1168 {
1169         u32 val;
1170         int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1171         int msi = (bp->flags & USING_MSI_FLAG) ? 1 : 0;
1172
1173         val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1174
1175         if (msix) {
1176                 val &= ~(IGU_PF_CONF_INT_LINE_EN |
1177                          IGU_PF_CONF_SINGLE_ISR_EN);
1178                 val |= (IGU_PF_CONF_FUNC_EN |
1179                         IGU_PF_CONF_MSI_MSIX_EN |
1180                         IGU_PF_CONF_ATTN_BIT_EN);
1181         } else if (msi) {
1182                 val &= ~IGU_PF_CONF_INT_LINE_EN;
1183                 val |= (IGU_PF_CONF_FUNC_EN |
1184                         IGU_PF_CONF_MSI_MSIX_EN |
1185                         IGU_PF_CONF_ATTN_BIT_EN |
1186                         IGU_PF_CONF_SINGLE_ISR_EN);
1187         } else {
1188                 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1189                 val |= (IGU_PF_CONF_FUNC_EN |
1190                         IGU_PF_CONF_INT_LINE_EN |
1191                         IGU_PF_CONF_ATTN_BIT_EN |
1192                         IGU_PF_CONF_SINGLE_ISR_EN);
1193         }
1194
1195         DP(NETIF_MSG_INTR, "write 0x%x to IGU  mode %s\n",
1196            val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1197
1198         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1199
1200         barrier();
1201
1202         /* init leading/trailing edge */
1203         if (IS_MF(bp)) {
1204                 val = (0xee0f | (1 << (BP_E1HVN(bp) + 4)));
1205                 if (bp->port.pmf)
1206                         /* enable nig and gpio3 attention */
1207                         val |= 0x1100;
1208         } else
1209                 val = 0xffff;
1210
1211         REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1212         REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1213
1214         /* Make sure that interrupts are indeed enabled from here on */
1215         mmiowb();
1216 }
1217
1218 void bnx2x_int_enable(struct bnx2x *bp)
1219 {
1220         if (bp->common.int_block == INT_BLOCK_HC)
1221                 bnx2x_hc_int_enable(bp);
1222         else
1223                 bnx2x_igu_int_enable(bp);
1224 }
1225
1226 static void bnx2x_hc_int_disable(struct bnx2x *bp)
1227 {
1228         int port = BP_PORT(bp);
1229         u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1230         u32 val = REG_RD(bp, addr);
1231
1232         /*
1233          * in E1 we must use only PCI configuration space to disable
1234          * MSI/MSIX capablility
1235          * It's forbitten to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
1236          */
1237         if (CHIP_IS_E1(bp)) {
1238                 /*  Since IGU_PF_CONF_MSI_MSIX_EN still always on
1239                  *  Use mask register to prevent from HC sending interrupts
1240                  *  after we exit the function
1241                  */
1242                 REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
1243
1244                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1245                          HC_CONFIG_0_REG_INT_LINE_EN_0 |
1246                          HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1247         } else
1248                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1249                          HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1250                          HC_CONFIG_0_REG_INT_LINE_EN_0 |
1251                          HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1252
1253         DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x)\n",
1254            val, port, addr);
1255
1256         /* flush all outstanding writes */
1257         mmiowb();
1258
1259         REG_WR(bp, addr, val);
1260         if (REG_RD(bp, addr) != val)
1261                 BNX2X_ERR("BUG! proper val not read from IGU!\n");
1262 }
1263
1264 static void bnx2x_igu_int_disable(struct bnx2x *bp)
1265 {
1266         u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1267
1268         val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
1269                  IGU_PF_CONF_INT_LINE_EN |
1270                  IGU_PF_CONF_ATTN_BIT_EN);
1271
1272         DP(NETIF_MSG_INTR, "write %x to IGU\n", val);
1273
1274         /* flush all outstanding writes */
1275         mmiowb();
1276
1277         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1278         if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
1279                 BNX2X_ERR("BUG! proper val not read from IGU!\n");
1280 }
1281
1282 static void bnx2x_int_disable(struct bnx2x *bp)
1283 {
1284         if (bp->common.int_block == INT_BLOCK_HC)
1285                 bnx2x_hc_int_disable(bp);
1286         else
1287                 bnx2x_igu_int_disable(bp);
1288 }
1289
1290 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1291 {
1292         int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1293         int i, offset;
1294
1295         /* disable interrupt handling */
1296         atomic_inc(&bp->intr_sem);
1297         smp_wmb(); /* Ensure that bp->intr_sem update is SMP-safe */
1298
1299         if (disable_hw)
1300                 /* prevent the HW from sending interrupts */
1301                 bnx2x_int_disable(bp);
1302
1303         /* make sure all ISRs are done */
1304         if (msix) {
1305                 synchronize_irq(bp->msix_table[0].vector);
1306                 offset = 1;
1307 #ifdef BCM_CNIC
1308                 offset++;
1309 #endif
1310                 for_each_eth_queue(bp, i)
1311                         synchronize_irq(bp->msix_table[i + offset].vector);
1312         } else
1313                 synchronize_irq(bp->pdev->irq);
1314
1315         /* make sure sp_task is not running */
1316         cancel_delayed_work(&bp->sp_task);
1317         flush_workqueue(bnx2x_wq);
1318 }
1319
1320 /* fast path */
1321
1322 /*
1323  * General service functions
1324  */
1325
1326 /* Return true if succeeded to acquire the lock */
1327 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1328 {
1329         u32 lock_status;
1330         u32 resource_bit = (1 << resource);
1331         int func = BP_FUNC(bp);
1332         u32 hw_lock_control_reg;
1333
1334         DP(NETIF_MSG_HW, "Trying to take a lock on resource %d\n", resource);
1335
1336         /* Validating that the resource is within range */
1337         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1338                 DP(NETIF_MSG_HW,
1339                    "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1340                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1341                 return false;
1342         }
1343
1344         if (func <= 5)
1345                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1346         else
1347                 hw_lock_control_reg =
1348                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1349
1350         /* Try to acquire the lock */
1351         REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1352         lock_status = REG_RD(bp, hw_lock_control_reg);
1353         if (lock_status & resource_bit)
1354                 return true;
1355
1356         DP(NETIF_MSG_HW, "Failed to get a lock on resource %d\n", resource);
1357         return false;
1358 }
1359
1360 #ifdef BCM_CNIC
1361 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid);
1362 #endif
1363
1364 void bnx2x_sp_event(struct bnx2x_fastpath *fp,
1365                            union eth_rx_cqe *rr_cqe)
1366 {
1367         struct bnx2x *bp = fp->bp;
1368         int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1369         int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1370
1371         DP(BNX2X_MSG_SP,
1372            "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1373            fp->index, cid, command, bp->state,
1374            rr_cqe->ramrod_cqe.ramrod_type);
1375
1376         switch (command | fp->state) {
1377         case (RAMROD_CMD_ID_ETH_CLIENT_SETUP | BNX2X_FP_STATE_OPENING):
1378                 DP(NETIF_MSG_IFUP, "got MULTI[%d] setup ramrod\n", cid);
1379                 fp->state = BNX2X_FP_STATE_OPEN;
1380                 break;
1381
1382         case (RAMROD_CMD_ID_ETH_HALT | BNX2X_FP_STATE_HALTING):
1383                 DP(NETIF_MSG_IFDOWN, "got MULTI[%d] halt ramrod\n", cid);
1384                 fp->state = BNX2X_FP_STATE_HALTED;
1385                 break;
1386
1387         case (RAMROD_CMD_ID_ETH_TERMINATE | BNX2X_FP_STATE_TERMINATING):
1388                 DP(NETIF_MSG_IFDOWN, "got MULTI[%d] teminate ramrod\n", cid);
1389                 fp->state = BNX2X_FP_STATE_TERMINATED;
1390                 break;
1391
1392         default:
1393                 BNX2X_ERR("unexpected MC reply (%d)  "
1394                           "fp[%d] state is %x\n",
1395                           command, fp->index, fp->state);
1396                 break;
1397         }
1398
1399         smp_mb__before_atomic_inc();
1400         atomic_inc(&bp->spq_left);
1401         /* push the change in fp->state and towards the memory */
1402         smp_wmb();
1403
1404         return;
1405 }
1406
1407 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1408 {
1409         struct bnx2x *bp = netdev_priv(dev_instance);
1410         u16 status = bnx2x_ack_int(bp);
1411         u16 mask;
1412         int i;
1413
1414         /* Return here if interrupt is shared and it's not for us */
1415         if (unlikely(status == 0)) {
1416                 DP(NETIF_MSG_INTR, "not our interrupt!\n");
1417                 return IRQ_NONE;
1418         }
1419         DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1420
1421         /* Return here if interrupt is disabled */
1422         if (unlikely(atomic_read(&bp->intr_sem) != 0)) {
1423                 DP(NETIF_MSG_INTR, "called but intr_sem not 0, returning\n");
1424                 return IRQ_HANDLED;
1425         }
1426
1427 #ifdef BNX2X_STOP_ON_ERROR
1428         if (unlikely(bp->panic))
1429                 return IRQ_HANDLED;
1430 #endif
1431
1432         for_each_eth_queue(bp, i) {
1433                 struct bnx2x_fastpath *fp = &bp->fp[i];
1434
1435                 mask = 0x2 << (fp->index + CNIC_CONTEXT_USE);
1436                 if (status & mask) {
1437                         /* Handle Rx and Tx according to SB id */
1438                         prefetch(fp->rx_cons_sb);
1439                         prefetch(fp->tx_cons_sb);
1440                         prefetch(&fp->sb_running_index[SM_RX_ID]);
1441                         napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1442                         status &= ~mask;
1443                 }
1444         }
1445
1446 #ifdef BCM_CNIC
1447         mask = 0x2;
1448         if (status & (mask | 0x1)) {
1449                 struct cnic_ops *c_ops = NULL;
1450
1451                 rcu_read_lock();
1452                 c_ops = rcu_dereference(bp->cnic_ops);
1453                 if (c_ops)
1454                         c_ops->cnic_handler(bp->cnic_data, NULL);
1455                 rcu_read_unlock();
1456
1457                 status &= ~mask;
1458         }
1459 #endif
1460
1461         if (unlikely(status & 0x1)) {
1462                 queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1463
1464                 status &= ~0x1;
1465                 if (!status)
1466                         return IRQ_HANDLED;
1467         }
1468
1469         if (unlikely(status))
1470                 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1471                    status);
1472
1473         return IRQ_HANDLED;
1474 }
1475
1476 /* end of fast path */
1477
1478
1479 /* Link */
1480
1481 /*
1482  * General service functions
1483  */
1484
1485 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1486 {
1487         u32 lock_status;
1488         u32 resource_bit = (1 << resource);
1489         int func = BP_FUNC(bp);
1490         u32 hw_lock_control_reg;
1491         int cnt;
1492
1493         /* Validating that the resource is within range */
1494         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1495                 DP(NETIF_MSG_HW,
1496                    "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1497                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1498                 return -EINVAL;
1499         }
1500
1501         if (func <= 5) {
1502                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1503         } else {
1504                 hw_lock_control_reg =
1505                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1506         }
1507
1508         /* Validating that the resource is not already taken */
1509         lock_status = REG_RD(bp, hw_lock_control_reg);
1510         if (lock_status & resource_bit) {
1511                 DP(NETIF_MSG_HW, "lock_status 0x%x  resource_bit 0x%x\n",
1512                    lock_status, resource_bit);
1513                 return -EEXIST;
1514         }
1515
1516         /* Try for 5 second every 5ms */
1517         for (cnt = 0; cnt < 1000; cnt++) {
1518                 /* Try to acquire the lock */
1519                 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1520                 lock_status = REG_RD(bp, hw_lock_control_reg);
1521                 if (lock_status & resource_bit)
1522                         return 0;
1523
1524                 msleep(5);
1525         }
1526         DP(NETIF_MSG_HW, "Timeout\n");
1527         return -EAGAIN;
1528 }
1529
1530 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
1531 {
1532         u32 lock_status;
1533         u32 resource_bit = (1 << resource);
1534         int func = BP_FUNC(bp);
1535         u32 hw_lock_control_reg;
1536
1537         DP(NETIF_MSG_HW, "Releasing a lock on resource %d\n", resource);
1538
1539         /* Validating that the resource is within range */
1540         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1541                 DP(NETIF_MSG_HW,
1542                    "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1543                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1544                 return -EINVAL;
1545         }
1546
1547         if (func <= 5) {
1548                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1549         } else {
1550                 hw_lock_control_reg =
1551                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1552         }
1553
1554         /* Validating that the resource is currently taken */
1555         lock_status = REG_RD(bp, hw_lock_control_reg);
1556         if (!(lock_status & resource_bit)) {
1557                 DP(NETIF_MSG_HW, "lock_status 0x%x  resource_bit 0x%x\n",
1558                    lock_status, resource_bit);
1559                 return -EFAULT;
1560         }
1561
1562         REG_WR(bp, hw_lock_control_reg, resource_bit);
1563         return 0;
1564 }
1565
1566
1567 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
1568 {
1569         /* The GPIO should be swapped if swap register is set and active */
1570         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1571                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1572         int gpio_shift = gpio_num +
1573                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1574         u32 gpio_mask = (1 << gpio_shift);
1575         u32 gpio_reg;
1576         int value;
1577
1578         if (gpio_num > MISC_REGISTERS_GPIO_3) {
1579                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1580                 return -EINVAL;
1581         }
1582
1583         /* read GPIO value */
1584         gpio_reg = REG_RD(bp, MISC_REG_GPIO);
1585
1586         /* get the requested pin value */
1587         if ((gpio_reg & gpio_mask) == gpio_mask)
1588                 value = 1;
1589         else
1590                 value = 0;
1591
1592         DP(NETIF_MSG_LINK, "pin %d  value 0x%x\n", gpio_num, value);
1593
1594         return value;
1595 }
1596
1597 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
1598 {
1599         /* The GPIO should be swapped if swap register is set and active */
1600         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1601                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1602         int gpio_shift = gpio_num +
1603                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1604         u32 gpio_mask = (1 << gpio_shift);
1605         u32 gpio_reg;
1606
1607         if (gpio_num > MISC_REGISTERS_GPIO_3) {
1608                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1609                 return -EINVAL;
1610         }
1611
1612         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1613         /* read GPIO and mask except the float bits */
1614         gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
1615
1616         switch (mode) {
1617         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1618                 DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> output low\n",
1619                    gpio_num, gpio_shift);
1620                 /* clear FLOAT and set CLR */
1621                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1622                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
1623                 break;
1624
1625         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1626                 DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> output high\n",
1627                    gpio_num, gpio_shift);
1628                 /* clear FLOAT and set SET */
1629                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1630                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
1631                 break;
1632
1633         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1634                 DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> input\n",
1635                    gpio_num, gpio_shift);
1636                 /* set FLOAT */
1637                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1638                 break;
1639
1640         default:
1641                 break;
1642         }
1643
1644         REG_WR(bp, MISC_REG_GPIO, gpio_reg);
1645         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1646
1647         return 0;
1648 }
1649
1650 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
1651 {
1652         /* The GPIO should be swapped if swap register is set and active */
1653         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1654                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1655         int gpio_shift = gpio_num +
1656                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1657         u32 gpio_mask = (1 << gpio_shift);
1658         u32 gpio_reg;
1659
1660         if (gpio_num > MISC_REGISTERS_GPIO_3) {
1661                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1662                 return -EINVAL;
1663         }
1664
1665         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1666         /* read GPIO int */
1667         gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
1668
1669         switch (mode) {
1670         case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
1671                 DP(NETIF_MSG_LINK, "Clear GPIO INT %d (shift %d) -> "
1672                                    "output low\n", gpio_num, gpio_shift);
1673                 /* clear SET and set CLR */
1674                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
1675                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
1676                 break;
1677
1678         case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
1679                 DP(NETIF_MSG_LINK, "Set GPIO INT %d (shift %d) -> "
1680                                    "output high\n", gpio_num, gpio_shift);
1681                 /* clear CLR and set SET */
1682                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
1683                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
1684                 break;
1685
1686         default:
1687                 break;
1688         }
1689
1690         REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
1691         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1692
1693         return 0;
1694 }
1695
1696 static int bnx2x_set_spio(struct bnx2x *bp, int spio_num, u32 mode)
1697 {
1698         u32 spio_mask = (1 << spio_num);
1699         u32 spio_reg;
1700
1701         if ((spio_num < MISC_REGISTERS_SPIO_4) ||
1702             (spio_num > MISC_REGISTERS_SPIO_7)) {
1703                 BNX2X_ERR("Invalid SPIO %d\n", spio_num);
1704                 return -EINVAL;
1705         }
1706
1707         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
1708         /* read SPIO and mask except the float bits */
1709         spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_REGISTERS_SPIO_FLOAT);
1710
1711         switch (mode) {
1712         case MISC_REGISTERS_SPIO_OUTPUT_LOW:
1713                 DP(NETIF_MSG_LINK, "Set SPIO %d -> output low\n", spio_num);
1714                 /* clear FLOAT and set CLR */
1715                 spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
1716                 spio_reg |=  (spio_mask << MISC_REGISTERS_SPIO_CLR_POS);
1717                 break;
1718
1719         case MISC_REGISTERS_SPIO_OUTPUT_HIGH:
1720                 DP(NETIF_MSG_LINK, "Set SPIO %d -> output high\n", spio_num);
1721                 /* clear FLOAT and set SET */
1722                 spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
1723                 spio_reg |=  (spio_mask << MISC_REGISTERS_SPIO_SET_POS);
1724                 break;
1725
1726         case MISC_REGISTERS_SPIO_INPUT_HI_Z:
1727                 DP(NETIF_MSG_LINK, "Set SPIO %d -> input\n", spio_num);
1728                 /* set FLOAT */
1729                 spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
1730                 break;
1731
1732         default:
1733                 break;
1734         }
1735
1736         REG_WR(bp, MISC_REG_SPIO, spio_reg);
1737         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
1738
1739         return 0;
1740 }
1741
1742 int bnx2x_get_link_cfg_idx(struct bnx2x *bp)
1743 {
1744         u32 sel_phy_idx = 0;
1745         if (bp->link_vars.link_up) {
1746                 sel_phy_idx = EXT_PHY1;
1747                 /* In case link is SERDES, check if the EXT_PHY2 is the one */
1748                 if ((bp->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
1749                     (bp->link_params.phy[EXT_PHY2].supported & SUPPORTED_FIBRE))
1750                         sel_phy_idx = EXT_PHY2;
1751         } else {
1752
1753                 switch (bnx2x_phy_selection(&bp->link_params)) {
1754                 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
1755                 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
1756                 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
1757                        sel_phy_idx = EXT_PHY1;
1758                        break;
1759                 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
1760                 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
1761                        sel_phy_idx = EXT_PHY2;
1762                        break;
1763                 }
1764         }
1765         /*
1766         * The selected actived PHY is always after swapping (in case PHY
1767         * swapping is enabled). So when swapping is enabled, we need to reverse
1768         * the configuration
1769         */
1770
1771         if (bp->link_params.multi_phy_config &
1772             PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
1773                 if (sel_phy_idx == EXT_PHY1)
1774                         sel_phy_idx = EXT_PHY2;
1775                 else if (sel_phy_idx == EXT_PHY2)
1776                         sel_phy_idx = EXT_PHY1;
1777         }
1778         return LINK_CONFIG_IDX(sel_phy_idx);
1779 }
1780
1781 void bnx2x_calc_fc_adv(struct bnx2x *bp)
1782 {
1783         u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
1784         switch (bp->link_vars.ieee_fc &
1785                 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
1786         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
1787                 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
1788                                                    ADVERTISED_Pause);
1789                 break;
1790
1791         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
1792                 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
1793                                                   ADVERTISED_Pause);
1794                 break;
1795
1796         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
1797                 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
1798                 break;
1799
1800         default:
1801                 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
1802                                                    ADVERTISED_Pause);
1803                 break;
1804         }
1805 }
1806
1807 u8 bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
1808 {
1809         if (!BP_NOMCP(bp)) {
1810                 u8 rc;
1811                 int cfx_idx = bnx2x_get_link_cfg_idx(bp);
1812                 u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
1813                 /* Initialize link parameters structure variables */
1814                 /* It is recommended to turn off RX FC for jumbo frames
1815                    for better performance */
1816                 if ((CHIP_IS_E1x(bp)) && (bp->dev->mtu > 5000))
1817                         bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
1818                 else
1819                         bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
1820
1821                 bnx2x_acquire_phy_lock(bp);
1822
1823                 if (load_mode == LOAD_DIAG) {
1824                         bp->link_params.loopback_mode = LOOPBACK_XGXS;
1825                         bp->link_params.req_line_speed[cfx_idx] = SPEED_10000;
1826                 }
1827
1828                 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
1829
1830                 bnx2x_release_phy_lock(bp);
1831
1832                 bnx2x_calc_fc_adv(bp);
1833
1834                 if (CHIP_REV_IS_SLOW(bp) && bp->link_vars.link_up) {
1835                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
1836                         bnx2x_link_report(bp);
1837                 }
1838                 bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
1839                 return rc;
1840         }
1841         BNX2X_ERR("Bootcode is missing - can not initialize link\n");
1842         return -EINVAL;
1843 }
1844
1845 void bnx2x_link_set(struct bnx2x *bp)
1846 {
1847         if (!BP_NOMCP(bp)) {
1848                 bnx2x_acquire_phy_lock(bp);
1849                 bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
1850                 bnx2x_phy_init(&bp->link_params, &bp->link_vars);
1851                 bnx2x_release_phy_lock(bp);
1852
1853                 bnx2x_calc_fc_adv(bp);
1854         } else
1855                 BNX2X_ERR("Bootcode is missing - can not set link\n");
1856 }
1857
1858 static void bnx2x__link_reset(struct bnx2x *bp)
1859 {
1860         if (!BP_NOMCP(bp)) {
1861                 bnx2x_acquire_phy_lock(bp);
1862                 bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
1863                 bnx2x_release_phy_lock(bp);
1864         } else
1865                 BNX2X_ERR("Bootcode is missing - can not reset link\n");
1866 }
1867
1868 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
1869 {
1870         u8 rc = 0;
1871
1872         if (!BP_NOMCP(bp)) {
1873                 bnx2x_acquire_phy_lock(bp);
1874                 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
1875                                      is_serdes);
1876                 bnx2x_release_phy_lock(bp);
1877         } else
1878                 BNX2X_ERR("Bootcode is missing - can not test link\n");
1879
1880         return rc;
1881 }
1882
1883 static void bnx2x_init_port_minmax(struct bnx2x *bp)
1884 {
1885         u32 r_param = bp->link_vars.line_speed / 8;
1886         u32 fair_periodic_timeout_usec;
1887         u32 t_fair;
1888
1889         memset(&(bp->cmng.rs_vars), 0,
1890                sizeof(struct rate_shaping_vars_per_port));
1891         memset(&(bp->cmng.fair_vars), 0, sizeof(struct fairness_vars_per_port));
1892
1893         /* 100 usec in SDM ticks = 25 since each tick is 4 usec */
1894         bp->cmng.rs_vars.rs_periodic_timeout = RS_PERIODIC_TIMEOUT_USEC / 4;
1895
1896         /* this is the threshold below which no timer arming will occur
1897            1.25 coefficient is for the threshold to be a little bigger
1898            than the real time, to compensate for timer in-accuracy */
1899         bp->cmng.rs_vars.rs_threshold =
1900                                 (RS_PERIODIC_TIMEOUT_USEC * r_param * 5) / 4;
1901
1902         /* resolution of fairness timer */
1903         fair_periodic_timeout_usec = QM_ARB_BYTES / r_param;
1904         /* for 10G it is 1000usec. for 1G it is 10000usec. */
1905         t_fair = T_FAIR_COEF / bp->link_vars.line_speed;
1906
1907         /* this is the threshold below which we won't arm the timer anymore */
1908         bp->cmng.fair_vars.fair_threshold = QM_ARB_BYTES;
1909
1910         /* we multiply by 1e3/8 to get bytes/msec.
1911            We don't want the credits to pass a credit
1912            of the t_fair*FAIR_MEM (algorithm resolution) */
1913         bp->cmng.fair_vars.upper_bound = r_param * t_fair * FAIR_MEM;
1914         /* since each tick is 4 usec */
1915         bp->cmng.fair_vars.fairness_timeout = fair_periodic_timeout_usec / 4;
1916 }
1917
1918 /* Calculates the sum of vn_min_rates.
1919    It's needed for further normalizing of the min_rates.
1920    Returns:
1921      sum of vn_min_rates.
1922        or
1923      0 - if all the min_rates are 0.
1924      In the later case fainess algorithm should be deactivated.
1925      If not all min_rates are zero then those that are zeroes will be set to 1.
1926  */
1927 static void bnx2x_calc_vn_weight_sum(struct bnx2x *bp)
1928 {
1929         int all_zero = 1;
1930         int vn;
1931
1932         bp->vn_weight_sum = 0;
1933         for (vn = VN_0; vn < E1HVN_MAX; vn++) {
1934                 u32 vn_cfg = bp->mf_config[vn];
1935                 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
1936                                    FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
1937
1938                 /* Skip hidden vns */
1939                 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
1940                         continue;
1941
1942                 /* If min rate is zero - set it to 1 */
1943                 if (!vn_min_rate)
1944                         vn_min_rate = DEF_MIN_RATE;
1945                 else
1946                         all_zero = 0;
1947
1948                 bp->vn_weight_sum += vn_min_rate;
1949         }
1950
1951         /* ... only if all min rates are zeros - disable fairness */
1952         if (all_zero) {
1953                 bp->cmng.flags.cmng_enables &=
1954                                         ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
1955                 DP(NETIF_MSG_IFUP, "All MIN values are zeroes"
1956                    "  fairness will be disabled\n");
1957         } else
1958                 bp->cmng.flags.cmng_enables |=
1959                                         CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
1960 }
1961
1962 static void bnx2x_init_vn_minmax(struct bnx2x *bp, int vn)
1963 {
1964         struct rate_shaping_vars_per_vn m_rs_vn;
1965         struct fairness_vars_per_vn m_fair_vn;
1966         u32 vn_cfg = bp->mf_config[vn];
1967         int func = 2*vn + BP_PORT(bp);
1968         u16 vn_min_rate, vn_max_rate;
1969         int i;
1970
1971         /* If function is hidden - set min and max to zeroes */
1972         if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
1973                 vn_min_rate = 0;
1974                 vn_max_rate = 0;
1975
1976         } else {
1977                 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
1978
1979                 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
1980                                 FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
1981                 /* If fairness is enabled (not all min rates are zeroes) and
1982                    if current min rate is zero - set it to 1.
1983                    This is a requirement of the algorithm. */
1984                 if (bp->vn_weight_sum && (vn_min_rate == 0))
1985                         vn_min_rate = DEF_MIN_RATE;
1986
1987                 if (IS_MF_SI(bp))
1988                         /* maxCfg in percents of linkspeed */
1989                         vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
1990                 else
1991                         /* maxCfg is absolute in 100Mb units */
1992                         vn_max_rate = maxCfg * 100;
1993         }
1994
1995         DP(NETIF_MSG_IFUP,
1996            "func %d: vn_min_rate %d  vn_max_rate %d  vn_weight_sum %d\n",
1997            func, vn_min_rate, vn_max_rate, bp->vn_weight_sum);
1998
1999         memset(&m_rs_vn, 0, sizeof(struct rate_shaping_vars_per_vn));
2000         memset(&m_fair_vn, 0, sizeof(struct fairness_vars_per_vn));
2001
2002         /* global vn counter - maximal Mbps for this vn */
2003         m_rs_vn.vn_counter.rate = vn_max_rate;
2004
2005         /* quota - number of bytes transmitted in this period */
2006         m_rs_vn.vn_counter.quota =
2007                                 (vn_max_rate * RS_PERIODIC_TIMEOUT_USEC) / 8;
2008
2009         if (bp->vn_weight_sum) {
2010                 /* credit for each period of the fairness algorithm:
2011                    number of bytes in T_FAIR (the vn share the port rate).
2012                    vn_weight_sum should not be larger than 10000, thus
2013                    T_FAIR_COEF / (8 * vn_weight_sum) will always be greater
2014                    than zero */
2015                 m_fair_vn.vn_credit_delta =
2016                         max_t(u32, (vn_min_rate * (T_FAIR_COEF /
2017                                                    (8 * bp->vn_weight_sum))),
2018                               (bp->cmng.fair_vars.fair_threshold +
2019                                                         MIN_ABOVE_THRESH));
2020                 DP(NETIF_MSG_IFUP, "m_fair_vn.vn_credit_delta %d\n",
2021                    m_fair_vn.vn_credit_delta);
2022         }
2023
2024         /* Store it to internal memory */
2025         for (i = 0; i < sizeof(struct rate_shaping_vars_per_vn)/4; i++)
2026                 REG_WR(bp, BAR_XSTRORM_INTMEM +
2027                        XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func) + i * 4,
2028                        ((u32 *)(&m_rs_vn))[i]);
2029
2030         for (i = 0; i < sizeof(struct fairness_vars_per_vn)/4; i++)
2031                 REG_WR(bp, BAR_XSTRORM_INTMEM +
2032                        XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func) + i * 4,
2033                        ((u32 *)(&m_fair_vn))[i]);
2034 }
2035
2036 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2037 {
2038         if (CHIP_REV_IS_SLOW(bp))
2039                 return CMNG_FNS_NONE;
2040         if (IS_MF(bp))
2041                 return CMNG_FNS_MINMAX;
2042
2043         return CMNG_FNS_NONE;
2044 }
2045
2046 static void bnx2x_read_mf_cfg(struct bnx2x *bp)
2047 {
2048         int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2049
2050         if (BP_NOMCP(bp))
2051                 return; /* what should be the default bvalue in this case */
2052
2053         /* For 2 port configuration the absolute function number formula
2054          * is:
2055          *      abs_func = 2 * vn + BP_PORT + BP_PATH
2056          *
2057          *      and there are 4 functions per port
2058          *
2059          * For 4 port configuration it is
2060          *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2061          *
2062          *      and there are 2 functions per port
2063          */
2064         for (vn = VN_0; vn < E1HVN_MAX; vn++) {
2065                 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2066
2067                 if (func >= E1H_FUNC_MAX)
2068                         break;
2069
2070                 bp->mf_config[vn] =
2071                         MF_CFG_RD(bp, func_mf_config[func].config);
2072         }
2073 }
2074
2075 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2076 {
2077
2078         if (cmng_type == CMNG_FNS_MINMAX) {
2079                 int vn;
2080
2081                 /* clear cmng_enables */
2082                 bp->cmng.flags.cmng_enables = 0;
2083
2084                 /* read mf conf from shmem */
2085                 if (read_cfg)
2086                         bnx2x_read_mf_cfg(bp);
2087
2088                 /* Init rate shaping and fairness contexts */
2089                 bnx2x_init_port_minmax(bp);
2090
2091                 /* vn_weight_sum and enable fairness if not 0 */
2092                 bnx2x_calc_vn_weight_sum(bp);
2093
2094                 /* calculate and set min-max rate for each vn */
2095                 if (bp->port.pmf)
2096                         for (vn = VN_0; vn < E1HVN_MAX; vn++)
2097                                 bnx2x_init_vn_minmax(bp, vn);
2098
2099                 /* always enable rate shaping and fairness */
2100                 bp->cmng.flags.cmng_enables |=
2101                                         CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2102                 if (!bp->vn_weight_sum)
2103                         DP(NETIF_MSG_IFUP, "All MIN values are zeroes"
2104                                    "  fairness will be disabled\n");
2105                 return;
2106         }
2107
2108         /* rate shaping and fairness are disabled */
2109         DP(NETIF_MSG_IFUP,
2110            "rate shaping and fairness are disabled\n");
2111 }
2112
2113 static inline void bnx2x_link_sync_notify(struct bnx2x *bp)
2114 {
2115         int port = BP_PORT(bp);
2116         int func;
2117         int vn;
2118
2119         /* Set the attention towards other drivers on the same port */
2120         for (vn = VN_0; vn < E1HVN_MAX; vn++) {
2121                 if (vn == BP_E1HVN(bp))
2122                         continue;
2123
2124                 func = ((vn << 1) | port);
2125                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_0 +
2126                        (LINK_SYNC_ATTENTION_BIT_FUNC_0 + func)*4, 1);
2127         }
2128 }
2129
2130 /* This function is called upon link interrupt */
2131 static void bnx2x_link_attn(struct bnx2x *bp)
2132 {
2133         u32 prev_link_status = bp->link_vars.link_status;
2134         /* Make sure that we are synced with the current statistics */
2135         bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2136
2137         bnx2x_link_update(&bp->link_params, &bp->link_vars);
2138
2139         if (bp->link_vars.link_up) {
2140
2141                 /* dropless flow control */
2142                 if (!CHIP_IS_E1(bp) && bp->dropless_fc) {
2143                         int port = BP_PORT(bp);
2144                         u32 pause_enabled = 0;
2145
2146                         if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2147                                 pause_enabled = 1;
2148
2149                         REG_WR(bp, BAR_USTRORM_INTMEM +
2150                                USTORM_ETH_PAUSE_ENABLED_OFFSET(port),
2151                                pause_enabled);
2152                 }
2153
2154                 if (bp->link_vars.mac_type == MAC_TYPE_BMAC) {
2155                         struct host_port_stats *pstats;
2156
2157                         pstats = bnx2x_sp(bp, port_stats);
2158                         /* reset old bmac stats */
2159                         memset(&(pstats->mac_stx[0]), 0,
2160                                sizeof(struct mac_stx));
2161                 }
2162                 if (bp->state == BNX2X_STATE_OPEN)
2163                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2164         }
2165
2166         if (bp->link_vars.link_up && bp->link_vars.line_speed) {
2167                 int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2168
2169                 if (cmng_fns != CMNG_FNS_NONE) {
2170                         bnx2x_cmng_fns_init(bp, false, cmng_fns);
2171                         storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2172                 } else
2173                         /* rate shaping and fairness are disabled */
2174                         DP(NETIF_MSG_IFUP,
2175                            "single function mode without fairness\n");
2176         }
2177
2178         if (IS_MF(bp))
2179                 bnx2x_link_sync_notify(bp);
2180
2181         /* indicate link status only if link status actually changed */
2182         if (prev_link_status != bp->link_vars.link_status)
2183                 bnx2x_link_report(bp);
2184 }
2185
2186 void bnx2x__link_status_update(struct bnx2x *bp)
2187 {
2188         if ((bp->state != BNX2X_STATE_OPEN) || (bp->flags & MF_FUNC_DIS))
2189                 return;
2190
2191         bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2192
2193         if (bp->link_vars.link_up)
2194                 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2195         else
2196                 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2197
2198         /* the link status update could be the result of a DCC event
2199            hence re-read the shmem mf configuration */
2200         bnx2x_read_mf_cfg(bp);
2201
2202         /* indicate link status */
2203         bnx2x_link_report(bp);
2204 }
2205
2206 static void bnx2x_pmf_update(struct bnx2x *bp)
2207 {
2208         int port = BP_PORT(bp);
2209         u32 val;
2210
2211         bp->port.pmf = 1;
2212         DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf);
2213
2214         /* enable nig attention */
2215         val = (0xff0f | (1 << (BP_E1HVN(bp) + 4)));
2216         if (bp->common.int_block == INT_BLOCK_HC) {
2217                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2218                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2219         } else if (CHIP_IS_E2(bp)) {
2220                 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2221                 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2222         }
2223
2224         bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2225 }
2226
2227 /* end of Link */
2228
2229 /* slow path */
2230
2231 /*
2232  * General service functions
2233  */
2234
2235 /* send the MCP a request, block until there is a reply */
2236 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2237 {
2238         int mb_idx = BP_FW_MB_IDX(bp);
2239         u32 seq = ++bp->fw_seq;
2240         u32 rc = 0;
2241         u32 cnt = 1;
2242         u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2243
2244         mutex_lock(&bp->fw_mb_mutex);
2245         SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2246         SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2247
2248         DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB\n", (command | seq));
2249
2250         do {
2251                 /* let the FW do it's magic ... */
2252                 msleep(delay);
2253
2254                 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2255
2256                 /* Give the FW up to 5 second (500*10ms) */
2257         } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2258
2259         DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2260            cnt*delay, rc, seq);
2261
2262         /* is this a reply to our command? */
2263         if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2264                 rc &= FW_MSG_CODE_MASK;
2265         else {
2266                 /* FW BUG! */
2267                 BNX2X_ERR("FW failed to respond!\n");
2268                 bnx2x_fw_dump(bp);
2269                 rc = 0;
2270         }
2271         mutex_unlock(&bp->fw_mb_mutex);
2272
2273         return rc;
2274 }
2275
2276 static u8 stat_counter_valid(struct bnx2x *bp, struct bnx2x_fastpath *fp)
2277 {
2278 #ifdef BCM_CNIC
2279         if (IS_FCOE_FP(fp) && IS_MF(bp))
2280                 return false;
2281 #endif
2282         return true;
2283 }
2284
2285 /* must be called under rtnl_lock */
2286 static void bnx2x_rxq_set_mac_filters(struct bnx2x *bp, u16 cl_id, u32 filters)
2287 {
2288         u32 mask = (1 << cl_id);
2289
2290         /* initial seeting is BNX2X_ACCEPT_NONE */
2291         u8 drop_all_ucast = 1, drop_all_bcast = 1, drop_all_mcast = 1;
2292         u8 accp_all_ucast = 0, accp_all_bcast = 0, accp_all_mcast = 0;
2293         u8 unmatched_unicast = 0;
2294
2295         if (filters & BNX2X_ACCEPT_UNMATCHED_UCAST)
2296                 unmatched_unicast = 1;
2297
2298         if (filters & BNX2X_PROMISCUOUS_MODE) {
2299                 /* promiscious - accept all, drop none */
2300                 drop_all_ucast = drop_all_bcast = drop_all_mcast = 0;
2301                 accp_all_ucast = accp_all_bcast = accp_all_mcast = 1;
2302                 if (IS_MF_SI(bp)) {
2303                         /*
2304                          * SI mode defines to accept in promiscuos mode
2305                          * only unmatched packets
2306                          */
2307                         unmatched_unicast = 1;
2308                         accp_all_ucast = 0;
2309                 }
2310         }
2311         if (filters & BNX2X_ACCEPT_UNICAST) {
2312                 /* accept matched ucast */
2313                 drop_all_ucast = 0;
2314         }
2315         if (filters & BNX2X_ACCEPT_MULTICAST)
2316                 /* accept matched mcast */
2317                 drop_all_mcast = 0;
2318
2319         if (filters & BNX2X_ACCEPT_ALL_UNICAST) {
2320                 /* accept all mcast */
2321                 drop_all_ucast = 0;
2322                 accp_all_ucast = 1;
2323         }
2324         if (filters & BNX2X_ACCEPT_ALL_MULTICAST) {
2325                 /* accept all mcast */
2326                 drop_all_mcast = 0;
2327                 accp_all_mcast = 1;
2328         }
2329         if (filters & BNX2X_ACCEPT_BROADCAST) {
2330                 /* accept (all) bcast */
2331                 drop_all_bcast = 0;
2332                 accp_all_bcast = 1;
2333         }
2334
2335         bp->mac_filters.ucast_drop_all = drop_all_ucast ?
2336                 bp->mac_filters.ucast_drop_all | mask :
2337                 bp->mac_filters.ucast_drop_all & ~mask;
2338
2339         bp->mac_filters.mcast_drop_all = drop_all_mcast ?
2340                 bp->mac_filters.mcast_drop_all | mask :
2341                 bp->mac_filters.mcast_drop_all & ~mask;
2342
2343         bp->mac_filters.bcast_drop_all = drop_all_bcast ?
2344                 bp->mac_filters.bcast_drop_all | mask :
2345                 bp->mac_filters.bcast_drop_all & ~mask;
2346
2347         bp->mac_filters.ucast_accept_all = accp_all_ucast ?
2348                 bp->mac_filters.ucast_accept_all | mask :
2349                 bp->mac_filters.ucast_accept_all & ~mask;
2350
2351         bp->mac_filters.mcast_accept_all = accp_all_mcast ?
2352                 bp->mac_filters.mcast_accept_all | mask :
2353                 bp->mac_filters.mcast_accept_all & ~mask;
2354
2355         bp->mac_filters.bcast_accept_all = accp_all_bcast ?
2356                 bp->mac_filters.bcast_accept_all | mask :
2357                 bp->mac_filters.bcast_accept_all & ~mask;
2358
2359         bp->mac_filters.unmatched_unicast = unmatched_unicast ?
2360                 bp->mac_filters.unmatched_unicast | mask :
2361                 bp->mac_filters.unmatched_unicast & ~mask;
2362 }
2363
2364 static void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2365 {
2366         struct tstorm_eth_function_common_config tcfg = {0};
2367         u16 rss_flgs;
2368
2369         /* tpa */
2370         if (p->func_flgs & FUNC_FLG_TPA)
2371                 tcfg.config_flags |=
2372                 TSTORM_ETH_FUNCTION_COMMON_CONFIG_ENABLE_TPA;
2373
2374         /* set rss flags */
2375         rss_flgs = (p->rss->mode <<
2376                 TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_MODE_SHIFT);
2377
2378         if (p->rss->cap & RSS_IPV4_CAP)
2379                 rss_flgs |= RSS_IPV4_CAP_MASK;
2380         if (p->rss->cap & RSS_IPV4_TCP_CAP)
2381                 rss_flgs |= RSS_IPV4_TCP_CAP_MASK;
2382         if (p->rss->cap & RSS_IPV6_CAP)
2383                 rss_flgs |= RSS_IPV6_CAP_MASK;
2384         if (p->rss->cap & RSS_IPV6_TCP_CAP)
2385                 rss_flgs |= RSS_IPV6_TCP_CAP_MASK;
2386
2387         tcfg.config_flags |= rss_flgs;
2388         tcfg.rss_result_mask = p->rss->result_mask;
2389
2390         storm_memset_func_cfg(bp, &tcfg, p->func_id);
2391
2392         /* Enable the function in the FW */
2393         storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
2394         storm_memset_func_en(bp, p->func_id, 1);
2395
2396         /* statistics */
2397         if (p->func_flgs & FUNC_FLG_STATS) {
2398                 struct stats_indication_flags stats_flags = {0};
2399                 stats_flags.collect_eth = 1;
2400
2401                 storm_memset_xstats_flags(bp, &stats_flags, p->func_id);
2402                 storm_memset_xstats_addr(bp, p->fw_stat_map, p->func_id);
2403
2404                 storm_memset_tstats_flags(bp, &stats_flags, p->func_id);
2405                 storm_memset_tstats_addr(bp, p->fw_stat_map, p->func_id);
2406
2407                 storm_memset_ustats_flags(bp, &stats_flags, p->func_id);
2408                 storm_memset_ustats_addr(bp, p->fw_stat_map, p->func_id);
2409
2410                 storm_memset_cstats_flags(bp, &stats_flags, p->func_id);
2411                 storm_memset_cstats_addr(bp, p->fw_stat_map, p->func_id);
2412         }
2413
2414         /* spq */
2415         if (p->func_flgs & FUNC_FLG_SPQ) {
2416                 storm_memset_spq_addr(bp, p->spq_map, p->func_id);
2417                 REG_WR(bp, XSEM_REG_FAST_MEMORY +
2418                        XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
2419         }
2420 }
2421
2422 static inline u16 bnx2x_get_cl_flags(struct bnx2x *bp,
2423                                      struct bnx2x_fastpath *fp)
2424 {
2425         u16 flags = 0;
2426
2427         /* calculate queue flags */
2428         flags |= QUEUE_FLG_CACHE_ALIGN;
2429         flags |= QUEUE_FLG_HC;
2430         flags |= IS_MF_SD(bp) ? QUEUE_FLG_OV : 0;
2431
2432         flags |= QUEUE_FLG_VLAN;
2433         DP(NETIF_MSG_IFUP, "vlan removal enabled\n");
2434
2435         if (!fp->disable_tpa)
2436                 flags |= QUEUE_FLG_TPA;
2437
2438         flags = stat_counter_valid(bp, fp) ?
2439                         (flags | QUEUE_FLG_STATS) : (flags & ~QUEUE_FLG_STATS);
2440
2441         return flags;
2442 }
2443
2444 static void bnx2x_pf_rx_cl_prep(struct bnx2x *bp,
2445         struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
2446         struct bnx2x_rxq_init_params *rxq_init)
2447 {
2448         u16 max_sge = 0;
2449         u16 sge_sz = 0;
2450         u16 tpa_agg_size = 0;
2451
2452         /* calculate queue flags */
2453         u16 flags = bnx2x_get_cl_flags(bp, fp);
2454
2455         if (!fp->disable_tpa) {
2456                 pause->sge_th_hi = 250;
2457                 pause->sge_th_lo = 150;
2458                 tpa_agg_size = min_t(u32,
2459                         (min_t(u32, 8, MAX_SKB_FRAGS) *
2460                         SGE_PAGE_SIZE * PAGES_PER_SGE), 0xffff);
2461                 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
2462                         SGE_PAGE_SHIFT;
2463                 max_sge = ((max_sge + PAGES_PER_SGE - 1) &
2464                           (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
2465                 sge_sz = (u16)min_t(u32, SGE_PAGE_SIZE * PAGES_PER_SGE,
2466                                     0xffff);
2467         }
2468
2469         /* pause - not for e1 */
2470         if (!CHIP_IS_E1(bp)) {
2471                 pause->bd_th_hi = 350;
2472                 pause->bd_th_lo = 250;
2473                 pause->rcq_th_hi = 350;
2474                 pause->rcq_th_lo = 250;
2475                 pause->sge_th_hi = 0;
2476                 pause->sge_th_lo = 0;
2477                 pause->pri_map = 1;
2478         }
2479
2480         /* rxq setup */
2481         rxq_init->flags = flags;
2482         rxq_init->cxt = &bp->context.vcxt[fp->cid].eth;
2483         rxq_init->dscr_map = fp->rx_desc_mapping;
2484         rxq_init->sge_map = fp->rx_sge_mapping;
2485         rxq_init->rcq_map = fp->rx_comp_mapping;
2486         rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
2487         rxq_init->mtu = bp->dev->mtu;
2488         rxq_init->buf_sz = bp->rx_buf_size;
2489         rxq_init->cl_qzone_id = fp->cl_qzone_id;
2490         rxq_init->cl_id = fp->cl_id;
2491         rxq_init->spcl_id = fp->cl_id;
2492         rxq_init->stat_id = fp->cl_id;
2493         rxq_init->tpa_agg_sz = tpa_agg_size;
2494         rxq_init->sge_buf_sz = sge_sz;
2495         rxq_init->max_sges_pkt = max_sge;
2496         rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
2497         rxq_init->fw_sb_id = fp->fw_sb_id;
2498
2499         if (IS_FCOE_FP(fp))
2500                 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
2501         else
2502                 rxq_init->sb_cq_index = U_SB_ETH_RX_CQ_INDEX;
2503
2504         rxq_init->cid = HW_CID(bp, fp->cid);
2505
2506         rxq_init->hc_rate = bp->rx_ticks ? (1000000 / bp->rx_ticks) : 0;
2507 }
2508
2509 static void bnx2x_pf_tx_cl_prep(struct bnx2x *bp,
2510         struct bnx2x_fastpath *fp, struct bnx2x_txq_init_params *txq_init)
2511 {
2512         u16 flags = bnx2x_get_cl_flags(bp, fp);
2513
2514         txq_init->flags = flags;
2515         txq_init->cxt = &bp->context.vcxt[fp->cid].eth;
2516         txq_init->dscr_map = fp->tx_desc_mapping;
2517         txq_init->stat_id = fp->cl_id;
2518         txq_init->cid = HW_CID(bp, fp->cid);
2519         txq_init->sb_cq_index = C_SB_ETH_TX_CQ_INDEX;
2520         txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
2521         txq_init->fw_sb_id = fp->fw_sb_id;
2522
2523         if (IS_FCOE_FP(fp)) {
2524                 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
2525                 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
2526         }
2527
2528         txq_init->hc_rate = bp->tx_ticks ? (1000000 / bp->tx_ticks) : 0;
2529 }
2530
2531 static void bnx2x_pf_init(struct bnx2x *bp)
2532 {
2533         struct bnx2x_func_init_params func_init = {0};
2534         struct bnx2x_rss_params rss = {0};
2535         struct event_ring_data eq_data = { {0} };
2536         u16 flags;
2537
2538         /* pf specific setups */
2539         if (!CHIP_IS_E1(bp))
2540                 storm_memset_ov(bp, bp->mf_ov, BP_FUNC(bp));
2541
2542         if (CHIP_IS_E2(bp)) {
2543                 /* reset IGU PF statistics: MSIX + ATTN */
2544                 /* PF */
2545                 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2546                            BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2547                            (CHIP_MODE_IS_4_PORT(bp) ?
2548                                 BP_FUNC(bp) : BP_VN(bp))*4, 0);
2549                 /* ATTN */
2550                 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2551                            BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2552                            BNX2X_IGU_STAS_MSG_PF_CNT*4 +
2553                            (CHIP_MODE_IS_4_PORT(bp) ?
2554                                 BP_FUNC(bp) : BP_VN(bp))*4, 0);
2555         }
2556
2557         /* function setup flags */
2558         flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
2559
2560         if (CHIP_IS_E1x(bp))
2561                 flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
2562         else
2563                 flags |= FUNC_FLG_TPA;
2564
2565         /* function setup */
2566
2567         /**
2568          * Although RSS is meaningless when there is a single HW queue we
2569          * still need it enabled in order to have HW Rx hash generated.
2570          */
2571         rss.cap = (RSS_IPV4_CAP | RSS_IPV4_TCP_CAP |
2572                    RSS_IPV6_CAP | RSS_IPV6_TCP_CAP);
2573         rss.mode = bp->multi_mode;
2574         rss.result_mask = MULTI_MASK;
2575         func_init.rss = &rss;
2576
2577         func_init.func_flgs = flags;
2578         func_init.pf_id = BP_FUNC(bp);
2579         func_init.func_id = BP_FUNC(bp);
2580         func_init.fw_stat_map = bnx2x_sp_mapping(bp, fw_stats);
2581         func_init.spq_map = bp->spq_mapping;
2582         func_init.spq_prod = bp->spq_prod_idx;
2583
2584         bnx2x_func_init(bp, &func_init);
2585
2586         memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
2587
2588         /*
2589         Congestion management values depend on the link rate
2590         There is no active link so initial link rate is set to 10 Gbps.
2591         When the link comes up The congestion management values are
2592         re-calculated according to the actual link rate.
2593         */
2594         bp->link_vars.line_speed = SPEED_10000;
2595         bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
2596
2597         /* Only the PMF sets the HW */
2598         if (bp->port.pmf)
2599                 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2600
2601         /* no rx until link is up */
2602         bp->rx_mode = BNX2X_RX_MODE_NONE;
2603         bnx2x_set_storm_rx_mode(bp);
2604
2605         /* init Event Queue */
2606         eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
2607         eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
2608         eq_data.producer = bp->eq_prod;
2609         eq_data.index_id = HC_SP_INDEX_EQ_CONS;
2610         eq_data.sb_id = DEF_SB_ID;
2611         storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
2612 }
2613
2614
2615 static void bnx2x_e1h_disable(struct bnx2x *bp)
2616 {
2617         int port = BP_PORT(bp);
2618
2619         netif_tx_disable(bp->dev);
2620
2621         REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
2622
2623         netif_carrier_off(bp->dev);
2624 }
2625
2626 static void bnx2x_e1h_enable(struct bnx2x *bp)
2627 {
2628         int port = BP_PORT(bp);
2629
2630         REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
2631
2632         /* Tx queue should be only reenabled */
2633         netif_tx_wake_all_queues(bp->dev);
2634
2635         /*
2636          * Should not call netif_carrier_on since it will be called if the link
2637          * is up when checking for link state
2638          */
2639 }
2640
2641 /* called due to MCP event (on pmf):
2642  *      reread new bandwidth configuration
2643  *      configure FW
2644  *      notify others function about the change
2645  */
2646 static inline void bnx2x_config_mf_bw(struct bnx2x *bp)
2647 {
2648         if (bp->link_vars.link_up) {
2649                 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
2650                 bnx2x_link_sync_notify(bp);
2651         }
2652         storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2653 }
2654
2655 static inline void bnx2x_set_mf_bw(struct bnx2x *bp)
2656 {
2657         bnx2x_config_mf_bw(bp);
2658         bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
2659 }
2660
2661 static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
2662 {
2663         DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
2664
2665         if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
2666
2667                 /*
2668                  * This is the only place besides the function initialization
2669                  * where the bp->flags can change so it is done without any
2670                  * locks
2671                  */
2672                 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2673                         DP(NETIF_MSG_IFDOWN, "mf_cfg function disabled\n");
2674                         bp->flags |= MF_FUNC_DIS;
2675
2676                         bnx2x_e1h_disable(bp);
2677                 } else {
2678                         DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2679                         bp->flags &= ~MF_FUNC_DIS;
2680
2681                         bnx2x_e1h_enable(bp);
2682                 }
2683                 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
2684         }
2685         if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
2686                 bnx2x_config_mf_bw(bp);
2687                 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
2688         }
2689
2690         /* Report results to MCP */
2691         if (dcc_event)
2692                 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
2693         else
2694                 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
2695 }
2696
2697 /* must be called under the spq lock */
2698 static inline struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
2699 {
2700         struct eth_spe *next_spe = bp->spq_prod_bd;
2701
2702         if (bp->spq_prod_bd == bp->spq_last_bd) {
2703                 bp->spq_prod_bd = bp->spq;
2704                 bp->spq_prod_idx = 0;
2705                 DP(NETIF_MSG_TIMER, "end of spq\n");
2706         } else {
2707                 bp->spq_prod_bd++;
2708                 bp->spq_prod_idx++;
2709         }
2710         return next_spe;
2711 }
2712
2713 /* must be called under the spq lock */
2714 static inline void bnx2x_sp_prod_update(struct bnx2x *bp)
2715 {
2716         int func = BP_FUNC(bp);
2717
2718         /* Make sure that BD data is updated before writing the producer */
2719         wmb();
2720
2721         REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
2722                  bp->spq_prod_idx);
2723         mmiowb();
2724 }
2725
2726 /* the slow path queue is odd since completions arrive on the fastpath ring */
2727 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
2728                   u32 data_hi, u32 data_lo, int common)
2729 {
2730         struct eth_spe *spe;
2731         u16 type;
2732
2733 #ifdef BNX2X_STOP_ON_ERROR
2734         if (unlikely(bp->panic))
2735                 return -EIO;
2736 #endif
2737
2738         spin_lock_bh(&bp->spq_lock);
2739
2740         if (!atomic_read(&bp->spq_left)) {
2741                 BNX2X_ERR("BUG! SPQ ring full!\n");
2742                 spin_unlock_bh(&bp->spq_lock);
2743                 bnx2x_panic();
2744                 return -EBUSY;
2745         }
2746
2747         spe = bnx2x_sp_get_next(bp);
2748
2749         /* CID needs port number to be encoded int it */
2750         spe->hdr.conn_and_cmd_data =
2751                         cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
2752                                     HW_CID(bp, cid));
2753
2754         if (common)
2755                 /* Common ramrods:
2756                  *      FUNC_START, FUNC_STOP, CFC_DEL, STATS, SET_MAC
2757                  *      TRAFFIC_STOP, TRAFFIC_START
2758                  */
2759                 type = (NONE_CONNECTION_TYPE << SPE_HDR_CONN_TYPE_SHIFT)
2760                         & SPE_HDR_CONN_TYPE;
2761         else
2762                 /* ETH ramrods: SETUP, HALT */
2763                 type = (ETH_CONNECTION_TYPE << SPE_HDR_CONN_TYPE_SHIFT)
2764                         & SPE_HDR_CONN_TYPE;
2765
2766         type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
2767                  SPE_HDR_FUNCTION_ID);
2768
2769         spe->hdr.type = cpu_to_le16(type);
2770
2771         spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
2772         spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
2773
2774         /* stats ramrod has it's own slot on the spq */
2775         if (command != RAMROD_CMD_ID_COMMON_STAT_QUERY)
2776                 /* It's ok if the actual decrement is issued towards the memory
2777                  * somewhere between the spin_lock and spin_unlock. Thus no
2778                  * more explict memory barrier is needed.
2779                  */
2780                 atomic_dec(&bp->spq_left);
2781
2782         DP(BNX2X_MSG_SP/*NETIF_MSG_TIMER*/,
2783            "SPQE[%x] (%x:%x)  command %d  hw_cid %x  data (%x:%x) "
2784            "type(0x%x) left %x\n",
2785            bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
2786            (u32)(U64_LO(bp->spq_mapping) +
2787            (void *)bp->spq_prod_bd - (void *)bp->spq), command,
2788            HW_CID(bp, cid), data_hi, data_lo, type, atomic_read(&bp->spq_left));
2789
2790         bnx2x_sp_prod_update(bp);
2791         spin_unlock_bh(&bp->spq_lock);
2792         return 0;
2793 }
2794
2795 /* acquire split MCP access lock register */
2796 static int bnx2x_acquire_alr(struct bnx2x *bp)
2797 {
2798         u32 j, val;
2799         int rc = 0;
2800
2801         might_sleep();
2802         for (j = 0; j < 1000; j++) {
2803                 val = (1UL << 31);
2804                 REG_WR(bp, GRCBASE_MCP + 0x9c, val);
2805                 val = REG_RD(bp, GRCBASE_MCP + 0x9c);
2806                 if (val & (1L << 31))
2807                         break;
2808
2809                 msleep(5);
2810         }
2811         if (!(val & (1L << 31))) {
2812                 BNX2X_ERR("Cannot acquire MCP access lock register\n");
2813                 rc = -EBUSY;
2814         }
2815
2816         return rc;
2817 }
2818
2819 /* release split MCP access lock register */
2820 static void bnx2x_release_alr(struct bnx2x *bp)
2821 {
2822         REG_WR(bp, GRCBASE_MCP + 0x9c, 0);
2823 }
2824
2825 #define BNX2X_DEF_SB_ATT_IDX    0x0001
2826 #define BNX2X_DEF_SB_IDX        0x0002
2827
2828 static inline u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
2829 {
2830         struct host_sp_status_block *def_sb = bp->def_status_blk;
2831         u16 rc = 0;
2832
2833         barrier(); /* status block is written to by the chip */
2834         if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
2835                 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
2836                 rc |= BNX2X_DEF_SB_ATT_IDX;
2837         }
2838
2839         if (bp->def_idx != def_sb->sp_sb.running_index) {
2840                 bp->def_idx = def_sb->sp_sb.running_index;
2841                 rc |= BNX2X_DEF_SB_IDX;
2842         }
2843
2844         /* Do not reorder: indecies reading should complete before handling */
2845         barrier();
2846         return rc;
2847 }
2848
2849 /*
2850  * slow path service functions
2851  */
2852
2853 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
2854 {
2855         int port = BP_PORT(bp);
2856         u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
2857                               MISC_REG_AEU_MASK_ATTN_FUNC_0;
2858         u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
2859                                        NIG_REG_MASK_INTERRUPT_PORT0;
2860         u32 aeu_mask;
2861         u32 nig_mask = 0;
2862         u32 reg_addr;
2863
2864         if (bp->attn_state & asserted)
2865                 BNX2X_ERR("IGU ERROR\n");
2866
2867         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
2868         aeu_mask = REG_RD(bp, aeu_addr);
2869
2870         DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
2871            aeu_mask, asserted);
2872         aeu_mask &= ~(asserted & 0x3ff);
2873         DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
2874
2875         REG_WR(bp, aeu_addr, aeu_mask);
2876         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
2877
2878         DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
2879         bp->attn_state |= asserted;
2880         DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
2881
2882         if (asserted & ATTN_HARD_WIRED_MASK) {
2883                 if (asserted & ATTN_NIG_FOR_FUNC) {
2884
2885                         bnx2x_acquire_phy_lock(bp);
2886
2887                         /* save nig interrupt mask */
2888                         nig_mask = REG_RD(bp, nig_int_mask_addr);
2889                         REG_WR(bp, nig_int_mask_addr, 0);
2890
2891                         bnx2x_link_attn(bp);
2892
2893                         /* handle unicore attn? */
2894                 }
2895                 if (asserted & ATTN_SW_TIMER_4_FUNC)
2896                         DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
2897
2898                 if (asserted & GPIO_2_FUNC)
2899                         DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
2900
2901                 if (asserted & GPIO_3_FUNC)
2902                         DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
2903
2904                 if (asserted & GPIO_4_FUNC)
2905                         DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
2906
2907                 if (port == 0) {
2908                         if (asserted & ATTN_GENERAL_ATTN_1) {
2909                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
2910                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
2911                         }
2912                         if (asserted & ATTN_GENERAL_ATTN_2) {
2913                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
2914                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
2915                         }
2916                         if (asserted & ATTN_GENERAL_ATTN_3) {
2917                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
2918                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
2919                         }
2920                 } else {
2921                         if (asserted & ATTN_GENERAL_ATTN_4) {
2922                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
2923                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
2924                         }
2925                         if (asserted & ATTN_GENERAL_ATTN_5) {
2926                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
2927                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
2928                         }
2929                         if (asserted & ATTN_GENERAL_ATTN_6) {
2930                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
2931                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
2932                         }
2933                 }
2934
2935         } /* if hardwired */
2936
2937         if (bp->common.int_block == INT_BLOCK_HC)
2938                 reg_addr = (HC_REG_COMMAND_REG + port*32 +
2939                             COMMAND_REG_ATTN_BITS_SET);
2940         else
2941                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
2942
2943         DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
2944            (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
2945         REG_WR(bp, reg_addr, asserted);
2946
2947         /* now set back the mask */
2948         if (asserted & ATTN_NIG_FOR_FUNC) {
2949                 REG_WR(bp, nig_int_mask_addr, nig_mask);
2950                 bnx2x_release_phy_lock(bp);
2951         }
2952 }
2953
2954 static inline void bnx2x_fan_failure(struct bnx2x *bp)
2955 {
2956         int port = BP_PORT(bp);
2957         u32 ext_phy_config;
2958         /* mark the failure */
2959         ext_phy_config =
2960                 SHMEM_RD(bp,
2961                          dev_info.port_hw_config[port].external_phy_config);
2962
2963         ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
2964         ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
2965         SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
2966                  ext_phy_config);
2967
2968         /* log the failure */
2969         netdev_err(bp->dev, "Fan Failure on Network Controller has caused"
2970                " the driver to shutdown the card to prevent permanent"
2971                " damage.  Please contact OEM Support for assistance\n");
2972 }
2973
2974 static inline void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
2975 {
2976         int port = BP_PORT(bp);
2977         int reg_offset;
2978         u32 val;
2979
2980         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
2981                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
2982
2983         if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
2984
2985                 val = REG_RD(bp, reg_offset);
2986                 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
2987                 REG_WR(bp, reg_offset, val);
2988
2989                 BNX2X_ERR("SPIO5 hw attention\n");
2990
2991                 /* Fan failure attention */
2992                 bnx2x_hw_reset_phy(&bp->link_params);
2993                 bnx2x_fan_failure(bp);
2994         }
2995
2996         if (attn & (AEU_INPUTS_ATTN_BITS_GPIO3_FUNCTION_0 |
2997                     AEU_INPUTS_ATTN_BITS_GPIO3_FUNCTION_1)) {
2998                 bnx2x_acquire_phy_lock(bp);
2999                 bnx2x_handle_module_detect_int(&bp->link_params);
3000                 bnx2x_release_phy_lock(bp);
3001         }
3002
3003         if (attn & HW_INTERRUT_ASSERT_SET_0) {
3004
3005                 val = REG_RD(bp, reg_offset);
3006                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
3007                 REG_WR(bp, reg_offset, val);
3008
3009                 BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
3010                           (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
3011                 bnx2x_panic();
3012         }
3013 }
3014
3015 static inline void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
3016 {
3017         u32 val;
3018
3019         if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3020
3021                 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
3022                 BNX2X_ERR("DB hw attention 0x%x\n", val);
3023                 /* DORQ discard attention */
3024                 if (val & 0x2)
3025                         BNX2X_ERR("FATAL error from DORQ\n");
3026         }
3027
3028         if (attn & HW_INTERRUT_ASSERT_SET_1) {
3029
3030                 int port = BP_PORT(bp);
3031                 int reg_offset;
3032
3033                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3034                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3035
3036                 val = REG_RD(bp, reg_offset);
3037                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
3038                 REG_WR(bp, reg_offset, val);
3039
3040                 BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
3041                           (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
3042                 bnx2x_panic();
3043         }
3044 }
3045
3046 static inline void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
3047 {
3048         u32 val;
3049
3050         if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3051
3052                 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
3053                 BNX2X_ERR("CFC hw attention 0x%x\n", val);
3054                 /* CFC error attention */
3055                 if (val & 0x2)
3056                         BNX2X_ERR("FATAL error from CFC\n");
3057         }
3058
3059         if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3060
3061                 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
3062                 BNX2X_ERR("PXP hw attention 0x%x\n", val);
3063                 /* RQ_USDMDP_FIFO_OVERFLOW */
3064                 if (val & 0x18000)
3065                         BNX2X_ERR("FATAL error from PXP\n");
3066                 if (CHIP_IS_E2(bp)) {
3067                         val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
3068                         BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
3069                 }
3070         }
3071
3072         if (attn & HW_INTERRUT_ASSERT_SET_2) {
3073
3074                 int port = BP_PORT(bp);
3075                 int reg_offset;
3076
3077                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3078                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3079
3080                 val = REG_RD(bp, reg_offset);
3081                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3082                 REG_WR(bp, reg_offset, val);
3083
3084                 BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
3085                           (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
3086                 bnx2x_panic();
3087         }
3088 }
3089
3090 static inline void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
3091 {
3092         u32 val;
3093
3094         if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3095
3096                 if (attn & BNX2X_PMF_LINK_ASSERT) {
3097                         int func = BP_FUNC(bp);
3098
3099                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
3100                         bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
3101                                         func_mf_config[BP_ABS_FUNC(bp)].config);
3102                         val = SHMEM_RD(bp,
3103                                        func_mb[BP_FW_MB_IDX(bp)].drv_status);
3104                         if (val & DRV_STATUS_DCC_EVENT_MASK)
3105                                 bnx2x_dcc_event(bp,
3106                                             (val & DRV_STATUS_DCC_EVENT_MASK));
3107
3108                         if (val & DRV_STATUS_SET_MF_BW)
3109                                 bnx2x_set_mf_bw(bp);
3110
3111                         bnx2x__link_status_update(bp);
3112                         if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
3113                                 bnx2x_pmf_update(bp);
3114
3115                         if (bp->port.pmf &&
3116                             (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
3117                                 bp->dcbx_enabled > 0)
3118                                 /* start dcbx state machine */
3119                                 bnx2x_dcbx_set_params(bp,
3120                                         BNX2X_DCBX_STATE_NEG_RECEIVED);
3121                 } else if (attn & BNX2X_MC_ASSERT_BITS) {
3122
3123                         BNX2X_ERR("MC assert!\n");
3124                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
3125                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
3126                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
3127                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
3128                         bnx2x_panic();
3129
3130                 } else if (attn & BNX2X_MCP_ASSERT) {
3131
3132                         BNX2X_ERR("MCP assert!\n");
3133                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
3134                         bnx2x_fw_dump(bp);
3135
3136                 } else
3137                         BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
3138         }
3139
3140         if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
3141                 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
3142                 if (attn & BNX2X_GRC_TIMEOUT) {
3143                         val = CHIP_IS_E1(bp) ? 0 :
3144                                         REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
3145                         BNX2X_ERR("GRC time-out 0x%08x\n", val);
3146                 }
3147                 if (attn & BNX2X_GRC_RSV) {
3148                         val = CHIP_IS_E1(bp) ? 0 :
3149                                         REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
3150                         BNX2X_ERR("GRC reserved 0x%08x\n", val);
3151                 }
3152                 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
3153         }
3154 }
3155
3156 #define BNX2X_MISC_GEN_REG      MISC_REG_GENERIC_POR_1
3157 #define LOAD_COUNTER_BITS       16 /* Number of bits for load counter */
3158 #define LOAD_COUNTER_MASK       (((u32)0x1 << LOAD_COUNTER_BITS) - 1)
3159 #define RESET_DONE_FLAG_MASK    (~LOAD_COUNTER_MASK)
3160 #define RESET_DONE_FLAG_SHIFT   LOAD_COUNTER_BITS
3161
3162 /*
3163  * should be run under rtnl lock
3164  */
3165 static inline void bnx2x_set_reset_done(struct bnx2x *bp)
3166 {
3167         u32 val = REG_RD(bp, BNX2X_MISC_GEN_REG);
3168         val &= ~(1 << RESET_DONE_FLAG_SHIFT);
3169         REG_WR(bp, BNX2X_MISC_GEN_REG, val);
3170         barrier();
3171         mmiowb();
3172 }
3173
3174 /*
3175  * should be run under rtnl lock
3176  */
3177 static inline void bnx2x_set_reset_in_progress(struct bnx2x *bp)
3178 {
3179         u32 val = REG_RD(bp, BNX2X_MISC_GEN_REG);
3180         val |= (1 << 16);
3181         REG_WR(bp, BNX2X_MISC_GEN_REG, val);
3182         barrier();
3183         mmiowb();
3184 }
3185
3186 /*
3187  * should be run under rtnl lock
3188  */
3189 bool bnx2x_reset_is_done(struct bnx2x *bp)
3190 {
3191         u32 val = REG_RD(bp, BNX2X_MISC_GEN_REG);
3192         DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
3193         return (val & RESET_DONE_FLAG_MASK) ? false : true;
3194 }
3195
3196 /*
3197  * should be run under rtnl lock
3198  */
3199 inline void bnx2x_inc_load_cnt(struct bnx2x *bp)
3200 {
3201         u32 val1, val = REG_RD(bp, BNX2X_MISC_GEN_REG);
3202
3203         DP(NETIF_MSG_HW, "Old GEN_REG_VAL=0x%08x\n", val);
3204
3205         val1 = ((val & LOAD_COUNTER_MASK) + 1) & LOAD_COUNTER_MASK;
3206         REG_WR(bp, BNX2X_MISC_GEN_REG, (val & RESET_DONE_FLAG_MASK) | val1);
3207         barrier();
3208         mmiowb();
3209 }
3210
3211 /*
3212  * should be run under rtnl lock
3213  */
3214 u32 bnx2x_dec_load_cnt(struct bnx2x *bp)
3215 {
3216         u32 val1, val = REG_RD(bp, BNX2X_MISC_GEN_REG);
3217
3218         DP(NETIF_MSG_HW, "Old GEN_REG_VAL=0x%08x\n", val);
3219
3220         val1 = ((val & LOAD_COUNTER_MASK) - 1) & LOAD_COUNTER_MASK;
3221         REG_WR(bp, BNX2X_MISC_GEN_REG, (val & RESET_DONE_FLAG_MASK) | val1);
3222         barrier();
3223         mmiowb();
3224
3225         return val1;
3226 }
3227
3228 /*
3229  * should be run under rtnl lock
3230  */
3231 static inline u32 bnx2x_get_load_cnt(struct bnx2x *bp)
3232 {
3233         return REG_RD(bp, BNX2X_MISC_GEN_REG) & LOAD_COUNTER_MASK;
3234 }
3235
3236 static inline void bnx2x_clear_load_cnt(struct bnx2x *bp)
3237 {
3238         u32 val = REG_RD(bp, BNX2X_MISC_GEN_REG);
3239         REG_WR(bp, BNX2X_MISC_GEN_REG, val & (~LOAD_COUNTER_MASK));
3240 }
3241
3242 static inline void _print_next_block(int idx, const char *blk)
3243 {
3244         if (idx)
3245                 pr_cont(", ");
3246         pr_cont("%s", blk);
3247 }
3248
3249 static inline int bnx2x_print_blocks_with_parity0(u32 sig, int par_num)
3250 {
3251         int i = 0;
3252         u32 cur_bit = 0;
3253         for (i = 0; sig; i++) {
3254                 cur_bit = ((u32)0x1 << i);
3255                 if (sig & cur_bit) {
3256                         switch (cur_bit) {
3257                         case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
3258                                 _print_next_block(par_num++, "BRB");
3259                                 break;
3260                         case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
3261                                 _print_next_block(par_num++, "PARSER");
3262                                 break;
3263                         case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
3264                                 _print_next_block(par_num++, "TSDM");
3265                                 break;
3266                         case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
3267                                 _print_next_block(par_num++, "SEARCHER");
3268                                 break;
3269                         case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
3270                                 _print_next_block(par_num++, "TSEMI");
3271                                 break;
3272                         }
3273
3274                         /* Clear the bit */
3275                         sig &= ~cur_bit;
3276                 }
3277         }
3278
3279         return par_num;
3280 }
3281
3282 static inline int bnx2x_print_blocks_with_parity1(u32 sig, int par_num)
3283 {
3284         int i = 0;
3285         u32 cur_bit = 0;
3286         for (i = 0; sig; i++) {
3287                 cur_bit = ((u32)0x1 << i);
3288                 if (sig & cur_bit) {
3289                         switch (cur_bit) {
3290                         case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
3291                                 _print_next_block(par_num++, "PBCLIENT");
3292                                 break;
3293                         case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
3294                                 _print_next_block(par_num++, "QM");
3295                                 break;
3296                         case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
3297                                 _print_next_block(par_num++, "XSDM");
3298                                 break;
3299                         case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
3300                                 _print_next_block(par_num++, "XSEMI");
3301                                 break;
3302                         case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
3303                                 _print_next_block(par_num++, "DOORBELLQ");
3304                                 break;
3305                         case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
3306                                 _print_next_block(par_num++, "VAUX PCI CORE");
3307                                 break;
3308                         case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
3309                                 _print_next_block(par_num++, "DEBUG");
3310                                 break;
3311                         case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
3312                                 _print_next_block(par_num++, "USDM");
3313                                 break;
3314                         case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
3315                                 _print_next_block(par_num++, "USEMI");
3316                                 break;
3317                         case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
3318                                 _print_next_block(par_num++, "UPB");
3319                                 break;
3320                         case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
3321                                 _print_next_block(par_num++, "CSDM");
3322                                 break;
3323                         }
3324
3325                         /* Clear the bit */
3326                         sig &= ~cur_bit;
3327                 }
3328         }
3329
3330         return par_num;
3331 }
3332
3333 static inline int bnx2x_print_blocks_with_parity2(u32 sig, int par_num)
3334 {
3335         int i = 0;
3336         u32 cur_bit = 0;
3337         for (i = 0; sig; i++) {
3338                 cur_bit = ((u32)0x1 << i);
3339                 if (sig & cur_bit) {
3340                         switch (cur_bit) {
3341                         case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
3342                                 _print_next_block(par_num++, "CSEMI");
3343                                 break;
3344                         case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
3345                                 _print_next_block(par_num++, "PXP");
3346                                 break;
3347                         case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
3348                                 _print_next_block(par_num++,
3349                                         "PXPPCICLOCKCLIENT");
3350                                 break;
3351                         case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
3352                                 _print_next_block(par_num++, "CFC");
3353                                 break;
3354                         case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
3355                                 _print_next_block(par_num++, "CDU");
3356                                 break;
3357                         case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
3358                                 _print_next_block(par_num++, "IGU");
3359                                 break;
3360                         case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
3361                                 _print_next_block(par_num++, "MISC");
3362                                 break;
3363                         }
3364
3365                         /* Clear the bit */
3366                         sig &= ~cur_bit;
3367                 }
3368         }
3369
3370         return par_num;
3371 }
3372
3373 static inline int bnx2x_print_blocks_with_parity3(u32 sig, int par_num)
3374 {
3375         int i = 0;
3376         u32 cur_bit = 0;
3377         for (i = 0; sig; i++) {
3378                 cur_bit = ((u32)0x1 << i);
3379                 if (sig & cur_bit) {
3380                         switch (cur_bit) {
3381                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
3382                                 _print_next_block(par_num++, "MCP ROM");
3383                                 break;
3384                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
3385                                 _print_next_block(par_num++, "MCP UMP RX");
3386                                 break;
3387                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
3388                                 _print_next_block(par_num++, "MCP UMP TX");
3389                                 break;
3390                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
3391                                 _print_next_block(par_num++, "MCP SCPAD");
3392                                 break;
3393                         }
3394
3395                         /* Clear the bit */
3396                         sig &= ~cur_bit;
3397                 }
3398         }
3399
3400         return par_num;
3401 }
3402
3403 static inline bool bnx2x_parity_attn(struct bnx2x *bp, u32 sig0, u32 sig1,
3404                                      u32 sig2, u32 sig3)
3405 {
3406         if ((sig0 & HW_PRTY_ASSERT_SET_0) || (sig1 & HW_PRTY_ASSERT_SET_1) ||
3407             (sig2 & HW_PRTY_ASSERT_SET_2) || (sig3 & HW_PRTY_ASSERT_SET_3)) {
3408                 int par_num = 0;
3409                 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention: "
3410                         "[0]:0x%08x [1]:0x%08x "
3411                         "[2]:0x%08x [3]:0x%08x\n",
3412                           sig0 & HW_PRTY_ASSERT_SET_0,
3413                           sig1 & HW_PRTY_ASSERT_SET_1,
3414                           sig2 & HW_PRTY_ASSERT_SET_2,
3415                           sig3 & HW_PRTY_ASSERT_SET_3);
3416                 printk(KERN_ERR"%s: Parity errors detected in blocks: ",
3417                        bp->dev->name);
3418                 par_num = bnx2x_print_blocks_with_parity0(
3419                         sig0 & HW_PRTY_ASSERT_SET_0, par_num);
3420                 par_num = bnx2x_print_blocks_with_parity1(
3421                         sig1 & HW_PRTY_ASSERT_SET_1, par_num);
3422                 par_num = bnx2x_print_blocks_with_parity2(
3423                         sig2 & HW_PRTY_ASSERT_SET_2, par_num);
3424                 par_num = bnx2x_print_blocks_with_parity3(
3425                         sig3 & HW_PRTY_ASSERT_SET_3, par_num);
3426                 printk("\n");
3427                 return true;
3428         } else
3429                 return false;
3430 }
3431
3432 bool bnx2x_chk_parity_attn(struct bnx2x *bp)
3433 {
3434         struct attn_route attn;
3435         int port = BP_PORT(bp);
3436
3437         attn.sig[0] = REG_RD(bp,
3438                 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
3439                              port*4);
3440         attn.sig[1] = REG_RD(bp,
3441                 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
3442                              port*4);
3443         attn.sig[2] = REG_RD(bp,
3444                 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
3445                              port*4);
3446         attn.sig[3] = REG_RD(bp,
3447                 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
3448                              port*4);
3449
3450         return bnx2x_parity_attn(bp, attn.sig[0], attn.sig[1], attn.sig[2],
3451                                         attn.sig[3]);
3452 }
3453
3454
3455 static inline void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
3456 {
3457         u32 val;
3458         if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
3459
3460                 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
3461                 BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
3462                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
3463                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
3464                                   "ADDRESS_ERROR\n");
3465                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
3466                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
3467                                   "INCORRECT_RCV_BEHAVIOR\n");
3468                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
3469                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
3470                                   "WAS_ERROR_ATTN\n");
3471                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
3472                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
3473                                   "VF_LENGTH_VIOLATION_ATTN\n");
3474                 if (val &
3475                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
3476                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
3477                                   "VF_GRC_SPACE_VIOLATION_ATTN\n");
3478                 if (val &
3479                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
3480                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
3481                                   "VF_MSIX_BAR_VIOLATION_ATTN\n");
3482                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
3483                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
3484                                   "TCPL_ERROR_ATTN\n");
3485                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
3486                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
3487                                   "TCPL_IN_TWO_RCBS_ATTN\n");
3488                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
3489                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
3490                                   "CSSNOOP_FIFO_OVERFLOW\n");
3491         }
3492         if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
3493                 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
3494                 BNX2X_ERR("ATC hw attention 0x%x\n", val);
3495                 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
3496                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
3497                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
3498                         BNX2X_ERR("ATC_ATC_INT_STS_REG"
3499                                   "_ATC_TCPL_TO_NOT_PEND\n");
3500                 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
3501                         BNX2X_ERR("ATC_ATC_INT_STS_REG_"
3502                                   "ATC_GPA_MULTIPLE_HITS\n");
3503                 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
3504                         BNX2X_ERR("ATC_ATC_INT_STS_REG_"
3505                                   "ATC_RCPL_TO_EMPTY_CNT\n");
3506                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
3507                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
3508                 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
3509                         BNX2X_ERR("ATC_ATC_INT_STS_REG_"
3510                                   "ATC_IREQ_LESS_THAN_STU\n");
3511         }
3512
3513         if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
3514                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
3515                 BNX2X_ERR("FATAL parity attention set4 0x%x\n",
3516                 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
3517                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
3518         }
3519
3520 }
3521
3522 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
3523 {
3524         struct attn_route attn, *group_mask;
3525         int port = BP_PORT(bp);
3526         int index;
3527         u32 reg_addr;
3528         u32 val;
3529         u32 aeu_mask;
3530
3531         /* need to take HW lock because MCP or other port might also
3532            try to handle this event */
3533         bnx2x_acquire_alr(bp);
3534
3535         if (CHIP_PARITY_ENABLED(bp) && bnx2x_chk_parity_attn(bp)) {
3536                 bp->recovery_state = BNX2X_RECOVERY_INIT;
3537                 bnx2x_set_reset_in_progress(bp);
3538                 schedule_delayed_work(&bp->reset_task, 0);
3539                 /* Disable HW interrupts */
3540                 bnx2x_int_disable(bp);
3541                 bnx2x_release_alr(bp);
3542                 /* In case of parity errors don't handle attentions so that
3543                  * other function would "see" parity errors.
3544                  */
3545                 return;
3546         }
3547
3548         attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
3549         attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
3550         attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
3551         attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
3552         if (CHIP_IS_E2(bp))
3553                 attn.sig[4] =
3554                       REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
3555         else
3556                 attn.sig[4] = 0;
3557
3558         DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
3559            attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
3560
3561         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
3562                 if (deasserted & (1 << index)) {
3563                         group_mask = &bp->attn_group[index];
3564
3565                         DP(NETIF_MSG_HW, "group[%d]: %08x %08x "
3566                                          "%08x %08x %08x\n",
3567                            index,
3568                            group_mask->sig[0], group_mask->sig[1],
3569                            group_mask->sig[2], group_mask->sig[3],
3570                            group_mask->sig[4]);
3571
3572                         bnx2x_attn_int_deasserted4(bp,
3573                                         attn.sig[4] & group_mask->sig[4]);
3574                         bnx2x_attn_int_deasserted3(bp,
3575                                         attn.sig[3] & group_mask->sig[3]);
3576                         bnx2x_attn_int_deasserted1(bp,
3577                                         attn.sig[1] & group_mask->sig[1]);
3578                         bnx2x_attn_int_deasserted2(bp,
3579                                         attn.sig[2] & group_mask->sig[2]);
3580                         bnx2x_attn_int_deasserted0(bp,
3581                                         attn.sig[0] & group_mask->sig[0]);
3582                 }
3583         }
3584
3585         bnx2x_release_alr(bp);
3586
3587         if (bp->common.int_block == INT_BLOCK_HC)
3588                 reg_addr = (HC_REG_COMMAND_REG + port*32 +
3589                             COMMAND_REG_ATTN_BITS_CLR);
3590         else
3591                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
3592
3593         val = ~deasserted;
3594         DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
3595            (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3596         REG_WR(bp, reg_addr, val);
3597
3598         if (~bp->attn_state & deasserted)
3599                 BNX2X_ERR("IGU ERROR\n");
3600
3601         reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3602                           MISC_REG_AEU_MASK_ATTN_FUNC_0;
3603
3604         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3605         aeu_mask = REG_RD(bp, reg_addr);
3606
3607         DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
3608            aeu_mask, deasserted);
3609         aeu_mask |= (deasserted & 0x3ff);
3610         DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3611
3612         REG_WR(bp, reg_addr, aeu_mask);
3613         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3614
3615         DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3616         bp->attn_state &= ~deasserted;
3617         DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3618 }
3619
3620 static void bnx2x_attn_int(struct bnx2x *bp)
3621 {
3622         /* read local copy of bits */
3623         u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
3624                                                                 attn_bits);
3625         u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
3626                                                                 attn_bits_ack);
3627         u32 attn_state = bp->attn_state;
3628
3629         /* look for changed bits */
3630         u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
3631         u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
3632
3633         DP(NETIF_MSG_HW,
3634            "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
3635            attn_bits, attn_ack, asserted, deasserted);
3636
3637         if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
3638                 BNX2X_ERR("BAD attention state\n");
3639
3640         /* handle bits that were raised */
3641         if (asserted)
3642                 bnx2x_attn_int_asserted(bp, asserted);
3643
3644         if (deasserted)
3645                 bnx2x_attn_int_deasserted(bp, deasserted);
3646 }
3647
3648 static inline void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
3649 {
3650         /* No memory barriers */
3651         storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
3652         mmiowb(); /* keep prod updates ordered */
3653 }
3654
3655 #ifdef BCM_CNIC
3656 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
3657                                       union event_ring_elem *elem)
3658 {
3659         if (!bp->cnic_eth_dev.starting_cid  ||
3660             cid < bp->cnic_eth_dev.starting_cid)
3661                 return 1;
3662
3663         DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
3664
3665         if (unlikely(elem->message.data.cfc_del_event.error)) {
3666                 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
3667                           cid);
3668                 bnx2x_panic_dump(bp);
3669         }
3670         bnx2x_cnic_cfc_comp(bp, cid);
3671         return 0;
3672 }
3673 #endif
3674
3675 static void bnx2x_eq_int(struct bnx2x *bp)
3676 {
3677         u16 hw_cons, sw_cons, sw_prod;
3678         union event_ring_elem *elem;
3679         u32 cid;
3680         u8 opcode;
3681         int spqe_cnt = 0;
3682
3683         hw_cons = le16_to_cpu(*bp->eq_cons_sb);
3684
3685         /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
3686          * when we get the the next-page we nned to adjust so the loop
3687          * condition below will be met. The next element is the size of a
3688          * regular element and hence incrementing by 1
3689          */
3690         if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
3691                 hw_cons++;
3692
3693         /* This function may never run in parralel with itself for a
3694          * specific bp, thus there is no need in "paired" read memory
3695          * barrier here.
3696          */
3697         sw_cons = bp->eq_cons;
3698         sw_prod = bp->eq_prod;
3699
3700         DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->spq_left %u\n",
3701                         hw_cons, sw_cons, atomic_read(&bp->spq_left));
3702
3703         for (; sw_cons != hw_cons;
3704               sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
3705
3706
3707                 elem = &bp->eq_ring[EQ_DESC(sw_cons)];
3708
3709                 cid = SW_CID(elem->message.data.cfc_del_event.cid);
3710                 opcode = elem->message.opcode;
3711
3712
3713                 /* handle eq element */
3714                 switch (opcode) {
3715                 case EVENT_RING_OPCODE_STAT_QUERY:
3716                         DP(NETIF_MSG_TIMER, "got statistics comp event\n");
3717                         /* nothing to do with stats comp */
3718                         continue;
3719
3720                 case EVENT_RING_OPCODE_CFC_DEL:
3721                         /* handle according to cid range */
3722                         /*
3723                          * we may want to verify here that the bp state is
3724                          * HALTING
3725                          */
3726                         DP(NETIF_MSG_IFDOWN,
3727                            "got delete ramrod for MULTI[%d]\n", cid);
3728 #ifdef BCM_CNIC
3729                         if (!bnx2x_cnic_handle_cfc_del(bp, cid, elem))
3730                                 goto next_spqe;
3731                         if (cid == BNX2X_FCOE_ETH_CID)
3732                                 bnx2x_fcoe(bp, state) = BNX2X_FP_STATE_CLOSED;
3733                         else
3734 #endif
3735                                 bnx2x_fp(bp, cid, state) =
3736                                                 BNX2X_FP_STATE_CLOSED;
3737
3738                         goto next_spqe;
3739
3740                 case EVENT_RING_OPCODE_STOP_TRAFFIC:
3741                         DP(NETIF_MSG_IFUP, "got STOP TRAFFIC\n");
3742                         bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
3743                         goto next_spqe;
3744                 case EVENT_RING_OPCODE_START_TRAFFIC:
3745                         DP(NETIF_MSG_IFUP, "got START TRAFFIC\n");
3746                         bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
3747                         goto next_spqe;
3748                 }
3749
3750                 switch (opcode | bp->state) {
3751                 case (EVENT_RING_OPCODE_FUNCTION_START |
3752                       BNX2X_STATE_OPENING_WAIT4_PORT):
3753                         DP(NETIF_MSG_IFUP, "got setup ramrod\n");
3754                         bp->state = BNX2X_STATE_FUNC_STARTED;
3755                         break;
3756
3757                 case (EVENT_RING_OPCODE_FUNCTION_STOP |
3758                       BNX2X_STATE_CLOSING_WAIT4_HALT):
3759                         DP(NETIF_MSG_IFDOWN, "got halt ramrod\n");
3760                         bp->state = BNX2X_STATE_CLOSING_WAIT4_UNLOAD;
3761                         break;
3762
3763                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
3764                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
3765                         DP(NETIF_MSG_IFUP, "got set mac ramrod\n");
3766                         bp->set_mac_pending = 0;
3767                         break;
3768
3769                 case (EVENT_RING_OPCODE_SET_MAC |
3770                       BNX2X_STATE_CLOSING_WAIT4_HALT):
3771                         DP(NETIF_MSG_IFDOWN, "got (un)set mac ramrod\n");
3772                         bp->set_mac_pending = 0;
3773                         break;
3774                 default:
3775                         /* unknown event log error and continue */
3776                         BNX2X_ERR("Unknown EQ event %d\n",
3777                                   elem->message.opcode);
3778                 }
3779 next_spqe:
3780                 spqe_cnt++;
3781         } /* for */
3782
3783         smp_mb__before_atomic_inc();
3784         atomic_add(spqe_cnt, &bp->spq_left);
3785
3786         bp->eq_cons = sw_cons;
3787         bp->eq_prod = sw_prod;
3788         /* Make sure that above mem writes were issued towards the memory */
3789         smp_wmb();
3790
3791         /* update producer */
3792         bnx2x_update_eq_prod(bp, bp->eq_prod);
3793 }
3794
3795 static void bnx2x_sp_task(struct work_struct *work)
3796 {
3797         struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
3798         u16 status;
3799
3800         /* Return here if interrupt is disabled */
3801         if (unlikely(atomic_read(&bp->intr_sem) != 0)) {
3802                 DP(NETIF_MSG_INTR, "called but intr_sem not 0, returning\n");
3803                 return;
3804         }
3805
3806         status = bnx2x_update_dsb_idx(bp);
3807 /*      if (status == 0)                                     */
3808 /*              BNX2X_ERR("spurious slowpath interrupt!\n"); */
3809
3810         DP(NETIF_MSG_INTR, "got a slowpath interrupt (status 0x%x)\n", status);
3811
3812         /* HW attentions */
3813         if (status & BNX2X_DEF_SB_ATT_IDX) {
3814                 bnx2x_attn_int(bp);
3815                 status &= ~BNX2X_DEF_SB_ATT_IDX;
3816         }
3817
3818         /* SP events: STAT_QUERY and others */
3819         if (status & BNX2X_DEF_SB_IDX) {
3820 #ifdef BCM_CNIC
3821                 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
3822
3823                 if ((!NO_FCOE(bp)) &&
3824                         (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp)))
3825                         napi_schedule(&bnx2x_fcoe(bp, napi));
3826 #endif
3827                 /* Handle EQ completions */
3828                 bnx2x_eq_int(bp);
3829
3830                 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
3831                         le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
3832
3833                 status &= ~BNX2X_DEF_SB_IDX;
3834         }
3835
3836         if (unlikely(status))
3837                 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
3838                    status);
3839
3840         bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
3841              le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
3842 }
3843
3844 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
3845 {
3846         struct net_device *dev = dev_instance;
3847         struct bnx2x *bp = netdev_priv(dev);
3848
3849         /* Return here if interrupt is disabled */
3850         if (unlikely(atomic_read(&bp->intr_sem) != 0)) {
3851                 DP(NETIF_MSG_INTR, "called but intr_sem not 0, returning\n");
3852                 return IRQ_HANDLED;
3853         }
3854
3855         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
3856                      IGU_INT_DISABLE, 0);
3857
3858 #ifdef BNX2X_STOP_ON_ERROR
3859         if (unlikely(bp->panic))
3860                 return IRQ_HANDLED;
3861 #endif
3862
3863 #ifdef BCM_CNIC
3864         {
3865                 struct cnic_ops *c_ops;
3866
3867                 rcu_read_lock();
3868                 c_ops = rcu_dereference(bp->cnic_ops);
3869                 if (c_ops)
3870                         c_ops->cnic_handler(bp->cnic_data, NULL);
3871                 rcu_read_unlock();
3872         }
3873 #endif
3874         queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
3875
3876         return IRQ_HANDLED;
3877 }
3878
3879 /* end of slow path */
3880
3881 static void bnx2x_timer(unsigned long data)
3882 {
3883         struct bnx2x *bp = (struct bnx2x *) data;
3884
3885         if (!netif_running(bp->dev))
3886                 return;
3887
3888         if (atomic_read(&bp->intr_sem) != 0)
3889                 goto timer_restart;
3890
3891         if (poll) {
3892                 struct bnx2x_fastpath *fp = &bp->fp[0];
3893                 int rc;
3894
3895                 bnx2x_tx_int(fp);
3896                 rc = bnx2x_rx_int(fp, 1000);
3897         }
3898
3899         if (!BP_NOMCP(bp)) {
3900                 int mb_idx = BP_FW_MB_IDX(bp);
3901                 u32 drv_pulse;
3902                 u32 mcp_pulse;
3903
3904                 ++bp->fw_drv_pulse_wr_seq;
3905                 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
3906                 /* TBD - add SYSTEM_TIME */
3907                 drv_pulse = bp->fw_drv_pulse_wr_seq;
3908                 SHMEM_WR(bp, func_mb[mb_idx].drv_pulse_mb, drv_pulse);
3909
3910                 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
3911                              MCP_PULSE_SEQ_MASK);
3912                 /* The delta between driver pulse and mcp response
3913                  * should be 1 (before mcp response) or 0 (after mcp response)
3914                  */
3915                 if ((drv_pulse != mcp_pulse) &&
3916                     (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
3917                         /* someone lost a heartbeat... */
3918                         BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
3919                                   drv_pulse, mcp_pulse);
3920                 }
3921         }
3922
3923         if (bp->state == BNX2X_STATE_OPEN)
3924                 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
3925
3926 timer_restart:
3927         mod_timer(&bp->timer, jiffies + bp->current_interval);
3928 }
3929
3930 /* end of Statistics */
3931
3932 /* nic init */
3933
3934 /*
3935  * nic init service functions
3936  */
3937
3938 static inline void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
3939 {
3940         u32 i;
3941         if (!(len%4) && !(addr%4))
3942                 for (i = 0; i < len; i += 4)
3943                         REG_WR(bp, addr + i, fill);
3944         else
3945                 for (i = 0; i < len; i++)
3946                         REG_WR8(bp, addr + i, fill);
3947
3948 }
3949
3950 /* helper: writes FP SP data to FW - data_size in dwords */
3951 static inline void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
3952                                        int fw_sb_id,
3953                                        u32 *sb_data_p,
3954                                        u32 data_size)
3955 {
3956         int index;
3957         for (index = 0; index < data_size; index++)
3958                 REG_WR(bp, BAR_CSTRORM_INTMEM +
3959                         CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
3960                         sizeof(u32)*index,
3961                         *(sb_data_p + index));
3962 }
3963
3964 static inline void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
3965 {
3966         u32 *sb_data_p;
3967         u32 data_size = 0;
3968         struct hc_status_block_data_e2 sb_data_e2;
3969         struct hc_status_block_data_e1x sb_data_e1x;
3970
3971         /* disable the function first */
3972         if (CHIP_IS_E2(bp)) {
3973                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
3974                 sb_data_e2.common.p_func.pf_id = HC_FUNCTION_DISABLED;
3975                 sb_data_e2.common.p_func.vf_id = HC_FUNCTION_DISABLED;
3976                 sb_data_e2.common.p_func.vf_valid = false;
3977                 sb_data_p = (u32 *)&sb_data_e2;
3978                 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
3979         } else {
3980                 memset(&sb_data_e1x, 0,
3981                        sizeof(struct hc_status_block_data_e1x));
3982                 sb_data_e1x.common.p_func.pf_id = HC_FUNCTION_DISABLED;
3983                 sb_data_e1x.common.p_func.vf_id = HC_FUNCTION_DISABLED;
3984                 sb_data_e1x.common.p_func.vf_valid = false;
3985                 sb_data_p = (u32 *)&sb_data_e1x;
3986                 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
3987         }
3988         bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
3989
3990         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
3991                         CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
3992                         CSTORM_STATUS_BLOCK_SIZE);
3993         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
3994                         CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
3995                         CSTORM_SYNC_BLOCK_SIZE);
3996 }
3997
3998 /* helper:  writes SP SB data to FW */
3999 static inline void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
4000                 struct hc_sp_status_block_data *sp_sb_data)
4001 {
4002         int func = BP_FUNC(bp);
4003         int i;
4004         for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
4005                 REG_WR(bp, BAR_CSTRORM_INTMEM +
4006                         CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
4007                         i*sizeof(u32),
4008                         *((u32 *)sp_sb_data + i));
4009 }
4010
4011 static inline void bnx2x_zero_sp_sb(struct bnx2x *bp)
4012 {
4013         int func = BP_FUNC(bp);
4014         struct hc_sp_status_block_data sp_sb_data;
4015         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
4016
4017         sp_sb_data.p_func.pf_id = HC_FUNCTION_DISABLED;
4018         sp_sb_data.p_func.vf_id = HC_FUNCTION_DISABLED;
4019         sp_sb_data.p_func.vf_valid = false;
4020
4021         bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
4022
4023         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4024                         CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
4025                         CSTORM_SP_STATUS_BLOCK_SIZE);
4026         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4027                         CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
4028                         CSTORM_SP_SYNC_BLOCK_SIZE);
4029
4030 }
4031
4032
4033 static inline
4034 void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
4035                                            int igu_sb_id, int igu_seg_id)
4036 {
4037         hc_sm->igu_sb_id = igu_sb_id;
4038         hc_sm->igu_seg_id = igu_seg_id;
4039         hc_sm->timer_value = 0xFF;
4040         hc_sm->time_to_expire = 0xFFFFFFFF;
4041 }
4042
4043 static void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
4044                           u8 vf_valid, int fw_sb_id, int igu_sb_id)
4045 {
4046         int igu_seg_id;
4047
4048         struct hc_status_block_data_e2 sb_data_e2;
4049         struct hc_status_block_data_e1x sb_data_e1x;
4050         struct hc_status_block_sm  *hc_sm_p;
4051         struct hc_index_data *hc_index_p;
4052         int data_size;
4053         u32 *sb_data_p;
4054
4055         if (CHIP_INT_MODE_IS_BC(bp))
4056                 igu_seg_id = HC_SEG_ACCESS_NORM;
4057         else
4058                 igu_seg_id = IGU_SEG_ACCESS_NORM;
4059
4060         bnx2x_zero_fp_sb(bp, fw_sb_id);
4061
4062         if (CHIP_IS_E2(bp)) {
4063                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
4064                 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
4065                 sb_data_e2.common.p_func.vf_id = vfid;
4066                 sb_data_e2.common.p_func.vf_valid = vf_valid;
4067                 sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
4068                 sb_data_e2.common.same_igu_sb_1b = true;
4069                 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
4070                 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
4071                 hc_sm_p = sb_data_e2.common.state_machine;
4072                 hc_index_p = sb_data_e2.index_data;
4073                 sb_data_p = (u32 *)&sb_data_e2;
4074                 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
4075         } else {
4076                 memset(&sb_data_e1x, 0,
4077                        sizeof(struct hc_status_block_data_e1x));
4078                 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
4079                 sb_data_e1x.common.p_func.vf_id = 0xff;
4080                 sb_data_e1x.common.p_func.vf_valid = false;
4081                 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
4082                 sb_data_e1x.common.same_igu_sb_1b = true;
4083                 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
4084                 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
4085                 hc_sm_p = sb_data_e1x.common.state_machine;
4086                 hc_index_p = sb_data_e1x.index_data;
4087                 sb_data_p = (u32 *)&sb_data_e1x;
4088                 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
4089         }
4090
4091         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
4092                                        igu_sb_id, igu_seg_id);
4093         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
4094                                        igu_sb_id, igu_seg_id);
4095
4096         DP(NETIF_MSG_HW, "Init FW SB %d\n", fw_sb_id);
4097
4098         /* write indecies to HW */
4099         bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
4100 }
4101
4102 static void bnx2x_update_coalesce_sb_index(struct bnx2x *bp, u16 fw_sb_id,
4103                                         u8 sb_index, u8 disable, u16 usec)
4104 {
4105         int port = BP_PORT(bp);
4106         u8 ticks = usec / BNX2X_BTR;
4107
4108         storm_memset_hc_timeout(bp, port, fw_sb_id, sb_index, ticks);
4109
4110         disable = disable ? 1 : (usec ? 0 : 1);
4111         storm_memset_hc_disable(bp, port, fw_sb_id, sb_index, disable);
4112 }
4113
4114 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u16 fw_sb_id,
4115                                      u16 tx_usec, u16 rx_usec)
4116 {
4117         bnx2x_update_coalesce_sb_index(bp, fw_sb_id, U_SB_ETH_RX_CQ_INDEX,
4118                                     false, rx_usec);
4119         bnx2x_update_coalesce_sb_index(bp, fw_sb_id, C_SB_ETH_TX_CQ_INDEX,
4120                                     false, tx_usec);
4121 }
4122
4123 static void bnx2x_init_def_sb(struct bnx2x *bp)
4124 {
4125         struct host_sp_status_block *def_sb = bp->def_status_blk;
4126         dma_addr_t mapping = bp->def_status_blk_mapping;
4127         int igu_sp_sb_index;
4128         int igu_seg_id;
4129         int port = BP_PORT(bp);
4130         int func = BP_FUNC(bp);
4131         int reg_offset;
4132         u64 section;
4133         int index;
4134         struct hc_sp_status_block_data sp_sb_data;
4135         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
4136
4137         if (CHIP_INT_MODE_IS_BC(bp)) {
4138                 igu_sp_sb_index = DEF_SB_IGU_ID;
4139                 igu_seg_id = HC_SEG_ACCESS_DEF;
4140         } else {
4141                 igu_sp_sb_index = bp->igu_dsb_id;
4142                 igu_seg_id = IGU_SEG_ACCESS_DEF;
4143         }
4144
4145         /* ATTN */
4146         section = ((u64)mapping) + offsetof(struct host_sp_status_block,
4147                                             atten_status_block);
4148         def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
4149
4150         bp->attn_state = 0;
4151
4152         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4153                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4154         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4155                 int sindex;
4156                 /* take care of sig[0]..sig[4] */
4157                 for (sindex = 0; sindex < 4; sindex++)
4158                         bp->attn_group[index].sig[sindex] =
4159                            REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
4160
4161                 if (CHIP_IS_E2(bp))
4162                         /*
4163                          * enable5 is separate from the rest of the registers,
4164                          * and therefore the address skip is 4
4165                          * and not 16 between the different groups
4166                          */
4167                         bp->attn_group[index].sig[4] = REG_RD(bp,
4168                                         reg_offset + 0x10 + 0x4*index);
4169                 else
4170                         bp->attn_group[index].sig[4] = 0;
4171         }
4172
4173         if (bp->common.int_block == INT_BLOCK_HC) {
4174                 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
4175                                      HC_REG_ATTN_MSG0_ADDR_L);
4176
4177                 REG_WR(bp, reg_offset, U64_LO(section));
4178                 REG_WR(bp, reg_offset + 4, U64_HI(section));
4179         } else if (CHIP_IS_E2(bp)) {
4180                 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
4181                 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
4182         }
4183
4184         section = ((u64)mapping) + offsetof(struct host_sp_status_block,
4185                                             sp_sb);
4186
4187         bnx2x_zero_sp_sb(bp);
4188
4189         sp_sb_data.host_sb_addr.lo      = U64_LO(section);
4190         sp_sb_data.host_sb_addr.hi      = U64_HI(section);
4191         sp_sb_data.igu_sb_id            = igu_sp_sb_index;
4192         sp_sb_data.igu_seg_id           = igu_seg_id;
4193         sp_sb_data.p_func.pf_id         = func;
4194         sp_sb_data.p_func.vnic_id       = BP_VN(bp);
4195         sp_sb_data.p_func.vf_id         = 0xff;
4196
4197         bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
4198
4199         bp->stats_pending = 0;
4200         bp->set_mac_pending = 0;
4201
4202         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
4203 }
4204
4205 void bnx2x_update_coalesce(struct bnx2x *bp)
4206 {
4207         int i;
4208
4209         for_each_eth_queue(bp, i)
4210                 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
4211                                          bp->rx_ticks, bp->tx_ticks);
4212 }
4213
4214 static void bnx2x_init_sp_ring(struct bnx2x *bp)
4215 {
4216         spin_lock_init(&bp->spq_lock);
4217         atomic_set(&bp->spq_left, MAX_SPQ_PENDING);
4218
4219         bp->spq_prod_idx = 0;
4220         bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
4221         bp->spq_prod_bd = bp->spq;
4222         bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
4223 }
4224
4225 static void bnx2x_init_eq_ring(struct bnx2x *bp)
4226 {
4227         int i;
4228         for (i = 1; i <= NUM_EQ_PAGES; i++) {
4229                 union event_ring_elem *elem =
4230                         &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
4231
4232                 elem->next_page.addr.hi =
4233                         cpu_to_le32(U64_HI(bp->eq_mapping +
4234                                    BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
4235                 elem->next_page.addr.lo =
4236                         cpu_to_le32(U64_LO(bp->eq_mapping +
4237                                    BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
4238         }
4239         bp->eq_cons = 0;
4240         bp->eq_prod = NUM_EQ_DESC;
4241         bp->eq_cons_sb = BNX2X_EQ_INDEX;
4242 }
4243
4244 static void bnx2x_init_ind_table(struct bnx2x *bp)
4245 {
4246         int func = BP_FUNC(bp);
4247         int i;
4248
4249         if (bp->multi_mode == ETH_RSS_MODE_DISABLED)
4250                 return;
4251
4252         DP(NETIF_MSG_IFUP,
4253            "Initializing indirection table  multi_mode %d\n", bp->multi_mode);
4254         for (i = 0; i < TSTORM_INDIRECTION_TABLE_SIZE; i++)
4255                 REG_WR8(bp, BAR_TSTRORM_INTMEM +
4256                         TSTORM_INDIRECTION_TABLE_OFFSET(func) + i,
4257                         bp->fp->cl_id + (i % (bp->num_queues -
4258                                 NONE_ETH_CONTEXT_USE)));
4259 }
4260
4261 void bnx2x_set_storm_rx_mode(struct bnx2x *bp)
4262 {
4263         int mode = bp->rx_mode;
4264         int port = BP_PORT(bp);
4265         u16 cl_id;
4266         u32 def_q_filters = 0;
4267
4268         /* All but management unicast packets should pass to the host as well */
4269         u32 llh_mask =
4270                 NIG_LLH0_BRB1_DRV_MASK_REG_LLH0_BRB1_DRV_MASK_BRCST |
4271                 NIG_LLH0_BRB1_DRV_MASK_REG_LLH0_BRB1_DRV_MASK_MLCST |
4272                 NIG_LLH0_BRB1_DRV_MASK_REG_LLH0_BRB1_DRV_MASK_VLAN |
4273                 NIG_LLH0_BRB1_DRV_MASK_REG_LLH0_BRB1_DRV_MASK_NO_VLAN;
4274
4275         switch (mode) {
4276         case BNX2X_RX_MODE_NONE: /* no Rx */
4277                 def_q_filters = BNX2X_ACCEPT_NONE;
4278 #ifdef BCM_CNIC
4279                 if (!NO_FCOE(bp)) {
4280                         cl_id = bnx2x_fcoe(bp, cl_id);
4281                         bnx2x_rxq_set_mac_filters(bp, cl_id, BNX2X_ACCEPT_NONE);
4282                 }
4283 #endif
4284                 break;
4285
4286         case BNX2X_RX_MODE_NORMAL:
4287                 def_q_filters |= BNX2X_ACCEPT_UNICAST | BNX2X_ACCEPT_BROADCAST |
4288                                 BNX2X_ACCEPT_MULTICAST;
4289 #ifdef BCM_CNIC
4290                 if (!NO_FCOE(bp)) {
4291                         cl_id = bnx2x_fcoe(bp, cl_id);
4292                         bnx2x_rxq_set_mac_filters(bp, cl_id,
4293                                                   BNX2X_ACCEPT_UNICAST |
4294                                                   BNX2X_ACCEPT_MULTICAST);
4295                 }
4296 #endif
4297                 break;
4298
4299         case BNX2X_RX_MODE_ALLMULTI:
4300                 def_q_filters |= BNX2X_ACCEPT_UNICAST | BNX2X_ACCEPT_BROADCAST |
4301                                 BNX2X_ACCEPT_ALL_MULTICAST;
4302 #ifdef BCM_CNIC
4303                 /*
4304                  *  Prevent duplication of multicast packets by configuring FCoE
4305                  *  L2 Client to receive only matched unicast frames.
4306                  */
4307                 if (!NO_FCOE(bp)) {
4308                         cl_id = bnx2x_fcoe(bp, cl_id);
4309                         bnx2x_rxq_set_mac_filters(bp, cl_id,
4310                                                   BNX2X_ACCEPT_UNICAST);
4311                 }
4312 #endif
4313                 break;
4314
4315         case BNX2X_RX_MODE_PROMISC:
4316                 def_q_filters |= BNX2X_PROMISCUOUS_MODE;
4317 #ifdef BCM_CNIC
4318                 /*
4319                  *  Prevent packets duplication by configuring DROP_ALL for FCoE
4320                  *  L2 Client.
4321                  */
4322                 if (!NO_FCOE(bp)) {
4323                         cl_id = bnx2x_fcoe(bp, cl_id);
4324                         bnx2x_rxq_set_mac_filters(bp, cl_id, BNX2X_ACCEPT_NONE);
4325                 }
4326 #endif
4327                 /* pass management unicast packets as well */
4328                 llh_mask |= NIG_LLH0_BRB1_DRV_MASK_REG_LLH0_BRB1_DRV_MASK_UNCST;
4329                 break;
4330
4331         default:
4332                 BNX2X_ERR("BAD rx mode (%d)\n", mode);
4333                 break;
4334         }
4335
4336         cl_id = BP_L_ID(bp);
4337         bnx2x_rxq_set_mac_filters(bp, cl_id, def_q_filters);
4338
4339         REG_WR(bp,
4340                (port ? NIG_REG_LLH1_BRB1_DRV_MASK :
4341                        NIG_REG_LLH0_BRB1_DRV_MASK), llh_mask);
4342
4343         DP(NETIF_MSG_IFUP, "rx mode %d\n"
4344                 "drop_ucast 0x%x\ndrop_mcast 0x%x\ndrop_bcast 0x%x\n"
4345                 "accp_ucast 0x%x\naccp_mcast 0x%x\naccp_bcast 0x%x\n"
4346                 "unmatched_ucast 0x%x\n", mode,
4347                 bp->mac_filters.ucast_drop_all,
4348                 bp->mac_filters.mcast_drop_all,
4349                 bp->mac_filters.bcast_drop_all,
4350                 bp->mac_filters.ucast_accept_all,
4351                 bp->mac_filters.mcast_accept_all,
4352                 bp->mac_filters.bcast_accept_all,
4353                 bp->mac_filters.unmatched_unicast
4354         );
4355
4356         storm_memset_mac_filters(bp, &bp->mac_filters, BP_FUNC(bp));
4357 }
4358
4359 static void bnx2x_init_internal_common(struct bnx2x *bp)
4360 {
4361         int i;
4362
4363         if (!CHIP_IS_E1(bp)) {
4364
4365                 /* xstorm needs to know whether to add  ovlan to packets or not,
4366                  * in switch-independent we'll write 0 to here... */
4367                 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNCTION_MODE_OFFSET,
4368                         bp->mf_mode);
4369                 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNCTION_MODE_OFFSET,
4370                         bp->mf_mode);
4371                 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNCTION_MODE_OFFSET,
4372                         bp->mf_mode);
4373                 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNCTION_MODE_OFFSET,
4374                         bp->mf_mode);
4375         }
4376
4377         if (IS_MF_SI(bp))
4378                 /*
4379                  * In switch independent mode, the TSTORM needs to accept
4380                  * packets that failed classification, since approximate match
4381                  * mac addresses aren't written to NIG LLH
4382                  */
4383                 REG_WR8(bp, BAR_TSTRORM_INTMEM +
4384                             TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
4385
4386         /* Zero this manually as its initialization is
4387            currently missing in the initTool */
4388         for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
4389                 REG_WR(bp, BAR_USTRORM_INTMEM +
4390                        USTORM_AGG_DATA_OFFSET + i * 4, 0);
4391         if (CHIP_IS_E2(bp)) {
4392                 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
4393                         CHIP_INT_MODE_IS_BC(bp) ?
4394                         HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
4395         }
4396 }
4397
4398 static void bnx2x_init_internal_port(struct bnx2x *bp)
4399 {
4400         /* port */
4401         bnx2x_dcb_init_intmem_pfc(bp);
4402 }
4403
4404 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
4405 {
4406         switch (load_code) {
4407         case FW_MSG_CODE_DRV_LOAD_COMMON:
4408         case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
4409                 bnx2x_init_internal_common(bp);
4410                 /* no break */
4411
4412         case FW_MSG_CODE_DRV_LOAD_PORT:
4413                 bnx2x_init_internal_port(bp);
4414                 /* no break */
4415
4416         case FW_MSG_CODE_DRV_LOAD_FUNCTION:
4417                 /* internal memory per function is
4418                    initialized inside bnx2x_pf_init */
4419                 break;
4420
4421         default:
4422                 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
4423                 break;
4424         }
4425 }
4426
4427 static void bnx2x_init_fp_sb(struct bnx2x *bp, int fp_idx)
4428 {
4429         struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
4430
4431         fp->state = BNX2X_FP_STATE_CLOSED;
4432
4433         fp->index = fp->cid = fp_idx;
4434         fp->cl_id = BP_L_ID(bp) + fp_idx;
4435         fp->fw_sb_id = bp->base_fw_ndsb + fp->cl_id + CNIC_CONTEXT_USE;
4436         fp->igu_sb_id = bp->igu_base_sb + fp_idx + CNIC_CONTEXT_USE;
4437         /* qZone id equals to FW (per path) client id */
4438         fp->cl_qzone_id  = fp->cl_id +
4439                            BP_PORT(bp)*(CHIP_IS_E2(bp) ? ETH_MAX_RX_CLIENTS_E2 :
4440                                 ETH_MAX_RX_CLIENTS_E1H);
4441         /* init shortcut */
4442         fp->ustorm_rx_prods_offset = CHIP_IS_E2(bp) ?
4443                             USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id) :
4444                             USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
4445         /* Setup SB indicies */
4446         fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
4447         fp->tx_cons_sb = BNX2X_TX_SB_INDEX;
4448
4449         DP(NETIF_MSG_IFUP, "queue[%d]:  bnx2x_init_sb(%p,%p)  "
4450                                    "cl_id %d  fw_sb %d  igu_sb %d\n",
4451                    fp_idx, bp, fp->status_blk.e1x_sb, fp->cl_id, fp->fw_sb_id,
4452                    fp->igu_sb_id);
4453         bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
4454                       fp->fw_sb_id, fp->igu_sb_id);
4455
4456         bnx2x_update_fpsb_idx(fp);
4457 }
4458
4459 void bnx2x_nic_init(struct bnx2x *bp, u32 load_code)
4460 {
4461         int i;
4462
4463         for_each_eth_queue(bp, i)
4464                 bnx2x_init_fp_sb(bp, i);
4465 #ifdef BCM_CNIC
4466         if (!NO_FCOE(bp))
4467                 bnx2x_init_fcoe_fp(bp);
4468
4469         bnx2x_init_sb(bp, bp->cnic_sb_mapping,
4470                       BNX2X_VF_ID_INVALID, false,
4471                       CNIC_SB_ID(bp), CNIC_IGU_SB_ID(bp));
4472
4473 #endif
4474
4475         /* ensure status block indices were read */
4476         rmb();
4477
4478         bnx2x_init_def_sb(bp);
4479         bnx2x_update_dsb_idx(bp);
4480         bnx2x_init_rx_rings(bp);
4481         bnx2x_init_tx_rings(bp);
4482         bnx2x_init_sp_ring(bp);
4483         bnx2x_init_eq_ring(bp);
4484         bnx2x_init_internal(bp, load_code);
4485         bnx2x_pf_init(bp);
4486         bnx2x_init_ind_table(bp);
4487         bnx2x_stats_init(bp);
4488
4489         /* At this point, we are ready for interrupts */
4490         atomic_set(&bp->intr_sem, 0);
4491
4492         /* flush all before enabling interrupts */
4493         mb();
4494         mmiowb();
4495
4496         bnx2x_int_enable(bp);
4497
4498         /* Check for SPIO5 */
4499         bnx2x_attn_int_deasserted0(bp,
4500                 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
4501                                    AEU_INPUTS_ATTN_BITS_SPIO5);
4502 }
4503
4504 /* end of nic init */
4505
4506 /*
4507  * gzip service functions
4508  */
4509
4510 static int bnx2x_gunzip_init(struct bnx2x *bp)
4511 {
4512         bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
4513                                             &bp->gunzip_mapping, GFP_KERNEL);
4514         if (bp->gunzip_buf  == NULL)
4515                 goto gunzip_nomem1;
4516
4517         bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
4518         if (bp->strm  == NULL)
4519                 goto gunzip_nomem2;
4520
4521         bp->strm->workspace = kmalloc(zlib_inflate_workspacesize(),
4522                                       GFP_KERNEL);
4523         if (bp->strm->workspace == NULL)
4524                 goto gunzip_nomem3;
4525
4526         return 0;
4527
4528 gunzip_nomem3:
4529         kfree(bp->strm);
4530         bp->strm = NULL;
4531
4532 gunzip_nomem2:
4533         dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
4534                           bp->gunzip_mapping);
4535         bp->gunzip_buf = NULL;
4536
4537 gunzip_nomem1:
4538         netdev_err(bp->dev, "Cannot allocate firmware buffer for"
4539                " un-compression\n");
4540         return -ENOMEM;
4541 }
4542
4543 static void bnx2x_gunzip_end(struct bnx2x *bp)
4544 {
4545         kfree(bp->strm->workspace);
4546         kfree(bp->strm);
4547         bp->strm = NULL;
4548
4549         if (bp->gunzip_buf) {
4550                 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
4551                                   bp->gunzip_mapping);
4552                 bp->gunzip_buf = NULL;
4553         }
4554 }
4555
4556 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
4557 {
4558         int n, rc;
4559
4560         /* check gzip header */
4561         if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
4562                 BNX2X_ERR("Bad gzip header\n");
4563                 return -EINVAL;
4564         }
4565
4566         n = 10;
4567
4568 #define FNAME                           0x8
4569
4570         if (zbuf[3] & FNAME)
4571                 while ((zbuf[n++] != 0) && (n < len));
4572
4573         bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
4574         bp->strm->avail_in = len - n;
4575         bp->strm->next_out = bp->gunzip_buf;
4576         bp->strm->avail_out = FW_BUF_SIZE;
4577
4578         rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
4579         if (rc != Z_OK)
4580                 return rc;
4581
4582         rc = zlib_inflate(bp->strm, Z_FINISH);
4583         if ((rc != Z_OK) && (rc != Z_STREAM_END))
4584                 netdev_err(bp->dev, "Firmware decompression error: %s\n",
4585                            bp->strm->msg);
4586
4587         bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
4588         if (bp->gunzip_outlen & 0x3)
4589                 netdev_err(bp->dev, "Firmware decompression error:"
4590                                     " gunzip_outlen (%d) not aligned\n",
4591                                 bp->gunzip_outlen);
4592         bp->gunzip_outlen >>= 2;
4593
4594         zlib_inflateEnd(bp->strm);
4595
4596         if (rc == Z_STREAM_END)
4597                 return 0;
4598
4599         return rc;
4600 }
4601
4602 /* nic load/unload */
4603
4604 /*
4605  * General service functions
4606  */
4607
4608 /* send a NIG loopback debug packet */
4609 static void bnx2x_lb_pckt(struct bnx2x *bp)
4610 {
4611         u32 wb_write[3];
4612
4613         /* Ethernet source and destination addresses */
4614         wb_write[0] = 0x55555555;
4615         wb_write[1] = 0x55555555;
4616         wb_write[2] = 0x20;             /* SOP */
4617         REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
4618
4619         /* NON-IP protocol */
4620         wb_write[0] = 0x09000000;
4621         wb_write[1] = 0x55555555;
4622         wb_write[2] = 0x10;             /* EOP, eop_bvalid = 0 */
4623         REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
4624 }
4625
4626 /* some of the internal memories
4627  * are not directly readable from the driver
4628  * to test them we send debug packets
4629  */
4630 static int bnx2x_int_mem_test(struct bnx2x *bp)
4631 {
4632         int factor;
4633         int count, i;
4634         u32 val = 0;
4635
4636         if (CHIP_REV_IS_FPGA(bp))
4637                 factor = 120;
4638         else if (CHIP_REV_IS_EMUL(bp))
4639                 factor = 200;
4640         else
4641                 factor = 1;
4642
4643         /* Disable inputs of parser neighbor blocks */
4644         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
4645         REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
4646         REG_WR(bp, CFC_REG_DEBUG0, 0x1);
4647         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
4648
4649         /*  Write 0 to parser credits for CFC search request */
4650         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
4651
4652         /* send Ethernet packet */
4653         bnx2x_lb_pckt(bp);
4654
4655         /* TODO do i reset NIG statistic? */
4656         /* Wait until NIG register shows 1 packet of size 0x10 */
4657         count = 1000 * factor;
4658         while (count) {
4659
4660                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
4661                 val = *bnx2x_sp(bp, wb_data[0]);
4662                 if (val == 0x10)
4663                         break;
4664
4665                 msleep(10);
4666                 count--;
4667         }
4668         if (val != 0x10) {
4669                 BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
4670                 return -1;
4671         }
4672
4673         /* Wait until PRS register shows 1 packet */
4674         count = 1000 * factor;
4675         while (count) {
4676                 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
4677                 if (val == 1)
4678                         break;
4679
4680                 msleep(10);
4681                 count--;
4682         }
4683         if (val != 0x1) {
4684                 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
4685                 return -2;
4686         }
4687
4688         /* Reset and init BRB, PRS */
4689         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
4690         msleep(50);
4691         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
4692         msleep(50);
4693         bnx2x_init_block(bp, BRB1_BLOCK, COMMON_STAGE);
4694         bnx2x_init_block(bp, PRS_BLOCK, COMMON_STAGE);
4695
4696         DP(NETIF_MSG_HW, "part2\n");
4697
4698         /* Disable inputs of parser neighbor blocks */
4699         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
4700         REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
4701         REG_WR(bp, CFC_REG_DEBUG0, 0x1);
4702         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
4703
4704         /* Write 0 to parser credits for CFC search request */
4705         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
4706
4707         /* send 10 Ethernet packets */
4708         for (i = 0; i < 10; i++)
4709                 bnx2x_lb_pckt(bp);
4710
4711         /* Wait until NIG register shows 10 + 1
4712            packets of size 11*0x10 = 0xb0 */
4713         count = 1000 * factor;
4714         while (count) {
4715
4716                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
4717                 val = *bnx2x_sp(bp, wb_data[0]);
4718                 if (val == 0xb0)
4719                         break;
4720
4721                 msleep(10);
4722                 count--;
4723         }
4724         if (val != 0xb0) {
4725                 BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
4726                 return -3;
4727         }
4728
4729         /* Wait until PRS register shows 2 packets */
4730         val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
4731         if (val != 2)
4732                 BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
4733
4734         /* Write 1 to parser credits for CFC search request */
4735         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
4736
4737         /* Wait until PRS register shows 3 packets */
4738         msleep(10 * factor);
4739         /* Wait until NIG register shows 1 packet of size 0x10 */
4740         val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
4741         if (val != 3)
4742                 BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
4743
4744         /* clear NIG EOP FIFO */
4745         for (i = 0; i < 11; i++)
4746                 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
4747         val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
4748         if (val != 1) {
4749                 BNX2X_ERR("clear of NIG failed\n");
4750                 return -4;
4751         }
4752
4753         /* Reset and init BRB, PRS, NIG */
4754         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
4755         msleep(50);
4756         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
4757         msleep(50);
4758         bnx2x_init_block(bp, BRB1_BLOCK, COMMON_STAGE);
4759         bnx2x_init_block(bp, PRS_BLOCK, COMMON_STAGE);
4760 #ifndef BCM_CNIC
4761         /* set NIC mode */
4762         REG_WR(bp, PRS_REG_NIC_MODE, 1);
4763 #endif
4764
4765         /* Enable inputs of parser neighbor blocks */
4766         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
4767         REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
4768         REG_WR(bp, CFC_REG_DEBUG0, 0x0);
4769         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
4770
4771         DP(NETIF_MSG_HW, "done\n");
4772
4773         return 0; /* OK */
4774 }
4775
4776 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
4777 {
4778         REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
4779         if (CHIP_IS_E2(bp))
4780                 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
4781         else
4782                 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
4783         REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
4784         REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
4785         /*
4786          * mask read length error interrupts in brb for parser
4787          * (parsing unit and 'checksum and crc' unit)
4788          * these errors are legal (PU reads fixed length and CAC can cause
4789          * read length error on truncated packets)
4790          */
4791         REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
4792         REG_WR(bp, QM_REG_QM_INT_MASK, 0);
4793         REG_WR(bp, TM_REG_TM_INT_MASK, 0);
4794         REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
4795         REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
4796         REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
4797 /*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
4798 /*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
4799         REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
4800         REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
4801         REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
4802 /*      REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
4803 /*      REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
4804         REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
4805         REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
4806         REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
4807         REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
4808 /*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
4809 /*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
4810
4811         if (CHIP_REV_IS_FPGA(bp))
4812                 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x580000);
4813         else if (CHIP_IS_E2(bp))
4814                 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0,
4815                            (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF
4816                                 | PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT
4817                                 | PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN
4818                                 | PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED
4819                                 | PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED));
4820         else
4821                 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x480000);
4822         REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
4823         REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
4824         REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
4825 /*      REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
4826 /*      REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0); */
4827         REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
4828         REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
4829 /*      REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
4830         REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);         /* bit 3,4 masked */
4831 }
4832
4833 static void bnx2x_reset_common(struct bnx2x *bp)
4834 {
4835         /* reset_common */
4836         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
4837                0xd3ffff7f);
4838         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, 0x1403);
4839 }
4840
4841 static void bnx2x_init_pxp(struct bnx2x *bp)
4842 {
4843         u16 devctl;
4844         int r_order, w_order;
4845
4846         pci_read_config_word(bp->pdev,
4847                              bp->pcie_cap + PCI_EXP_DEVCTL, &devctl);
4848         DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
4849         w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
4850         if (bp->mrrs == -1)
4851                 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
4852         else {
4853                 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
4854                 r_order = bp->mrrs;
4855         }
4856
4857         bnx2x_init_pxp_arb(bp, r_order, w_order);
4858 }
4859
4860 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
4861 {
4862         int is_required;
4863         u32 val;
4864         int port;
4865
4866         if (BP_NOMCP(bp))
4867                 return;
4868
4869         is_required = 0;
4870         val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
4871               SHARED_HW_CFG_FAN_FAILURE_MASK;
4872
4873         if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
4874                 is_required = 1;
4875
4876         /*
4877          * The fan failure mechanism is usually related to the PHY type since
4878          * the power consumption of the board is affected by the PHY. Currently,
4879          * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
4880          */
4881         else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
4882                 for (port = PORT_0; port < PORT_MAX; port++) {
4883                         is_required |=
4884                                 bnx2x_fan_failure_det_req(
4885                                         bp,
4886                                         bp->common.shmem_base,
4887                                         bp->common.shmem2_base,
4888                                         port);
4889                 }
4890
4891         DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
4892
4893         if (is_required == 0)
4894                 return;
4895
4896         /* Fan failure is indicated by SPIO 5 */
4897         bnx2x_set_spio(bp, MISC_REGISTERS_SPIO_5,
4898                        MISC_REGISTERS_SPIO_INPUT_HI_Z);
4899
4900         /* set to active low mode */
4901         val = REG_RD(bp, MISC_REG_SPIO_INT);
4902         val |= ((1 << MISC_REGISTERS_SPIO_5) <<
4903                                         MISC_REGISTERS_SPIO_INT_OLD_SET_POS);
4904         REG_WR(bp, MISC_REG_SPIO_INT, val);
4905
4906         /* enable interrupt to signal the IGU */
4907         val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
4908         val |= (1 << MISC_REGISTERS_SPIO_5);
4909         REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
4910 }
4911
4912 static void bnx2x_pretend_func(struct bnx2x *bp, u8 pretend_func_num)
4913 {
4914         u32 offset = 0;
4915
4916         if (CHIP_IS_E1(bp))
4917                 return;
4918         if (CHIP_IS_E1H(bp) && (pretend_func_num >= E1H_FUNC_MAX))
4919                 return;
4920
4921         switch (BP_ABS_FUNC(bp)) {
4922         case 0:
4923                 offset = PXP2_REG_PGL_PRETEND_FUNC_F0;
4924                 break;
4925         case 1:
4926                 offset = PXP2_REG_PGL_PRETEND_FUNC_F1;
4927                 break;
4928         case 2:
4929                 offset = PXP2_REG_PGL_PRETEND_FUNC_F2;
4930                 break;
4931         case 3:
4932                 offset = PXP2_REG_PGL_PRETEND_FUNC_F3;
4933                 break;
4934         case 4:
4935                 offset = PXP2_REG_PGL_PRETEND_FUNC_F4;
4936                 break;
4937         case 5:
4938                 offset = PXP2_REG_PGL_PRETEND_FUNC_F5;
4939                 break;
4940         case 6:
4941                 offset = PXP2_REG_PGL_PRETEND_FUNC_F6;
4942                 break;
4943         case 7:
4944                 offset = PXP2_REG_PGL_PRETEND_FUNC_F7;
4945                 break;
4946         default:
4947                 return;
4948         }
4949
4950         REG_WR(bp, offset, pretend_func_num);
4951         REG_RD(bp, offset);
4952         DP(NETIF_MSG_HW, "Pretending to func %d\n", pretend_func_num);
4953 }
4954
4955 static void bnx2x_pf_disable(struct bnx2x *bp)
4956 {
4957         u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
4958         val &= ~IGU_PF_CONF_FUNC_EN;
4959
4960         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
4961         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
4962         REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
4963 }
4964
4965 static int bnx2x_init_hw_common(struct bnx2x *bp, u32 load_code)
4966 {
4967         u32 val, i;
4968
4969         DP(BNX2X_MSG_MCP, "starting common init  func %d\n", BP_ABS_FUNC(bp));
4970
4971         bnx2x_reset_common(bp);
4972         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
4973         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, 0xfffc);
4974
4975         bnx2x_init_block(bp, MISC_BLOCK, COMMON_STAGE);
4976         if (!CHIP_IS_E1(bp))
4977                 REG_WR(bp, MISC_REG_E1HMF_MODE, IS_MF(bp));
4978
4979         if (CHIP_IS_E2(bp)) {
4980                 u8 fid;
4981
4982                 /**
4983                  * 4-port mode or 2-port mode we need to turn of master-enable
4984                  * for everyone, after that, turn it back on for self.
4985                  * so, we disregard multi-function or not, and always disable
4986                  * for all functions on the given path, this means 0,2,4,6 for
4987                  * path 0 and 1,3,5,7 for path 1
4988                  */
4989                 for (fid = BP_PATH(bp); fid  < E2_FUNC_MAX*2; fid += 2) {
4990                         if (fid == BP_ABS_FUNC(bp)) {
4991                                 REG_WR(bp,
4992                                     PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
4993                                     1);
4994                                 continue;
4995                         }
4996
4997                         bnx2x_pretend_func(bp, fid);
4998                         /* clear pf enable */
4999                         bnx2x_pf_disable(bp);
5000                         bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
5001                 }
5002         }
5003
5004         bnx2x_init_block(bp, PXP_BLOCK, COMMON_STAGE);
5005         if (CHIP_IS_E1(bp)) {
5006                 /* enable HW interrupt from PXP on USDM overflow
5007                    bit 16 on INT_MASK_0 */
5008                 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
5009         }
5010
5011         bnx2x_init_block(bp, PXP2_BLOCK, COMMON_STAGE);
5012         bnx2x_init_pxp(bp);
5013
5014 #ifdef __BIG_ENDIAN
5015         REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
5016         REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
5017         REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
5018         REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
5019         REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
5020         /* make sure this value is 0 */
5021         REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
5022
5023 /*      REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
5024         REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
5025         REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
5026         REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
5027         REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
5028 #endif
5029
5030         bnx2x_ilt_init_page_size(bp, INITOP_SET);
5031
5032         if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
5033                 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
5034
5035         /* let the HW do it's magic ... */
5036         msleep(100);
5037         /* finish PXP init */
5038         val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
5039         if (val != 1) {
5040                 BNX2X_ERR("PXP2 CFG failed\n");
5041                 return -EBUSY;
5042         }
5043         val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
5044         if (val != 1) {
5045                 BNX2X_ERR("PXP2 RD_INIT failed\n");
5046                 return -EBUSY;
5047         }
5048
5049         /* Timers bug workaround E2 only. We need to set the entire ILT to
5050          * have entries with value "0" and valid bit on.
5051          * This needs to be done by the first PF that is loaded in a path
5052          * (i.e. common phase)
5053          */
5054         if (CHIP_IS_E2(bp)) {
5055                 struct ilt_client_info ilt_cli;
5056                 struct bnx2x_ilt ilt;
5057                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
5058                 memset(&ilt, 0, sizeof(struct bnx2x_ilt));
5059
5060                 /* initialize dummy TM client */
5061                 ilt_cli.start = 0;
5062                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
5063                 ilt_cli.client_num = ILT_CLIENT_TM;
5064
5065                 /* Step 1: set zeroes to all ilt page entries with valid bit on
5066                  * Step 2: set the timers first/last ilt entry to point
5067                  * to the entire range to prevent ILT range error for 3rd/4th
5068                  * vnic (this code assumes existance of the vnic)
5069                  *
5070                  * both steps performed by call to bnx2x_ilt_client_init_op()
5071                  * with dummy TM client
5072                  *
5073                  * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
5074                  * and his brother are split registers
5075                  */
5076                 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
5077                 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
5078                 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
5079
5080                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
5081                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
5082                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
5083         }
5084
5085
5086         REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
5087         REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
5088
5089         if (CHIP_IS_E2(bp)) {
5090                 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
5091                                 (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
5092                 bnx2x_init_block(bp, PGLUE_B_BLOCK, COMMON_STAGE);
5093
5094                 bnx2x_init_block(bp, ATC_BLOCK, COMMON_STAGE);
5095
5096                 /* let the HW do it's magic ... */
5097                 do {
5098                         msleep(200);
5099                         val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
5100                 } while (factor-- && (val != 1));
5101
5102                 if (val != 1) {
5103                         BNX2X_ERR("ATC_INIT failed\n");
5104                         return -EBUSY;
5105                 }
5106         }
5107
5108         bnx2x_init_block(bp, DMAE_BLOCK, COMMON_STAGE);
5109
5110         /* clean the DMAE memory */
5111         bp->dmae_ready = 1;
5112         bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8);
5113
5114         bnx2x_init_block(bp, TCM_BLOCK, COMMON_STAGE);
5115         bnx2x_init_block(bp, UCM_BLOCK, COMMON_STAGE);
5116         bnx2x_init_block(bp, CCM_BLOCK, COMMON_STAGE);
5117         bnx2x_init_block(bp, XCM_BLOCK, COMMON_STAGE);
5118
5119         bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
5120         bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
5121         bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
5122         bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
5123
5124         bnx2x_init_block(bp, QM_BLOCK, COMMON_STAGE);
5125
5126         if (CHIP_MODE_IS_4_PORT(bp))
5127                 bnx2x_init_block(bp, QM_4PORT_BLOCK, COMMON_STAGE);
5128
5129         /* QM queues pointers table */
5130         bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
5131
5132         /* soft reset pulse */
5133         REG_WR(bp, QM_REG_SOFT_RESET, 1);
5134         REG_WR(bp, QM_REG_SOFT_RESET, 0);
5135
5136 #ifdef BCM_CNIC
5137         bnx2x_init_block(bp, TIMERS_BLOCK, COMMON_STAGE);
5138 #endif
5139
5140         bnx2x_init_block(bp, DQ_BLOCK, COMMON_STAGE);
5141         REG_WR(bp, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
5142
5143         if (!CHIP_REV_IS_SLOW(bp)) {
5144                 /* enable hw interrupt from doorbell Q */
5145                 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
5146         }
5147
5148         bnx2x_init_block(bp, BRB1_BLOCK, COMMON_STAGE);
5149         if (CHIP_MODE_IS_4_PORT(bp)) {
5150                 REG_WR(bp, BRB1_REG_FULL_LB_XOFF_THRESHOLD, 248);
5151                 REG_WR(bp, BRB1_REG_FULL_LB_XON_THRESHOLD, 328);
5152         }
5153
5154         bnx2x_init_block(bp, PRS_BLOCK, COMMON_STAGE);
5155         REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
5156 #ifndef BCM_CNIC
5157         /* set NIC mode */
5158         REG_WR(bp, PRS_REG_NIC_MODE, 1);
5159 #endif
5160         if (!CHIP_IS_E1(bp))
5161                 REG_WR(bp, PRS_REG_E1HOV_MODE, IS_MF_SD(bp));
5162
5163         if (CHIP_IS_E2(bp)) {
5164                 /* Bit-map indicating which L2 hdrs may appear after the
5165                    basic Ethernet header */
5166                 int has_ovlan = IS_MF_SD(bp);
5167                 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, (has_ovlan ? 7 : 6));
5168                 REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, (has_ovlan ? 1 : 0));
5169         }
5170
5171         bnx2x_init_block(bp, TSDM_BLOCK, COMMON_STAGE);
5172         bnx2x_init_block(bp, CSDM_BLOCK, COMMON_STAGE);
5173         bnx2x_init_block(bp, USDM_BLOCK, COMMON_STAGE);
5174         bnx2x_init_block(bp, XSDM_BLOCK, COMMON_STAGE);
5175
5176         bnx2x_init_fill(bp, TSEM_REG_FAST_MEMORY, 0, STORM_INTMEM_SIZE(bp));
5177         bnx2x_init_fill(bp, USEM_REG_FAST_MEMORY, 0, STORM_INTMEM_SIZE(bp));
5178         bnx2x_init_fill(bp, CSEM_REG_FAST_MEMORY, 0, STORM_INTMEM_SIZE(bp));
5179         bnx2x_init_fill(bp, XSEM_REG_FAST_MEMORY, 0, STORM_INTMEM_SIZE(bp));
5180
5181         bnx2x_init_block(bp, TSEM_BLOCK, COMMON_STAGE);
5182         bnx2x_init_block(bp, USEM_BLOCK, COMMON_STAGE);
5183         bnx2x_init_block(bp, CSEM_BLOCK, COMMON_STAGE);
5184         bnx2x_init_block(bp, XSEM_BLOCK, COMMON_STAGE);
5185
5186         if (CHIP_MODE_IS_4_PORT(bp))
5187                 bnx2x_init_block(bp, XSEM_4PORT_BLOCK, COMMON_STAGE);
5188
5189         /* sync semi rtc */
5190         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
5191                0x80000000);
5192         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
5193                0x80000000);
5194
5195         bnx2x_init_block(bp, UPB_BLOCK, COMMON_STAGE);
5196         bnx2x_init_block(bp, XPB_BLOCK, COMMON_STAGE);
5197         bnx2x_init_block(bp, PBF_BLOCK, COMMON_STAGE);
5198
5199         if (CHIP_IS_E2(bp)) {
5200                 int has_ovlan = IS_MF_SD(bp);
5201                 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, (has_ovlan ? 7 : 6));
5202                 REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, (has_ovlan ? 1 : 0));
5203         }
5204
5205         REG_WR(bp, SRC_REG_SOFT_RST, 1);
5206         for (i = SRC_REG_KEYRSS0_0; i <= SRC_REG_KEYRSS1_9; i += 4)
5207                 REG_WR(bp, i, random32());
5208
5209         bnx2x_init_block(bp, SRCH_BLOCK, COMMON_STAGE);
5210 #ifdef BCM_CNIC
5211         REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
5212         REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
5213         REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
5214         REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
5215         REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
5216         REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
5217         REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
5218         REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
5219         REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
5220         REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
5221 #endif
5222         REG_WR(bp, SRC_REG_SOFT_RST, 0);
5223
5224         if (sizeof(union cdu_context) != 1024)
5225                 /* we currently assume that a context is 1024 bytes */
5226                 dev_alert(&bp->pdev->dev, "please adjust the size "
5227                                           "of cdu_context(%ld)\n",
5228                          (long)sizeof(union cdu_context));
5229
5230         bnx2x_init_block(bp, CDU_BLOCK, COMMON_STAGE);
5231         val = (4 << 24) + (0 << 12) + 1024;
5232         REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
5233
5234         bnx2x_init_block(bp, CFC_BLOCK, COMMON_STAGE);
5235         REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
5236         /* enable context validation interrupt from CFC */
5237         REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
5238
5239         /* set the thresholds to prevent CFC/CDU race */
5240         REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
5241
5242         bnx2x_init_block(bp, HC_BLOCK, COMMON_STAGE);
5243
5244         if (CHIP_IS_E2(bp) && BP_NOMCP(bp))
5245                 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
5246
5247         bnx2x_init_block(bp, IGU_BLOCK, COMMON_STAGE);
5248         bnx2x_init_block(bp, MISC_AEU_BLOCK, COMMON_STAGE);
5249
5250         bnx2x_init_block(bp, PXPCS_BLOCK, COMMON_STAGE);
5251         /* Reset PCIE errors for debug */
5252         REG_WR(bp, 0x2814, 0xffffffff);
5253         REG_WR(bp, 0x3820, 0xffffffff);
5254
5255         if (CHIP_IS_E2(bp)) {
5256                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
5257                            (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
5258                                 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
5259                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
5260                            (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
5261                                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
5262                                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
5263                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
5264                            (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
5265                                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
5266                                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
5267         }
5268
5269         bnx2x_init_block(bp, EMAC0_BLOCK, COMMON_STAGE);
5270         bnx2x_init_block(bp, EMAC1_BLOCK, COMMON_STAGE);
5271         bnx2x_init_block(bp, DBU_BLOCK, COMMON_STAGE);
5272         bnx2x_init_block(bp, DBG_BLOCK, COMMON_STAGE);
5273
5274         bnx2x_init_block(bp, NIG_BLOCK, COMMON_STAGE);
5275         if (!CHIP_IS_E1(bp)) {
5276                 REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
5277                 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
5278         }
5279         if (CHIP_IS_E2(bp)) {
5280                 /* Bit-map indicating which L2 hdrs may appear after the
5281                    basic Ethernet header */
5282                 REG_WR(bp, NIG_REG_P0_HDRS_AFTER_BASIC, (IS_MF_SD(bp) ? 7 : 6));
5283         }
5284
5285         if (CHIP_REV_IS_SLOW(bp))
5286                 msleep(200);
5287
5288         /* finish CFC init */
5289         val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
5290         if (val != 1) {
5291                 BNX2X_ERR("CFC LL_INIT failed\n");
5292                 return -EBUSY;
5293         }
5294         val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
5295         if (val != 1) {
5296                 BNX2X_ERR("CFC AC_INIT failed\n");
5297                 return -EBUSY;
5298         }
5299         val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
5300         if (val != 1) {
5301                 BNX2X_ERR("CFC CAM_INIT failed\n");
5302                 return -EBUSY;
5303         }
5304         REG_WR(bp, CFC_REG_DEBUG0, 0);
5305
5306         if (CHIP_IS_E1(bp)) {
5307                 /* read NIG statistic
5308                    to see if this is our first up since powerup */
5309                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
5310                 val = *bnx2x_sp(bp, wb_data[0]);
5311
5312                 /* do internal memory self test */
5313                 if ((val == 0) && bnx2x_int_mem_test(bp)) {
5314                         BNX2X_ERR("internal mem self test failed\n");
5315                         return -EBUSY;
5316                 }
5317         }
5318
5319         bnx2x_setup_fan_failure_detection(bp);
5320
5321         /* clear PXP2 attentions */
5322         REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
5323
5324         bnx2x_enable_blocks_attention(bp);
5325         if (CHIP_PARITY_ENABLED(bp))
5326                 bnx2x_enable_blocks_parity(bp);
5327
5328         if (!BP_NOMCP(bp)) {
5329                 /* In E2 2-PORT mode, same ext phy is used for the two paths */
5330                 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
5331                     CHIP_IS_E1x(bp)) {
5332                         u32 shmem_base[2], shmem2_base[2];
5333                         shmem_base[0] =  bp->common.shmem_base;
5334                         shmem2_base[0] = bp->common.shmem2_base;
5335                         if (CHIP_IS_E2(bp)) {
5336                                 shmem_base[1] =
5337                                         SHMEM2_RD(bp, other_shmem_base_addr);
5338                                 shmem2_base[1] =
5339                                         SHMEM2_RD(bp, other_shmem2_base_addr);
5340                         }
5341                         bnx2x_acquire_phy_lock(bp);
5342                         bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
5343                                               bp->common.chip_id);
5344                         bnx2x_release_phy_lock(bp);
5345                 }
5346         } else
5347                 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
5348
5349         return 0;
5350 }
5351
5352 static int bnx2x_init_hw_port(struct bnx2x *bp)
5353 {
5354         int port = BP_PORT(bp);
5355         int init_stage = port ? PORT1_STAGE : PORT0_STAGE;
5356         u32 low, high;
5357         u32 val;
5358
5359         DP(BNX2X_MSG_MCP, "starting port init  port %d\n", port);
5360
5361         REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
5362
5363         bnx2x_init_block(bp, PXP_BLOCK, init_stage);
5364         bnx2x_init_block(bp, PXP2_BLOCK, init_stage);
5365
5366         /* Timers bug workaround: disables the pf_master bit in pglue at
5367          * common phase, we need to enable it here before any dmae access are
5368          * attempted. Therefore we manually added the enable-master to the
5369          * port phase (it also happens in the function phase)
5370          */
5371         if (CHIP_IS_E2(bp))
5372                 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
5373
5374         bnx2x_init_block(bp, TCM_BLOCK, init_stage);
5375         bnx2x_init_block(bp, UCM_BLOCK, init_stage);
5376         bnx2x_init_block(bp, CCM_BLOCK, init_stage);
5377         bnx2x_init_block(bp, XCM_BLOCK, init_stage);
5378
5379         /* QM cid (connection) count */
5380         bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
5381
5382 #ifdef BCM_CNIC
5383         bnx2x_init_block(bp, TIMERS_BLOCK, init_stage);
5384         REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
5385         REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
5386 #endif
5387
5388         bnx2x_init_block(bp, DQ_BLOCK, init_stage);
5389
5390         if (CHIP_MODE_IS_4_PORT(bp))
5391                 bnx2x_init_block(bp, QM_4PORT_BLOCK, init_stage);
5392
5393         if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
5394                 bnx2x_init_block(bp, BRB1_BLOCK, init_stage);
5395                 if (CHIP_REV_IS_SLOW(bp) && CHIP_IS_E1(bp)) {
5396                         /* no pause for emulation and FPGA */
5397                         low = 0;
5398                         high = 513;
5399                 } else {
5400                         if (IS_MF(bp))
5401                                 low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
5402                         else if (bp->dev->mtu > 4096) {
5403                                 if (bp->flags & ONE_PORT_FLAG)
5404                                         low = 160;
5405                                 else {
5406                                         val = bp->dev->mtu;
5407                                         /* (24*1024 + val*4)/256 */
5408                                         low = 96 + (val/64) +
5409                                                         ((val % 64) ? 1 : 0);
5410                                 }
5411                         } else
5412                                 low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
5413                         high = low + 56;        /* 14*1024/256 */
5414                 }
5415                 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
5416                 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
5417         }
5418
5419         if (CHIP_MODE_IS_4_PORT(bp)) {
5420                 REG_WR(bp, BRB1_REG_PAUSE_0_XOFF_THRESHOLD_0 + port*8, 248);
5421                 REG_WR(bp, BRB1_REG_PAUSE_0_XON_THRESHOLD_0 + port*8, 328);
5422                 REG_WR(bp, (BP_PORT(bp) ? BRB1_REG_MAC_GUARANTIED_1 :
5423                                           BRB1_REG_MAC_GUARANTIED_0), 40);
5424         }
5425
5426         bnx2x_init_block(bp, PRS_BLOCK, init_stage);
5427
5428         bnx2x_init_block(bp, TSDM_BLOCK, init_stage);
5429         bnx2x_init_block(bp, CSDM_BLOCK, init_stage);
5430         bnx2x_init_block(bp, USDM_BLOCK, init_stage);
5431         bnx2x_init_block(bp, XSDM_BLOCK, init_stage);
5432
5433         bnx2x_init_block(bp, TSEM_BLOCK, init_stage);
5434         bnx2x_init_block(bp, USEM_BLOCK, init_stage);
5435         bnx2x_init_block(bp, CSEM_BLOCK, init_stage);
5436         bnx2x_init_block(bp, XSEM_BLOCK, init_stage);
5437         if (CHIP_MODE_IS_4_PORT(bp))
5438                 bnx2x_init_block(bp, XSEM_4PORT_BLOCK, init_stage);
5439
5440         bnx2x_init_block(bp, UPB_BLOCK, init_stage);
5441         bnx2x_init_block(bp, XPB_BLOCK, init_stage);
5442
5443         bnx2x_init_block(bp, PBF_BLOCK, init_stage);
5444
5445         if (!CHIP_IS_E2(bp)) {
5446                 /* configure PBF to work without PAUSE mtu 9000 */
5447                 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
5448
5449                 /* update threshold */
5450                 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
5451                 /* update init credit */
5452                 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
5453
5454                 /* probe changes */
5455                 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
5456                 udelay(50);
5457                 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
5458         }
5459
5460 #ifdef BCM_CNIC
5461         bnx2x_init_block(bp, SRCH_BLOCK, init_stage);
5462 #endif
5463         bnx2x_init_block(bp, CDU_BLOCK, init_stage);
5464         bnx2x_init_block(bp, CFC_BLOCK, init_stage);
5465
5466         if (CHIP_IS_E1(bp)) {
5467                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
5468                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
5469         }
5470         bnx2x_init_block(bp, HC_BLOCK, init_stage);
5471
5472         bnx2x_init_block(bp, IGU_BLOCK, init_stage);
5473
5474         bnx2x_init_block(bp, MISC_AEU_BLOCK, init_stage);
5475         /* init aeu_mask_attn_func_0/1:
5476          *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
5477          *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
5478          *             bits 4-7 are used for "per vn group attention" */
5479         val = IS_MF(bp) ? 0xF7 : 0x7;
5480         /* Enable DCBX attention for all but E1 */
5481         val |= CHIP_IS_E1(bp) ? 0 : 0x10;
5482         REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
5483
5484         bnx2x_init_block(bp, PXPCS_BLOCK, init_stage);
5485         bnx2x_init_block(bp, EMAC0_BLOCK, init_stage);
5486         bnx2x_init_block(bp, EMAC1_BLOCK, init_stage);
5487         bnx2x_init_block(bp, DBU_BLOCK, init_stage);
5488         bnx2x_init_block(bp, DBG_BLOCK, init_stage);
5489
5490         bnx2x_init_block(bp, NIG_BLOCK, init_stage);
5491
5492         REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
5493
5494         if (!CHIP_IS_E1(bp)) {
5495                 /* 0x2 disable mf_ov, 0x1 enable */
5496                 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
5497                        (IS_MF_SD(bp) ? 0x1 : 0x2));
5498
5499                 if (CHIP_IS_E2(bp)) {
5500                         val = 0;
5501                         switch (bp->mf_mode) {
5502                         case MULTI_FUNCTION_SD:
5503                                 val = 1;
5504                                 break;
5505                         case MULTI_FUNCTION_SI:
5506                                 val = 2;
5507                                 break;
5508                         }
5509
5510                         REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
5511                                                   NIG_REG_LLH0_CLS_TYPE), val);
5512                 }
5513                 {
5514                         REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
5515                         REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
5516                         REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
5517                 }
5518         }
5519
5520         bnx2x_init_block(bp, MCP_BLOCK, init_stage);
5521         bnx2x_init_block(bp, DMAE_BLOCK, init_stage);
5522         if (bnx2x_fan_failure_det_req(bp, bp->common.shmem_base,
5523                                       bp->common.shmem2_base, port)) {
5524                 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5525                                        MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
5526                 val = REG_RD(bp, reg_addr);
5527                 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
5528                 REG_WR(bp, reg_addr, val);
5529         }
5530         bnx2x__link_reset(bp);
5531
5532         return 0;
5533 }
5534
5535 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
5536 {
5537         int reg;
5538
5539         if (CHIP_IS_E1(bp))
5540                 reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
5541         else
5542                 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
5543
5544         bnx2x_wb_wr(bp, reg, ONCHIP_ADDR1(addr), ONCHIP_ADDR2(addr));
5545 }
5546
5547 static inline void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
5548 {
5549         bnx2x_igu_clear_sb_gen(bp, idu_sb_id, true /*PF*/);
5550 }
5551
5552 static inline void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
5553 {
5554         u32 i, base = FUNC_ILT_BASE(func);
5555         for (i = base; i < base + ILT_PER_FUNC; i++)
5556                 bnx2x_ilt_wr(bp, i, 0);
5557 }
5558
5559 static int bnx2x_init_hw_func(struct bnx2x *bp)
5560 {
5561         int port = BP_PORT(bp);
5562         int func = BP_FUNC(bp);
5563         struct bnx2x_ilt *ilt = BP_ILT(bp);
5564         u16 cdu_ilt_start;
5565         u32 addr, val;
5566         u32 main_mem_base, main_mem_size, main_mem_prty_clr;
5567         int i, main_mem_width;
5568
5569         DP(BNX2X_MSG_MCP, "starting func init  func %d\n", func);
5570
5571         /* set MSI reconfigure capability */
5572         if (bp->common.int_block == INT_BLOCK_HC) {
5573                 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
5574                 val = REG_RD(bp, addr);
5575                 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
5576                 REG_WR(bp, addr, val);
5577         }
5578
5579         ilt = BP_ILT(bp);
5580         cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
5581
5582         for (i = 0; i < L2_ILT_LINES(bp); i++) {
5583                 ilt->lines[cdu_ilt_start + i].page =
5584                         bp->context.vcxt + (ILT_PAGE_CIDS * i);
5585                 ilt->lines[cdu_ilt_start + i].page_mapping =
5586                         bp->context.cxt_mapping + (CDU_ILT_PAGE_SZ * i);
5587                 /* cdu ilt pages are allocated manually so there's no need to
5588                 set the size */
5589         }
5590         bnx2x_ilt_init_op(bp, INITOP_SET);
5591
5592 #ifdef BCM_CNIC
5593         bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
5594
5595         /* T1 hash bits value determines the T1 number of entries */
5596         REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
5597 #endif
5598
5599 #ifndef BCM_CNIC
5600         /* set NIC mode */
5601         REG_WR(bp, PRS_REG_NIC_MODE, 1);
5602 #endif  /* BCM_CNIC */
5603
5604         if (CHIP_IS_E2(bp)) {
5605                 u32 pf_conf = IGU_PF_CONF_FUNC_EN;
5606
5607                 /* Turn on a single ISR mode in IGU if driver is going to use
5608                  * INT#x or MSI
5609                  */
5610                 if (!(bp->flags & USING_MSIX_FLAG))
5611                         pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
5612                 /*
5613                  * Timers workaround bug: function init part.
5614                  * Need to wait 20msec after initializing ILT,
5615                  * needed to make sure there are no requests in
5616                  * one of the PXP internal queues with "old" ILT addresses
5617                  */
5618                 msleep(20);
5619                 /*
5620                  * Master enable - Due to WB DMAE writes performed before this
5621                  * register is re-initialized as part of the regular function
5622                  * init
5623                  */
5624                 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
5625                 /* Enable the function in IGU */
5626                 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
5627         }
5628
5629         bp->dmae_ready = 1;
5630
5631         bnx2x_init_block(bp, PGLUE_B_BLOCK, FUNC0_STAGE + func);
5632
5633         if (CHIP_IS_E2(bp))
5634                 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
5635
5636         bnx2x_init_block(bp, MISC_BLOCK, FUNC0_STAGE + func);
5637         bnx2x_init_block(bp, TCM_BLOCK, FUNC0_STAGE + func);
5638         bnx2x_init_block(bp, UCM_BLOCK, FUNC0_STAGE + func);
5639         bnx2x_init_block(bp, CCM_BLOCK, FUNC0_STAGE + func);
5640         bnx2x_init_block(bp, XCM_BLOCK, FUNC0_STAGE + func);
5641         bnx2x_init_block(bp, TSEM_BLOCK, FUNC0_STAGE + func);
5642         bnx2x_init_block(bp, USEM_BLOCK, FUNC0_STAGE + func);
5643         bnx2x_init_block(bp, CSEM_BLOCK, FUNC0_STAGE + func);
5644         bnx2x_init_block(bp, XSEM_BLOCK, FUNC0_STAGE + func);
5645
5646         if (CHIP_IS_E2(bp)) {
5647                 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_PATH_ID_OFFSET,
5648                                                                 BP_PATH(bp));
5649                 REG_WR(bp, BAR_CSTRORM_INTMEM + CSTORM_PATH_ID_OFFSET,
5650                                                                 BP_PATH(bp));
5651         }
5652
5653         if (CHIP_MODE_IS_4_PORT(bp))
5654                 bnx2x_init_block(bp, XSEM_4PORT_BLOCK, FUNC0_STAGE + func);
5655
5656         if (CHIP_IS_E2(bp))
5657                 REG_WR(bp, QM_REG_PF_EN, 1);
5658
5659         bnx2x_init_block(bp, QM_BLOCK, FUNC0_STAGE + func);
5660
5661         if (CHIP_MODE_IS_4_PORT(bp))
5662                 bnx2x_init_block(bp, QM_4PORT_BLOCK, FUNC0_STAGE + func);
5663
5664         bnx2x_init_block(bp, TIMERS_BLOCK, FUNC0_STAGE + func);
5665         bnx2x_init_block(bp, DQ_BLOCK, FUNC0_STAGE + func);
5666         bnx2x_init_block(bp, BRB1_BLOCK, FUNC0_STAGE + func);
5667         bnx2x_init_block(bp, PRS_BLOCK, FUNC0_STAGE + func);
5668         bnx2x_init_block(bp, TSDM_BLOCK, FUNC0_STAGE + func);
5669         bnx2x_init_block(bp, CSDM_BLOCK, FUNC0_STAGE + func);
5670         bnx2x_init_block(bp, USDM_BLOCK, FUNC0_STAGE + func);
5671         bnx2x_init_block(bp, XSDM_BLOCK, FUNC0_STAGE + func);
5672         bnx2x_init_block(bp, UPB_BLOCK, FUNC0_STAGE + func);
5673         bnx2x_init_block(bp, XPB_BLOCK, FUNC0_STAGE + func);
5674         bnx2x_init_block(bp, PBF_BLOCK, FUNC0_STAGE + func);
5675         if (CHIP_IS_E2(bp))
5676                 REG_WR(bp, PBF_REG_DISABLE_PF, 0);
5677
5678         bnx2x_init_block(bp, CDU_BLOCK, FUNC0_STAGE + func);
5679
5680         bnx2x_init_block(bp, CFC_BLOCK, FUNC0_STAGE + func);
5681
5682         if (CHIP_IS_E2(bp))
5683                 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
5684
5685         if (IS_MF(bp)) {
5686                 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
5687                 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
5688         }
5689
5690         bnx2x_init_block(bp, MISC_AEU_BLOCK, FUNC0_STAGE + func);
5691
5692         /* HC init per function */
5693         if (bp->common.int_block == INT_BLOCK_HC) {
5694                 if (CHIP_IS_E1H(bp)) {
5695                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
5696
5697                         REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
5698                         REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
5699                 }
5700                 bnx2x_init_block(bp, HC_BLOCK, FUNC0_STAGE + func);
5701
5702         } else {
5703                 int num_segs, sb_idx, prod_offset;
5704
5705                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
5706
5707                 if (CHIP_IS_E2(bp)) {
5708                         REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
5709                         REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
5710                 }
5711
5712                 bnx2x_init_block(bp, IGU_BLOCK, FUNC0_STAGE + func);
5713
5714                 if (CHIP_IS_E2(bp)) {
5715                         int dsb_idx = 0;
5716                         /**
5717                          * Producer memory:
5718                          * E2 mode: address 0-135 match to the mapping memory;
5719                          * 136 - PF0 default prod; 137 - PF1 default prod;
5720                          * 138 - PF2 default prod; 139 - PF3 default prod;
5721                          * 140 - PF0 attn prod;    141 - PF1 attn prod;
5722                          * 142 - PF2 attn prod;    143 - PF3 attn prod;
5723                          * 144-147 reserved.
5724                          *
5725                          * E1.5 mode - In backward compatible mode;
5726                          * for non default SB; each even line in the memory
5727                          * holds the U producer and each odd line hold
5728                          * the C producer. The first 128 producers are for
5729                          * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
5730                          * producers are for the DSB for each PF.
5731                          * Each PF has five segments: (the order inside each
5732                          * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
5733                          * 132-135 C prods; 136-139 X prods; 140-143 T prods;
5734                          * 144-147 attn prods;
5735                          */
5736                         /* non-default-status-blocks */
5737                         num_segs = CHIP_INT_MODE_IS_BC(bp) ?
5738                                 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
5739                         for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
5740                                 prod_offset = (bp->igu_base_sb + sb_idx) *
5741                                         num_segs;
5742
5743                                 for (i = 0; i < num_segs; i++) {
5744                                         addr = IGU_REG_PROD_CONS_MEMORY +
5745                                                         (prod_offset + i) * 4;
5746                                         REG_WR(bp, addr, 0);
5747                                 }
5748                                 /* send consumer update with value 0 */
5749                                 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
5750                                              USTORM_ID, 0, IGU_INT_NOP, 1);
5751                                 bnx2x_igu_clear_sb(bp,
5752                                                    bp->igu_base_sb + sb_idx);
5753                         }
5754
5755                         /* default-status-blocks */
5756                         num_segs = CHIP_INT_MODE_IS_BC(bp) ?
5757                                 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
5758
5759                         if (CHIP_MODE_IS_4_PORT(bp))
5760                                 dsb_idx = BP_FUNC(bp);
5761                         else
5762                                 dsb_idx = BP_E1HVN(bp);
5763
5764                         prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
5765                                        IGU_BC_BASE_DSB_PROD + dsb_idx :
5766                                        IGU_NORM_BASE_DSB_PROD + dsb_idx);
5767
5768                         for (i = 0; i < (num_segs * E1HVN_MAX);
5769                              i += E1HVN_MAX) {
5770                                 addr = IGU_REG_PROD_CONS_MEMORY +
5771                                                         (prod_offset + i)*4;
5772                                 REG_WR(bp, addr, 0);
5773                         }
5774                         /* send consumer update with 0 */
5775                         if (CHIP_INT_MODE_IS_BC(bp)) {
5776                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
5777                                              USTORM_ID, 0, IGU_INT_NOP, 1);
5778                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
5779                                              CSTORM_ID, 0, IGU_INT_NOP, 1);
5780                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
5781                                              XSTORM_ID, 0, IGU_INT_NOP, 1);
5782                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
5783                                              TSTORM_ID, 0, IGU_INT_NOP, 1);
5784                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
5785                                              ATTENTION_ID, 0, IGU_INT_NOP, 1);
5786                         } else {
5787                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
5788                                              USTORM_ID, 0, IGU_INT_NOP, 1);
5789                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
5790                                              ATTENTION_ID, 0, IGU_INT_NOP, 1);
5791                         }
5792                         bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
5793
5794                         /* !!! these should become driver const once
5795                            rf-tool supports split-68 const */
5796                         REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
5797                         REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
5798                         REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
5799                         REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
5800                         REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
5801                         REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
5802                 }
5803         }
5804
5805         /* Reset PCIE errors for debug */
5806         REG_WR(bp, 0x2114, 0xffffffff);
5807         REG_WR(bp, 0x2120, 0xffffffff);
5808
5809         bnx2x_init_block(bp, EMAC0_BLOCK, FUNC0_STAGE + func);
5810         bnx2x_init_block(bp, EMAC1_BLOCK, FUNC0_STAGE + func);
5811         bnx2x_init_block(bp, DBU_BLOCK, FUNC0_STAGE + func);
5812         bnx2x_init_block(bp, DBG_BLOCK, FUNC0_STAGE + func);
5813         bnx2x_init_block(bp, MCP_BLOCK, FUNC0_STAGE + func);
5814         bnx2x_init_block(bp, DMAE_BLOCK, FUNC0_STAGE + func);
5815
5816         if (CHIP_IS_E1x(bp)) {
5817                 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
5818                 main_mem_base = HC_REG_MAIN_MEMORY +
5819                                 BP_PORT(bp) * (main_mem_size * 4);
5820                 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
5821                 main_mem_width = 8;
5822
5823                 val = REG_RD(bp, main_mem_prty_clr);
5824                 if (val)
5825                         DP(BNX2X_MSG_MCP, "Hmmm... Parity errors in HC "
5826                                           "block during "
5827                                           "function init (0x%x)!\n", val);
5828
5829                 /* Clear "false" parity errors in MSI-X table */
5830                 for (i = main_mem_base;
5831                      i < main_mem_base + main_mem_size * 4;
5832                      i += main_mem_width) {
5833                         bnx2x_read_dmae(bp, i, main_mem_width / 4);
5834                         bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
5835                                          i, main_mem_width / 4);
5836                 }
5837                 /* Clear HC parity attention */
5838                 REG_RD(bp, main_mem_prty_clr);
5839         }
5840
5841         bnx2x_phy_probe(&bp->link_params);
5842
5843         return 0;
5844 }
5845
5846 int bnx2x_init_hw(struct bnx2x *bp, u32 load_code)
5847 {
5848         int rc = 0;
5849
5850         DP(BNX2X_MSG_MCP, "function %d  load_code %x\n",
5851            BP_ABS_FUNC(bp), load_code);
5852
5853         bp->dmae_ready = 0;
5854         mutex_init(&bp->dmae_mutex);
5855         rc = bnx2x_gunzip_init(bp);
5856         if (rc)
5857                 return rc;
5858
5859         switch (load_code) {
5860         case FW_MSG_CODE_DRV_LOAD_COMMON:
5861         case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5862