x86/PCI: truncate _CRS windows with _LEN > _MAX - _MIN + 1
[linux-2.6.git] / drivers / net / bmac.c
1 /*
2  * Network device driver for the BMAC ethernet controller on
3  * Apple Powermacs.  Assumes it's under a DBDMA controller.
4  *
5  * Copyright (C) 1998 Randy Gobbel.
6  *
7  * May 1999, Al Viro: proper release of /proc/net/bmac entry, switched to
8  * dynamic procfs inode.
9  */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/netdevice.h>
13 #include <linux/etherdevice.h>
14 #include <linux/delay.h>
15 #include <linux/string.h>
16 #include <linux/timer.h>
17 #include <linux/proc_fs.h>
18 #include <linux/init.h>
19 #include <linux/spinlock.h>
20 #include <linux/crc32.h>
21 #include <linux/bitrev.h>
22 #include <linux/ethtool.h>
23 #include <asm/prom.h>
24 #include <asm/dbdma.h>
25 #include <asm/io.h>
26 #include <asm/page.h>
27 #include <asm/pgtable.h>
28 #include <asm/machdep.h>
29 #include <asm/pmac_feature.h>
30 #include <asm/macio.h>
31 #include <asm/irq.h>
32
33 #include "bmac.h"
34
35 #define trunc_page(x)   ((void *)(((unsigned long)(x)) & ~((unsigned long)(PAGE_SIZE - 1))))
36 #define round_page(x)   trunc_page(((unsigned long)(x)) + ((unsigned long)(PAGE_SIZE - 1)))
37
38 /*
39  * CRC polynomial - used in working out multicast filter bits.
40  */
41 #define ENET_CRCPOLY 0x04c11db7
42
43 /* switch to use multicast code lifted from sunhme driver */
44 #define SUNHME_MULTICAST
45
46 #define N_RX_RING       64
47 #define N_TX_RING       32
48 #define MAX_TX_ACTIVE   1
49 #define ETHERCRC        4
50 #define ETHERMINPACKET  64
51 #define ETHERMTU        1500
52 #define RX_BUFLEN       (ETHERMTU + 14 + ETHERCRC + 2)
53 #define TX_TIMEOUT      HZ      /* 1 second */
54
55 /* Bits in transmit DMA status */
56 #define TX_DMA_ERR      0x80
57
58 #define XXDEBUG(args)
59
60 struct bmac_data {
61         /* volatile struct bmac *bmac; */
62         struct sk_buff_head *queue;
63         volatile struct dbdma_regs __iomem *tx_dma;
64         int tx_dma_intr;
65         volatile struct dbdma_regs __iomem *rx_dma;
66         int rx_dma_intr;
67         volatile struct dbdma_cmd *tx_cmds;     /* xmit dma command list */
68         volatile struct dbdma_cmd *rx_cmds;     /* recv dma command list */
69         struct macio_dev *mdev;
70         int is_bmac_plus;
71         struct sk_buff *rx_bufs[N_RX_RING];
72         int rx_fill;
73         int rx_empty;
74         struct sk_buff *tx_bufs[N_TX_RING];
75         int tx_fill;
76         int tx_empty;
77         unsigned char tx_fullup;
78         struct timer_list tx_timeout;
79         int timeout_active;
80         int sleeping;
81         int opened;
82         unsigned short hash_use_count[64];
83         unsigned short hash_table_mask[4];
84         spinlock_t lock;
85 };
86
87 #if 0 /* Move that to ethtool */
88
89 typedef struct bmac_reg_entry {
90         char *name;
91         unsigned short reg_offset;
92 } bmac_reg_entry_t;
93
94 #define N_REG_ENTRIES 31
95
96 static bmac_reg_entry_t reg_entries[N_REG_ENTRIES] = {
97         {"MEMADD", MEMADD},
98         {"MEMDATAHI", MEMDATAHI},
99         {"MEMDATALO", MEMDATALO},
100         {"TXPNTR", TXPNTR},
101         {"RXPNTR", RXPNTR},
102         {"IPG1", IPG1},
103         {"IPG2", IPG2},
104         {"ALIMIT", ALIMIT},
105         {"SLOT", SLOT},
106         {"PALEN", PALEN},
107         {"PAPAT", PAPAT},
108         {"TXSFD", TXSFD},
109         {"JAM", JAM},
110         {"TXCFG", TXCFG},
111         {"TXMAX", TXMAX},
112         {"TXMIN", TXMIN},
113         {"PAREG", PAREG},
114         {"DCNT", DCNT},
115         {"NCCNT", NCCNT},
116         {"NTCNT", NTCNT},
117         {"EXCNT", EXCNT},
118         {"LTCNT", LTCNT},
119         {"TXSM", TXSM},
120         {"RXCFG", RXCFG},
121         {"RXMAX", RXMAX},
122         {"RXMIN", RXMIN},
123         {"FRCNT", FRCNT},
124         {"AECNT", AECNT},
125         {"FECNT", FECNT},
126         {"RXSM", RXSM},
127         {"RXCV", RXCV}
128 };
129
130 #endif
131
132 static unsigned char *bmac_emergency_rxbuf;
133
134 /*
135  * Number of bytes of private data per BMAC: allow enough for
136  * the rx and tx dma commands plus a branch dma command each,
137  * and another 16 bytes to allow us to align the dma command
138  * buffers on a 16 byte boundary.
139  */
140 #define PRIV_BYTES      (sizeof(struct bmac_data) \
141         + (N_RX_RING + N_TX_RING + 4) * sizeof(struct dbdma_cmd) \
142         + sizeof(struct sk_buff_head))
143
144 static int bmac_open(struct net_device *dev);
145 static int bmac_close(struct net_device *dev);
146 static int bmac_transmit_packet(struct sk_buff *skb, struct net_device *dev);
147 static void bmac_set_multicast(struct net_device *dev);
148 static void bmac_reset_and_enable(struct net_device *dev);
149 static void bmac_start_chip(struct net_device *dev);
150 static void bmac_init_chip(struct net_device *dev);
151 static void bmac_init_registers(struct net_device *dev);
152 static void bmac_enable_and_reset_chip(struct net_device *dev);
153 static int bmac_set_address(struct net_device *dev, void *addr);
154 static irqreturn_t bmac_misc_intr(int irq, void *dev_id);
155 static irqreturn_t bmac_txdma_intr(int irq, void *dev_id);
156 static irqreturn_t bmac_rxdma_intr(int irq, void *dev_id);
157 static void bmac_set_timeout(struct net_device *dev);
158 static void bmac_tx_timeout(unsigned long data);
159 static int bmac_output(struct sk_buff *skb, struct net_device *dev);
160 static void bmac_start(struct net_device *dev);
161
162 #define DBDMA_SET(x)    ( ((x) | (x) << 16) )
163 #define DBDMA_CLEAR(x)  ( (x) << 16)
164
165 static inline void
166 dbdma_st32(volatile __u32 __iomem *a, unsigned long x)
167 {
168         __asm__ volatile( "stwbrx %0,0,%1" : : "r" (x), "r" (a) : "memory");
169         return;
170 }
171
172 static inline unsigned long
173 dbdma_ld32(volatile __u32 __iomem *a)
174 {
175         __u32 swap;
176         __asm__ volatile ("lwbrx %0,0,%1" :  "=r" (swap) : "r" (a));
177         return swap;
178 }
179
180 static void
181 dbdma_continue(volatile struct dbdma_regs __iomem *dmap)
182 {
183         dbdma_st32(&dmap->control,
184                    DBDMA_SET(RUN|WAKE) | DBDMA_CLEAR(PAUSE|DEAD));
185         eieio();
186 }
187
188 static void
189 dbdma_reset(volatile struct dbdma_regs __iomem *dmap)
190 {
191         dbdma_st32(&dmap->control,
192                    DBDMA_CLEAR(ACTIVE|DEAD|WAKE|FLUSH|PAUSE|RUN));
193         eieio();
194         while (dbdma_ld32(&dmap->status) & RUN)
195                 eieio();
196 }
197
198 static void
199 dbdma_setcmd(volatile struct dbdma_cmd *cp,
200              unsigned short cmd, unsigned count, unsigned long addr,
201              unsigned long cmd_dep)
202 {
203         out_le16(&cp->command, cmd);
204         out_le16(&cp->req_count, count);
205         out_le32(&cp->phy_addr, addr);
206         out_le32(&cp->cmd_dep, cmd_dep);
207         out_le16(&cp->xfer_status, 0);
208         out_le16(&cp->res_count, 0);
209 }
210
211 static inline
212 void bmwrite(struct net_device *dev, unsigned long reg_offset, unsigned data )
213 {
214         out_le16((void __iomem *)dev->base_addr + reg_offset, data);
215 }
216
217
218 static inline
219 unsigned short bmread(struct net_device *dev, unsigned long reg_offset )
220 {
221         return in_le16((void __iomem *)dev->base_addr + reg_offset);
222 }
223
224 static void
225 bmac_enable_and_reset_chip(struct net_device *dev)
226 {
227         struct bmac_data *bp = netdev_priv(dev);
228         volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
229         volatile struct dbdma_regs __iomem *td = bp->tx_dma;
230
231         if (rd)
232                 dbdma_reset(rd);
233         if (td)
234                 dbdma_reset(td);
235
236         pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 1);
237 }
238
239 #define MIFDELAY        udelay(10)
240
241 static unsigned int
242 bmac_mif_readbits(struct net_device *dev, int nb)
243 {
244         unsigned int val = 0;
245
246         while (--nb >= 0) {
247                 bmwrite(dev, MIFCSR, 0);
248                 MIFDELAY;
249                 if (bmread(dev, MIFCSR) & 8)
250                         val |= 1 << nb;
251                 bmwrite(dev, MIFCSR, 1);
252                 MIFDELAY;
253         }
254         bmwrite(dev, MIFCSR, 0);
255         MIFDELAY;
256         bmwrite(dev, MIFCSR, 1);
257         MIFDELAY;
258         return val;
259 }
260
261 static void
262 bmac_mif_writebits(struct net_device *dev, unsigned int val, int nb)
263 {
264         int b;
265
266         while (--nb >= 0) {
267                 b = (val & (1 << nb))? 6: 4;
268                 bmwrite(dev, MIFCSR, b);
269                 MIFDELAY;
270                 bmwrite(dev, MIFCSR, b|1);
271                 MIFDELAY;
272         }
273 }
274
275 static unsigned int
276 bmac_mif_read(struct net_device *dev, unsigned int addr)
277 {
278         unsigned int val;
279
280         bmwrite(dev, MIFCSR, 4);
281         MIFDELAY;
282         bmac_mif_writebits(dev, ~0U, 32);
283         bmac_mif_writebits(dev, 6, 4);
284         bmac_mif_writebits(dev, addr, 10);
285         bmwrite(dev, MIFCSR, 2);
286         MIFDELAY;
287         bmwrite(dev, MIFCSR, 1);
288         MIFDELAY;
289         val = bmac_mif_readbits(dev, 17);
290         bmwrite(dev, MIFCSR, 4);
291         MIFDELAY;
292         return val;
293 }
294
295 static void
296 bmac_mif_write(struct net_device *dev, unsigned int addr, unsigned int val)
297 {
298         bmwrite(dev, MIFCSR, 4);
299         MIFDELAY;
300         bmac_mif_writebits(dev, ~0U, 32);
301         bmac_mif_writebits(dev, 5, 4);
302         bmac_mif_writebits(dev, addr, 10);
303         bmac_mif_writebits(dev, 2, 2);
304         bmac_mif_writebits(dev, val, 16);
305         bmac_mif_writebits(dev, 3, 2);
306 }
307
308 static void
309 bmac_init_registers(struct net_device *dev)
310 {
311         struct bmac_data *bp = netdev_priv(dev);
312         volatile unsigned short regValue;
313         unsigned short *pWord16;
314         int i;
315
316         /* XXDEBUG(("bmac: enter init_registers\n")); */
317
318         bmwrite(dev, RXRST, RxResetValue);
319         bmwrite(dev, TXRST, TxResetBit);
320
321         i = 100;
322         do {
323                 --i;
324                 udelay(10000);
325                 regValue = bmread(dev, TXRST); /* wait for reset to clear..acknowledge */
326         } while ((regValue & TxResetBit) && i > 0);
327
328         if (!bp->is_bmac_plus) {
329                 regValue = bmread(dev, XCVRIF);
330                 regValue |= ClkBit | SerialMode | COLActiveLow;
331                 bmwrite(dev, XCVRIF, regValue);
332                 udelay(10000);
333         }
334
335         bmwrite(dev, RSEED, (unsigned short)0x1968);
336
337         regValue = bmread(dev, XIFC);
338         regValue |= TxOutputEnable;
339         bmwrite(dev, XIFC, regValue);
340
341         bmread(dev, PAREG);
342
343         /* set collision counters to 0 */
344         bmwrite(dev, NCCNT, 0);
345         bmwrite(dev, NTCNT, 0);
346         bmwrite(dev, EXCNT, 0);
347         bmwrite(dev, LTCNT, 0);
348
349         /* set rx counters to 0 */
350         bmwrite(dev, FRCNT, 0);
351         bmwrite(dev, LECNT, 0);
352         bmwrite(dev, AECNT, 0);
353         bmwrite(dev, FECNT, 0);
354         bmwrite(dev, RXCV, 0);
355
356         /* set tx fifo information */
357         bmwrite(dev, TXTH, 4);  /* 4 octets before tx starts */
358
359         bmwrite(dev, TXFIFOCSR, 0);     /* first disable txFIFO */
360         bmwrite(dev, TXFIFOCSR, TxFIFOEnable );
361
362         /* set rx fifo information */
363         bmwrite(dev, RXFIFOCSR, 0);     /* first disable rxFIFO */
364         bmwrite(dev, RXFIFOCSR, RxFIFOEnable );
365
366         //bmwrite(dev, TXCFG, TxMACEnable);             /* TxNeverGiveUp maybe later */
367         bmread(dev, STATUS);            /* read it just to clear it */
368
369         /* zero out the chip Hash Filter registers */
370         for (i=0; i<4; i++) bp->hash_table_mask[i] = 0;
371         bmwrite(dev, BHASH3, bp->hash_table_mask[0]);   /* bits 15 - 0 */
372         bmwrite(dev, BHASH2, bp->hash_table_mask[1]);   /* bits 31 - 16 */
373         bmwrite(dev, BHASH1, bp->hash_table_mask[2]);   /* bits 47 - 32 */
374         bmwrite(dev, BHASH0, bp->hash_table_mask[3]);   /* bits 63 - 48 */
375
376         pWord16 = (unsigned short *)dev->dev_addr;
377         bmwrite(dev, MADD0, *pWord16++);
378         bmwrite(dev, MADD1, *pWord16++);
379         bmwrite(dev, MADD2, *pWord16);
380
381         bmwrite(dev, RXCFG, RxCRCNoStrip | RxHashFilterEnable | RxRejectOwnPackets);
382
383         bmwrite(dev, INTDISABLE, EnableNormal);
384
385         return;
386 }
387
388 #if 0
389 static void
390 bmac_disable_interrupts(struct net_device *dev)
391 {
392         bmwrite(dev, INTDISABLE, DisableAll);
393 }
394
395 static void
396 bmac_enable_interrupts(struct net_device *dev)
397 {
398         bmwrite(dev, INTDISABLE, EnableNormal);
399 }
400 #endif
401
402
403 static void
404 bmac_start_chip(struct net_device *dev)
405 {
406         struct bmac_data *bp = netdev_priv(dev);
407         volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
408         unsigned short  oldConfig;
409
410         /* enable rx dma channel */
411         dbdma_continue(rd);
412
413         oldConfig = bmread(dev, TXCFG);
414         bmwrite(dev, TXCFG, oldConfig | TxMACEnable );
415
416         /* turn on rx plus any other bits already on (promiscuous possibly) */
417         oldConfig = bmread(dev, RXCFG);
418         bmwrite(dev, RXCFG, oldConfig | RxMACEnable );
419         udelay(20000);
420 }
421
422 static void
423 bmac_init_phy(struct net_device *dev)
424 {
425         unsigned int addr;
426         struct bmac_data *bp = netdev_priv(dev);
427
428         printk(KERN_DEBUG "phy registers:");
429         for (addr = 0; addr < 32; ++addr) {
430                 if ((addr & 7) == 0)
431                         printk(KERN_DEBUG);
432                 printk(KERN_CONT " %.4x", bmac_mif_read(dev, addr));
433         }
434         printk(KERN_CONT "\n");
435
436         if (bp->is_bmac_plus) {
437                 unsigned int capable, ctrl;
438
439                 ctrl = bmac_mif_read(dev, 0);
440                 capable = ((bmac_mif_read(dev, 1) & 0xf800) >> 6) | 1;
441                 if (bmac_mif_read(dev, 4) != capable ||
442                     (ctrl & 0x1000) == 0) {
443                         bmac_mif_write(dev, 4, capable);
444                         bmac_mif_write(dev, 0, 0x1200);
445                 } else
446                         bmac_mif_write(dev, 0, 0x1000);
447         }
448 }
449
450 static void bmac_init_chip(struct net_device *dev)
451 {
452         bmac_init_phy(dev);
453         bmac_init_registers(dev);
454 }
455
456 #ifdef CONFIG_PM
457 static int bmac_suspend(struct macio_dev *mdev, pm_message_t state)
458 {
459         struct net_device* dev = macio_get_drvdata(mdev);
460         struct bmac_data *bp = netdev_priv(dev);
461         unsigned long flags;
462         unsigned short config;
463         int i;
464
465         netif_device_detach(dev);
466         /* prolly should wait for dma to finish & turn off the chip */
467         spin_lock_irqsave(&bp->lock, flags);
468         if (bp->timeout_active) {
469                 del_timer(&bp->tx_timeout);
470                 bp->timeout_active = 0;
471         }
472         disable_irq(dev->irq);
473         disable_irq(bp->tx_dma_intr);
474         disable_irq(bp->rx_dma_intr);
475         bp->sleeping = 1;
476         spin_unlock_irqrestore(&bp->lock, flags);
477         if (bp->opened) {
478                 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
479                 volatile struct dbdma_regs __iomem *td = bp->tx_dma;
480
481                 config = bmread(dev, RXCFG);
482                 bmwrite(dev, RXCFG, (config & ~RxMACEnable));
483                 config = bmread(dev, TXCFG);
484                 bmwrite(dev, TXCFG, (config & ~TxMACEnable));
485                 bmwrite(dev, INTDISABLE, DisableAll); /* disable all intrs */
486                 /* disable rx and tx dma */
487                 st_le32(&rd->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE));       /* clear run bit */
488                 st_le32(&td->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE));       /* clear run bit */
489                 /* free some skb's */
490                 for (i=0; i<N_RX_RING; i++) {
491                         if (bp->rx_bufs[i] != NULL) {
492                                 dev_kfree_skb(bp->rx_bufs[i]);
493                                 bp->rx_bufs[i] = NULL;
494                         }
495                 }
496                 for (i = 0; i<N_TX_RING; i++) {
497                         if (bp->tx_bufs[i] != NULL) {
498                                 dev_kfree_skb(bp->tx_bufs[i]);
499                                 bp->tx_bufs[i] = NULL;
500                         }
501                 }
502         }
503         pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
504         return 0;
505 }
506
507 static int bmac_resume(struct macio_dev *mdev)
508 {
509         struct net_device* dev = macio_get_drvdata(mdev);
510         struct bmac_data *bp = netdev_priv(dev);
511
512         /* see if this is enough */
513         if (bp->opened)
514                 bmac_reset_and_enable(dev);
515
516         enable_irq(dev->irq);
517         enable_irq(bp->tx_dma_intr);
518         enable_irq(bp->rx_dma_intr);
519         netif_device_attach(dev);
520
521         return 0;
522 }
523 #endif /* CONFIG_PM */
524
525 static int bmac_set_address(struct net_device *dev, void *addr)
526 {
527         struct bmac_data *bp = netdev_priv(dev);
528         unsigned char *p = addr;
529         unsigned short *pWord16;
530         unsigned long flags;
531         int i;
532
533         XXDEBUG(("bmac: enter set_address\n"));
534         spin_lock_irqsave(&bp->lock, flags);
535
536         for (i = 0; i < 6; ++i) {
537                 dev->dev_addr[i] = p[i];
538         }
539         /* load up the hardware address */
540         pWord16  = (unsigned short *)dev->dev_addr;
541         bmwrite(dev, MADD0, *pWord16++);
542         bmwrite(dev, MADD1, *pWord16++);
543         bmwrite(dev, MADD2, *pWord16);
544
545         spin_unlock_irqrestore(&bp->lock, flags);
546         XXDEBUG(("bmac: exit set_address\n"));
547         return 0;
548 }
549
550 static inline void bmac_set_timeout(struct net_device *dev)
551 {
552         struct bmac_data *bp = netdev_priv(dev);
553         unsigned long flags;
554
555         spin_lock_irqsave(&bp->lock, flags);
556         if (bp->timeout_active)
557                 del_timer(&bp->tx_timeout);
558         bp->tx_timeout.expires = jiffies + TX_TIMEOUT;
559         bp->tx_timeout.function = bmac_tx_timeout;
560         bp->tx_timeout.data = (unsigned long) dev;
561         add_timer(&bp->tx_timeout);
562         bp->timeout_active = 1;
563         spin_unlock_irqrestore(&bp->lock, flags);
564 }
565
566 static void
567 bmac_construct_xmt(struct sk_buff *skb, volatile struct dbdma_cmd *cp)
568 {
569         void *vaddr;
570         unsigned long baddr;
571         unsigned long len;
572
573         len = skb->len;
574         vaddr = skb->data;
575         baddr = virt_to_bus(vaddr);
576
577         dbdma_setcmd(cp, (OUTPUT_LAST | INTR_ALWAYS | WAIT_IFCLR), len, baddr, 0);
578 }
579
580 static void
581 bmac_construct_rxbuff(struct sk_buff *skb, volatile struct dbdma_cmd *cp)
582 {
583         unsigned char *addr = skb? skb->data: bmac_emergency_rxbuf;
584
585         dbdma_setcmd(cp, (INPUT_LAST | INTR_ALWAYS), RX_BUFLEN,
586                      virt_to_bus(addr), 0);
587 }
588
589 static void
590 bmac_init_tx_ring(struct bmac_data *bp)
591 {
592         volatile struct dbdma_regs __iomem *td = bp->tx_dma;
593
594         memset((char *)bp->tx_cmds, 0, (N_TX_RING+1) * sizeof(struct dbdma_cmd));
595
596         bp->tx_empty = 0;
597         bp->tx_fill = 0;
598         bp->tx_fullup = 0;
599
600         /* put a branch at the end of the tx command list */
601         dbdma_setcmd(&bp->tx_cmds[N_TX_RING],
602                      (DBDMA_NOP | BR_ALWAYS), 0, 0, virt_to_bus(bp->tx_cmds));
603
604         /* reset tx dma */
605         dbdma_reset(td);
606         out_le32(&td->wait_sel, 0x00200020);
607         out_le32(&td->cmdptr, virt_to_bus(bp->tx_cmds));
608 }
609
610 static int
611 bmac_init_rx_ring(struct bmac_data *bp)
612 {
613         volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
614         int i;
615         struct sk_buff *skb;
616
617         /* initialize list of sk_buffs for receiving and set up recv dma */
618         memset((char *)bp->rx_cmds, 0,
619                (N_RX_RING + 1) * sizeof(struct dbdma_cmd));
620         for (i = 0; i < N_RX_RING; i++) {
621                 if ((skb = bp->rx_bufs[i]) == NULL) {
622                         bp->rx_bufs[i] = skb = dev_alloc_skb(RX_BUFLEN+2);
623                         if (skb != NULL)
624                                 skb_reserve(skb, 2);
625                 }
626                 bmac_construct_rxbuff(skb, &bp->rx_cmds[i]);
627         }
628
629         bp->rx_empty = 0;
630         bp->rx_fill = i;
631
632         /* Put a branch back to the beginning of the receive command list */
633         dbdma_setcmd(&bp->rx_cmds[N_RX_RING],
634                      (DBDMA_NOP | BR_ALWAYS), 0, 0, virt_to_bus(bp->rx_cmds));
635
636         /* start rx dma */
637         dbdma_reset(rd);
638         out_le32(&rd->cmdptr, virt_to_bus(bp->rx_cmds));
639
640         return 1;
641 }
642
643
644 static int bmac_transmit_packet(struct sk_buff *skb, struct net_device *dev)
645 {
646         struct bmac_data *bp = netdev_priv(dev);
647         volatile struct dbdma_regs __iomem *td = bp->tx_dma;
648         int i;
649
650         /* see if there's a free slot in the tx ring */
651         /* XXDEBUG(("bmac_xmit_start: empty=%d fill=%d\n", */
652         /*           bp->tx_empty, bp->tx_fill)); */
653         i = bp->tx_fill + 1;
654         if (i >= N_TX_RING)
655                 i = 0;
656         if (i == bp->tx_empty) {
657                 netif_stop_queue(dev);
658                 bp->tx_fullup = 1;
659                 XXDEBUG(("bmac_transmit_packet: tx ring full\n"));
660                 return -1;              /* can't take it at the moment */
661         }
662
663         dbdma_setcmd(&bp->tx_cmds[i], DBDMA_STOP, 0, 0, 0);
664
665         bmac_construct_xmt(skb, &bp->tx_cmds[bp->tx_fill]);
666
667         bp->tx_bufs[bp->tx_fill] = skb;
668         bp->tx_fill = i;
669
670         dev->stats.tx_bytes += skb->len;
671
672         dbdma_continue(td);
673
674         return 0;
675 }
676
677 static int rxintcount;
678
679 static irqreturn_t bmac_rxdma_intr(int irq, void *dev_id)
680 {
681         struct net_device *dev = (struct net_device *) dev_id;
682         struct bmac_data *bp = netdev_priv(dev);
683         volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
684         volatile struct dbdma_cmd *cp;
685         int i, nb, stat;
686         struct sk_buff *skb;
687         unsigned int residual;
688         int last;
689         unsigned long flags;
690
691         spin_lock_irqsave(&bp->lock, flags);
692
693         if (++rxintcount < 10) {
694                 XXDEBUG(("bmac_rxdma_intr\n"));
695         }
696
697         last = -1;
698         i = bp->rx_empty;
699
700         while (1) {
701                 cp = &bp->rx_cmds[i];
702                 stat = ld_le16(&cp->xfer_status);
703                 residual = ld_le16(&cp->res_count);
704                 if ((stat & ACTIVE) == 0)
705                         break;
706                 nb = RX_BUFLEN - residual - 2;
707                 if (nb < (ETHERMINPACKET - ETHERCRC)) {
708                         skb = NULL;
709                         dev->stats.rx_length_errors++;
710                         dev->stats.rx_errors++;
711                 } else {
712                         skb = bp->rx_bufs[i];
713                         bp->rx_bufs[i] = NULL;
714                 }
715                 if (skb != NULL) {
716                         nb -= ETHERCRC;
717                         skb_put(skb, nb);
718                         skb->protocol = eth_type_trans(skb, dev);
719                         netif_rx(skb);
720                         ++dev->stats.rx_packets;
721                         dev->stats.rx_bytes += nb;
722                 } else {
723                         ++dev->stats.rx_dropped;
724                 }
725                 if ((skb = bp->rx_bufs[i]) == NULL) {
726                         bp->rx_bufs[i] = skb = dev_alloc_skb(RX_BUFLEN+2);
727                         if (skb != NULL)
728                                 skb_reserve(bp->rx_bufs[i], 2);
729                 }
730                 bmac_construct_rxbuff(skb, &bp->rx_cmds[i]);
731                 st_le16(&cp->res_count, 0);
732                 st_le16(&cp->xfer_status, 0);
733                 last = i;
734                 if (++i >= N_RX_RING) i = 0;
735         }
736
737         if (last != -1) {
738                 bp->rx_fill = last;
739                 bp->rx_empty = i;
740         }
741
742         dbdma_continue(rd);
743         spin_unlock_irqrestore(&bp->lock, flags);
744
745         if (rxintcount < 10) {
746                 XXDEBUG(("bmac_rxdma_intr done\n"));
747         }
748         return IRQ_HANDLED;
749 }
750
751 static int txintcount;
752
753 static irqreturn_t bmac_txdma_intr(int irq, void *dev_id)
754 {
755         struct net_device *dev = (struct net_device *) dev_id;
756         struct bmac_data *bp = netdev_priv(dev);
757         volatile struct dbdma_cmd *cp;
758         int stat;
759         unsigned long flags;
760
761         spin_lock_irqsave(&bp->lock, flags);
762
763         if (txintcount++ < 10) {
764                 XXDEBUG(("bmac_txdma_intr\n"));
765         }
766
767         /*     del_timer(&bp->tx_timeout); */
768         /*     bp->timeout_active = 0; */
769
770         while (1) {
771                 cp = &bp->tx_cmds[bp->tx_empty];
772                 stat = ld_le16(&cp->xfer_status);
773                 if (txintcount < 10) {
774                         XXDEBUG(("bmac_txdma_xfer_stat=%#0x\n", stat));
775                 }
776                 if (!(stat & ACTIVE)) {
777                         /*
778                          * status field might not have been filled by DBDMA
779                          */
780                         if (cp == bus_to_virt(in_le32(&bp->tx_dma->cmdptr)))
781                                 break;
782                 }
783
784                 if (bp->tx_bufs[bp->tx_empty]) {
785                         ++dev->stats.tx_packets;
786                         dev_kfree_skb_irq(bp->tx_bufs[bp->tx_empty]);
787                 }
788                 bp->tx_bufs[bp->tx_empty] = NULL;
789                 bp->tx_fullup = 0;
790                 netif_wake_queue(dev);
791                 if (++bp->tx_empty >= N_TX_RING)
792                         bp->tx_empty = 0;
793                 if (bp->tx_empty == bp->tx_fill)
794                         break;
795         }
796
797         spin_unlock_irqrestore(&bp->lock, flags);
798
799         if (txintcount < 10) {
800                 XXDEBUG(("bmac_txdma_intr done->bmac_start\n"));
801         }
802
803         bmac_start(dev);
804         return IRQ_HANDLED;
805 }
806
807 #ifndef SUNHME_MULTICAST
808 /* Real fast bit-reversal algorithm, 6-bit values */
809 static int reverse6[64] = {
810         0x0,0x20,0x10,0x30,0x8,0x28,0x18,0x38,
811         0x4,0x24,0x14,0x34,0xc,0x2c,0x1c,0x3c,
812         0x2,0x22,0x12,0x32,0xa,0x2a,0x1a,0x3a,
813         0x6,0x26,0x16,0x36,0xe,0x2e,0x1e,0x3e,
814         0x1,0x21,0x11,0x31,0x9,0x29,0x19,0x39,
815         0x5,0x25,0x15,0x35,0xd,0x2d,0x1d,0x3d,
816         0x3,0x23,0x13,0x33,0xb,0x2b,0x1b,0x3b,
817         0x7,0x27,0x17,0x37,0xf,0x2f,0x1f,0x3f
818 };
819
820 static unsigned int
821 crc416(unsigned int curval, unsigned short nxtval)
822 {
823         register unsigned int counter, cur = curval, next = nxtval;
824         register int high_crc_set, low_data_set;
825
826         /* Swap bytes */
827         next = ((next & 0x00FF) << 8) | (next >> 8);
828
829         /* Compute bit-by-bit */
830         for (counter = 0; counter < 16; ++counter) {
831                 /* is high CRC bit set? */
832                 if ((cur & 0x80000000) == 0) high_crc_set = 0;
833                 else high_crc_set = 1;
834
835                 cur = cur << 1;
836
837                 if ((next & 0x0001) == 0) low_data_set = 0;
838                 else low_data_set = 1;
839
840                 next = next >> 1;
841
842                 /* do the XOR */
843                 if (high_crc_set ^ low_data_set) cur = cur ^ ENET_CRCPOLY;
844         }
845         return cur;
846 }
847
848 static unsigned int
849 bmac_crc(unsigned short *address)
850 {
851         unsigned int newcrc;
852
853         XXDEBUG(("bmac_crc: addr=%#04x, %#04x, %#04x\n", *address, address[1], address[2]));
854         newcrc = crc416(0xffffffff, *address);  /* address bits 47 - 32 */
855         newcrc = crc416(newcrc, address[1]);    /* address bits 31 - 16 */
856         newcrc = crc416(newcrc, address[2]);    /* address bits 15 - 0  */
857
858         return(newcrc);
859 }
860
861 /*
862  * Add requested mcast addr to BMac's hash table filter.
863  *
864  */
865
866 static void
867 bmac_addhash(struct bmac_data *bp, unsigned char *addr)
868 {
869         unsigned int     crc;
870         unsigned short   mask;
871
872         if (!(*addr)) return;
873         crc = bmac_crc((unsigned short *)addr) & 0x3f; /* Big-endian alert! */
874         crc = reverse6[crc];    /* Hyperfast bit-reversing algorithm */
875         if (bp->hash_use_count[crc]++) return; /* This bit is already set */
876         mask = crc % 16;
877         mask = (unsigned char)1 << mask;
878         bp->hash_use_count[crc/16] |= mask;
879 }
880
881 static void
882 bmac_removehash(struct bmac_data *bp, unsigned char *addr)
883 {
884         unsigned int crc;
885         unsigned char mask;
886
887         /* Now, delete the address from the filter copy, as indicated */
888         crc = bmac_crc((unsigned short *)addr) & 0x3f; /* Big-endian alert! */
889         crc = reverse6[crc];    /* Hyperfast bit-reversing algorithm */
890         if (bp->hash_use_count[crc] == 0) return; /* That bit wasn't in use! */
891         if (--bp->hash_use_count[crc]) return; /* That bit is still in use */
892         mask = crc % 16;
893         mask = ((unsigned char)1 << mask) ^ 0xffff; /* To turn off bit */
894         bp->hash_table_mask[crc/16] &= mask;
895 }
896
897 /*
898  * Sync the adapter with the software copy of the multicast mask
899  *  (logical address filter).
900  */
901
902 static void
903 bmac_rx_off(struct net_device *dev)
904 {
905         unsigned short rx_cfg;
906
907         rx_cfg = bmread(dev, RXCFG);
908         rx_cfg &= ~RxMACEnable;
909         bmwrite(dev, RXCFG, rx_cfg);
910         do {
911                 rx_cfg = bmread(dev, RXCFG);
912         }  while (rx_cfg & RxMACEnable);
913 }
914
915 unsigned short
916 bmac_rx_on(struct net_device *dev, int hash_enable, int promisc_enable)
917 {
918         unsigned short rx_cfg;
919
920         rx_cfg = bmread(dev, RXCFG);
921         rx_cfg |= RxMACEnable;
922         if (hash_enable) rx_cfg |= RxHashFilterEnable;
923         else rx_cfg &= ~RxHashFilterEnable;
924         if (promisc_enable) rx_cfg |= RxPromiscEnable;
925         else rx_cfg &= ~RxPromiscEnable;
926         bmwrite(dev, RXRST, RxResetValue);
927         bmwrite(dev, RXFIFOCSR, 0);     /* first disable rxFIFO */
928         bmwrite(dev, RXFIFOCSR, RxFIFOEnable );
929         bmwrite(dev, RXCFG, rx_cfg );
930         return rx_cfg;
931 }
932
933 static void
934 bmac_update_hash_table_mask(struct net_device *dev, struct bmac_data *bp)
935 {
936         bmwrite(dev, BHASH3, bp->hash_table_mask[0]); /* bits 15 - 0 */
937         bmwrite(dev, BHASH2, bp->hash_table_mask[1]); /* bits 31 - 16 */
938         bmwrite(dev, BHASH1, bp->hash_table_mask[2]); /* bits 47 - 32 */
939         bmwrite(dev, BHASH0, bp->hash_table_mask[3]); /* bits 63 - 48 */
940 }
941
942 #if 0
943 static void
944 bmac_add_multi(struct net_device *dev,
945                struct bmac_data *bp, unsigned char *addr)
946 {
947         /* XXDEBUG(("bmac: enter bmac_add_multi\n")); */
948         bmac_addhash(bp, addr);
949         bmac_rx_off(dev);
950         bmac_update_hash_table_mask(dev, bp);
951         bmac_rx_on(dev, 1, (dev->flags & IFF_PROMISC)? 1 : 0);
952         /* XXDEBUG(("bmac: exit bmac_add_multi\n")); */
953 }
954
955 static void
956 bmac_remove_multi(struct net_device *dev,
957                   struct bmac_data *bp, unsigned char *addr)
958 {
959         bmac_removehash(bp, addr);
960         bmac_rx_off(dev);
961         bmac_update_hash_table_mask(dev, bp);
962         bmac_rx_on(dev, 1, (dev->flags & IFF_PROMISC)? 1 : 0);
963 }
964 #endif
965
966 /* Set or clear the multicast filter for this adaptor.
967     num_addrs == -1     Promiscuous mode, receive all packets
968     num_addrs == 0      Normal mode, clear multicast list
969     num_addrs > 0       Multicast mode, receive normal and MC packets, and do
970                         best-effort filtering.
971  */
972 static void bmac_set_multicast(struct net_device *dev)
973 {
974         struct dev_mc_list *dmi;
975         struct bmac_data *bp = netdev_priv(dev);
976         int num_addrs = netdev_mc_count(dev);
977         unsigned short rx_cfg;
978         int i;
979
980         if (bp->sleeping)
981                 return;
982
983         XXDEBUG(("bmac: enter bmac_set_multicast, n_addrs=%d\n", num_addrs));
984
985         if((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) {
986                 for (i=0; i<4; i++) bp->hash_table_mask[i] = 0xffff;
987                 bmac_update_hash_table_mask(dev, bp);
988                 rx_cfg = bmac_rx_on(dev, 1, 0);
989                 XXDEBUG(("bmac: all multi, rx_cfg=%#08x\n"));
990         } else if ((dev->flags & IFF_PROMISC) || (num_addrs < 0)) {
991                 rx_cfg = bmread(dev, RXCFG);
992                 rx_cfg |= RxPromiscEnable;
993                 bmwrite(dev, RXCFG, rx_cfg);
994                 rx_cfg = bmac_rx_on(dev, 0, 1);
995                 XXDEBUG(("bmac: promisc mode enabled, rx_cfg=%#08x\n", rx_cfg));
996         } else {
997                 for (i=0; i<4; i++) bp->hash_table_mask[i] = 0;
998                 for (i=0; i<64; i++) bp->hash_use_count[i] = 0;
999                 if (num_addrs == 0) {
1000                         rx_cfg = bmac_rx_on(dev, 0, 0);
1001                         XXDEBUG(("bmac: multi disabled, rx_cfg=%#08x\n", rx_cfg));
1002                 } else {
1003                         netdev_for_each_mc_addr(dmi, dev)
1004                                 bmac_addhash(bp, dmi->dmi_addr);
1005                         bmac_update_hash_table_mask(dev, bp);
1006                         rx_cfg = bmac_rx_on(dev, 1, 0);
1007                         XXDEBUG(("bmac: multi enabled, rx_cfg=%#08x\n", rx_cfg));
1008                 }
1009         }
1010         /* XXDEBUG(("bmac: exit bmac_set_multicast\n")); */
1011 }
1012 #else /* ifdef SUNHME_MULTICAST */
1013
1014 /* The version of set_multicast below was lifted from sunhme.c */
1015
1016 static void bmac_set_multicast(struct net_device *dev)
1017 {
1018         struct dev_mc_list *dmi;
1019         char *addrs;
1020         int i;
1021         unsigned short rx_cfg;
1022         u32 crc;
1023
1024         if((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) {
1025                 bmwrite(dev, BHASH0, 0xffff);
1026                 bmwrite(dev, BHASH1, 0xffff);
1027                 bmwrite(dev, BHASH2, 0xffff);
1028                 bmwrite(dev, BHASH3, 0xffff);
1029         } else if(dev->flags & IFF_PROMISC) {
1030                 rx_cfg = bmread(dev, RXCFG);
1031                 rx_cfg |= RxPromiscEnable;
1032                 bmwrite(dev, RXCFG, rx_cfg);
1033         } else {
1034                 u16 hash_table[4];
1035
1036                 rx_cfg = bmread(dev, RXCFG);
1037                 rx_cfg &= ~RxPromiscEnable;
1038                 bmwrite(dev, RXCFG, rx_cfg);
1039
1040                 for(i = 0; i < 4; i++) hash_table[i] = 0;
1041
1042                 netdev_for_each_mc_addr(dmi, dev) {
1043                         addrs = dmi->dmi_addr;
1044
1045                         if(!(*addrs & 1))
1046                                 continue;
1047
1048                         crc = ether_crc_le(6, addrs);
1049                         crc >>= 26;
1050                         hash_table[crc >> 4] |= 1 << (crc & 0xf);
1051                 }
1052                 bmwrite(dev, BHASH0, hash_table[0]);
1053                 bmwrite(dev, BHASH1, hash_table[1]);
1054                 bmwrite(dev, BHASH2, hash_table[2]);
1055                 bmwrite(dev, BHASH3, hash_table[3]);
1056         }
1057 }
1058 #endif /* SUNHME_MULTICAST */
1059
1060 static int miscintcount;
1061
1062 static irqreturn_t bmac_misc_intr(int irq, void *dev_id)
1063 {
1064         struct net_device *dev = (struct net_device *) dev_id;
1065         unsigned int status = bmread(dev, STATUS);
1066         if (miscintcount++ < 10) {
1067                 XXDEBUG(("bmac_misc_intr\n"));
1068         }
1069         /* XXDEBUG(("bmac_misc_intr, status=%#08x\n", status)); */
1070         /*     bmac_txdma_intr_inner(irq, dev_id); */
1071         /*   if (status & FrameReceived) dev->stats.rx_dropped++; */
1072         if (status & RxErrorMask) dev->stats.rx_errors++;
1073         if (status & RxCRCCntExp) dev->stats.rx_crc_errors++;
1074         if (status & RxLenCntExp) dev->stats.rx_length_errors++;
1075         if (status & RxOverFlow) dev->stats.rx_over_errors++;
1076         if (status & RxAlignCntExp) dev->stats.rx_frame_errors++;
1077
1078         /*   if (status & FrameSent) dev->stats.tx_dropped++; */
1079         if (status & TxErrorMask) dev->stats.tx_errors++;
1080         if (status & TxUnderrun) dev->stats.tx_fifo_errors++;
1081         if (status & TxNormalCollExp) dev->stats.collisions++;
1082         return IRQ_HANDLED;
1083 }
1084
1085 /*
1086  * Procedure for reading EEPROM
1087  */
1088 #define SROMAddressLength       5
1089 #define DataInOn                0x0008
1090 #define DataInOff               0x0000
1091 #define Clk                     0x0002
1092 #define ChipSelect              0x0001
1093 #define SDIShiftCount           3
1094 #define SD0ShiftCount           2
1095 #define DelayValue              1000    /* number of microseconds */
1096 #define SROMStartOffset         10      /* this is in words */
1097 #define SROMReadCount           3       /* number of words to read from SROM */
1098 #define SROMAddressBits         6
1099 #define EnetAddressOffset       20
1100
1101 static unsigned char
1102 bmac_clock_out_bit(struct net_device *dev)
1103 {
1104         unsigned short         data;
1105         unsigned short         val;
1106
1107         bmwrite(dev, SROMCSR, ChipSelect | Clk);
1108         udelay(DelayValue);
1109
1110         data = bmread(dev, SROMCSR);
1111         udelay(DelayValue);
1112         val = (data >> SD0ShiftCount) & 1;
1113
1114         bmwrite(dev, SROMCSR, ChipSelect);
1115         udelay(DelayValue);
1116
1117         return val;
1118 }
1119
1120 static void
1121 bmac_clock_in_bit(struct net_device *dev, unsigned int val)
1122 {
1123         unsigned short data;
1124
1125         if (val != 0 && val != 1) return;
1126
1127         data = (val << SDIShiftCount);
1128         bmwrite(dev, SROMCSR, data | ChipSelect  );
1129         udelay(DelayValue);
1130
1131         bmwrite(dev, SROMCSR, data | ChipSelect | Clk );
1132         udelay(DelayValue);
1133
1134         bmwrite(dev, SROMCSR, data | ChipSelect);
1135         udelay(DelayValue);
1136 }
1137
1138 static void
1139 reset_and_select_srom(struct net_device *dev)
1140 {
1141         /* first reset */
1142         bmwrite(dev, SROMCSR, 0);
1143         udelay(DelayValue);
1144
1145         /* send it the read command (110) */
1146         bmac_clock_in_bit(dev, 1);
1147         bmac_clock_in_bit(dev, 1);
1148         bmac_clock_in_bit(dev, 0);
1149 }
1150
1151 static unsigned short
1152 read_srom(struct net_device *dev, unsigned int addr, unsigned int addr_len)
1153 {
1154         unsigned short data, val;
1155         int i;
1156
1157         /* send out the address we want to read from */
1158         for (i = 0; i < addr_len; i++)  {
1159                 val = addr >> (addr_len-i-1);
1160                 bmac_clock_in_bit(dev, val & 1);
1161         }
1162
1163         /* Now read in the 16-bit data */
1164         data = 0;
1165         for (i = 0; i < 16; i++)        {
1166                 val = bmac_clock_out_bit(dev);
1167                 data <<= 1;
1168                 data |= val;
1169         }
1170         bmwrite(dev, SROMCSR, 0);
1171
1172         return data;
1173 }
1174
1175 /*
1176  * It looks like Cogent and SMC use different methods for calculating
1177  * checksums. What a pain..
1178  */
1179
1180 static int
1181 bmac_verify_checksum(struct net_device *dev)
1182 {
1183         unsigned short data, storedCS;
1184
1185         reset_and_select_srom(dev);
1186         data = read_srom(dev, 3, SROMAddressBits);
1187         storedCS = ((data >> 8) & 0x0ff) | ((data << 8) & 0xff00);
1188
1189         return 0;
1190 }
1191
1192
1193 static void
1194 bmac_get_station_address(struct net_device *dev, unsigned char *ea)
1195 {
1196         int i;
1197         unsigned short data;
1198
1199         for (i = 0; i < 6; i++)
1200                 {
1201                         reset_and_select_srom(dev);
1202                         data = read_srom(dev, i + EnetAddressOffset/2, SROMAddressBits);
1203                         ea[2*i]   = bitrev8(data & 0x0ff);
1204                         ea[2*i+1] = bitrev8((data >> 8) & 0x0ff);
1205                 }
1206 }
1207
1208 static void bmac_reset_and_enable(struct net_device *dev)
1209 {
1210         struct bmac_data *bp = netdev_priv(dev);
1211         unsigned long flags;
1212         struct sk_buff *skb;
1213         unsigned char *data;
1214
1215         spin_lock_irqsave(&bp->lock, flags);
1216         bmac_enable_and_reset_chip(dev);
1217         bmac_init_tx_ring(bp);
1218         bmac_init_rx_ring(bp);
1219         bmac_init_chip(dev);
1220         bmac_start_chip(dev);
1221         bmwrite(dev, INTDISABLE, EnableNormal);
1222         bp->sleeping = 0;
1223
1224         /*
1225          * It seems that the bmac can't receive until it's transmitted
1226          * a packet.  So we give it a dummy packet to transmit.
1227          */
1228         skb = dev_alloc_skb(ETHERMINPACKET);
1229         if (skb != NULL) {
1230                 data = skb_put(skb, ETHERMINPACKET);
1231                 memset(data, 0, ETHERMINPACKET);
1232                 memcpy(data, dev->dev_addr, 6);
1233                 memcpy(data+6, dev->dev_addr, 6);
1234                 bmac_transmit_packet(skb, dev);
1235         }
1236         spin_unlock_irqrestore(&bp->lock, flags);
1237 }
1238 static void bmac_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1239 {
1240         struct bmac_data *bp = netdev_priv(dev);
1241         strcpy(info->driver, "bmac");
1242         strcpy(info->bus_info, dev_name(&bp->mdev->ofdev.dev));
1243 }
1244
1245 static const struct ethtool_ops bmac_ethtool_ops = {
1246         .get_drvinfo            = bmac_get_drvinfo,
1247         .get_link               = ethtool_op_get_link,
1248 };
1249
1250 static const struct net_device_ops bmac_netdev_ops = {
1251         .ndo_open               = bmac_open,
1252         .ndo_stop               = bmac_close,
1253         .ndo_start_xmit         = bmac_output,
1254         .ndo_set_multicast_list = bmac_set_multicast,
1255         .ndo_set_mac_address    = bmac_set_address,
1256         .ndo_change_mtu         = eth_change_mtu,
1257         .ndo_validate_addr      = eth_validate_addr,
1258 };
1259
1260 static int __devinit bmac_probe(struct macio_dev *mdev, const struct of_device_id *match)
1261 {
1262         int j, rev, ret;
1263         struct bmac_data *bp;
1264         const unsigned char *prop_addr;
1265         unsigned char addr[6];
1266         struct net_device *dev;
1267         int is_bmac_plus = ((int)match->data) != 0;
1268
1269         if (macio_resource_count(mdev) != 3 || macio_irq_count(mdev) != 3) {
1270                 printk(KERN_ERR "BMAC: can't use, need 3 addrs and 3 intrs\n");
1271                 return -ENODEV;
1272         }
1273         prop_addr = of_get_property(macio_get_of_node(mdev),
1274                         "mac-address", NULL);
1275         if (prop_addr == NULL) {
1276                 prop_addr = of_get_property(macio_get_of_node(mdev),
1277                                 "local-mac-address", NULL);
1278                 if (prop_addr == NULL) {
1279                         printk(KERN_ERR "BMAC: Can't get mac-address\n");
1280                         return -ENODEV;
1281                 }
1282         }
1283         memcpy(addr, prop_addr, sizeof(addr));
1284
1285         dev = alloc_etherdev(PRIV_BYTES);
1286         if (!dev) {
1287                 printk(KERN_ERR "BMAC: alloc_etherdev failed, out of memory\n");
1288                 return -ENOMEM;
1289         }
1290
1291         bp = netdev_priv(dev);
1292         SET_NETDEV_DEV(dev, &mdev->ofdev.dev);
1293         macio_set_drvdata(mdev, dev);
1294
1295         bp->mdev = mdev;
1296         spin_lock_init(&bp->lock);
1297
1298         if (macio_request_resources(mdev, "bmac")) {
1299                 printk(KERN_ERR "BMAC: can't request IO resource !\n");
1300                 goto out_free;
1301         }
1302
1303         dev->base_addr = (unsigned long)
1304                 ioremap(macio_resource_start(mdev, 0), macio_resource_len(mdev, 0));
1305         if (dev->base_addr == 0)
1306                 goto out_release;
1307
1308         dev->irq = macio_irq(mdev, 0);
1309
1310         bmac_enable_and_reset_chip(dev);
1311         bmwrite(dev, INTDISABLE, DisableAll);
1312
1313         rev = addr[0] == 0 && addr[1] == 0xA0;
1314         for (j = 0; j < 6; ++j)
1315                 dev->dev_addr[j] = rev ? bitrev8(addr[j]): addr[j];
1316
1317         /* Enable chip without interrupts for now */
1318         bmac_enable_and_reset_chip(dev);
1319         bmwrite(dev, INTDISABLE, DisableAll);
1320
1321         dev->netdev_ops = &bmac_netdev_ops;
1322         dev->ethtool_ops = &bmac_ethtool_ops;
1323
1324         bmac_get_station_address(dev, addr);
1325         if (bmac_verify_checksum(dev) != 0)
1326                 goto err_out_iounmap;
1327
1328         bp->is_bmac_plus = is_bmac_plus;
1329         bp->tx_dma = ioremap(macio_resource_start(mdev, 1), macio_resource_len(mdev, 1));
1330         if (!bp->tx_dma)
1331                 goto err_out_iounmap;
1332         bp->tx_dma_intr = macio_irq(mdev, 1);
1333         bp->rx_dma = ioremap(macio_resource_start(mdev, 2), macio_resource_len(mdev, 2));
1334         if (!bp->rx_dma)
1335                 goto err_out_iounmap_tx;
1336         bp->rx_dma_intr = macio_irq(mdev, 2);
1337
1338         bp->tx_cmds = (volatile struct dbdma_cmd *) DBDMA_ALIGN(bp + 1);
1339         bp->rx_cmds = bp->tx_cmds + N_TX_RING + 1;
1340
1341         bp->queue = (struct sk_buff_head *)(bp->rx_cmds + N_RX_RING + 1);
1342         skb_queue_head_init(bp->queue);
1343
1344         init_timer(&bp->tx_timeout);
1345
1346         ret = request_irq(dev->irq, bmac_misc_intr, 0, "BMAC-misc", dev);
1347         if (ret) {
1348                 printk(KERN_ERR "BMAC: can't get irq %d\n", dev->irq);
1349                 goto err_out_iounmap_rx;
1350         }
1351         ret = request_irq(bp->tx_dma_intr, bmac_txdma_intr, 0, "BMAC-txdma", dev);
1352         if (ret) {
1353                 printk(KERN_ERR "BMAC: can't get irq %d\n", bp->tx_dma_intr);
1354                 goto err_out_irq0;
1355         }
1356         ret = request_irq(bp->rx_dma_intr, bmac_rxdma_intr, 0, "BMAC-rxdma", dev);
1357         if (ret) {
1358                 printk(KERN_ERR "BMAC: can't get irq %d\n", bp->rx_dma_intr);
1359                 goto err_out_irq1;
1360         }
1361
1362         /* Mask chip interrupts and disable chip, will be
1363          * re-enabled on open()
1364          */
1365         disable_irq(dev->irq);
1366         pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1367
1368         if (register_netdev(dev) != 0) {
1369                 printk(KERN_ERR "BMAC: Ethernet registration failed\n");
1370                 goto err_out_irq2;
1371         }
1372
1373         printk(KERN_INFO "%s: BMAC%s at %pM",
1374                dev->name, (is_bmac_plus ? "+" : ""), dev->dev_addr);
1375         XXDEBUG((", base_addr=%#0lx", dev->base_addr));
1376         printk("\n");
1377
1378         return 0;
1379
1380 err_out_irq2:
1381         free_irq(bp->rx_dma_intr, dev);
1382 err_out_irq1:
1383         free_irq(bp->tx_dma_intr, dev);
1384 err_out_irq0:
1385         free_irq(dev->irq, dev);
1386 err_out_iounmap_rx:
1387         iounmap(bp->rx_dma);
1388 err_out_iounmap_tx:
1389         iounmap(bp->tx_dma);
1390 err_out_iounmap:
1391         iounmap((void __iomem *)dev->base_addr);
1392 out_release:
1393         macio_release_resources(mdev);
1394 out_free:
1395         pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1396         free_netdev(dev);
1397
1398         return -ENODEV;
1399 }
1400
1401 static int bmac_open(struct net_device *dev)
1402 {
1403         struct bmac_data *bp = netdev_priv(dev);
1404         /* XXDEBUG(("bmac: enter open\n")); */
1405         /* reset the chip */
1406         bp->opened = 1;
1407         bmac_reset_and_enable(dev);
1408         enable_irq(dev->irq);
1409         return 0;
1410 }
1411
1412 static int bmac_close(struct net_device *dev)
1413 {
1414         struct bmac_data *bp = netdev_priv(dev);
1415         volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
1416         volatile struct dbdma_regs __iomem *td = bp->tx_dma;
1417         unsigned short config;
1418         int i;
1419
1420         bp->sleeping = 1;
1421
1422         /* disable rx and tx */
1423         config = bmread(dev, RXCFG);
1424         bmwrite(dev, RXCFG, (config & ~RxMACEnable));
1425
1426         config = bmread(dev, TXCFG);
1427         bmwrite(dev, TXCFG, (config & ~TxMACEnable));
1428
1429         bmwrite(dev, INTDISABLE, DisableAll); /* disable all intrs */
1430
1431         /* disable rx and tx dma */
1432         st_le32(&rd->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE));       /* clear run bit */
1433         st_le32(&td->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE));       /* clear run bit */
1434
1435         /* free some skb's */
1436         XXDEBUG(("bmac: free rx bufs\n"));
1437         for (i=0; i<N_RX_RING; i++) {
1438                 if (bp->rx_bufs[i] != NULL) {
1439                         dev_kfree_skb(bp->rx_bufs[i]);
1440                         bp->rx_bufs[i] = NULL;
1441                 }
1442         }
1443         XXDEBUG(("bmac: free tx bufs\n"));
1444         for (i = 0; i<N_TX_RING; i++) {
1445                 if (bp->tx_bufs[i] != NULL) {
1446                         dev_kfree_skb(bp->tx_bufs[i]);
1447                         bp->tx_bufs[i] = NULL;
1448                 }
1449         }
1450         XXDEBUG(("bmac: all bufs freed\n"));
1451
1452         bp->opened = 0;
1453         disable_irq(dev->irq);
1454         pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1455
1456         return 0;
1457 }
1458
1459 static void
1460 bmac_start(struct net_device *dev)
1461 {
1462         struct bmac_data *bp = netdev_priv(dev);
1463         int i;
1464         struct sk_buff *skb;
1465         unsigned long flags;
1466
1467         if (bp->sleeping)
1468                 return;
1469
1470         spin_lock_irqsave(&bp->lock, flags);
1471         while (1) {
1472                 i = bp->tx_fill + 1;
1473                 if (i >= N_TX_RING)
1474                         i = 0;
1475                 if (i == bp->tx_empty)
1476                         break;
1477                 skb = skb_dequeue(bp->queue);
1478                 if (skb == NULL)
1479                         break;
1480                 bmac_transmit_packet(skb, dev);
1481         }
1482         spin_unlock_irqrestore(&bp->lock, flags);
1483 }
1484
1485 static int
1486 bmac_output(struct sk_buff *skb, struct net_device *dev)
1487 {
1488         struct bmac_data *bp = netdev_priv(dev);
1489         skb_queue_tail(bp->queue, skb);
1490         bmac_start(dev);
1491         return NETDEV_TX_OK;
1492 }
1493
1494 static void bmac_tx_timeout(unsigned long data)
1495 {
1496         struct net_device *dev = (struct net_device *) data;
1497         struct bmac_data *bp = netdev_priv(dev);
1498         volatile struct dbdma_regs __iomem *td = bp->tx_dma;
1499         volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
1500         volatile struct dbdma_cmd *cp;
1501         unsigned long flags;
1502         unsigned short config, oldConfig;
1503         int i;
1504
1505         XXDEBUG(("bmac: tx_timeout called\n"));
1506         spin_lock_irqsave(&bp->lock, flags);
1507         bp->timeout_active = 0;
1508
1509         /* update various counters */
1510 /*      bmac_handle_misc_intrs(bp, 0); */
1511
1512         cp = &bp->tx_cmds[bp->tx_empty];
1513 /*      XXDEBUG((KERN_DEBUG "bmac: tx dmastat=%x %x runt=%d pr=%x fs=%x fc=%x\n", */
1514 /*         ld_le32(&td->status), ld_le16(&cp->xfer_status), bp->tx_bad_runt, */
1515 /*         mb->pr, mb->xmtfs, mb->fifofc)); */
1516
1517         /* turn off both tx and rx and reset the chip */
1518         config = bmread(dev, RXCFG);
1519         bmwrite(dev, RXCFG, (config & ~RxMACEnable));
1520         config = bmread(dev, TXCFG);
1521         bmwrite(dev, TXCFG, (config & ~TxMACEnable));
1522         out_le32(&td->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE|ACTIVE|DEAD));
1523         printk(KERN_ERR "bmac: transmit timeout - resetting\n");
1524         bmac_enable_and_reset_chip(dev);
1525
1526         /* restart rx dma */
1527         cp = bus_to_virt(ld_le32(&rd->cmdptr));
1528         out_le32(&rd->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE|ACTIVE|DEAD));
1529         out_le16(&cp->xfer_status, 0);
1530         out_le32(&rd->cmdptr, virt_to_bus(cp));
1531         out_le32(&rd->control, DBDMA_SET(RUN|WAKE));
1532
1533         /* fix up the transmit side */
1534         XXDEBUG((KERN_DEBUG "bmac: tx empty=%d fill=%d fullup=%d\n",
1535                  bp->tx_empty, bp->tx_fill, bp->tx_fullup));
1536         i = bp->tx_empty;
1537         ++dev->stats.tx_errors;
1538         if (i != bp->tx_fill) {
1539                 dev_kfree_skb(bp->tx_bufs[i]);
1540                 bp->tx_bufs[i] = NULL;
1541                 if (++i >= N_TX_RING) i = 0;
1542                 bp->tx_empty = i;
1543         }
1544         bp->tx_fullup = 0;
1545         netif_wake_queue(dev);
1546         if (i != bp->tx_fill) {
1547                 cp = &bp->tx_cmds[i];
1548                 out_le16(&cp->xfer_status, 0);
1549                 out_le16(&cp->command, OUTPUT_LAST);
1550                 out_le32(&td->cmdptr, virt_to_bus(cp));
1551                 out_le32(&td->control, DBDMA_SET(RUN));
1552                 /*      bmac_set_timeout(dev); */
1553                 XXDEBUG((KERN_DEBUG "bmac: starting %d\n", i));
1554         }
1555
1556         /* turn it back on */
1557         oldConfig = bmread(dev, RXCFG);
1558         bmwrite(dev, RXCFG, oldConfig | RxMACEnable );
1559         oldConfig = bmread(dev, TXCFG);
1560         bmwrite(dev, TXCFG, oldConfig | TxMACEnable );
1561
1562         spin_unlock_irqrestore(&bp->lock, flags);
1563 }
1564
1565 #if 0
1566 static void dump_dbdma(volatile struct dbdma_cmd *cp,int count)
1567 {
1568         int i,*ip;
1569
1570         for (i=0;i< count;i++) {
1571                 ip = (int*)(cp+i);
1572
1573                 printk("dbdma req 0x%x addr 0x%x baddr 0x%x xfer/res 0x%x\n",
1574                        ld_le32(ip+0),
1575                        ld_le32(ip+1),
1576                        ld_le32(ip+2),
1577                        ld_le32(ip+3));
1578         }
1579
1580 }
1581 #endif
1582
1583 #if 0
1584 static int
1585 bmac_proc_info(char *buffer, char **start, off_t offset, int length)
1586 {
1587         int len = 0;
1588         off_t pos   = 0;
1589         off_t begin = 0;
1590         int i;
1591
1592         if (bmac_devs == NULL)
1593                 return (-ENOSYS);
1594
1595         len += sprintf(buffer, "BMAC counters & registers\n");
1596
1597         for (i = 0; i<N_REG_ENTRIES; i++) {
1598                 len += sprintf(buffer + len, "%s: %#08x\n",
1599                                reg_entries[i].name,
1600                                bmread(bmac_devs, reg_entries[i].reg_offset));
1601                 pos = begin + len;
1602
1603                 if (pos < offset) {
1604                         len = 0;
1605                         begin = pos;
1606                 }
1607
1608                 if (pos > offset+length) break;
1609         }
1610
1611         *start = buffer + (offset - begin);
1612         len -= (offset - begin);
1613
1614         if (len > length) len = length;
1615
1616         return len;
1617 }
1618 #endif
1619
1620 static int __devexit bmac_remove(struct macio_dev *mdev)
1621 {
1622         struct net_device *dev = macio_get_drvdata(mdev);
1623         struct bmac_data *bp = netdev_priv(dev);
1624
1625         unregister_netdev(dev);
1626
1627         free_irq(dev->irq, dev);
1628         free_irq(bp->tx_dma_intr, dev);
1629         free_irq(bp->rx_dma_intr, dev);
1630
1631         iounmap((void __iomem *)dev->base_addr);
1632         iounmap(bp->tx_dma);
1633         iounmap(bp->rx_dma);
1634
1635         macio_release_resources(mdev);
1636
1637         free_netdev(dev);
1638
1639         return 0;
1640 }
1641
1642 static struct of_device_id bmac_match[] =
1643 {
1644         {
1645         .name           = "bmac",
1646         .data           = (void *)0,
1647         },
1648         {
1649         .type           = "network",
1650         .compatible     = "bmac+",
1651         .data           = (void *)1,
1652         },
1653         {},
1654 };
1655 MODULE_DEVICE_TABLE (of, bmac_match);
1656
1657 static struct macio_driver bmac_driver =
1658 {
1659         .name           = "bmac",
1660         .match_table    = bmac_match,
1661         .probe          = bmac_probe,
1662         .remove         = bmac_remove,
1663 #ifdef CONFIG_PM
1664         .suspend        = bmac_suspend,
1665         .resume         = bmac_resume,
1666 #endif
1667 };
1668
1669
1670 static int __init bmac_init(void)
1671 {
1672         if (bmac_emergency_rxbuf == NULL) {
1673                 bmac_emergency_rxbuf = kmalloc(RX_BUFLEN, GFP_KERNEL);
1674                 if (bmac_emergency_rxbuf == NULL) {
1675                         printk(KERN_ERR "BMAC: can't allocate emergency RX buffer\n");
1676                         return -ENOMEM;
1677                 }
1678         }
1679
1680         return macio_register_driver(&bmac_driver);
1681 }
1682
1683 static void __exit bmac_exit(void)
1684 {
1685         macio_unregister_driver(&bmac_driver);
1686
1687         kfree(bmac_emergency_rxbuf);
1688         bmac_emergency_rxbuf = NULL;
1689 }
1690
1691 MODULE_AUTHOR("Randy Gobbel/Paul Mackerras");
1692 MODULE_DESCRIPTION("PowerMac BMAC ethernet driver.");
1693 MODULE_LICENSE("GPL");
1694
1695 module_init(bmac_init);
1696 module_exit(bmac_exit);