]> nv-tegra.nvidia Code Review - linux-2.6.git/blob - drivers/mtd/nand/nandsim.c
68c150c8ff9d2259fecf209bfb7f37fd5f378ebb
[linux-2.6.git] / drivers / mtd / nand / nandsim.c
1 /*
2  * NAND flash simulator.
3  *
4  * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
5  *
6  * Copyright (C) 2004 Nokia Corporation
7  *
8  * Note: NS means "NAND Simulator".
9  * Note: Input means input TO flash chip, output means output FROM chip.
10  *
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License as published by the
13  * Free Software Foundation; either version 2, or (at your option) any later
14  * version.
15  *
16  * This program is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
19  * Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
24  *
25  * $Id: nandsim.c,v 1.8 2005/03/19 15:33:56 dedekind Exp $
26  */
27
28 #include <linux/init.h>
29 #include <linux/types.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/vmalloc.h>
33 #include <linux/slab.h>
34 #include <linux/errno.h>
35 #include <linux/string.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/nand.h>
38 #include <linux/mtd/partitions.h>
39 #include <linux/delay.h>
40 #include <linux/list.h>
41 #include <linux/random.h>
42
43 /* Default simulator parameters values */
44 #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE)  || \
45     !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
46     !defined(CONFIG_NANDSIM_THIRD_ID_BYTE)  || \
47     !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
48 #define CONFIG_NANDSIM_FIRST_ID_BYTE  0x98
49 #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
50 #define CONFIG_NANDSIM_THIRD_ID_BYTE  0xFF /* No byte */
51 #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
52 #endif
53
54 #ifndef CONFIG_NANDSIM_ACCESS_DELAY
55 #define CONFIG_NANDSIM_ACCESS_DELAY 25
56 #endif
57 #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
58 #define CONFIG_NANDSIM_PROGRAMM_DELAY 200
59 #endif
60 #ifndef CONFIG_NANDSIM_ERASE_DELAY
61 #define CONFIG_NANDSIM_ERASE_DELAY 2
62 #endif
63 #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
64 #define CONFIG_NANDSIM_OUTPUT_CYCLE 40
65 #endif
66 #ifndef CONFIG_NANDSIM_INPUT_CYCLE
67 #define CONFIG_NANDSIM_INPUT_CYCLE  50
68 #endif
69 #ifndef CONFIG_NANDSIM_BUS_WIDTH
70 #define CONFIG_NANDSIM_BUS_WIDTH  8
71 #endif
72 #ifndef CONFIG_NANDSIM_DO_DELAYS
73 #define CONFIG_NANDSIM_DO_DELAYS  0
74 #endif
75 #ifndef CONFIG_NANDSIM_LOG
76 #define CONFIG_NANDSIM_LOG        0
77 #endif
78 #ifndef CONFIG_NANDSIM_DBG
79 #define CONFIG_NANDSIM_DBG        0
80 #endif
81
82 static uint first_id_byte  = CONFIG_NANDSIM_FIRST_ID_BYTE;
83 static uint second_id_byte = CONFIG_NANDSIM_SECOND_ID_BYTE;
84 static uint third_id_byte  = CONFIG_NANDSIM_THIRD_ID_BYTE;
85 static uint fourth_id_byte = CONFIG_NANDSIM_FOURTH_ID_BYTE;
86 static uint access_delay   = CONFIG_NANDSIM_ACCESS_DELAY;
87 static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
88 static uint erase_delay    = CONFIG_NANDSIM_ERASE_DELAY;
89 static uint output_cycle   = CONFIG_NANDSIM_OUTPUT_CYCLE;
90 static uint input_cycle    = CONFIG_NANDSIM_INPUT_CYCLE;
91 static uint bus_width      = CONFIG_NANDSIM_BUS_WIDTH;
92 static uint do_delays      = CONFIG_NANDSIM_DO_DELAYS;
93 static uint log            = CONFIG_NANDSIM_LOG;
94 static uint dbg            = CONFIG_NANDSIM_DBG;
95 static unsigned long parts[MAX_MTD_DEVICES];
96 static unsigned int parts_num;
97 static char *badblocks = NULL;
98 static char *weakblocks = NULL;
99 static char *weakpages = NULL;
100 static unsigned int bitflips = 0;
101 static char *gravepages = NULL;
102 static unsigned int rptwear = 0;
103 static unsigned int overridesize = 0;
104
105 module_param(first_id_byte,  uint, 0400);
106 module_param(second_id_byte, uint, 0400);
107 module_param(third_id_byte,  uint, 0400);
108 module_param(fourth_id_byte, uint, 0400);
109 module_param(access_delay,   uint, 0400);
110 module_param(programm_delay, uint, 0400);
111 module_param(erase_delay,    uint, 0400);
112 module_param(output_cycle,   uint, 0400);
113 module_param(input_cycle,    uint, 0400);
114 module_param(bus_width,      uint, 0400);
115 module_param(do_delays,      uint, 0400);
116 module_param(log,            uint, 0400);
117 module_param(dbg,            uint, 0400);
118 module_param_array(parts, ulong, &parts_num, 0400);
119 module_param(badblocks,      charp, 0400);
120 module_param(weakblocks,     charp, 0400);
121 module_param(weakpages,      charp, 0400);
122 module_param(bitflips,       uint, 0400);
123 module_param(gravepages,     charp, 0400);
124 module_param(rptwear,        uint, 0400);
125 module_param(overridesize,   uint, 0400);
126
127 MODULE_PARM_DESC(first_id_byte,  "The first byte returned by NAND Flash 'read ID' command (manufacturer ID)");
128 MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID)");
129 MODULE_PARM_DESC(third_id_byte,  "The third byte returned by NAND Flash 'read ID' command");
130 MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command");
131 MODULE_PARM_DESC(access_delay,   "Initial page access delay (microiseconds)");
132 MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
133 MODULE_PARM_DESC(erase_delay,    "Sector erase delay (milliseconds)");
134 MODULE_PARM_DESC(output_cycle,   "Word output (from flash) time (nanodeconds)");
135 MODULE_PARM_DESC(input_cycle,    "Word input (to flash) time (nanodeconds)");
136 MODULE_PARM_DESC(bus_width,      "Chip's bus width (8- or 16-bit)");
137 MODULE_PARM_DESC(do_delays,      "Simulate NAND delays using busy-waits if not zero");
138 MODULE_PARM_DESC(log,            "Perform logging if not zero");
139 MODULE_PARM_DESC(dbg,            "Output debug information if not zero");
140 MODULE_PARM_DESC(parts,          "Partition sizes (in erase blocks) separated by commas");
141 /* Page and erase block positions for the following parameters are independent of any partitions */
142 MODULE_PARM_DESC(badblocks,      "Erase blocks that are initially marked bad, separated by commas");
143 MODULE_PARM_DESC(weakblocks,     "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
144                                  " separated by commas e.g. 113:2 means eb 113"
145                                  " can be erased only twice before failing");
146 MODULE_PARM_DESC(weakpages,      "Weak pages [: maximum writes (defaults to 3)]"
147                                  " separated by commas e.g. 1401:2 means page 1401"
148                                  " can be written only twice before failing");
149 MODULE_PARM_DESC(bitflips,       "Maximum number of random bit flips per page (zero by default)");
150 MODULE_PARM_DESC(gravepages,     "Pages that lose data [: maximum reads (defaults to 3)]"
151                                  " separated by commas e.g. 1401:2 means page 1401"
152                                  " can be read only twice before failing");
153 MODULE_PARM_DESC(rptwear,        "Number of erases inbetween reporting wear, if not zero");
154 MODULE_PARM_DESC(overridesize,   "Specifies the NAND Flash size overriding the ID bytes. "
155                                  "The size is specified in erase blocks and as the exponent of a power of two"
156                                  " e.g. 5 means a size of 32 erase blocks");
157
158 /* The largest possible page size */
159 #define NS_LARGEST_PAGE_SIZE    2048
160
161 /* The prefix for simulator output */
162 #define NS_OUTPUT_PREFIX "[nandsim]"
163
164 /* Simulator's output macros (logging, debugging, warning, error) */
165 #define NS_LOG(args...) \
166         do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
167 #define NS_DBG(args...) \
168         do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
169 #define NS_WARN(args...) \
170         do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0)
171 #define NS_ERR(args...) \
172         do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0)
173 #define NS_INFO(args...) \
174         do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0)
175
176 /* Busy-wait delay macros (microseconds, milliseconds) */
177 #define NS_UDELAY(us) \
178         do { if (do_delays) udelay(us); } while(0)
179 #define NS_MDELAY(us) \
180         do { if (do_delays) mdelay(us); } while(0)
181
182 /* Is the nandsim structure initialized ? */
183 #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
184
185 /* Good operation completion status */
186 #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
187
188 /* Operation failed completion status */
189 #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
190
191 /* Calculate the page offset in flash RAM image by (row, column) address */
192 #define NS_RAW_OFFSET(ns) \
193         (((ns)->regs.row << (ns)->geom.pgshift) + ((ns)->regs.row * (ns)->geom.oobsz) + (ns)->regs.column)
194
195 /* Calculate the OOB offset in flash RAM image by (row, column) address */
196 #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
197
198 /* After a command is input, the simulator goes to one of the following states */
199 #define STATE_CMD_READ0        0x00000001 /* read data from the beginning of page */
200 #define STATE_CMD_READ1        0x00000002 /* read data from the second half of page */
201 #define STATE_CMD_READSTART    0x00000003 /* read data second command (large page devices) */
202 #define STATE_CMD_PAGEPROG     0x00000004 /* start page programm */
203 #define STATE_CMD_READOOB      0x00000005 /* read OOB area */
204 #define STATE_CMD_ERASE1       0x00000006 /* sector erase first command */
205 #define STATE_CMD_STATUS       0x00000007 /* read status */
206 #define STATE_CMD_STATUS_M     0x00000008 /* read multi-plane status (isn't implemented) */
207 #define STATE_CMD_SEQIN        0x00000009 /* sequential data imput */
208 #define STATE_CMD_READID       0x0000000A /* read ID */
209 #define STATE_CMD_ERASE2       0x0000000B /* sector erase second command */
210 #define STATE_CMD_RESET        0x0000000C /* reset */
211 #define STATE_CMD_MASK         0x0000000F /* command states mask */
212
213 /* After an address is input, the simulator goes to one of these states */
214 #define STATE_ADDR_PAGE        0x00000010 /* full (row, column) address is accepted */
215 #define STATE_ADDR_SEC         0x00000020 /* sector address was accepted */
216 #define STATE_ADDR_ZERO        0x00000030 /* one byte zero address was accepted */
217 #define STATE_ADDR_MASK        0x00000030 /* address states mask */
218
219 /* Durind data input/output the simulator is in these states */
220 #define STATE_DATAIN           0x00000100 /* waiting for data input */
221 #define STATE_DATAIN_MASK      0x00000100 /* data input states mask */
222
223 #define STATE_DATAOUT          0x00001000 /* waiting for page data output */
224 #define STATE_DATAOUT_ID       0x00002000 /* waiting for ID bytes output */
225 #define STATE_DATAOUT_STATUS   0x00003000 /* waiting for status output */
226 #define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */
227 #define STATE_DATAOUT_MASK     0x00007000 /* data output states mask */
228
229 /* Previous operation is done, ready to accept new requests */
230 #define STATE_READY            0x00000000
231
232 /* This state is used to mark that the next state isn't known yet */
233 #define STATE_UNKNOWN          0x10000000
234
235 /* Simulator's actions bit masks */
236 #define ACTION_CPY       0x00100000 /* copy page/OOB to the internal buffer */
237 #define ACTION_PRGPAGE   0x00200000 /* programm the internal buffer to flash */
238 #define ACTION_SECERASE  0x00300000 /* erase sector */
239 #define ACTION_ZEROOFF   0x00400000 /* don't add any offset to address */
240 #define ACTION_HALFOFF   0x00500000 /* add to address half of page */
241 #define ACTION_OOBOFF    0x00600000 /* add to address OOB offset */
242 #define ACTION_MASK      0x00700000 /* action mask */
243
244 #define NS_OPER_NUM      12 /* Number of operations supported by the simulator */
245 #define NS_OPER_STATES   6  /* Maximum number of states in operation */
246
247 #define OPT_ANY          0xFFFFFFFF /* any chip supports this operation */
248 #define OPT_PAGE256      0x00000001 /* 256-byte  page chips */
249 #define OPT_PAGE512      0x00000002 /* 512-byte  page chips */
250 #define OPT_PAGE2048     0x00000008 /* 2048-byte page chips */
251 #define OPT_SMARTMEDIA   0x00000010 /* SmartMedia technology chips */
252 #define OPT_AUTOINCR     0x00000020 /* page number auto inctimentation is possible */
253 #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
254 #define OPT_LARGEPAGE    (OPT_PAGE2048) /* 2048-byte page chips */
255 #define OPT_SMALLPAGE    (OPT_PAGE256  | OPT_PAGE512)  /* 256 and 512-byte page chips */
256
257 /* Remove action bits ftom state */
258 #define NS_STATE(x) ((x) & ~ACTION_MASK)
259
260 /*
261  * Maximum previous states which need to be saved. Currently saving is
262  * only needed for page programm operation with preceeded read command
263  * (which is only valid for 512-byte pages).
264  */
265 #define NS_MAX_PREVSTATES 1
266
267 /*
268  * A union to represent flash memory contents and flash buffer.
269  */
270 union ns_mem {
271         u_char *byte;    /* for byte access */
272         uint16_t *word;  /* for 16-bit word access */
273 };
274
275 /*
276  * The structure which describes all the internal simulator data.
277  */
278 struct nandsim {
279         struct mtd_partition partitions[MAX_MTD_DEVICES];
280         unsigned int nbparts;
281
282         uint busw;              /* flash chip bus width (8 or 16) */
283         u_char ids[4];          /* chip's ID bytes */
284         uint32_t options;       /* chip's characteristic bits */
285         uint32_t state;         /* current chip state */
286         uint32_t nxstate;       /* next expected state */
287
288         uint32_t *op;           /* current operation, NULL operations isn't known yet  */
289         uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
290         uint16_t npstates;      /* number of previous states saved */
291         uint16_t stateidx;      /* current state index */
292
293         /* The simulated NAND flash pages array */
294         union ns_mem *pages;
295
296         /* Internal buffer of page + OOB size bytes */
297         union ns_mem buf;
298
299         /* NAND flash "geometry" */
300         struct nandsin_geometry {
301                 uint64_t totsz;     /* total flash size, bytes */
302                 uint32_t secsz;     /* flash sector (erase block) size, bytes */
303                 uint pgsz;          /* NAND flash page size, bytes */
304                 uint oobsz;         /* page OOB area size, bytes */
305                 uint64_t totszoob;  /* total flash size including OOB, bytes */
306                 uint pgszoob;       /* page size including OOB , bytes*/
307                 uint secszoob;      /* sector size including OOB, bytes */
308                 uint pgnum;         /* total number of pages */
309                 uint pgsec;         /* number of pages per sector */
310                 uint secshift;      /* bits number in sector size */
311                 uint pgshift;       /* bits number in page size */
312                 uint oobshift;      /* bits number in OOB size */
313                 uint pgaddrbytes;   /* bytes per page address */
314                 uint secaddrbytes;  /* bytes per sector address */
315                 uint idbytes;       /* the number ID bytes that this chip outputs */
316         } geom;
317
318         /* NAND flash internal registers */
319         struct nandsim_regs {
320                 unsigned command; /* the command register */
321                 u_char   status;  /* the status register */
322                 uint     row;     /* the page number */
323                 uint     column;  /* the offset within page */
324                 uint     count;   /* internal counter */
325                 uint     num;     /* number of bytes which must be processed */
326                 uint     off;     /* fixed page offset */
327         } regs;
328
329         /* NAND flash lines state */
330         struct ns_lines_status {
331                 int ce;  /* chip Enable */
332                 int cle; /* command Latch Enable */
333                 int ale; /* address Latch Enable */
334                 int wp;  /* write Protect */
335         } lines;
336 };
337
338 /*
339  * Operations array. To perform any operation the simulator must pass
340  * through the correspondent states chain.
341  */
342 static struct nandsim_operations {
343         uint32_t reqopts;  /* options which are required to perform the operation */
344         uint32_t states[NS_OPER_STATES]; /* operation's states */
345 } ops[NS_OPER_NUM] = {
346         /* Read page + OOB from the beginning */
347         {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
348                         STATE_DATAOUT, STATE_READY}},
349         /* Read page + OOB from the second half */
350         {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
351                         STATE_DATAOUT, STATE_READY}},
352         /* Read OOB */
353         {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
354                         STATE_DATAOUT, STATE_READY}},
355         /* Programm page starting from the beginning */
356         {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
357                         STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
358         /* Programm page starting from the beginning */
359         {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
360                               STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
361         /* Programm page starting from the second half */
362         {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
363                               STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
364         /* Programm OOB */
365         {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
366                               STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
367         /* Erase sector */
368         {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
369         /* Read status */
370         {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
371         /* Read multi-plane status */
372         {OPT_SMARTMEDIA, {STATE_CMD_STATUS_M, STATE_DATAOUT_STATUS_M, STATE_READY}},
373         /* Read ID */
374         {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
375         /* Large page devices read page */
376         {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
377                                STATE_DATAOUT, STATE_READY}}
378 };
379
380 struct weak_block {
381         struct list_head list;
382         unsigned int erase_block_no;
383         unsigned int max_erases;
384         unsigned int erases_done;
385 };
386
387 static LIST_HEAD(weak_blocks);
388
389 struct weak_page {
390         struct list_head list;
391         unsigned int page_no;
392         unsigned int max_writes;
393         unsigned int writes_done;
394 };
395
396 static LIST_HEAD(weak_pages);
397
398 struct grave_page {
399         struct list_head list;
400         unsigned int page_no;
401         unsigned int max_reads;
402         unsigned int reads_done;
403 };
404
405 static LIST_HEAD(grave_pages);
406
407 static unsigned long *erase_block_wear = NULL;
408 static unsigned int wear_eb_count = 0;
409 static unsigned long total_wear = 0;
410 static unsigned int rptwear_cnt = 0;
411
412 /* MTD structure for NAND controller */
413 static struct mtd_info *nsmtd;
414
415 static u_char ns_verify_buf[NS_LARGEST_PAGE_SIZE];
416
417 /*
418  * Allocate array of page pointers and initialize the array to NULL
419  * pointers.
420  *
421  * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
422  */
423 static int alloc_device(struct nandsim *ns)
424 {
425         int i;
426
427         ns->pages = vmalloc(ns->geom.pgnum * sizeof(union ns_mem));
428         if (!ns->pages) {
429                 NS_ERR("alloc_map: unable to allocate page array\n");
430                 return -ENOMEM;
431         }
432         for (i = 0; i < ns->geom.pgnum; i++) {
433                 ns->pages[i].byte = NULL;
434         }
435
436         return 0;
437 }
438
439 /*
440  * Free any allocated pages, and free the array of page pointers.
441  */
442 static void free_device(struct nandsim *ns)
443 {
444         int i;
445
446         if (ns->pages) {
447                 for (i = 0; i < ns->geom.pgnum; i++) {
448                         if (ns->pages[i].byte)
449                                 kfree(ns->pages[i].byte);
450                 }
451                 vfree(ns->pages);
452         }
453 }
454
455 static char *get_partition_name(int i)
456 {
457         char buf[64];
458         sprintf(buf, "NAND simulator partition %d", i);
459         return kstrdup(buf, GFP_KERNEL);
460 }
461
462 static u_int64_t divide(u_int64_t n, u_int32_t d)
463 {
464         do_div(n, d);
465         return n;
466 }
467
468 /*
469  * Initialize the nandsim structure.
470  *
471  * RETURNS: 0 if success, -ERRNO if failure.
472  */
473 static int init_nandsim(struct mtd_info *mtd)
474 {
475         struct nand_chip *chip = (struct nand_chip *)mtd->priv;
476         struct nandsim   *ns   = (struct nandsim *)(chip->priv);
477         int i, ret = 0;
478         u_int64_t remains;
479         u_int64_t next_offset;
480
481         if (NS_IS_INITIALIZED(ns)) {
482                 NS_ERR("init_nandsim: nandsim is already initialized\n");
483                 return -EIO;
484         }
485
486         /* Force mtd to not do delays */
487         chip->chip_delay = 0;
488
489         /* Initialize the NAND flash parameters */
490         ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
491         ns->geom.totsz    = mtd->size;
492         ns->geom.pgsz     = mtd->writesize;
493         ns->geom.oobsz    = mtd->oobsize;
494         ns->geom.secsz    = mtd->erasesize;
495         ns->geom.pgszoob  = ns->geom.pgsz + ns->geom.oobsz;
496         ns->geom.pgnum    = divide(ns->geom.totsz, ns->geom.pgsz);
497         ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz;
498         ns->geom.secshift = ffs(ns->geom.secsz) - 1;
499         ns->geom.pgshift  = chip->page_shift;
500         ns->geom.oobshift = ffs(ns->geom.oobsz) - 1;
501         ns->geom.pgsec    = ns->geom.secsz / ns->geom.pgsz;
502         ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
503         ns->options = 0;
504
505         if (ns->geom.pgsz == 256) {
506                 ns->options |= OPT_PAGE256;
507         }
508         else if (ns->geom.pgsz == 512) {
509                 ns->options |= (OPT_PAGE512 | OPT_AUTOINCR);
510                 if (ns->busw == 8)
511                         ns->options |= OPT_PAGE512_8BIT;
512         } else if (ns->geom.pgsz == 2048) {
513                 ns->options |= OPT_PAGE2048;
514         } else {
515                 NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
516                 return -EIO;
517         }
518
519         if (ns->options & OPT_SMALLPAGE) {
520                 if (ns->geom.totsz <= (32 << 20)) {
521                         ns->geom.pgaddrbytes  = 3;
522                         ns->geom.secaddrbytes = 2;
523                 } else {
524                         ns->geom.pgaddrbytes  = 4;
525                         ns->geom.secaddrbytes = 3;
526                 }
527         } else {
528                 if (ns->geom.totsz <= (128 << 20)) {
529                         ns->geom.pgaddrbytes  = 4;
530                         ns->geom.secaddrbytes = 2;
531                 } else {
532                         ns->geom.pgaddrbytes  = 5;
533                         ns->geom.secaddrbytes = 3;
534                 }
535         }
536
537         /* Fill the partition_info structure */
538         if (parts_num > ARRAY_SIZE(ns->partitions)) {
539                 NS_ERR("too many partitions.\n");
540                 ret = -EINVAL;
541                 goto error;
542         }
543         remains = ns->geom.totsz;
544         next_offset = 0;
545         for (i = 0; i < parts_num; ++i) {
546                 u_int64_t part_sz = (u_int64_t)parts[i] * ns->geom.secsz;
547
548                 if (!part_sz || part_sz > remains) {
549                         NS_ERR("bad partition size.\n");
550                         ret = -EINVAL;
551                         goto error;
552                 }
553                 ns->partitions[i].name   = get_partition_name(i);
554                 ns->partitions[i].offset = next_offset;
555                 ns->partitions[i].size   = part_sz;
556                 next_offset += ns->partitions[i].size;
557                 remains -= ns->partitions[i].size;
558         }
559         ns->nbparts = parts_num;
560         if (remains) {
561                 if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) {
562                         NS_ERR("too many partitions.\n");
563                         ret = -EINVAL;
564                         goto error;
565                 }
566                 ns->partitions[i].name   = get_partition_name(i);
567                 ns->partitions[i].offset = next_offset;
568                 ns->partitions[i].size   = remains;
569                 ns->nbparts += 1;
570         }
571
572         /* Detect how many ID bytes the NAND chip outputs */
573         for (i = 0; nand_flash_ids[i].name != NULL; i++) {
574                 if (second_id_byte != nand_flash_ids[i].id)
575                         continue;
576                 if (!(nand_flash_ids[i].options & NAND_NO_AUTOINCR))
577                         ns->options |= OPT_AUTOINCR;
578         }
579
580         if (ns->busw == 16)
581                 NS_WARN("16-bit flashes support wasn't tested\n");
582
583         printk("flash size: %llu MiB\n",        ns->geom.totsz >> 20);
584         printk("page size: %u bytes\n",         ns->geom.pgsz);
585         printk("OOB area size: %u bytes\n",     ns->geom.oobsz);
586         printk("sector size: %u KiB\n",         ns->geom.secsz >> 10);
587         printk("pages number: %u\n",            ns->geom.pgnum);
588         printk("pages per sector: %u\n",        ns->geom.pgsec);
589         printk("bus width: %u\n",               ns->busw);
590         printk("bits in sector size: %u\n",     ns->geom.secshift);
591         printk("bits in page size: %u\n",       ns->geom.pgshift);
592         printk("bits in OOB size: %u\n",        ns->geom.oobshift);
593         printk("flash size with OOB: %llu KiB\n", ns->geom.totszoob >> 10);
594         printk("page address bytes: %u\n",      ns->geom.pgaddrbytes);
595         printk("sector address bytes: %u\n",    ns->geom.secaddrbytes);
596         printk("options: %#x\n",                ns->options);
597
598         if ((ret = alloc_device(ns)) != 0)
599                 goto error;
600
601         /* Allocate / initialize the internal buffer */
602         ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
603         if (!ns->buf.byte) {
604                 NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
605                         ns->geom.pgszoob);
606                 ret = -ENOMEM;
607                 goto error;
608         }
609         memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
610
611         return 0;
612
613 error:
614         free_device(ns);
615
616         return ret;
617 }
618
619 /*
620  * Free the nandsim structure.
621  */
622 static void free_nandsim(struct nandsim *ns)
623 {
624         kfree(ns->buf.byte);
625         free_device(ns);
626
627         return;
628 }
629
630 static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd)
631 {
632         char *w;
633         int zero_ok;
634         unsigned int erase_block_no;
635         loff_t offset;
636
637         if (!badblocks)
638                 return 0;
639         w = badblocks;
640         do {
641                 zero_ok = (*w == '0' ? 1 : 0);
642                 erase_block_no = simple_strtoul(w, &w, 0);
643                 if (!zero_ok && !erase_block_no) {
644                         NS_ERR("invalid badblocks.\n");
645                         return -EINVAL;
646                 }
647                 offset = erase_block_no * ns->geom.secsz;
648                 if (mtd->block_markbad(mtd, offset)) {
649                         NS_ERR("invalid badblocks.\n");
650                         return -EINVAL;
651                 }
652                 if (*w == ',')
653                         w += 1;
654         } while (*w);
655         return 0;
656 }
657
658 static int parse_weakblocks(void)
659 {
660         char *w;
661         int zero_ok;
662         unsigned int erase_block_no;
663         unsigned int max_erases;
664         struct weak_block *wb;
665
666         if (!weakblocks)
667                 return 0;
668         w = weakblocks;
669         do {
670                 zero_ok = (*w == '0' ? 1 : 0);
671                 erase_block_no = simple_strtoul(w, &w, 0);
672                 if (!zero_ok && !erase_block_no) {
673                         NS_ERR("invalid weakblocks.\n");
674                         return -EINVAL;
675                 }
676                 max_erases = 3;
677                 if (*w == ':') {
678                         w += 1;
679                         max_erases = simple_strtoul(w, &w, 0);
680                 }
681                 if (*w == ',')
682                         w += 1;
683                 wb = kzalloc(sizeof(*wb), GFP_KERNEL);
684                 if (!wb) {
685                         NS_ERR("unable to allocate memory.\n");
686                         return -ENOMEM;
687                 }
688                 wb->erase_block_no = erase_block_no;
689                 wb->max_erases = max_erases;
690                 list_add(&wb->list, &weak_blocks);
691         } while (*w);
692         return 0;
693 }
694
695 static int erase_error(unsigned int erase_block_no)
696 {
697         struct weak_block *wb;
698
699         list_for_each_entry(wb, &weak_blocks, list)
700                 if (wb->erase_block_no == erase_block_no) {
701                         if (wb->erases_done >= wb->max_erases)
702                                 return 1;
703                         wb->erases_done += 1;
704                         return 0;
705                 }
706         return 0;
707 }
708
709 static int parse_weakpages(void)
710 {
711         char *w;
712         int zero_ok;
713         unsigned int page_no;
714         unsigned int max_writes;
715         struct weak_page *wp;
716
717         if (!weakpages)
718                 return 0;
719         w = weakpages;
720         do {
721                 zero_ok = (*w == '0' ? 1 : 0);
722                 page_no = simple_strtoul(w, &w, 0);
723                 if (!zero_ok && !page_no) {
724                         NS_ERR("invalid weakpagess.\n");
725                         return -EINVAL;
726                 }
727                 max_writes = 3;
728                 if (*w == ':') {
729                         w += 1;
730                         max_writes = simple_strtoul(w, &w, 0);
731                 }
732                 if (*w == ',')
733                         w += 1;
734                 wp = kzalloc(sizeof(*wp), GFP_KERNEL);
735                 if (!wp) {
736                         NS_ERR("unable to allocate memory.\n");
737                         return -ENOMEM;
738                 }
739                 wp->page_no = page_no;
740                 wp->max_writes = max_writes;
741                 list_add(&wp->list, &weak_pages);
742         } while (*w);
743         return 0;
744 }
745
746 static int write_error(unsigned int page_no)
747 {
748         struct weak_page *wp;
749
750         list_for_each_entry(wp, &weak_pages, list)
751                 if (wp->page_no == page_no) {
752                         if (wp->writes_done >= wp->max_writes)
753                                 return 1;
754                         wp->writes_done += 1;
755                         return 0;
756                 }
757         return 0;
758 }
759
760 static int parse_gravepages(void)
761 {
762         char *g;
763         int zero_ok;
764         unsigned int page_no;
765         unsigned int max_reads;
766         struct grave_page *gp;
767
768         if (!gravepages)
769                 return 0;
770         g = gravepages;
771         do {
772                 zero_ok = (*g == '0' ? 1 : 0);
773                 page_no = simple_strtoul(g, &g, 0);
774                 if (!zero_ok && !page_no) {
775                         NS_ERR("invalid gravepagess.\n");
776                         return -EINVAL;
777                 }
778                 max_reads = 3;
779                 if (*g == ':') {
780                         g += 1;
781                         max_reads = simple_strtoul(g, &g, 0);
782                 }
783                 if (*g == ',')
784                         g += 1;
785                 gp = kzalloc(sizeof(*gp), GFP_KERNEL);
786                 if (!gp) {
787                         NS_ERR("unable to allocate memory.\n");
788                         return -ENOMEM;
789                 }
790                 gp->page_no = page_no;
791                 gp->max_reads = max_reads;
792                 list_add(&gp->list, &grave_pages);
793         } while (*g);
794         return 0;
795 }
796
797 static int read_error(unsigned int page_no)
798 {
799         struct grave_page *gp;
800
801         list_for_each_entry(gp, &grave_pages, list)
802                 if (gp->page_no == page_no) {
803                         if (gp->reads_done >= gp->max_reads)
804                                 return 1;
805                         gp->reads_done += 1;
806                         return 0;
807                 }
808         return 0;
809 }
810
811 static void free_lists(void)
812 {
813         struct list_head *pos, *n;
814         list_for_each_safe(pos, n, &weak_blocks) {
815                 list_del(pos);
816                 kfree(list_entry(pos, struct weak_block, list));
817         }
818         list_for_each_safe(pos, n, &weak_pages) {
819                 list_del(pos);
820                 kfree(list_entry(pos, struct weak_page, list));
821         }
822         list_for_each_safe(pos, n, &grave_pages) {
823                 list_del(pos);
824                 kfree(list_entry(pos, struct grave_page, list));
825         }
826         kfree(erase_block_wear);
827 }
828
829 static int setup_wear_reporting(struct mtd_info *mtd)
830 {
831         size_t mem;
832
833         if (!rptwear)
834                 return 0;
835         wear_eb_count = divide(mtd->size, mtd->erasesize);
836         mem = wear_eb_count * sizeof(unsigned long);
837         if (mem / sizeof(unsigned long) != wear_eb_count) {
838                 NS_ERR("Too many erase blocks for wear reporting\n");
839                 return -ENOMEM;
840         }
841         erase_block_wear = kzalloc(mem, GFP_KERNEL);
842         if (!erase_block_wear) {
843                 NS_ERR("Too many erase blocks for wear reporting\n");
844                 return -ENOMEM;
845         }
846         return 0;
847 }
848
849 static void update_wear(unsigned int erase_block_no)
850 {
851         unsigned long wmin = -1, wmax = 0, avg;
852         unsigned long deciles[10], decile_max[10], tot = 0;
853         unsigned int i;
854
855         if (!erase_block_wear)
856                 return;
857         total_wear += 1;
858         if (total_wear == 0)
859                 NS_ERR("Erase counter total overflow\n");
860         erase_block_wear[erase_block_no] += 1;
861         if (erase_block_wear[erase_block_no] == 0)
862                 NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no);
863         rptwear_cnt += 1;
864         if (rptwear_cnt < rptwear)
865                 return;
866         rptwear_cnt = 0;
867         /* Calc wear stats */
868         for (i = 0; i < wear_eb_count; ++i) {
869                 unsigned long wear = erase_block_wear[i];
870                 if (wear < wmin)
871                         wmin = wear;
872                 if (wear > wmax)
873                         wmax = wear;
874                 tot += wear;
875         }
876         for (i = 0; i < 9; ++i) {
877                 deciles[i] = 0;
878                 decile_max[i] = (wmax * (i + 1) + 5) / 10;
879         }
880         deciles[9] = 0;
881         decile_max[9] = wmax;
882         for (i = 0; i < wear_eb_count; ++i) {
883                 int d;
884                 unsigned long wear = erase_block_wear[i];
885                 for (d = 0; d < 10; ++d)
886                         if (wear <= decile_max[d]) {
887                                 deciles[d] += 1;
888                                 break;
889                         }
890         }
891         avg = tot / wear_eb_count;
892         /* Output wear report */
893         NS_INFO("*** Wear Report ***\n");
894         NS_INFO("Total numbers of erases:  %lu\n", tot);
895         NS_INFO("Number of erase blocks:   %u\n", wear_eb_count);
896         NS_INFO("Average number of erases: %lu\n", avg);
897         NS_INFO("Maximum number of erases: %lu\n", wmax);
898         NS_INFO("Minimum number of erases: %lu\n", wmin);
899         for (i = 0; i < 10; ++i) {
900                 unsigned long from = (i ? decile_max[i - 1] + 1 : 0);
901                 if (from > decile_max[i])
902                         continue;
903                 NS_INFO("Number of ebs with erase counts from %lu to %lu : %lu\n",
904                         from,
905                         decile_max[i],
906                         deciles[i]);
907         }
908         NS_INFO("*** End of Wear Report ***\n");
909 }
910
911 /*
912  * Returns the string representation of 'state' state.
913  */
914 static char *get_state_name(uint32_t state)
915 {
916         switch (NS_STATE(state)) {
917                 case STATE_CMD_READ0:
918                         return "STATE_CMD_READ0";
919                 case STATE_CMD_READ1:
920                         return "STATE_CMD_READ1";
921                 case STATE_CMD_PAGEPROG:
922                         return "STATE_CMD_PAGEPROG";
923                 case STATE_CMD_READOOB:
924                         return "STATE_CMD_READOOB";
925                 case STATE_CMD_READSTART:
926                         return "STATE_CMD_READSTART";
927                 case STATE_CMD_ERASE1:
928                         return "STATE_CMD_ERASE1";
929                 case STATE_CMD_STATUS:
930                         return "STATE_CMD_STATUS";
931                 case STATE_CMD_STATUS_M:
932                         return "STATE_CMD_STATUS_M";
933                 case STATE_CMD_SEQIN:
934                         return "STATE_CMD_SEQIN";
935                 case STATE_CMD_READID:
936                         return "STATE_CMD_READID";
937                 case STATE_CMD_ERASE2:
938                         return "STATE_CMD_ERASE2";
939                 case STATE_CMD_RESET:
940                         return "STATE_CMD_RESET";
941                 case STATE_ADDR_PAGE:
942                         return "STATE_ADDR_PAGE";
943                 case STATE_ADDR_SEC:
944                         return "STATE_ADDR_SEC";
945                 case STATE_ADDR_ZERO:
946                         return "STATE_ADDR_ZERO";
947                 case STATE_DATAIN:
948                         return "STATE_DATAIN";
949                 case STATE_DATAOUT:
950                         return "STATE_DATAOUT";
951                 case STATE_DATAOUT_ID:
952                         return "STATE_DATAOUT_ID";
953                 case STATE_DATAOUT_STATUS:
954                         return "STATE_DATAOUT_STATUS";
955                 case STATE_DATAOUT_STATUS_M:
956                         return "STATE_DATAOUT_STATUS_M";
957                 case STATE_READY:
958                         return "STATE_READY";
959                 case STATE_UNKNOWN:
960                         return "STATE_UNKNOWN";
961         }
962
963         NS_ERR("get_state_name: unknown state, BUG\n");
964         return NULL;
965 }
966
967 /*
968  * Check if command is valid.
969  *
970  * RETURNS: 1 if wrong command, 0 if right.
971  */
972 static int check_command(int cmd)
973 {
974         switch (cmd) {
975
976         case NAND_CMD_READ0:
977         case NAND_CMD_READSTART:
978         case NAND_CMD_PAGEPROG:
979         case NAND_CMD_READOOB:
980         case NAND_CMD_ERASE1:
981         case NAND_CMD_STATUS:
982         case NAND_CMD_SEQIN:
983         case NAND_CMD_READID:
984         case NAND_CMD_ERASE2:
985         case NAND_CMD_RESET:
986         case NAND_CMD_READ1:
987                 return 0;
988
989         case NAND_CMD_STATUS_MULTI:
990         default:
991                 return 1;
992         }
993 }
994
995 /*
996  * Returns state after command is accepted by command number.
997  */
998 static uint32_t get_state_by_command(unsigned command)
999 {
1000         switch (command) {
1001                 case NAND_CMD_READ0:
1002                         return STATE_CMD_READ0;
1003                 case NAND_CMD_READ1:
1004                         return STATE_CMD_READ1;
1005                 case NAND_CMD_PAGEPROG:
1006                         return STATE_CMD_PAGEPROG;
1007                 case NAND_CMD_READSTART:
1008                         return STATE_CMD_READSTART;
1009                 case NAND_CMD_READOOB:
1010                         return STATE_CMD_READOOB;
1011                 case NAND_CMD_ERASE1:
1012                         return STATE_CMD_ERASE1;
1013                 case NAND_CMD_STATUS:
1014                         return STATE_CMD_STATUS;
1015                 case NAND_CMD_STATUS_MULTI:
1016                         return STATE_CMD_STATUS_M;
1017                 case NAND_CMD_SEQIN:
1018                         return STATE_CMD_SEQIN;
1019                 case NAND_CMD_READID:
1020                         return STATE_CMD_READID;
1021                 case NAND_CMD_ERASE2:
1022                         return STATE_CMD_ERASE2;
1023                 case NAND_CMD_RESET:
1024                         return STATE_CMD_RESET;
1025         }
1026
1027         NS_ERR("get_state_by_command: unknown command, BUG\n");
1028         return 0;
1029 }
1030
1031 /*
1032  * Move an address byte to the correspondent internal register.
1033  */
1034 static inline void accept_addr_byte(struct nandsim *ns, u_char bt)
1035 {
1036         uint byte = (uint)bt;
1037
1038         if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
1039                 ns->regs.column |= (byte << 8 * ns->regs.count);
1040         else {
1041                 ns->regs.row |= (byte << 8 * (ns->regs.count -
1042                                                 ns->geom.pgaddrbytes +
1043                                                 ns->geom.secaddrbytes));
1044         }
1045
1046         return;
1047 }
1048
1049 /*
1050  * Switch to STATE_READY state.
1051  */
1052 static inline void switch_to_ready_state(struct nandsim *ns, u_char status)
1053 {
1054         NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
1055
1056         ns->state       = STATE_READY;
1057         ns->nxstate     = STATE_UNKNOWN;
1058         ns->op          = NULL;
1059         ns->npstates    = 0;
1060         ns->stateidx    = 0;
1061         ns->regs.num    = 0;
1062         ns->regs.count  = 0;
1063         ns->regs.off    = 0;
1064         ns->regs.row    = 0;
1065         ns->regs.column = 0;
1066         ns->regs.status = status;
1067 }
1068
1069 /*
1070  * If the operation isn't known yet, try to find it in the global array
1071  * of supported operations.
1072  *
1073  * Operation can be unknown because of the following.
1074  *   1. New command was accepted and this is the firs call to find the
1075  *      correspondent states chain. In this case ns->npstates = 0;
1076  *   2. There is several operations which begin with the same command(s)
1077  *      (for example program from the second half and read from the
1078  *      second half operations both begin with the READ1 command). In this
1079  *      case the ns->pstates[] array contains previous states.
1080  *
1081  * Thus, the function tries to find operation containing the following
1082  * states (if the 'flag' parameter is 0):
1083  *    ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
1084  *
1085  * If (one and only one) matching operation is found, it is accepted (
1086  * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
1087  * zeroed).
1088  *
1089  * If there are several maches, the current state is pushed to the
1090  * ns->pstates.
1091  *
1092  * The operation can be unknown only while commands are input to the chip.
1093  * As soon as address command is accepted, the operation must be known.
1094  * In such situation the function is called with 'flag' != 0, and the
1095  * operation is searched using the following pattern:
1096  *     ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
1097  *
1098  * It is supposed that this pattern must either match one operation on
1099  * none. There can't be ambiguity in that case.
1100  *
1101  * If no matches found, the functions does the following:
1102  *   1. if there are saved states present, try to ignore them and search
1103  *      again only using the last command. If nothing was found, switch
1104  *      to the STATE_READY state.
1105  *   2. if there are no saved states, switch to the STATE_READY state.
1106  *
1107  * RETURNS: -2 - no matched operations found.
1108  *          -1 - several matches.
1109  *           0 - operation is found.
1110  */
1111 static int find_operation(struct nandsim *ns, uint32_t flag)
1112 {
1113         int opsfound = 0;
1114         int i, j, idx = 0;
1115
1116         for (i = 0; i < NS_OPER_NUM; i++) {
1117
1118                 int found = 1;
1119
1120                 if (!(ns->options & ops[i].reqopts))
1121                         /* Ignore operations we can't perform */
1122                         continue;
1123
1124                 if (flag) {
1125                         if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
1126                                 continue;
1127                 } else {
1128                         if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
1129                                 continue;
1130                 }
1131
1132                 for (j = 0; j < ns->npstates; j++)
1133                         if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
1134                                 && (ns->options & ops[idx].reqopts)) {
1135                                 found = 0;
1136                                 break;
1137                         }
1138
1139                 if (found) {
1140                         idx = i;
1141                         opsfound += 1;
1142                 }
1143         }
1144
1145         if (opsfound == 1) {
1146                 /* Exact match */
1147                 ns->op = &ops[idx].states[0];
1148                 if (flag) {
1149                         /*
1150                          * In this case the find_operation function was
1151                          * called when address has just began input. But it isn't
1152                          * yet fully input and the current state must
1153                          * not be one of STATE_ADDR_*, but the STATE_ADDR_*
1154                          * state must be the next state (ns->nxstate).
1155                          */
1156                         ns->stateidx = ns->npstates - 1;
1157                 } else {
1158                         ns->stateidx = ns->npstates;
1159                 }
1160                 ns->npstates = 0;
1161                 ns->state = ns->op[ns->stateidx];
1162                 ns->nxstate = ns->op[ns->stateidx + 1];
1163                 NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
1164                                 idx, get_state_name(ns->state), get_state_name(ns->nxstate));
1165                 return 0;
1166         }
1167
1168         if (opsfound == 0) {
1169                 /* Nothing was found. Try to ignore previous commands (if any) and search again */
1170                 if (ns->npstates != 0) {
1171                         NS_DBG("find_operation: no operation found, try again with state %s\n",
1172                                         get_state_name(ns->state));
1173                         ns->npstates = 0;
1174                         return find_operation(ns, 0);
1175
1176                 }
1177                 NS_DBG("find_operation: no operations found\n");
1178                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1179                 return -2;
1180         }
1181
1182         if (flag) {
1183                 /* This shouldn't happen */
1184                 NS_DBG("find_operation: BUG, operation must be known if address is input\n");
1185                 return -2;
1186         }
1187
1188         NS_DBG("find_operation: there is still ambiguity\n");
1189
1190         ns->pstates[ns->npstates++] = ns->state;
1191
1192         return -1;
1193 }
1194
1195 /*
1196  * Returns a pointer to the current page.
1197  */
1198 static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns)
1199 {
1200         return &(ns->pages[ns->regs.row]);
1201 }
1202
1203 /*
1204  * Retuns a pointer to the current byte, within the current page.
1205  */
1206 static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns)
1207 {
1208         return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off;
1209 }
1210
1211 /*
1212  * Fill the NAND buffer with data read from the specified page.
1213  */
1214 static void read_page(struct nandsim *ns, int num)
1215 {
1216         union ns_mem *mypage;
1217
1218         mypage = NS_GET_PAGE(ns);
1219         if (mypage->byte == NULL) {
1220                 NS_DBG("read_page: page %d not allocated\n", ns->regs.row);
1221                 memset(ns->buf.byte, 0xFF, num);
1222         } else {
1223                 unsigned int page_no = ns->regs.row;
1224                 NS_DBG("read_page: page %d allocated, reading from %d\n",
1225                         ns->regs.row, ns->regs.column + ns->regs.off);
1226                 if (read_error(page_no)) {
1227                         int i;
1228                         memset(ns->buf.byte, 0xFF, num);
1229                         for (i = 0; i < num; ++i)
1230                                 ns->buf.byte[i] = random32();
1231                         NS_WARN("simulating read error in page %u\n", page_no);
1232                         return;
1233                 }
1234                 memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num);
1235                 if (bitflips && random32() < (1 << 22)) {
1236                         int flips = 1;
1237                         if (bitflips > 1)
1238                                 flips = (random32() % (int) bitflips) + 1;
1239                         while (flips--) {
1240                                 int pos = random32() % (num * 8);
1241                                 ns->buf.byte[pos / 8] ^= (1 << (pos % 8));
1242                                 NS_WARN("read_page: flipping bit %d in page %d "
1243                                         "reading from %d ecc: corrected=%u failed=%u\n",
1244                                         pos, ns->regs.row, ns->regs.column + ns->regs.off,
1245                                         nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed);
1246                         }
1247                 }
1248         }
1249 }
1250
1251 /*
1252  * Erase all pages in the specified sector.
1253  */
1254 static void erase_sector(struct nandsim *ns)
1255 {
1256         union ns_mem *mypage;
1257         int i;
1258
1259         mypage = NS_GET_PAGE(ns);
1260         for (i = 0; i < ns->geom.pgsec; i++) {
1261                 if (mypage->byte != NULL) {
1262                         NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i);
1263                         kfree(mypage->byte);
1264                         mypage->byte = NULL;
1265                 }
1266                 mypage++;
1267         }
1268 }
1269
1270 /*
1271  * Program the specified page with the contents from the NAND buffer.
1272  */
1273 static int prog_page(struct nandsim *ns, int num)
1274 {
1275         int i;
1276         union ns_mem *mypage;
1277         u_char *pg_off;
1278
1279         mypage = NS_GET_PAGE(ns);
1280         if (mypage->byte == NULL) {
1281                 NS_DBG("prog_page: allocating page %d\n", ns->regs.row);
1282                 /*
1283                  * We allocate memory with GFP_NOFS because a flash FS may
1284                  * utilize this. If it is holding an FS lock, then gets here,
1285                  * then kmalloc runs writeback which goes to the FS again
1286                  * and deadlocks. This was seen in practice.
1287                  */
1288                 mypage->byte = kmalloc(ns->geom.pgszoob, GFP_NOFS);
1289                 if (mypage->byte == NULL) {
1290                         NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row);
1291                         return -1;
1292                 }
1293                 memset(mypage->byte, 0xFF, ns->geom.pgszoob);
1294         }
1295
1296         pg_off = NS_PAGE_BYTE_OFF(ns);
1297         for (i = 0; i < num; i++)
1298                 pg_off[i] &= ns->buf.byte[i];
1299
1300         return 0;
1301 }
1302
1303 /*
1304  * If state has any action bit, perform this action.
1305  *
1306  * RETURNS: 0 if success, -1 if error.
1307  */
1308 static int do_state_action(struct nandsim *ns, uint32_t action)
1309 {
1310         int num;
1311         int busdiv = ns->busw == 8 ? 1 : 2;
1312         unsigned int erase_block_no, page_no;
1313
1314         action &= ACTION_MASK;
1315
1316         /* Check that page address input is correct */
1317         if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
1318                 NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
1319                 return -1;
1320         }
1321
1322         switch (action) {
1323
1324         case ACTION_CPY:
1325                 /*
1326                  * Copy page data to the internal buffer.
1327                  */
1328
1329                 /* Column shouldn't be very large */
1330                 if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
1331                         NS_ERR("do_state_action: column number is too large\n");
1332                         break;
1333                 }
1334                 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1335                 read_page(ns, num);
1336
1337                 NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
1338                         num, NS_RAW_OFFSET(ns) + ns->regs.off);
1339
1340                 if (ns->regs.off == 0)
1341                         NS_LOG("read page %d\n", ns->regs.row);
1342                 else if (ns->regs.off < ns->geom.pgsz)
1343                         NS_LOG("read page %d (second half)\n", ns->regs.row);
1344                 else
1345                         NS_LOG("read OOB of page %d\n", ns->regs.row);
1346
1347                 NS_UDELAY(access_delay);
1348                 NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
1349
1350                 break;
1351
1352         case ACTION_SECERASE:
1353                 /*
1354                  * Erase sector.
1355                  */
1356
1357                 if (ns->lines.wp) {
1358                         NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
1359                         return -1;
1360                 }
1361
1362                 if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
1363                         || (ns->regs.row & ~(ns->geom.secsz - 1))) {
1364                         NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
1365                         return -1;
1366                 }
1367
1368                 ns->regs.row = (ns->regs.row <<
1369                                 8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
1370                 ns->regs.column = 0;
1371
1372                 erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift);
1373
1374                 NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
1375                                 ns->regs.row, NS_RAW_OFFSET(ns));
1376                 NS_LOG("erase sector %u\n", erase_block_no);
1377
1378                 erase_sector(ns);
1379
1380                 NS_MDELAY(erase_delay);
1381
1382                 if (erase_block_wear)
1383                         update_wear(erase_block_no);
1384
1385                 if (erase_error(erase_block_no)) {
1386                         NS_WARN("simulating erase failure in erase block %u\n", erase_block_no);
1387                         return -1;
1388                 }
1389
1390                 break;
1391
1392         case ACTION_PRGPAGE:
1393                 /*
1394                  * Programm page - move internal buffer data to the page.
1395                  */
1396
1397                 if (ns->lines.wp) {
1398                         NS_WARN("do_state_action: device is write-protected, programm\n");
1399                         return -1;
1400                 }
1401
1402                 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1403                 if (num != ns->regs.count) {
1404                         NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
1405                                         ns->regs.count, num);
1406                         return -1;
1407                 }
1408
1409                 if (prog_page(ns, num) == -1)
1410                         return -1;
1411
1412                 page_no = ns->regs.row;
1413
1414                 NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
1415                         num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
1416                 NS_LOG("programm page %d\n", ns->regs.row);
1417
1418                 NS_UDELAY(programm_delay);
1419                 NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
1420
1421                 if (write_error(page_no)) {
1422                         NS_WARN("simulating write failure in page %u\n", page_no);
1423                         return -1;
1424                 }
1425
1426                 break;
1427
1428         case ACTION_ZEROOFF:
1429                 NS_DBG("do_state_action: set internal offset to 0\n");
1430                 ns->regs.off = 0;
1431                 break;
1432
1433         case ACTION_HALFOFF:
1434                 if (!(ns->options & OPT_PAGE512_8BIT)) {
1435                         NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
1436                                 "byte page size 8x chips\n");
1437                         return -1;
1438                 }
1439                 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
1440                 ns->regs.off = ns->geom.pgsz/2;
1441                 break;
1442
1443         case ACTION_OOBOFF:
1444                 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
1445                 ns->regs.off = ns->geom.pgsz;
1446                 break;
1447
1448         default:
1449                 NS_DBG("do_state_action: BUG! unknown action\n");
1450         }
1451
1452         return 0;
1453 }
1454
1455 /*
1456  * Switch simulator's state.
1457  */
1458 static void switch_state(struct nandsim *ns)
1459 {
1460         if (ns->op) {
1461                 /*
1462                  * The current operation have already been identified.
1463                  * Just follow the states chain.
1464                  */
1465
1466                 ns->stateidx += 1;
1467                 ns->state = ns->nxstate;
1468                 ns->nxstate = ns->op[ns->stateidx + 1];
1469
1470                 NS_DBG("switch_state: operation is known, switch to the next state, "
1471                         "state: %s, nxstate: %s\n",
1472                         get_state_name(ns->state), get_state_name(ns->nxstate));
1473
1474                 /* See, whether we need to do some action */
1475                 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1476                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1477                         return;
1478                 }
1479
1480         } else {
1481                 /*
1482                  * We don't yet know which operation we perform.
1483                  * Try to identify it.
1484                  */
1485
1486                 /*
1487                  *  The only event causing the switch_state function to
1488                  *  be called with yet unknown operation is new command.
1489                  */
1490                 ns->state = get_state_by_command(ns->regs.command);
1491
1492                 NS_DBG("switch_state: operation is unknown, try to find it\n");
1493
1494                 if (find_operation(ns, 0) != 0)
1495                         return;
1496
1497                 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1498                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1499                         return;
1500                 }
1501         }
1502
1503         /* For 16x devices column means the page offset in words */
1504         if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
1505                 NS_DBG("switch_state: double the column number for 16x device\n");
1506                 ns->regs.column <<= 1;
1507         }
1508
1509         if (NS_STATE(ns->nxstate) == STATE_READY) {
1510                 /*
1511                  * The current state is the last. Return to STATE_READY
1512                  */
1513
1514                 u_char status = NS_STATUS_OK(ns);
1515
1516                 /* In case of data states, see if all bytes were input/output */
1517                 if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
1518                         && ns->regs.count != ns->regs.num) {
1519                         NS_WARN("switch_state: not all bytes were processed, %d left\n",
1520                                         ns->regs.num - ns->regs.count);
1521                         status = NS_STATUS_FAILED(ns);
1522                 }
1523
1524                 NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1525
1526                 switch_to_ready_state(ns, status);
1527
1528                 return;
1529         } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
1530                 /*
1531                  * If the next state is data input/output, switch to it now
1532                  */
1533
1534                 ns->state      = ns->nxstate;
1535                 ns->nxstate    = ns->op[++ns->stateidx + 1];
1536                 ns->regs.num   = ns->regs.count = 0;
1537
1538                 NS_DBG("switch_state: the next state is data I/O, switch, "
1539                         "state: %s, nxstate: %s\n",
1540                         get_state_name(ns->state), get_state_name(ns->nxstate));
1541
1542                 /*
1543                  * Set the internal register to the count of bytes which
1544                  * are expected to be input or output
1545                  */
1546                 switch (NS_STATE(ns->state)) {
1547                         case STATE_DATAIN:
1548                         case STATE_DATAOUT:
1549                                 ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1550                                 break;
1551
1552                         case STATE_DATAOUT_ID:
1553                                 ns->regs.num = ns->geom.idbytes;
1554                                 break;
1555
1556                         case STATE_DATAOUT_STATUS:
1557                         case STATE_DATAOUT_STATUS_M:
1558                                 ns->regs.count = ns->regs.num = 0;
1559                                 break;
1560
1561                         default:
1562                                 NS_ERR("switch_state: BUG! unknown data state\n");
1563                 }
1564
1565         } else if (ns->nxstate & STATE_ADDR_MASK) {
1566                 /*
1567                  * If the next state is address input, set the internal
1568                  * register to the number of expected address bytes
1569                  */
1570
1571                 ns->regs.count = 0;
1572
1573                 switch (NS_STATE(ns->nxstate)) {
1574                         case STATE_ADDR_PAGE:
1575                                 ns->regs.num = ns->geom.pgaddrbytes;
1576
1577                                 break;
1578                         case STATE_ADDR_SEC:
1579                                 ns->regs.num = ns->geom.secaddrbytes;
1580                                 break;
1581
1582                         case STATE_ADDR_ZERO:
1583                                 ns->regs.num = 1;
1584                                 break;
1585
1586                         default:
1587                                 NS_ERR("switch_state: BUG! unknown address state\n");
1588                 }
1589         } else {
1590                 /*
1591                  * Just reset internal counters.
1592                  */
1593
1594                 ns->regs.num = 0;
1595                 ns->regs.count = 0;
1596         }
1597 }
1598
1599 static u_char ns_nand_read_byte(struct mtd_info *mtd)
1600 {
1601         struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1602         u_char outb = 0x00;
1603
1604         /* Sanity and correctness checks */
1605         if (!ns->lines.ce) {
1606                 NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
1607                 return outb;
1608         }
1609         if (ns->lines.ale || ns->lines.cle) {
1610                 NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
1611                 return outb;
1612         }
1613         if (!(ns->state & STATE_DATAOUT_MASK)) {
1614                 NS_WARN("read_byte: unexpected data output cycle, state is %s "
1615                         "return %#x\n", get_state_name(ns->state), (uint)outb);
1616                 return outb;
1617         }
1618
1619         /* Status register may be read as many times as it is wanted */
1620         if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
1621                 NS_DBG("read_byte: return %#x status\n", ns->regs.status);
1622                 return ns->regs.status;
1623         }
1624
1625         /* Check if there is any data in the internal buffer which may be read */
1626         if (ns->regs.count == ns->regs.num) {
1627                 NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
1628                 return outb;
1629         }
1630
1631         switch (NS_STATE(ns->state)) {
1632                 case STATE_DATAOUT:
1633                         if (ns->busw == 8) {
1634                                 outb = ns->buf.byte[ns->regs.count];
1635                                 ns->regs.count += 1;
1636                         } else {
1637                                 outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
1638                                 ns->regs.count += 2;
1639                         }
1640                         break;
1641                 case STATE_DATAOUT_ID:
1642                         NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
1643                         outb = ns->ids[ns->regs.count];
1644                         ns->regs.count += 1;
1645                         break;
1646                 default:
1647                         BUG();
1648         }
1649
1650         if (ns->regs.count == ns->regs.num) {
1651                 NS_DBG("read_byte: all bytes were read\n");
1652
1653                 /*
1654                  * The OPT_AUTOINCR allows to read next conseqitive pages without
1655                  * new read operation cycle.
1656                  */
1657                 if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
1658                         ns->regs.count = 0;
1659                         if (ns->regs.row + 1 < ns->geom.pgnum)
1660                                 ns->regs.row += 1;
1661                         NS_DBG("read_byte: switch to the next page (%#x)\n", ns->regs.row);
1662                         do_state_action(ns, ACTION_CPY);
1663                 }
1664                 else if (NS_STATE(ns->nxstate) == STATE_READY)
1665                         switch_state(ns);
1666
1667         }
1668
1669         return outb;
1670 }
1671
1672 static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
1673 {
1674         struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1675
1676         /* Sanity and correctness checks */
1677         if (!ns->lines.ce) {
1678                 NS_ERR("write_byte: chip is disabled, ignore write\n");
1679                 return;
1680         }
1681         if (ns->lines.ale && ns->lines.cle) {
1682                 NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1683                 return;
1684         }
1685
1686         if (ns->lines.cle == 1) {
1687                 /*
1688                  * The byte written is a command.
1689                  */
1690
1691                 if (byte == NAND_CMD_RESET) {
1692                         NS_LOG("reset chip\n");
1693                         switch_to_ready_state(ns, NS_STATUS_OK(ns));
1694                         return;
1695                 }
1696
1697                 /*
1698                  * Chip might still be in STATE_DATAOUT
1699                  * (if OPT_AUTOINCR feature is supported), STATE_DATAOUT_STATUS or
1700                  * STATE_DATAOUT_STATUS_M state. If so, switch state.
1701                  */
1702                 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
1703                         || NS_STATE(ns->state) == STATE_DATAOUT_STATUS_M
1704                         || ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT))
1705                         switch_state(ns);
1706
1707                 /* Check if chip is expecting command */
1708                 if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
1709                         /*
1710                          * We are in situation when something else (not command)
1711                          * was expected but command was input. In this case ignore
1712                          * previous command(s)/state(s) and accept the last one.
1713                          */
1714                         NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
1715                                 "ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
1716                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1717                 }
1718
1719                 /* Check that the command byte is correct */
1720                 if (check_command(byte)) {
1721                         NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
1722                         return;
1723                 }
1724
1725                 NS_DBG("command byte corresponding to %s state accepted\n",
1726                         get_state_name(get_state_by_command(byte)));
1727                 ns->regs.command = byte;
1728                 switch_state(ns);
1729
1730         } else if (ns->lines.ale == 1) {
1731                 /*
1732                  * The byte written is an address.
1733                  */
1734
1735                 if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
1736
1737                         NS_DBG("write_byte: operation isn't known yet, identify it\n");
1738
1739                         if (find_operation(ns, 1) < 0)
1740                                 return;
1741
1742                         if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1743                                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1744                                 return;
1745                         }
1746
1747                         ns->regs.count = 0;
1748                         switch (NS_STATE(ns->nxstate)) {
1749                                 case STATE_ADDR_PAGE:
1750                                         ns->regs.num = ns->geom.pgaddrbytes;
1751                                         break;
1752                                 case STATE_ADDR_SEC:
1753                                         ns->regs.num = ns->geom.secaddrbytes;
1754                                         break;
1755                                 case STATE_ADDR_ZERO:
1756                                         ns->regs.num = 1;
1757                                         break;
1758                                 default:
1759                                         BUG();
1760                         }
1761                 }
1762
1763                 /* Check that chip is expecting address */
1764                 if (!(ns->nxstate & STATE_ADDR_MASK)) {
1765                         NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
1766                                 "switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
1767                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1768                         return;
1769                 }
1770
1771                 /* Check if this is expected byte */
1772                 if (ns->regs.count == ns->regs.num) {
1773                         NS_ERR("write_byte: no more address bytes expected\n");
1774                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1775                         return;
1776                 }
1777
1778                 accept_addr_byte(ns, byte);
1779
1780                 ns->regs.count += 1;
1781
1782                 NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
1783                                 (uint)byte, ns->regs.count, ns->regs.num);
1784
1785                 if (ns->regs.count == ns->regs.num) {
1786                         NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
1787                         switch_state(ns);
1788                 }
1789
1790         } else {
1791                 /*
1792                  * The byte written is an input data.
1793                  */
1794
1795                 /* Check that chip is expecting data input */
1796                 if (!(ns->state & STATE_DATAIN_MASK)) {
1797                         NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
1798                                 "switch to %s\n", (uint)byte,
1799                                 get_state_name(ns->state), get_state_name(STATE_READY));
1800                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1801                         return;
1802                 }
1803
1804                 /* Check if this is expected byte */
1805                 if (ns->regs.count == ns->regs.num) {
1806                         NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
1807                                         ns->regs.num);
1808                         return;
1809                 }
1810
1811                 if (ns->busw == 8) {
1812                         ns->buf.byte[ns->regs.count] = byte;
1813                         ns->regs.count += 1;
1814                 } else {
1815                         ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
1816                         ns->regs.count += 2;
1817                 }
1818         }
1819
1820         return;
1821 }
1822
1823 static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask)
1824 {
1825         struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1826
1827         ns->lines.cle = bitmask & NAND_CLE ? 1 : 0;
1828         ns->lines.ale = bitmask & NAND_ALE ? 1 : 0;
1829         ns->lines.ce = bitmask & NAND_NCE ? 1 : 0;
1830
1831         if (cmd != NAND_CMD_NONE)
1832                 ns_nand_write_byte(mtd, cmd);
1833 }
1834
1835 static int ns_device_ready(struct mtd_info *mtd)
1836 {
1837         NS_DBG("device_ready\n");
1838         return 1;
1839 }
1840
1841 static uint16_t ns_nand_read_word(struct mtd_info *mtd)
1842 {
1843         struct nand_chip *chip = (struct nand_chip *)mtd->priv;
1844
1845         NS_DBG("read_word\n");
1846
1847         return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
1848 }
1849
1850 static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
1851 {
1852         struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1853
1854         /* Check that chip is expecting data input */
1855         if (!(ns->state & STATE_DATAIN_MASK)) {
1856                 NS_ERR("write_buf: data input isn't expected, state is %s, "
1857                         "switch to STATE_READY\n", get_state_name(ns->state));
1858                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1859                 return;
1860         }
1861
1862         /* Check if these are expected bytes */
1863         if (ns->regs.count + len > ns->regs.num) {
1864                 NS_ERR("write_buf: too many input bytes\n");
1865                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1866                 return;
1867         }
1868
1869         memcpy(ns->buf.byte + ns->regs.count, buf, len);
1870         ns->regs.count += len;
1871
1872         if (ns->regs.count == ns->regs.num) {
1873                 NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
1874         }
1875 }
1876
1877 static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
1878 {
1879         struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1880
1881         /* Sanity and correctness checks */
1882         if (!ns->lines.ce) {
1883                 NS_ERR("read_buf: chip is disabled\n");
1884                 return;
1885         }
1886         if (ns->lines.ale || ns->lines.cle) {
1887                 NS_ERR("read_buf: ALE or CLE pin is high\n");
1888                 return;
1889         }
1890         if (!(ns->state & STATE_DATAOUT_MASK)) {
1891                 NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
1892                         get_state_name(ns->state));
1893                 return;
1894         }
1895
1896         if (NS_STATE(ns->state) != STATE_DATAOUT) {
1897                 int i;
1898
1899                 for (i = 0; i < len; i++)
1900                         buf[i] = ((struct nand_chip *)mtd->priv)->read_byte(mtd);
1901
1902                 return;
1903         }
1904
1905         /* Check if these are expected bytes */
1906         if (ns->regs.count + len > ns->regs.num) {
1907                 NS_ERR("read_buf: too many bytes to read\n");
1908                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1909                 return;
1910         }
1911
1912         memcpy(buf, ns->buf.byte + ns->regs.count, len);
1913         ns->regs.count += len;
1914
1915         if (ns->regs.count == ns->regs.num) {
1916                 if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
1917                         ns->regs.count = 0;
1918                         if (ns->regs.row + 1 < ns->geom.pgnum)
1919                                 ns->regs.row += 1;
1920                         NS_DBG("read_buf: switch to the next page (%#x)\n", ns->regs.row);
1921                         do_state_action(ns, ACTION_CPY);
1922                 }
1923                 else if (NS_STATE(ns->nxstate) == STATE_READY)
1924                         switch_state(ns);
1925         }
1926
1927         return;
1928 }
1929
1930 static int ns_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
1931 {
1932         ns_nand_read_buf(mtd, (u_char *)&ns_verify_buf[0], len);
1933
1934         if (!memcmp(buf, &ns_verify_buf[0], len)) {
1935                 NS_DBG("verify_buf: the buffer is OK\n");
1936                 return 0;
1937         } else {
1938                 NS_DBG("verify_buf: the buffer is wrong\n");
1939                 return -EFAULT;
1940         }
1941 }
1942
1943 /*
1944  * Module initialization function
1945  */
1946 static int __init ns_init_module(void)
1947 {
1948         struct nand_chip *chip;
1949         struct nandsim *nand;
1950         int retval = -ENOMEM, i;
1951
1952         if (bus_width != 8 && bus_width != 16) {
1953                 NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
1954                 return -EINVAL;
1955         }
1956
1957         /* Allocate and initialize mtd_info, nand_chip and nandsim structures */
1958         nsmtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip)
1959                                 + sizeof(struct nandsim), GFP_KERNEL);
1960         if (!nsmtd) {
1961                 NS_ERR("unable to allocate core structures.\n");
1962                 return -ENOMEM;
1963         }
1964         chip        = (struct nand_chip *)(nsmtd + 1);
1965         nsmtd->priv = (void *)chip;
1966         nand        = (struct nandsim *)(chip + 1);
1967         chip->priv  = (void *)nand;
1968
1969         /*
1970          * Register simulator's callbacks.
1971          */
1972         chip->cmd_ctrl   = ns_hwcontrol;
1973         chip->read_byte  = ns_nand_read_byte;
1974         chip->dev_ready  = ns_device_ready;
1975         chip->write_buf  = ns_nand_write_buf;
1976         chip->read_buf   = ns_nand_read_buf;
1977         chip->verify_buf = ns_nand_verify_buf;
1978         chip->read_word  = ns_nand_read_word;
1979         chip->ecc.mode   = NAND_ECC_SOFT;
1980         /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
1981         /* and 'badblocks' parameters to work */
1982         chip->options   |= NAND_SKIP_BBTSCAN;
1983
1984         /*
1985          * Perform minimum nandsim structure initialization to handle
1986          * the initial ID read command correctly
1987          */
1988         if (third_id_byte != 0xFF || fourth_id_byte != 0xFF)
1989                 nand->geom.idbytes = 4;
1990         else
1991                 nand->geom.idbytes = 2;
1992         nand->regs.status = NS_STATUS_OK(nand);
1993         nand->nxstate = STATE_UNKNOWN;
1994         nand->options |= OPT_PAGE256; /* temporary value */
1995         nand->ids[0] = first_id_byte;
1996         nand->ids[1] = second_id_byte;
1997         nand->ids[2] = third_id_byte;
1998         nand->ids[3] = fourth_id_byte;
1999         if (bus_width == 16) {
2000                 nand->busw = 16;
2001                 chip->options |= NAND_BUSWIDTH_16;
2002         }
2003
2004         nsmtd->owner = THIS_MODULE;
2005
2006         if ((retval = parse_weakblocks()) != 0)
2007                 goto error;
2008
2009         if ((retval = parse_weakpages()) != 0)
2010                 goto error;
2011
2012         if ((retval = parse_gravepages()) != 0)
2013                 goto error;
2014
2015         if ((retval = nand_scan(nsmtd, 1)) != 0) {
2016                 NS_ERR("can't register NAND Simulator\n");
2017                 if (retval > 0)
2018                         retval = -ENXIO;
2019                 goto error;
2020         }
2021
2022         if (overridesize) {
2023                 u_int64_t new_size = (u_int64_t)nsmtd->erasesize << overridesize;
2024                 if (new_size >> overridesize != nsmtd->erasesize) {
2025                         NS_ERR("overridesize is too big\n");
2026                         goto err_exit;
2027                 }
2028                 /* N.B. This relies on nand_scan not doing anything with the size before we change it */
2029                 nsmtd->size = new_size;
2030                 chip->chipsize = new_size;
2031                 chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1;
2032                 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2033         }
2034
2035         if ((retval = setup_wear_reporting(nsmtd)) != 0)
2036                 goto err_exit;
2037
2038         if ((retval = init_nandsim(nsmtd)) != 0)
2039                 goto err_exit;
2040
2041         if ((retval = parse_badblocks(nand, nsmtd)) != 0)
2042                 goto err_exit;
2043
2044         if ((retval = nand_default_bbt(nsmtd)) != 0)
2045                 goto err_exit;
2046
2047         /* Register NAND partitions */
2048         if ((retval = add_mtd_partitions(nsmtd, &nand->partitions[0], nand->nbparts)) != 0)
2049                 goto err_exit;
2050
2051         return 0;
2052
2053 err_exit:
2054         free_nandsim(nand);
2055         nand_release(nsmtd);
2056         for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i)
2057                 kfree(nand->partitions[i].name);
2058 error:
2059         kfree(nsmtd);
2060         free_lists();
2061
2062         return retval;
2063 }
2064
2065 module_init(ns_init_module);
2066
2067 /*
2068  * Module clean-up function
2069  */
2070 static void __exit ns_cleanup_module(void)
2071 {
2072         struct nandsim *ns = (struct nandsim *)(((struct nand_chip *)nsmtd->priv)->priv);
2073         int i;
2074
2075         free_nandsim(ns);    /* Free nandsim private resources */
2076         nand_release(nsmtd); /* Unregister driver */
2077         for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i)
2078                 kfree(ns->partitions[i].name);
2079         kfree(nsmtd);        /* Free other structures */
2080         free_lists();
2081 }
2082
2083 module_exit(ns_cleanup_module);
2084
2085 MODULE_LICENSE ("GPL");
2086 MODULE_AUTHOR ("Artem B. Bityuckiy");
2087 MODULE_DESCRIPTION ("The NAND flash simulator");