ixgbe: Fixing EEH handler to handle more than one error
[linux-2.6.git] / drivers / net / bcm63xx_enet.c
1 /*
2  * Driver for BCM963xx builtin Ethernet mac
3  *
4  * Copyright (C) 2008 Maxime Bizon <mbizon@freebox.fr>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/clk.h>
23 #include <linux/etherdevice.h>
24 #include <linux/delay.h>
25 #include <linux/ethtool.h>
26 #include <linux/crc32.h>
27 #include <linux/err.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/platform_device.h>
30 #include <linux/if_vlan.h>
31
32 #include <bcm63xx_dev_enet.h>
33 #include "bcm63xx_enet.h"
34
35 static char bcm_enet_driver_name[] = "bcm63xx_enet";
36 static char bcm_enet_driver_version[] = "1.0";
37
38 static int copybreak __read_mostly = 128;
39 module_param(copybreak, int, 0);
40 MODULE_PARM_DESC(copybreak, "Receive copy threshold");
41
42 /* io memory shared between all devices */
43 static void __iomem *bcm_enet_shared_base;
44
45 /*
46  * io helpers to access mac registers
47  */
48 static inline u32 enet_readl(struct bcm_enet_priv *priv, u32 off)
49 {
50         return bcm_readl(priv->base + off);
51 }
52
53 static inline void enet_writel(struct bcm_enet_priv *priv,
54                                u32 val, u32 off)
55 {
56         bcm_writel(val, priv->base + off);
57 }
58
59 /*
60  * io helpers to access shared registers
61  */
62 static inline u32 enet_dma_readl(struct bcm_enet_priv *priv, u32 off)
63 {
64         return bcm_readl(bcm_enet_shared_base + off);
65 }
66
67 static inline void enet_dma_writel(struct bcm_enet_priv *priv,
68                                        u32 val, u32 off)
69 {
70         bcm_writel(val, bcm_enet_shared_base + off);
71 }
72
73 /*
74  * write given data into mii register and wait for transfer to end
75  * with timeout (average measured transfer time is 25us)
76  */
77 static int do_mdio_op(struct bcm_enet_priv *priv, unsigned int data)
78 {
79         int limit;
80
81         /* make sure mii interrupt status is cleared */
82         enet_writel(priv, ENET_IR_MII, ENET_IR_REG);
83
84         enet_writel(priv, data, ENET_MIIDATA_REG);
85         wmb();
86
87         /* busy wait on mii interrupt bit, with timeout */
88         limit = 1000;
89         do {
90                 if (enet_readl(priv, ENET_IR_REG) & ENET_IR_MII)
91                         break;
92                 udelay(1);
93         } while (limit-- > 0);
94
95         return (limit < 0) ? 1 : 0;
96 }
97
98 /*
99  * MII internal read callback
100  */
101 static int bcm_enet_mdio_read(struct bcm_enet_priv *priv, int mii_id,
102                               int regnum)
103 {
104         u32 tmp, val;
105
106         tmp = regnum << ENET_MIIDATA_REG_SHIFT;
107         tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT;
108         tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT;
109         tmp |= ENET_MIIDATA_OP_READ_MASK;
110
111         if (do_mdio_op(priv, tmp))
112                 return -1;
113
114         val = enet_readl(priv, ENET_MIIDATA_REG);
115         val &= 0xffff;
116         return val;
117 }
118
119 /*
120  * MII internal write callback
121  */
122 static int bcm_enet_mdio_write(struct bcm_enet_priv *priv, int mii_id,
123                                int regnum, u16 value)
124 {
125         u32 tmp;
126
127         tmp = (value & 0xffff) << ENET_MIIDATA_DATA_SHIFT;
128         tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT;
129         tmp |= regnum << ENET_MIIDATA_REG_SHIFT;
130         tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT;
131         tmp |= ENET_MIIDATA_OP_WRITE_MASK;
132
133         (void)do_mdio_op(priv, tmp);
134         return 0;
135 }
136
137 /*
138  * MII read callback from phylib
139  */
140 static int bcm_enet_mdio_read_phylib(struct mii_bus *bus, int mii_id,
141                                      int regnum)
142 {
143         return bcm_enet_mdio_read(bus->priv, mii_id, regnum);
144 }
145
146 /*
147  * MII write callback from phylib
148  */
149 static int bcm_enet_mdio_write_phylib(struct mii_bus *bus, int mii_id,
150                                       int regnum, u16 value)
151 {
152         return bcm_enet_mdio_write(bus->priv, mii_id, regnum, value);
153 }
154
155 /*
156  * MII read callback from mii core
157  */
158 static int bcm_enet_mdio_read_mii(struct net_device *dev, int mii_id,
159                                   int regnum)
160 {
161         return bcm_enet_mdio_read(netdev_priv(dev), mii_id, regnum);
162 }
163
164 /*
165  * MII write callback from mii core
166  */
167 static void bcm_enet_mdio_write_mii(struct net_device *dev, int mii_id,
168                                     int regnum, int value)
169 {
170         bcm_enet_mdio_write(netdev_priv(dev), mii_id, regnum, value);
171 }
172
173 /*
174  * refill rx queue
175  */
176 static int bcm_enet_refill_rx(struct net_device *dev)
177 {
178         struct bcm_enet_priv *priv;
179
180         priv = netdev_priv(dev);
181
182         while (priv->rx_desc_count < priv->rx_ring_size) {
183                 struct bcm_enet_desc *desc;
184                 struct sk_buff *skb;
185                 dma_addr_t p;
186                 int desc_idx;
187                 u32 len_stat;
188
189                 desc_idx = priv->rx_dirty_desc;
190                 desc = &priv->rx_desc_cpu[desc_idx];
191
192                 if (!priv->rx_skb[desc_idx]) {
193                         skb = netdev_alloc_skb(dev, priv->rx_skb_size);
194                         if (!skb)
195                                 break;
196                         priv->rx_skb[desc_idx] = skb;
197
198                         p = dma_map_single(&priv->pdev->dev, skb->data,
199                                            priv->rx_skb_size,
200                                            DMA_FROM_DEVICE);
201                         desc->address = p;
202                 }
203
204                 len_stat = priv->rx_skb_size << DMADESC_LENGTH_SHIFT;
205                 len_stat |= DMADESC_OWNER_MASK;
206                 if (priv->rx_dirty_desc == priv->rx_ring_size - 1) {
207                         len_stat |= DMADESC_WRAP_MASK;
208                         priv->rx_dirty_desc = 0;
209                 } else {
210                         priv->rx_dirty_desc++;
211                 }
212                 wmb();
213                 desc->len_stat = len_stat;
214
215                 priv->rx_desc_count++;
216
217                 /* tell dma engine we allocated one buffer */
218                 enet_dma_writel(priv, 1, ENETDMA_BUFALLOC_REG(priv->rx_chan));
219         }
220
221         /* If rx ring is still empty, set a timer to try allocating
222          * again at a later time. */
223         if (priv->rx_desc_count == 0 && netif_running(dev)) {
224                 dev_warn(&priv->pdev->dev, "unable to refill rx ring\n");
225                 priv->rx_timeout.expires = jiffies + HZ;
226                 add_timer(&priv->rx_timeout);
227         }
228
229         return 0;
230 }
231
232 /*
233  * timer callback to defer refill rx queue in case we're OOM
234  */
235 static void bcm_enet_refill_rx_timer(unsigned long data)
236 {
237         struct net_device *dev;
238         struct bcm_enet_priv *priv;
239
240         dev = (struct net_device *)data;
241         priv = netdev_priv(dev);
242
243         spin_lock(&priv->rx_lock);
244         bcm_enet_refill_rx((struct net_device *)data);
245         spin_unlock(&priv->rx_lock);
246 }
247
248 /*
249  * extract packet from rx queue
250  */
251 static int bcm_enet_receive_queue(struct net_device *dev, int budget)
252 {
253         struct bcm_enet_priv *priv;
254         struct device *kdev;
255         int processed;
256
257         priv = netdev_priv(dev);
258         kdev = &priv->pdev->dev;
259         processed = 0;
260
261         /* don't scan ring further than number of refilled
262          * descriptor */
263         if (budget > priv->rx_desc_count)
264                 budget = priv->rx_desc_count;
265
266         do {
267                 struct bcm_enet_desc *desc;
268                 struct sk_buff *skb;
269                 int desc_idx;
270                 u32 len_stat;
271                 unsigned int len;
272
273                 desc_idx = priv->rx_curr_desc;
274                 desc = &priv->rx_desc_cpu[desc_idx];
275
276                 /* make sure we actually read the descriptor status at
277                  * each loop */
278                 rmb();
279
280                 len_stat = desc->len_stat;
281
282                 /* break if dma ownership belongs to hw */
283                 if (len_stat & DMADESC_OWNER_MASK)
284                         break;
285
286                 processed++;
287                 priv->rx_curr_desc++;
288                 if (priv->rx_curr_desc == priv->rx_ring_size)
289                         priv->rx_curr_desc = 0;
290                 priv->rx_desc_count--;
291
292                 /* if the packet does not have start of packet _and_
293                  * end of packet flag set, then just recycle it */
294                 if ((len_stat & DMADESC_ESOP_MASK) != DMADESC_ESOP_MASK) {
295                         priv->stats.rx_dropped++;
296                         continue;
297                 }
298
299                 /* recycle packet if it's marked as bad */
300                 if (unlikely(len_stat & DMADESC_ERR_MASK)) {
301                         priv->stats.rx_errors++;
302
303                         if (len_stat & DMADESC_OVSIZE_MASK)
304                                 priv->stats.rx_length_errors++;
305                         if (len_stat & DMADESC_CRC_MASK)
306                                 priv->stats.rx_crc_errors++;
307                         if (len_stat & DMADESC_UNDER_MASK)
308                                 priv->stats.rx_frame_errors++;
309                         if (len_stat & DMADESC_OV_MASK)
310                                 priv->stats.rx_fifo_errors++;
311                         continue;
312                 }
313
314                 /* valid packet */
315                 skb = priv->rx_skb[desc_idx];
316                 len = (len_stat & DMADESC_LENGTH_MASK) >> DMADESC_LENGTH_SHIFT;
317                 /* don't include FCS */
318                 len -= 4;
319
320                 if (len < copybreak) {
321                         struct sk_buff *nskb;
322
323                         nskb = netdev_alloc_skb(dev, len + NET_IP_ALIGN);
324                         if (!nskb) {
325                                 /* forget packet, just rearm desc */
326                                 priv->stats.rx_dropped++;
327                                 continue;
328                         }
329
330                         /* since we're copying the data, we can align
331                          * them properly */
332                         skb_reserve(nskb, NET_IP_ALIGN);
333                         dma_sync_single_for_cpu(kdev, desc->address,
334                                                 len, DMA_FROM_DEVICE);
335                         memcpy(nskb->data, skb->data, len);
336                         dma_sync_single_for_device(kdev, desc->address,
337                                                    len, DMA_FROM_DEVICE);
338                         skb = nskb;
339                 } else {
340                         dma_unmap_single(&priv->pdev->dev, desc->address,
341                                          priv->rx_skb_size, DMA_FROM_DEVICE);
342                         priv->rx_skb[desc_idx] = NULL;
343                 }
344
345                 skb_put(skb, len);
346                 skb->dev = dev;
347                 skb->protocol = eth_type_trans(skb, dev);
348                 priv->stats.rx_packets++;
349                 priv->stats.rx_bytes += len;
350                 dev->last_rx = jiffies;
351                 netif_receive_skb(skb);
352
353         } while (--budget > 0);
354
355         if (processed || !priv->rx_desc_count) {
356                 bcm_enet_refill_rx(dev);
357
358                 /* kick rx dma */
359                 enet_dma_writel(priv, ENETDMA_CHANCFG_EN_MASK,
360                                 ENETDMA_CHANCFG_REG(priv->rx_chan));
361         }
362
363         return processed;
364 }
365
366
367 /*
368  * try to or force reclaim of transmitted buffers
369  */
370 static int bcm_enet_tx_reclaim(struct net_device *dev, int force)
371 {
372         struct bcm_enet_priv *priv;
373         int released;
374
375         priv = netdev_priv(dev);
376         released = 0;
377
378         while (priv->tx_desc_count < priv->tx_ring_size) {
379                 struct bcm_enet_desc *desc;
380                 struct sk_buff *skb;
381
382                 /* We run in a bh and fight against start_xmit, which
383                  * is called with bh disabled  */
384                 spin_lock(&priv->tx_lock);
385
386                 desc = &priv->tx_desc_cpu[priv->tx_dirty_desc];
387
388                 if (!force && (desc->len_stat & DMADESC_OWNER_MASK)) {
389                         spin_unlock(&priv->tx_lock);
390                         break;
391                 }
392
393                 /* ensure other field of the descriptor were not read
394                  * before we checked ownership */
395                 rmb();
396
397                 skb = priv->tx_skb[priv->tx_dirty_desc];
398                 priv->tx_skb[priv->tx_dirty_desc] = NULL;
399                 dma_unmap_single(&priv->pdev->dev, desc->address, skb->len,
400                                  DMA_TO_DEVICE);
401
402                 priv->tx_dirty_desc++;
403                 if (priv->tx_dirty_desc == priv->tx_ring_size)
404                         priv->tx_dirty_desc = 0;
405                 priv->tx_desc_count++;
406
407                 spin_unlock(&priv->tx_lock);
408
409                 if (desc->len_stat & DMADESC_UNDER_MASK)
410                         priv->stats.tx_errors++;
411
412                 dev_kfree_skb(skb);
413                 released++;
414         }
415
416         if (netif_queue_stopped(dev) && released)
417                 netif_wake_queue(dev);
418
419         return released;
420 }
421
422 /*
423  * poll func, called by network core
424  */
425 static int bcm_enet_poll(struct napi_struct *napi, int budget)
426 {
427         struct bcm_enet_priv *priv;
428         struct net_device *dev;
429         int tx_work_done, rx_work_done;
430
431         priv = container_of(napi, struct bcm_enet_priv, napi);
432         dev = priv->net_dev;
433
434         /* ack interrupts */
435         enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK,
436                         ENETDMA_IR_REG(priv->rx_chan));
437         enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK,
438                         ENETDMA_IR_REG(priv->tx_chan));
439
440         /* reclaim sent skb */
441         tx_work_done = bcm_enet_tx_reclaim(dev, 0);
442
443         spin_lock(&priv->rx_lock);
444         rx_work_done = bcm_enet_receive_queue(dev, budget);
445         spin_unlock(&priv->rx_lock);
446
447         if (rx_work_done >= budget || tx_work_done > 0) {
448                 /* rx/tx queue is not yet empty/clean */
449                 return rx_work_done;
450         }
451
452         /* no more packet in rx/tx queue, remove device from poll
453          * queue */
454         napi_complete(napi);
455
456         /* restore rx/tx interrupt */
457         enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK,
458                         ENETDMA_IRMASK_REG(priv->rx_chan));
459         enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK,
460                         ENETDMA_IRMASK_REG(priv->tx_chan));
461
462         return rx_work_done;
463 }
464
465 /*
466  * mac interrupt handler
467  */
468 static irqreturn_t bcm_enet_isr_mac(int irq, void *dev_id)
469 {
470         struct net_device *dev;
471         struct bcm_enet_priv *priv;
472         u32 stat;
473
474         dev = dev_id;
475         priv = netdev_priv(dev);
476
477         stat = enet_readl(priv, ENET_IR_REG);
478         if (!(stat & ENET_IR_MIB))
479                 return IRQ_NONE;
480
481         /* clear & mask interrupt */
482         enet_writel(priv, ENET_IR_MIB, ENET_IR_REG);
483         enet_writel(priv, 0, ENET_IRMASK_REG);
484
485         /* read mib registers in workqueue */
486         schedule_work(&priv->mib_update_task);
487
488         return IRQ_HANDLED;
489 }
490
491 /*
492  * rx/tx dma interrupt handler
493  */
494 static irqreturn_t bcm_enet_isr_dma(int irq, void *dev_id)
495 {
496         struct net_device *dev;
497         struct bcm_enet_priv *priv;
498
499         dev = dev_id;
500         priv = netdev_priv(dev);
501
502         /* mask rx/tx interrupts */
503         enet_dma_writel(priv, 0, ENETDMA_IRMASK_REG(priv->rx_chan));
504         enet_dma_writel(priv, 0, ENETDMA_IRMASK_REG(priv->tx_chan));
505
506         napi_schedule(&priv->napi);
507
508         return IRQ_HANDLED;
509 }
510
511 /*
512  * tx request callback
513  */
514 static int bcm_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
515 {
516         struct bcm_enet_priv *priv;
517         struct bcm_enet_desc *desc;
518         u32 len_stat;
519         int ret;
520
521         priv = netdev_priv(dev);
522
523         /* lock against tx reclaim */
524         spin_lock(&priv->tx_lock);
525
526         /* make sure  the tx hw queue  is not full,  should not happen
527          * since we stop queue before it's the case */
528         if (unlikely(!priv->tx_desc_count)) {
529                 netif_stop_queue(dev);
530                 dev_err(&priv->pdev->dev, "xmit called with no tx desc "
531                         "available?\n");
532                 ret = NETDEV_TX_BUSY;
533                 goto out_unlock;
534         }
535
536         /* point to the next available desc */
537         desc = &priv->tx_desc_cpu[priv->tx_curr_desc];
538         priv->tx_skb[priv->tx_curr_desc] = skb;
539
540         /* fill descriptor */
541         desc->address = dma_map_single(&priv->pdev->dev, skb->data, skb->len,
542                                        DMA_TO_DEVICE);
543
544         len_stat = (skb->len << DMADESC_LENGTH_SHIFT) & DMADESC_LENGTH_MASK;
545         len_stat |= DMADESC_ESOP_MASK |
546                 DMADESC_APPEND_CRC |
547                 DMADESC_OWNER_MASK;
548
549         priv->tx_curr_desc++;
550         if (priv->tx_curr_desc == priv->tx_ring_size) {
551                 priv->tx_curr_desc = 0;
552                 len_stat |= DMADESC_WRAP_MASK;
553         }
554         priv->tx_desc_count--;
555
556         /* dma might be already polling, make sure we update desc
557          * fields in correct order */
558         wmb();
559         desc->len_stat = len_stat;
560         wmb();
561
562         /* kick tx dma */
563         enet_dma_writel(priv, ENETDMA_CHANCFG_EN_MASK,
564                         ENETDMA_CHANCFG_REG(priv->tx_chan));
565
566         /* stop queue if no more desc available */
567         if (!priv->tx_desc_count)
568                 netif_stop_queue(dev);
569
570         priv->stats.tx_bytes += skb->len;
571         priv->stats.tx_packets++;
572         dev->trans_start = jiffies;
573         ret = NETDEV_TX_OK;
574
575 out_unlock:
576         spin_unlock(&priv->tx_lock);
577         return ret;
578 }
579
580 /*
581  * Change the interface's mac address.
582  */
583 static int bcm_enet_set_mac_address(struct net_device *dev, void *p)
584 {
585         struct bcm_enet_priv *priv;
586         struct sockaddr *addr = p;
587         u32 val;
588
589         priv = netdev_priv(dev);
590         memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
591
592         /* use perfect match register 0 to store my mac address */
593         val = (dev->dev_addr[2] << 24) | (dev->dev_addr[3] << 16) |
594                 (dev->dev_addr[4] << 8) | dev->dev_addr[5];
595         enet_writel(priv, val, ENET_PML_REG(0));
596
597         val = (dev->dev_addr[0] << 8 | dev->dev_addr[1]);
598         val |= ENET_PMH_DATAVALID_MASK;
599         enet_writel(priv, val, ENET_PMH_REG(0));
600
601         return 0;
602 }
603
604 /*
605  * Change rx mode (promiscous/allmulti) and update multicast list
606  */
607 static void bcm_enet_set_multicast_list(struct net_device *dev)
608 {
609         struct bcm_enet_priv *priv;
610         struct dev_mc_list *mc_list;
611         u32 val;
612         int i;
613
614         priv = netdev_priv(dev);
615
616         val = enet_readl(priv, ENET_RXCFG_REG);
617
618         if (dev->flags & IFF_PROMISC)
619                 val |= ENET_RXCFG_PROMISC_MASK;
620         else
621                 val &= ~ENET_RXCFG_PROMISC_MASK;
622
623         /* only 3 perfect match registers left, first one is used for
624          * own mac address */
625         if ((dev->flags & IFF_ALLMULTI) || dev->mc_count > 3)
626                 val |= ENET_RXCFG_ALLMCAST_MASK;
627         else
628                 val &= ~ENET_RXCFG_ALLMCAST_MASK;
629
630         /* no need to set perfect match registers if we catch all
631          * multicast */
632         if (val & ENET_RXCFG_ALLMCAST_MASK) {
633                 enet_writel(priv, val, ENET_RXCFG_REG);
634                 return;
635         }
636
637         for (i = 0, mc_list = dev->mc_list;
638              (mc_list != NULL) && (i < dev->mc_count) && (i < 3);
639              i++, mc_list = mc_list->next) {
640                 u8 *dmi_addr;
641                 u32 tmp;
642
643                 /* filter non ethernet address */
644                 if (mc_list->dmi_addrlen != 6)
645                         continue;
646
647                 /* update perfect match registers */
648                 dmi_addr = mc_list->dmi_addr;
649                 tmp = (dmi_addr[2] << 24) | (dmi_addr[3] << 16) |
650                         (dmi_addr[4] << 8) | dmi_addr[5];
651                 enet_writel(priv, tmp, ENET_PML_REG(i + 1));
652
653                 tmp = (dmi_addr[0] << 8 | dmi_addr[1]);
654                 tmp |= ENET_PMH_DATAVALID_MASK;
655                 enet_writel(priv, tmp, ENET_PMH_REG(i + 1));
656         }
657
658         for (; i < 3; i++) {
659                 enet_writel(priv, 0, ENET_PML_REG(i + 1));
660                 enet_writel(priv, 0, ENET_PMH_REG(i + 1));
661         }
662
663         enet_writel(priv, val, ENET_RXCFG_REG);
664 }
665
666 /*
667  * set mac duplex parameters
668  */
669 static void bcm_enet_set_duplex(struct bcm_enet_priv *priv, int fullduplex)
670 {
671         u32 val;
672
673         val = enet_readl(priv, ENET_TXCTL_REG);
674         if (fullduplex)
675                 val |= ENET_TXCTL_FD_MASK;
676         else
677                 val &= ~ENET_TXCTL_FD_MASK;
678         enet_writel(priv, val, ENET_TXCTL_REG);
679 }
680
681 /*
682  * set mac flow control parameters
683  */
684 static void bcm_enet_set_flow(struct bcm_enet_priv *priv, int rx_en, int tx_en)
685 {
686         u32 val;
687
688         /* rx flow control (pause frame handling) */
689         val = enet_readl(priv, ENET_RXCFG_REG);
690         if (rx_en)
691                 val |= ENET_RXCFG_ENFLOW_MASK;
692         else
693                 val &= ~ENET_RXCFG_ENFLOW_MASK;
694         enet_writel(priv, val, ENET_RXCFG_REG);
695
696         /* tx flow control (pause frame generation) */
697         val = enet_dma_readl(priv, ENETDMA_CFG_REG);
698         if (tx_en)
699                 val |= ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan);
700         else
701                 val &= ~ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan);
702         enet_dma_writel(priv, val, ENETDMA_CFG_REG);
703 }
704
705 /*
706  * link changed callback (from phylib)
707  */
708 static void bcm_enet_adjust_phy_link(struct net_device *dev)
709 {
710         struct bcm_enet_priv *priv;
711         struct phy_device *phydev;
712         int status_changed;
713
714         priv = netdev_priv(dev);
715         phydev = priv->phydev;
716         status_changed = 0;
717
718         if (priv->old_link != phydev->link) {
719                 status_changed = 1;
720                 priv->old_link = phydev->link;
721         }
722
723         /* reflect duplex change in mac configuration */
724         if (phydev->link && phydev->duplex != priv->old_duplex) {
725                 bcm_enet_set_duplex(priv,
726                                     (phydev->duplex == DUPLEX_FULL) ? 1 : 0);
727                 status_changed = 1;
728                 priv->old_duplex = phydev->duplex;
729         }
730
731         /* enable flow control if remote advertise it (trust phylib to
732          * check that duplex is full */
733         if (phydev->link && phydev->pause != priv->old_pause) {
734                 int rx_pause_en, tx_pause_en;
735
736                 if (phydev->pause) {
737                         /* pause was advertised by lpa and us */
738                         rx_pause_en = 1;
739                         tx_pause_en = 1;
740                 } else if (!priv->pause_auto) {
741                         /* pause setting overrided by user */
742                         rx_pause_en = priv->pause_rx;
743                         tx_pause_en = priv->pause_tx;
744                 } else {
745                         rx_pause_en = 0;
746                         tx_pause_en = 0;
747                 }
748
749                 bcm_enet_set_flow(priv, rx_pause_en, tx_pause_en);
750                 status_changed = 1;
751                 priv->old_pause = phydev->pause;
752         }
753
754         if (status_changed) {
755                 pr_info("%s: link %s", dev->name, phydev->link ?
756                         "UP" : "DOWN");
757                 if (phydev->link)
758                         pr_cont(" - %d/%s - flow control %s", phydev->speed,
759                                DUPLEX_FULL == phydev->duplex ? "full" : "half",
760                                phydev->pause == 1 ? "rx&tx" : "off");
761
762                 pr_cont("\n");
763         }
764 }
765
766 /*
767  * link changed callback (if phylib is not used)
768  */
769 static void bcm_enet_adjust_link(struct net_device *dev)
770 {
771         struct bcm_enet_priv *priv;
772
773         priv = netdev_priv(dev);
774         bcm_enet_set_duplex(priv, priv->force_duplex_full);
775         bcm_enet_set_flow(priv, priv->pause_rx, priv->pause_tx);
776         netif_carrier_on(dev);
777
778         pr_info("%s: link forced UP - %d/%s - flow control %s/%s\n",
779                 dev->name,
780                 priv->force_speed_100 ? 100 : 10,
781                 priv->force_duplex_full ? "full" : "half",
782                 priv->pause_rx ? "rx" : "off",
783                 priv->pause_tx ? "tx" : "off");
784 }
785
786 /*
787  * open callback, allocate dma rings & buffers and start rx operation
788  */
789 static int bcm_enet_open(struct net_device *dev)
790 {
791         struct bcm_enet_priv *priv;
792         struct sockaddr addr;
793         struct device *kdev;
794         struct phy_device *phydev;
795         int i, ret;
796         unsigned int size;
797         char phy_id[MII_BUS_ID_SIZE + 3];
798         void *p;
799         u32 val;
800
801         priv = netdev_priv(dev);
802         kdev = &priv->pdev->dev;
803
804         if (priv->has_phy) {
805                 /* connect to PHY */
806                 snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
807                          priv->mac_id ? "1" : "0", priv->phy_id);
808
809                 phydev = phy_connect(dev, phy_id, &bcm_enet_adjust_phy_link, 0,
810                                      PHY_INTERFACE_MODE_MII);
811
812                 if (IS_ERR(phydev)) {
813                         dev_err(kdev, "could not attach to PHY\n");
814                         return PTR_ERR(phydev);
815                 }
816
817                 /* mask with MAC supported features */
818                 phydev->supported &= (SUPPORTED_10baseT_Half |
819                                       SUPPORTED_10baseT_Full |
820                                       SUPPORTED_100baseT_Half |
821                                       SUPPORTED_100baseT_Full |
822                                       SUPPORTED_Autoneg |
823                                       SUPPORTED_Pause |
824                                       SUPPORTED_MII);
825                 phydev->advertising = phydev->supported;
826
827                 if (priv->pause_auto && priv->pause_rx && priv->pause_tx)
828                         phydev->advertising |= SUPPORTED_Pause;
829                 else
830                         phydev->advertising &= ~SUPPORTED_Pause;
831
832                 dev_info(kdev, "attached PHY at address %d [%s]\n",
833                          phydev->addr, phydev->drv->name);
834
835                 priv->old_link = 0;
836                 priv->old_duplex = -1;
837                 priv->old_pause = -1;
838                 priv->phydev = phydev;
839         }
840
841         /* mask all interrupts and request them */
842         enet_writel(priv, 0, ENET_IRMASK_REG);
843         enet_dma_writel(priv, 0, ENETDMA_IRMASK_REG(priv->rx_chan));
844         enet_dma_writel(priv, 0, ENETDMA_IRMASK_REG(priv->tx_chan));
845
846         ret = request_irq(dev->irq, bcm_enet_isr_mac, 0, dev->name, dev);
847         if (ret)
848                 goto out_phy_disconnect;
849
850         ret = request_irq(priv->irq_rx, bcm_enet_isr_dma,
851                           IRQF_SAMPLE_RANDOM | IRQF_DISABLED, dev->name, dev);
852         if (ret)
853                 goto out_freeirq;
854
855         ret = request_irq(priv->irq_tx, bcm_enet_isr_dma,
856                           IRQF_DISABLED, dev->name, dev);
857         if (ret)
858                 goto out_freeirq_rx;
859
860         /* initialize perfect match registers */
861         for (i = 0; i < 4; i++) {
862                 enet_writel(priv, 0, ENET_PML_REG(i));
863                 enet_writel(priv, 0, ENET_PMH_REG(i));
864         }
865
866         /* write device mac address */
867         memcpy(addr.sa_data, dev->dev_addr, ETH_ALEN);
868         bcm_enet_set_mac_address(dev, &addr);
869
870         /* allocate rx dma ring */
871         size = priv->rx_ring_size * sizeof(struct bcm_enet_desc);
872         p = dma_alloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL);
873         if (!p) {
874                 dev_err(kdev, "cannot allocate rx ring %u\n", size);
875                 ret = -ENOMEM;
876                 goto out_freeirq_tx;
877         }
878
879         memset(p, 0, size);
880         priv->rx_desc_alloc_size = size;
881         priv->rx_desc_cpu = p;
882
883         /* allocate tx dma ring */
884         size = priv->tx_ring_size * sizeof(struct bcm_enet_desc);
885         p = dma_alloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL);
886         if (!p) {
887                 dev_err(kdev, "cannot allocate tx ring\n");
888                 ret = -ENOMEM;
889                 goto out_free_rx_ring;
890         }
891
892         memset(p, 0, size);
893         priv->tx_desc_alloc_size = size;
894         priv->tx_desc_cpu = p;
895
896         priv->tx_skb = kzalloc(sizeof(struct sk_buff *) * priv->tx_ring_size,
897                                GFP_KERNEL);
898         if (!priv->tx_skb) {
899                 dev_err(kdev, "cannot allocate rx skb queue\n");
900                 ret = -ENOMEM;
901                 goto out_free_tx_ring;
902         }
903
904         priv->tx_desc_count = priv->tx_ring_size;
905         priv->tx_dirty_desc = 0;
906         priv->tx_curr_desc = 0;
907         spin_lock_init(&priv->tx_lock);
908
909         /* init & fill rx ring with skbs */
910         priv->rx_skb = kzalloc(sizeof(struct sk_buff *) * priv->rx_ring_size,
911                                GFP_KERNEL);
912         if (!priv->rx_skb) {
913                 dev_err(kdev, "cannot allocate rx skb queue\n");
914                 ret = -ENOMEM;
915                 goto out_free_tx_skb;
916         }
917
918         priv->rx_desc_count = 0;
919         priv->rx_dirty_desc = 0;
920         priv->rx_curr_desc = 0;
921
922         /* initialize flow control buffer allocation */
923         enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
924                         ENETDMA_BUFALLOC_REG(priv->rx_chan));
925
926         if (bcm_enet_refill_rx(dev)) {
927                 dev_err(kdev, "cannot allocate rx skb queue\n");
928                 ret = -ENOMEM;
929                 goto out;
930         }
931
932         /* write rx & tx ring addresses */
933         enet_dma_writel(priv, priv->rx_desc_dma,
934                         ENETDMA_RSTART_REG(priv->rx_chan));
935         enet_dma_writel(priv, priv->tx_desc_dma,
936                         ENETDMA_RSTART_REG(priv->tx_chan));
937
938         /* clear remaining state ram for rx & tx channel */
939         enet_dma_writel(priv, 0, ENETDMA_SRAM2_REG(priv->rx_chan));
940         enet_dma_writel(priv, 0, ENETDMA_SRAM2_REG(priv->tx_chan));
941         enet_dma_writel(priv, 0, ENETDMA_SRAM3_REG(priv->rx_chan));
942         enet_dma_writel(priv, 0, ENETDMA_SRAM3_REG(priv->tx_chan));
943         enet_dma_writel(priv, 0, ENETDMA_SRAM4_REG(priv->rx_chan));
944         enet_dma_writel(priv, 0, ENETDMA_SRAM4_REG(priv->tx_chan));
945
946         /* set max rx/tx length */
947         enet_writel(priv, priv->hw_mtu, ENET_RXMAXLEN_REG);
948         enet_writel(priv, priv->hw_mtu, ENET_TXMAXLEN_REG);
949
950         /* set dma maximum burst len */
951         enet_dma_writel(priv, BCMENET_DMA_MAXBURST,
952                         ENETDMA_MAXBURST_REG(priv->rx_chan));
953         enet_dma_writel(priv, BCMENET_DMA_MAXBURST,
954                         ENETDMA_MAXBURST_REG(priv->tx_chan));
955
956         /* set correct transmit fifo watermark */
957         enet_writel(priv, BCMENET_TX_FIFO_TRESH, ENET_TXWMARK_REG);
958
959         /* set flow control low/high threshold to 1/3 / 2/3 */
960         val = priv->rx_ring_size / 3;
961         enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan));
962         val = (priv->rx_ring_size * 2) / 3;
963         enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan));
964
965         /* all set, enable mac and interrupts, start dma engine and
966          * kick rx dma channel */
967         wmb();
968         enet_writel(priv, ENET_CTL_ENABLE_MASK, ENET_CTL_REG);
969         enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG);
970         enet_dma_writel(priv, ENETDMA_CHANCFG_EN_MASK,
971                         ENETDMA_CHANCFG_REG(priv->rx_chan));
972
973         /* watch "mib counters about to overflow" interrupt */
974         enet_writel(priv, ENET_IR_MIB, ENET_IR_REG);
975         enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG);
976
977         /* watch "packet transferred" interrupt in rx and tx */
978         enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK,
979                         ENETDMA_IR_REG(priv->rx_chan));
980         enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK,
981                         ENETDMA_IR_REG(priv->tx_chan));
982
983         /* make sure we enable napi before rx interrupt  */
984         napi_enable(&priv->napi);
985
986         enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK,
987                         ENETDMA_IRMASK_REG(priv->rx_chan));
988         enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK,
989                         ENETDMA_IRMASK_REG(priv->tx_chan));
990
991         if (priv->has_phy)
992                 phy_start(priv->phydev);
993         else
994                 bcm_enet_adjust_link(dev);
995
996         netif_start_queue(dev);
997         return 0;
998
999 out:
1000         for (i = 0; i < priv->rx_ring_size; i++) {
1001                 struct bcm_enet_desc *desc;
1002
1003                 if (!priv->rx_skb[i])
1004                         continue;
1005
1006                 desc = &priv->rx_desc_cpu[i];
1007                 dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
1008                                  DMA_FROM_DEVICE);
1009                 kfree_skb(priv->rx_skb[i]);
1010         }
1011         kfree(priv->rx_skb);
1012
1013 out_free_tx_skb:
1014         kfree(priv->tx_skb);
1015
1016 out_free_tx_ring:
1017         dma_free_coherent(kdev, priv->tx_desc_alloc_size,
1018                           priv->tx_desc_cpu, priv->tx_desc_dma);
1019
1020 out_free_rx_ring:
1021         dma_free_coherent(kdev, priv->rx_desc_alloc_size,
1022                           priv->rx_desc_cpu, priv->rx_desc_dma);
1023
1024 out_freeirq_tx:
1025         free_irq(priv->irq_tx, dev);
1026
1027 out_freeirq_rx:
1028         free_irq(priv->irq_rx, dev);
1029
1030 out_freeirq:
1031         free_irq(dev->irq, dev);
1032
1033 out_phy_disconnect:
1034         phy_disconnect(priv->phydev);
1035
1036         return ret;
1037 }
1038
1039 /*
1040  * disable mac
1041  */
1042 static void bcm_enet_disable_mac(struct bcm_enet_priv *priv)
1043 {
1044         int limit;
1045         u32 val;
1046
1047         val = enet_readl(priv, ENET_CTL_REG);
1048         val |= ENET_CTL_DISABLE_MASK;
1049         enet_writel(priv, val, ENET_CTL_REG);
1050
1051         limit = 1000;
1052         do {
1053                 u32 val;
1054
1055                 val = enet_readl(priv, ENET_CTL_REG);
1056                 if (!(val & ENET_CTL_DISABLE_MASK))
1057                         break;
1058                 udelay(1);
1059         } while (limit--);
1060 }
1061
1062 /*
1063  * disable dma in given channel
1064  */
1065 static void bcm_enet_disable_dma(struct bcm_enet_priv *priv, int chan)
1066 {
1067         int limit;
1068
1069         enet_dma_writel(priv, 0, ENETDMA_CHANCFG_REG(chan));
1070
1071         limit = 1000;
1072         do {
1073                 u32 val;
1074
1075                 val = enet_dma_readl(priv, ENETDMA_CHANCFG_REG(chan));
1076                 if (!(val & ENETDMA_CHANCFG_EN_MASK))
1077                         break;
1078                 udelay(1);
1079         } while (limit--);
1080 }
1081
1082 /*
1083  * stop callback
1084  */
1085 static int bcm_enet_stop(struct net_device *dev)
1086 {
1087         struct bcm_enet_priv *priv;
1088         struct device *kdev;
1089         int i;
1090
1091         priv = netdev_priv(dev);
1092         kdev = &priv->pdev->dev;
1093
1094         netif_stop_queue(dev);
1095         napi_disable(&priv->napi);
1096         if (priv->has_phy)
1097                 phy_stop(priv->phydev);
1098         del_timer_sync(&priv->rx_timeout);
1099
1100         /* mask all interrupts */
1101         enet_writel(priv, 0, ENET_IRMASK_REG);
1102         enet_dma_writel(priv, 0, ENETDMA_IRMASK_REG(priv->rx_chan));
1103         enet_dma_writel(priv, 0, ENETDMA_IRMASK_REG(priv->tx_chan));
1104
1105         /* make sure no mib update is scheduled */
1106         flush_scheduled_work();
1107
1108         /* disable dma & mac */
1109         bcm_enet_disable_dma(priv, priv->tx_chan);
1110         bcm_enet_disable_dma(priv, priv->rx_chan);
1111         bcm_enet_disable_mac(priv);
1112
1113         /* force reclaim of all tx buffers */
1114         bcm_enet_tx_reclaim(dev, 1);
1115
1116         /* free the rx skb ring */
1117         for (i = 0; i < priv->rx_ring_size; i++) {
1118                 struct bcm_enet_desc *desc;
1119
1120                 if (!priv->rx_skb[i])
1121                         continue;
1122
1123                 desc = &priv->rx_desc_cpu[i];
1124                 dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
1125                                  DMA_FROM_DEVICE);
1126                 kfree_skb(priv->rx_skb[i]);
1127         }
1128
1129         /* free remaining allocated memory */
1130         kfree(priv->rx_skb);
1131         kfree(priv->tx_skb);
1132         dma_free_coherent(kdev, priv->rx_desc_alloc_size,
1133                           priv->rx_desc_cpu, priv->rx_desc_dma);
1134         dma_free_coherent(kdev, priv->tx_desc_alloc_size,
1135                           priv->tx_desc_cpu, priv->tx_desc_dma);
1136         free_irq(priv->irq_tx, dev);
1137         free_irq(priv->irq_rx, dev);
1138         free_irq(dev->irq, dev);
1139
1140         /* release phy */
1141         if (priv->has_phy) {
1142                 phy_disconnect(priv->phydev);
1143                 priv->phydev = NULL;
1144         }
1145
1146         return 0;
1147 }
1148
1149 /*
1150  * core request to return device rx/tx stats
1151  */
1152 static struct net_device_stats *bcm_enet_get_stats(struct net_device *dev)
1153 {
1154         struct bcm_enet_priv *priv;
1155
1156         priv = netdev_priv(dev);
1157         return &priv->stats;
1158 }
1159
1160 /*
1161  * ethtool callbacks
1162  */
1163 struct bcm_enet_stats {
1164         char stat_string[ETH_GSTRING_LEN];
1165         int sizeof_stat;
1166         int stat_offset;
1167         int mib_reg;
1168 };
1169
1170 #define GEN_STAT(m) sizeof(((struct bcm_enet_priv *)0)->m),             \
1171                      offsetof(struct bcm_enet_priv, m)
1172
1173 static const struct bcm_enet_stats bcm_enet_gstrings_stats[] = {
1174         { "rx_packets", GEN_STAT(stats.rx_packets), -1 },
1175         { "tx_packets", GEN_STAT(stats.tx_packets), -1 },
1176         { "rx_bytes", GEN_STAT(stats.rx_bytes), -1 },
1177         { "tx_bytes", GEN_STAT(stats.tx_bytes), -1 },
1178         { "rx_errors", GEN_STAT(stats.rx_errors), -1 },
1179         { "tx_errors", GEN_STAT(stats.tx_errors), -1 },
1180         { "rx_dropped", GEN_STAT(stats.rx_dropped), -1 },
1181         { "tx_dropped", GEN_STAT(stats.tx_dropped), -1 },
1182
1183         { "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETH_MIB_RX_GD_OCTETS},
1184         { "rx_good_pkts", GEN_STAT(mib.rx_gd_pkts), ETH_MIB_RX_GD_PKTS },
1185         { "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETH_MIB_RX_BRDCAST },
1186         { "rx_multicast", GEN_STAT(mib.rx_mult), ETH_MIB_RX_MULT },
1187         { "rx_64_octets", GEN_STAT(mib.rx_64), ETH_MIB_RX_64 },
1188         { "rx_65_127_oct", GEN_STAT(mib.rx_65_127), ETH_MIB_RX_65_127 },
1189         { "rx_128_255_oct", GEN_STAT(mib.rx_128_255), ETH_MIB_RX_128_255 },
1190         { "rx_256_511_oct", GEN_STAT(mib.rx_256_511), ETH_MIB_RX_256_511 },
1191         { "rx_512_1023_oct", GEN_STAT(mib.rx_512_1023), ETH_MIB_RX_512_1023 },
1192         { "rx_1024_max_oct", GEN_STAT(mib.rx_1024_max), ETH_MIB_RX_1024_MAX },
1193         { "rx_jabber", GEN_STAT(mib.rx_jab), ETH_MIB_RX_JAB },
1194         { "rx_oversize", GEN_STAT(mib.rx_ovr), ETH_MIB_RX_OVR },
1195         { "rx_fragment", GEN_STAT(mib.rx_frag), ETH_MIB_RX_FRAG },
1196         { "rx_dropped", GEN_STAT(mib.rx_drop), ETH_MIB_RX_DROP },
1197         { "rx_crc_align", GEN_STAT(mib.rx_crc_align), ETH_MIB_RX_CRC_ALIGN },
1198         { "rx_undersize", GEN_STAT(mib.rx_und), ETH_MIB_RX_UND },
1199         { "rx_crc", GEN_STAT(mib.rx_crc), ETH_MIB_RX_CRC },
1200         { "rx_align", GEN_STAT(mib.rx_align), ETH_MIB_RX_ALIGN },
1201         { "rx_symbol_error", GEN_STAT(mib.rx_sym), ETH_MIB_RX_SYM },
1202         { "rx_pause", GEN_STAT(mib.rx_pause), ETH_MIB_RX_PAUSE },
1203         { "rx_control", GEN_STAT(mib.rx_cntrl), ETH_MIB_RX_CNTRL },
1204
1205         { "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETH_MIB_TX_GD_OCTETS },
1206         { "tx_good_pkts", GEN_STAT(mib.tx_gd_pkts), ETH_MIB_TX_GD_PKTS },
1207         { "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETH_MIB_TX_BRDCAST },
1208         { "tx_multicast", GEN_STAT(mib.tx_mult), ETH_MIB_TX_MULT },
1209         { "tx_64_oct", GEN_STAT(mib.tx_64), ETH_MIB_TX_64 },
1210         { "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETH_MIB_TX_65_127 },
1211         { "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETH_MIB_TX_128_255 },
1212         { "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETH_MIB_TX_256_511 },
1213         { "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETH_MIB_TX_512_1023},
1214         { "tx_1024_max_oct", GEN_STAT(mib.tx_1024_max), ETH_MIB_TX_1024_MAX },
1215         { "tx_jabber", GEN_STAT(mib.tx_jab), ETH_MIB_TX_JAB },
1216         { "tx_oversize", GEN_STAT(mib.tx_ovr), ETH_MIB_TX_OVR },
1217         { "tx_fragment", GEN_STAT(mib.tx_frag), ETH_MIB_TX_FRAG },
1218         { "tx_underrun", GEN_STAT(mib.tx_underrun), ETH_MIB_TX_UNDERRUN },
1219         { "tx_collisions", GEN_STAT(mib.tx_col), ETH_MIB_TX_COL },
1220         { "tx_single_collision", GEN_STAT(mib.tx_1_col), ETH_MIB_TX_1_COL },
1221         { "tx_multiple_collision", GEN_STAT(mib.tx_m_col), ETH_MIB_TX_M_COL },
1222         { "tx_excess_collision", GEN_STAT(mib.tx_ex_col), ETH_MIB_TX_EX_COL },
1223         { "tx_late_collision", GEN_STAT(mib.tx_late), ETH_MIB_TX_LATE },
1224         { "tx_deferred", GEN_STAT(mib.tx_def), ETH_MIB_TX_DEF },
1225         { "tx_carrier_sense", GEN_STAT(mib.tx_crs), ETH_MIB_TX_CRS },
1226         { "tx_pause", GEN_STAT(mib.tx_pause), ETH_MIB_TX_PAUSE },
1227
1228 };
1229
1230 #define BCM_ENET_STATS_LEN      \
1231         (sizeof(bcm_enet_gstrings_stats) / sizeof(struct bcm_enet_stats))
1232
1233 static const u32 unused_mib_regs[] = {
1234         ETH_MIB_TX_ALL_OCTETS,
1235         ETH_MIB_TX_ALL_PKTS,
1236         ETH_MIB_RX_ALL_OCTETS,
1237         ETH_MIB_RX_ALL_PKTS,
1238 };
1239
1240
1241 static void bcm_enet_get_drvinfo(struct net_device *netdev,
1242                                  struct ethtool_drvinfo *drvinfo)
1243 {
1244         strncpy(drvinfo->driver, bcm_enet_driver_name, 32);
1245         strncpy(drvinfo->version, bcm_enet_driver_version, 32);
1246         strncpy(drvinfo->fw_version, "N/A", 32);
1247         strncpy(drvinfo->bus_info, "bcm63xx", 32);
1248         drvinfo->n_stats = BCM_ENET_STATS_LEN;
1249 }
1250
1251 static int bcm_enet_get_stats_count(struct net_device *netdev)
1252 {
1253         return BCM_ENET_STATS_LEN;
1254 }
1255
1256 static void bcm_enet_get_strings(struct net_device *netdev,
1257                                  u32 stringset, u8 *data)
1258 {
1259         int i;
1260
1261         switch (stringset) {
1262         case ETH_SS_STATS:
1263                 for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1264                         memcpy(data + i * ETH_GSTRING_LEN,
1265                                bcm_enet_gstrings_stats[i].stat_string,
1266                                ETH_GSTRING_LEN);
1267                 }
1268                 break;
1269         }
1270 }
1271
1272 static void update_mib_counters(struct bcm_enet_priv *priv)
1273 {
1274         int i;
1275
1276         for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1277                 const struct bcm_enet_stats *s;
1278                 u32 val;
1279                 char *p;
1280
1281                 s = &bcm_enet_gstrings_stats[i];
1282                 if (s->mib_reg == -1)
1283                         continue;
1284
1285                 val = enet_readl(priv, ENET_MIB_REG(s->mib_reg));
1286                 p = (char *)priv + s->stat_offset;
1287
1288                 if (s->sizeof_stat == sizeof(u64))
1289                         *(u64 *)p += val;
1290                 else
1291                         *(u32 *)p += val;
1292         }
1293
1294         /* also empty unused mib counters to make sure mib counter
1295          * overflow interrupt is cleared */
1296         for (i = 0; i < ARRAY_SIZE(unused_mib_regs); i++)
1297                 (void)enet_readl(priv, ENET_MIB_REG(unused_mib_regs[i]));
1298 }
1299
1300 static void bcm_enet_update_mib_counters_defer(struct work_struct *t)
1301 {
1302         struct bcm_enet_priv *priv;
1303
1304         priv = container_of(t, struct bcm_enet_priv, mib_update_task);
1305         mutex_lock(&priv->mib_update_lock);
1306         update_mib_counters(priv);
1307         mutex_unlock(&priv->mib_update_lock);
1308
1309         /* reenable mib interrupt */
1310         if (netif_running(priv->net_dev))
1311                 enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG);
1312 }
1313
1314 static void bcm_enet_get_ethtool_stats(struct net_device *netdev,
1315                                        struct ethtool_stats *stats,
1316                                        u64 *data)
1317 {
1318         struct bcm_enet_priv *priv;
1319         int i;
1320
1321         priv = netdev_priv(netdev);
1322
1323         mutex_lock(&priv->mib_update_lock);
1324         update_mib_counters(priv);
1325
1326         for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1327                 const struct bcm_enet_stats *s;
1328                 char *p;
1329
1330                 s = &bcm_enet_gstrings_stats[i];
1331                 p = (char *)priv + s->stat_offset;
1332                 data[i] = (s->sizeof_stat == sizeof(u64)) ?
1333                         *(u64 *)p : *(u32 *)p;
1334         }
1335         mutex_unlock(&priv->mib_update_lock);
1336 }
1337
1338 static int bcm_enet_get_settings(struct net_device *dev,
1339                                  struct ethtool_cmd *cmd)
1340 {
1341         struct bcm_enet_priv *priv;
1342
1343         priv = netdev_priv(dev);
1344
1345         cmd->maxrxpkt = 0;
1346         cmd->maxtxpkt = 0;
1347
1348         if (priv->has_phy) {
1349                 if (!priv->phydev)
1350                         return -ENODEV;
1351                 return phy_ethtool_gset(priv->phydev, cmd);
1352         } else {
1353                 cmd->autoneg = 0;
1354                 cmd->speed = (priv->force_speed_100) ? SPEED_100 : SPEED_10;
1355                 cmd->duplex = (priv->force_duplex_full) ?
1356                         DUPLEX_FULL : DUPLEX_HALF;
1357                 cmd->supported = ADVERTISED_10baseT_Half  |
1358                         ADVERTISED_10baseT_Full |
1359                         ADVERTISED_100baseT_Half |
1360                         ADVERTISED_100baseT_Full;
1361                 cmd->advertising = 0;
1362                 cmd->port = PORT_MII;
1363                 cmd->transceiver = XCVR_EXTERNAL;
1364         }
1365         return 0;
1366 }
1367
1368 static int bcm_enet_set_settings(struct net_device *dev,
1369                                  struct ethtool_cmd *cmd)
1370 {
1371         struct bcm_enet_priv *priv;
1372
1373         priv = netdev_priv(dev);
1374         if (priv->has_phy) {
1375                 if (!priv->phydev)
1376                         return -ENODEV;
1377                 return phy_ethtool_sset(priv->phydev, cmd);
1378         } else {
1379
1380                 if (cmd->autoneg ||
1381                     (cmd->speed != SPEED_100 && cmd->speed != SPEED_10) ||
1382                     cmd->port != PORT_MII)
1383                         return -EINVAL;
1384
1385                 priv->force_speed_100 = (cmd->speed == SPEED_100) ? 1 : 0;
1386                 priv->force_duplex_full = (cmd->duplex == DUPLEX_FULL) ? 1 : 0;
1387
1388                 if (netif_running(dev))
1389                         bcm_enet_adjust_link(dev);
1390                 return 0;
1391         }
1392 }
1393
1394 static void bcm_enet_get_ringparam(struct net_device *dev,
1395                                    struct ethtool_ringparam *ering)
1396 {
1397         struct bcm_enet_priv *priv;
1398
1399         priv = netdev_priv(dev);
1400
1401         /* rx/tx ring is actually only limited by memory */
1402         ering->rx_max_pending = 8192;
1403         ering->tx_max_pending = 8192;
1404         ering->rx_mini_max_pending = 0;
1405         ering->rx_jumbo_max_pending = 0;
1406         ering->rx_pending = priv->rx_ring_size;
1407         ering->tx_pending = priv->tx_ring_size;
1408 }
1409
1410 static int bcm_enet_set_ringparam(struct net_device *dev,
1411                                   struct ethtool_ringparam *ering)
1412 {
1413         struct bcm_enet_priv *priv;
1414         int was_running;
1415
1416         priv = netdev_priv(dev);
1417
1418         was_running = 0;
1419         if (netif_running(dev)) {
1420                 bcm_enet_stop(dev);
1421                 was_running = 1;
1422         }
1423
1424         priv->rx_ring_size = ering->rx_pending;
1425         priv->tx_ring_size = ering->tx_pending;
1426
1427         if (was_running) {
1428                 int err;
1429
1430                 err = bcm_enet_open(dev);
1431                 if (err)
1432                         dev_close(dev);
1433                 else
1434                         bcm_enet_set_multicast_list(dev);
1435         }
1436         return 0;
1437 }
1438
1439 static void bcm_enet_get_pauseparam(struct net_device *dev,
1440                                     struct ethtool_pauseparam *ecmd)
1441 {
1442         struct bcm_enet_priv *priv;
1443
1444         priv = netdev_priv(dev);
1445         ecmd->autoneg = priv->pause_auto;
1446         ecmd->rx_pause = priv->pause_rx;
1447         ecmd->tx_pause = priv->pause_tx;
1448 }
1449
1450 static int bcm_enet_set_pauseparam(struct net_device *dev,
1451                                    struct ethtool_pauseparam *ecmd)
1452 {
1453         struct bcm_enet_priv *priv;
1454
1455         priv = netdev_priv(dev);
1456
1457         if (priv->has_phy) {
1458                 if (ecmd->autoneg && (ecmd->rx_pause != ecmd->tx_pause)) {
1459                         /* asymetric pause mode not supported,
1460                          * actually possible but integrated PHY has RO
1461                          * asym_pause bit */
1462                         return -EINVAL;
1463                 }
1464         } else {
1465                 /* no pause autoneg on direct mii connection */
1466                 if (ecmd->autoneg)
1467                         return -EINVAL;
1468         }
1469
1470         priv->pause_auto = ecmd->autoneg;
1471         priv->pause_rx = ecmd->rx_pause;
1472         priv->pause_tx = ecmd->tx_pause;
1473
1474         return 0;
1475 }
1476
1477 static struct ethtool_ops bcm_enet_ethtool_ops = {
1478         .get_strings            = bcm_enet_get_strings,
1479         .get_stats_count        = bcm_enet_get_stats_count,
1480         .get_ethtool_stats      = bcm_enet_get_ethtool_stats,
1481         .get_settings           = bcm_enet_get_settings,
1482         .set_settings           = bcm_enet_set_settings,
1483         .get_drvinfo            = bcm_enet_get_drvinfo,
1484         .get_link               = ethtool_op_get_link,
1485         .get_ringparam          = bcm_enet_get_ringparam,
1486         .set_ringparam          = bcm_enet_set_ringparam,
1487         .get_pauseparam         = bcm_enet_get_pauseparam,
1488         .set_pauseparam         = bcm_enet_set_pauseparam,
1489 };
1490
1491 static int bcm_enet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1492 {
1493         struct bcm_enet_priv *priv;
1494
1495         priv = netdev_priv(dev);
1496         if (priv->has_phy) {
1497                 if (!priv->phydev)
1498                         return -ENODEV;
1499                 return phy_mii_ioctl(priv->phydev, if_mii(rq), cmd);
1500         } else {
1501                 struct mii_if_info mii;
1502
1503                 mii.dev = dev;
1504                 mii.mdio_read = bcm_enet_mdio_read_mii;
1505                 mii.mdio_write = bcm_enet_mdio_write_mii;
1506                 mii.phy_id = 0;
1507                 mii.phy_id_mask = 0x3f;
1508                 mii.reg_num_mask = 0x1f;
1509                 return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL);
1510         }
1511 }
1512
1513 /*
1514  * calculate actual hardware mtu
1515  */
1516 static int compute_hw_mtu(struct bcm_enet_priv *priv, int mtu)
1517 {
1518         int actual_mtu;
1519
1520         actual_mtu = mtu;
1521
1522         /* add ethernet header + vlan tag size */
1523         actual_mtu += VLAN_ETH_HLEN;
1524
1525         if (actual_mtu < 64 || actual_mtu > BCMENET_MAX_MTU)
1526                 return -EINVAL;
1527
1528         /*
1529          * setup maximum size before we get overflow mark in
1530          * descriptor, note that this will not prevent reception of
1531          * big frames, they will be split into multiple buffers
1532          * anyway
1533          */
1534         priv->hw_mtu = actual_mtu;
1535
1536         /*
1537          * align rx buffer size to dma burst len, account FCS since
1538          * it's appended
1539          */
1540         priv->rx_skb_size = ALIGN(actual_mtu + ETH_FCS_LEN,
1541                                   BCMENET_DMA_MAXBURST * 4);
1542         return 0;
1543 }
1544
1545 /*
1546  * adjust mtu, can't be called while device is running
1547  */
1548 static int bcm_enet_change_mtu(struct net_device *dev, int new_mtu)
1549 {
1550         int ret;
1551
1552         if (netif_running(dev))
1553                 return -EBUSY;
1554
1555         ret = compute_hw_mtu(netdev_priv(dev), new_mtu);
1556         if (ret)
1557                 return ret;
1558         dev->mtu = new_mtu;
1559         return 0;
1560 }
1561
1562 /*
1563  * preinit hardware to allow mii operation while device is down
1564  */
1565 static void bcm_enet_hw_preinit(struct bcm_enet_priv *priv)
1566 {
1567         u32 val;
1568         int limit;
1569
1570         /* make sure mac is disabled */
1571         bcm_enet_disable_mac(priv);
1572
1573         /* soft reset mac */
1574         val = ENET_CTL_SRESET_MASK;
1575         enet_writel(priv, val, ENET_CTL_REG);
1576         wmb();
1577
1578         limit = 1000;
1579         do {
1580                 val = enet_readl(priv, ENET_CTL_REG);
1581                 if (!(val & ENET_CTL_SRESET_MASK))
1582                         break;
1583                 udelay(1);
1584         } while (limit--);
1585
1586         /* select correct mii interface */
1587         val = enet_readl(priv, ENET_CTL_REG);
1588         if (priv->use_external_mii)
1589                 val |= ENET_CTL_EPHYSEL_MASK;
1590         else
1591                 val &= ~ENET_CTL_EPHYSEL_MASK;
1592         enet_writel(priv, val, ENET_CTL_REG);
1593
1594         /* turn on mdc clock */
1595         enet_writel(priv, (0x1f << ENET_MIISC_MDCFREQDIV_SHIFT) |
1596                     ENET_MIISC_PREAMBLEEN_MASK, ENET_MIISC_REG);
1597
1598         /* set mib counters to self-clear when read */
1599         val = enet_readl(priv, ENET_MIBCTL_REG);
1600         val |= ENET_MIBCTL_RDCLEAR_MASK;
1601         enet_writel(priv, val, ENET_MIBCTL_REG);
1602 }
1603
1604 static const struct net_device_ops bcm_enet_ops = {
1605         .ndo_open               = bcm_enet_open,
1606         .ndo_stop               = bcm_enet_stop,
1607         .ndo_start_xmit         = bcm_enet_start_xmit,
1608         .ndo_get_stats          = bcm_enet_get_stats,
1609         .ndo_set_mac_address    = bcm_enet_set_mac_address,
1610         .ndo_set_multicast_list = bcm_enet_set_multicast_list,
1611         .ndo_do_ioctl           = bcm_enet_ioctl,
1612         .ndo_change_mtu         = bcm_enet_change_mtu,
1613 #ifdef CONFIG_NET_POLL_CONTROLLER
1614         .ndo_poll_controller = bcm_enet_netpoll,
1615 #endif
1616 };
1617
1618 /*
1619  * allocate netdevice, request register memory and register device.
1620  */
1621 static int __devinit bcm_enet_probe(struct platform_device *pdev)
1622 {
1623         struct bcm_enet_priv *priv;
1624         struct net_device *dev;
1625         struct bcm63xx_enet_platform_data *pd;
1626         struct resource *res_mem, *res_irq, *res_irq_rx, *res_irq_tx;
1627         struct mii_bus *bus;
1628         const char *clk_name;
1629         unsigned int iomem_size;
1630         int i, ret;
1631
1632         /* stop if shared driver failed, assume driver->probe will be
1633          * called in the same order we register devices (correct ?) */
1634         if (!bcm_enet_shared_base)
1635                 return -ENODEV;
1636
1637         res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1638         res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1639         res_irq_rx = platform_get_resource(pdev, IORESOURCE_IRQ, 1);
1640         res_irq_tx = platform_get_resource(pdev, IORESOURCE_IRQ, 2);
1641         if (!res_mem || !res_irq || !res_irq_rx || !res_irq_tx)
1642                 return -ENODEV;
1643
1644         ret = 0;
1645         dev = alloc_etherdev(sizeof(*priv));
1646         if (!dev)
1647                 return -ENOMEM;
1648         priv = netdev_priv(dev);
1649         memset(priv, 0, sizeof(*priv));
1650
1651         ret = compute_hw_mtu(priv, dev->mtu);
1652         if (ret)
1653                 goto out;
1654
1655         iomem_size = res_mem->end - res_mem->start + 1;
1656         if (!request_mem_region(res_mem->start, iomem_size, "bcm63xx_enet")) {
1657                 ret = -EBUSY;
1658                 goto out;
1659         }
1660
1661         priv->base = ioremap(res_mem->start, iomem_size);
1662         if (priv->base == NULL) {
1663                 ret = -ENOMEM;
1664                 goto out_release_mem;
1665         }
1666         dev->irq = priv->irq = res_irq->start;
1667         priv->irq_rx = res_irq_rx->start;
1668         priv->irq_tx = res_irq_tx->start;
1669         priv->mac_id = pdev->id;
1670
1671         /* get rx & tx dma channel id for this mac */
1672         if (priv->mac_id == 0) {
1673                 priv->rx_chan = 0;
1674                 priv->tx_chan = 1;
1675                 clk_name = "enet0";
1676         } else {
1677                 priv->rx_chan = 2;
1678                 priv->tx_chan = 3;
1679                 clk_name = "enet1";
1680         }
1681
1682         priv->mac_clk = clk_get(&pdev->dev, clk_name);
1683         if (IS_ERR(priv->mac_clk)) {
1684                 ret = PTR_ERR(priv->mac_clk);
1685                 goto out_unmap;
1686         }
1687         clk_enable(priv->mac_clk);
1688
1689         /* initialize default and fetch platform data */
1690         priv->rx_ring_size = BCMENET_DEF_RX_DESC;
1691         priv->tx_ring_size = BCMENET_DEF_TX_DESC;
1692
1693         pd = pdev->dev.platform_data;
1694         if (pd) {
1695                 memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN);
1696                 priv->has_phy = pd->has_phy;
1697                 priv->phy_id = pd->phy_id;
1698                 priv->has_phy_interrupt = pd->has_phy_interrupt;
1699                 priv->phy_interrupt = pd->phy_interrupt;
1700                 priv->use_external_mii = !pd->use_internal_phy;
1701                 priv->pause_auto = pd->pause_auto;
1702                 priv->pause_rx = pd->pause_rx;
1703                 priv->pause_tx = pd->pause_tx;
1704                 priv->force_duplex_full = pd->force_duplex_full;
1705                 priv->force_speed_100 = pd->force_speed_100;
1706         }
1707
1708         if (priv->mac_id == 0 && priv->has_phy && !priv->use_external_mii) {
1709                 /* using internal PHY, enable clock */
1710                 priv->phy_clk = clk_get(&pdev->dev, "ephy");
1711                 if (IS_ERR(priv->phy_clk)) {
1712                         ret = PTR_ERR(priv->phy_clk);
1713                         priv->phy_clk = NULL;
1714                         goto out_put_clk_mac;
1715                 }
1716                 clk_enable(priv->phy_clk);
1717         }
1718
1719         /* do minimal hardware init to be able to probe mii bus */
1720         bcm_enet_hw_preinit(priv);
1721
1722         /* MII bus registration */
1723         if (priv->has_phy) {
1724
1725                 priv->mii_bus = mdiobus_alloc();
1726                 if (!priv->mii_bus) {
1727                         ret = -ENOMEM;
1728                         goto out_uninit_hw;
1729                 }
1730
1731                 bus = priv->mii_bus;
1732                 bus->name = "bcm63xx_enet MII bus";
1733                 bus->parent = &pdev->dev;
1734                 bus->priv = priv;
1735                 bus->read = bcm_enet_mdio_read_phylib;
1736                 bus->write = bcm_enet_mdio_write_phylib;
1737                 sprintf(bus->id, "%d", priv->mac_id);
1738
1739                 /* only probe bus where we think the PHY is, because
1740                  * the mdio read operation return 0 instead of 0xffff
1741                  * if a slave is not present on hw */
1742                 bus->phy_mask = ~(1 << priv->phy_id);
1743
1744                 bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
1745                 if (!bus->irq) {
1746                         ret = -ENOMEM;
1747                         goto out_free_mdio;
1748                 }
1749
1750                 if (priv->has_phy_interrupt)
1751                         bus->irq[priv->phy_id] = priv->phy_interrupt;
1752                 else
1753                         bus->irq[priv->phy_id] = PHY_POLL;
1754
1755                 ret = mdiobus_register(bus);
1756                 if (ret) {
1757                         dev_err(&pdev->dev, "unable to register mdio bus\n");
1758                         goto out_free_mdio;
1759                 }
1760         } else {
1761
1762                 /* run platform code to initialize PHY device */
1763                 if (pd->mii_config &&
1764                     pd->mii_config(dev, 1, bcm_enet_mdio_read_mii,
1765                                    bcm_enet_mdio_write_mii)) {
1766                         dev_err(&pdev->dev, "unable to configure mdio bus\n");
1767                         goto out_uninit_hw;
1768                 }
1769         }
1770
1771         spin_lock_init(&priv->rx_lock);
1772
1773         /* init rx timeout (used for oom) */
1774         init_timer(&priv->rx_timeout);
1775         priv->rx_timeout.function = bcm_enet_refill_rx_timer;
1776         priv->rx_timeout.data = (unsigned long)dev;
1777
1778         /* init the mib update lock&work */
1779         mutex_init(&priv->mib_update_lock);
1780         INIT_WORK(&priv->mib_update_task, bcm_enet_update_mib_counters_defer);
1781
1782         /* zero mib counters */
1783         for (i = 0; i < ENET_MIB_REG_COUNT; i++)
1784                 enet_writel(priv, 0, ENET_MIB_REG(i));
1785
1786         /* register netdevice */
1787         dev->netdev_ops = &bcm_enet_ops;
1788         netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16);
1789
1790         SET_ETHTOOL_OPS(dev, &bcm_enet_ethtool_ops);
1791         SET_NETDEV_DEV(dev, &pdev->dev);
1792
1793         ret = register_netdev(dev);
1794         if (ret)
1795                 goto out_unregister_mdio;
1796
1797         netif_carrier_off(dev);
1798         platform_set_drvdata(pdev, dev);
1799         priv->pdev = pdev;
1800         priv->net_dev = dev;
1801
1802         return 0;
1803
1804 out_unregister_mdio:
1805         if (priv->mii_bus) {
1806                 mdiobus_unregister(priv->mii_bus);
1807                 kfree(priv->mii_bus->irq);
1808         }
1809
1810 out_free_mdio:
1811         if (priv->mii_bus)
1812                 mdiobus_free(priv->mii_bus);
1813
1814 out_uninit_hw:
1815         /* turn off mdc clock */
1816         enet_writel(priv, 0, ENET_MIISC_REG);
1817         if (priv->phy_clk) {
1818                 clk_disable(priv->phy_clk);
1819                 clk_put(priv->phy_clk);
1820         }
1821
1822 out_put_clk_mac:
1823         clk_disable(priv->mac_clk);
1824         clk_put(priv->mac_clk);
1825
1826 out_unmap:
1827         iounmap(priv->base);
1828
1829 out_release_mem:
1830         release_mem_region(res_mem->start, iomem_size);
1831 out:
1832         free_netdev(dev);
1833         return ret;
1834 }
1835
1836
1837 /*
1838  * exit func, stops hardware and unregisters netdevice
1839  */
1840 static int __devexit bcm_enet_remove(struct platform_device *pdev)
1841 {
1842         struct bcm_enet_priv *priv;
1843         struct net_device *dev;
1844         struct resource *res;
1845
1846         /* stop netdevice */
1847         dev = platform_get_drvdata(pdev);
1848         priv = netdev_priv(dev);
1849         unregister_netdev(dev);
1850
1851         /* turn off mdc clock */
1852         enet_writel(priv, 0, ENET_MIISC_REG);
1853
1854         if (priv->has_phy) {
1855                 mdiobus_unregister(priv->mii_bus);
1856                 kfree(priv->mii_bus->irq);
1857                 mdiobus_free(priv->mii_bus);
1858         } else {
1859                 struct bcm63xx_enet_platform_data *pd;
1860
1861                 pd = pdev->dev.platform_data;
1862                 if (pd && pd->mii_config)
1863                         pd->mii_config(dev, 0, bcm_enet_mdio_read_mii,
1864                                        bcm_enet_mdio_write_mii);
1865         }
1866
1867         /* release device resources */
1868         iounmap(priv->base);
1869         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1870         release_mem_region(res->start, res->end - res->start + 1);
1871
1872         /* disable hw block clocks */
1873         if (priv->phy_clk) {
1874                 clk_disable(priv->phy_clk);
1875                 clk_put(priv->phy_clk);
1876         }
1877         clk_disable(priv->mac_clk);
1878         clk_put(priv->mac_clk);
1879
1880         platform_set_drvdata(pdev, NULL);
1881         free_netdev(dev);
1882         return 0;
1883 }
1884
1885 struct platform_driver bcm63xx_enet_driver = {
1886         .probe  = bcm_enet_probe,
1887         .remove = __devexit_p(bcm_enet_remove),
1888         .driver = {
1889                 .name   = "bcm63xx_enet",
1890                 .owner  = THIS_MODULE,
1891         },
1892 };
1893
1894 /*
1895  * reserve & remap memory space shared between all macs
1896  */
1897 static int __devinit bcm_enet_shared_probe(struct platform_device *pdev)
1898 {
1899         struct resource *res;
1900         unsigned int iomem_size;
1901
1902         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1903         if (!res)
1904                 return -ENODEV;
1905
1906         iomem_size = res->end - res->start + 1;
1907         if (!request_mem_region(res->start, iomem_size, "bcm63xx_enet_dma"))
1908                 return -EBUSY;
1909
1910         bcm_enet_shared_base = ioremap(res->start, iomem_size);
1911         if (!bcm_enet_shared_base) {
1912                 release_mem_region(res->start, iomem_size);
1913                 return -ENOMEM;
1914         }
1915         return 0;
1916 }
1917
1918 static int __devexit bcm_enet_shared_remove(struct platform_device *pdev)
1919 {
1920         struct resource *res;
1921
1922         iounmap(bcm_enet_shared_base);
1923         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1924         release_mem_region(res->start, res->end - res->start + 1);
1925         return 0;
1926 }
1927
1928 /*
1929  * this "shared" driver is needed because both macs share a single
1930  * address space
1931  */
1932 struct platform_driver bcm63xx_enet_shared_driver = {
1933         .probe  = bcm_enet_shared_probe,
1934         .remove = __devexit_p(bcm_enet_shared_remove),
1935         .driver = {
1936                 .name   = "bcm63xx_enet_shared",
1937                 .owner  = THIS_MODULE,
1938         },
1939 };
1940
1941 /*
1942  * entry point
1943  */
1944 static int __init bcm_enet_init(void)
1945 {
1946         int ret;
1947
1948         ret = platform_driver_register(&bcm63xx_enet_shared_driver);
1949         if (ret)
1950                 return ret;
1951
1952         ret = platform_driver_register(&bcm63xx_enet_driver);
1953         if (ret)
1954                 platform_driver_unregister(&bcm63xx_enet_shared_driver);
1955
1956         return ret;
1957 }
1958
1959 static void __exit bcm_enet_exit(void)
1960 {
1961         platform_driver_unregister(&bcm63xx_enet_driver);
1962         platform_driver_unregister(&bcm63xx_enet_shared_driver);
1963 }
1964
1965
1966 module_init(bcm_enet_init);
1967 module_exit(bcm_enet_exit);
1968
1969 MODULE_DESCRIPTION("BCM63xx internal ethernet mac driver");
1970 MODULE_AUTHOR("Maxime Bizon <mbizon@freebox.fr>");
1971 MODULE_LICENSE("GPL");