[VLAN]: Avoid a 4-order allocation.
[linux-2.6.git] / drivers / net / bnx2.c
1 /* bnx2.c: Broadcom NX2 network driver.
2  *
3  * Copyright (c) 2004, 2005, 2006 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  *
9  * Written by: Michael Chan  (mchan@broadcom.com)
10  */
11
12
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
15
16 #include <linux/kernel.h>
17 #include <linux/timer.h>
18 #include <linux/errno.h>
19 #include <linux/ioport.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/interrupt.h>
23 #include <linux/pci.h>
24 #include <linux/init.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/skbuff.h>
28 #include <linux/dma-mapping.h>
29 #include <asm/bitops.h>
30 #include <asm/io.h>
31 #include <asm/irq.h>
32 #include <linux/delay.h>
33 #include <asm/byteorder.h>
34 #include <asm/page.h>
35 #include <linux/time.h>
36 #include <linux/ethtool.h>
37 #include <linux/mii.h>
38 #ifdef NETIF_F_HW_VLAN_TX
39 #include <linux/if_vlan.h>
40 #define BCM_VLAN 1
41 #endif
42 #include <net/ip.h>
43 #include <net/tcp.h>
44 #include <net/checksum.h>
45 #include <linux/workqueue.h>
46 #include <linux/crc32.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/zlib.h>
50
51 #include "bnx2.h"
52 #include "bnx2_fw.h"
53 #include "bnx2_fw2.h"
54
55 #define DRV_MODULE_NAME         "bnx2"
56 #define PFX DRV_MODULE_NAME     ": "
57 #define DRV_MODULE_VERSION      "1.5.5"
58 #define DRV_MODULE_RELDATE      "February 1, 2007"
59
60 #define RUN_AT(x) (jiffies + (x))
61
62 /* Time in jiffies before concluding the transmitter is hung. */
63 #define TX_TIMEOUT  (5*HZ)
64
65 static const char version[] __devinitdata =
66         "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
67
68 MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
69 MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708 Driver");
70 MODULE_LICENSE("GPL");
71 MODULE_VERSION(DRV_MODULE_VERSION);
72
73 static int disable_msi = 0;
74
75 module_param(disable_msi, int, 0);
76 MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
77
78 typedef enum {
79         BCM5706 = 0,
80         NC370T,
81         NC370I,
82         BCM5706S,
83         NC370F,
84         BCM5708,
85         BCM5708S,
86         BCM5709,
87 } board_t;
88
89 /* indexed by board_t, above */
90 static const struct {
91         char *name;
92 } board_info[] __devinitdata = {
93         { "Broadcom NetXtreme II BCM5706 1000Base-T" },
94         { "HP NC370T Multifunction Gigabit Server Adapter" },
95         { "HP NC370i Multifunction Gigabit Server Adapter" },
96         { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
97         { "HP NC370F Multifunction Gigabit Server Adapter" },
98         { "Broadcom NetXtreme II BCM5708 1000Base-T" },
99         { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
100         { "Broadcom NetXtreme II BCM5709 1000Base-T" },
101         };
102
103 static struct pci_device_id bnx2_pci_tbl[] = {
104         { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
105           PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
106         { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
107           PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
108         { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
109           PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
110         { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
111           PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
112         { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
113           PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
114         { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
115           PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
116         { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
117           PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
118         { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709,
119           PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 },
120         { 0, }
121 };
122
123 static struct flash_spec flash_table[] =
124 {
125         /* Slow EEPROM */
126         {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
127          1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
128          SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
129          "EEPROM - slow"},
130         /* Expansion entry 0001 */
131         {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
132          0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
133          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
134          "Entry 0001"},
135         /* Saifun SA25F010 (non-buffered flash) */
136         /* strap, cfg1, & write1 need updates */
137         {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
138          0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
139          SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
140          "Non-buffered flash (128kB)"},
141         /* Saifun SA25F020 (non-buffered flash) */
142         /* strap, cfg1, & write1 need updates */
143         {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
144          0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
145          SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
146          "Non-buffered flash (256kB)"},
147         /* Expansion entry 0100 */
148         {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
149          0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
150          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
151          "Entry 0100"},
152         /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
153         {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
154          0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
155          ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
156          "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
157         /* Entry 0110: ST M45PE20 (non-buffered flash)*/
158         {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
159          0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
160          ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
161          "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
162         /* Saifun SA25F005 (non-buffered flash) */
163         /* strap, cfg1, & write1 need updates */
164         {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
165          0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
166          SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
167          "Non-buffered flash (64kB)"},
168         /* Fast EEPROM */
169         {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
170          1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
171          SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
172          "EEPROM - fast"},
173         /* Expansion entry 1001 */
174         {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
175          0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
176          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
177          "Entry 1001"},
178         /* Expansion entry 1010 */
179         {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
180          0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
181          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
182          "Entry 1010"},
183         /* ATMEL AT45DB011B (buffered flash) */
184         {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
185          1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
186          BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
187          "Buffered flash (128kB)"},
188         /* Expansion entry 1100 */
189         {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
190          0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
191          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
192          "Entry 1100"},
193         /* Expansion entry 1101 */
194         {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
195          0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
196          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
197          "Entry 1101"},
198         /* Ateml Expansion entry 1110 */
199         {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
200          1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
201          BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
202          "Entry 1110 (Atmel)"},
203         /* ATMEL AT45DB021B (buffered flash) */
204         {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
205          1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
206          BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
207          "Buffered flash (256kB)"},
208 };
209
210 MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
211
212 static inline u32 bnx2_tx_avail(struct bnx2 *bp)
213 {
214         u32 diff;
215
216         smp_mb();
217
218         /* The ring uses 256 indices for 255 entries, one of them
219          * needs to be skipped.
220          */
221         diff = bp->tx_prod - bp->tx_cons;
222         if (unlikely(diff >= TX_DESC_CNT)) {
223                 diff &= 0xffff;
224                 if (diff == TX_DESC_CNT)
225                         diff = MAX_TX_DESC_CNT;
226         }
227         return (bp->tx_ring_size - diff);
228 }
229
230 static u32
231 bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
232 {
233         REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
234         return (REG_RD(bp, BNX2_PCICFG_REG_WINDOW));
235 }
236
237 static void
238 bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
239 {
240         REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
241         REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
242 }
243
244 static void
245 bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
246 {
247         offset += cid_addr;
248         if (CHIP_NUM(bp) == CHIP_NUM_5709) {
249                 int i;
250
251                 REG_WR(bp, BNX2_CTX_CTX_DATA, val);
252                 REG_WR(bp, BNX2_CTX_CTX_CTRL,
253                        offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
254                 for (i = 0; i < 5; i++) {
255                         u32 val;
256                         val = REG_RD(bp, BNX2_CTX_CTX_CTRL);
257                         if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
258                                 break;
259                         udelay(5);
260                 }
261         } else {
262                 REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
263                 REG_WR(bp, BNX2_CTX_DATA, val);
264         }
265 }
266
267 static int
268 bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
269 {
270         u32 val1;
271         int i, ret;
272
273         if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
274                 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
275                 val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
276
277                 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
278                 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
279
280                 udelay(40);
281         }
282
283         val1 = (bp->phy_addr << 21) | (reg << 16) |
284                 BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
285                 BNX2_EMAC_MDIO_COMM_START_BUSY;
286         REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
287
288         for (i = 0; i < 50; i++) {
289                 udelay(10);
290
291                 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
292                 if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
293                         udelay(5);
294
295                         val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
296                         val1 &= BNX2_EMAC_MDIO_COMM_DATA;
297
298                         break;
299                 }
300         }
301
302         if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
303                 *val = 0x0;
304                 ret = -EBUSY;
305         }
306         else {
307                 *val = val1;
308                 ret = 0;
309         }
310
311         if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
312                 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
313                 val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
314
315                 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
316                 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
317
318                 udelay(40);
319         }
320
321         return ret;
322 }
323
324 static int
325 bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
326 {
327         u32 val1;
328         int i, ret;
329
330         if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
331                 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
332                 val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
333
334                 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
335                 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
336
337                 udelay(40);
338         }
339
340         val1 = (bp->phy_addr << 21) | (reg << 16) | val |
341                 BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
342                 BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
343         REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
344
345         for (i = 0; i < 50; i++) {
346                 udelay(10);
347
348                 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
349                 if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
350                         udelay(5);
351                         break;
352                 }
353         }
354
355         if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
356                 ret = -EBUSY;
357         else
358                 ret = 0;
359
360         if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
361                 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
362                 val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
363
364                 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
365                 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
366
367                 udelay(40);
368         }
369
370         return ret;
371 }
372
373 static void
374 bnx2_disable_int(struct bnx2 *bp)
375 {
376         REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
377                BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
378         REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
379 }
380
381 static void
382 bnx2_enable_int(struct bnx2 *bp)
383 {
384         REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
385                BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
386                BNX2_PCICFG_INT_ACK_CMD_MASK_INT | bp->last_status_idx);
387
388         REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
389                BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID | bp->last_status_idx);
390
391         REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
392 }
393
394 static void
395 bnx2_disable_int_sync(struct bnx2 *bp)
396 {
397         atomic_inc(&bp->intr_sem);
398         bnx2_disable_int(bp);
399         synchronize_irq(bp->pdev->irq);
400 }
401
402 static void
403 bnx2_netif_stop(struct bnx2 *bp)
404 {
405         bnx2_disable_int_sync(bp);
406         if (netif_running(bp->dev)) {
407                 netif_poll_disable(bp->dev);
408                 netif_tx_disable(bp->dev);
409                 bp->dev->trans_start = jiffies; /* prevent tx timeout */
410         }
411 }
412
413 static void
414 bnx2_netif_start(struct bnx2 *bp)
415 {
416         if (atomic_dec_and_test(&bp->intr_sem)) {
417                 if (netif_running(bp->dev)) {
418                         netif_wake_queue(bp->dev);
419                         netif_poll_enable(bp->dev);
420                         bnx2_enable_int(bp);
421                 }
422         }
423 }
424
425 static void
426 bnx2_free_mem(struct bnx2 *bp)
427 {
428         int i;
429
430         for (i = 0; i < bp->ctx_pages; i++) {
431                 if (bp->ctx_blk[i]) {
432                         pci_free_consistent(bp->pdev, BCM_PAGE_SIZE,
433                                             bp->ctx_blk[i],
434                                             bp->ctx_blk_mapping[i]);
435                         bp->ctx_blk[i] = NULL;
436                 }
437         }
438         if (bp->status_blk) {
439                 pci_free_consistent(bp->pdev, bp->status_stats_size,
440                                     bp->status_blk, bp->status_blk_mapping);
441                 bp->status_blk = NULL;
442                 bp->stats_blk = NULL;
443         }
444         if (bp->tx_desc_ring) {
445                 pci_free_consistent(bp->pdev,
446                                     sizeof(struct tx_bd) * TX_DESC_CNT,
447                                     bp->tx_desc_ring, bp->tx_desc_mapping);
448                 bp->tx_desc_ring = NULL;
449         }
450         kfree(bp->tx_buf_ring);
451         bp->tx_buf_ring = NULL;
452         for (i = 0; i < bp->rx_max_ring; i++) {
453                 if (bp->rx_desc_ring[i])
454                         pci_free_consistent(bp->pdev,
455                                             sizeof(struct rx_bd) * RX_DESC_CNT,
456                                             bp->rx_desc_ring[i],
457                                             bp->rx_desc_mapping[i]);
458                 bp->rx_desc_ring[i] = NULL;
459         }
460         vfree(bp->rx_buf_ring);
461         bp->rx_buf_ring = NULL;
462 }
463
464 static int
465 bnx2_alloc_mem(struct bnx2 *bp)
466 {
467         int i, status_blk_size;
468
469         bp->tx_buf_ring = kzalloc(sizeof(struct sw_bd) * TX_DESC_CNT,
470                                   GFP_KERNEL);
471         if (bp->tx_buf_ring == NULL)
472                 return -ENOMEM;
473
474         bp->tx_desc_ring = pci_alloc_consistent(bp->pdev,
475                                                 sizeof(struct tx_bd) *
476                                                 TX_DESC_CNT,
477                                                 &bp->tx_desc_mapping);
478         if (bp->tx_desc_ring == NULL)
479                 goto alloc_mem_err;
480
481         bp->rx_buf_ring = vmalloc(sizeof(struct sw_bd) * RX_DESC_CNT *
482                                   bp->rx_max_ring);
483         if (bp->rx_buf_ring == NULL)
484                 goto alloc_mem_err;
485
486         memset(bp->rx_buf_ring, 0, sizeof(struct sw_bd) * RX_DESC_CNT *
487                                    bp->rx_max_ring);
488
489         for (i = 0; i < bp->rx_max_ring; i++) {
490                 bp->rx_desc_ring[i] =
491                         pci_alloc_consistent(bp->pdev,
492                                              sizeof(struct rx_bd) * RX_DESC_CNT,
493                                              &bp->rx_desc_mapping[i]);
494                 if (bp->rx_desc_ring[i] == NULL)
495                         goto alloc_mem_err;
496
497         }
498
499         /* Combine status and statistics blocks into one allocation. */
500         status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
501         bp->status_stats_size = status_blk_size +
502                                 sizeof(struct statistics_block);
503
504         bp->status_blk = pci_alloc_consistent(bp->pdev, bp->status_stats_size,
505                                               &bp->status_blk_mapping);
506         if (bp->status_blk == NULL)
507                 goto alloc_mem_err;
508
509         memset(bp->status_blk, 0, bp->status_stats_size);
510
511         bp->stats_blk = (void *) ((unsigned long) bp->status_blk +
512                                   status_blk_size);
513
514         bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
515
516         if (CHIP_NUM(bp) == CHIP_NUM_5709) {
517                 bp->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
518                 if (bp->ctx_pages == 0)
519                         bp->ctx_pages = 1;
520                 for (i = 0; i < bp->ctx_pages; i++) {
521                         bp->ctx_blk[i] = pci_alloc_consistent(bp->pdev,
522                                                 BCM_PAGE_SIZE,
523                                                 &bp->ctx_blk_mapping[i]);
524                         if (bp->ctx_blk[i] == NULL)
525                                 goto alloc_mem_err;
526                 }
527         }
528         return 0;
529
530 alloc_mem_err:
531         bnx2_free_mem(bp);
532         return -ENOMEM;
533 }
534
535 static void
536 bnx2_report_fw_link(struct bnx2 *bp)
537 {
538         u32 fw_link_status = 0;
539
540         if (bp->link_up) {
541                 u32 bmsr;
542
543                 switch (bp->line_speed) {
544                 case SPEED_10:
545                         if (bp->duplex == DUPLEX_HALF)
546                                 fw_link_status = BNX2_LINK_STATUS_10HALF;
547                         else
548                                 fw_link_status = BNX2_LINK_STATUS_10FULL;
549                         break;
550                 case SPEED_100:
551                         if (bp->duplex == DUPLEX_HALF)
552                                 fw_link_status = BNX2_LINK_STATUS_100HALF;
553                         else
554                                 fw_link_status = BNX2_LINK_STATUS_100FULL;
555                         break;
556                 case SPEED_1000:
557                         if (bp->duplex == DUPLEX_HALF)
558                                 fw_link_status = BNX2_LINK_STATUS_1000HALF;
559                         else
560                                 fw_link_status = BNX2_LINK_STATUS_1000FULL;
561                         break;
562                 case SPEED_2500:
563                         if (bp->duplex == DUPLEX_HALF)
564                                 fw_link_status = BNX2_LINK_STATUS_2500HALF;
565                         else
566                                 fw_link_status = BNX2_LINK_STATUS_2500FULL;
567                         break;
568                 }
569
570                 fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
571
572                 if (bp->autoneg) {
573                         fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
574
575                         bnx2_read_phy(bp, MII_BMSR, &bmsr);
576                         bnx2_read_phy(bp, MII_BMSR, &bmsr);
577
578                         if (!(bmsr & BMSR_ANEGCOMPLETE) ||
579                             bp->phy_flags & PHY_PARALLEL_DETECT_FLAG)
580                                 fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
581                         else
582                                 fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
583                 }
584         }
585         else
586                 fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
587
588         REG_WR_IND(bp, bp->shmem_base + BNX2_LINK_STATUS, fw_link_status);
589 }
590
591 static void
592 bnx2_report_link(struct bnx2 *bp)
593 {
594         if (bp->link_up) {
595                 netif_carrier_on(bp->dev);
596                 printk(KERN_INFO PFX "%s NIC Link is Up, ", bp->dev->name);
597
598                 printk("%d Mbps ", bp->line_speed);
599
600                 if (bp->duplex == DUPLEX_FULL)
601                         printk("full duplex");
602                 else
603                         printk("half duplex");
604
605                 if (bp->flow_ctrl) {
606                         if (bp->flow_ctrl & FLOW_CTRL_RX) {
607                                 printk(", receive ");
608                                 if (bp->flow_ctrl & FLOW_CTRL_TX)
609                                         printk("& transmit ");
610                         }
611                         else {
612                                 printk(", transmit ");
613                         }
614                         printk("flow control ON");
615                 }
616                 printk("\n");
617         }
618         else {
619                 netif_carrier_off(bp->dev);
620                 printk(KERN_ERR PFX "%s NIC Link is Down\n", bp->dev->name);
621         }
622
623         bnx2_report_fw_link(bp);
624 }
625
626 static void
627 bnx2_resolve_flow_ctrl(struct bnx2 *bp)
628 {
629         u32 local_adv, remote_adv;
630
631         bp->flow_ctrl = 0;
632         if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
633                 (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
634
635                 if (bp->duplex == DUPLEX_FULL) {
636                         bp->flow_ctrl = bp->req_flow_ctrl;
637                 }
638                 return;
639         }
640
641         if (bp->duplex != DUPLEX_FULL) {
642                 return;
643         }
644
645         if ((bp->phy_flags & PHY_SERDES_FLAG) &&
646             (CHIP_NUM(bp) == CHIP_NUM_5708)) {
647                 u32 val;
648
649                 bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
650                 if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
651                         bp->flow_ctrl |= FLOW_CTRL_TX;
652                 if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
653                         bp->flow_ctrl |= FLOW_CTRL_RX;
654                 return;
655         }
656
657         bnx2_read_phy(bp, MII_ADVERTISE, &local_adv);
658         bnx2_read_phy(bp, MII_LPA, &remote_adv);
659
660         if (bp->phy_flags & PHY_SERDES_FLAG) {
661                 u32 new_local_adv = 0;
662                 u32 new_remote_adv = 0;
663
664                 if (local_adv & ADVERTISE_1000XPAUSE)
665                         new_local_adv |= ADVERTISE_PAUSE_CAP;
666                 if (local_adv & ADVERTISE_1000XPSE_ASYM)
667                         new_local_adv |= ADVERTISE_PAUSE_ASYM;
668                 if (remote_adv & ADVERTISE_1000XPAUSE)
669                         new_remote_adv |= ADVERTISE_PAUSE_CAP;
670                 if (remote_adv & ADVERTISE_1000XPSE_ASYM)
671                         new_remote_adv |= ADVERTISE_PAUSE_ASYM;
672
673                 local_adv = new_local_adv;
674                 remote_adv = new_remote_adv;
675         }
676
677         /* See Table 28B-3 of 802.3ab-1999 spec. */
678         if (local_adv & ADVERTISE_PAUSE_CAP) {
679                 if(local_adv & ADVERTISE_PAUSE_ASYM) {
680                         if (remote_adv & ADVERTISE_PAUSE_CAP) {
681                                 bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
682                         }
683                         else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
684                                 bp->flow_ctrl = FLOW_CTRL_RX;
685                         }
686                 }
687                 else {
688                         if (remote_adv & ADVERTISE_PAUSE_CAP) {
689                                 bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
690                         }
691                 }
692         }
693         else if (local_adv & ADVERTISE_PAUSE_ASYM) {
694                 if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
695                         (remote_adv & ADVERTISE_PAUSE_ASYM)) {
696
697                         bp->flow_ctrl = FLOW_CTRL_TX;
698                 }
699         }
700 }
701
702 static int
703 bnx2_5708s_linkup(struct bnx2 *bp)
704 {
705         u32 val;
706
707         bp->link_up = 1;
708         bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
709         switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
710                 case BCM5708S_1000X_STAT1_SPEED_10:
711                         bp->line_speed = SPEED_10;
712                         break;
713                 case BCM5708S_1000X_STAT1_SPEED_100:
714                         bp->line_speed = SPEED_100;
715                         break;
716                 case BCM5708S_1000X_STAT1_SPEED_1G:
717                         bp->line_speed = SPEED_1000;
718                         break;
719                 case BCM5708S_1000X_STAT1_SPEED_2G5:
720                         bp->line_speed = SPEED_2500;
721                         break;
722         }
723         if (val & BCM5708S_1000X_STAT1_FD)
724                 bp->duplex = DUPLEX_FULL;
725         else
726                 bp->duplex = DUPLEX_HALF;
727
728         return 0;
729 }
730
731 static int
732 bnx2_5706s_linkup(struct bnx2 *bp)
733 {
734         u32 bmcr, local_adv, remote_adv, common;
735
736         bp->link_up = 1;
737         bp->line_speed = SPEED_1000;
738
739         bnx2_read_phy(bp, MII_BMCR, &bmcr);
740         if (bmcr & BMCR_FULLDPLX) {
741                 bp->duplex = DUPLEX_FULL;
742         }
743         else {
744                 bp->duplex = DUPLEX_HALF;
745         }
746
747         if (!(bmcr & BMCR_ANENABLE)) {
748                 return 0;
749         }
750
751         bnx2_read_phy(bp, MII_ADVERTISE, &local_adv);
752         bnx2_read_phy(bp, MII_LPA, &remote_adv);
753
754         common = local_adv & remote_adv;
755         if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
756
757                 if (common & ADVERTISE_1000XFULL) {
758                         bp->duplex = DUPLEX_FULL;
759                 }
760                 else {
761                         bp->duplex = DUPLEX_HALF;
762                 }
763         }
764
765         return 0;
766 }
767
768 static int
769 bnx2_copper_linkup(struct bnx2 *bp)
770 {
771         u32 bmcr;
772
773         bnx2_read_phy(bp, MII_BMCR, &bmcr);
774         if (bmcr & BMCR_ANENABLE) {
775                 u32 local_adv, remote_adv, common;
776
777                 bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
778                 bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
779
780                 common = local_adv & (remote_adv >> 2);
781                 if (common & ADVERTISE_1000FULL) {
782                         bp->line_speed = SPEED_1000;
783                         bp->duplex = DUPLEX_FULL;
784                 }
785                 else if (common & ADVERTISE_1000HALF) {
786                         bp->line_speed = SPEED_1000;
787                         bp->duplex = DUPLEX_HALF;
788                 }
789                 else {
790                         bnx2_read_phy(bp, MII_ADVERTISE, &local_adv);
791                         bnx2_read_phy(bp, MII_LPA, &remote_adv);
792
793                         common = local_adv & remote_adv;
794                         if (common & ADVERTISE_100FULL) {
795                                 bp->line_speed = SPEED_100;
796                                 bp->duplex = DUPLEX_FULL;
797                         }
798                         else if (common & ADVERTISE_100HALF) {
799                                 bp->line_speed = SPEED_100;
800                                 bp->duplex = DUPLEX_HALF;
801                         }
802                         else if (common & ADVERTISE_10FULL) {
803                                 bp->line_speed = SPEED_10;
804                                 bp->duplex = DUPLEX_FULL;
805                         }
806                         else if (common & ADVERTISE_10HALF) {
807                                 bp->line_speed = SPEED_10;
808                                 bp->duplex = DUPLEX_HALF;
809                         }
810                         else {
811                                 bp->line_speed = 0;
812                                 bp->link_up = 0;
813                         }
814                 }
815         }
816         else {
817                 if (bmcr & BMCR_SPEED100) {
818                         bp->line_speed = SPEED_100;
819                 }
820                 else {
821                         bp->line_speed = SPEED_10;
822                 }
823                 if (bmcr & BMCR_FULLDPLX) {
824                         bp->duplex = DUPLEX_FULL;
825                 }
826                 else {
827                         bp->duplex = DUPLEX_HALF;
828                 }
829         }
830
831         return 0;
832 }
833
834 static int
835 bnx2_set_mac_link(struct bnx2 *bp)
836 {
837         u32 val;
838
839         REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
840         if (bp->link_up && (bp->line_speed == SPEED_1000) &&
841                 (bp->duplex == DUPLEX_HALF)) {
842                 REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
843         }
844
845         /* Configure the EMAC mode register. */
846         val = REG_RD(bp, BNX2_EMAC_MODE);
847
848         val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
849                 BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
850                 BNX2_EMAC_MODE_25G_MODE);
851
852         if (bp->link_up) {
853                 switch (bp->line_speed) {
854                         case SPEED_10:
855                                 if (CHIP_NUM(bp) != CHIP_NUM_5706) {
856                                         val |= BNX2_EMAC_MODE_PORT_MII_10M;
857                                         break;
858                                 }
859                                 /* fall through */
860                         case SPEED_100:
861                                 val |= BNX2_EMAC_MODE_PORT_MII;
862                                 break;
863                         case SPEED_2500:
864                                 val |= BNX2_EMAC_MODE_25G_MODE;
865                                 /* fall through */
866                         case SPEED_1000:
867                                 val |= BNX2_EMAC_MODE_PORT_GMII;
868                                 break;
869                 }
870         }
871         else {
872                 val |= BNX2_EMAC_MODE_PORT_GMII;
873         }
874
875         /* Set the MAC to operate in the appropriate duplex mode. */
876         if (bp->duplex == DUPLEX_HALF)
877                 val |= BNX2_EMAC_MODE_HALF_DUPLEX;
878         REG_WR(bp, BNX2_EMAC_MODE, val);
879
880         /* Enable/disable rx PAUSE. */
881         bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
882
883         if (bp->flow_ctrl & FLOW_CTRL_RX)
884                 bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
885         REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
886
887         /* Enable/disable tx PAUSE. */
888         val = REG_RD(bp, BNX2_EMAC_TX_MODE);
889         val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
890
891         if (bp->flow_ctrl & FLOW_CTRL_TX)
892                 val |= BNX2_EMAC_TX_MODE_FLOW_EN;
893         REG_WR(bp, BNX2_EMAC_TX_MODE, val);
894
895         /* Acknowledge the interrupt. */
896         REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
897
898         return 0;
899 }
900
901 static int
902 bnx2_set_link(struct bnx2 *bp)
903 {
904         u32 bmsr;
905         u8 link_up;
906
907         if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
908                 bp->link_up = 1;
909                 return 0;
910         }
911
912         link_up = bp->link_up;
913
914         bnx2_read_phy(bp, MII_BMSR, &bmsr);
915         bnx2_read_phy(bp, MII_BMSR, &bmsr);
916
917         if ((bp->phy_flags & PHY_SERDES_FLAG) &&
918             (CHIP_NUM(bp) == CHIP_NUM_5706)) {
919                 u32 val;
920
921                 val = REG_RD(bp, BNX2_EMAC_STATUS);
922                 if (val & BNX2_EMAC_STATUS_LINK)
923                         bmsr |= BMSR_LSTATUS;
924                 else
925                         bmsr &= ~BMSR_LSTATUS;
926         }
927
928         if (bmsr & BMSR_LSTATUS) {
929                 bp->link_up = 1;
930
931                 if (bp->phy_flags & PHY_SERDES_FLAG) {
932                         if (CHIP_NUM(bp) == CHIP_NUM_5706)
933                                 bnx2_5706s_linkup(bp);
934                         else if (CHIP_NUM(bp) == CHIP_NUM_5708)
935                                 bnx2_5708s_linkup(bp);
936                 }
937                 else {
938                         bnx2_copper_linkup(bp);
939                 }
940                 bnx2_resolve_flow_ctrl(bp);
941         }
942         else {
943                 if ((bp->phy_flags & PHY_SERDES_FLAG) &&
944                         (bp->autoneg & AUTONEG_SPEED)) {
945
946                         u32 bmcr;
947
948                         bnx2_read_phy(bp, MII_BMCR, &bmcr);
949                         bmcr &= ~BCM5708S_BMCR_FORCE_2500;
950                         if (!(bmcr & BMCR_ANENABLE)) {
951                                 bnx2_write_phy(bp, MII_BMCR, bmcr |
952                                         BMCR_ANENABLE);
953                         }
954                 }
955                 bp->phy_flags &= ~PHY_PARALLEL_DETECT_FLAG;
956                 bp->link_up = 0;
957         }
958
959         if (bp->link_up != link_up) {
960                 bnx2_report_link(bp);
961         }
962
963         bnx2_set_mac_link(bp);
964
965         return 0;
966 }
967
968 static int
969 bnx2_reset_phy(struct bnx2 *bp)
970 {
971         int i;
972         u32 reg;
973
974         bnx2_write_phy(bp, MII_BMCR, BMCR_RESET);
975
976 #define PHY_RESET_MAX_WAIT 100
977         for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
978                 udelay(10);
979
980                 bnx2_read_phy(bp, MII_BMCR, &reg);
981                 if (!(reg & BMCR_RESET)) {
982                         udelay(20);
983                         break;
984                 }
985         }
986         if (i == PHY_RESET_MAX_WAIT) {
987                 return -EBUSY;
988         }
989         return 0;
990 }
991
992 static u32
993 bnx2_phy_get_pause_adv(struct bnx2 *bp)
994 {
995         u32 adv = 0;
996
997         if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
998                 (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
999
1000                 if (bp->phy_flags & PHY_SERDES_FLAG) {
1001                         adv = ADVERTISE_1000XPAUSE;
1002                 }
1003                 else {
1004                         adv = ADVERTISE_PAUSE_CAP;
1005                 }
1006         }
1007         else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
1008                 if (bp->phy_flags & PHY_SERDES_FLAG) {
1009                         adv = ADVERTISE_1000XPSE_ASYM;
1010                 }
1011                 else {
1012                         adv = ADVERTISE_PAUSE_ASYM;
1013                 }
1014         }
1015         else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
1016                 if (bp->phy_flags & PHY_SERDES_FLAG) {
1017                         adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
1018                 }
1019                 else {
1020                         adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1021                 }
1022         }
1023         return adv;
1024 }
1025
1026 static int
1027 bnx2_setup_serdes_phy(struct bnx2 *bp)
1028 {
1029         u32 adv, bmcr, up1;
1030         u32 new_adv = 0;
1031
1032         if (!(bp->autoneg & AUTONEG_SPEED)) {
1033                 u32 new_bmcr;
1034                 int force_link_down = 0;
1035
1036                 bnx2_read_phy(bp, MII_ADVERTISE, &adv);
1037                 adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
1038
1039                 bnx2_read_phy(bp, MII_BMCR, &bmcr);
1040                 new_bmcr = bmcr & ~(BMCR_ANENABLE | BCM5708S_BMCR_FORCE_2500);
1041                 new_bmcr |= BMCR_SPEED1000;
1042                 if (bp->req_line_speed == SPEED_2500) {
1043                         new_bmcr |= BCM5708S_BMCR_FORCE_2500;
1044                         bnx2_read_phy(bp, BCM5708S_UP1, &up1);
1045                         if (!(up1 & BCM5708S_UP1_2G5)) {
1046                                 up1 |= BCM5708S_UP1_2G5;
1047                                 bnx2_write_phy(bp, BCM5708S_UP1, up1);
1048                                 force_link_down = 1;
1049                         }
1050                 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1051                         bnx2_read_phy(bp, BCM5708S_UP1, &up1);
1052                         if (up1 & BCM5708S_UP1_2G5) {
1053                                 up1 &= ~BCM5708S_UP1_2G5;
1054                                 bnx2_write_phy(bp, BCM5708S_UP1, up1);
1055                                 force_link_down = 1;
1056                         }
1057                 }
1058
1059                 if (bp->req_duplex == DUPLEX_FULL) {
1060                         adv |= ADVERTISE_1000XFULL;
1061                         new_bmcr |= BMCR_FULLDPLX;
1062                 }
1063                 else {
1064                         adv |= ADVERTISE_1000XHALF;
1065                         new_bmcr &= ~BMCR_FULLDPLX;
1066                 }
1067                 if ((new_bmcr != bmcr) || (force_link_down)) {
1068                         /* Force a link down visible on the other side */
1069                         if (bp->link_up) {
1070                                 bnx2_write_phy(bp, MII_ADVERTISE, adv &
1071                                                ~(ADVERTISE_1000XFULL |
1072                                                  ADVERTISE_1000XHALF));
1073                                 bnx2_write_phy(bp, MII_BMCR, bmcr |
1074                                         BMCR_ANRESTART | BMCR_ANENABLE);
1075
1076                                 bp->link_up = 0;
1077                                 netif_carrier_off(bp->dev);
1078                                 bnx2_write_phy(bp, MII_BMCR, new_bmcr);
1079                                 bnx2_report_link(bp);
1080                         }
1081                         bnx2_write_phy(bp, MII_ADVERTISE, adv);
1082                         bnx2_write_phy(bp, MII_BMCR, new_bmcr);
1083                 }
1084                 return 0;
1085         }
1086
1087         if (bp->phy_flags & PHY_2_5G_CAPABLE_FLAG) {
1088                 bnx2_read_phy(bp, BCM5708S_UP1, &up1);
1089                 up1 |= BCM5708S_UP1_2G5;
1090                 bnx2_write_phy(bp, BCM5708S_UP1, up1);
1091         }
1092
1093         if (bp->advertising & ADVERTISED_1000baseT_Full)
1094                 new_adv |= ADVERTISE_1000XFULL;
1095
1096         new_adv |= bnx2_phy_get_pause_adv(bp);
1097
1098         bnx2_read_phy(bp, MII_ADVERTISE, &adv);
1099         bnx2_read_phy(bp, MII_BMCR, &bmcr);
1100
1101         bp->serdes_an_pending = 0;
1102         if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
1103                 /* Force a link down visible on the other side */
1104                 if (bp->link_up) {
1105                         bnx2_write_phy(bp, MII_BMCR, BMCR_LOOPBACK);
1106                         spin_unlock_bh(&bp->phy_lock);
1107                         msleep(20);
1108                         spin_lock_bh(&bp->phy_lock);
1109                 }
1110
1111                 bnx2_write_phy(bp, MII_ADVERTISE, new_adv);
1112                 bnx2_write_phy(bp, MII_BMCR, bmcr | BMCR_ANRESTART |
1113                         BMCR_ANENABLE);
1114                 /* Speed up link-up time when the link partner
1115                  * does not autonegotiate which is very common
1116                  * in blade servers. Some blade servers use
1117                  * IPMI for kerboard input and it's important
1118                  * to minimize link disruptions. Autoneg. involves
1119                  * exchanging base pages plus 3 next pages and
1120                  * normally completes in about 120 msec.
1121                  */
1122                 bp->current_interval = SERDES_AN_TIMEOUT;
1123                 bp->serdes_an_pending = 1;
1124                 mod_timer(&bp->timer, jiffies + bp->current_interval);
1125         }
1126
1127         return 0;
1128 }
1129
1130 #define ETHTOOL_ALL_FIBRE_SPEED                                         \
1131         (ADVERTISED_1000baseT_Full)
1132
1133 #define ETHTOOL_ALL_COPPER_SPEED                                        \
1134         (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |            \
1135         ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full |           \
1136         ADVERTISED_1000baseT_Full)
1137
1138 #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
1139         ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
1140
1141 #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
1142
1143 static int
1144 bnx2_setup_copper_phy(struct bnx2 *bp)
1145 {
1146         u32 bmcr;
1147         u32 new_bmcr;
1148
1149         bnx2_read_phy(bp, MII_BMCR, &bmcr);
1150
1151         if (bp->autoneg & AUTONEG_SPEED) {
1152                 u32 adv_reg, adv1000_reg;
1153                 u32 new_adv_reg = 0;
1154                 u32 new_adv1000_reg = 0;
1155
1156                 bnx2_read_phy(bp, MII_ADVERTISE, &adv_reg);
1157                 adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
1158                         ADVERTISE_PAUSE_ASYM);
1159
1160                 bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
1161                 adv1000_reg &= PHY_ALL_1000_SPEED;
1162
1163                 if (bp->advertising & ADVERTISED_10baseT_Half)
1164                         new_adv_reg |= ADVERTISE_10HALF;
1165                 if (bp->advertising & ADVERTISED_10baseT_Full)
1166                         new_adv_reg |= ADVERTISE_10FULL;
1167                 if (bp->advertising & ADVERTISED_100baseT_Half)
1168                         new_adv_reg |= ADVERTISE_100HALF;
1169                 if (bp->advertising & ADVERTISED_100baseT_Full)
1170                         new_adv_reg |= ADVERTISE_100FULL;
1171                 if (bp->advertising & ADVERTISED_1000baseT_Full)
1172                         new_adv1000_reg |= ADVERTISE_1000FULL;
1173
1174                 new_adv_reg |= ADVERTISE_CSMA;
1175
1176                 new_adv_reg |= bnx2_phy_get_pause_adv(bp);
1177
1178                 if ((adv1000_reg != new_adv1000_reg) ||
1179                         (adv_reg != new_adv_reg) ||
1180                         ((bmcr & BMCR_ANENABLE) == 0)) {
1181
1182                         bnx2_write_phy(bp, MII_ADVERTISE, new_adv_reg);
1183                         bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg);
1184                         bnx2_write_phy(bp, MII_BMCR, BMCR_ANRESTART |
1185                                 BMCR_ANENABLE);
1186                 }
1187                 else if (bp->link_up) {
1188                         /* Flow ctrl may have changed from auto to forced */
1189                         /* or vice-versa. */
1190
1191                         bnx2_resolve_flow_ctrl(bp);
1192                         bnx2_set_mac_link(bp);
1193                 }
1194                 return 0;
1195         }
1196
1197         new_bmcr = 0;
1198         if (bp->req_line_speed == SPEED_100) {
1199                 new_bmcr |= BMCR_SPEED100;
1200         }
1201         if (bp->req_duplex == DUPLEX_FULL) {
1202                 new_bmcr |= BMCR_FULLDPLX;
1203         }
1204         if (new_bmcr != bmcr) {
1205                 u32 bmsr;
1206
1207                 bnx2_read_phy(bp, MII_BMSR, &bmsr);
1208                 bnx2_read_phy(bp, MII_BMSR, &bmsr);
1209
1210                 if (bmsr & BMSR_LSTATUS) {
1211                         /* Force link down */
1212                         bnx2_write_phy(bp, MII_BMCR, BMCR_LOOPBACK);
1213                         spin_unlock_bh(&bp->phy_lock);
1214                         msleep(50);
1215                         spin_lock_bh(&bp->phy_lock);
1216
1217                         bnx2_read_phy(bp, MII_BMSR, &bmsr);
1218                         bnx2_read_phy(bp, MII_BMSR, &bmsr);
1219                 }
1220
1221                 bnx2_write_phy(bp, MII_BMCR, new_bmcr);
1222
1223                 /* Normally, the new speed is setup after the link has
1224                  * gone down and up again. In some cases, link will not go
1225                  * down so we need to set up the new speed here.
1226                  */
1227                 if (bmsr & BMSR_LSTATUS) {
1228                         bp->line_speed = bp->req_line_speed;
1229                         bp->duplex = bp->req_duplex;
1230                         bnx2_resolve_flow_ctrl(bp);
1231                         bnx2_set_mac_link(bp);
1232                 }
1233         }
1234         return 0;
1235 }
1236
1237 static int
1238 bnx2_setup_phy(struct bnx2 *bp)
1239 {
1240         if (bp->loopback == MAC_LOOPBACK)
1241                 return 0;
1242
1243         if (bp->phy_flags & PHY_SERDES_FLAG) {
1244                 return (bnx2_setup_serdes_phy(bp));
1245         }
1246         else {
1247                 return (bnx2_setup_copper_phy(bp));
1248         }
1249 }
1250
1251 static int
1252 bnx2_init_5708s_phy(struct bnx2 *bp)
1253 {
1254         u32 val;
1255
1256         bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
1257         bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
1258         bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
1259
1260         bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
1261         val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
1262         bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
1263
1264         bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
1265         val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
1266         bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
1267
1268         if (bp->phy_flags & PHY_2_5G_CAPABLE_FLAG) {
1269                 bnx2_read_phy(bp, BCM5708S_UP1, &val);
1270                 val |= BCM5708S_UP1_2G5;
1271                 bnx2_write_phy(bp, BCM5708S_UP1, val);
1272         }
1273
1274         if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
1275             (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
1276             (CHIP_ID(bp) == CHIP_ID_5708_B1)) {
1277                 /* increase tx signal amplitude */
1278                 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
1279                                BCM5708S_BLK_ADDR_TX_MISC);
1280                 bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
1281                 val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
1282                 bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
1283                 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
1284         }
1285
1286         val = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_CONFIG) &
1287               BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
1288
1289         if (val) {
1290                 u32 is_backplane;
1291
1292                 is_backplane = REG_RD_IND(bp, bp->shmem_base +
1293                                           BNX2_SHARED_HW_CFG_CONFIG);
1294                 if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
1295                         bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
1296                                        BCM5708S_BLK_ADDR_TX_MISC);
1297                         bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
1298                         bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
1299                                        BCM5708S_BLK_ADDR_DIG);
1300                 }
1301         }
1302         return 0;
1303 }
1304
1305 static int
1306 bnx2_init_5706s_phy(struct bnx2 *bp)
1307 {
1308         bp->phy_flags &= ~PHY_PARALLEL_DETECT_FLAG;
1309
1310         if (CHIP_NUM(bp) == CHIP_NUM_5706)
1311                 REG_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
1312
1313         if (bp->dev->mtu > 1500) {
1314                 u32 val;
1315
1316                 /* Set extended packet length bit */
1317                 bnx2_write_phy(bp, 0x18, 0x7);
1318                 bnx2_read_phy(bp, 0x18, &val);
1319                 bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
1320
1321                 bnx2_write_phy(bp, 0x1c, 0x6c00);
1322                 bnx2_read_phy(bp, 0x1c, &val);
1323                 bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
1324         }
1325         else {
1326                 u32 val;
1327
1328                 bnx2_write_phy(bp, 0x18, 0x7);
1329                 bnx2_read_phy(bp, 0x18, &val);
1330                 bnx2_write_phy(bp, 0x18, val & ~0x4007);
1331
1332                 bnx2_write_phy(bp, 0x1c, 0x6c00);
1333                 bnx2_read_phy(bp, 0x1c, &val);
1334                 bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
1335         }
1336
1337         return 0;
1338 }
1339
1340 static int
1341 bnx2_init_copper_phy(struct bnx2 *bp)
1342 {
1343         u32 val;
1344
1345         if (bp->phy_flags & PHY_CRC_FIX_FLAG) {
1346                 bnx2_write_phy(bp, 0x18, 0x0c00);
1347                 bnx2_write_phy(bp, 0x17, 0x000a);
1348                 bnx2_write_phy(bp, 0x15, 0x310b);
1349                 bnx2_write_phy(bp, 0x17, 0x201f);
1350                 bnx2_write_phy(bp, 0x15, 0x9506);
1351                 bnx2_write_phy(bp, 0x17, 0x401f);
1352                 bnx2_write_phy(bp, 0x15, 0x14e2);
1353                 bnx2_write_phy(bp, 0x18, 0x0400);
1354         }
1355
1356         if (bp->phy_flags & PHY_DIS_EARLY_DAC_FLAG) {
1357                 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS,
1358                                MII_BNX2_DSP_EXPAND_REG | 0x8);
1359                 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
1360                 val &= ~(1 << 8);
1361                 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val);
1362         }
1363
1364         if (bp->dev->mtu > 1500) {
1365                 /* Set extended packet length bit */
1366                 bnx2_write_phy(bp, 0x18, 0x7);
1367                 bnx2_read_phy(bp, 0x18, &val);
1368                 bnx2_write_phy(bp, 0x18, val | 0x4000);
1369
1370                 bnx2_read_phy(bp, 0x10, &val);
1371                 bnx2_write_phy(bp, 0x10, val | 0x1);
1372         }
1373         else {
1374                 bnx2_write_phy(bp, 0x18, 0x7);
1375                 bnx2_read_phy(bp, 0x18, &val);
1376                 bnx2_write_phy(bp, 0x18, val & ~0x4007);
1377
1378                 bnx2_read_phy(bp, 0x10, &val);
1379                 bnx2_write_phy(bp, 0x10, val & ~0x1);
1380         }
1381
1382         /* ethernet@wirespeed */
1383         bnx2_write_phy(bp, 0x18, 0x7007);
1384         bnx2_read_phy(bp, 0x18, &val);
1385         bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
1386         return 0;
1387 }
1388
1389
1390 static int
1391 bnx2_init_phy(struct bnx2 *bp)
1392 {
1393         u32 val;
1394         int rc = 0;
1395
1396         bp->phy_flags &= ~PHY_INT_MODE_MASK_FLAG;
1397         bp->phy_flags |= PHY_INT_MODE_LINK_READY_FLAG;
1398
1399         REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
1400
1401         bnx2_reset_phy(bp);
1402
1403         bnx2_read_phy(bp, MII_PHYSID1, &val);
1404         bp->phy_id = val << 16;
1405         bnx2_read_phy(bp, MII_PHYSID2, &val);
1406         bp->phy_id |= val & 0xffff;
1407
1408         if (bp->phy_flags & PHY_SERDES_FLAG) {
1409                 if (CHIP_NUM(bp) == CHIP_NUM_5706)
1410                         rc = bnx2_init_5706s_phy(bp);
1411                 else if (CHIP_NUM(bp) == CHIP_NUM_5708)
1412                         rc = bnx2_init_5708s_phy(bp);
1413         }
1414         else {
1415                 rc = bnx2_init_copper_phy(bp);
1416         }
1417
1418         bnx2_setup_phy(bp);
1419
1420         return rc;
1421 }
1422
1423 static int
1424 bnx2_set_mac_loopback(struct bnx2 *bp)
1425 {
1426         u32 mac_mode;
1427
1428         mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
1429         mac_mode &= ~BNX2_EMAC_MODE_PORT;
1430         mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
1431         REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
1432         bp->link_up = 1;
1433         return 0;
1434 }
1435
1436 static int bnx2_test_link(struct bnx2 *);
1437
1438 static int
1439 bnx2_set_phy_loopback(struct bnx2 *bp)
1440 {
1441         u32 mac_mode;
1442         int rc, i;
1443
1444         spin_lock_bh(&bp->phy_lock);
1445         rc = bnx2_write_phy(bp, MII_BMCR, BMCR_LOOPBACK | BMCR_FULLDPLX |
1446                             BMCR_SPEED1000);
1447         spin_unlock_bh(&bp->phy_lock);
1448         if (rc)
1449                 return rc;
1450
1451         for (i = 0; i < 10; i++) {
1452                 if (bnx2_test_link(bp) == 0)
1453                         break;
1454                 msleep(100);
1455         }
1456
1457         mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
1458         mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
1459                       BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
1460                       BNX2_EMAC_MODE_25G_MODE);
1461
1462         mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
1463         REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
1464         bp->link_up = 1;
1465         return 0;
1466 }
1467
1468 static int
1469 bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int silent)
1470 {
1471         int i;
1472         u32 val;
1473
1474         bp->fw_wr_seq++;
1475         msg_data |= bp->fw_wr_seq;
1476
1477         REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_MB, msg_data);
1478
1479         /* wait for an acknowledgement. */
1480         for (i = 0; i < (FW_ACK_TIME_OUT_MS / 10); i++) {
1481                 msleep(10);
1482
1483                 val = REG_RD_IND(bp, bp->shmem_base + BNX2_FW_MB);
1484
1485                 if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
1486                         break;
1487         }
1488         if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
1489                 return 0;
1490
1491         /* If we timed out, inform the firmware that this is the case. */
1492         if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
1493                 if (!silent)
1494                         printk(KERN_ERR PFX "fw sync timeout, reset code = "
1495                                             "%x\n", msg_data);
1496
1497                 msg_data &= ~BNX2_DRV_MSG_CODE;
1498                 msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
1499
1500                 REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_MB, msg_data);
1501
1502                 return -EBUSY;
1503         }
1504
1505         if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
1506                 return -EIO;
1507
1508         return 0;
1509 }
1510
1511 static int
1512 bnx2_init_5709_context(struct bnx2 *bp)
1513 {
1514         int i, ret = 0;
1515         u32 val;
1516
1517         val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
1518         val |= (BCM_PAGE_BITS - 8) << 16;
1519         REG_WR(bp, BNX2_CTX_COMMAND, val);
1520         for (i = 0; i < bp->ctx_pages; i++) {
1521                 int j;
1522
1523                 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
1524                        (bp->ctx_blk_mapping[i] & 0xffffffff) |
1525                        BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
1526                 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
1527                        (u64) bp->ctx_blk_mapping[i] >> 32);
1528                 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
1529                        BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
1530                 for (j = 0; j < 10; j++) {
1531
1532                         val = REG_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
1533                         if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
1534                                 break;
1535                         udelay(5);
1536                 }
1537                 if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
1538                         ret = -EBUSY;
1539                         break;
1540                 }
1541         }
1542         return ret;
1543 }
1544
1545 static void
1546 bnx2_init_context(struct bnx2 *bp)
1547 {
1548         u32 vcid;
1549
1550         vcid = 96;
1551         while (vcid) {
1552                 u32 vcid_addr, pcid_addr, offset;
1553
1554                 vcid--;
1555
1556                 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
1557                         u32 new_vcid;
1558
1559                         vcid_addr = GET_PCID_ADDR(vcid);
1560                         if (vcid & 0x8) {
1561                                 new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
1562                         }
1563                         else {
1564                                 new_vcid = vcid;
1565                         }
1566                         pcid_addr = GET_PCID_ADDR(new_vcid);
1567                 }
1568                 else {
1569                         vcid_addr = GET_CID_ADDR(vcid);
1570                         pcid_addr = vcid_addr;
1571                 }
1572
1573                 REG_WR(bp, BNX2_CTX_VIRT_ADDR, 0x00);
1574                 REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
1575
1576                 /* Zero out the context. */
1577                 for (offset = 0; offset < PHY_CTX_SIZE; offset += 4) {
1578                         CTX_WR(bp, 0x00, offset, 0);
1579                 }
1580
1581                 REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
1582                 REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
1583         }
1584 }
1585
1586 static int
1587 bnx2_alloc_bad_rbuf(struct bnx2 *bp)
1588 {
1589         u16 *good_mbuf;
1590         u32 good_mbuf_cnt;
1591         u32 val;
1592
1593         good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
1594         if (good_mbuf == NULL) {
1595                 printk(KERN_ERR PFX "Failed to allocate memory in "
1596                                     "bnx2_alloc_bad_rbuf\n");
1597                 return -ENOMEM;
1598         }
1599
1600         REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
1601                 BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
1602
1603         good_mbuf_cnt = 0;
1604
1605         /* Allocate a bunch of mbufs and save the good ones in an array. */
1606         val = REG_RD_IND(bp, BNX2_RBUF_STATUS1);
1607         while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
1608                 REG_WR_IND(bp, BNX2_RBUF_COMMAND, BNX2_RBUF_COMMAND_ALLOC_REQ);
1609
1610                 val = REG_RD_IND(bp, BNX2_RBUF_FW_BUF_ALLOC);
1611
1612                 val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
1613
1614                 /* The addresses with Bit 9 set are bad memory blocks. */
1615                 if (!(val & (1 << 9))) {
1616                         good_mbuf[good_mbuf_cnt] = (u16) val;
1617                         good_mbuf_cnt++;
1618                 }
1619
1620                 val = REG_RD_IND(bp, BNX2_RBUF_STATUS1);
1621         }
1622
1623         /* Free the good ones back to the mbuf pool thus discarding
1624          * all the bad ones. */
1625         while (good_mbuf_cnt) {
1626                 good_mbuf_cnt--;
1627
1628                 val = good_mbuf[good_mbuf_cnt];
1629                 val = (val << 9) | val | 1;
1630
1631                 REG_WR_IND(bp, BNX2_RBUF_FW_BUF_FREE, val);
1632         }
1633         kfree(good_mbuf);
1634         return 0;
1635 }
1636
1637 static void
1638 bnx2_set_mac_addr(struct bnx2 *bp)
1639 {
1640         u32 val;
1641         u8 *mac_addr = bp->dev->dev_addr;
1642
1643         val = (mac_addr[0] << 8) | mac_addr[1];
1644
1645         REG_WR(bp, BNX2_EMAC_MAC_MATCH0, val);
1646
1647         val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
1648                 (mac_addr[4] << 8) | mac_addr[5];
1649
1650         REG_WR(bp, BNX2_EMAC_MAC_MATCH1, val);
1651 }
1652
1653 static inline int
1654 bnx2_alloc_rx_skb(struct bnx2 *bp, u16 index)
1655 {
1656         struct sk_buff *skb;
1657         struct sw_bd *rx_buf = &bp->rx_buf_ring[index];
1658         dma_addr_t mapping;
1659         struct rx_bd *rxbd = &bp->rx_desc_ring[RX_RING(index)][RX_IDX(index)];
1660         unsigned long align;
1661
1662         skb = netdev_alloc_skb(bp->dev, bp->rx_buf_size);
1663         if (skb == NULL) {
1664                 return -ENOMEM;
1665         }
1666
1667         if (unlikely((align = (unsigned long) skb->data & (BNX2_RX_ALIGN - 1))))
1668                 skb_reserve(skb, BNX2_RX_ALIGN - align);
1669
1670         mapping = pci_map_single(bp->pdev, skb->data, bp->rx_buf_use_size,
1671                 PCI_DMA_FROMDEVICE);
1672
1673         rx_buf->skb = skb;
1674         pci_unmap_addr_set(rx_buf, mapping, mapping);
1675
1676         rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
1677         rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
1678
1679         bp->rx_prod_bseq += bp->rx_buf_use_size;
1680
1681         return 0;
1682 }
1683
1684 static void
1685 bnx2_phy_int(struct bnx2 *bp)
1686 {
1687         u32 new_link_state, old_link_state;
1688
1689         new_link_state = bp->status_blk->status_attn_bits &
1690                 STATUS_ATTN_BITS_LINK_STATE;
1691         old_link_state = bp->status_blk->status_attn_bits_ack &
1692                 STATUS_ATTN_BITS_LINK_STATE;
1693         if (new_link_state != old_link_state) {
1694                 if (new_link_state) {
1695                         REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD,
1696                                 STATUS_ATTN_BITS_LINK_STATE);
1697                 }
1698                 else {
1699                         REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD,
1700                                 STATUS_ATTN_BITS_LINK_STATE);
1701                 }
1702                 bnx2_set_link(bp);
1703         }
1704 }
1705
1706 static void
1707 bnx2_tx_int(struct bnx2 *bp)
1708 {
1709         struct status_block *sblk = bp->status_blk;
1710         u16 hw_cons, sw_cons, sw_ring_cons;
1711         int tx_free_bd = 0;
1712
1713         hw_cons = bp->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
1714         if ((hw_cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT) {
1715                 hw_cons++;
1716         }
1717         sw_cons = bp->tx_cons;
1718
1719         while (sw_cons != hw_cons) {
1720                 struct sw_bd *tx_buf;
1721                 struct sk_buff *skb;
1722                 int i, last;
1723
1724                 sw_ring_cons = TX_RING_IDX(sw_cons);
1725
1726                 tx_buf = &bp->tx_buf_ring[sw_ring_cons];
1727                 skb = tx_buf->skb;
1728
1729                 /* partial BD completions possible with TSO packets */
1730                 if (skb_is_gso(skb)) {
1731                         u16 last_idx, last_ring_idx;
1732
1733                         last_idx = sw_cons +
1734                                 skb_shinfo(skb)->nr_frags + 1;
1735                         last_ring_idx = sw_ring_cons +
1736                                 skb_shinfo(skb)->nr_frags + 1;
1737                         if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) {
1738                                 last_idx++;
1739                         }
1740                         if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
1741                                 break;
1742                         }
1743                 }
1744
1745                 pci_unmap_single(bp->pdev, pci_unmap_addr(tx_buf, mapping),
1746                         skb_headlen(skb), PCI_DMA_TODEVICE);
1747
1748                 tx_buf->skb = NULL;
1749                 last = skb_shinfo(skb)->nr_frags;
1750
1751                 for (i = 0; i < last; i++) {
1752                         sw_cons = NEXT_TX_BD(sw_cons);
1753
1754                         pci_unmap_page(bp->pdev,
1755                                 pci_unmap_addr(
1756                                         &bp->tx_buf_ring[TX_RING_IDX(sw_cons)],
1757                                         mapping),
1758                                 skb_shinfo(skb)->frags[i].size,
1759                                 PCI_DMA_TODEVICE);
1760                 }
1761
1762                 sw_cons = NEXT_TX_BD(sw_cons);
1763
1764                 tx_free_bd += last + 1;
1765
1766                 dev_kfree_skb(skb);
1767
1768                 hw_cons = bp->hw_tx_cons =
1769                         sblk->status_tx_quick_consumer_index0;
1770
1771                 if ((hw_cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT) {
1772                         hw_cons++;
1773                 }
1774         }
1775
1776         bp->tx_cons = sw_cons;
1777         /* Need to make the tx_cons update visible to bnx2_start_xmit()
1778          * before checking for netif_queue_stopped().  Without the
1779          * memory barrier, there is a small possibility that bnx2_start_xmit()
1780          * will miss it and cause the queue to be stopped forever.
1781          */
1782         smp_mb();
1783
1784         if (unlikely(netif_queue_stopped(bp->dev)) &&
1785                      (bnx2_tx_avail(bp) > bp->tx_wake_thresh)) {
1786                 netif_tx_lock(bp->dev);
1787                 if ((netif_queue_stopped(bp->dev)) &&
1788                     (bnx2_tx_avail(bp) > bp->tx_wake_thresh))
1789                         netif_wake_queue(bp->dev);
1790                 netif_tx_unlock(bp->dev);
1791         }
1792 }
1793
1794 static inline void
1795 bnx2_reuse_rx_skb(struct bnx2 *bp, struct sk_buff *skb,
1796         u16 cons, u16 prod)
1797 {
1798         struct sw_bd *cons_rx_buf, *prod_rx_buf;
1799         struct rx_bd *cons_bd, *prod_bd;
1800
1801         cons_rx_buf = &bp->rx_buf_ring[cons];
1802         prod_rx_buf = &bp->rx_buf_ring[prod];
1803
1804         pci_dma_sync_single_for_device(bp->pdev,
1805                 pci_unmap_addr(cons_rx_buf, mapping),
1806                 bp->rx_offset + RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
1807
1808         bp->rx_prod_bseq += bp->rx_buf_use_size;
1809
1810         prod_rx_buf->skb = skb;
1811
1812         if (cons == prod)
1813                 return;
1814
1815         pci_unmap_addr_set(prod_rx_buf, mapping,
1816                         pci_unmap_addr(cons_rx_buf, mapping));
1817
1818         cons_bd = &bp->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
1819         prod_bd = &bp->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
1820         prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
1821         prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
1822 }
1823
1824 static int
1825 bnx2_rx_int(struct bnx2 *bp, int budget)
1826 {
1827         struct status_block *sblk = bp->status_blk;
1828         u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
1829         struct l2_fhdr *rx_hdr;
1830         int rx_pkt = 0;
1831
1832         hw_cons = bp->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
1833         if ((hw_cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT) {
1834                 hw_cons++;
1835         }
1836         sw_cons = bp->rx_cons;
1837         sw_prod = bp->rx_prod;
1838
1839         /* Memory barrier necessary as speculative reads of the rx
1840          * buffer can be ahead of the index in the status block
1841          */
1842         rmb();
1843         while (sw_cons != hw_cons) {
1844                 unsigned int len;
1845                 u32 status;
1846                 struct sw_bd *rx_buf;
1847                 struct sk_buff *skb;
1848                 dma_addr_t dma_addr;
1849
1850                 sw_ring_cons = RX_RING_IDX(sw_cons);
1851                 sw_ring_prod = RX_RING_IDX(sw_prod);
1852
1853                 rx_buf = &bp->rx_buf_ring[sw_ring_cons];
1854                 skb = rx_buf->skb;
1855
1856                 rx_buf->skb = NULL;
1857
1858                 dma_addr = pci_unmap_addr(rx_buf, mapping);
1859
1860                 pci_dma_sync_single_for_cpu(bp->pdev, dma_addr,
1861                         bp->rx_offset + RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
1862
1863                 rx_hdr = (struct l2_fhdr *) skb->data;
1864                 len = rx_hdr->l2_fhdr_pkt_len - 4;
1865
1866                 if ((status = rx_hdr->l2_fhdr_status) &
1867                         (L2_FHDR_ERRORS_BAD_CRC |
1868                         L2_FHDR_ERRORS_PHY_DECODE |
1869                         L2_FHDR_ERRORS_ALIGNMENT |
1870                         L2_FHDR_ERRORS_TOO_SHORT |
1871                         L2_FHDR_ERRORS_GIANT_FRAME)) {
1872
1873                         goto reuse_rx;
1874                 }
1875
1876                 /* Since we don't have a jumbo ring, copy small packets
1877                  * if mtu > 1500
1878                  */
1879                 if ((bp->dev->mtu > 1500) && (len <= RX_COPY_THRESH)) {
1880                         struct sk_buff *new_skb;
1881
1882                         new_skb = netdev_alloc_skb(bp->dev, len + 2);
1883                         if (new_skb == NULL)
1884                                 goto reuse_rx;
1885
1886                         /* aligned copy */
1887                         memcpy(new_skb->data,
1888                                 skb->data + bp->rx_offset - 2,
1889                                 len + 2);
1890
1891                         skb_reserve(new_skb, 2);
1892                         skb_put(new_skb, len);
1893
1894                         bnx2_reuse_rx_skb(bp, skb,
1895                                 sw_ring_cons, sw_ring_prod);
1896
1897                         skb = new_skb;
1898                 }
1899                 else if (bnx2_alloc_rx_skb(bp, sw_ring_prod) == 0) {
1900                         pci_unmap_single(bp->pdev, dma_addr,
1901                                 bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
1902
1903                         skb_reserve(skb, bp->rx_offset);
1904                         skb_put(skb, len);
1905                 }
1906                 else {
1907 reuse_rx:
1908                         bnx2_reuse_rx_skb(bp, skb,
1909                                 sw_ring_cons, sw_ring_prod);
1910                         goto next_rx;
1911                 }
1912
1913                 skb->protocol = eth_type_trans(skb, bp->dev);
1914
1915                 if ((len > (bp->dev->mtu + ETH_HLEN)) &&
1916                         (ntohs(skb->protocol) != 0x8100)) {
1917
1918                         dev_kfree_skb(skb);
1919                         goto next_rx;
1920
1921                 }
1922
1923                 skb->ip_summed = CHECKSUM_NONE;
1924                 if (bp->rx_csum &&
1925                         (status & (L2_FHDR_STATUS_TCP_SEGMENT |
1926                         L2_FHDR_STATUS_UDP_DATAGRAM))) {
1927
1928                         if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
1929                                               L2_FHDR_ERRORS_UDP_XSUM)) == 0))
1930                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1931                 }
1932
1933 #ifdef BCM_VLAN
1934                 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) && (bp->vlgrp != 0)) {
1935                         vlan_hwaccel_receive_skb(skb, bp->vlgrp,
1936                                 rx_hdr->l2_fhdr_vlan_tag);
1937                 }
1938                 else
1939 #endif
1940                         netif_receive_skb(skb);
1941
1942                 bp->dev->last_rx = jiffies;
1943                 rx_pkt++;
1944
1945 next_rx:
1946                 sw_cons = NEXT_RX_BD(sw_cons);
1947                 sw_prod = NEXT_RX_BD(sw_prod);
1948
1949                 if ((rx_pkt == budget))
1950                         break;
1951
1952                 /* Refresh hw_cons to see if there is new work */
1953                 if (sw_cons == hw_cons) {
1954                         hw_cons = bp->hw_rx_cons =
1955                                 sblk->status_rx_quick_consumer_index0;
1956                         if ((hw_cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT)
1957                                 hw_cons++;
1958                         rmb();
1959                 }
1960         }
1961         bp->rx_cons = sw_cons;
1962         bp->rx_prod = sw_prod;
1963
1964         REG_WR16(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BDIDX, sw_prod);
1965
1966         REG_WR(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BSEQ, bp->rx_prod_bseq);
1967
1968         mmiowb();
1969
1970         return rx_pkt;
1971
1972 }
1973
1974 /* MSI ISR - The only difference between this and the INTx ISR
1975  * is that the MSI interrupt is always serviced.
1976  */
1977 static irqreturn_t
1978 bnx2_msi(int irq, void *dev_instance)
1979 {
1980         struct net_device *dev = dev_instance;
1981         struct bnx2 *bp = netdev_priv(dev);
1982
1983         prefetch(bp->status_blk);
1984         REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
1985                 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
1986                 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
1987
1988         /* Return here if interrupt is disabled. */
1989         if (unlikely(atomic_read(&bp->intr_sem) != 0))
1990                 return IRQ_HANDLED;
1991
1992         netif_rx_schedule(dev);
1993
1994         return IRQ_HANDLED;
1995 }
1996
1997 static irqreturn_t
1998 bnx2_interrupt(int irq, void *dev_instance)
1999 {
2000         struct net_device *dev = dev_instance;
2001         struct bnx2 *bp = netdev_priv(dev);
2002
2003         /* When using INTx, it is possible for the interrupt to arrive
2004          * at the CPU before the status block posted prior to the
2005          * interrupt. Reading a register will flush the status block.
2006          * When using MSI, the MSI message will always complete after
2007          * the status block write.
2008          */
2009         if ((bp->status_blk->status_idx == bp->last_status_idx) &&
2010             (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
2011              BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
2012                 return IRQ_NONE;
2013
2014         REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
2015                 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
2016                 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
2017
2018         /* Return here if interrupt is shared and is disabled. */
2019         if (unlikely(atomic_read(&bp->intr_sem) != 0))
2020                 return IRQ_HANDLED;
2021
2022         netif_rx_schedule(dev);
2023
2024         return IRQ_HANDLED;
2025 }
2026
2027 static inline int
2028 bnx2_has_work(struct bnx2 *bp)
2029 {
2030         struct status_block *sblk = bp->status_blk;
2031
2032         if ((sblk->status_rx_quick_consumer_index0 != bp->hw_rx_cons) ||
2033             (sblk->status_tx_quick_consumer_index0 != bp->hw_tx_cons))
2034                 return 1;
2035
2036         if (((sblk->status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) != 0) !=
2037             bp->link_up)
2038                 return 1;
2039
2040         return 0;
2041 }
2042
2043 static int
2044 bnx2_poll(struct net_device *dev, int *budget)
2045 {
2046         struct bnx2 *bp = netdev_priv(dev);
2047
2048         if ((bp->status_blk->status_attn_bits &
2049                 STATUS_ATTN_BITS_LINK_STATE) !=
2050                 (bp->status_blk->status_attn_bits_ack &
2051                 STATUS_ATTN_BITS_LINK_STATE)) {
2052
2053                 spin_lock(&bp->phy_lock);
2054                 bnx2_phy_int(bp);
2055                 spin_unlock(&bp->phy_lock);
2056
2057                 /* This is needed to take care of transient status
2058                  * during link changes.
2059                  */
2060                 REG_WR(bp, BNX2_HC_COMMAND,
2061                        bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
2062                 REG_RD(bp, BNX2_HC_COMMAND);
2063         }
2064
2065         if (bp->status_blk->status_tx_quick_consumer_index0 != bp->hw_tx_cons)
2066                 bnx2_tx_int(bp);
2067
2068         if (bp->status_blk->status_rx_quick_consumer_index0 != bp->hw_rx_cons) {
2069                 int orig_budget = *budget;
2070                 int work_done;
2071
2072                 if (orig_budget > dev->quota)
2073                         orig_budget = dev->quota;
2074
2075                 work_done = bnx2_rx_int(bp, orig_budget);
2076                 *budget -= work_done;
2077                 dev->quota -= work_done;
2078         }
2079
2080         bp->last_status_idx = bp->status_blk->status_idx;
2081         rmb();
2082
2083         if (!bnx2_has_work(bp)) {
2084                 netif_rx_complete(dev);
2085                 if (likely(bp->flags & USING_MSI_FLAG)) {
2086                         REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
2087                                BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
2088                                bp->last_status_idx);
2089                         return 0;
2090                 }
2091                 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
2092                        BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
2093                        BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
2094                        bp->last_status_idx);
2095
2096                 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
2097                        BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
2098                        bp->last_status_idx);
2099                 return 0;
2100         }
2101
2102         return 1;
2103 }
2104
2105 /* Called with rtnl_lock from vlan functions and also netif_tx_lock
2106  * from set_multicast.
2107  */
2108 static void
2109 bnx2_set_rx_mode(struct net_device *dev)
2110 {
2111         struct bnx2 *bp = netdev_priv(dev);
2112         u32 rx_mode, sort_mode;
2113         int i;
2114
2115         spin_lock_bh(&bp->phy_lock);
2116
2117         rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
2118                                   BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
2119         sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
2120 #ifdef BCM_VLAN
2121         if (!bp->vlgrp && !(bp->flags & ASF_ENABLE_FLAG))
2122                 rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
2123 #else
2124         if (!(bp->flags & ASF_ENABLE_FLAG))
2125                 rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
2126 #endif
2127         if (dev->flags & IFF_PROMISC) {
2128                 /* Promiscuous mode. */
2129                 rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
2130                 sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
2131                              BNX2_RPM_SORT_USER0_PROM_VLAN;
2132         }
2133         else if (dev->flags & IFF_ALLMULTI) {
2134                 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
2135                         REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
2136                                0xffffffff);
2137                 }
2138                 sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
2139         }
2140         else {
2141                 /* Accept one or more multicast(s). */
2142                 struct dev_mc_list *mclist;
2143                 u32 mc_filter[NUM_MC_HASH_REGISTERS];
2144                 u32 regidx;
2145                 u32 bit;
2146                 u32 crc;
2147
2148                 memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
2149
2150                 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
2151                      i++, mclist = mclist->next) {
2152
2153                         crc = ether_crc_le(ETH_ALEN, mclist->dmi_addr);
2154                         bit = crc & 0xff;
2155                         regidx = (bit & 0xe0) >> 5;
2156                         bit &= 0x1f;
2157                         mc_filter[regidx] |= (1 << bit);
2158                 }
2159
2160                 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
2161                         REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
2162                                mc_filter[i]);
2163                 }
2164
2165                 sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
2166         }
2167
2168         if (rx_mode != bp->rx_mode) {
2169                 bp->rx_mode = rx_mode;
2170                 REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
2171         }
2172
2173         REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
2174         REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
2175         REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
2176
2177         spin_unlock_bh(&bp->phy_lock);
2178 }
2179
2180 #define FW_BUF_SIZE     0x8000
2181
2182 static int
2183 bnx2_gunzip_init(struct bnx2 *bp)
2184 {
2185         if ((bp->gunzip_buf = vmalloc(FW_BUF_SIZE)) == NULL)
2186                 goto gunzip_nomem1;
2187
2188         if ((bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL)) == NULL)
2189                 goto gunzip_nomem2;
2190
2191         bp->strm->workspace = kmalloc(zlib_inflate_workspacesize(), GFP_KERNEL);
2192         if (bp->strm->workspace == NULL)
2193                 goto gunzip_nomem3;
2194
2195         return 0;
2196
2197 gunzip_nomem3:
2198         kfree(bp->strm);
2199         bp->strm = NULL;
2200
2201 gunzip_nomem2:
2202         vfree(bp->gunzip_buf);
2203         bp->gunzip_buf = NULL;
2204
2205 gunzip_nomem1:
2206         printk(KERN_ERR PFX "%s: Cannot allocate firmware buffer for "
2207                             "uncompression.\n", bp->dev->name);
2208         return -ENOMEM;
2209 }
2210
2211 static void
2212 bnx2_gunzip_end(struct bnx2 *bp)
2213 {
2214         kfree(bp->strm->workspace);
2215
2216         kfree(bp->strm);
2217         bp->strm = NULL;
2218
2219         if (bp->gunzip_buf) {
2220                 vfree(bp->gunzip_buf);
2221                 bp->gunzip_buf = NULL;
2222         }
2223 }
2224
2225 static int
2226 bnx2_gunzip(struct bnx2 *bp, u8 *zbuf, int len, void **outbuf, int *outlen)
2227 {
2228         int n, rc;
2229
2230         /* check gzip header */
2231         if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED))
2232                 return -EINVAL;
2233
2234         n = 10;
2235
2236 #define FNAME   0x8
2237         if (zbuf[3] & FNAME)
2238                 while ((zbuf[n++] != 0) && (n < len));
2239
2240         bp->strm->next_in = zbuf + n;
2241         bp->strm->avail_in = len - n;
2242         bp->strm->next_out = bp->gunzip_buf;
2243         bp->strm->avail_out = FW_BUF_SIZE;
2244
2245         rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
2246         if (rc != Z_OK)
2247                 return rc;
2248
2249         rc = zlib_inflate(bp->strm, Z_FINISH);
2250
2251         *outlen = FW_BUF_SIZE - bp->strm->avail_out;
2252         *outbuf = bp->gunzip_buf;
2253
2254         if ((rc != Z_OK) && (rc != Z_STREAM_END))
2255                 printk(KERN_ERR PFX "%s: Firmware decompression error: %s\n",
2256                        bp->dev->name, bp->strm->msg);
2257
2258         zlib_inflateEnd(bp->strm);
2259
2260         if (rc == Z_STREAM_END)
2261                 return 0;
2262
2263         return rc;
2264 }
2265
2266 static void
2267 load_rv2p_fw(struct bnx2 *bp, u32 *rv2p_code, u32 rv2p_code_len,
2268         u32 rv2p_proc)
2269 {
2270         int i;
2271         u32 val;
2272
2273
2274         for (i = 0; i < rv2p_code_len; i += 8) {
2275                 REG_WR(bp, BNX2_RV2P_INSTR_HIGH, cpu_to_le32(*rv2p_code));
2276                 rv2p_code++;
2277                 REG_WR(bp, BNX2_RV2P_INSTR_LOW, cpu_to_le32(*rv2p_code));
2278                 rv2p_code++;
2279
2280                 if (rv2p_proc == RV2P_PROC1) {
2281                         val = (i / 8) | BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
2282                         REG_WR(bp, BNX2_RV2P_PROC1_ADDR_CMD, val);
2283                 }
2284                 else {
2285                         val = (i / 8) | BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
2286                         REG_WR(bp, BNX2_RV2P_PROC2_ADDR_CMD, val);
2287                 }
2288         }
2289
2290         /* Reset the processor, un-stall is done later. */
2291         if (rv2p_proc == RV2P_PROC1) {
2292                 REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
2293         }
2294         else {
2295                 REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
2296         }
2297 }
2298
2299 static int
2300 load_cpu_fw(struct bnx2 *bp, struct cpu_reg *cpu_reg, struct fw_info *fw)
2301 {
2302         u32 offset;
2303         u32 val;
2304         int rc;
2305
2306         /* Halt the CPU. */
2307         val = REG_RD_IND(bp, cpu_reg->mode);
2308         val |= cpu_reg->mode_value_halt;
2309         REG_WR_IND(bp, cpu_reg->mode, val);
2310         REG_WR_IND(bp, cpu_reg->state, cpu_reg->state_value_clear);
2311
2312         /* Load the Text area. */
2313         offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
2314         if (fw->gz_text) {
2315                 u32 text_len;
2316                 void *text;
2317
2318                 rc = bnx2_gunzip(bp, fw->gz_text, fw->gz_text_len, &text,
2319                                  &text_len);
2320                 if (rc)
2321                         return rc;
2322
2323                 fw->text = text;
2324         }
2325         if (fw->gz_text) {
2326                 int j;
2327
2328                 for (j = 0; j < (fw->text_len / 4); j++, offset += 4) {
2329                         REG_WR_IND(bp, offset, cpu_to_le32(fw->text[j]));
2330                 }
2331         }
2332
2333         /* Load the Data area. */
2334         offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
2335         if (fw->data) {
2336                 int j;
2337
2338                 for (j = 0; j < (fw->data_len / 4); j++, offset += 4) {
2339                         REG_WR_IND(bp, offset, fw->data[j]);
2340                 }
2341         }
2342
2343         /* Load the SBSS area. */
2344         offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
2345         if (fw->sbss) {
2346                 int j;
2347
2348                 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) {
2349                         REG_WR_IND(bp, offset, fw->sbss[j]);
2350                 }
2351         }
2352
2353         /* Load the BSS area. */
2354         offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
2355         if (fw->bss) {
2356                 int j;
2357
2358                 for (j = 0; j < (fw->bss_len/4); j++, offset += 4) {
2359                         REG_WR_IND(bp, offset, fw->bss[j]);
2360                 }
2361         }
2362
2363         /* Load the Read-Only area. */
2364         offset = cpu_reg->spad_base +
2365                 (fw->rodata_addr - cpu_reg->mips_view_base);
2366         if (fw->rodata) {
2367                 int j;
2368
2369                 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) {
2370                         REG_WR_IND(bp, offset, fw->rodata[j]);
2371                 }
2372         }
2373
2374         /* Clear the pre-fetch instruction. */
2375         REG_WR_IND(bp, cpu_reg->inst, 0);
2376         REG_WR_IND(bp, cpu_reg->pc, fw->start_addr);
2377
2378         /* Start the CPU. */
2379         val = REG_RD_IND(bp, cpu_reg->mode);
2380         val &= ~cpu_reg->mode_value_halt;
2381         REG_WR_IND(bp, cpu_reg->state, cpu_reg->state_value_clear);
2382         REG_WR_IND(bp, cpu_reg->mode, val);
2383
2384         return 0;
2385 }
2386
2387 static int
2388 bnx2_init_cpus(struct bnx2 *bp)
2389 {
2390         struct cpu_reg cpu_reg;
2391         struct fw_info *fw;
2392         int rc = 0;
2393         void *text;
2394         u32 text_len;
2395
2396         if ((rc = bnx2_gunzip_init(bp)) != 0)
2397                 return rc;
2398
2399         /* Initialize the RV2P processor. */
2400         rc = bnx2_gunzip(bp, bnx2_rv2p_proc1, sizeof(bnx2_rv2p_proc1), &text,
2401                          &text_len);
2402         if (rc)
2403                 goto init_cpu_err;
2404
2405         load_rv2p_fw(bp, text, text_len, RV2P_PROC1);
2406
2407         rc = bnx2_gunzip(bp, bnx2_rv2p_proc2, sizeof(bnx2_rv2p_proc2), &text,
2408                          &text_len);
2409         if (rc)
2410                 goto init_cpu_err;
2411
2412         load_rv2p_fw(bp, text, text_len, RV2P_PROC2);
2413
2414         /* Initialize the RX Processor. */
2415         cpu_reg.mode = BNX2_RXP_CPU_MODE;
2416         cpu_reg.mode_value_halt = BNX2_RXP_CPU_MODE_SOFT_HALT;
2417         cpu_reg.mode_value_sstep = BNX2_RXP_CPU_MODE_STEP_ENA;
2418         cpu_reg.state = BNX2_RXP_CPU_STATE;
2419         cpu_reg.state_value_clear = 0xffffff;
2420         cpu_reg.gpr0 = BNX2_RXP_CPU_REG_FILE;
2421         cpu_reg.evmask = BNX2_RXP_CPU_EVENT_MASK;
2422         cpu_reg.pc = BNX2_RXP_CPU_PROGRAM_COUNTER;
2423         cpu_reg.inst = BNX2_RXP_CPU_INSTRUCTION;
2424         cpu_reg.bp = BNX2_RXP_CPU_HW_BREAKPOINT;
2425         cpu_reg.spad_base = BNX2_RXP_SCRATCH;
2426         cpu_reg.mips_view_base = 0x8000000;
2427
2428         if (CHIP_NUM(bp) == CHIP_NUM_5709)
2429                 fw = &bnx2_rxp_fw_09;
2430         else
2431                 fw = &bnx2_rxp_fw_06;
2432
2433         rc = load_cpu_fw(bp, &cpu_reg, fw);
2434         if (rc)
2435                 goto init_cpu_err;
2436
2437         /* Initialize the TX Processor. */
2438         cpu_reg.mode = BNX2_TXP_CPU_MODE;
2439         cpu_reg.mode_value_halt = BNX2_TXP_CPU_MODE_SOFT_HALT;
2440         cpu_reg.mode_value_sstep = BNX2_TXP_CPU_MODE_STEP_ENA;
2441         cpu_reg.state = BNX2_TXP_CPU_STATE;
2442         cpu_reg.state_value_clear = 0xffffff;
2443         cpu_reg.gpr0 = BNX2_TXP_CPU_REG_FILE;
2444         cpu_reg.evmask = BNX2_TXP_CPU_EVENT_MASK;
2445         cpu_reg.pc = BNX2_TXP_CPU_PROGRAM_COUNTER;
2446         cpu_reg.inst = BNX2_TXP_CPU_INSTRUCTION;
2447         cpu_reg.bp = BNX2_TXP_CPU_HW_BREAKPOINT;
2448         cpu_reg.spad_base = BNX2_TXP_SCRATCH;
2449         cpu_reg.mips_view_base = 0x8000000;
2450
2451         if (CHIP_NUM(bp) == CHIP_NUM_5709)
2452                 fw = &bnx2_txp_fw_09;
2453         else
2454                 fw = &bnx2_txp_fw_06;
2455
2456         rc = load_cpu_fw(bp, &cpu_reg, fw);
2457         if (rc)
2458                 goto init_cpu_err;
2459
2460         /* Initialize the TX Patch-up Processor. */
2461         cpu_reg.mode = BNX2_TPAT_CPU_MODE;
2462         cpu_reg.mode_value_halt = BNX2_TPAT_CPU_MODE_SOFT_HALT;
2463         cpu_reg.mode_value_sstep = BNX2_TPAT_CPU_MODE_STEP_ENA;
2464         cpu_reg.state = BNX2_TPAT_CPU_STATE;
2465         cpu_reg.state_value_clear = 0xffffff;
2466         cpu_reg.gpr0 = BNX2_TPAT_CPU_REG_FILE;
2467         cpu_reg.evmask = BNX2_TPAT_CPU_EVENT_MASK;
2468         cpu_reg.pc = BNX2_TPAT_CPU_PROGRAM_COUNTER;
2469         cpu_reg.inst = BNX2_TPAT_CPU_INSTRUCTION;
2470         cpu_reg.bp = BNX2_TPAT_CPU_HW_BREAKPOINT;
2471         cpu_reg.spad_base = BNX2_TPAT_SCRATCH;
2472         cpu_reg.mips_view_base = 0x8000000;
2473
2474         if (CHIP_NUM(bp) == CHIP_NUM_5709)
2475                 fw = &bnx2_tpat_fw_09;
2476         else
2477                 fw = &bnx2_tpat_fw_06;
2478
2479         rc = load_cpu_fw(bp, &cpu_reg, fw);
2480         if (rc)
2481                 goto init_cpu_err;
2482
2483         /* Initialize the Completion Processor. */
2484         cpu_reg.mode = BNX2_COM_CPU_MODE;
2485         cpu_reg.mode_value_halt = BNX2_COM_CPU_MODE_SOFT_HALT;
2486         cpu_reg.mode_value_sstep = BNX2_COM_CPU_MODE_STEP_ENA;
2487         cpu_reg.state = BNX2_COM_CPU_STATE;
2488         cpu_reg.state_value_clear = 0xffffff;
2489         cpu_reg.gpr0 = BNX2_COM_CPU_REG_FILE;
2490         cpu_reg.evmask = BNX2_COM_CPU_EVENT_MASK;
2491         cpu_reg.pc = BNX2_COM_CPU_PROGRAM_COUNTER;
2492         cpu_reg.inst = BNX2_COM_CPU_INSTRUCTION;
2493         cpu_reg.bp = BNX2_COM_CPU_HW_BREAKPOINT;
2494         cpu_reg.spad_base = BNX2_COM_SCRATCH;
2495         cpu_reg.mips_view_base = 0x8000000;
2496
2497         if (CHIP_NUM(bp) == CHIP_NUM_5709)
2498                 fw = &bnx2_com_fw_09;
2499         else
2500                 fw = &bnx2_com_fw_06;
2501
2502         rc = load_cpu_fw(bp, &cpu_reg, fw);
2503         if (rc)
2504                 goto init_cpu_err;
2505
2506         /* Initialize the Command Processor. */
2507         cpu_reg.mode = BNX2_CP_CPU_MODE;
2508         cpu_reg.mode_value_halt = BNX2_CP_CPU_MODE_SOFT_HALT;
2509         cpu_reg.mode_value_sstep = BNX2_CP_CPU_MODE_STEP_ENA;
2510         cpu_reg.state = BNX2_CP_CPU_STATE;
2511         cpu_reg.state_value_clear = 0xffffff;
2512         cpu_reg.gpr0 = BNX2_CP_CPU_REG_FILE;
2513         cpu_reg.evmask = BNX2_CP_CPU_EVENT_MASK;
2514         cpu_reg.pc = BNX2_CP_CPU_PROGRAM_COUNTER;
2515         cpu_reg.inst = BNX2_CP_CPU_INSTRUCTION;
2516         cpu_reg.bp = BNX2_CP_CPU_HW_BREAKPOINT;
2517         cpu_reg.spad_base = BNX2_CP_SCRATCH;
2518         cpu_reg.mips_view_base = 0x8000000;
2519
2520         if (CHIP_NUM(bp) == CHIP_NUM_5709) {
2521                 fw = &bnx2_cp_fw_09;
2522
2523                 rc = load_cpu_fw(bp, &cpu_reg, fw);
2524                 if (rc)
2525                         goto init_cpu_err;
2526         }
2527 init_cpu_err:
2528         bnx2_gunzip_end(bp);
2529         return rc;
2530 }
2531
2532 static int
2533 bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
2534 {
2535         u16 pmcsr;
2536
2537         pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
2538
2539         switch (state) {
2540         case PCI_D0: {
2541                 u32 val;
2542
2543                 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
2544                         (pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
2545                         PCI_PM_CTRL_PME_STATUS);
2546
2547                 if (pmcsr & PCI_PM_CTRL_STATE_MASK)
2548                         /* delay required during transition out of D3hot */
2549                         msleep(20);
2550
2551                 val = REG_RD(bp, BNX2_EMAC_MODE);
2552                 val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
2553                 val &= ~BNX2_EMAC_MODE_MPKT;
2554                 REG_WR(bp, BNX2_EMAC_MODE, val);
2555
2556                 val = REG_RD(bp, BNX2_RPM_CONFIG);
2557                 val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
2558                 REG_WR(bp, BNX2_RPM_CONFIG, val);
2559                 break;
2560         }
2561         case PCI_D3hot: {
2562                 int i;
2563                 u32 val, wol_msg;
2564
2565                 if (bp->wol) {
2566                         u32 advertising;
2567                         u8 autoneg;
2568
2569                         autoneg = bp->autoneg;
2570                         advertising = bp->advertising;
2571
2572                         bp->autoneg = AUTONEG_SPEED;
2573                         bp->advertising = ADVERTISED_10baseT_Half |
2574                                 ADVERTISED_10baseT_Full |
2575                                 ADVERTISED_100baseT_Half |
2576                                 ADVERTISED_100baseT_Full |
2577                                 ADVERTISED_Autoneg;
2578
2579                         bnx2_setup_copper_phy(bp);
2580
2581                         bp->autoneg = autoneg;
2582                         bp->advertising = advertising;
2583
2584                         bnx2_set_mac_addr(bp);
2585
2586                         val = REG_RD(bp, BNX2_EMAC_MODE);
2587
2588                         /* Enable port mode. */
2589                         val &= ~BNX2_EMAC_MODE_PORT;
2590                         val |= BNX2_EMAC_MODE_PORT_MII |
2591                                BNX2_EMAC_MODE_MPKT_RCVD |
2592                                BNX2_EMAC_MODE_ACPI_RCVD |
2593                                BNX2_EMAC_MODE_MPKT;
2594
2595                         REG_WR(bp, BNX2_EMAC_MODE, val);
2596
2597                         /* receive all multicast */
2598                         for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
2599                                 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
2600                                        0xffffffff);
2601                         }
2602                         REG_WR(bp, BNX2_EMAC_RX_MODE,
2603                                BNX2_EMAC_RX_MODE_SORT_MODE);
2604
2605                         val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
2606                               BNX2_RPM_SORT_USER0_MC_EN;
2607                         REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
2608                         REG_WR(bp, BNX2_RPM_SORT_USER0, val);
2609                         REG_WR(bp, BNX2_RPM_SORT_USER0, val |
2610                                BNX2_RPM_SORT_USER0_ENA);
2611
2612                         /* Need to enable EMAC and RPM for WOL. */
2613                         REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
2614                                BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
2615                                BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
2616                                BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
2617
2618                         val = REG_RD(bp, BNX2_RPM_CONFIG);
2619                         val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
2620                         REG_WR(bp, BNX2_RPM_CONFIG, val);
2621
2622                         wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
2623                 }
2624                 else {
2625                         wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
2626                 }
2627
2628                 if (!(bp->flags & NO_WOL_FLAG))
2629                         bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg, 0);
2630
2631                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
2632                 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
2633                     (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
2634
2635                         if (bp->wol)
2636                                 pmcsr |= 3;
2637                 }
2638                 else {
2639                         pmcsr |= 3;
2640                 }
2641                 if (bp->wol) {
2642                         pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2643                 }
2644                 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
2645                                       pmcsr);
2646
2647                 /* No more memory access after this point until
2648                  * device is brought back to D0.
2649                  */
2650                 udelay(50);
2651                 break;
2652         }
2653         default:
2654                 return -EINVAL;
2655         }
2656         return 0;
2657 }
2658
2659 static int
2660 bnx2_acquire_nvram_lock(struct bnx2 *bp)
2661 {
2662         u32 val;
2663         int j;
2664
2665         /* Request access to the flash interface. */
2666         REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
2667         for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2668                 val = REG_RD(bp, BNX2_NVM_SW_ARB);
2669                 if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
2670                         break;
2671
2672                 udelay(5);
2673         }
2674
2675         if (j >= NVRAM_TIMEOUT_COUNT)
2676                 return -EBUSY;
2677
2678         return 0;
2679 }
2680
2681 static int
2682 bnx2_release_nvram_lock(struct bnx2 *bp)
2683 {
2684         int j;
2685         u32 val;
2686
2687         /* Relinquish nvram interface. */
2688         REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
2689
2690         for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2691                 val = REG_RD(bp, BNX2_NVM_SW_ARB);
2692                 if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
2693                         break;
2694
2695                 udelay(5);
2696         }
2697
2698         if (j >= NVRAM_TIMEOUT_COUNT)
2699                 return -EBUSY;
2700
2701         return 0;
2702 }
2703
2704
2705 static int
2706 bnx2_enable_nvram_write(struct bnx2 *bp)
2707 {
2708         u32 val;
2709
2710         val = REG_RD(bp, BNX2_MISC_CFG);
2711         REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
2712
2713         if (!bp->flash_info->buffered) {
2714                 int j;
2715
2716                 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
2717                 REG_WR(bp, BNX2_NVM_COMMAND,
2718                        BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
2719
2720                 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2721                         udelay(5);
2722
2723                         val = REG_RD(bp, BNX2_NVM_COMMAND);
2724                         if (val & BNX2_NVM_COMMAND_DONE)
2725                                 break;
2726                 }
2727
2728                 if (j >= NVRAM_TIMEOUT_COUNT)
2729                         return -EBUSY;
2730         }
2731         return 0;
2732 }
2733
2734 static void
2735 bnx2_disable_nvram_write(struct bnx2 *bp)
2736 {
2737         u32 val;
2738
2739         val = REG_RD(bp, BNX2_MISC_CFG);
2740         REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
2741 }
2742
2743
2744 static void
2745 bnx2_enable_nvram_access(struct bnx2 *bp)
2746 {
2747         u32 val;
2748
2749         val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
2750         /* Enable both bits, even on read. */
2751         REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
2752                val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
2753 }
2754
2755 static void
2756 bnx2_disable_nvram_access(struct bnx2 *bp)
2757 {
2758         u32 val;
2759
2760         val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
2761         /* Disable both bits, even after read. */
2762         REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
2763                 val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
2764                         BNX2_NVM_ACCESS_ENABLE_WR_EN));
2765 }
2766
2767 static int
2768 bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
2769 {
2770         u32 cmd;
2771         int j;
2772
2773         if (bp->flash_info->buffered)
2774                 /* Buffered flash, no erase needed */
2775                 return 0;
2776
2777         /* Build an erase command */
2778         cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
2779               BNX2_NVM_COMMAND_DOIT;
2780
2781         /* Need to clear DONE bit separately. */
2782         REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
2783
2784         /* Address of the NVRAM to read from. */
2785         REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
2786
2787         /* Issue an erase command. */
2788         REG_WR(bp, BNX2_NVM_COMMAND, cmd);
2789
2790         /* Wait for completion. */
2791         for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2792                 u32 val;
2793
2794                 udelay(5);
2795
2796                 val = REG_RD(bp, BNX2_NVM_COMMAND);
2797                 if (val & BNX2_NVM_COMMAND_DONE)
2798                         break;
2799         }
2800
2801         if (j >= NVRAM_TIMEOUT_COUNT)
2802                 return -EBUSY;
2803
2804         return 0;
2805 }
2806
2807 static int
2808 bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
2809 {
2810         u32 cmd;
2811         int j;
2812
2813         /* Build the command word. */
2814         cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
2815
2816         /* Calculate an offset of a buffered flash. */
2817         if (bp->flash_info->buffered) {
2818                 offset = ((offset / bp->flash_info->page_size) <<
2819                            bp->flash_info->page_bits) +
2820                           (offset % bp->flash_info->page_size);
2821         }
2822
2823         /* Need to clear DONE bit separately. */
2824         REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
2825
2826         /* Address of the NVRAM to read from. */
2827         REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
2828
2829         /* Issue a read command. */
2830         REG_WR(bp, BNX2_NVM_COMMAND, cmd);
2831
2832         /* Wait for completion. */
2833         for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2834                 u32 val;
2835
2836                 udelay(5);
2837
2838                 val = REG_RD(bp, BNX2_NVM_COMMAND);
2839                 if (val & BNX2_NVM_COMMAND_DONE) {
2840                         val = REG_RD(bp, BNX2_NVM_READ);
2841
2842                         val = be32_to_cpu(val);
2843                         memcpy(ret_val, &val, 4);
2844                         break;
2845                 }
2846         }
2847         if (j >= NVRAM_TIMEOUT_COUNT)
2848                 return -EBUSY;
2849
2850         return 0;
2851 }
2852
2853
2854 static int
2855 bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
2856 {
2857         u32 cmd, val32;
2858         int j;
2859
2860         /* Build the command word. */
2861         cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
2862
2863         /* Calculate an offset of a buffered flash. */
2864         if (bp->flash_info->buffered) {
2865                 offset = ((offset / bp->flash_info->page_size) <<
2866                           bp->flash_info->page_bits) +
2867                          (offset % bp->flash_info->page_size);
2868         }
2869
2870         /* Need to clear DONE bit separately. */
2871         REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
2872
2873         memcpy(&val32, val, 4);
2874         val32 = cpu_to_be32(val32);
2875
2876         /* Write the data. */
2877         REG_WR(bp, BNX2_NVM_WRITE, val32);
2878
2879         /* Address of the NVRAM to write to. */
2880         REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
2881
2882         /* Issue the write command. */
2883         REG_WR(bp, BNX2_NVM_COMMAND, cmd);
2884
2885         /* Wait for completion. */
2886         for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2887                 udelay(5);
2888
2889                 if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
2890                         break;
2891         }
2892         if (j >= NVRAM_TIMEOUT_COUNT)
2893                 return -EBUSY;
2894
2895         return 0;
2896 }
2897
2898 static int
2899 bnx2_init_nvram(struct bnx2 *bp)
2900 {
2901         u32 val;
2902         int j, entry_count, rc;
2903         struct flash_spec *flash;
2904
2905         /* Determine the selected interface. */
2906         val = REG_RD(bp, BNX2_NVM_CFG1);
2907
2908         entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
2909
2910         rc = 0;
2911         if (val & 0x40000000) {
2912
2913                 /* Flash interface has been reconfigured */
2914                 for (j = 0, flash = &flash_table[0]; j < entry_count;
2915                      j++, flash++) {
2916                         if ((val & FLASH_BACKUP_STRAP_MASK) ==
2917                             (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
2918                                 bp->flash_info = flash;
2919                                 break;
2920                         }
2921                 }
2922         }
2923         else {
2924                 u32 mask;
2925                 /* Not yet been reconfigured */
2926
2927                 if (val & (1 << 23))
2928                         mask = FLASH_BACKUP_STRAP_MASK;
2929                 else
2930                         mask = FLASH_STRAP_MASK;
2931
2932                 for (j = 0, flash = &flash_table[0]; j < entry_count;
2933                         j++, flash++) {
2934
2935                         if ((val & mask) == (flash->strapping & mask)) {
2936                                 bp->flash_info = flash;
2937
2938                                 /* Request access to the flash interface. */
2939                                 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
2940                                         return rc;
2941
2942                                 /* Enable access to flash interface */
2943                                 bnx2_enable_nvram_access(bp);
2944
2945                                 /* Reconfigure the flash interface */
2946                                 REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
2947                                 REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
2948                                 REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
2949                                 REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
2950
2951                                 /* Disable access to flash interface */
2952                                 bnx2_disable_nvram_access(bp);
2953                                 bnx2_release_nvram_lock(bp);
2954
2955                                 break;
2956                         }
2957                 }
2958         } /* if (val & 0x40000000) */
2959
2960         if (j == entry_count) {
2961                 bp->flash_info = NULL;
2962                 printk(KERN_ALERT PFX "Unknown flash/EEPROM type.\n");
2963                 return -ENODEV;
2964         }
2965
2966         val = REG_RD_IND(bp, bp->shmem_base + BNX2_SHARED_HW_CFG_CONFIG2);
2967         val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
2968         if (val)
2969                 bp->flash_size = val;
2970         else
2971                 bp->flash_size = bp->flash_info->total_size;
2972
2973         return rc;
2974 }
2975
2976 static int
2977 bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
2978                 int buf_size)
2979 {
2980         int rc = 0;
2981         u32 cmd_flags, offset32, len32, extra;
2982
2983         if (buf_size == 0)
2984                 return 0;
2985
2986         /* Request access to the flash interface. */
2987         if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
2988                 return rc;
2989
2990         /* Enable access to flash interface */
2991         bnx2_enable_nvram_access(bp);
2992
2993         len32 = buf_size;
2994         offset32 = offset;
2995         extra = 0;
2996
2997         cmd_flags = 0;
2998
2999         if (offset32 & 3) {
3000                 u8 buf[4];
3001                 u32 pre_len;
3002
3003                 offset32 &= ~3;
3004                 pre_len = 4 - (offset & 3);
3005
3006                 if (pre_len >= len32) {
3007                         pre_len = len32;
3008                         cmd_flags = BNX2_NVM_COMMAND_FIRST |
3009                                     BNX2_NVM_COMMAND_LAST;
3010                 }
3011                 else {
3012                         cmd_flags = BNX2_NVM_COMMAND_FIRST;
3013                 }
3014
3015                 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
3016
3017                 if (rc)
3018                         return rc;
3019
3020                 memcpy(ret_buf, buf + (offset & 3), pre_len);
3021
3022                 offset32 += 4;
3023                 ret_buf += pre_len;
3024                 len32 -= pre_len;
3025         }
3026         if (len32 & 3) {
3027                 extra = 4 - (len32 & 3);
3028                 len32 = (len32 + 4) & ~3;
3029         }
3030
3031         if (len32 == 4) {
3032                 u8 buf[4];
3033
3034                 if (cmd_flags)
3035                         cmd_flags = BNX2_NVM_COMMAND_LAST;
3036                 else
3037                         cmd_flags = BNX2_NVM_COMMAND_FIRST |
3038                                     BNX2_NVM_COMMAND_LAST;
3039
3040                 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
3041
3042                 memcpy(ret_buf, buf, 4 - extra);
3043         }
3044         else if (len32 > 0) {
3045                 u8 buf[4];
3046
3047                 /* Read the first word. */
3048                 if (cmd_flags)
3049                         cmd_flags = 0;
3050                 else
3051                         cmd_flags = BNX2_NVM_COMMAND_FIRST;
3052
3053                 rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
3054
3055                 /* Advance to the next dword. */
3056                 offset32 += 4;
3057                 ret_buf += 4;
3058                 len32 -= 4;
3059
3060                 while (len32 > 4 && rc == 0) {
3061                         rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
3062
3063                         /* Advance to the next dword. */
3064                         offset32 += 4;
3065                         ret_buf += 4;
3066                         len32 -= 4;
3067                 }
3068
3069                 if (rc)
3070                         return rc;
3071
3072                 cmd_flags = BNX2_NVM_COMMAND_LAST;
3073                 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
3074
3075                 memcpy(ret_buf, buf, 4 - extra);
3076         }
3077
3078         /* Disable access to flash interface */
3079         bnx2_disable_nvram_access(bp);
3080
3081         bnx2_release_nvram_lock(bp);
3082
3083         return rc;
3084 }
3085
3086 static int
3087 bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
3088                 int buf_size)
3089 {
3090         u32 written, offset32, len32;
3091         u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL;
3092         int rc = 0;
3093         int align_start, align_end;
3094
3095         buf = data_buf;
3096         offset32 = offset;
3097         len32 = buf_size;
3098         align_start = align_end = 0;
3099
3100         if ((align_start = (offset32 & 3))) {
3101                 offset32 &= ~3;
3102                 len32 += (4 - align_start);
3103                 if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
3104                         return rc;
3105         }
3106
3107         if (len32 & 3) {
3108                 if ((len32 > 4) || !align_start) {
3109                         align_end = 4 - (len32 & 3);
3110                         len32 += align_end;
3111                         if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4,
3112                                 end, 4))) {
3113                                 return rc;
3114                         }
3115                 }
3116         }
3117
3118         if (align_start || align_end) {
3119                 align_buf = kmalloc(len32, GFP_KERNEL);
3120                 if (align_buf == NULL)
3121                         return -ENOMEM;
3122                 if (align_start) {
3123                         memcpy(align_buf, start, 4);
3124                 }
3125                 if (align_end) {
3126                         memcpy(align_buf + len32 - 4, end, 4);
3127                 }
3128                 memcpy(align_buf + align_start, data_buf, buf_size);
3129                 buf = align_buf;
3130         }
3131
3132         if (bp->flash_info->buffered == 0) {
3133                 flash_buffer = kmalloc(264, GFP_KERNEL);
3134                 if (flash_buffer == NULL) {
3135                         rc = -ENOMEM;
3136                         goto nvram_write_end;
3137                 }
3138         }
3139
3140         written = 0;
3141         while ((written < len32) && (rc == 0)) {
3142                 u32 page_start, page_end, data_start, data_end;
3143                 u32 addr, cmd_flags;
3144                 int i;
3145
3146                 /* Find the page_start addr */
3147                 page_start = offset32 + written;
3148                 page_start -= (page_start % bp->flash_info->page_size);
3149                 /* Find the page_end addr */
3150                 page_end = page_start + bp->flash_info->page_size;
3151                 /* Find the data_start addr */
3152                 data_start = (written == 0) ? offset32 : page_start;
3153                 /* Find the data_end addr */
3154                 data_end = (page_end > offset32 + len32) ?
3155                         (offset32 + len32) : page_end;
3156
3157                 /* Request access to the flash interface. */
3158                 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
3159                         goto nvram_write_end;
3160
3161                 /* Enable access to flash interface */
3162                 bnx2_enable_nvram_access(bp);
3163
3164                 cmd_flags = BNX2_NVM_COMMAND_FIRST;
3165                 if (bp->flash_info->buffered == 0) {
3166                         int j;
3167
3168                         /* Read the whole page into the buffer
3169                          * (non-buffer flash only) */
3170                         for (j = 0; j < bp->flash_info->page_size; j += 4) {
3171                                 if (j == (bp->flash_info->page_size - 4)) {
3172                                         cmd_flags |= BNX2_NVM_COMMAND_LAST;
3173                                 }
3174                                 rc = bnx2_nvram_read_dword(bp,
3175                                         page_start + j,
3176                                         &flash_buffer[j],
3177                                         cmd_flags);
3178
3179                                 if (rc)
3180                                         goto nvram_write_end;
3181
3182                                 cmd_flags = 0;
3183                         }
3184                 }
3185
3186                 /* Enable writes to flash interface (unlock write-protect) */
3187                 if ((rc = bnx2_enable_nvram_write(bp)) != 0)
3188                         goto nvram_write_end;
3189
3190                 /* Erase the page */
3191                 if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
3192                         goto nvram_write_end;
3193
3194                 /* Re-enable the write again for the actual write */
3195                 bnx2_enable_nvram_write(bp);
3196
3197                 /* Loop to write back the buffer data from page_start to
3198                  * data_start */
3199                 i = 0;
3200                 if (bp->flash_info->buffered == 0) {
3201                         for (addr = page_start; addr < data_start;
3202                                 addr += 4, i += 4) {
3203
3204                                 rc = bnx2_nvram_write_dword(bp, addr,
3205                                         &flash_buffer[i], cmd_flags);
3206
3207                                 if (rc != 0)
3208                                         goto nvram_write_end;
3209
3210                                 cmd_flags = 0;
3211                         }
3212                 }
3213
3214                 /* Loop to write the new data from data_start to data_end */
3215                 for (addr = data_start; addr < data_end; addr += 4, i += 4) {
3216                         if ((addr == page_end - 4) ||
3217                                 ((bp->flash_info->buffered) &&
3218                                  (addr == data_end - 4))) {
3219
3220                                 cmd_flags |= BNX2_NVM_COMMAND_LAST;
3221                         }
3222                         rc = bnx2_nvram_write_dword(bp, addr, buf,
3223                                 cmd_flags);
3224
3225                         if (rc != 0)
3226                                 goto nvram_write_end;
3227
3228                         cmd_flags = 0;
3229                         buf += 4;
3230                 }
3231
3232                 /* Loop to write back the buffer data from data_end
3233                  * to page_end */
3234                 if (bp->flash_info->buffered == 0) {
3235                         for (addr = data_end; addr < page_end;
3236                                 addr += 4, i += 4) {
3237
3238                                 if (addr == page_end-4) {
3239                                         cmd_flags = BNX2_NVM_COMMAND_LAST;
3240                                 }
3241                                 rc = bnx2_nvram_write_dword(bp, addr,
3242                                         &flash_buffer[i], cmd_flags);
3243
3244                                 if (rc != 0)
3245                                         goto nvram_write_end;
3246
3247                                 cmd_flags = 0;
3248                         }
3249                 }
3250
3251                 /* Disable writes to flash interface (lock write-protect) */
3252                 bnx2_disable_nvram_write(bp);
3253
3254                 /* Disable access to flash interface */
3255                 bnx2_disable_nvram_access(bp);
3256                 bnx2_release_nvram_lock(bp);
3257
3258                 /* Increment written */
3259                 written += data_end - data_start;
3260         }
3261
3262 nvram_write_end:
3263         kfree(flash_buffer);
3264         kfree(align_buf);
3265         return rc;
3266 }
3267
3268 static int
3269 bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
3270 {
3271         u32 val;
3272         int i, rc = 0;
3273
3274         /* Wait for the current PCI transaction to complete before
3275          * issuing a reset. */
3276         REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
3277                BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
3278                BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
3279                BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
3280                BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
3281         val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
3282         udelay(5);
3283
3284         /* Wait for the firmware to tell us it is ok to issue a reset. */
3285         bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1);
3286
3287         /* Deposit a driver reset signature so the firmware knows that
3288          * this is a soft reset. */
3289         REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_RESET_SIGNATURE,
3290                    BNX2_DRV_RESET_SIGNATURE_MAGIC);
3291
3292         /* Do a dummy read to force the chip to complete all current transaction
3293          * before we issue a reset. */
3294         val = REG_RD(bp, BNX2_MISC_ID);
3295
3296         if (CHIP_NUM(bp) == CHIP_NUM_5709) {
3297                 REG_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
3298                 REG_RD(bp, BNX2_MISC_COMMAND);
3299                 udelay(5);
3300
3301                 val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3302                       BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3303
3304                 pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, val);
3305
3306         } else {
3307                 val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3308                       BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3309                       BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3310
3311                 /* Chip reset. */
3312                 REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
3313
3314                 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
3315                     (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
3316                         current->state = TASK_UNINTERRUPTIBLE;
3317                         schedule_timeout(HZ / 50);
3318                 }
3319
3320                 /* Reset takes approximate 30 usec */
3321                 for (i = 0; i < 10; i++) {
3322                         val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
3323                         if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3324                                     BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
3325                                 break;
3326                         udelay(10);
3327                 }
3328
3329                 if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3330                            BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
3331                         printk(KERN_ERR PFX "Chip reset did not complete\n");
3332                         return -EBUSY;
3333                 }
3334         }
3335
3336         /* Make sure byte swapping is properly configured. */
3337         val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
3338         if (val != 0x01020304) {
3339                 printk(KERN_ERR PFX "Chip not in correct endian mode\n");
3340                 return -ENODEV;
3341         }
3342
3343         /* Wait for the firmware to finish its initialization. */
3344         rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 0);
3345         if (rc)
3346                 return rc;
3347
3348         if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
3349                 /* Adjust the voltage regular to two steps lower.  The default
3350                  * of this register is 0x0000000e. */
3351                 REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
3352
3353                 /* Remove bad rbuf memory from the free pool. */
3354                 rc = bnx2_alloc_bad_rbuf(bp);
3355         }
3356
3357         return rc;
3358 }
3359
3360 static int
3361 bnx2_init_chip(struct bnx2 *bp)
3362 {
3363         u32 val;
3364         int rc;
3365
3366         /* Make sure the interrupt is not active. */
3367         REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
3368
3369         val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
3370               BNX2_DMA_CONFIG_DATA_WORD_SWAP |
3371 #ifdef __BIG_ENDIAN
3372               BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
3373 #endif
3374               BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
3375               DMA_READ_CHANS << 12 |
3376               DMA_WRITE_CHANS << 16;
3377
3378         val |= (0x2 << 20) | (1 << 11);
3379
3380         if ((bp->flags & PCIX_FLAG) && (bp->bus_speed_mhz == 133))
3381                 val |= (1 << 23);
3382
3383         if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
3384             (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & PCIX_FLAG))
3385                 val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
3386
3387         REG_WR(bp, BNX2_DMA_CONFIG, val);
3388
3389         if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
3390                 val = REG_RD(bp, BNX2_TDMA_CONFIG);
3391                 val |= BNX2_TDMA_CONFIG_ONE_DMA;
3392                 REG_WR(bp, BNX2_TDMA_CONFIG, val);
3393         }
3394
3395         if (bp->flags & PCIX_FLAG) {
3396                 u16 val16;
3397
3398                 pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
3399                                      &val16);
3400                 pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
3401                                       val16 & ~PCI_X_CMD_ERO);
3402         }
3403
3404         REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
3405                BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
3406                BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
3407                BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
3408
3409         /* Initialize context mapping and zero out the quick contexts.  The
3410          * context block must have already been enabled. */
3411         if (CHIP_NUM(bp) == CHIP_NUM_5709)
3412                 bnx2_init_5709_context(bp);
3413         else
3414                 bnx2_init_context(bp);
3415
3416         if ((rc = bnx2_init_cpus(bp)) != 0)
3417                 return rc;
3418
3419         bnx2_init_nvram(bp);
3420
3421         bnx2_set_mac_addr(bp);
3422
3423         val = REG_RD(bp, BNX2_MQ_CONFIG);
3424         val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
3425         val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
3426         REG_WR(bp, BNX2_MQ_CONFIG, val);
3427
3428         val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
3429         REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
3430         REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
3431
3432         val = (BCM_PAGE_BITS - 8) << 24;
3433         REG_WR(bp, BNX2_RV2P_CONFIG, val);
3434
3435         /* Configure page size. */
3436         val = REG_RD(bp, BNX2_TBDR_CONFIG);
3437         val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
3438         val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
3439         REG_WR(bp, BNX2_TBDR_CONFIG, val);
3440
3441         val = bp->mac_addr[0] +
3442               (bp->mac_addr[1] << 8) +
3443               (bp->mac_addr[2] << 16) +
3444               bp->mac_addr[3] +
3445               (bp->mac_addr[4] << 8) +
3446               (bp->mac_addr[5] << 16);
3447         REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
3448
3449         /* Program the MTU.  Also include 4 bytes for CRC32. */
3450         val = bp->dev->mtu + ETH_HLEN + 4;
3451         if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
3452                 val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
3453         REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
3454
3455         bp->last_status_idx = 0;
3456         bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
3457
3458         /* Set up how to generate a link change interrupt. */
3459         REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
3460
3461         REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
3462                (u64) bp->status_blk_mapping & 0xffffffff);
3463         REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
3464
3465         REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
3466                (u64) bp->stats_blk_mapping & 0xffffffff);
3467         REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
3468                (u64) bp->stats_blk_mapping >> 32);
3469
3470         REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
3471                (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
3472
3473         REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
3474                (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
3475
3476         REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
3477                (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
3478
3479         REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
3480
3481         REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
3482
3483         REG_WR(bp, BNX2_HC_COM_TICKS,
3484                (bp->com_ticks_int << 16) | bp->com_ticks);
3485
3486         REG_WR(bp, BNX2_HC_CMD_TICKS,
3487                (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
3488
3489         REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks & 0xffff00);
3490         REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
3491
3492         if (CHIP_ID(bp) == CHIP_ID_5706_A1)
3493                 REG_WR(bp, BNX2_HC_CONFIG, BNX2_HC_CONFIG_COLLECT_STATS);
3494         else {
3495                 REG_WR(bp, BNX2_HC_CONFIG, BNX2_HC_CONFIG_RX_TMR_MODE |
3496                        BNX2_HC_CONFIG_TX_TMR_MODE |
3497                        BNX2_HC_CONFIG_COLLECT_STATS);
3498         }
3499
3500         /* Clear internal stats counters. */
3501         REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
3502
3503         REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
3504
3505         if (REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_FEATURE) &
3506             BNX2_PORT_FEATURE_ASF_ENABLED)
3507                 bp->flags |= ASF_ENABLE_FLAG;
3508
3509         /* Initialize the receive filter. */
3510         bnx2_set_rx_mode(bp->dev);
3511
3512         rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
3513                           0);
3514
3515         REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, 0x5ffffff);
3516         REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
3517
3518         udelay(20);
3519
3520         bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND);
3521
3522         return rc;
3523 }
3524
3525 static void
3526 bnx2_init_tx_context(struct bnx2 *bp, u32 cid)
3527 {
3528         u32 val, offset0, offset1, offset2, offset3;
3529
3530         if (CHIP_NUM(bp) == CHIP_NUM_5709) {
3531                 offset0 = BNX2_L2CTX_TYPE_XI;
3532                 offset1 = BNX2_L2CTX_CMD_TYPE_XI;
3533                 offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
3534                 offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
3535         } else {
3536                 offset0 = BNX2_L2CTX_TYPE;
3537                 offset1 = BNX2_L2CTX_CMD_TYPE;
3538                 offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
3539                 offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
3540         }
3541         val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
3542         CTX_WR(bp, GET_CID_ADDR(cid), offset0, val);
3543
3544         val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
3545         CTX_WR(bp, GET_CID_ADDR(cid), offset1, val);
3546
3547         val = (u64) bp->tx_desc_mapping >> 32;
3548         CTX_WR(bp, GET_CID_ADDR(cid), offset2, val);
3549
3550         val = (u64) bp->tx_desc_mapping & 0xffffffff;
3551         CTX_WR(bp, GET_CID_ADDR(cid), offset3, val);
3552 }
3553
3554 static void
3555 bnx2_init_tx_ring(struct bnx2 *bp)
3556 {
3557         struct tx_bd *txbd;
3558         u32 cid;
3559
3560         bp->tx_wake_thresh = bp->tx_ring_size / 2;
3561
3562         txbd = &bp->tx_desc_ring[MAX_TX_DESC_CNT];
3563
3564         txbd->tx_bd_haddr_hi = (u64) bp->tx_desc_mapping >> 32;
3565         txbd->tx_bd_haddr_lo = (u64) bp->tx_desc_mapping & 0xffffffff;
3566
3567         bp->tx_prod = 0;
3568         bp->tx_cons = 0;
3569         bp->hw_tx_cons = 0;
3570         bp->tx_prod_bseq = 0;
3571
3572         cid = TX_CID;
3573         bp->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
3574         bp->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
3575
3576         bnx2_init_tx_context(bp, cid);
3577 }
3578
3579 static void
3580 bnx2_init_rx_ring(struct bnx2 *bp)
3581 {
3582         struct rx_bd *rxbd;
3583         int i;
3584         u16 prod, ring_prod;
3585         u32 val;
3586
3587         /* 8 for CRC and VLAN */
3588         bp->rx_buf_use_size = bp->dev->mtu + ETH_HLEN + bp->rx_offset + 8;
3589         /* hw alignment */
3590         bp->rx_buf_size = bp->rx_buf_use_size + BNX2_RX_ALIGN;
3591
3592         ring_prod = prod = bp->rx_prod = 0;
3593         bp->rx_cons = 0;
3594         bp->hw_rx_cons = 0;
3595         bp->rx_prod_bseq = 0;
3596
3597         for (i = 0; i < bp->rx_max_ring; i++) {
3598                 int j;
3599
3600                 rxbd = &bp->rx_desc_ring[i][0];
3601                 for (j = 0; j < MAX_RX_DESC_CNT; j++, rxbd++) {
3602                         rxbd->rx_bd_len = bp->rx_buf_use_size;
3603                         rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
3604                 }
3605                 if (i == (bp->rx_max_ring - 1))
3606                         j = 0;
3607                 else
3608                         j = i + 1;
3609                 rxbd->rx_bd_haddr_hi = (u64) bp->rx_desc_mapping[j] >> 32;
3610                 rxbd->rx_bd_haddr_lo = (u64) bp->rx_desc_mapping[j] &
3611                                        0xffffffff;
3612         }
3613
3614         val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
3615         val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
3616         val |= 0x02 << 8;
3617         CTX_WR(bp, GET_CID_ADDR(RX_CID), BNX2_L2CTX_CTX_TYPE, val);
3618
3619         val = (u64) bp->rx_desc_mapping[0] >> 32;
3620         CTX_WR(bp, GET_CID_ADDR(RX_CID), BNX2_L2CTX_NX_BDHADDR_HI, val);
3621
3622         val = (u64) bp->rx_desc_mapping[0] & 0xffffffff;
3623         CTX_WR(bp, GET_CID_ADDR(RX_CID), BNX2_L2CTX_NX_BDHADDR_LO, val);
3624
3625         for (i = 0; i < bp->rx_ring_size; i++) {
3626                 if (bnx2_alloc_rx_skb(bp, ring_prod) < 0) {
3627                         break;
3628                 }
3629                 prod = NEXT_RX_BD(prod);
3630                 ring_prod = RX_RING_IDX(prod);
3631         }
3632         bp->rx_prod = prod;
3633
3634         REG_WR16(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BDIDX, prod);
3635
3636         REG_WR(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BSEQ, bp->rx_prod_bseq);
3637 }
3638
3639 static void
3640 bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
3641 {
3642         u32 num_rings, max;
3643
3644         bp->rx_ring_size = size;
3645         num_rings = 1;
3646         while (size > MAX_RX_DESC_CNT) {
3647                 size -= MAX_RX_DESC_CNT;
3648                 num_rings++;
3649         }
3650         /* round to next power of 2 */
3651         max = MAX_RX_RINGS;
3652         while ((max & num_rings) == 0)
3653                 max >>= 1;
3654
3655         if (num_rings != max)
3656                 max <<= 1;
3657
3658         bp->rx_max_ring = max;
3659         bp->rx_max_ring_idx = (bp->rx_max_ring * RX_DESC_CNT) - 1;
3660 }
3661
3662 static void
3663 bnx2_free_tx_skbs(struct bnx2 *bp)
3664 {
3665         int i;
3666
3667         if (bp->tx_buf_ring == NULL)
3668                 return;
3669
3670         for (i = 0; i < TX_DESC_CNT; ) {
3671                 struct sw_bd *tx_buf = &bp->tx_buf_ring[i];
3672                 struct sk_buff *skb = tx_buf->skb;
3673                 int j, last;
3674
3675                 if (skb == NULL) {
3676                         i++;
3677                         continue;
3678                 }
3679
3680                 pci_unmap_single(bp->pdev, pci_unmap_addr(tx_buf, mapping),
3681                         skb_headlen(skb), PCI_DMA_TODEVICE);
3682
3683                 tx_buf->skb = NULL;
3684
3685                 last = skb_shinfo(skb)->nr_frags;
3686                 for (j = 0; j < last; j++) {
3687                         tx_buf = &bp->tx_buf_ring[i + j + 1];
3688                         pci_unmap_page(bp->pdev,
3689                                 pci_unmap_addr(tx_buf, mapping),
3690                                 skb_shinfo(skb)->frags[j].size,
3691                                 PCI_DMA_TODEVICE);
3692                 }
3693                 dev_kfree_skb(skb);
3694                 i += j + 1;
3695         }
3696
3697 }
3698
3699 static void
3700 bnx2_free_rx_skbs(struct bnx2 *bp)
3701 {
3702         int i;
3703
3704         if (bp->rx_buf_ring == NULL)
3705                 return;
3706
3707         for (i = 0; i < bp->rx_max_ring_idx; i++) {
3708                 struct sw_bd *rx_buf = &bp->rx_buf_ring[i];
3709                 struct sk_buff *skb = rx_buf->skb;
3710
3711                 if (skb == NULL)
3712                         continue;
3713
3714                 pci_unmap_single(bp->pdev, pci_unmap_addr(rx_buf, mapping),
3715                         bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
3716
3717                 rx_buf->skb = NULL;
3718
3719                 dev_kfree_skb(skb);
3720         }
3721 }
3722
3723 static void
3724 bnx2_free_skbs(struct bnx2 *bp)
3725 {
3726         bnx2_free_tx_skbs(bp);
3727         bnx2_free_rx_skbs(bp);
3728 }
3729
3730 static int
3731 bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
3732 {
3733         int rc;
3734
3735         rc = bnx2_reset_chip(bp, reset_code);
3736         bnx2_free_skbs(bp);
3737         if (rc)
3738                 return rc;
3739
3740         if ((rc = bnx2_init_chip(bp)) != 0)
3741                 return rc;
3742
3743         bnx2_init_tx_ring(bp);
3744         bnx2_init_rx_ring(bp);
3745         return 0;
3746 }
3747
3748 static int
3749 bnx2_init_nic(struct bnx2 *bp)
3750 {
3751         int rc;
3752
3753         if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
3754                 return rc;
3755
3756         spin_lock_bh(&bp->phy_lock);
3757         bnx2_init_phy(bp);
3758         spin_unlock_bh(&bp->phy_lock);
3759         bnx2_set_link(bp);
3760         return 0;
3761 }
3762
3763 static int
3764 bnx2_test_registers(struct bnx2 *bp)
3765 {
3766         int ret;
3767         int i;
3768         static const struct {
3769                 u16   offset;
3770                 u16   flags;
3771                 u32   rw_mask;
3772                 u32   ro_mask;
3773         } reg_tbl[] = {
3774                 { 0x006c, 0, 0x00000000, 0x0000003f },
3775                 { 0x0090, 0, 0xffffffff, 0x00000000 },
3776                 { 0x0094, 0, 0x00000000, 0x00000000 },
3777
3778                 { 0x0404, 0, 0x00003f00, 0x00000000 },
3779                 { 0x0418, 0, 0x00000000, 0xffffffff },
3780                 { 0x041c, 0, 0x00000000, 0xffffffff },
3781                 { 0x0420, 0, 0x00000000, 0x80ffffff },
3782                 { 0x0424, 0, 0x00000000, 0x00000000 },
3783                 { 0x0428, 0, 0x00000000, 0x00000001 },
3784                 { 0x0450, 0, 0x00000000, 0x0000ffff },
3785                 { 0x0454, 0, 0x00000000, 0xffffffff },
3786                 { 0x0458, 0, 0x00000000, 0xffffffff },
3787
3788                 { 0x0808, 0, 0x00000000, 0xffffffff },
3789                 { 0x0854, 0, 0x00000000, 0xffffffff },
3790                 { 0x0868, 0, 0x00000000, 0x77777777 },
3791                 { 0x086c, 0, 0x00000000, 0x77777777 },
3792                 { 0x0870, 0, 0x00000000, 0x77777777 },
3793                 { 0x0874, 0, 0x00000000, 0x77777777 },
3794
3795                 { 0x0c00, 0, 0x00000000, 0x00000001 },
3796                 { 0x0c04, 0, 0x00000000, 0x03ff0001 },
3797                 { 0x0c08, 0, 0x0f0ff073, 0x00000000 },
3798
3799                 { 0x1000, 0, 0x00000000, 0x00000001 },
3800                 { 0x1004, 0, 0x00000000, 0x000f0001 },
3801
3802                 { 0x1408, 0, 0x01c00800, 0x00000000 },
3803                 { 0x149c, 0, 0x8000ffff, 0x00000000 },
3804                 { 0x14a8, 0, 0x00000000, 0x000001ff },
3805                 { 0x14ac, 0, 0x0fffffff, 0x10000000 },
3806                 { 0x14b0, 0, 0x00000002, 0x00000001 },
3807                 { 0x14b8, 0, 0x00000000, 0x00000000 },
3808                 { 0x14c0, 0, 0x00000000, 0x00000009 },
3809                 { 0x14c4, 0, 0x00003fff, 0x00000000 },
3810                 { 0x14cc, 0, 0x00000000, 0x00000001 },
3811                 { 0x14d0, 0, 0xffffffff, 0x00000000 },
3812
3813                 { 0x1800, 0, 0x00000000, 0x00000001 },
3814                 { 0x1804, 0, 0x00000000, 0x00000003 },
3815
3816                 { 0x2800, 0, 0x00000000, 0x00000001 },
3817                 { 0x2804, 0, 0x00000000, 0x00003f01 },
3818                 { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
3819                 { 0x2810, 0, 0xffff0000, 0x00000000 },
3820                 { 0x2814, 0, 0xffff0000, 0x00000000 },
3821                 { 0x2818, 0, 0xffff0000, 0x00000000 },
3822                 { 0x281c, 0, 0xffff0000, 0x00000000 },
3823                 { 0x2834, 0, 0xffffffff, 0x00000000 },
3824                 { 0x2840, 0, 0x00000000, 0xffffffff },
3825                 { 0x2844, 0, 0x00000000, 0xffffffff },
3826                 { 0x2848, 0, 0xffffffff, 0x00000000 },
3827                 { 0x284c, 0, 0xf800f800, 0x07ff07ff },
3828
3829                 { 0x2c00, 0, 0x00000000, 0x00000011 },
3830                 { 0x2c04, 0, 0x00000000, 0x00030007 },
3831
3832                 { 0x3c00, 0, 0x00000000, 0x00000001 },
3833                 { 0x3c04, 0, 0x00000000, 0x00070000 },
3834                 { 0x3c08, 0, 0x00007f71, 0x07f00000 },
3835                 { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
3836                 { 0x3c10, 0, 0xffffffff, 0x00000000 },
3837                 { 0x3c14, 0, 0x00000000, 0xffffffff },
3838                 { 0x3c18, 0, 0x00000000, 0xffffffff },
3839                 { 0x3c1c, 0, 0xfffff000, 0x00000000 },
3840                 { 0x3c20, 0, 0xffffff00, 0x00000000 },
3841
3842                 { 0x5004, 0, 0x00000000, 0x0000007f },
3843                 { 0x5008, 0, 0x0f0007ff, 0x00000000 },
3844                 { 0x500c, 0, 0xf800f800, 0x07ff07ff },
3845
3846                 { 0x5c00, 0, 0x00000000, 0x00000001 },
3847                 { 0x5c04, 0, 0x00000000, 0x0003000f },
3848                 { 0x5c08, 0, 0x00000003, 0x00000000 },
3849                 { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
3850                 { 0x5c10, 0, 0x00000000, 0xffffffff },
3851                 { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
3852                 { 0x5c84, 0, 0x00000000, 0x0000f333 },
3853                 { 0x5c88, 0, 0x00000000, 0x00077373 },
3854                 { 0x5c8c, 0, 0x00000000, 0x0007f737 },
3855
3856                 { 0x6808, 0, 0x0000ff7f, 0x00000000 },
3857                 { 0x680c, 0, 0xffffffff, 0x00000000 },
3858                 { 0x6810, 0, 0xffffffff, 0x00000000 },
3859                 { 0x6814, 0, 0xffffffff, 0x00000000 },
3860                 { 0x6818, 0, 0xffffffff, 0x00000000 },
3861                 { 0x681c, 0, 0xffffffff, 0x00000000 },
3862                 { 0x6820, 0, 0x00ff00ff, 0x00000000 },
3863                 { 0x6824, 0, 0x00ff00ff, 0x00000000 },
3864                 { 0x6828, 0, 0x00ff00ff, 0x00000000 },
3865                 { 0x682c, 0, 0x03ff03ff, 0x00000000 },
3866                 { 0x6830, 0, 0x03ff03ff, 0x00000000 },
3867                 { 0x6834, 0, 0x03ff03ff, 0x00000000 },
3868                 { 0x6838, 0, 0x03ff03ff, 0x00000000 },
3869                 { 0x683c, 0, 0x0000ffff, 0x00000000 },
3870                 { 0x6840, 0, 0x00000ff0, 0x00000000 },
3871                 { 0x6844, 0, 0x00ffff00, 0x00000000 },
3872                 { 0x684c, 0, 0xffffffff, 0x00000000 },
3873                 { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
3874                 { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
3875                 { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
3876                 { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
3877                 { 0x6908, 0, 0x00000000, 0x0001ff0f },
3878                 { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
3879
3880                 { 0xffff, 0, 0x00000000, 0x00000000 },
3881         };
3882
3883         ret = 0;
3884         for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
3885                 u32 offset, rw_mask, ro_mask, save_val, val;
3886
3887                 offset = (u32) reg_tbl[i].offset;
3888                 rw_mask = reg_tbl[i].rw_mask;
3889                 ro_mask = reg_tbl[i].ro_mask;
3890
3891                 save_val = readl(bp->regview + offset);
3892
3893                 writel(0, bp->regview + offset);
3894
3895                 val = readl(bp->regview + offset);
3896                 if ((val & rw_mask) != 0) {
3897                         goto reg_test_err;
3898                 }
3899
3900                 if ((val & ro_mask) != (save_val & ro_mask)) {
3901                         goto reg_test_err;
3902                 }
3903
3904                 writel(0xffffffff, bp->regview + offset);
3905
3906                 val = readl(bp->regview + offset);
3907                 if ((val & rw_mask) != rw_mask) {
3908                         goto reg_test_err;
3909                 }
3910
3911                 if ((val & ro_mask) != (save_val & ro_mask)) {
3912                         goto reg_test_err;
3913                 }
3914
3915                 writel(save_val, bp->regview + offset);
3916                 continue;
3917
3918 reg_test_err:
3919                 writel(save_val, bp->regview + offset);
3920                 ret = -ENODEV;
3921                 break;
3922         }
3923         return ret;
3924 }
3925
3926 static int
3927 bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
3928 {
3929         static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
3930                 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
3931         int i;
3932
3933         for (i = 0; i < sizeof(test_pattern) / 4; i++) {
3934                 u32 offset;
3935
3936                 for (offset = 0; offset < size; offset += 4) {
3937
3938                         REG_WR_IND(bp, start + offset, test_pattern[i]);
3939
3940                         if (REG_RD_IND(bp, start + offset) !=
3941                                 test_pattern[i]) {
3942                                 return -ENODEV;
3943                         }
3944                 }
3945         }
3946         return 0;
3947 }
3948
3949 static int
3950 bnx2_test_memory(struct bnx2 *bp)
3951 {
3952         int ret = 0;
3953         int i;
3954         static const struct {
3955                 u32   offset;
3956                 u32   len;
3957         } mem_tbl[] = {
3958                 { 0x60000,  0x4000 },
3959                 { 0xa0000,  0x3000 },
3960                 { 0xe0000,  0x4000 },
3961                 { 0x120000, 0x4000 },
3962                 { 0x1a0000, 0x4000 },
3963                 { 0x160000, 0x4000 },
3964                 { 0xffffffff, 0    },
3965         };
3966
3967         for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
3968                 if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
3969                         mem_tbl[i].len)) != 0) {
3970                         return ret;
3971                 }
3972         }
3973
3974         return ret;
3975 }
3976
3977 #define BNX2_MAC_LOOPBACK       0
3978 #define BNX2_PHY_LOOPBACK       1
3979
3980 static int
3981 bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
3982 {
3983         unsigned int pkt_size, num_pkts, i;
3984         struct sk_buff *skb, *rx_skb;
3985         unsigned char *packet;
3986         u16 rx_start_idx, rx_idx;
3987         dma_addr_t map;
3988         struct tx_bd *txbd;
3989         struct sw_bd *rx_buf;
3990         struct l2_fhdr *rx_hdr;
3991         int ret = -ENODEV;
3992
3993         if (loopback_mode == BNX2_MAC_LOOPBACK) {
3994                 bp->loopback = MAC_LOOPBACK;
3995                 bnx2_set_mac_loopback(bp);
3996         }
3997         else if (loopback_mode == BNX2_PHY_LOOPBACK) {
3998                 bp->loopback = PHY_LOOPBACK;
3999                 bnx2_set_phy_loopback(bp);
4000         }
4001         else
4002                 return -EINVAL;
4003
4004         pkt_size = 1514;
4005         skb = netdev_alloc_skb(bp->dev, pkt_size);
4006         if (!skb)
4007                 return -ENOMEM;
4008         packet = skb_put(skb, pkt_size);
4009         memcpy(packet, bp->dev->dev_addr, 6);
4010         memset(packet + 6, 0x0, 8);
4011         for (i = 14; i < pkt_size; i++)
4012                 packet[i] = (unsigned char) (i & 0xff);
4013
4014         map = pci_map_single(bp->pdev, skb->data, pkt_size,
4015                 PCI_DMA_TODEVICE);
4016
4017         REG_WR(bp, BNX2_HC_COMMAND,
4018                bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
4019
4020         REG_RD(bp, BNX2_HC_COMMAND);
4021
4022         udelay(5);
4023         rx_start_idx = bp->status_blk->status_rx_quick_consumer_index0;
4024
4025         num_pkts = 0;
4026
4027         txbd = &bp->tx_desc_ring[TX_RING_IDX(bp->tx_prod)];
4028
4029         txbd->tx_bd_haddr_hi = (u64) map >> 32;
4030         txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
4031         txbd->tx_bd_mss_nbytes = pkt_size;
4032         txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
4033
4034         num_pkts++;
4035         bp->tx_prod = NEXT_TX_BD(bp->tx_prod);
4036         bp->tx_prod_bseq += pkt_size;
4037
4038         REG_WR16(bp, bp->tx_bidx_addr, bp->tx_prod);
4039         REG_WR(bp, bp->tx_bseq_addr, bp->tx_prod_bseq);
4040
4041         udelay(100);
4042
4043         REG_WR(bp, BNX2_HC_COMMAND,
4044                bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
4045
4046         REG_RD(bp, BNX2_HC_COMMAND);
4047
4048         udelay(5);
4049
4050         pci_unmap_single(bp->pdev, map, pkt_size, PCI_DMA_TODEVICE);
4051         dev_kfree_skb(skb);
4052
4053         if (bp->status_blk->status_tx_quick_consumer_index0 != bp->tx_prod) {
4054                 goto loopback_test_done;
4055         }
4056
4057         rx_idx = bp->status_blk->status_rx_quick_consumer_index0;
4058         if (rx_idx != rx_start_idx + num_pkts) {
4059                 goto loopback_test_done;
4060         }
4061
4062         rx_buf = &bp->rx_buf_ring[rx_start_idx];
4063         rx_skb = rx_buf->skb;
4064
4065         rx_hdr = (struct l2_fhdr *) rx_skb->data;
4066         skb_reserve(rx_skb, bp->rx_offset);
4067
4068         pci_dma_sync_single_for_cpu(bp->pdev,
4069                 pci_unmap_addr(rx_buf, mapping),
4070                 bp->rx_buf_size, PCI_DMA_FROMDEVICE);
4071
4072         if (rx_hdr->l2_fhdr_status &
4073                 (L2_FHDR_ERRORS_BAD_CRC |
4074                 L2_FHDR_ERRORS_PHY_DECODE |
4075                 L2_FHDR_ERRORS_ALIGNMENT |
4076                 L2_FHDR_ERRORS_TOO_SHORT |
4077                 L2_FHDR_ERRORS_GIANT_FRAME)) {
4078
4079                 goto loopback_test_done;
4080         }
4081
4082         if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
4083                 goto loopback_test_done;
4084         }
4085
4086         for (i = 14; i < pkt_size; i++) {
4087                 if (*(rx_skb->data + i) != (unsigned char) (i & 0xff)) {
4088                         goto loopback_test_done;
4089                 }
4090         }
4091
4092         ret = 0;
4093
4094 loopback_test_done:
4095         bp->loopback = 0;
4096         return ret;
4097 }
4098
4099 #define BNX2_MAC_LOOPBACK_FAILED        1
4100 #define BNX2_PHY_LOOPBACK_FAILED        2
4101 #define BNX2_LOOPBACK_FAILED            (BNX2_MAC_LOOPBACK_FAILED |     \
4102                                          BNX2_PHY_LOOPBACK_FAILED)
4103
4104 static int
4105 bnx2_test_loopback(struct bnx2 *bp)
4106 {
4107         int rc = 0;
4108
4109         if (!netif_running(bp->dev))
4110                 return BNX2_LOOPBACK_FAILED;
4111
4112         bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
4113         spin_lock_bh(&bp->phy_lock);
4114         bnx2_init_phy(bp);
4115         spin_unlock_bh(&bp->phy_lock);
4116         if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
4117                 rc |= BNX2_MAC_LOOPBACK_FAILED;
4118         if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
4119                 rc |= BNX2_PHY_LOOPBACK_FAILED;
4120         return rc;
4121 }
4122
4123 #define NVRAM_SIZE 0x200
4124 #define CRC32_RESIDUAL 0xdebb20e3
4125
4126 static int
4127 bnx2_test_nvram(struct bnx2 *bp)
4128 {
4129         u32 buf[NVRAM_SIZE / 4];
4130         u8 *data = (u8 *) buf;
4131         int rc = 0;
4132         u32 magic, csum;
4133
4134         if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
4135                 goto test_nvram_done;
4136
4137         magic = be32_to_cpu(buf[0]);
4138         if (magic != 0x669955aa) {
4139                 rc = -ENODEV;
4140                 goto test_nvram_done;
4141         }
4142
4143         if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
4144                 goto test_nvram_done;
4145
4146         csum = ether_crc_le(0x100, data);
4147         if (csum != CRC32_RESIDUAL) {
4148                 rc = -ENODEV;
4149                 goto test_nvram_done;
4150         }
4151
4152         csum = ether_crc_le(0x100, data + 0x100);
4153         if (csum != CRC32_RESIDUAL) {
4154                 rc = -ENODEV;
4155         }
4156
4157 test_nvram_done:
4158         return rc;
4159 }
4160
4161 static int
4162 bnx2_test_link(struct bnx2 *bp)
4163 {
4164         u32 bmsr;
4165
4166         spin_lock_bh(&bp->phy_lock);
4167         bnx2_read_phy(bp, MII_BMSR, &bmsr);
4168         bnx2_read_phy(bp, MII_BMSR, &bmsr);
4169         spin_unlock_bh(&bp->phy_lock);
4170
4171         if (bmsr & BMSR_LSTATUS) {
4172                 return 0;
4173         }
4174         return -ENODEV;
4175 }
4176
4177 static int
4178 bnx2_test_intr(struct bnx2 *bp)
4179 {
4180         int i;
4181         u16 status_idx;
4182
4183         if (!netif_running(bp->dev))
4184                 return -ENODEV;
4185
4186         status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
4187
4188         /* This register is not touched during run-time. */
4189         REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
4190         REG_RD(bp, BNX2_HC_COMMAND);
4191
4192         for (i = 0; i < 10; i++) {
4193                 if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
4194                         status_idx) {
4195
4196                         break;
4197                 }
4198
4199                 msleep_interruptible(10);
4200         }
4201         if (i < 10)
4202                 return 0;
4203
4204         return -ENODEV;
4205 }
4206
4207 static void
4208 bnx2_5706_serdes_timer(struct bnx2 *bp)
4209 {
4210         spin_lock(&bp->phy_lock);
4211         if (bp->serdes_an_pending)
4212                 bp->serdes_an_pending--;
4213         else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
4214                 u32 bmcr;
4215
4216                 bp->current_interval = bp->timer_interval;
4217
4218                 bnx2_read_phy(bp, MII_BMCR, &bmcr);
4219
4220                 if (bmcr & BMCR_ANENABLE) {
4221                         u32 phy1, phy2;
4222
4223                         bnx2_write_phy(bp, 0x1c, 0x7c00);
4224                         bnx2_read_phy(bp, 0x1c, &phy1);
4225
4226                         bnx2_write_phy(bp, 0x17, 0x0f01);
4227                         bnx2_read_phy(bp, 0x15, &phy2);
4228                         bnx2_write_phy(bp, 0x17, 0x0f01);
4229                         bnx2_read_phy(bp, 0x15, &phy2);
4230
4231                         if ((phy1 & 0x10) &&    /* SIGNAL DETECT */
4232                                 !(phy2 & 0x20)) {       /* no CONFIG */
4233
4234                                 bmcr &= ~BMCR_ANENABLE;
4235                                 bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
4236                                 bnx2_write_phy(bp, MII_BMCR, bmcr);
4237                                 bp->phy_flags |= PHY_PARALLEL_DETECT_FLAG;
4238                         }
4239                 }
4240         }
4241         else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
4242                  (bp->phy_flags & PHY_PARALLEL_DETECT_FLAG)) {
4243                 u32 phy2;
4244
4245                 bnx2_write_phy(bp, 0x17, 0x0f01);
4246                 bnx2_read_phy(bp, 0x15, &phy2);
4247                 if (phy2 & 0x20) {
4248                         u32 bmcr;
4249
4250                         bnx2_read_phy(bp, MII_BMCR, &bmcr);
4251                         bmcr |= BMCR_ANENABLE;
4252                         bnx2_write_phy(bp, MII_BMCR, bmcr);
4253
4254                         bp->phy_flags &= ~PHY_PARALLEL_DETECT_FLAG;
4255                 }
4256         } else
4257                 bp->current_interval = bp->timer_interval;
4258
4259         spin_unlock(&bp->phy_lock);
4260 }
4261
4262 static void
4263 bnx2_5708_serdes_timer(struct bnx2 *bp)
4264 {
4265         if ((bp->phy_flags & PHY_2_5G_CAPABLE_FLAG) == 0) {
4266                 bp->serdes_an_pending = 0;
4267                 return;
4268         }
4269
4270         spin_lock(&bp->phy_lock);
4271         if (bp->serdes_an_pending)
4272                 bp->serdes_an_pending--;
4273         else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
4274                 u32 bmcr;
4275
4276                 bnx2_read_phy(bp, MII_BMCR, &bmcr);
4277
4278                 if (bmcr & BMCR_ANENABLE) {
4279                         bmcr &= ~BMCR_ANENABLE;
4280                         bmcr |= BMCR_FULLDPLX | BCM5708S_BMCR_FORCE_2500;
4281                         bnx2_write_phy(bp, MII_BMCR, bmcr);
4282                         bp->current_interval = SERDES_FORCED_TIMEOUT;
4283                 } else {
4284                         bmcr &= ~(BMCR_FULLDPLX | BCM5708S_BMCR_FORCE_2500);
4285                         bmcr |= BMCR_ANENABLE;
4286                         bnx2_write_phy(bp, MII_BMCR, bmcr);
4287                         bp->serdes_an_pending = 2;
4288                         bp->current_interval = bp->timer_interval;
4289                 }
4290
4291         } else
4292                 bp->current_interval = bp->timer_interval;
4293
4294         spin_unlock(&bp->phy_lock);
4295 }
4296
4297 static void
4298 bnx2_timer(unsigned long data)
4299 {
4300         struct bnx2 *bp = (struct bnx2 *) data;
4301         u32 msg;
4302
4303         if (!netif_running(bp->dev))
4304                 return;
4305
4306         if (atomic_read(&bp->intr_sem) != 0)
4307                 goto bnx2_restart_timer;
4308
4309         msg = (u32) ++bp->fw_drv_pulse_wr_seq;
4310         REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_PULSE_MB, msg);
4311
4312         bp->stats_blk->stat_FwRxDrop = REG_RD_IND(bp, BNX2_FW_RX_DROP_COUNT);
4313
4314         if (bp->phy_flags & PHY_SERDES_FLAG) {
4315                 if (CHIP_NUM(bp) == CHIP_NUM_5706)
4316                         bnx2_5706_serdes_timer(bp);
4317                 else if (CHIP_NUM(bp) == CHIP_NUM_5708)
4318                         bnx2_5708_serdes_timer(bp);
4319         }
4320
4321 bnx2_restart_timer:
4322         mod_timer(&bp->timer, jiffies + bp->current_interval);
4323 }
4324
4325 /* Called with rtnl_lock */
4326 static int
4327 bnx2_open(struct net_device *dev)
4328 {
4329         struct bnx2 *bp = netdev_priv(dev);
4330         int rc;
4331
4332         bnx2_set_power_state(bp, PCI_D0);
4333         bnx2_disable_int(bp);
4334
4335         rc = bnx2_alloc_mem(bp);
4336         if (rc)
4337                 return rc;
4338
4339         if ((CHIP_ID(bp) != CHIP_ID_5706_A0) &&
4340                 (CHIP_ID(bp) != CHIP_ID_5706_A1) &&
4341                 !disable_msi) {
4342
4343                 if (pci_enable_msi(bp->pdev) == 0) {
4344                         bp->flags |= USING_MSI_FLAG;
4345                         rc = request_irq(bp->pdev->irq, bnx2_msi, 0, dev->name,
4346                                         dev);
4347                 }
4348                 else {
4349                         rc = request_irq(bp->pdev->irq, bnx2_interrupt,
4350                                         IRQF_SHARED, dev->name, dev);
4351                 }
4352         }
4353         else {
4354                 rc = request_irq(bp->pdev->irq, bnx2_interrupt, IRQF_SHARED,
4355                                 dev->name, dev);
4356         }
4357         if (rc) {
4358                 bnx2_free_mem(bp);
4359                 return rc;
4360         }
4361
4362         rc = bnx2_init_nic(bp);
4363
4364         if (rc) {
4365                 free_irq(bp->pdev->irq, dev);
4366                 if (bp->flags & USING_MSI_FLAG) {
4367                         pci_disable_msi(bp->pdev);
4368                         bp->flags &= ~USING_MSI_FLAG;
4369                 }
4370                 bnx2_free_skbs(bp);
4371                 bnx2_free_mem(bp);
4372                 return rc;
4373         }
4374
4375         mod_timer(&bp->timer, jiffies + bp->current_interval);
4376
4377         atomic_set(&bp->intr_sem, 0);
4378
4379         bnx2_enable_int(bp);
4380
4381         if (bp->flags & USING_MSI_FLAG) {
4382                 /* Test MSI to make sure it is working
4383                  * If MSI test fails, go back to INTx mode
4384                  */
4385                 if (bnx2_test_intr(bp) != 0) {
4386                         printk(KERN_WARNING PFX "%s: No interrupt was generated"
4387                                " using MSI, switching to INTx mode. Please"
4388                                " report this failure to the PCI maintainer"
4389                                " and include system chipset information.\n",
4390                                bp->dev->name);
4391
4392                         bnx2_disable_int(bp);
4393                         free_irq(bp->pdev->irq, dev);
4394                         pci_disable_msi(bp->pdev);
4395                         bp->flags &= ~USING_MSI_FLAG;
4396
4397                         rc = bnx2_init_nic(bp);
4398
4399                         if (!rc) {
4400                                 rc = request_irq(bp->pdev->irq, bnx2_interrupt,
4401                                         IRQF_SHARED, dev->name, dev);
4402                         }
4403                         if (rc) {
4404                                 bnx2_free_skbs(bp);
4405                                 bnx2_free_mem(bp);
4406                                 del_timer_sync(&bp->timer);
4407                                 return rc;
4408                         }
4409                         bnx2_enable_int(bp);
4410                 }
4411         }
4412         if (bp->flags & USING_MSI_FLAG) {
4413                 printk(KERN_INFO PFX "%s: using MSI\n", dev->name);
4414         }
4415
4416         netif_start_queue(dev);
4417
4418         return 0;
4419 }
4420
4421 static void
4422 bnx2_reset_task(struct work_struct *work)
4423 {
4424         struct bnx2 *bp = container_of(work, struct bnx2, reset_task);
4425
4426         if (!netif_running(bp->dev))
4427                 return;
4428
4429         bp->in_reset_task = 1;
4430         bnx2_netif_stop(bp);
4431
4432         bnx2_init_nic(bp);
4433
4434         atomic_set(&bp->intr_sem, 1);
4435         bnx2_netif_start(bp);
4436         bp->in_reset_task = 0;
4437 }
4438
4439 static void
4440 bnx2_tx_timeout(struct net_device *dev)
4441 {
4442         struct bnx2 *bp = netdev_priv(dev);
4443
4444         /* This allows the netif to be shutdown gracefully before resetting */
4445         schedule_work(&bp->reset_task);
4446 }
4447
4448 #ifdef BCM_VLAN
4449 /* Called with rtnl_lock */
4450 static void
4451 bnx2_vlan_rx_register(struct net_device *dev, struct vlan_group *vlgrp)
4452 {
4453         struct bnx2 *bp = netdev_priv(dev);
4454
4455         bnx2_netif_stop(bp);
4456
4457         bp->vlgrp = vlgrp;
4458         bnx2_set_rx_mode(dev);
4459
4460         bnx2_netif_start(bp);
4461 }
4462
4463 /* Called with rtnl_lock */
4464 static void
4465 bnx2_vlan_rx_kill_vid(struct net_device *dev, uint16_t vid)
4466 {
4467         struct bnx2 *bp = netdev_priv(dev);
4468
4469         bnx2_netif_stop(bp);
4470         vlan_group_set_device(bp->vlgrp, vid, NULL);
4471         bnx2_set_rx_mode(dev);
4472
4473         bnx2_netif_start(bp);
4474 }
4475 #endif
4476
4477 /* Called with netif_tx_lock.
4478  * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
4479  * netif_wake_queue().
4480  */
4481 static int
4482 bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
4483 {
4484         struct bnx2 *bp = netdev_priv(dev);
4485         dma_addr_t mapping;
4486         struct tx_bd *txbd;
4487         struct sw_bd *tx_buf;
4488         u32 len, vlan_tag_flags, last_frag, mss;
4489         u16 prod, ring_prod;
4490         int i;
4491
4492         if (unlikely(bnx2_tx_avail(bp) < (skb_shinfo(skb)->nr_frags + 1))) {
4493                 netif_stop_queue(dev);
4494                 printk(KERN_ERR PFX "%s: BUG! Tx ring full when queue awake!\n",
4495                         dev->name);
4496
4497                 return NETDEV_TX_BUSY;
4498         }
4499         len = skb_headlen(skb);
4500         prod = bp->tx_prod;
4501         ring_prod = TX_RING_IDX(prod);
4502
4503         vlan_tag_flags = 0;
4504         if (skb->ip_summed == CHECKSUM_PARTIAL) {
4505                 vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
4506         }
4507
4508         if (bp->vlgrp != 0 && vlan_tx_tag_present(skb)) {
4509                 vlan_tag_flags |=
4510                         (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
4511         }
4512         if ((mss = skb_shinfo(skb)->gso_size) &&
4513                 (skb->len > (bp->dev->mtu + ETH_HLEN))) {
4514                 u32 tcp_opt_len, ip_tcp_len;
4515
4516                 if (skb_header_cloned(skb) &&
4517                     pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) {
4518                         dev_kfree_skb(skb);
4519                         return NETDEV_TX_OK;
4520                 }
4521
4522                 tcp_opt_len = ((skb->h.th->doff - 5) * 4);
4523                 vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
4524
4525                 tcp_opt_len = 0;
4526                 if (skb->h.th->doff > 5) {
4527                         tcp_opt_len = (skb->h.th->doff - 5) << 2;
4528                 }
4529                 ip_tcp_len = (skb->nh.iph->ihl << 2) + sizeof(struct tcphdr);
4530
4531                 skb->nh.iph->check = 0;
4532                 skb->nh.iph->tot_len = htons(mss + ip_tcp_len + tcp_opt_len);
4533                 skb->h.th->check =
4534                         ~csum_tcpudp_magic(skb->nh.iph->saddr,
4535                                             skb->nh.iph->daddr,
4536                                             0, IPPROTO_TCP, 0);
4537
4538                 if (tcp_opt_len || (skb->nh.iph->ihl > 5)) {
4539                         vlan_tag_flags |= ((skb->nh.iph->ihl - 5) +
4540                                 (tcp_opt_len >> 2)) << 8;
4541                 }
4542         }
4543         else
4544         {
4545                 mss = 0;
4546         }
4547
4548         mapping = pci_map_single(bp->pdev, skb->data, len, PCI_DMA_TODEVICE);
4549
4550         tx_buf = &bp->tx_buf_ring[ring_prod];
4551         tx_buf->skb = skb;
4552         pci_unmap_addr_set(tx_buf, mapping, mapping);
4553
4554         txbd = &bp->tx_desc_ring[ring_prod];
4555
4556         txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
4557         txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
4558         txbd->tx_bd_mss_nbytes = len | (mss << 16);
4559         txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
4560
4561         last_frag = skb_shinfo(skb)->nr_frags;
4562
4563         for (i = 0; i < last_frag; i++) {
4564                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4565
4566                 prod = NEXT_TX_BD(prod);
4567                 ring_prod = TX_RING_IDX(prod);
4568                 txbd = &bp->tx_desc_ring[ring_prod];
4569
4570                 len = frag->size;
4571                 mapping = pci_map_page(bp->pdev, frag->page, frag->page_offset,
4572                         len, PCI_DMA_TODEVICE);
4573                 pci_unmap_addr_set(&bp->tx_buf_ring[ring_prod],
4574                                 mapping, mapping);
4575
4576                 txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
4577                 txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
4578                 txbd->tx_bd_mss_nbytes = len | (mss << 16);
4579                 txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
4580
4581         }
4582         txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
4583
4584         prod = NEXT_TX_BD(prod);
4585         bp->tx_prod_bseq += skb->len;
4586
4587         REG_WR16(bp, bp->tx_bidx_addr, prod);
4588         REG_WR(bp, bp->tx_bseq_addr, bp->tx_prod_bseq);
4589
4590         mmiowb();
4591
4592         bp->tx_prod = prod;
4593         dev->trans_start = jiffies;
4594
4595         if (unlikely(bnx2_tx_avail(bp) <= MAX_SKB_FRAGS)) {
4596                 netif_stop_queue(dev);
4597                 if (bnx2_tx_avail(bp) > bp->tx_wake_thresh)
4598                         netif_wake_queue(dev);
4599         }
4600
4601         return NETDEV_TX_OK;
4602 }
4603
4604 /* Called with rtnl_lock */
4605 static int
4606 bnx2_close(struct net_device *dev)
4607 {
4608         struct bnx2 *bp = netdev_priv(dev);
4609         u32 reset_code;
4610
4611         /* Calling flush_scheduled_work() may deadlock because
4612          * linkwatch_event() may be on the workqueue and it will try to get
4613          * the rtnl_lock which we are holding.
4614          */
4615         while (bp->in_reset_task)
4616                 msleep(1);
4617
4618         bnx2_netif_stop(bp);
4619         del_timer_sync(&bp->timer);
4620         if (bp->flags & NO_WOL_FLAG)
4621                 reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
4622         else if (bp->wol)
4623                 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
4624         else
4625                 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
4626         bnx2_reset_chip(bp, reset_code);
4627         free_irq(bp->pdev->irq, dev);
4628         if (bp->flags & USING_MSI_FLAG) {
4629                 pci_disable_msi(bp->pdev);
4630                 bp->flags &= ~USING_MSI_FLAG;
4631         }
4632         bnx2_free_skbs(bp);
4633         bnx2_free_mem(bp);
4634         bp->link_up = 0;
4635         netif_carrier_off(bp->dev);
4636         bnx2_set_power_state(bp, PCI_D3hot);
4637         return 0;
4638 }
4639
4640 #define GET_NET_STATS64(ctr)                                    \
4641         (unsigned long) ((unsigned long) (ctr##_hi) << 32) +    \
4642         (unsigned long) (ctr##_lo)
4643
4644 #define GET_NET_STATS32(ctr)            \
4645         (ctr##_lo)
4646
4647 #if (BITS_PER_LONG == 64)
4648 #define GET_NET_STATS   GET_NET_STATS64
4649 #else
4650 #define GET_NET_STATS   GET_NET_STATS32
4651 #endif
4652
4653 static struct net_device_stats *
4654 bnx2_get_stats(struct net_device *dev)
4655 {
4656         struct bnx2 *bp = netdev_priv(dev);
4657         struct statistics_block *stats_blk = bp->stats_blk;
4658         struct net_device_stats *net_stats = &bp->net_stats;
4659
4660         if (bp->stats_blk == NULL) {
4661                 return net_stats;
4662         }
4663         net_stats->rx_packets =
4664                 GET_NET_STATS(stats_blk->stat_IfHCInUcastPkts) +
4665                 GET_NET_STATS(stats_blk->stat_IfHCInMulticastPkts) +
4666                 GET_NET_STATS(stats_blk->stat_IfHCInBroadcastPkts);
4667
4668         net_stats->tx_packets =
4669                 GET_NET_STATS(stats_blk->stat_IfHCOutUcastPkts) +
4670                 GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts) +
4671                 GET_NET_STATS(stats_blk->stat_IfHCOutBroadcastPkts);
4672
4673         net_stats->rx_bytes =
4674                 GET_NET_STATS(stats_blk->stat_IfHCInOctets);
4675
4676         net_stats->tx_bytes =
4677                 GET_NET_STATS(stats_blk->stat_IfHCOutOctets);
4678
4679         net_stats->multicast =
4680                 GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts);
4681
4682         net_stats->collisions =
4683                 (unsigned long) stats_blk->stat_EtherStatsCollisions;
4684
4685         net_stats->rx_length_errors =
4686                 (unsigned long) (stats_blk->stat_EtherStatsUndersizePkts +
4687                 stats_blk->stat_EtherStatsOverrsizePkts);
4688
4689         net_stats->rx_over_errors =
4690                 (unsigned long) stats_blk->stat_IfInMBUFDiscards;
4691
4692         net_stats->rx_frame_errors =
4693                 (unsigned long) stats_blk->stat_Dot3StatsAlignmentErrors;
4694
4695         net_stats->rx_crc_errors =
4696                 (unsigned long) stats_blk->stat_Dot3StatsFCSErrors;
4697
4698         net_stats->rx_errors = net_stats->rx_length_errors +
4699                 net_stats->rx_over_errors + net_stats->rx_frame_errors +
4700                 net_stats->rx_crc_errors;
4701
4702         net_stats->tx_aborted_errors =
4703                 (unsigned long) (stats_blk->stat_Dot3StatsExcessiveCollisions +
4704                 stats_blk->stat_Dot3StatsLateCollisions);
4705
4706         if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
4707             (CHIP_ID(bp) == CHIP_ID_5708_A0))
4708                 net_stats->tx_carrier_errors = 0;
4709         else {
4710                 net_stats->tx_carrier_errors =
4711                         (unsigned long)
4712                         stats_blk->stat_Dot3StatsCarrierSenseErrors;
4713         }
4714
4715         net_stats->tx_errors =
4716                 (unsigned long)
4717                 stats_blk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors
4718                 +
4719                 net_stats->tx_aborted_errors +
4720                 net_stats->tx_carrier_errors;
4721
4722         net_stats->rx_missed_errors =
4723                 (unsigned long) (stats_blk->stat_IfInMBUFDiscards +
4724                 stats_blk->stat_FwRxDrop);
4725
4726         return net_stats;
4727 }
4728
4729 /* All ethtool functions called with rtnl_lock */
4730
4731 static int
4732 bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4733 {
4734         struct bnx2 *bp = netdev_priv(dev);
4735
4736         cmd->supported = SUPPORTED_Autoneg;
4737         if (bp->phy_flags & PHY_SERDES_FLAG) {
4738                 cmd->supported |= SUPPORTED_1000baseT_Full |
4739                         SUPPORTED_FIBRE;
4740
4741                 cmd->port = PORT_FIBRE;
4742         }
4743         else {
4744                 cmd->supported |= SUPPORTED_10baseT_Half |
4745                         SUPPORTED_10baseT_Full |
4746                         SUPPORTED_100baseT_Half |
4747                         SUPPORTED_100baseT_Full |
4748                         SUPPORTED_1000baseT_Full |
4749                         SUPPORTED_TP;
4750
4751                 cmd->port = PORT_TP;
4752         }
4753
4754         cmd->advertising = bp->advertising;
4755
4756         if (bp->autoneg & AUTONEG_SPEED) {
4757                 cmd->autoneg = AUTONEG_ENABLE;
4758         }
4759         else {
4760                 cmd->autoneg = AUTONEG_DISABLE;
4761         }
4762
4763         if (netif_carrier_ok(dev)) {
4764                 cmd->speed = bp->line_speed;
4765                 cmd->duplex = bp->duplex;
4766         }
4767         else {
4768                 cmd->speed = -1;
4769                 cmd->duplex = -1;
4770         }
4771
4772         cmd->transceiver = XCVR_INTERNAL;
4773         cmd->phy_address = bp->phy_addr;
4774
4775         return 0;
4776 }
4777
4778 static int
4779 bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4780 {
4781         struct bnx2 *bp = netdev_priv(dev);
4782         u8 autoneg = bp->autoneg;
4783         u8 req_duplex = bp->req_duplex;
4784         u16 req_line_speed = bp->req_line_speed;
4785         u32 advertising = bp->advertising;
4786
4787         if (cmd->autoneg == AUTONEG_ENABLE) {
4788                 autoneg |= AUTONEG_SPEED;
4789
4790                 cmd->advertising &= ETHTOOL_ALL_COPPER_SPEED;
4791
4792                 /* allow advertising 1 speed */
4793                 if ((cmd->advertising == ADVERTISED_10baseT_Half) ||
4794                         (cmd->advertising == ADVERTISED_10baseT_Full) ||
4795                         (cmd->advertising == ADVERTISED_100baseT_Half) ||
4796                         (cmd->advertising == ADVERTISED_100baseT_Full)) {
4797
4798                         if (bp->phy_flags & PHY_SERDES_FLAG)
4799                                 return -EINVAL;
4800
4801                         advertising = cmd->advertising;
4802
4803                 }
4804                 else if (cmd->advertising == ADVERTISED_1000baseT_Full) {
4805                         advertising = cmd->advertising;
4806                 }
4807                 else if (cmd->advertising == ADVERTISED_1000baseT_Half) {
4808                         return -EINVAL;
4809                 }
4810                 else {
4811                         if (bp->phy_flags & PHY_SERDES_FLAG) {
4812                                 advertising = ETHTOOL_ALL_FIBRE_SPEED;
4813                         }
4814                         else {
4815                                 advertising = ETHTOOL_ALL_COPPER_SPEED;
4816                         }
4817                 }
4818                 advertising |= ADVERTISED_Autoneg;
4819         }
4820         else {
4821                 if (bp->phy_flags & PHY_SERDES_FLAG) {
4822                         if ((cmd->speed != SPEED_1000 &&
4823                              cmd->speed != SPEED_2500) ||
4824                             (cmd->duplex != DUPLEX_FULL))
4825                                 return -EINVAL;
4826
4827                         if (cmd->speed == SPEED_2500 &&
4828                             !(bp->phy_flags & PHY_2_5G_CAPABLE_FLAG))
4829                                 return -EINVAL;
4830                 }
4831                 else if (cmd->speed == SPEED_1000) {
4832                         return -EINVAL;
4833                 }
4834                 autoneg &= ~AUTONEG_SPEED;
4835                 req_line_speed = cmd->speed;
4836                 req_duplex = cmd->duplex;
4837                 advertising = 0;
4838         }
4839
4840         bp->autoneg = autoneg;
4841         bp->advertising = advertising;
4842         bp->req_line_speed = req_line_speed;
4843         bp->req_duplex = req_duplex;
4844
4845         spin_lock_bh(&bp->phy_lock);
4846
4847         bnx2_setup_phy(bp);
4848
4849         spin_unlock_bh(&bp->phy_lock);
4850
4851         return 0;
4852 }
4853
4854 static void
4855 bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4856 {
4857         struct bnx2 *bp = netdev_priv(dev);
4858
4859         strcpy(info->driver, DRV_MODULE_NAME);
4860         strcpy(info->version, DRV_MODULE_VERSION);
4861         strcpy(info->bus_info, pci_name(bp->pdev));
4862         info->fw_version[0] = ((bp->fw_ver & 0xff000000) >> 24) + '0';
4863         info->fw_version[2] = ((bp->fw_ver & 0xff0000) >> 16) + '0';
4864         info->fw_version[4] = ((bp->fw_ver & 0xff00) >> 8) + '0';
4865         info->fw_version[1] = info->fw_version[3] = '.';
4866         info->fw_version[5] = 0;
4867 }
4868
4869 #define BNX2_REGDUMP_LEN                (32 * 1024)
4870
4871 static int
4872 bnx2_get_regs_len(struct net_device *dev)
4873 {
4874         return BNX2_REGDUMP_LEN;
4875 }
4876
4877 static void
4878 bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
4879 {
4880         u32 *p = _p, i, offset;
4881         u8 *orig_p = _p;
4882         struct bnx2 *bp = netdev_priv(dev);
4883         u32 reg_boundaries[] = { 0x0000, 0x0098, 0x0400, 0x045c,
4884                                  0x0800, 0x0880, 0x0c00, 0x0c10,
4885                                  0x0c30, 0x0d08, 0x1000, 0x101c,
4886                                  0x1040, 0x1048, 0x1080, 0x10a4,
4887                                  0x1400, 0x1490, 0x1498, 0x14f0,
4888                                  0x1500, 0x155c, 0x1580, 0x15dc,
4889                                  0x1600, 0x1658, 0x1680, 0x16d8,
4890                                  0x1800, 0x1820, 0x1840, 0x1854,
4891                                  0x1880, 0x1894, 0x1900, 0x1984,
4892                                  0x1c00, 0x1c0c, 0x1c40, 0x1c54,
4893                                  0x1c80, 0x1c94, 0x1d00, 0x1d84,
4894                                  0x2000, 0x2030, 0x23c0, 0x2400,
4895                                  0x2800, 0x2820, 0x2830, 0x2850,
4896                                  0x2b40, 0x2c10, 0x2fc0, 0x3058,
4897                                  0x3c00, 0x3c94, 0x4000, 0x4010,
4898                                  0x4080, 0x4090, 0x43c0, 0x4458,
4899                                  0x4c00, 0x4c18, 0x4c40, 0x4c54,
4900                                  0x4fc0, 0x5010, 0x53c0, 0x5444,
4901                                  0x5c00, 0x5c18, 0x5c80, 0x5c90,
4902                                  0x5fc0, 0x6000, 0x6400, 0x6428,
4903                                  0x6800, 0x6848, 0x684c, 0x6860,
4904                                  0x6888, 0x6910, 0x8000 };
4905
4906         regs->version = 0;
4907
4908         memset(p, 0, BNX2_REGDUMP_LEN);
4909
4910         if (!netif_running(bp->dev))
4911                 return;
4912
4913         i = 0;
4914         offset = reg_boundaries[0];
4915         p += offset;
4916         while (offset < BNX2_REGDUMP_LEN) {
4917                 *p++ = REG_RD(bp, offset);
4918                 offset += 4;
4919                 if (offset == reg_boundaries[i + 1]) {
4920                         offset = reg_boundaries[i + 2];
4921                         p = (u32 *) (orig_p + offset);
4922                         i += 2;
4923                 }
4924         }
4925 }
4926
4927 static void
4928 bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
4929 {
4930         struct bnx2 *bp = netdev_priv(dev);
4931
4932         if (bp->flags & NO_WOL_FLAG) {
4933                 wol->supported = 0;
4934                 wol->wolopts = 0;
4935         }
4936         else {
4937                 wol->supported = WAKE_MAGIC;
4938                 if (bp->wol)
4939                         wol->wolopts = WAKE_MAGIC;
4940                 else
4941                         wol->wolopts = 0;
4942         }
4943         memset(&wol->sopass, 0, sizeof(wol->sopass));
4944 }
4945
4946 static int
4947 bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
4948 {
4949         struct bnx2 *bp = netdev_priv(dev);
4950
4951         if (wol->wolopts & ~WAKE_MAGIC)
4952                 return -EINVAL;
4953
4954         if (wol->wolopts & WAKE_MAGIC) {
4955                 if (bp->flags & NO_WOL_FLAG)
4956                         return -EINVAL;
4957
4958                 bp->wol = 1;
4959         }
4960         else {
4961                 bp->wol = 0;
4962         }
4963         return 0;
4964 }
4965
4966 static int
4967 bnx2_nway_reset(struct net_device *dev)
4968 {
4969         struct bnx2 *bp = netdev_priv(dev);
4970         u32 bmcr;
4971
4972         if (!(bp->autoneg & AUTONEG_SPEED)) {
4973                 return -EINVAL;
4974         }
4975
4976         spin_lock_bh(&bp->phy_lock);
4977
4978         /* Force a link down visible on the other side */
4979         if (bp->phy_flags & PHY_SERDES_FLAG) {
4980                 bnx2_write_phy(bp, MII_BMCR, BMCR_LOOPBACK);
4981                 spin_unlock_bh(&bp->phy_lock);
4982
4983                 msleep(20);
4984
4985                 spin_lock_bh(&bp->phy_lock);
4986
4987                 bp->current_interval = SERDES_AN_TIMEOUT;
4988                 bp->serdes_an_pending = 1;
4989                 mod_timer(&bp->timer, jiffies + bp->current_interval);
4990         }
4991
4992         bnx2_read_phy(bp, MII_BMCR, &bmcr);
4993         bmcr &= ~BMCR_LOOPBACK;
4994         bnx2_write_phy(bp, MII_BMCR, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
4995
4996         spin_unlock_bh(&bp->phy_lock);
4997
4998         return 0;
4999 }
5000
5001 static int
5002 bnx2_get_eeprom_len(struct net_device *dev)
5003 {
5004         struct bnx2 *bp = netdev_priv(dev);
5005
5006         if (bp->flash_info == NULL)
5007                 return 0;
5008
5009         return (int) bp->flash_size;
5010 }
5011
5012 static int
5013 bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
5014                 u8 *eebuf)
5015 {
5016         struct bnx2 *bp = netdev_priv(dev);
5017         int rc;
5018
5019         /* parameters already validated in ethtool_get_eeprom */
5020
5021         rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
5022
5023         return rc;
5024 }
5025
5026 static int
5027 bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
5028                 u8 *eebuf)
5029 {
5030         struct bnx2 *bp = netdev_priv(dev);
5031         int rc;
5032
5033         /* parameters already validated in ethtool_set_eeprom */
5034
5035         rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
5036
5037         return rc;
5038 }
5039
5040 static int
5041 bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
5042 {
5043         struct bnx2 *bp = netdev_priv(dev);
5044
5045         memset(coal, 0, sizeof(struct ethtool_coalesce));
5046
5047         coal->rx_coalesce_usecs = bp->rx_ticks;
5048         coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
5049         coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
5050         coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
5051
5052         coal->tx_coalesce_usecs = bp->tx_ticks;
5053         coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
5054         coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
5055         coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
5056
5057         coal->stats_block_coalesce_usecs = bp->stats_ticks;
5058
5059         return 0;
5060 }
5061
5062 static int
5063 bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
5064 {
5065         struct bnx2 *bp = netdev_priv(dev);
5066
5067         bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
5068         if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
5069
5070         bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
5071         if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
5072
5073         bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
5074         if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
5075
5076         bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
5077         if (bp->rx_quick_cons_trip_int > 0xff)
5078                 bp->rx_quick_cons_trip_int = 0xff;
5079
5080         bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
5081         if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
5082
5083         bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
5084         if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
5085
5086         bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
5087         if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
5088
5089         bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
5090         if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
5091                 0xff;
5092
5093         bp->stats_ticks = coal->stats_block_coalesce_usecs;
5094         if (bp->stats_ticks > 0xffff00) bp->stats_ticks = 0xffff00;
5095         bp->stats_ticks &= 0xffff00;
5096
5097         if (netif_running(bp->dev)) {
5098                 bnx2_netif_stop(bp);
5099                 bnx2_init_nic(bp);
5100                 bnx2_netif_start(bp);
5101         }
5102
5103         return 0;
5104 }
5105
5106 static void
5107 bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
5108 {
5109         struct bnx2 *bp = netdev_priv(dev);
5110
5111         ering->rx_max_pending = MAX_TOTAL_RX_DESC_CNT;
5112         ering->rx_mini_max_pending = 0;
5113         ering->rx_jumbo_max_pending = 0;
5114
5115         ering->rx_pending = bp->rx_ring_size;
5116         ering->rx_mini_pending = 0;
5117         ering->rx_jumbo_pending = 0;
5118
5119         ering->tx_max_pending = MAX_TX_DESC_CNT;
5120         ering->tx_pending = bp->tx_ring_size;
5121 }
5122
5123 static int
5124 bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
5125 {
5126         struct bnx2 *bp = netdev_priv(dev);
5127
5128         if ((ering->rx_pending > MAX_TOTAL_RX_DESC_CNT) ||
5129                 (ering->tx_pending > MAX_TX_DESC_CNT) ||
5130                 (ering->tx_pending <= MAX_SKB_FRAGS)) {
5131
5132                 return -EINVAL;
5133         }
5134         if (netif_running(bp->dev)) {
5135                 bnx2_netif_stop(bp);
5136                 bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
5137                 bnx2_free_skbs(bp);
5138                 bnx2_free_mem(bp);
5139         }
5140
5141         bnx2_set_rx_ring_size(bp, ering->rx_pending);
5142         bp->tx_ring_size = ering->tx_pending;
5143
5144         if (netif_running(bp->dev)) {
5145                 int rc;
5146
5147                 rc = bnx2_alloc_mem(bp);
5148                 if (rc)
5149                         return rc;
5150                 bnx2_init_nic(bp);
5151                 bnx2_netif_start(bp);
5152         }
5153
5154         return 0;
5155 }
5156
5157 static void
5158 bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
5159 {
5160         struct bnx2 *bp = netdev_priv(dev);
5161
5162         epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
5163         epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
5164         epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
5165 }
5166
5167 static int
5168 bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
5169 {
5170         struct bnx2 *bp = netdev_priv(dev);
5171
5172         bp->req_flow_ctrl = 0;
5173         if (epause->rx_pause)
5174                 bp->req_flow_ctrl |= FLOW_CTRL_RX;
5175         if (epause->tx_pause)
5176                 bp->req_flow_ctrl |= FLOW_CTRL_TX;
5177
5178         if (epause->autoneg) {
5179                 bp->autoneg |= AUTONEG_FLOW_CTRL;
5180         }
5181         else {
5182                 bp->autoneg &= ~AUTONEG_FLOW_CTRL;
5183         }
5184
5185         spin_lock_bh(&bp->phy_lock);
5186
5187         bnx2_setup_phy(bp);
5188
5189         spin_unlock_bh(&bp->phy_lock);
5190
5191         return 0;
5192 }
5193
5194 static u32
5195 bnx2_get_rx_csum(struct net_device *dev)
5196 {
5197         struct bnx2 *bp = netdev_priv(dev);
5198
5199         return bp->rx_csum;
5200 }
5201
5202 static int
5203 bnx2_set_rx_csum(struct net_device *dev, u32 data)
5204 {
5205         struct bnx2 *bp = netdev_priv(dev);
5206
5207         bp->rx_csum = data;
5208         return 0;
5209 }
5210
5211 static int
5212 bnx2_set_tso(struct net_device *dev, u32 data)
5213 {
5214         if (data)
5215                 dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
5216         else
5217                 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO_ECN);
5218         return 0;
5219 }
5220
5221 #define BNX2_NUM_STATS 46
5222
5223 static struct {
5224         char string[ETH_GSTRING_LEN];
5225 } bnx2_stats_str_arr[BNX2_NUM_STATS] = {
5226         { "rx_bytes" },
5227         { "rx_error_bytes" },
5228         { "tx_bytes" },
5229         { "tx_error_bytes" },
5230         { "rx_ucast_packets" },
5231         { "rx_mcast_packets" },
5232         { "rx_bcast_packets" },
5233         { "tx_ucast_packets" },
5234         { "tx_mcast_packets" },
5235         { "tx_bcast_packets" },
5236         { "tx_mac_errors" },
5237         { "tx_carrier_errors" },
5238         { "rx_crc_errors" },
5239         { "rx_align_errors" },
5240         { "tx_single_collisions" },
5241         { "tx_multi_collisions" },
5242         { "tx_deferred" },
5243         { "tx_excess_collisions" },
5244         { "tx_late_collisions" },
5245         { "tx_total_collisions" },
5246         { "rx_fragments" },
5247         { "rx_jabbers" },
5248         { "rx_undersize_packets" },
5249         { "rx_oversize_packets" },
5250         { "rx_64_byte_packets" },
5251         { "rx_65_to_127_byte_packets" },
5252         { "rx_128_to_255_byte_packets" },
5253         { "rx_256_to_511_byte_packets" },
5254         { "rx_512_to_1023_byte_packets" },
5255         { "rx_1024_to_1522_byte_packets" },
5256         { "rx_1523_to_9022_byte_packets" },
5257         { "tx_64_byte_packets" },
5258         { "tx_65_to_127_byte_packets" },
5259         { "tx_128_to_255_byte_packets" },
5260         { "tx_256_to_511_byte_packets" },
5261         { "tx_512_to_1023_byte_packets" },
5262         { "tx_1024_to_1522_byte_packets" },
5263         { "tx_1523_to_9022_byte_packets" },
5264         { "rx_xon_frames" },
5265         { "rx_xoff_frames" },
5266         { "tx_xon_frames" },
5267         { "tx_xoff_frames" },
5268         { "rx_mac_ctrl_frames" },
5269         { "rx_filtered_packets" },
5270         { "rx_discards" },
5271         { "rx_fw_discards" },
5272 };
5273
5274 #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
5275
5276 static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
5277     STATS_OFFSET32(stat_IfHCInOctets_hi),
5278     STATS_OFFSET32(stat_IfHCInBadOctets_hi),
5279     STATS_OFFSET32(stat_IfHCOutOctets_hi),
5280     STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
5281     STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
5282     STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
5283     STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
5284     STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
5285     STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
5286     STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
5287     STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
5288     STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
5289     STATS_OFFSET32(stat_Dot3StatsFCSErrors),
5290     STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
5291     STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
5292     STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
5293     STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
5294     STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
5295     STATS_OFFSET32(stat_Dot3StatsLateCollisions),
5296     STATS_OFFSET32(stat_EtherStatsCollisions),
5297     STATS_OFFSET32(stat_EtherStatsFragments),
5298     STATS_OFFSET32(stat_EtherStatsJabbers),
5299     STATS_OFFSET32(stat_EtherStatsUndersizePkts),
5300     STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
5301     STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
5302     STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
5303     STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
5304     STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
5305     STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
5306     STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
5307     STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
5308     STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
5309     STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
5310     STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
5311     STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
5312     STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
5313     STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
5314     STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
5315     STATS_OFFSET32(stat_XonPauseFramesReceived),
5316     STATS_OFFSET32(stat_XoffPauseFramesReceived),
5317     STATS_OFFSET32(stat_OutXonSent),
5318     STATS_OFFSET32(stat_OutXoffSent),
5319     STATS_OFFSET32(stat_MacControlFramesReceived),
5320     STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
5321     STATS_OFFSET32(stat_IfInMBUFDiscards),
5322     STATS_OFFSET32(stat_FwRxDrop),
5323 };
5324
5325 /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
5326  * skipped because of errata.
5327  */
5328 static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
5329         8,0,8,8,8,8,8,8,8,8,
5330         4,0,4,4,4,4,4,4,4,4,
5331         4,4,4,4,4,4,4,4,4,4,
5332         4,4,4,4,4,4,4,4,4,4,
5333         4,4,4,4,4,4,
5334 };
5335
5336 static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
5337         8,0,8,8,8,8,8,8,8,8,
5338         4,4,4,4,4,4,4,4,4,4,
5339         4,4,4,4,4,4,4,4,4,4,
5340         4,4,4,4,4,4,4,4,4,4,
5341         4,4,4,4,4,4,
5342 };
5343
5344 #define BNX2_NUM_TESTS 6
5345
5346 static struct {
5347         char string[ETH_GSTRING_LEN];
5348 } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
5349         { "register_test (offline)" },
5350         { "memory_test (offline)" },
5351         { "loopback_test (offline)" },
5352         { "nvram_test (online)" },
5353         { "interrupt_test (online)" },
5354         { "link_test (online)" },
5355 };
5356
5357 static int
5358 bnx2_self_test_count(struct net_device *dev)
5359 {
5360         return BNX2_NUM_TESTS;
5361 }
5362
5363 static void
5364 bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
5365 {
5366         struct bnx2 *bp = netdev_priv(dev);
5367
5368         memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
5369         if (etest->flags & ETH_TEST_FL_OFFLINE) {
5370                 int i;
5371
5372                 bnx2_netif_stop(bp);
5373                 bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
5374                 bnx2_free_skbs(bp);
5375
5376                 if (bnx2_test_registers(bp) != 0) {
5377                         buf[0] = 1;
5378                         etest->flags |= ETH_TEST_FL_FAILED;
5379                 }
5380                 if (bnx2_test_memory(bp) != 0) {
5381                         buf[1] = 1;
5382                         etest->flags |= ETH_TEST_FL_FAILED;
5383                 }
5384                 if ((buf[2] = bnx2_test_loopback(bp)) != 0)
5385                         etest->flags |= ETH_TEST_FL_FAILED;
5386
5387                 if (!netif_running(bp->dev)) {
5388                         bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
5389                 }
5390                 else {
5391                         bnx2_init_nic(bp);
5392                         bnx2_netif_start(bp);
5393                 }
5394
5395                 /* wait for link up */
5396                 for (i = 0; i < 7; i++) {
5397                         if (bp->link_up)
5398                                 break;
5399                         msleep_interruptible(1000);
5400                 }
5401         }
5402
5403         if (bnx2_test_nvram(bp) != 0) {
5404                 buf[3] = 1;
5405                 etest->flags |= ETH_TEST_FL_FAILED;
5406         }
5407         if (bnx2_test_intr(bp) != 0) {
5408                 buf[4] = 1;
5409                 etest->flags |= ETH_TEST_FL_FAILED;
5410         }
5411
5412         if (bnx2_test_link(bp) != 0) {
5413                 buf[5] = 1;
5414                 etest->flags |= ETH_TEST_FL_FAILED;
5415
5416         }
5417 }
5418
5419 static void
5420 bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
5421 {
5422         switch (stringset) {
5423         case ETH_SS_STATS:
5424                 memcpy(buf, bnx2_stats_str_arr,
5425                         sizeof(bnx2_stats_str_arr));
5426                 break;
5427         case ETH_SS_TEST:
5428                 memcpy(buf, bnx2_tests_str_arr,
5429                         sizeof(bnx2_tests_str_arr));
5430                 break;
5431         }
5432 }
5433
5434 static int
5435 bnx2_get_stats_count(struct net_device *dev)
5436 {
5437         return BNX2_NUM_STATS;
5438 }
5439
5440 static void
5441 bnx2_get_ethtool_stats(struct net_device *dev,
5442                 struct ethtool_stats *stats, u64 *buf)
5443 {
5444         struct bnx2 *bp = netdev_priv(dev);
5445         int i;
5446         u32 *hw_stats = (u32 *) bp->stats_blk;
5447         u8 *stats_len_arr = NULL;
5448
5449         if (hw_stats == NULL) {
5450                 memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
5451                 return;
5452         }
5453
5454         if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
5455             (CHIP_ID(bp) == CHIP_ID_5706_A1) ||
5456             (CHIP_ID(bp) == CHIP_ID_5706_A2) ||
5457             (CHIP_ID(bp) == CHIP_ID_5708_A0))
5458                 stats_len_arr = bnx2_5706_stats_len_arr;
5459         else
5460                 stats_len_arr = bnx2_5708_stats_len_arr;
5461
5462         for (i = 0; i < BNX2_NUM_STATS; i++) {
5463                 if (stats_len_arr[i] == 0) {
5464                         /* skip this counter */
5465                         buf[i] = 0;
5466                         continue;
5467                 }
5468                 if (stats_len_arr[i] == 4) {
5469                         /* 4-byte counter */
5470                         buf[i] = (u64)
5471                                 *(hw_stats + bnx2_stats_offset_arr[i]);
5472                         continue;
5473                 }
5474                 /* 8-byte counter */
5475                 buf[i] = (((u64) *(hw_stats +
5476                                         bnx2_stats_offset_arr[i])) << 32) +
5477                                 *(hw_stats + bnx2_stats_offset_arr[i] + 1);
5478         }
5479 }
5480
5481 static int
5482 bnx2_phys_id(struct net_device *dev, u32 data)
5483 {
5484         struct bnx2 *bp = netdev_priv(dev);
5485         int i;
5486         u32 save;
5487
5488         if (data == 0)
5489                 data = 2;
5490
5491         save = REG_RD(bp, BNX2_MISC_CFG);
5492         REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
5493
5494         for (i = 0; i < (data * 2); i++) {
5495                 if ((i % 2) == 0) {
5496                         REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
5497                 }
5498                 else {
5499                         REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
5500                                 BNX2_EMAC_LED_1000MB_OVERRIDE |
5501                                 BNX2_EMAC_LED_100MB_OVERRIDE |
5502                                 BNX2_EMAC_LED_10MB_OVERRIDE |
5503                                 BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
5504                                 BNX2_EMAC_LED_TRAFFIC);
5505                 }
5506                 msleep_interruptible(500);
5507                 if (signal_pending(current))
5508                         break;
5509         }
5510         REG_WR(bp, BNX2_EMAC_LED, 0);
5511         REG_WR(bp, BNX2_MISC_CFG, save);
5512         return 0;
5513 }
5514
5515 static const struct ethtool_ops bnx2_ethtool_ops = {
5516         .get_settings           = bnx2_get_settings,
5517         .set_settings           = bnx2_set_settings,
5518         .get_drvinfo            = bnx2_get_drvinfo,
5519         .get_regs_len           = bnx2_get_regs_len,
5520         .get_regs               = bnx2_get_regs,
5521         .get_wol                = bnx2_get_wol,
5522         .set_wol                = bnx2_set_wol,
5523         .nway_reset             = bnx2_nway_reset,
5524         .get_link               = ethtool_op_get_link,
5525         .get_eeprom_len         = bnx2_get_eeprom_len,
5526         .get_eeprom             = bnx2_get_eeprom,
5527         .set_eeprom             = bnx2_set_eeprom,
5528         .get_coalesce           = bnx2_get_coalesce,
5529         .set_coalesce           = bnx2_set_coalesce,
5530         .get_ringparam          = bnx2_get_ringparam,
5531         .set_ringparam          = bnx2_set_ringparam,
5532         .get_pauseparam         = bnx2_get_pauseparam,
5533         .set_pauseparam         = bnx2_set_pauseparam,
5534         .get_rx_csum            = bnx2_get_rx_csum,
5535         .set_rx_csum            = bnx2_set_rx_csum,
5536         .get_tx_csum            = ethtool_op_get_tx_csum,
5537         .set_tx_csum            = ethtool_op_set_tx_csum,
5538         .get_sg                 = ethtool_op_get_sg,
5539         .set_sg                 = ethtool_op_set_sg,
5540         .get_tso                = ethtool_op_get_tso,
5541         .set_tso                = bnx2_set_tso,
5542         .self_test_count        = bnx2_self_test_count,
5543         .self_test              = bnx2_self_test,
5544         .get_strings            = bnx2_get_strings,
5545         .phys_id                = bnx2_phys_id,
5546         .get_stats_count        = bnx2_get_stats_count,
5547         .get_ethtool_stats      = bnx2_get_ethtool_stats,
5548         .get_perm_addr          = ethtool_op_get_perm_addr,
5549 };
5550
5551 /* Called with rtnl_lock */
5552 static int
5553 bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5554 {
5555         struct mii_ioctl_data *data = if_mii(ifr);
5556         struct bnx2 *bp = netdev_priv(dev);
5557         int err;
5558
5559         switch(cmd) {
5560         case SIOCGMIIPHY:
5561                 data->phy_id = bp->phy_addr;
5562
5563                 /* fallthru */
5564         case SIOCGMIIREG: {
5565                 u32 mii_regval;
5566
5567                 spin_lock_bh(&bp->phy_lock);
5568                 err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
5569                 spin_unlock_bh(&bp->phy_lock);
5570
5571                 data->val_out = mii_regval;
5572
5573                 return err;
5574         }
5575
5576         case SIOCSMIIREG:
5577                 if (!capable(CAP_NET_ADMIN))
5578                         return -EPERM;
5579
5580                 spin_lock_bh(&bp->phy_lock);
5581                 err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
5582                 spin_unlock_bh(&bp->phy_lock);
5583
5584                 return err;
5585
5586         default:
5587                 /* do nothing */
5588                 break;
5589         }
5590         return -EOPNOTSUPP;
5591 }
5592
5593 /* Called with rtnl_lock */
5594 static int
5595 bnx2_change_mac_addr(struct net_device *dev, void *p)
5596 {
5597         struct sockaddr *addr = p;
5598         struct bnx2 *bp = netdev_priv(dev);
5599
5600         if (!is_valid_ether_addr(addr->sa_data))
5601                 return -EINVAL;
5602
5603         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5604         if (netif_running(dev))
5605                 bnx2_set_mac_addr(bp);
5606
5607         return 0;
5608 }
5609
5610 /* Called with rtnl_lock */
5611 static int
5612 bnx2_change_mtu(struct net_device *dev, int new_mtu)
5613 {
5614         struct bnx2 *bp = netdev_priv(dev);
5615
5616         if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
5617                 ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
5618                 return -EINVAL;
5619
5620         dev->mtu = new_mtu;
5621         if (netif_running(dev)) {
5622                 bnx2_netif_stop(bp);
5623
5624                 bnx2_init_nic(bp);
5625
5626                 bnx2_netif_start(bp);
5627         }
5628         return 0;
5629 }
5630
5631 #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
5632 static void
5633 poll_bnx2(struct net_device *dev)
5634 {
5635         struct bnx2 *bp = netdev_priv(dev);
5636
5637         disable_irq(bp->pdev->irq);
5638         bnx2_interrupt(bp->pdev->irq, dev);
5639         enable_irq(bp->pdev->irq);
5640 }
5641 #endif
5642
5643 static void __devinit
5644 bnx2_get_5709_media(struct bnx2 *bp)
5645 {
5646         u32 val = REG_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL);
5647         u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID;
5648         u32 strap;
5649
5650         if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C)
5651                 return;
5652         else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
5653                 bp->phy_flags |= PHY_SERDES_FLAG;
5654                 return;
5655         }
5656
5657         if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
5658                 strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
5659         else
5660                 strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
5661
5662         if (PCI_FUNC(bp->pdev->devfn) == 0) {
5663                 switch (strap) {
5664                 case 0x4:
5665                 case 0x5:
5666                 case 0x6:
5667                         bp->phy_flags |= PHY_SERDES_FLAG;
5668                         return;
5669                 }
5670         } else {
5671                 switch (strap) {
5672                 case 0x1:
5673                 case 0x2:
5674                 case 0x4:
5675                         bp->phy_flags |= PHY_SERDES_FLAG;
5676                         return;
5677                 }
5678         }
5679 }
5680
5681 static int __devinit
5682 bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
5683 {
5684         struct bnx2 *bp;
5685         unsigned long mem_len;
5686         int rc;
5687         u32 reg;
5688
5689         SET_MODULE_OWNER(dev);
5690         SET_NETDEV_DEV(dev, &pdev->dev);
5691         bp = netdev_priv(dev);
5692
5693         bp->flags = 0;
5694         bp->phy_flags = 0;
5695
5696         /* enable device (incl. PCI PM wakeup), and bus-mastering */
5697         rc = pci_enable_device(pdev);
5698         if (rc) {
5699                 dev_err(&pdev->dev, "Cannot enable PCI device, aborting.");
5700                 goto err_out;
5701         }
5702
5703         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
5704                 dev_err(&pdev->dev,
5705                         "Cannot find PCI device base address, aborting.\n");
5706                 rc = -ENODEV;
5707                 goto err_out_disable;
5708         }
5709
5710         rc = pci_request_regions(pdev, DRV_MODULE_NAME);
5711         if (rc) {
5712                 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting.\n");
5713                 goto err_out_disable;
5714         }
5715
5716         pci_set_master(pdev);
5717
5718         bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
5719         if (bp->pm_cap == 0) {
5720                 dev_err(&pdev->dev,
5721                         "Cannot find power management capability, aborting.\n");
5722                 rc = -EIO;
5723                 goto err_out_release;
5724         }
5725
5726         if (pci_set_dma_mask(pdev, DMA_64BIT_MASK) == 0) {
5727                 bp->flags |= USING_DAC_FLAG;
5728                 if (pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK) != 0) {
5729                         dev_err(&pdev->dev,
5730                                 "pci_set_consistent_dma_mask failed, aborting.\n");
5731                         rc = -EIO;
5732                         goto err_out_release;
5733                 }
5734         }
5735         else if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0) {
5736                 dev_err(&pdev->dev, "System does not support DMA, aborting.\n");
5737                 rc = -EIO;
5738                 goto err_out_release;
5739         }
5740
5741         bp->dev = dev;
5742         bp->pdev = pdev;
5743
5744         spin_lock_init(&bp->phy_lock);
5745         INIT_WORK(&bp->reset_task, bnx2_reset_task);
5746
5747         dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0);
5748         mem_len = MB_GET_CID_ADDR(TX_TSS_CID + 1);
5749         dev->mem_end = dev->mem_start + mem_len;
5750         dev->irq = pdev->irq;
5751
5752         bp->regview = ioremap_nocache(dev->base_addr, mem_len);
5753
5754         if (!bp->regview) {
5755                 dev_err(&pdev->dev, "Cannot map register space, aborting.\n");
5756                 rc = -ENOMEM;
5757                 goto err_out_release;
5758         }
5759
5760         /* Configure byte swap and enable write to the reg_window registers.
5761          * Rely on CPU to do target byte swapping on big endian systems
5762          * The chip's target access swapping will not swap all accesses
5763          */
5764         pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG,
5765                                BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
5766                                BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
5767
5768         bnx2_set_power_state(bp, PCI_D0);
5769
5770         bp->chip_id = REG_RD(bp, BNX2_MISC_ID);
5771
5772         if (CHIP_NUM(bp) != CHIP_NUM_5709) {
5773                 bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
5774                 if (bp->pcix_cap == 0) {
5775                         dev_err(&pdev->dev,
5776                                 "Cannot find PCIX capability, aborting.\n");
5777                         rc = -EIO;
5778                         goto err_out_unmap;
5779                 }
5780         }
5781
5782         /* Get bus information. */
5783         reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS);
5784         if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
5785                 u32 clkreg;
5786
5787                 bp->flags |= PCIX_FLAG;
5788
5789                 clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
5790
5791                 clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
5792                 switch (clkreg) {
5793                 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
5794                         bp->bus_speed_mhz = 133;
5795                         break;
5796
5797                 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
5798                         bp->bus_speed_mhz = 100;
5799                         break;
5800
5801                 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
5802                 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
5803                         bp->bus_speed_mhz = 66;
5804                         break;
5805
5806                 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
5807                 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
5808                         bp->bus_speed_mhz = 50;
5809                         break;
5810
5811                 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
5812                 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
5813                 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
5814                         bp->bus_speed_mhz = 33;
5815                         break;
5816                 }
5817         }
5818         else {
5819                 if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
5820                         bp->bus_speed_mhz = 66;
5821                 else
5822                         bp->bus_speed_mhz = 33;
5823         }
5824
5825         if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
5826                 bp->flags |= PCI_32BIT_FLAG;
5827
5828         /* 5706A0 may falsely detect SERR and PERR. */
5829         if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
5830                 reg = REG_RD(bp, PCI_COMMAND);
5831                 reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
5832                 REG_WR(bp, PCI_COMMAND, reg);
5833         }
5834         else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) &&
5835                 !(bp->flags & PCIX_FLAG)) {
5836
5837                 dev_err(&pdev->dev,
5838                         "5706 A1 can only be used in a PCIX bus, aborting.\n");
5839                 goto err_out_unmap;
5840         }
5841
5842         bnx2_init_nvram(bp);
5843
5844         reg = REG_RD_IND(bp, BNX2_SHM_HDR_SIGNATURE);
5845
5846         if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
5847             BNX2_SHM_HDR_SIGNATURE_SIG) {
5848                 u32 off = PCI_FUNC(pdev->devfn) << 2;
5849
5850                 bp->shmem_base = REG_RD_IND(bp, BNX2_SHM_HDR_ADDR_0 + off);
5851         } else
5852                 bp->shmem_base = HOST_VIEW_SHMEM_BASE;
5853
5854         /* Get the permanent MAC address.  First we need to make sure the
5855          * firmware is actually running.
5856          */
5857         reg = REG_RD_IND(bp, bp->shmem_base + BNX2_DEV_INFO_SIGNATURE);
5858
5859         if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
5860             BNX2_DEV_INFO_SIGNATURE_MAGIC) {
5861                 dev_err(&pdev->dev, "Firmware not running, aborting.\n");
5862                 rc = -ENODEV;
5863                 goto err_out_unmap;
5864         }
5865
5866         bp->fw_ver = REG_RD_IND(bp, bp->shmem_base + BNX2_DEV_INFO_BC_REV);
5867
5868         reg = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_MAC_UPPER);
5869         bp->mac_addr[0] = (u8) (reg >> 8);
5870         bp->mac_addr[1] = (u8) reg;
5871
5872         reg = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_MAC_LOWER);
5873         bp->mac_addr[2] = (u8) (reg >> 24);
5874         bp->mac_addr[3] = (u8) (reg >> 16);
5875         bp->mac_addr[4] = (u8) (reg >> 8);
5876         bp->mac_addr[5] = (u8) reg;
5877
5878         bp->tx_ring_size = MAX_TX_DESC_CNT;
5879         bnx2_set_rx_ring_size(bp, 255);
5880
5881         bp->rx_csum = 1;
5882
5883         bp->rx_offset = sizeof(struct l2_fhdr) + 2;
5884
5885         bp->tx_quick_cons_trip_int = 20;
5886         bp->tx_quick_cons_trip = 20;
5887         bp->tx_ticks_int = 80;
5888         bp->tx_ticks = 80;
5889
5890         bp->rx_quick_cons_trip_int = 6;
5891         bp->rx_quick_cons_trip = 6;
5892         bp->rx_ticks_int = 18;
5893         bp->rx_ticks = 18;
5894
5895         bp->stats_ticks = 1000000 & 0xffff00;
5896
5897         bp->timer_interval =  HZ;
5898         bp->current_interval =  HZ;
5899
5900         bp->phy_addr = 1;
5901
5902         /* Disable WOL support if we are running on a SERDES chip. */
5903         if (CHIP_NUM(bp) == CHIP_NUM_5709)
5904                 bnx2_get_5709_media(bp);
5905         else if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT)
5906                 bp->phy_flags |= PHY_SERDES_FLAG;
5907
5908         if (bp->phy_flags & PHY_SERDES_FLAG) {
5909                 bp->flags |= NO_WOL_FLAG;
5910                 if (CHIP_NUM(bp) != CHIP_NUM_5706) {
5911                         bp->phy_addr = 2;
5912                         reg = REG_RD_IND(bp, bp->shmem_base +
5913                                          BNX2_SHARED_HW_CFG_CONFIG);
5914                         if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
5915                                 bp->phy_flags |= PHY_2_5G_CAPABLE_FLAG;
5916                 }
5917         } else if (CHIP_NUM(bp) == CHIP_NUM_5706 ||
5918                    CHIP_NUM(bp) == CHIP_NUM_5708)
5919                 bp->phy_flags |= PHY_CRC_FIX_FLAG;
5920         else if (CHIP_ID(bp) == CHIP_ID_5709_A0)
5921                 bp->phy_flags |= PHY_DIS_EARLY_DAC_FLAG;
5922
5923         if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
5924             (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
5925             (CHIP_ID(bp) == CHIP_ID_5708_B1))
5926                 bp->flags |= NO_WOL_FLAG;
5927
5928         if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
5929                 bp->tx_quick_cons_trip_int =
5930                         bp->tx_quick_cons_trip;
5931                 bp->tx_ticks_int = bp->tx_ticks;
5932                 bp->rx_quick_cons_trip_int =
5933                         bp->rx_quick_cons_trip;
5934                 bp->rx_ticks_int = bp->rx_ticks;
5935                 bp->comp_prod_trip_int = bp->comp_prod_trip;
5936                 bp->com_ticks_int = bp->com_ticks;
5937                 bp->cmd_ticks_int = bp->cmd_ticks;
5938         }
5939
5940         /* Disable MSI on 5706 if AMD 8132 bridge is found.
5941          *
5942          * MSI is defined to be 32-bit write.  The 5706 does 64-bit MSI writes
5943          * with byte enables disabled on the unused 32-bit word.  This is legal
5944          * but causes problems on the AMD 8132 which will eventually stop
5945          * responding after a while.
5946          *
5947          * AMD believes this incompatibility is unique to the 5706, and
5948          * prefers to locally disable MSI rather than globally disabling it.
5949          */
5950         if (CHIP_NUM(bp) == CHIP_NUM_5706 && disable_msi == 0) {
5951                 struct pci_dev *amd_8132 = NULL;
5952
5953                 while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
5954                                                   PCI_DEVICE_ID_AMD_8132_BRIDGE,
5955                                                   amd_8132))) {
5956                         u8 rev;
5957
5958                         pci_read_config_byte(amd_8132, PCI_REVISION_ID, &rev);
5959                         if (rev >= 0x10 && rev <= 0x13) {
5960                                 disable_msi = 1;
5961                                 pci_dev_put(amd_8132);
5962                                 break;
5963                         }
5964                 }
5965         }
5966
5967         bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
5968         bp->req_line_speed = 0;
5969         if (bp->phy_flags & PHY_SERDES_FLAG) {
5970                 bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
5971
5972                 reg = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_CONFIG);
5973                 reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
5974                 if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
5975                         bp->autoneg = 0;
5976                         bp->req_line_speed = bp->line_speed = SPEED_1000;
5977                         bp->req_duplex = DUPLEX_FULL;
5978                 }
5979         }
5980         else {
5981                 bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
5982         }
5983
5984         bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
5985
5986         init_timer(&bp->timer);
5987         bp->timer.expires = RUN_AT(bp->timer_interval);
5988         bp->timer.data = (unsigned long) bp;
5989         bp->timer.function = bnx2_timer;
5990
5991         return 0;
5992
5993 err_out_unmap:
5994         if (bp->regview) {
5995                 iounmap(bp->regview);
5996                 bp->regview = NULL;
5997         }
5998
5999 err_out_release:
6000         pci_release_regions(pdev);
6001
6002 err_out_disable:
6003         pci_disable_device(pdev);
6004         pci_set_drvdata(pdev, NULL);
6005
6006 err_out:
6007         return rc;
6008 }
6009
6010 static int __devinit
6011 bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6012 {
6013         static int version_printed = 0;
6014         struct net_device *dev = NULL;
6015         struct bnx2 *bp;
6016         int rc, i;
6017
6018         if (version_printed++ == 0)
6019                 printk(KERN_INFO "%s", version);
6020
6021         /* dev zeroed in init_etherdev */
6022         dev = alloc_etherdev(sizeof(*bp));
6023
6024         if (!dev)
6025                 return -ENOMEM;
6026
6027         rc = bnx2_init_board(pdev, dev);
6028         if (rc < 0) {
6029                 free_netdev(dev);
6030                 return rc;
6031         }
6032
6033         dev->open = bnx2_open;
6034         dev->hard_start_xmit = bnx2_start_xmit;
6035         dev->stop = bnx2_close;
6036         dev->get_stats = bnx2_get_stats;
6037         dev->set_multicast_list = bnx2_set_rx_mode;
6038         dev->do_ioctl = bnx2_ioctl;
6039         dev->set_mac_address = bnx2_change_mac_addr;
6040         dev->change_mtu = bnx2_change_mtu;
6041         dev->tx_timeout = bnx2_tx_timeout;
6042         dev->watchdog_timeo = TX_TIMEOUT;
6043 #ifdef BCM_VLAN
6044         dev->vlan_rx_register = bnx2_vlan_rx_register;
6045         dev->vlan_rx_kill_vid = bnx2_vlan_rx_kill_vid;
6046 #endif
6047         dev->poll = bnx2_poll;
6048         dev->ethtool_ops = &bnx2_ethtool_ops;
6049         dev->weight = 64;
6050
6051         bp = netdev_priv(dev);
6052
6053 #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
6054         dev->poll_controller = poll_bnx2;
6055 #endif
6056
6057         if ((rc = register_netdev(dev))) {
6058                 dev_err(&pdev->dev, "Cannot register net device\n");
6059                 if (bp->regview)
6060                         iounmap(bp->regview);
6061                 pci_release_regions(pdev);
6062                 pci_disable_device(pdev);
6063                 pci_set_drvdata(pdev, NULL);
6064                 free_netdev(dev);
6065                 return rc;
6066         }
6067
6068         pci_set_drvdata(pdev, dev);
6069
6070         memcpy(dev->dev_addr, bp->mac_addr, 6);
6071         memcpy(dev->perm_addr, bp->mac_addr, 6);
6072         bp->name = board_info[ent->driver_data].name,
6073         printk(KERN_INFO "%s: %s (%c%d) PCI%s %s %dMHz found at mem %lx, "
6074                 "IRQ %d, ",
6075                 dev->name,
6076                 bp->name,
6077                 ((CHIP_ID(bp) & 0xf000) >> 12) + 'A',
6078                 ((CHIP_ID(bp) & 0x0ff0) >> 4),
6079                 ((bp->flags & PCIX_FLAG) ? "-X" : ""),
6080                 ((bp->flags & PCI_32BIT_FLAG) ? "32-bit" : "64-bit"),
6081                 bp->bus_speed_mhz,
6082                 dev->base_addr,
6083                 bp->pdev->irq);
6084
6085         printk("node addr ");
6086         for (i = 0; i < 6; i++)
6087                 printk("%2.2x", dev->dev_addr[i]);
6088         printk("\n");
6089
6090         dev->features |= NETIF_F_SG;
6091         if (bp->flags & USING_DAC_FLAG)
6092                 dev->features |= NETIF_F_HIGHDMA;
6093         dev->features |= NETIF_F_IP_CSUM;
6094 #ifdef BCM_VLAN
6095         dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
6096 #endif
6097         dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
6098
6099         netif_carrier_off(bp->dev);
6100
6101         return 0;
6102 }
6103
6104 static void __devexit
6105 bnx2_remove_one(struct pci_dev *pdev)
6106 {
6107         struct net_device *dev = pci_get_drvdata(pdev);
6108         struct bnx2 *bp = netdev_priv(dev);
6109
6110         flush_scheduled_work();
6111
6112         unregister_netdev(dev);
6113
6114         if (bp->regview)
6115                 iounmap(bp->regview);
6116
6117         free_netdev(dev);
6118         pci_release_regions(pdev);
6119         pci_disable_device(pdev);
6120         pci_set_drvdata(pdev, NULL);
6121 }
6122
6123 static int
6124 bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
6125 {
6126         struct net_device *dev = pci_get_drvdata(pdev);
6127         struct bnx2 *bp = netdev_priv(dev);
6128         u32 reset_code;
6129
6130         if (!netif_running(dev))
6131                 return 0;
6132
6133         flush_scheduled_work();
6134         bnx2_netif_stop(bp);
6135         netif_device_detach(dev);
6136         del_timer_sync(&bp->timer);
6137         if (bp->flags & NO_WOL_FLAG)
6138                 reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
6139         else if (bp->wol)
6140                 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
6141         else
6142                 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
6143         bnx2_reset_chip(bp, reset_code);
6144         bnx2_free_skbs(bp);
6145         bnx2_set_power_state(bp, pci_choose_state(pdev, state));
6146         return 0;
6147 }
6148
6149 static int
6150 bnx2_resume(struct pci_dev *pdev)
6151 {
6152         struct net_device *dev = pci_get_drvdata(pdev);
6153         struct bnx2 *bp = netdev_priv(dev);
6154
6155         if (!netif_running(dev))
6156                 return 0;
6157
6158         bnx2_set_power_state(bp, PCI_D0);
6159         netif_device_attach(dev);
6160         bnx2_init_nic(bp);
6161         bnx2_netif_start(bp);
6162         return 0;
6163 }
6164
6165 static struct pci_driver bnx2_pci_driver = {
6166         .name           = DRV_MODULE_NAME,
6167         .id_table       = bnx2_pci_tbl,
6168         .probe          = bnx2_init_one,
6169         .remove         = __devexit_p(bnx2_remove_one),
6170         .suspend        = bnx2_suspend,
6171         .resume         = bnx2_resume,
6172 };
6173
6174 static int __init bnx2_init(void)
6175 {
6176         return pci_register_driver(&bnx2_pci_driver);
6177 }
6178
6179 static void __exit bnx2_cleanup(void)
6180 {
6181         pci_unregister_driver(&bnx2_pci_driver);
6182 }
6183
6184 module_init(bnx2_init);
6185 module_exit(bnx2_cleanup);
6186
6187
6188