]> nv-tegra.nvidia Code Review - linux-2.6.git/blob - drivers/mtd/ubi/wl.c
UBI: kill homegrown endian macros
[linux-2.6.git] / drivers / mtd / ubi / wl.c
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
19  */
20
21 /*
22  * UBI wear-leveling unit.
23  *
24  * This unit is responsible for wear-leveling. It works in terms of physical
25  * eraseblocks and erase counters and knows nothing about logical eraseblocks,
26  * volumes, etc. From this unit's perspective all physical eraseblocks are of
27  * two types - used and free. Used physical eraseblocks are those that were
28  * "get" by the 'ubi_wl_get_peb()' function, and free physical eraseblocks are
29  * those that were put by the 'ubi_wl_put_peb()' function.
30  *
31  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
32  * header. The rest of the physical eraseblock contains only 0xFF bytes.
33  *
34  * When physical eraseblocks are returned to the WL unit by means of the
35  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
36  * done asynchronously in context of the per-UBI device background thread,
37  * which is also managed by the WL unit.
38  *
39  * The wear-leveling is ensured by means of moving the contents of used
40  * physical eraseblocks with low erase counter to free physical eraseblocks
41  * with high erase counter.
42  *
43  * The 'ubi_wl_get_peb()' function accepts data type hints which help to pick
44  * an "optimal" physical eraseblock. For example, when it is known that the
45  * physical eraseblock will be "put" soon because it contains short-term data,
46  * the WL unit may pick a free physical eraseblock with low erase counter, and
47  * so forth.
48  *
49  * If the WL unit fails to erase a physical eraseblock, it marks it as bad.
50  *
51  * This unit is also responsible for scrubbing. If a bit-flip is detected in a
52  * physical eraseblock, it has to be moved. Technically this is the same as
53  * moving it for wear-leveling reasons.
54  *
55  * As it was said, for the UBI unit all physical eraseblocks are either "free"
56  * or "used". Free eraseblock are kept in the @wl->free RB-tree, while used
57  * eraseblocks are kept in a set of different RB-trees: @wl->used,
58  * @wl->prot.pnum, @wl->prot.aec, and @wl->scrub.
59  *
60  * Note, in this implementation, we keep a small in-RAM object for each physical
61  * eraseblock. This is surely not a scalable solution. But it appears to be good
62  * enough for moderately large flashes and it is simple. In future, one may
63  * re-work this unit and make it more scalable.
64  *
65  * At the moment this unit does not utilize the sequence number, which was
66  * introduced relatively recently. But it would be wise to do this because the
67  * sequence number of a logical eraseblock characterizes how old is it. For
68  * example, when we move a PEB with low erase counter, and we need to pick the
69  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
70  * pick target PEB with an average EC if our PEB is not very "old". This is a
71  * room for future re-works of the WL unit.
72  *
73  * FIXME: looks too complex, should be simplified (later).
74  */
75
76 #include <linux/slab.h>
77 #include <linux/crc32.h>
78 #include <linux/freezer.h>
79 #include <linux/kthread.h>
80 #include "ubi.h"
81
82 /* Number of physical eraseblocks reserved for wear-leveling purposes */
83 #define WL_RESERVED_PEBS 1
84
85 /*
86  * How many erase cycles are short term, unknown, and long term physical
87  * eraseblocks protected.
88  */
89 #define ST_PROTECTION 16
90 #define U_PROTECTION  10
91 #define LT_PROTECTION 4
92
93 /*
94  * Maximum difference between two erase counters. If this threshold is
95  * exceeded, the WL unit starts moving data from used physical eraseblocks with
96  * low erase counter to free physical eraseblocks with high erase counter.
97  */
98 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
99
100 /*
101  * When a physical eraseblock is moved, the WL unit has to pick the target
102  * physical eraseblock to move to. The simplest way would be just to pick the
103  * one with the highest erase counter. But in certain workloads this could lead
104  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
105  * situation when the picked physical eraseblock is constantly erased after the
106  * data is written to it. So, we have a constant which limits the highest erase
107  * counter of the free physical eraseblock to pick. Namely, the WL unit does
108  * not pick eraseblocks with erase counter greater then the lowest erase
109  * counter plus %WL_FREE_MAX_DIFF.
110  */
111 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
112
113 /*
114  * Maximum number of consecutive background thread failures which is enough to
115  * switch to read-only mode.
116  */
117 #define WL_MAX_FAILURES 32
118
119 /**
120  * struct ubi_wl_entry - wear-leveling entry.
121  * @rb: link in the corresponding RB-tree
122  * @ec: erase counter
123  * @pnum: physical eraseblock number
124  *
125  * Each physical eraseblock has a corresponding &struct wl_entry object which
126  * may be kept in different RB-trees.
127  */
128 struct ubi_wl_entry {
129         struct rb_node rb;
130         int ec;
131         int pnum;
132 };
133
134 /**
135  * struct ubi_wl_prot_entry - PEB protection entry.
136  * @rb_pnum: link in the @wl->prot.pnum RB-tree
137  * @rb_aec: link in the @wl->prot.aec RB-tree
138  * @abs_ec: the absolute erase counter value when the protection ends
139  * @e: the wear-leveling entry of the physical eraseblock under protection
140  *
141  * When the WL unit returns a physical eraseblock, the physical eraseblock is
142  * protected from being moved for some "time". For this reason, the physical
143  * eraseblock is not directly moved from the @wl->free tree to the @wl->used
144  * tree. There is one more tree in between where this physical eraseblock is
145  * temporarily stored (@wl->prot).
146  *
147  * All this protection stuff is needed because:
148  *  o we don't want to move physical eraseblocks just after we have given them
149  *    to the user; instead, we first want to let users fill them up with data;
150  *
151  *  o there is a chance that the user will put the physical eraseblock very
152  *    soon, so it makes sense not to move it for some time, but wait; this is
153  *    especially important in case of "short term" physical eraseblocks.
154  *
155  * Physical eraseblocks stay protected only for limited time. But the "time" is
156  * measured in erase cycles in this case. This is implemented with help of the
157  * absolute erase counter (@wl->abs_ec). When it reaches certain value, the
158  * physical eraseblocks are moved from the protection trees (@wl->prot.*) to
159  * the @wl->used tree.
160  *
161  * Protected physical eraseblocks are searched by physical eraseblock number
162  * (when they are put) and by the absolute erase counter (to check if it is
163  * time to move them to the @wl->used tree). So there are actually 2 RB-trees
164  * storing the protected physical eraseblocks: @wl->prot.pnum and
165  * @wl->prot.aec. They are referred to as the "protection" trees. The
166  * first one is indexed by the physical eraseblock number. The second one is
167  * indexed by the absolute erase counter. Both trees store
168  * &struct ubi_wl_prot_entry objects.
169  *
170  * Each physical eraseblock has 2 main states: free and used. The former state
171  * corresponds to the @wl->free tree. The latter state is split up on several
172  * sub-states:
173  * o the WL movement is allowed (@wl->used tree);
174  * o the WL movement is temporarily prohibited (@wl->prot.pnum and
175  * @wl->prot.aec trees);
176  * o scrubbing is needed (@wl->scrub tree).
177  *
178  * Depending on the sub-state, wear-leveling entries of the used physical
179  * eraseblocks may be kept in one of those trees.
180  */
181 struct ubi_wl_prot_entry {
182         struct rb_node rb_pnum;
183         struct rb_node rb_aec;
184         unsigned long long abs_ec;
185         struct ubi_wl_entry *e;
186 };
187
188 /**
189  * struct ubi_work - UBI work description data structure.
190  * @list: a link in the list of pending works
191  * @func: worker function
192  * @priv: private data of the worker function
193  *
194  * @e: physical eraseblock to erase
195  * @torture: if the physical eraseblock has to be tortured
196  *
197  * The @func pointer points to the worker function. If the @cancel argument is
198  * not zero, the worker has to free the resources and exit immediately. The
199  * worker has to return zero in case of success and a negative error code in
200  * case of failure.
201  */
202 struct ubi_work {
203         struct list_head list;
204         int (*func)(struct ubi_device *ubi, struct ubi_work *wrk, int cancel);
205         /* The below fields are only relevant to erasure works */
206         struct ubi_wl_entry *e;
207         int torture;
208 };
209
210 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
211 static int paranoid_check_ec(const struct ubi_device *ubi, int pnum, int ec);
212 static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e,
213                                      struct rb_root *root);
214 #else
215 #define paranoid_check_ec(ubi, pnum, ec) 0
216 #define paranoid_check_in_wl_tree(e, root)
217 #endif
218
219 /* Slab cache for wear-leveling entries */
220 static struct kmem_cache *wl_entries_slab;
221
222 /**
223  * tree_empty - a helper function to check if an RB-tree is empty.
224  * @root: the root of the tree
225  *
226  * This function returns non-zero if the RB-tree is empty and zero if not.
227  */
228 static inline int tree_empty(struct rb_root *root)
229 {
230         return root->rb_node == NULL;
231 }
232
233 /**
234  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
235  * @e: the wear-leveling entry to add
236  * @root: the root of the tree
237  *
238  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
239  * the @ubi->used and @ubi->free RB-trees.
240  */
241 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
242 {
243         struct rb_node **p, *parent = NULL;
244
245         p = &root->rb_node;
246         while (*p) {
247                 struct ubi_wl_entry *e1;
248
249                 parent = *p;
250                 e1 = rb_entry(parent, struct ubi_wl_entry, rb);
251
252                 if (e->ec < e1->ec)
253                         p = &(*p)->rb_left;
254                 else if (e->ec > e1->ec)
255                         p = &(*p)->rb_right;
256                 else {
257                         ubi_assert(e->pnum != e1->pnum);
258                         if (e->pnum < e1->pnum)
259                                 p = &(*p)->rb_left;
260                         else
261                                 p = &(*p)->rb_right;
262                 }
263         }
264
265         rb_link_node(&e->rb, parent, p);
266         rb_insert_color(&e->rb, root);
267 }
268
269
270 /*
271  * Helper functions to add and delete wear-leveling entries from different
272  * trees.
273  */
274
275 static void free_tree_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
276 {
277         wl_tree_add(e, &ubi->free);
278 }
279 static inline void used_tree_add(struct ubi_device *ubi,
280                                  struct ubi_wl_entry *e)
281 {
282         wl_tree_add(e, &ubi->used);
283 }
284 static inline void scrub_tree_add(struct ubi_device *ubi,
285                                   struct ubi_wl_entry *e)
286 {
287         wl_tree_add(e, &ubi->scrub);
288 }
289 static inline void free_tree_del(struct ubi_device *ubi,
290                                  struct ubi_wl_entry *e)
291 {
292         paranoid_check_in_wl_tree(e, &ubi->free);
293         rb_erase(&e->rb, &ubi->free);
294 }
295 static inline void used_tree_del(struct ubi_device *ubi,
296                                  struct ubi_wl_entry *e)
297 {
298         paranoid_check_in_wl_tree(e, &ubi->used);
299         rb_erase(&e->rb, &ubi->used);
300 }
301 static inline void scrub_tree_del(struct ubi_device *ubi,
302                                   struct ubi_wl_entry *e)
303 {
304         paranoid_check_in_wl_tree(e, &ubi->scrub);
305         rb_erase(&e->rb, &ubi->scrub);
306 }
307
308 /**
309  * do_work - do one pending work.
310  * @ubi: UBI device description object
311  *
312  * This function returns zero in case of success and a negative error code in
313  * case of failure.
314  */
315 static int do_work(struct ubi_device *ubi)
316 {
317         int err;
318         struct ubi_work *wrk;
319
320         spin_lock(&ubi->wl_lock);
321
322         if (list_empty(&ubi->works)) {
323                 spin_unlock(&ubi->wl_lock);
324                 return 0;
325         }
326
327         wrk = list_entry(ubi->works.next, struct ubi_work, list);
328         list_del(&wrk->list);
329         spin_unlock(&ubi->wl_lock);
330
331         /*
332          * Call the worker function. Do not touch the work structure
333          * after this call as it will have been freed or reused by that
334          * time by the worker function.
335          */
336         err = wrk->func(ubi, wrk, 0);
337         if (err)
338                 ubi_err("work failed with error code %d", err);
339
340         spin_lock(&ubi->wl_lock);
341         ubi->works_count -= 1;
342         ubi_assert(ubi->works_count >= 0);
343         spin_unlock(&ubi->wl_lock);
344         return err;
345 }
346
347 /**
348  * produce_free_peb - produce a free physical eraseblock.
349  * @ubi: UBI device description object
350  *
351  * This function tries to make a free PEB by means of synchronous execution of
352  * pending works. This may be needed if, for example the background thread is
353  * disabled. Returns zero in case of success and a negative error code in case
354  * of failure.
355  */
356 static int produce_free_peb(struct ubi_device *ubi)
357 {
358         int err;
359
360         spin_lock(&ubi->wl_lock);
361         while (tree_empty(&ubi->free)) {
362                 spin_unlock(&ubi->wl_lock);
363
364                 dbg_wl("do one work synchronously");
365                 err = do_work(ubi);
366                 if (err)
367                         return err;
368
369                 spin_lock(&ubi->wl_lock);
370         }
371         spin_unlock(&ubi->wl_lock);
372
373         return 0;
374 }
375
376 /**
377  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
378  * @e: the wear-leveling entry to check
379  * @root: the root of the tree
380  *
381  * This function returns non-zero if @e is in the @root RB-tree and zero if it
382  * is not.
383  */
384 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
385 {
386         struct rb_node *p;
387
388         p = root->rb_node;
389         while (p) {
390                 struct ubi_wl_entry *e1;
391
392                 e1 = rb_entry(p, struct ubi_wl_entry, rb);
393
394                 if (e->pnum == e1->pnum) {
395                         ubi_assert(e == e1);
396                         return 1;
397                 }
398
399                 if (e->ec < e1->ec)
400                         p = p->rb_left;
401                 else if (e->ec > e1->ec)
402                         p = p->rb_right;
403                 else {
404                         ubi_assert(e->pnum != e1->pnum);
405                         if (e->pnum < e1->pnum)
406                                 p = p->rb_left;
407                         else
408                                 p = p->rb_right;
409                 }
410         }
411
412         return 0;
413 }
414
415 /**
416  * prot_tree_add - add physical eraseblock to protection trees.
417  * @ubi: UBI device description object
418  * @e: the physical eraseblock to add
419  * @pe: protection entry object to use
420  * @abs_ec: absolute erase counter value when this physical eraseblock has
421  * to be removed from the protection trees.
422  *
423  * @wl->lock has to be locked.
424  */
425 static void prot_tree_add(struct ubi_device *ubi, struct ubi_wl_entry *e,
426                           struct ubi_wl_prot_entry *pe, int abs_ec)
427 {
428         struct rb_node **p, *parent = NULL;
429         struct ubi_wl_prot_entry *pe1;
430
431         pe->e = e;
432         pe->abs_ec = ubi->abs_ec + abs_ec;
433
434         p = &ubi->prot.pnum.rb_node;
435         while (*p) {
436                 parent = *p;
437                 pe1 = rb_entry(parent, struct ubi_wl_prot_entry, rb_pnum);
438
439                 if (e->pnum < pe1->e->pnum)
440                         p = &(*p)->rb_left;
441                 else
442                         p = &(*p)->rb_right;
443         }
444         rb_link_node(&pe->rb_pnum, parent, p);
445         rb_insert_color(&pe->rb_pnum, &ubi->prot.pnum);
446
447         p = &ubi->prot.aec.rb_node;
448         parent = NULL;
449         while (*p) {
450                 parent = *p;
451                 pe1 = rb_entry(parent, struct ubi_wl_prot_entry, rb_aec);
452
453                 if (pe->abs_ec < pe1->abs_ec)
454                         p = &(*p)->rb_left;
455                 else
456                         p = &(*p)->rb_right;
457         }
458         rb_link_node(&pe->rb_aec, parent, p);
459         rb_insert_color(&pe->rb_aec, &ubi->prot.aec);
460 }
461
462 /**
463  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
464  * @root: the RB-tree where to look for
465  * @max: highest possible erase counter
466  *
467  * This function looks for a wear leveling entry with erase counter closest to
468  * @max and less then @max.
469  */
470 static struct ubi_wl_entry *find_wl_entry(struct rb_root *root, int max)
471 {
472         struct rb_node *p;
473         struct ubi_wl_entry *e;
474
475         e = rb_entry(rb_first(root), struct ubi_wl_entry, rb);
476         max += e->ec;
477
478         p = root->rb_node;
479         while (p) {
480                 struct ubi_wl_entry *e1;
481
482                 e1 = rb_entry(p, struct ubi_wl_entry, rb);
483                 if (e1->ec >= max)
484                         p = p->rb_left;
485                 else {
486                         p = p->rb_right;
487                         e = e1;
488                 }
489         }
490
491         return e;
492 }
493
494 /**
495  * ubi_wl_get_peb - get a physical eraseblock.
496  * @ubi: UBI device description object
497  * @dtype: type of data which will be stored in this physical eraseblock
498  *
499  * This function returns a physical eraseblock in case of success and a
500  * negative error code in case of failure. Might sleep.
501  */
502 int ubi_wl_get_peb(struct ubi_device *ubi, int dtype)
503 {
504         int err, protect, medium_ec;
505         struct ubi_wl_entry *e, *first, *last;
506         struct ubi_wl_prot_entry *pe;
507
508         ubi_assert(dtype == UBI_LONGTERM || dtype == UBI_SHORTTERM ||
509                    dtype == UBI_UNKNOWN);
510
511         pe = kmalloc(sizeof(struct ubi_wl_prot_entry), GFP_KERNEL);
512         if (!pe)
513                 return -ENOMEM;
514
515 retry:
516         spin_lock(&ubi->wl_lock);
517         if (tree_empty(&ubi->free)) {
518                 if (ubi->works_count == 0) {
519                         ubi_assert(list_empty(&ubi->works));
520                         ubi_err("no free eraseblocks");
521                         spin_unlock(&ubi->wl_lock);
522                         kfree(pe);
523                         return -ENOSPC;
524                 }
525                 spin_unlock(&ubi->wl_lock);
526
527                 err = produce_free_peb(ubi);
528                 if (err < 0) {
529                         kfree(pe);
530                         return err;
531                 }
532                 goto retry;
533         }
534
535         switch (dtype) {
536                 case UBI_LONGTERM:
537                         /*
538                          * For long term data we pick a physical eraseblock
539                          * with high erase counter. But the highest erase
540                          * counter we can pick is bounded by the the lowest
541                          * erase counter plus %WL_FREE_MAX_DIFF.
542                          */
543                         e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
544                         protect = LT_PROTECTION;
545                         break;
546                 case UBI_UNKNOWN:
547                         /*
548                          * For unknown data we pick a physical eraseblock with
549                          * medium erase counter. But we by no means can pick a
550                          * physical eraseblock with erase counter greater or
551                          * equivalent than the lowest erase counter plus
552                          * %WL_FREE_MAX_DIFF.
553                          */
554                         first = rb_entry(rb_first(&ubi->free),
555                                          struct ubi_wl_entry, rb);
556                         last = rb_entry(rb_last(&ubi->free),
557                                         struct ubi_wl_entry, rb);
558
559                         if (last->ec - first->ec < WL_FREE_MAX_DIFF)
560                                 e = rb_entry(ubi->free.rb_node,
561                                                 struct ubi_wl_entry, rb);
562                         else {
563                                 medium_ec = (first->ec + WL_FREE_MAX_DIFF)/2;
564                                 e = find_wl_entry(&ubi->free, medium_ec);
565                         }
566                         protect = U_PROTECTION;
567                         break;
568                 case UBI_SHORTTERM:
569                         /*
570                          * For short term data we pick a physical eraseblock
571                          * with the lowest erase counter as we expect it will
572                          * be erased soon.
573                          */
574                         e = rb_entry(rb_first(&ubi->free),
575                                      struct ubi_wl_entry, rb);
576                         protect = ST_PROTECTION;
577                         break;
578                 default:
579                         protect = 0;
580                         e = NULL;
581                         BUG();
582         }
583
584         /*
585          * Move the physical eraseblock to the protection trees where it will
586          * be protected from being moved for some time.
587          */
588         free_tree_del(ubi, e);
589         prot_tree_add(ubi, e, pe, protect);
590
591         dbg_wl("PEB %d EC %d, protection %d", e->pnum, e->ec, protect);
592         spin_unlock(&ubi->wl_lock);
593
594         return e->pnum;
595 }
596
597 /**
598  * prot_tree_del - remove a physical eraseblock from the protection trees
599  * @ubi: UBI device description object
600  * @pnum: the physical eraseblock to remove
601  */
602 static void prot_tree_del(struct ubi_device *ubi, int pnum)
603 {
604         struct rb_node *p;
605         struct ubi_wl_prot_entry *pe = NULL;
606
607         p = ubi->prot.pnum.rb_node;
608         while (p) {
609
610                 pe = rb_entry(p, struct ubi_wl_prot_entry, rb_pnum);
611
612                 if (pnum == pe->e->pnum)
613                         break;
614
615                 if (pnum < pe->e->pnum)
616                         p = p->rb_left;
617                 else
618                         p = p->rb_right;
619         }
620
621         ubi_assert(pe->e->pnum == pnum);
622         rb_erase(&pe->rb_aec, &ubi->prot.aec);
623         rb_erase(&pe->rb_pnum, &ubi->prot.pnum);
624         kfree(pe);
625 }
626
627 /**
628  * sync_erase - synchronously erase a physical eraseblock.
629  * @ubi: UBI device description object
630  * @e: the the physical eraseblock to erase
631  * @torture: if the physical eraseblock has to be tortured
632  *
633  * This function returns zero in case of success and a negative error code in
634  * case of failure.
635  */
636 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, int torture)
637 {
638         int err;
639         struct ubi_ec_hdr *ec_hdr;
640         unsigned long long ec = e->ec;
641
642         dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
643
644         err = paranoid_check_ec(ubi, e->pnum, e->ec);
645         if (err > 0)
646                 return -EINVAL;
647
648         ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
649         if (!ec_hdr)
650                 return -ENOMEM;
651
652         err = ubi_io_sync_erase(ubi, e->pnum, torture);
653         if (err < 0)
654                 goto out_free;
655
656         ec += err;
657         if (ec > UBI_MAX_ERASECOUNTER) {
658                 /*
659                  * Erase counter overflow. Upgrade UBI and use 64-bit
660                  * erase counters internally.
661                  */
662                 ubi_err("erase counter overflow at PEB %d, EC %llu",
663                         e->pnum, ec);
664                 err = -EINVAL;
665                 goto out_free;
666         }
667
668         dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
669
670         ec_hdr->ec = cpu_to_be64(ec);
671
672         err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
673         if (err)
674                 goto out_free;
675
676         e->ec = ec;
677         spin_lock(&ubi->wl_lock);
678         if (e->ec > ubi->max_ec)
679                 ubi->max_ec = e->ec;
680         spin_unlock(&ubi->wl_lock);
681
682 out_free:
683         kfree(ec_hdr);
684         return err;
685 }
686
687 /**
688  * check_protection_over - check if it is time to stop protecting some
689  * physical eraseblocks.
690  * @ubi: UBI device description object
691  *
692  * This function is called after each erase operation, when the absolute erase
693  * counter is incremented, to check if some physical eraseblock  have not to be
694  * protected any longer. These physical eraseblocks are moved from the
695  * protection trees to the used tree.
696  */
697 static void check_protection_over(struct ubi_device *ubi)
698 {
699         struct ubi_wl_prot_entry *pe;
700
701         /*
702          * There may be several protected physical eraseblock to remove,
703          * process them all.
704          */
705         while (1) {
706                 spin_lock(&ubi->wl_lock);
707                 if (tree_empty(&ubi->prot.aec)) {
708                         spin_unlock(&ubi->wl_lock);
709                         break;
710                 }
711
712                 pe = rb_entry(rb_first(&ubi->prot.aec),
713                               struct ubi_wl_prot_entry, rb_aec);
714
715                 if (pe->abs_ec > ubi->abs_ec) {
716                         spin_unlock(&ubi->wl_lock);
717                         break;
718                 }
719
720                 dbg_wl("PEB %d protection over, abs_ec %llu, PEB abs_ec %llu",
721                        pe->e->pnum, ubi->abs_ec, pe->abs_ec);
722                 rb_erase(&pe->rb_aec, &ubi->prot.aec);
723                 rb_erase(&pe->rb_pnum, &ubi->prot.pnum);
724                 used_tree_add(ubi, pe->e);
725                 spin_unlock(&ubi->wl_lock);
726
727                 kfree(pe);
728                 cond_resched();
729         }
730 }
731
732 /**
733  * schedule_ubi_work - schedule a work.
734  * @ubi: UBI device description object
735  * @wrk: the work to schedule
736  *
737  * This function enqueues a work defined by @wrk to the tail of the pending
738  * works list.
739  */
740 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
741 {
742         spin_lock(&ubi->wl_lock);
743         list_add_tail(&wrk->list, &ubi->works);
744         ubi_assert(ubi->works_count >= 0);
745         ubi->works_count += 1;
746         if (ubi->thread_enabled)
747                 wake_up_process(ubi->bgt_thread);
748         spin_unlock(&ubi->wl_lock);
749 }
750
751 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
752                         int cancel);
753
754 /**
755  * schedule_erase - schedule an erase work.
756  * @ubi: UBI device description object
757  * @e: the WL entry of the physical eraseblock to erase
758  * @torture: if the physical eraseblock has to be tortured
759  *
760  * This function returns zero in case of success and a %-ENOMEM in case of
761  * failure.
762  */
763 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
764                           int torture)
765 {
766         struct ubi_work *wl_wrk;
767
768         dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
769                e->pnum, e->ec, torture);
770
771         wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_KERNEL);
772         if (!wl_wrk)
773                 return -ENOMEM;
774
775         wl_wrk->func = &erase_worker;
776         wl_wrk->e = e;
777         wl_wrk->torture = torture;
778
779         schedule_ubi_work(ubi, wl_wrk);
780         return 0;
781 }
782
783 /**
784  * wear_leveling_worker - wear-leveling worker function.
785  * @ubi: UBI device description object
786  * @wrk: the work object
787  * @cancel: non-zero if the worker has to free memory and exit
788  *
789  * This function copies a more worn out physical eraseblock to a less worn out
790  * one. Returns zero in case of success and a negative error code in case of
791  * failure.
792  */
793 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
794                                 int cancel)
795 {
796         int err, put = 0;
797         struct ubi_wl_entry *e1, *e2;
798         struct ubi_vid_hdr *vid_hdr;
799
800         kfree(wrk);
801
802         if (cancel)
803                 return 0;
804
805         vid_hdr = ubi_zalloc_vid_hdr(ubi);
806         if (!vid_hdr)
807                 return -ENOMEM;
808
809         spin_lock(&ubi->wl_lock);
810
811         /*
812          * Only one WL worker at a time is supported at this implementation, so
813          * make sure a PEB is not being moved already.
814          */
815         if (ubi->move_to || tree_empty(&ubi->free) ||
816             (tree_empty(&ubi->used) && tree_empty(&ubi->scrub))) {
817                 /*
818                  * Only one WL worker at a time is supported at this
819                  * implementation, so if a LEB is already being moved, cancel.
820                  *
821                  * No free physical eraseblocks? Well, we cancel wear-leveling
822                  * then. It will be triggered again when a free physical
823                  * eraseblock appears.
824                  *
825                  * No used physical eraseblocks? They must be temporarily
826                  * protected from being moved. They will be moved to the
827                  * @ubi->used tree later and the wear-leveling will be
828                  * triggered again.
829                  */
830                 dbg_wl("cancel WL, a list is empty: free %d, used %d",
831                        tree_empty(&ubi->free), tree_empty(&ubi->used));
832                 ubi->wl_scheduled = 0;
833                 spin_unlock(&ubi->wl_lock);
834                 ubi_free_vid_hdr(ubi, vid_hdr);
835                 return 0;
836         }
837
838         if (tree_empty(&ubi->scrub)) {
839                 /*
840                  * Now pick the least worn-out used physical eraseblock and a
841                  * highly worn-out free physical eraseblock. If the erase
842                  * counters differ much enough, start wear-leveling.
843                  */
844                 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, rb);
845                 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
846
847                 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
848                         dbg_wl("no WL needed: min used EC %d, max free EC %d",
849                                e1->ec, e2->ec);
850                         ubi->wl_scheduled = 0;
851                         spin_unlock(&ubi->wl_lock);
852                         ubi_free_vid_hdr(ubi, vid_hdr);
853                         return 0;
854                 }
855                 used_tree_del(ubi, e1);
856                 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
857                        e1->pnum, e1->ec, e2->pnum, e2->ec);
858         } else {
859                 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, rb);
860                 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
861                 scrub_tree_del(ubi, e1);
862                 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
863         }
864
865         free_tree_del(ubi, e2);
866         ubi_assert(!ubi->move_from && !ubi->move_to);
867         ubi_assert(!ubi->move_to_put && !ubi->move_from_put);
868         ubi->move_from = e1;
869         ubi->move_to = e2;
870         spin_unlock(&ubi->wl_lock);
871
872         /*
873          * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
874          * We so far do not know which logical eraseblock our physical
875          * eraseblock (@e1) belongs to. We have to read the volume identifier
876          * header first.
877          */
878
879         err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
880         if (err && err != UBI_IO_BITFLIPS) {
881                 if (err == UBI_IO_PEB_FREE) {
882                         /*
883                          * We are trying to move PEB without a VID header. UBI
884                          * always write VID headers shortly after the PEB was
885                          * given, so we have a situation when it did not have
886                          * chance to write it down because it was preempted.
887                          * Just re-schedule the work, so that next time it will
888                          * likely have the VID header in place.
889                          */
890                         dbg_wl("PEB %d has no VID header", e1->pnum);
891                         err = 0;
892                 } else {
893                         ubi_err("error %d while reading VID header from PEB %d",
894                                 err, e1->pnum);
895                         if (err > 0)
896                                 err = -EIO;
897                 }
898                 goto error;
899         }
900
901         err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
902         if (err) {
903                 if (err == UBI_IO_BITFLIPS)
904                         err = 0;
905                 goto error;
906         }
907
908         ubi_free_vid_hdr(ubi, vid_hdr);
909         spin_lock(&ubi->wl_lock);
910         if (!ubi->move_to_put)
911                 used_tree_add(ubi, e2);
912         else
913                 put = 1;
914         ubi->move_from = ubi->move_to = NULL;
915         ubi->move_from_put = ubi->move_to_put = 0;
916         ubi->wl_scheduled = 0;
917         spin_unlock(&ubi->wl_lock);
918
919         if (put) {
920                 /*
921                  * Well, the target PEB was put meanwhile, schedule it for
922                  * erasure.
923                  */
924                 dbg_wl("PEB %d was put meanwhile, erase", e2->pnum);
925                 err = schedule_erase(ubi, e2, 0);
926                 if (err) {
927                         kmem_cache_free(wl_entries_slab, e2);
928                         ubi_ro_mode(ubi);
929                 }
930         }
931
932         err = schedule_erase(ubi, e1, 0);
933         if (err) {
934                 kmem_cache_free(wl_entries_slab, e1);
935                 ubi_ro_mode(ubi);
936         }
937
938         dbg_wl("done");
939         return err;
940
941         /*
942          * Some error occurred. @e1 was not changed, so return it back. @e2
943          * might be changed, schedule it for erasure.
944          */
945 error:
946         if (err)
947                 dbg_wl("error %d occurred, cancel operation", err);
948         ubi_assert(err <= 0);
949
950         ubi_free_vid_hdr(ubi, vid_hdr);
951         spin_lock(&ubi->wl_lock);
952         ubi->wl_scheduled = 0;
953         if (ubi->move_from_put)
954                 put = 1;
955         else
956                 used_tree_add(ubi, e1);
957         ubi->move_from = ubi->move_to = NULL;
958         ubi->move_from_put = ubi->move_to_put = 0;
959         spin_unlock(&ubi->wl_lock);
960
961         if (put) {
962                 /*
963                  * Well, the target PEB was put meanwhile, schedule it for
964                  * erasure.
965                  */
966                 dbg_wl("PEB %d was put meanwhile, erase", e1->pnum);
967                 err = schedule_erase(ubi, e1, 0);
968                 if (err) {
969                         kmem_cache_free(wl_entries_slab, e1);
970                         ubi_ro_mode(ubi);
971                 }
972         }
973
974         err = schedule_erase(ubi, e2, 0);
975         if (err) {
976                 kmem_cache_free(wl_entries_slab, e2);
977                 ubi_ro_mode(ubi);
978         }
979
980         yield();
981         return err;
982 }
983
984 /**
985  * ensure_wear_leveling - schedule wear-leveling if it is needed.
986  * @ubi: UBI device description object
987  *
988  * This function checks if it is time to start wear-leveling and schedules it
989  * if yes. This function returns zero in case of success and a negative error
990  * code in case of failure.
991  */
992 static int ensure_wear_leveling(struct ubi_device *ubi)
993 {
994         int err = 0;
995         struct ubi_wl_entry *e1;
996         struct ubi_wl_entry *e2;
997         struct ubi_work *wrk;
998
999         spin_lock(&ubi->wl_lock);
1000         if (ubi->wl_scheduled)
1001                 /* Wear-leveling is already in the work queue */
1002                 goto out_unlock;
1003
1004         /*
1005          * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1006          * the WL worker has to be scheduled anyway.
1007          */
1008         if (tree_empty(&ubi->scrub)) {
1009                 if (tree_empty(&ubi->used) || tree_empty(&ubi->free))
1010                         /* No physical eraseblocks - no deal */
1011                         goto out_unlock;
1012
1013                 /*
1014                  * We schedule wear-leveling only if the difference between the
1015                  * lowest erase counter of used physical eraseblocks and a high
1016                  * erase counter of free physical eraseblocks is greater then
1017                  * %UBI_WL_THRESHOLD.
1018                  */
1019                 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, rb);
1020                 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
1021
1022                 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1023                         goto out_unlock;
1024                 dbg_wl("schedule wear-leveling");
1025         } else
1026                 dbg_wl("schedule scrubbing");
1027
1028         ubi->wl_scheduled = 1;
1029         spin_unlock(&ubi->wl_lock);
1030
1031         wrk = kmalloc(sizeof(struct ubi_work), GFP_KERNEL);
1032         if (!wrk) {
1033                 err = -ENOMEM;
1034                 goto out_cancel;
1035         }
1036
1037         wrk->func = &wear_leveling_worker;
1038         schedule_ubi_work(ubi, wrk);
1039         return err;
1040
1041 out_cancel:
1042         spin_lock(&ubi->wl_lock);
1043         ubi->wl_scheduled = 0;
1044 out_unlock:
1045         spin_unlock(&ubi->wl_lock);
1046         return err;
1047 }
1048
1049 /**
1050  * erase_worker - physical eraseblock erase worker function.
1051  * @ubi: UBI device description object
1052  * @wl_wrk: the work object
1053  * @cancel: non-zero if the worker has to free memory and exit
1054  *
1055  * This function erases a physical eraseblock and perform torture testing if
1056  * needed. It also takes care about marking the physical eraseblock bad if
1057  * needed. Returns zero in case of success and a negative error code in case of
1058  * failure.
1059  */
1060 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1061                         int cancel)
1062 {
1063         int err;
1064         struct ubi_wl_entry *e = wl_wrk->e;
1065         int pnum = e->pnum;
1066
1067         if (cancel) {
1068                 dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1069                 kfree(wl_wrk);
1070                 kmem_cache_free(wl_entries_slab, e);
1071                 return 0;
1072         }
1073
1074         dbg_wl("erase PEB %d EC %d", pnum, e->ec);
1075
1076         err = sync_erase(ubi, e, wl_wrk->torture);
1077         if (!err) {
1078                 /* Fine, we've erased it successfully */
1079                 kfree(wl_wrk);
1080
1081                 spin_lock(&ubi->wl_lock);
1082                 ubi->abs_ec += 1;
1083                 free_tree_add(ubi, e);
1084                 spin_unlock(&ubi->wl_lock);
1085
1086                 /*
1087                  * One more erase operation has happened, take care about protected
1088                  * physical eraseblocks.
1089                  */
1090                 check_protection_over(ubi);
1091
1092                 /* And take care about wear-leveling */
1093                 err = ensure_wear_leveling(ubi);
1094                 return err;
1095         }
1096
1097         kfree(wl_wrk);
1098         kmem_cache_free(wl_entries_slab, e);
1099
1100         if (err != -EIO) {
1101                 /*
1102                  * If this is not %-EIO, we have no idea what to do. Scheduling
1103                  * this physical eraseblock for erasure again would cause
1104                  * errors again and again. Well, lets switch to RO mode.
1105                  */
1106                 ubi_ro_mode(ubi);
1107                 return err;
1108         }
1109
1110         /* It is %-EIO, the PEB went bad */
1111
1112         if (!ubi->bad_allowed) {
1113                 ubi_err("bad physical eraseblock %d detected", pnum);
1114                 ubi_ro_mode(ubi);
1115                 err = -EIO;
1116         } else {
1117                 int need;
1118
1119                 spin_lock(&ubi->volumes_lock);
1120                 need = ubi->beb_rsvd_level - ubi->beb_rsvd_pebs + 1;
1121                 if (need > 0) {
1122                         need = ubi->avail_pebs >= need ? need : ubi->avail_pebs;
1123                         ubi->avail_pebs -= need;
1124                         ubi->rsvd_pebs += need;
1125                         ubi->beb_rsvd_pebs += need;
1126                         if (need > 0)
1127                                 ubi_msg("reserve more %d PEBs", need);
1128                 }
1129
1130                 if (ubi->beb_rsvd_pebs == 0) {
1131                         spin_unlock(&ubi->volumes_lock);
1132                         ubi_err("no reserved physical eraseblocks");
1133                         ubi_ro_mode(ubi);
1134                         return -EIO;
1135                 }
1136
1137                 spin_unlock(&ubi->volumes_lock);
1138                 ubi_msg("mark PEB %d as bad", pnum);
1139
1140                 err = ubi_io_mark_bad(ubi, pnum);
1141                 if (err) {
1142                         ubi_ro_mode(ubi);
1143                         return err;
1144                 }
1145
1146                 spin_lock(&ubi->volumes_lock);
1147                 ubi->beb_rsvd_pebs -= 1;
1148                 ubi->bad_peb_count += 1;
1149                 ubi->good_peb_count -= 1;
1150                 ubi_calculate_reserved(ubi);
1151                 if (ubi->beb_rsvd_pebs == 0)
1152                         ubi_warn("last PEB from the reserved pool was used");
1153                 spin_unlock(&ubi->volumes_lock);
1154         }
1155
1156         return err;
1157 }
1158
1159 /**
1160  * ubi_wl_put_peb - return a physical eraseblock to the wear-leveling
1161  * unit.
1162  * @ubi: UBI device description object
1163  * @pnum: physical eraseblock to return
1164  * @torture: if this physical eraseblock has to be tortured
1165  *
1166  * This function is called to return physical eraseblock @pnum to the pool of
1167  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1168  * occurred to this @pnum and it has to be tested. This function returns zero
1169  * in case of success and a negative error code in case of failure.
1170  */
1171 int ubi_wl_put_peb(struct ubi_device *ubi, int pnum, int torture)
1172 {
1173         int err;
1174         struct ubi_wl_entry *e;
1175
1176         dbg_wl("PEB %d", pnum);
1177         ubi_assert(pnum >= 0);
1178         ubi_assert(pnum < ubi->peb_count);
1179
1180         spin_lock(&ubi->wl_lock);
1181
1182         e = ubi->lookuptbl[pnum];
1183         if (e == ubi->move_from) {
1184                 /*
1185                  * User is putting the physical eraseblock which was selected to
1186                  * be moved. It will be scheduled for erasure in the
1187                  * wear-leveling worker.
1188                  */
1189                 dbg_wl("PEB %d is being moved", pnum);
1190                 ubi_assert(!ubi->move_from_put);
1191                 ubi->move_from_put = 1;
1192                 spin_unlock(&ubi->wl_lock);
1193                 return 0;
1194         } else if (e == ubi->move_to) {
1195                 /*
1196                  * User is putting the physical eraseblock which was selected
1197                  * as the target the data is moved to. It may happen if the EBA
1198                  * unit already re-mapped the LEB but the WL unit did has not
1199                  * put the PEB to the "used" tree.
1200                  */
1201                 dbg_wl("PEB %d is the target of data moving", pnum);
1202                 ubi_assert(!ubi->move_to_put);
1203                 ubi->move_to_put = 1;
1204                 spin_unlock(&ubi->wl_lock);
1205                 return 0;
1206         } else {
1207                 if (in_wl_tree(e, &ubi->used))
1208                         used_tree_del(ubi, e);
1209                 else if (in_wl_tree(e, &ubi->scrub))
1210                         scrub_tree_del(ubi, e);
1211                 else
1212                         prot_tree_del(ubi, e->pnum);
1213         }
1214         spin_unlock(&ubi->wl_lock);
1215
1216         err = schedule_erase(ubi, e, torture);
1217         if (err) {
1218                 spin_lock(&ubi->wl_lock);
1219                 used_tree_add(ubi, e);
1220                 spin_unlock(&ubi->wl_lock);
1221         }
1222
1223         return err;
1224 }
1225
1226 /**
1227  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1228  * @ubi: UBI device description object
1229  * @pnum: the physical eraseblock to schedule
1230  *
1231  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1232  * needs scrubbing. This function schedules a physical eraseblock for
1233  * scrubbing which is done in background. This function returns zero in case of
1234  * success and a negative error code in case of failure.
1235  */
1236 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1237 {
1238         struct ubi_wl_entry *e;
1239
1240         ubi_msg("schedule PEB %d for scrubbing", pnum);
1241
1242 retry:
1243         spin_lock(&ubi->wl_lock);
1244         e = ubi->lookuptbl[pnum];
1245         if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub)) {
1246                 spin_unlock(&ubi->wl_lock);
1247                 return 0;
1248         }
1249
1250         if (e == ubi->move_to) {
1251                 /*
1252                  * This physical eraseblock was used to move data to. The data
1253                  * was moved but the PEB was not yet inserted to the proper
1254                  * tree. We should just wait a little and let the WL worker
1255                  * proceed.
1256                  */
1257                 spin_unlock(&ubi->wl_lock);
1258                 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1259                 yield();
1260                 goto retry;
1261         }
1262
1263         if (in_wl_tree(e, &ubi->used))
1264                 used_tree_del(ubi, e);
1265         else
1266                 prot_tree_del(ubi, pnum);
1267
1268         scrub_tree_add(ubi, e);
1269         spin_unlock(&ubi->wl_lock);
1270
1271         /*
1272          * Technically scrubbing is the same as wear-leveling, so it is done
1273          * by the WL worker.
1274          */
1275         return ensure_wear_leveling(ubi);
1276 }
1277
1278 /**
1279  * ubi_wl_flush - flush all pending works.
1280  * @ubi: UBI device description object
1281  *
1282  * This function returns zero in case of success and a negative error code in
1283  * case of failure.
1284  */
1285 int ubi_wl_flush(struct ubi_device *ubi)
1286 {
1287         int err, pending_count;
1288
1289         pending_count = ubi->works_count;
1290
1291         dbg_wl("flush (%d pending works)", pending_count);
1292
1293         /*
1294          * Erase while the pending works queue is not empty, but not more then
1295          * the number of currently pending works.
1296          */
1297         while (pending_count-- > 0) {
1298                 err = do_work(ubi);
1299                 if (err)
1300                         return err;
1301         }
1302
1303         return 0;
1304 }
1305
1306 /**
1307  * tree_destroy - destroy an RB-tree.
1308  * @root: the root of the tree to destroy
1309  */
1310 static void tree_destroy(struct rb_root *root)
1311 {
1312         struct rb_node *rb;
1313         struct ubi_wl_entry *e;
1314
1315         rb = root->rb_node;
1316         while (rb) {
1317                 if (rb->rb_left)
1318                         rb = rb->rb_left;
1319                 else if (rb->rb_right)
1320                         rb = rb->rb_right;
1321                 else {
1322                         e = rb_entry(rb, struct ubi_wl_entry, rb);
1323
1324                         rb = rb_parent(rb);
1325                         if (rb) {
1326                                 if (rb->rb_left == &e->rb)
1327                                         rb->rb_left = NULL;
1328                                 else
1329                                         rb->rb_right = NULL;
1330                         }
1331
1332                         kmem_cache_free(wl_entries_slab, e);
1333                 }
1334         }
1335 }
1336
1337 /**
1338  * ubi_thread - UBI background thread.
1339  * @u: the UBI device description object pointer
1340  */
1341 static int ubi_thread(void *u)
1342 {
1343         int failures = 0;
1344         struct ubi_device *ubi = u;
1345
1346         ubi_msg("background thread \"%s\" started, PID %d",
1347                 ubi->bgt_name, current->pid);
1348
1349         set_freezable();
1350         for (;;) {
1351                 int err;
1352
1353                 if (kthread_should_stop())
1354                         goto out;
1355
1356                 if (try_to_freeze())
1357                         continue;
1358
1359                 spin_lock(&ubi->wl_lock);
1360                 if (list_empty(&ubi->works) || ubi->ro_mode ||
1361                                !ubi->thread_enabled) {
1362                         set_current_state(TASK_INTERRUPTIBLE);
1363                         spin_unlock(&ubi->wl_lock);
1364                         schedule();
1365                         continue;
1366                 }
1367                 spin_unlock(&ubi->wl_lock);
1368
1369                 err = do_work(ubi);
1370                 if (err) {
1371                         ubi_err("%s: work failed with error code %d",
1372                                 ubi->bgt_name, err);
1373                         if (failures++ > WL_MAX_FAILURES) {
1374                                 /*
1375                                  * Too many failures, disable the thread and
1376                                  * switch to read-only mode.
1377                                  */
1378                                 ubi_msg("%s: %d consecutive failures",
1379                                         ubi->bgt_name, WL_MAX_FAILURES);
1380                                 ubi_ro_mode(ubi);
1381                                 break;
1382                         }
1383                 } else
1384                         failures = 0;
1385
1386                 cond_resched();
1387         }
1388
1389 out:
1390         dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1391         return 0;
1392 }
1393
1394 /**
1395  * cancel_pending - cancel all pending works.
1396  * @ubi: UBI device description object
1397  */
1398 static void cancel_pending(struct ubi_device *ubi)
1399 {
1400         while (!list_empty(&ubi->works)) {
1401                 struct ubi_work *wrk;
1402
1403                 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1404                 list_del(&wrk->list);
1405                 wrk->func(ubi, wrk, 1);
1406                 ubi->works_count -= 1;
1407                 ubi_assert(ubi->works_count >= 0);
1408         }
1409 }
1410
1411 /**
1412  * ubi_wl_init_scan - initialize the wear-leveling unit using scanning
1413  * information.
1414  * @ubi: UBI device description object
1415  * @si: scanning information
1416  *
1417  * This function returns zero in case of success, and a negative error code in
1418  * case of failure.
1419  */
1420 int ubi_wl_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si)
1421 {
1422         int err;
1423         struct rb_node *rb1, *rb2;
1424         struct ubi_scan_volume *sv;
1425         struct ubi_scan_leb *seb, *tmp;
1426         struct ubi_wl_entry *e;
1427
1428
1429         ubi->used = ubi->free = ubi->scrub = RB_ROOT;
1430         ubi->prot.pnum = ubi->prot.aec = RB_ROOT;
1431         spin_lock_init(&ubi->wl_lock);
1432         ubi->max_ec = si->max_ec;
1433         INIT_LIST_HEAD(&ubi->works);
1434
1435         sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1436
1437         ubi->bgt_thread = kthread_create(ubi_thread, ubi, ubi->bgt_name);
1438         if (IS_ERR(ubi->bgt_thread)) {
1439                 err = PTR_ERR(ubi->bgt_thread);
1440                 ubi_err("cannot spawn \"%s\", error %d", ubi->bgt_name,
1441                         err);
1442                 return err;
1443         }
1444
1445         if (ubi_devices_cnt == 0) {
1446                 wl_entries_slab = kmem_cache_create("ubi_wl_entry_slab",
1447                                                     sizeof(struct ubi_wl_entry),
1448                                                     0, 0, NULL, NULL);
1449                 if (!wl_entries_slab)
1450                         return -ENOMEM;
1451         }
1452
1453         err = -ENOMEM;
1454         ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1455         if (!ubi->lookuptbl)
1456                 goto out_free;
1457
1458         list_for_each_entry_safe(seb, tmp, &si->erase, u.list) {
1459                 cond_resched();
1460
1461                 e = kmem_cache_alloc(wl_entries_slab, GFP_KERNEL);
1462                 if (!e)
1463                         goto out_free;
1464
1465                 e->pnum = seb->pnum;
1466                 e->ec = seb->ec;
1467                 ubi->lookuptbl[e->pnum] = e;
1468                 if (schedule_erase(ubi, e, 0)) {
1469                         kmem_cache_free(wl_entries_slab, e);
1470                         goto out_free;
1471                 }
1472         }
1473
1474         list_for_each_entry(seb, &si->free, u.list) {
1475                 cond_resched();
1476
1477                 e = kmem_cache_alloc(wl_entries_slab, GFP_KERNEL);
1478                 if (!e)
1479                         goto out_free;
1480
1481                 e->pnum = seb->pnum;
1482                 e->ec = seb->ec;
1483                 ubi_assert(e->ec >= 0);
1484                 free_tree_add(ubi, e);
1485                 ubi->lookuptbl[e->pnum] = e;
1486         }
1487
1488         list_for_each_entry(seb, &si->corr, u.list) {
1489                 cond_resched();
1490
1491                 e = kmem_cache_alloc(wl_entries_slab, GFP_KERNEL);
1492                 if (!e)
1493                         goto out_free;
1494
1495                 e->pnum = seb->pnum;
1496                 e->ec = seb->ec;
1497                 ubi->lookuptbl[e->pnum] = e;
1498                 if (schedule_erase(ubi, e, 0)) {
1499                         kmem_cache_free(wl_entries_slab, e);
1500                         goto out_free;
1501                 }
1502         }
1503
1504         ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1505                 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1506                         cond_resched();
1507
1508                         e = kmem_cache_alloc(wl_entries_slab, GFP_KERNEL);
1509                         if (!e)
1510                                 goto out_free;
1511
1512                         e->pnum = seb->pnum;
1513                         e->ec = seb->ec;
1514                         ubi->lookuptbl[e->pnum] = e;
1515                         if (!seb->scrub) {
1516                                 dbg_wl("add PEB %d EC %d to the used tree",
1517                                        e->pnum, e->ec);
1518                                 used_tree_add(ubi, e);
1519                         } else {
1520                                 dbg_wl("add PEB %d EC %d to the scrub tree",
1521                                        e->pnum, e->ec);
1522                                 scrub_tree_add(ubi, e);
1523                         }
1524                 }
1525         }
1526
1527         if (WL_RESERVED_PEBS > ubi->avail_pebs) {
1528                 ubi_err("no enough physical eraseblocks (%d, need %d)",
1529                         ubi->avail_pebs, WL_RESERVED_PEBS);
1530                 goto out_free;
1531         }
1532         ubi->avail_pebs -= WL_RESERVED_PEBS;
1533         ubi->rsvd_pebs += WL_RESERVED_PEBS;
1534
1535         /* Schedule wear-leveling if needed */
1536         err = ensure_wear_leveling(ubi);
1537         if (err)
1538                 goto out_free;
1539
1540         return 0;
1541
1542 out_free:
1543         cancel_pending(ubi);
1544         tree_destroy(&ubi->used);
1545         tree_destroy(&ubi->free);
1546         tree_destroy(&ubi->scrub);
1547         kfree(ubi->lookuptbl);
1548         if (ubi_devices_cnt == 0)
1549                 kmem_cache_destroy(wl_entries_slab);
1550         return err;
1551 }
1552
1553 /**
1554  * protection_trees_destroy - destroy the protection RB-trees.
1555  * @ubi: UBI device description object
1556  */
1557 static void protection_trees_destroy(struct ubi_device *ubi)
1558 {
1559         struct rb_node *rb;
1560         struct ubi_wl_prot_entry *pe;
1561
1562         rb = ubi->prot.aec.rb_node;
1563         while (rb) {
1564                 if (rb->rb_left)
1565                         rb = rb->rb_left;
1566                 else if (rb->rb_right)
1567                         rb = rb->rb_right;
1568                 else {
1569                         pe = rb_entry(rb, struct ubi_wl_prot_entry, rb_aec);
1570
1571                         rb = rb_parent(rb);
1572                         if (rb) {
1573                                 if (rb->rb_left == &pe->rb_aec)
1574                                         rb->rb_left = NULL;
1575                                 else
1576                                         rb->rb_right = NULL;
1577                         }
1578
1579                         kmem_cache_free(wl_entries_slab, pe->e);
1580                         kfree(pe);
1581                 }
1582         }
1583 }
1584
1585 /**
1586  * ubi_wl_close - close the wear-leveling unit.
1587  * @ubi: UBI device description object
1588  */
1589 void ubi_wl_close(struct ubi_device *ubi)
1590 {
1591         dbg_wl("disable \"%s\"", ubi->bgt_name);
1592         if (ubi->bgt_thread)
1593                 kthread_stop(ubi->bgt_thread);
1594
1595         dbg_wl("close the UBI wear-leveling unit");
1596
1597         cancel_pending(ubi);
1598         protection_trees_destroy(ubi);
1599         tree_destroy(&ubi->used);
1600         tree_destroy(&ubi->free);
1601         tree_destroy(&ubi->scrub);
1602         kfree(ubi->lookuptbl);
1603         if (ubi_devices_cnt == 1)
1604                 kmem_cache_destroy(wl_entries_slab);
1605 }
1606
1607 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1608
1609 /**
1610  * paranoid_check_ec - make sure that the erase counter of a physical eraseblock
1611  * is correct.
1612  * @ubi: UBI device description object
1613  * @pnum: the physical eraseblock number to check
1614  * @ec: the erase counter to check
1615  *
1616  * This function returns zero if the erase counter of physical eraseblock @pnum
1617  * is equivalent to @ec, %1 if not, and a negative error code if an error
1618  * occurred.
1619  */
1620 static int paranoid_check_ec(const struct ubi_device *ubi, int pnum, int ec)
1621 {
1622         int err;
1623         long long read_ec;
1624         struct ubi_ec_hdr *ec_hdr;
1625
1626         ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1627         if (!ec_hdr)
1628                 return -ENOMEM;
1629
1630         err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1631         if (err && err != UBI_IO_BITFLIPS) {
1632                 /* The header does not have to exist */
1633                 err = 0;
1634                 goto out_free;
1635         }
1636
1637         read_ec = be64_to_cpu(ec_hdr->ec);
1638         if (ec != read_ec) {
1639                 ubi_err("paranoid check failed for PEB %d", pnum);
1640                 ubi_err("read EC is %lld, should be %d", read_ec, ec);
1641                 ubi_dbg_dump_stack();
1642                 err = 1;
1643         } else
1644                 err = 0;
1645
1646 out_free:
1647         kfree(ec_hdr);
1648         return err;
1649 }
1650
1651 /**
1652  * paranoid_check_in_wl_tree - make sure that a wear-leveling entry is present
1653  * in a WL RB-tree.
1654  * @e: the wear-leveling entry to check
1655  * @root: the root of the tree
1656  *
1657  * This function returns zero if @e is in the @root RB-tree and %1 if it
1658  * is not.
1659  */
1660 static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e,
1661                                      struct rb_root *root)
1662 {
1663         if (in_wl_tree(e, root))
1664                 return 0;
1665
1666         ubi_err("paranoid check failed for PEB %d, EC %d, RB-tree %p ",
1667                 e->pnum, e->ec, root);
1668         ubi_dbg_dump_stack();
1669         return 1;
1670 }
1671
1672 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */