drm/i915: Wait for LVDS panel power sequence
[linux-2.6.git] / drivers / mfd / db8500-prcmu.c
1 /*
2  * Copyright (C) STMicroelectronics 2009
3  * Copyright (C) ST-Ericsson SA 2010
4  *
5  * License Terms: GNU General Public License v2
6  * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
7  * Author: Sundar Iyer <sundar.iyer@stericsson.com>
8  * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
9  *
10  * U8500 PRCM Unit interface driver
11  *
12  */
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/delay.h>
16 #include <linux/errno.h>
17 #include <linux/err.h>
18 #include <linux/spinlock.h>
19 #include <linux/io.h>
20 #include <linux/slab.h>
21 #include <linux/mutex.h>
22 #include <linux/completion.h>
23 #include <linux/irq.h>
24 #include <linux/jiffies.h>
25 #include <linux/bitops.h>
26 #include <linux/fs.h>
27 #include <linux/platform_device.h>
28 #include <linux/uaccess.h>
29 #include <linux/mfd/core.h>
30 #include <linux/mfd/db8500-prcmu.h>
31 #include <linux/regulator/db8500-prcmu.h>
32 #include <linux/regulator/machine.h>
33 #include <mach/hardware.h>
34 #include <mach/irqs.h>
35 #include <mach/db8500-regs.h>
36 #include <mach/id.h>
37 #include "db8500-prcmu-regs.h"
38
39 /* Offset for the firmware version within the TCPM */
40 #define PRCMU_FW_VERSION_OFFSET 0xA4
41
42 /* PRCMU project numbers, defined by PRCMU FW */
43 #define PRCMU_PROJECT_ID_8500V1_0 1
44 #define PRCMU_PROJECT_ID_8500V2_0 2
45 #define PRCMU_PROJECT_ID_8400V2_0 3
46
47 /* Index of different voltages to be used when accessing AVSData */
48 #define PRCM_AVS_BASE           0x2FC
49 #define PRCM_AVS_VBB_RET        (PRCM_AVS_BASE + 0x0)
50 #define PRCM_AVS_VBB_MAX_OPP    (PRCM_AVS_BASE + 0x1)
51 #define PRCM_AVS_VBB_100_OPP    (PRCM_AVS_BASE + 0x2)
52 #define PRCM_AVS_VBB_50_OPP     (PRCM_AVS_BASE + 0x3)
53 #define PRCM_AVS_VARM_MAX_OPP   (PRCM_AVS_BASE + 0x4)
54 #define PRCM_AVS_VARM_100_OPP   (PRCM_AVS_BASE + 0x5)
55 #define PRCM_AVS_VARM_50_OPP    (PRCM_AVS_BASE + 0x6)
56 #define PRCM_AVS_VARM_RET       (PRCM_AVS_BASE + 0x7)
57 #define PRCM_AVS_VAPE_100_OPP   (PRCM_AVS_BASE + 0x8)
58 #define PRCM_AVS_VAPE_50_OPP    (PRCM_AVS_BASE + 0x9)
59 #define PRCM_AVS_VMOD_100_OPP   (PRCM_AVS_BASE + 0xA)
60 #define PRCM_AVS_VMOD_50_OPP    (PRCM_AVS_BASE + 0xB)
61 #define PRCM_AVS_VSAFE          (PRCM_AVS_BASE + 0xC)
62
63 #define PRCM_AVS_VOLTAGE                0
64 #define PRCM_AVS_VOLTAGE_MASK           0x3f
65 #define PRCM_AVS_ISSLOWSTARTUP          6
66 #define PRCM_AVS_ISSLOWSTARTUP_MASK     (1 << PRCM_AVS_ISSLOWSTARTUP)
67 #define PRCM_AVS_ISMODEENABLE           7
68 #define PRCM_AVS_ISMODEENABLE_MASK      (1 << PRCM_AVS_ISMODEENABLE)
69
70 #define PRCM_BOOT_STATUS        0xFFF
71 #define PRCM_ROMCODE_A2P        0xFFE
72 #define PRCM_ROMCODE_P2A        0xFFD
73 #define PRCM_XP70_CUR_PWR_STATE 0xFFC      /* 4 BYTES */
74
75 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
76
77 #define _PRCM_MBOX_HEADER               0xFE8 /* 16 bytes */
78 #define PRCM_MBOX_HEADER_REQ_MB0        (_PRCM_MBOX_HEADER + 0x0)
79 #define PRCM_MBOX_HEADER_REQ_MB1        (_PRCM_MBOX_HEADER + 0x1)
80 #define PRCM_MBOX_HEADER_REQ_MB2        (_PRCM_MBOX_HEADER + 0x2)
81 #define PRCM_MBOX_HEADER_REQ_MB3        (_PRCM_MBOX_HEADER + 0x3)
82 #define PRCM_MBOX_HEADER_REQ_MB4        (_PRCM_MBOX_HEADER + 0x4)
83 #define PRCM_MBOX_HEADER_REQ_MB5        (_PRCM_MBOX_HEADER + 0x5)
84 #define PRCM_MBOX_HEADER_ACK_MB0        (_PRCM_MBOX_HEADER + 0x8)
85
86 /* Req Mailboxes */
87 #define PRCM_REQ_MB0 0xFDC /* 12 bytes  */
88 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes  */
89 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes  */
90 #define PRCM_REQ_MB3 0xE4C /* 372 bytes  */
91 #define PRCM_REQ_MB4 0xE48 /* 4 bytes  */
92 #define PRCM_REQ_MB5 0xE44 /* 4 bytes  */
93
94 /* Ack Mailboxes */
95 #define PRCM_ACK_MB0 0xE08 /* 52 bytes  */
96 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
97 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
98 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
99 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
100 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
101
102 /* Mailbox 0 headers */
103 #define MB0H_POWER_STATE_TRANS          0
104 #define MB0H_CONFIG_WAKEUPS_EXE         1
105 #define MB0H_READ_WAKEUP_ACK            3
106 #define MB0H_CONFIG_WAKEUPS_SLEEP       4
107
108 #define MB0H_WAKEUP_EXE 2
109 #define MB0H_WAKEUP_SLEEP 5
110
111 /* Mailbox 0 REQs */
112 #define PRCM_REQ_MB0_AP_POWER_STATE     (PRCM_REQ_MB0 + 0x0)
113 #define PRCM_REQ_MB0_AP_PLL_STATE       (PRCM_REQ_MB0 + 0x1)
114 #define PRCM_REQ_MB0_ULP_CLOCK_STATE    (PRCM_REQ_MB0 + 0x2)
115 #define PRCM_REQ_MB0_DO_NOT_WFI         (PRCM_REQ_MB0 + 0x3)
116 #define PRCM_REQ_MB0_WAKEUP_8500        (PRCM_REQ_MB0 + 0x4)
117 #define PRCM_REQ_MB0_WAKEUP_4500        (PRCM_REQ_MB0 + 0x8)
118
119 /* Mailbox 0 ACKs */
120 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS  (PRCM_ACK_MB0 + 0x0)
121 #define PRCM_ACK_MB0_READ_POINTER       (PRCM_ACK_MB0 + 0x1)
122 #define PRCM_ACK_MB0_WAKEUP_0_8500      (PRCM_ACK_MB0 + 0x4)
123 #define PRCM_ACK_MB0_WAKEUP_0_4500      (PRCM_ACK_MB0 + 0x8)
124 #define PRCM_ACK_MB0_WAKEUP_1_8500      (PRCM_ACK_MB0 + 0x1C)
125 #define PRCM_ACK_MB0_WAKEUP_1_4500      (PRCM_ACK_MB0 + 0x20)
126 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
127
128 /* Mailbox 1 headers */
129 #define MB1H_ARM_APE_OPP 0x0
130 #define MB1H_RESET_MODEM 0x2
131 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
132 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
133 #define MB1H_RELEASE_USB_WAKEUP 0x5
134
135 /* Mailbox 1 Requests */
136 #define PRCM_REQ_MB1_ARM_OPP                    (PRCM_REQ_MB1 + 0x0)
137 #define PRCM_REQ_MB1_APE_OPP                    (PRCM_REQ_MB1 + 0x1)
138 #define PRCM_REQ_MB1_APE_OPP_100_RESTORE        (PRCM_REQ_MB1 + 0x4)
139 #define PRCM_REQ_MB1_ARM_OPP_100_RESTORE        (PRCM_REQ_MB1 + 0x8)
140
141 /* Mailbox 1 ACKs */
142 #define PRCM_ACK_MB1_CURRENT_ARM_OPP    (PRCM_ACK_MB1 + 0x0)
143 #define PRCM_ACK_MB1_CURRENT_APE_OPP    (PRCM_ACK_MB1 + 0x1)
144 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
145 #define PRCM_ACK_MB1_DVFS_STATUS        (PRCM_ACK_MB1 + 0x3)
146
147 /* Mailbox 2 headers */
148 #define MB2H_DPS        0x0
149 #define MB2H_AUTO_PWR   0x1
150
151 /* Mailbox 2 REQs */
152 #define PRCM_REQ_MB2_SVA_MMDSP          (PRCM_REQ_MB2 + 0x0)
153 #define PRCM_REQ_MB2_SVA_PIPE           (PRCM_REQ_MB2 + 0x1)
154 #define PRCM_REQ_MB2_SIA_MMDSP          (PRCM_REQ_MB2 + 0x2)
155 #define PRCM_REQ_MB2_SIA_PIPE           (PRCM_REQ_MB2 + 0x3)
156 #define PRCM_REQ_MB2_SGA                (PRCM_REQ_MB2 + 0x4)
157 #define PRCM_REQ_MB2_B2R2_MCDE          (PRCM_REQ_MB2 + 0x5)
158 #define PRCM_REQ_MB2_ESRAM12            (PRCM_REQ_MB2 + 0x6)
159 #define PRCM_REQ_MB2_ESRAM34            (PRCM_REQ_MB2 + 0x7)
160 #define PRCM_REQ_MB2_AUTO_PM_SLEEP      (PRCM_REQ_MB2 + 0x8)
161 #define PRCM_REQ_MB2_AUTO_PM_IDLE       (PRCM_REQ_MB2 + 0xC)
162
163 /* Mailbox 2 ACKs */
164 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
165 #define HWACC_PWR_ST_OK 0xFE
166
167 /* Mailbox 3 headers */
168 #define MB3H_ANC        0x0
169 #define MB3H_SIDETONE   0x1
170 #define MB3H_SYSCLK     0xE
171
172 /* Mailbox 3 Requests */
173 #define PRCM_REQ_MB3_ANC_FIR_COEFF      (PRCM_REQ_MB3 + 0x0)
174 #define PRCM_REQ_MB3_ANC_IIR_COEFF      (PRCM_REQ_MB3 + 0x20)
175 #define PRCM_REQ_MB3_ANC_SHIFTER        (PRCM_REQ_MB3 + 0x60)
176 #define PRCM_REQ_MB3_ANC_WARP           (PRCM_REQ_MB3 + 0x64)
177 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN  (PRCM_REQ_MB3 + 0x68)
178 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
179 #define PRCM_REQ_MB3_SYSCLK_MGT         (PRCM_REQ_MB3 + 0x16C)
180
181 /* Mailbox 4 headers */
182 #define MB4H_DDR_INIT   0x0
183 #define MB4H_MEM_ST     0x1
184 #define MB4H_HOTDOG     0x12
185 #define MB4H_HOTMON     0x13
186 #define MB4H_HOT_PERIOD 0x14
187
188 /* Mailbox 4 Requests */
189 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE       (PRCM_REQ_MB4 + 0x0)
190 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE        (PRCM_REQ_MB4 + 0x1)
191 #define PRCM_REQ_MB4_ESRAM0_ST                  (PRCM_REQ_MB4 + 0x3)
192 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD           (PRCM_REQ_MB4 + 0x0)
193 #define PRCM_REQ_MB4_HOTMON_LOW                 (PRCM_REQ_MB4 + 0x0)
194 #define PRCM_REQ_MB4_HOTMON_HIGH                (PRCM_REQ_MB4 + 0x1)
195 #define PRCM_REQ_MB4_HOTMON_CONFIG              (PRCM_REQ_MB4 + 0x2)
196 #define PRCM_REQ_MB4_HOT_PERIOD                 (PRCM_REQ_MB4 + 0x0)
197 #define HOTMON_CONFIG_LOW                       BIT(0)
198 #define HOTMON_CONFIG_HIGH                      BIT(1)
199
200 /* Mailbox 5 Requests */
201 #define PRCM_REQ_MB5_I2C_SLAVE_OP       (PRCM_REQ_MB5 + 0x0)
202 #define PRCM_REQ_MB5_I2C_HW_BITS        (PRCM_REQ_MB5 + 0x1)
203 #define PRCM_REQ_MB5_I2C_REG            (PRCM_REQ_MB5 + 0x2)
204 #define PRCM_REQ_MB5_I2C_VAL            (PRCM_REQ_MB5 + 0x3)
205 #define PRCMU_I2C_WRITE(slave) \
206         (((slave) << 1) | (cpu_is_u8500v2() ? BIT(6) : 0))
207 #define PRCMU_I2C_READ(slave) \
208         (((slave) << 1) | BIT(0) | (cpu_is_u8500v2() ? BIT(6) : 0))
209 #define PRCMU_I2C_STOP_EN               BIT(3)
210
211 /* Mailbox 5 ACKs */
212 #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
213 #define PRCM_ACK_MB5_I2C_VAL    (PRCM_ACK_MB5 + 0x3)
214 #define I2C_WR_OK 0x1
215 #define I2C_RD_OK 0x2
216
217 #define NUM_MB 8
218 #define MBOX_BIT BIT
219 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
220
221 /*
222  * Wakeups/IRQs
223  */
224
225 #define WAKEUP_BIT_RTC BIT(0)
226 #define WAKEUP_BIT_RTT0 BIT(1)
227 #define WAKEUP_BIT_RTT1 BIT(2)
228 #define WAKEUP_BIT_HSI0 BIT(3)
229 #define WAKEUP_BIT_HSI1 BIT(4)
230 #define WAKEUP_BIT_CA_WAKE BIT(5)
231 #define WAKEUP_BIT_USB BIT(6)
232 #define WAKEUP_BIT_ABB BIT(7)
233 #define WAKEUP_BIT_ABB_FIFO BIT(8)
234 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
235 #define WAKEUP_BIT_CA_SLEEP BIT(10)
236 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
237 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
238 #define WAKEUP_BIT_ANC_OK BIT(13)
239 #define WAKEUP_BIT_SW_ERROR BIT(14)
240 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
241 #define WAKEUP_BIT_ARM BIT(17)
242 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
243 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
244 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
245 #define WAKEUP_BIT_GPIO0 BIT(23)
246 #define WAKEUP_BIT_GPIO1 BIT(24)
247 #define WAKEUP_BIT_GPIO2 BIT(25)
248 #define WAKEUP_BIT_GPIO3 BIT(26)
249 #define WAKEUP_BIT_GPIO4 BIT(27)
250 #define WAKEUP_BIT_GPIO5 BIT(28)
251 #define WAKEUP_BIT_GPIO6 BIT(29)
252 #define WAKEUP_BIT_GPIO7 BIT(30)
253 #define WAKEUP_BIT_GPIO8 BIT(31)
254
255 /*
256  * This vector maps irq numbers to the bits in the bit field used in
257  * communication with the PRCMU firmware.
258  *
259  * The reason for having this is to keep the irq numbers contiguous even though
260  * the bits in the bit field are not. (The bits also have a tendency to move
261  * around, to further complicate matters.)
262  */
263 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name) - IRQ_PRCMU_BASE)
264 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
265 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
266         IRQ_ENTRY(RTC),
267         IRQ_ENTRY(RTT0),
268         IRQ_ENTRY(RTT1),
269         IRQ_ENTRY(HSI0),
270         IRQ_ENTRY(HSI1),
271         IRQ_ENTRY(CA_WAKE),
272         IRQ_ENTRY(USB),
273         IRQ_ENTRY(ABB),
274         IRQ_ENTRY(ABB_FIFO),
275         IRQ_ENTRY(CA_SLEEP),
276         IRQ_ENTRY(ARM),
277         IRQ_ENTRY(HOTMON_LOW),
278         IRQ_ENTRY(HOTMON_HIGH),
279         IRQ_ENTRY(MODEM_SW_RESET_REQ),
280         IRQ_ENTRY(GPIO0),
281         IRQ_ENTRY(GPIO1),
282         IRQ_ENTRY(GPIO2),
283         IRQ_ENTRY(GPIO3),
284         IRQ_ENTRY(GPIO4),
285         IRQ_ENTRY(GPIO5),
286         IRQ_ENTRY(GPIO6),
287         IRQ_ENTRY(GPIO7),
288         IRQ_ENTRY(GPIO8)
289 };
290
291 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
292 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
293 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
294         WAKEUP_ENTRY(RTC),
295         WAKEUP_ENTRY(RTT0),
296         WAKEUP_ENTRY(RTT1),
297         WAKEUP_ENTRY(HSI0),
298         WAKEUP_ENTRY(HSI1),
299         WAKEUP_ENTRY(USB),
300         WAKEUP_ENTRY(ABB),
301         WAKEUP_ENTRY(ABB_FIFO),
302         WAKEUP_ENTRY(ARM)
303 };
304
305 /*
306  * mb0_transfer - state needed for mailbox 0 communication.
307  * @lock:               The transaction lock.
308  * @dbb_events_lock:    A lock used to handle concurrent access to (parts of)
309  *                      the request data.
310  * @mask_work:          Work structure used for (un)masking wakeup interrupts.
311  * @req:                Request data that need to persist between requests.
312  */
313 static struct {
314         spinlock_t lock;
315         spinlock_t dbb_irqs_lock;
316         struct work_struct mask_work;
317         struct mutex ac_wake_lock;
318         struct completion ac_wake_work;
319         struct {
320                 u32 dbb_irqs;
321                 u32 dbb_wakeups;
322                 u32 abb_events;
323         } req;
324 } mb0_transfer;
325
326 /*
327  * mb1_transfer - state needed for mailbox 1 communication.
328  * @lock:       The transaction lock.
329  * @work:       The transaction completion structure.
330  * @ack:        Reply ("acknowledge") data.
331  */
332 static struct {
333         struct mutex lock;
334         struct completion work;
335         struct {
336                 u8 header;
337                 u8 arm_opp;
338                 u8 ape_opp;
339                 u8 ape_voltage_status;
340         } ack;
341 } mb1_transfer;
342
343 /*
344  * mb2_transfer - state needed for mailbox 2 communication.
345  * @lock:            The transaction lock.
346  * @work:            The transaction completion structure.
347  * @auto_pm_lock:    The autonomous power management configuration lock.
348  * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
349  * @req:             Request data that need to persist between requests.
350  * @ack:             Reply ("acknowledge") data.
351  */
352 static struct {
353         struct mutex lock;
354         struct completion work;
355         spinlock_t auto_pm_lock;
356         bool auto_pm_enabled;
357         struct {
358                 u8 status;
359         } ack;
360 } mb2_transfer;
361
362 /*
363  * mb3_transfer - state needed for mailbox 3 communication.
364  * @lock:               The request lock.
365  * @sysclk_lock:        A lock used to handle concurrent sysclk requests.
366  * @sysclk_work:        Work structure used for sysclk requests.
367  */
368 static struct {
369         spinlock_t lock;
370         struct mutex sysclk_lock;
371         struct completion sysclk_work;
372 } mb3_transfer;
373
374 /*
375  * mb4_transfer - state needed for mailbox 4 communication.
376  * @lock:       The transaction lock.
377  * @work:       The transaction completion structure.
378  */
379 static struct {
380         struct mutex lock;
381         struct completion work;
382 } mb4_transfer;
383
384 /*
385  * mb5_transfer - state needed for mailbox 5 communication.
386  * @lock:       The transaction lock.
387  * @work:       The transaction completion structure.
388  * @ack:        Reply ("acknowledge") data.
389  */
390 static struct {
391         struct mutex lock;
392         struct completion work;
393         struct {
394                 u8 status;
395                 u8 value;
396         } ack;
397 } mb5_transfer;
398
399 static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
400
401 /* Spinlocks */
402 static DEFINE_SPINLOCK(clkout_lock);
403 static DEFINE_SPINLOCK(gpiocr_lock);
404
405 /* Global var to runtime determine TCDM base for v2 or v1 */
406 static __iomem void *tcdm_base;
407
408 struct clk_mgt {
409         unsigned int offset;
410         u32 pllsw;
411 };
412
413 static DEFINE_SPINLOCK(clk_mgt_lock);
414
415 #define CLK_MGT_ENTRY(_name)[PRCMU_##_name] = { (PRCM_##_name##_MGT), 0 }
416 struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
417         CLK_MGT_ENTRY(SGACLK),
418         CLK_MGT_ENTRY(UARTCLK),
419         CLK_MGT_ENTRY(MSP02CLK),
420         CLK_MGT_ENTRY(MSP1CLK),
421         CLK_MGT_ENTRY(I2CCLK),
422         CLK_MGT_ENTRY(SDMMCCLK),
423         CLK_MGT_ENTRY(SLIMCLK),
424         CLK_MGT_ENTRY(PER1CLK),
425         CLK_MGT_ENTRY(PER2CLK),
426         CLK_MGT_ENTRY(PER3CLK),
427         CLK_MGT_ENTRY(PER5CLK),
428         CLK_MGT_ENTRY(PER6CLK),
429         CLK_MGT_ENTRY(PER7CLK),
430         CLK_MGT_ENTRY(LCDCLK),
431         CLK_MGT_ENTRY(BMLCLK),
432         CLK_MGT_ENTRY(HSITXCLK),
433         CLK_MGT_ENTRY(HSIRXCLK),
434         CLK_MGT_ENTRY(HDMICLK),
435         CLK_MGT_ENTRY(APEATCLK),
436         CLK_MGT_ENTRY(APETRACECLK),
437         CLK_MGT_ENTRY(MCDECLK),
438         CLK_MGT_ENTRY(IPI2CCLK),
439         CLK_MGT_ENTRY(DSIALTCLK),
440         CLK_MGT_ENTRY(DMACLK),
441         CLK_MGT_ENTRY(B2R2CLK),
442         CLK_MGT_ENTRY(TVCLK),
443         CLK_MGT_ENTRY(SSPCLK),
444         CLK_MGT_ENTRY(RNGCLK),
445         CLK_MGT_ENTRY(UICCCLK),
446 };
447
448 /*
449 * Used by MCDE to setup all necessary PRCMU registers
450 */
451 #define PRCMU_RESET_DSIPLL              0x00004000
452 #define PRCMU_UNCLAMP_DSIPLL            0x00400800
453
454 #define PRCMU_CLK_PLL_DIV_SHIFT         0
455 #define PRCMU_CLK_PLL_SW_SHIFT          5
456 #define PRCMU_CLK_38                    (1 << 9)
457 #define PRCMU_CLK_38_SRC                (1 << 10)
458 #define PRCMU_CLK_38_DIV                (1 << 11)
459
460 /* PLLDIV=12, PLLSW=4 (PLLDDR) */
461 #define PRCMU_DSI_CLOCK_SETTING         0x0000008C
462
463 /* PLLDIV=8, PLLSW=4 (PLLDDR) */
464 #define PRCMU_DSI_CLOCK_SETTING_U8400   0x00000088
465
466 /* DPI 50000000 Hz */
467 #define PRCMU_DPI_CLOCK_SETTING         ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
468                                           (16 << PRCMU_CLK_PLL_DIV_SHIFT))
469 #define PRCMU_DSI_LP_CLOCK_SETTING      0x00000E00
470
471 /* D=101, N=1, R=4, SELDIV2=0 */
472 #define PRCMU_PLLDSI_FREQ_SETTING       0x00040165
473
474 /* D=70, N=1, R=3, SELDIV2=0 */
475 #define PRCMU_PLLDSI_FREQ_SETTING_U8400 0x00030146
476
477 #define PRCMU_ENABLE_PLLDSI             0x00000001
478 #define PRCMU_DISABLE_PLLDSI            0x00000000
479 #define PRCMU_RELEASE_RESET_DSS         0x0000400C
480 #define PRCMU_DSI_PLLOUT_SEL_SETTING    0x00000202
481 /* ESC clk, div0=1, div1=1, div2=3 */
482 #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV   0x07030101
483 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV  0x00030101
484 #define PRCMU_DSI_RESET_SW              0x00000007
485
486 #define PRCMU_PLLDSI_LOCKP_LOCKED       0x3
487
488 static struct {
489         u8 project_number;
490         u8 api_version;
491         u8 func_version;
492         u8 errata;
493 } prcmu_version;
494
495
496 int prcmu_enable_dsipll(void)
497 {
498         int i;
499         unsigned int plldsifreq;
500
501         /* Clear DSIPLL_RESETN */
502         writel(PRCMU_RESET_DSIPLL, (_PRCMU_BASE + PRCM_APE_RESETN_CLR));
503         /* Unclamp DSIPLL in/out */
504         writel(PRCMU_UNCLAMP_DSIPLL, (_PRCMU_BASE + PRCM_MMIP_LS_CLAMP_CLR));
505
506         if (prcmu_is_u8400())
507                 plldsifreq = PRCMU_PLLDSI_FREQ_SETTING_U8400;
508         else
509                 plldsifreq = PRCMU_PLLDSI_FREQ_SETTING;
510         /* Set DSI PLL FREQ */
511         writel(plldsifreq, (_PRCMU_BASE + PRCM_PLLDSI_FREQ));
512         writel(PRCMU_DSI_PLLOUT_SEL_SETTING,
513                 (_PRCMU_BASE + PRCM_DSI_PLLOUT_SEL));
514         /* Enable Escape clocks */
515         writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV,
516                                         (_PRCMU_BASE + PRCM_DSITVCLK_DIV));
517
518         /* Start DSI PLL */
519         writel(PRCMU_ENABLE_PLLDSI, (_PRCMU_BASE + PRCM_PLLDSI_ENABLE));
520         /* Reset DSI PLL */
521         writel(PRCMU_DSI_RESET_SW, (_PRCMU_BASE + PRCM_DSI_SW_RESET));
522         for (i = 0; i < 10; i++) {
523                 if ((readl(_PRCMU_BASE + PRCM_PLLDSI_LOCKP) &
524                         PRCMU_PLLDSI_LOCKP_LOCKED)
525                                         == PRCMU_PLLDSI_LOCKP_LOCKED)
526                         break;
527                 udelay(100);
528         }
529         /* Set DSIPLL_RESETN */
530         writel(PRCMU_RESET_DSIPLL, (_PRCMU_BASE + PRCM_APE_RESETN_SET));
531         return 0;
532 }
533
534 int prcmu_disable_dsipll(void)
535 {
536         /* Disable dsi pll */
537         writel(PRCMU_DISABLE_PLLDSI, (_PRCMU_BASE + PRCM_PLLDSI_ENABLE));
538         /* Disable  escapeclock */
539         writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV,
540                                         (_PRCMU_BASE + PRCM_DSITVCLK_DIV));
541         return 0;
542 }
543
544 int prcmu_set_display_clocks(void)
545 {
546         unsigned long flags;
547         unsigned int dsiclk;
548
549         if (prcmu_is_u8400())
550                 dsiclk = PRCMU_DSI_CLOCK_SETTING_U8400;
551         else
552                 dsiclk = PRCMU_DSI_CLOCK_SETTING;
553
554         spin_lock_irqsave(&clk_mgt_lock, flags);
555
556         /* Grab the HW semaphore. */
557         while ((readl(_PRCMU_BASE + PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
558                 cpu_relax();
559
560         writel(dsiclk, (_PRCMU_BASE + PRCM_HDMICLK_MGT));
561         writel(PRCMU_DSI_LP_CLOCK_SETTING, (_PRCMU_BASE + PRCM_TVCLK_MGT));
562         writel(PRCMU_DPI_CLOCK_SETTING, (_PRCMU_BASE + PRCM_LCDCLK_MGT));
563
564         /* Release the HW semaphore. */
565         writel(0, (_PRCMU_BASE + PRCM_SEM));
566
567         spin_unlock_irqrestore(&clk_mgt_lock, flags);
568
569         return 0;
570 }
571
572 /**
573  * prcmu_enable_spi2 - Enables pin muxing for SPI2 on OtherAlternateC1.
574  */
575 void prcmu_enable_spi2(void)
576 {
577         u32 reg;
578         unsigned long flags;
579
580         spin_lock_irqsave(&gpiocr_lock, flags);
581         reg = readl(_PRCMU_BASE + PRCM_GPIOCR);
582         writel(reg | PRCM_GPIOCR_SPI2_SELECT, _PRCMU_BASE + PRCM_GPIOCR);
583         spin_unlock_irqrestore(&gpiocr_lock, flags);
584 }
585
586 /**
587  * prcmu_disable_spi2 - Disables pin muxing for SPI2 on OtherAlternateC1.
588  */
589 void prcmu_disable_spi2(void)
590 {
591         u32 reg;
592         unsigned long flags;
593
594         spin_lock_irqsave(&gpiocr_lock, flags);
595         reg = readl(_PRCMU_BASE + PRCM_GPIOCR);
596         writel(reg & ~PRCM_GPIOCR_SPI2_SELECT, _PRCMU_BASE + PRCM_GPIOCR);
597         spin_unlock_irqrestore(&gpiocr_lock, flags);
598 }
599
600 bool prcmu_has_arm_maxopp(void)
601 {
602         return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
603                 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
604 }
605
606 bool prcmu_is_u8400(void)
607 {
608         return prcmu_version.project_number == PRCMU_PROJECT_ID_8400V2_0;
609 }
610
611 /**
612  * prcmu_get_boot_status - PRCMU boot status checking
613  * Returns: the current PRCMU boot status
614  */
615 int prcmu_get_boot_status(void)
616 {
617         return readb(tcdm_base + PRCM_BOOT_STATUS);
618 }
619
620 /**
621  * prcmu_set_rc_a2p - This function is used to run few power state sequences
622  * @val: Value to be set, i.e. transition requested
623  * Returns: 0 on success, -EINVAL on invalid argument
624  *
625  * This function is used to run the following power state sequences -
626  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
627  */
628 int prcmu_set_rc_a2p(enum romcode_write val)
629 {
630         if (val < RDY_2_DS || val > RDY_2_XP70_RST)
631                 return -EINVAL;
632         writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
633         return 0;
634 }
635
636 /**
637  * prcmu_get_rc_p2a - This function is used to get power state sequences
638  * Returns: the power transition that has last happened
639  *
640  * This function can return the following transitions-
641  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
642  */
643 enum romcode_read prcmu_get_rc_p2a(void)
644 {
645         return readb(tcdm_base + PRCM_ROMCODE_P2A);
646 }
647
648 /**
649  * prcmu_get_current_mode - Return the current XP70 power mode
650  * Returns: Returns the current AP(ARM) power mode: init,
651  * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
652  */
653 enum ap_pwrst prcmu_get_xp70_current_state(void)
654 {
655         return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
656 }
657
658 /**
659  * prcmu_config_clkout - Configure one of the programmable clock outputs.
660  * @clkout:     The CLKOUT number (0 or 1).
661  * @source:     The clock to be used (one of the PRCMU_CLKSRC_*).
662  * @div:        The divider to be applied.
663  *
664  * Configures one of the programmable clock outputs (CLKOUTs).
665  * @div should be in the range [1,63] to request a configuration, or 0 to
666  * inform that the configuration is no longer requested.
667  */
668 int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
669 {
670         static int requests[2];
671         int r = 0;
672         unsigned long flags;
673         u32 val;
674         u32 bits;
675         u32 mask;
676         u32 div_mask;
677
678         BUG_ON(clkout > 1);
679         BUG_ON(div > 63);
680         BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
681
682         if (!div && !requests[clkout])
683                 return -EINVAL;
684
685         switch (clkout) {
686         case 0:
687                 div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
688                 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
689                 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
690                         (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
691                 break;
692         case 1:
693                 div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
694                 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
695                         PRCM_CLKOCR_CLK1TYPE);
696                 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
697                         (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
698                 break;
699         }
700         bits &= mask;
701
702         spin_lock_irqsave(&clkout_lock, flags);
703
704         val = readl(_PRCMU_BASE + PRCM_CLKOCR);
705         if (val & div_mask) {
706                 if (div) {
707                         if ((val & mask) != bits) {
708                                 r = -EBUSY;
709                                 goto unlock_and_return;
710                         }
711                 } else {
712                         if ((val & mask & ~div_mask) != bits) {
713                                 r = -EINVAL;
714                                 goto unlock_and_return;
715                         }
716                 }
717         }
718         writel((bits | (val & ~mask)), (_PRCMU_BASE + PRCM_CLKOCR));
719         requests[clkout] += (div ? 1 : -1);
720
721 unlock_and_return:
722         spin_unlock_irqrestore(&clkout_lock, flags);
723
724         return r;
725 }
726
727 int prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
728 {
729         unsigned long flags;
730
731         BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
732
733         spin_lock_irqsave(&mb0_transfer.lock, flags);
734
735         while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
736                 cpu_relax();
737
738         writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
739         writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
740         writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
741         writeb((keep_ulp_clk ? 1 : 0),
742                 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
743         writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
744         writel(MBOX_BIT(0), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
745
746         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
747
748         return 0;
749 }
750
751 /* This function should only be called while mb0_transfer.lock is held. */
752 static void config_wakeups(void)
753 {
754         const u8 header[2] = {
755                 MB0H_CONFIG_WAKEUPS_EXE,
756                 MB0H_CONFIG_WAKEUPS_SLEEP
757         };
758         static u32 last_dbb_events;
759         static u32 last_abb_events;
760         u32 dbb_events;
761         u32 abb_events;
762         unsigned int i;
763
764         dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
765         dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
766
767         abb_events = mb0_transfer.req.abb_events;
768
769         if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
770                 return;
771
772         for (i = 0; i < 2; i++) {
773                 while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
774                         cpu_relax();
775                 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
776                 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
777                 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
778                 writel(MBOX_BIT(0), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
779         }
780         last_dbb_events = dbb_events;
781         last_abb_events = abb_events;
782 }
783
784 void prcmu_enable_wakeups(u32 wakeups)
785 {
786         unsigned long flags;
787         u32 bits;
788         int i;
789
790         BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
791
792         for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
793                 if (wakeups & BIT(i))
794                         bits |= prcmu_wakeup_bit[i];
795         }
796
797         spin_lock_irqsave(&mb0_transfer.lock, flags);
798
799         mb0_transfer.req.dbb_wakeups = bits;
800         config_wakeups();
801
802         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
803 }
804
805 void prcmu_config_abb_event_readout(u32 abb_events)
806 {
807         unsigned long flags;
808
809         spin_lock_irqsave(&mb0_transfer.lock, flags);
810
811         mb0_transfer.req.abb_events = abb_events;
812         config_wakeups();
813
814         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
815 }
816
817 void prcmu_get_abb_event_buffer(void __iomem **buf)
818 {
819         if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
820                 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
821         else
822                 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
823 }
824
825 /**
826  * prcmu_set_arm_opp - set the appropriate ARM OPP
827  * @opp: The new ARM operating point to which transition is to be made
828  * Returns: 0 on success, non-zero on failure
829  *
830  * This function sets the the operating point of the ARM.
831  */
832 int prcmu_set_arm_opp(u8 opp)
833 {
834         int r;
835
836         if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
837                 return -EINVAL;
838
839         r = 0;
840
841         mutex_lock(&mb1_transfer.lock);
842
843         while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
844                 cpu_relax();
845
846         writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
847         writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
848         writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
849
850         writel(MBOX_BIT(1), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
851         wait_for_completion(&mb1_transfer.work);
852
853         if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
854                 (mb1_transfer.ack.arm_opp != opp))
855                 r = -EIO;
856
857         mutex_unlock(&mb1_transfer.lock);
858
859         return r;
860 }
861
862 /**
863  * prcmu_get_arm_opp - get the current ARM OPP
864  *
865  * Returns: the current ARM OPP
866  */
867 int prcmu_get_arm_opp(void)
868 {
869         return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
870 }
871
872 /**
873  * prcmu_get_ddr_opp - get the current DDR OPP
874  *
875  * Returns: the current DDR OPP
876  */
877 int prcmu_get_ddr_opp(void)
878 {
879         return readb(_PRCMU_BASE + PRCM_DDR_SUBSYS_APE_MINBW);
880 }
881
882 /**
883  * set_ddr_opp - set the appropriate DDR OPP
884  * @opp: The new DDR operating point to which transition is to be made
885  * Returns: 0 on success, non-zero on failure
886  *
887  * This function sets the operating point of the DDR.
888  */
889 int prcmu_set_ddr_opp(u8 opp)
890 {
891         if (opp < DDR_100_OPP || opp > DDR_25_OPP)
892                 return -EINVAL;
893         /* Changing the DDR OPP can hang the hardware pre-v21 */
894         if (cpu_is_u8500v20_or_later() && !cpu_is_u8500v20())
895                 writeb(opp, (_PRCMU_BASE + PRCM_DDR_SUBSYS_APE_MINBW));
896
897         return 0;
898 }
899 /**
900  * set_ape_opp - set the appropriate APE OPP
901  * @opp: The new APE operating point to which transition is to be made
902  * Returns: 0 on success, non-zero on failure
903  *
904  * This function sets the operating point of the APE.
905  */
906 int prcmu_set_ape_opp(u8 opp)
907 {
908         int r = 0;
909
910         mutex_lock(&mb1_transfer.lock);
911
912         while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
913                 cpu_relax();
914
915         writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
916         writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
917         writeb(opp, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
918
919         writel(MBOX_BIT(1), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
920         wait_for_completion(&mb1_transfer.work);
921
922         if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
923                 (mb1_transfer.ack.ape_opp != opp))
924                 r = -EIO;
925
926         mutex_unlock(&mb1_transfer.lock);
927
928         return r;
929 }
930
931 /**
932  * prcmu_get_ape_opp - get the current APE OPP
933  *
934  * Returns: the current APE OPP
935  */
936 int prcmu_get_ape_opp(void)
937 {
938         return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
939 }
940
941 /**
942  * prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
943  * @enable: true to request the higher voltage, false to drop a request.
944  *
945  * Calls to this function to enable and disable requests must be balanced.
946  */
947 int prcmu_request_ape_opp_100_voltage(bool enable)
948 {
949         int r = 0;
950         u8 header;
951         static unsigned int requests;
952
953         mutex_lock(&mb1_transfer.lock);
954
955         if (enable) {
956                 if (0 != requests++)
957                         goto unlock_and_return;
958                 header = MB1H_REQUEST_APE_OPP_100_VOLT;
959         } else {
960                 if (requests == 0) {
961                         r = -EIO;
962                         goto unlock_and_return;
963                 } else if (1 != requests--) {
964                         goto unlock_and_return;
965                 }
966                 header = MB1H_RELEASE_APE_OPP_100_VOLT;
967         }
968
969         while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
970                 cpu_relax();
971
972         writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
973
974         writel(MBOX_BIT(1), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
975         wait_for_completion(&mb1_transfer.work);
976
977         if ((mb1_transfer.ack.header != header) ||
978                 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
979                 r = -EIO;
980
981 unlock_and_return:
982         mutex_unlock(&mb1_transfer.lock);
983
984         return r;
985 }
986
987 /**
988  * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
989  *
990  * This function releases the power state requirements of a USB wakeup.
991  */
992 int prcmu_release_usb_wakeup_state(void)
993 {
994         int r = 0;
995
996         mutex_lock(&mb1_transfer.lock);
997
998         while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
999                 cpu_relax();
1000
1001         writeb(MB1H_RELEASE_USB_WAKEUP,
1002                 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1003
1004         writel(MBOX_BIT(1), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
1005         wait_for_completion(&mb1_transfer.work);
1006
1007         if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1008                 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1009                 r = -EIO;
1010
1011         mutex_unlock(&mb1_transfer.lock);
1012
1013         return r;
1014 }
1015
1016 /**
1017  * prcmu_set_epod - set the state of a EPOD (power domain)
1018  * @epod_id: The EPOD to set
1019  * @epod_state: The new EPOD state
1020  *
1021  * This function sets the state of a EPOD (power domain). It may not be called
1022  * from interrupt context.
1023  */
1024 int prcmu_set_epod(u16 epod_id, u8 epod_state)
1025 {
1026         int r = 0;
1027         bool ram_retention = false;
1028         int i;
1029
1030         /* check argument */
1031         BUG_ON(epod_id >= NUM_EPOD_ID);
1032
1033         /* set flag if retention is possible */
1034         switch (epod_id) {
1035         case EPOD_ID_SVAMMDSP:
1036         case EPOD_ID_SIAMMDSP:
1037         case EPOD_ID_ESRAM12:
1038         case EPOD_ID_ESRAM34:
1039                 ram_retention = true;
1040                 break;
1041         }
1042
1043         /* check argument */
1044         BUG_ON(epod_state > EPOD_STATE_ON);
1045         BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1046
1047         /* get lock */
1048         mutex_lock(&mb2_transfer.lock);
1049
1050         /* wait for mailbox */
1051         while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1052                 cpu_relax();
1053
1054         /* fill in mailbox */
1055         for (i = 0; i < NUM_EPOD_ID; i++)
1056                 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1057         writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1058
1059         writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1060
1061         writel(MBOX_BIT(2), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
1062
1063         /*
1064          * The current firmware version does not handle errors correctly,
1065          * and we cannot recover if there is an error.
1066          * This is expected to change when the firmware is updated.
1067          */
1068         if (!wait_for_completion_timeout(&mb2_transfer.work,
1069                         msecs_to_jiffies(20000))) {
1070                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1071                         __func__);
1072                 r = -EIO;
1073                 goto unlock_and_return;
1074         }
1075
1076         if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1077                 r = -EIO;
1078
1079 unlock_and_return:
1080         mutex_unlock(&mb2_transfer.lock);
1081         return r;
1082 }
1083
1084 /**
1085  * prcmu_configure_auto_pm - Configure autonomous power management.
1086  * @sleep: Configuration for ApSleep.
1087  * @idle:  Configuration for ApIdle.
1088  */
1089 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1090         struct prcmu_auto_pm_config *idle)
1091 {
1092         u32 sleep_cfg;
1093         u32 idle_cfg;
1094         unsigned long flags;
1095
1096         BUG_ON((sleep == NULL) || (idle == NULL));
1097
1098         sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1099         sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1100         sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1101         sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1102         sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1103         sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1104
1105         idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1106         idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1107         idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1108         idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1109         idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1110         idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1111
1112         spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1113
1114         /*
1115          * The autonomous power management configuration is done through
1116          * fields in mailbox 2, but these fields are only used as shared
1117          * variables - i.e. there is no need to send a message.
1118          */
1119         writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1120         writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1121
1122         mb2_transfer.auto_pm_enabled =
1123                 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1124                  (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1125                  (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1126                  (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1127
1128         spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1129 }
1130 EXPORT_SYMBOL(prcmu_configure_auto_pm);
1131
1132 bool prcmu_is_auto_pm_enabled(void)
1133 {
1134         return mb2_transfer.auto_pm_enabled;
1135 }
1136
1137 static int request_sysclk(bool enable)
1138 {
1139         int r;
1140         unsigned long flags;
1141
1142         r = 0;
1143
1144         mutex_lock(&mb3_transfer.sysclk_lock);
1145
1146         spin_lock_irqsave(&mb3_transfer.lock, flags);
1147
1148         while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1149                 cpu_relax();
1150
1151         writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1152
1153         writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1154         writel(MBOX_BIT(3), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
1155
1156         spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1157
1158         /*
1159          * The firmware only sends an ACK if we want to enable the
1160          * SysClk, and it succeeds.
1161          */
1162         if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1163                         msecs_to_jiffies(20000))) {
1164                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1165                         __func__);
1166                 r = -EIO;
1167         }
1168
1169         mutex_unlock(&mb3_transfer.sysclk_lock);
1170
1171         return r;
1172 }
1173
1174 static int request_timclk(bool enable)
1175 {
1176         u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1177
1178         if (!enable)
1179                 val |= PRCM_TCR_STOP_TIMERS;
1180         writel(val, (_PRCMU_BASE + PRCM_TCR));
1181
1182         return 0;
1183 }
1184
1185 static int request_reg_clock(u8 clock, bool enable)
1186 {
1187         u32 val;
1188         unsigned long flags;
1189
1190         spin_lock_irqsave(&clk_mgt_lock, flags);
1191
1192         /* Grab the HW semaphore. */
1193         while ((readl(_PRCMU_BASE + PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1194                 cpu_relax();
1195
1196         val = readl(_PRCMU_BASE + clk_mgt[clock].offset);
1197         if (enable) {
1198                 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1199         } else {
1200                 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1201                 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1202         }
1203         writel(val, (_PRCMU_BASE + clk_mgt[clock].offset));
1204
1205         /* Release the HW semaphore. */
1206         writel(0, (_PRCMU_BASE + PRCM_SEM));
1207
1208         spin_unlock_irqrestore(&clk_mgt_lock, flags);
1209
1210         return 0;
1211 }
1212
1213 /**
1214  * prcmu_request_clock() - Request for a clock to be enabled or disabled.
1215  * @clock:      The clock for which the request is made.
1216  * @enable:     Whether the clock should be enabled (true) or disabled (false).
1217  *
1218  * This function should only be used by the clock implementation.
1219  * Do not use it from any other place!
1220  */
1221 int prcmu_request_clock(u8 clock, bool enable)
1222 {
1223         if (clock < PRCMU_NUM_REG_CLOCKS)
1224                 return request_reg_clock(clock, enable);
1225         else if (clock == PRCMU_TIMCLK)
1226                 return request_timclk(enable);
1227         else if (clock == PRCMU_SYSCLK)
1228                 return request_sysclk(enable);
1229         else
1230                 return -EINVAL;
1231 }
1232
1233 int prcmu_config_esram0_deep_sleep(u8 state)
1234 {
1235         if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
1236             (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
1237                 return -EINVAL;
1238
1239         mutex_lock(&mb4_transfer.lock);
1240
1241         while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1242                 cpu_relax();
1243
1244         writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1245         writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
1246                (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
1247         writeb(DDR_PWR_STATE_ON,
1248                (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
1249         writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
1250
1251         writel(MBOX_BIT(4), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
1252         wait_for_completion(&mb4_transfer.work);
1253
1254         mutex_unlock(&mb4_transfer.lock);
1255
1256         return 0;
1257 }
1258
1259 int prcmu_config_hotdog(u8 threshold)
1260 {
1261         mutex_lock(&mb4_transfer.lock);
1262
1263         while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1264                 cpu_relax();
1265
1266         writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
1267         writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1268
1269         writel(MBOX_BIT(4), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
1270         wait_for_completion(&mb4_transfer.work);
1271
1272         mutex_unlock(&mb4_transfer.lock);
1273
1274         return 0;
1275 }
1276
1277 int prcmu_config_hotmon(u8 low, u8 high)
1278 {
1279         mutex_lock(&mb4_transfer.lock);
1280
1281         while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1282                 cpu_relax();
1283
1284         writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
1285         writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
1286         writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
1287                 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
1288         writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1289
1290         writel(MBOX_BIT(4), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
1291         wait_for_completion(&mb4_transfer.work);
1292
1293         mutex_unlock(&mb4_transfer.lock);
1294
1295         return 0;
1296 }
1297
1298 static int config_hot_period(u16 val)
1299 {
1300         mutex_lock(&mb4_transfer.lock);
1301
1302         while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1303                 cpu_relax();
1304
1305         writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
1306         writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1307
1308         writel(MBOX_BIT(4), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
1309         wait_for_completion(&mb4_transfer.work);
1310
1311         mutex_unlock(&mb4_transfer.lock);
1312
1313         return 0;
1314 }
1315
1316 int prcmu_start_temp_sense(u16 cycles32k)
1317 {
1318         if (cycles32k == 0xFFFF)
1319                 return -EINVAL;
1320
1321         return config_hot_period(cycles32k);
1322 }
1323
1324 int prcmu_stop_temp_sense(void)
1325 {
1326         return config_hot_period(0xFFFF);
1327 }
1328
1329 /**
1330  * prcmu_set_clock_divider() - Configure the clock divider.
1331  * @clock:      The clock for which the request is made.
1332  * @divider:    The clock divider. (< 32)
1333  *
1334  * This function should only be used by the clock implementation.
1335  * Do not use it from any other place!
1336  */
1337 int prcmu_set_clock_divider(u8 clock, u8 divider)
1338 {
1339         u32 val;
1340         unsigned long flags;
1341
1342         if ((clock >= PRCMU_NUM_REG_CLOCKS) || (divider < 1) || (31 < divider))
1343                 return -EINVAL;
1344
1345         spin_lock_irqsave(&clk_mgt_lock, flags);
1346
1347         /* Grab the HW semaphore. */
1348         while ((readl(_PRCMU_BASE + PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1349                 cpu_relax();
1350
1351         val = readl(_PRCMU_BASE + clk_mgt[clock].offset);
1352         val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK);
1353         val |= (u32)divider;
1354         writel(val, (_PRCMU_BASE + clk_mgt[clock].offset));
1355
1356         /* Release the HW semaphore. */
1357         writel(0, (_PRCMU_BASE + PRCM_SEM));
1358
1359         spin_unlock_irqrestore(&clk_mgt_lock, flags);
1360
1361         return 0;
1362 }
1363
1364 /**
1365  * prcmu_abb_read() - Read register value(s) from the ABB.
1366  * @slave:      The I2C slave address.
1367  * @reg:        The (start) register address.
1368  * @value:      The read out value(s).
1369  * @size:       The number of registers to read.
1370  *
1371  * Reads register value(s) from the ABB.
1372  * @size has to be 1 for the current firmware version.
1373  */
1374 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
1375 {
1376         int r;
1377
1378         if (size != 1)
1379                 return -EINVAL;
1380
1381         mutex_lock(&mb5_transfer.lock);
1382
1383         while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
1384                 cpu_relax();
1385
1386         writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
1387         writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
1388         writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
1389         writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
1390
1391         writel(MBOX_BIT(5), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
1392
1393         if (!wait_for_completion_timeout(&mb5_transfer.work,
1394                                 msecs_to_jiffies(20000))) {
1395                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1396                         __func__);
1397                 r = -EIO;
1398         } else {
1399                 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
1400         }
1401
1402         if (!r)
1403                 *value = mb5_transfer.ack.value;
1404
1405         mutex_unlock(&mb5_transfer.lock);
1406
1407         return r;
1408 }
1409
1410 /**
1411  * prcmu_abb_write() - Write register value(s) to the ABB.
1412  * @slave:      The I2C slave address.
1413  * @reg:        The (start) register address.
1414  * @value:      The value(s) to write.
1415  * @size:       The number of registers to write.
1416  *
1417  * Reads register value(s) from the ABB.
1418  * @size has to be 1 for the current firmware version.
1419  */
1420 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
1421 {
1422         int r;
1423
1424         if (size != 1)
1425                 return -EINVAL;
1426
1427         mutex_lock(&mb5_transfer.lock);
1428
1429         while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
1430                 cpu_relax();
1431
1432         writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
1433         writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
1434         writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
1435         writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
1436
1437         writel(MBOX_BIT(5), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
1438
1439         if (!wait_for_completion_timeout(&mb5_transfer.work,
1440                                 msecs_to_jiffies(20000))) {
1441                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1442                         __func__);
1443                 r = -EIO;
1444         } else {
1445                 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
1446         }
1447
1448         mutex_unlock(&mb5_transfer.lock);
1449
1450         return r;
1451 }
1452
1453 /**
1454  * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
1455  */
1456 void prcmu_ac_wake_req(void)
1457 {
1458         u32 val;
1459
1460         mutex_lock(&mb0_transfer.ac_wake_lock);
1461
1462         val = readl(_PRCMU_BASE + PRCM_HOSTACCESS_REQ);
1463         if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
1464                 goto unlock_and_return;
1465
1466         atomic_set(&ac_wake_req_state, 1);
1467
1468         writel((val | PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
1469                 (_PRCMU_BASE + PRCM_HOSTACCESS_REQ));
1470
1471         if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
1472                         msecs_to_jiffies(20000))) {
1473                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1474                         __func__);
1475         }
1476
1477 unlock_and_return:
1478         mutex_unlock(&mb0_transfer.ac_wake_lock);
1479 }
1480
1481 /**
1482  * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
1483  */
1484 void prcmu_ac_sleep_req()
1485 {
1486         u32 val;
1487
1488         mutex_lock(&mb0_transfer.ac_wake_lock);
1489
1490         val = readl(_PRCMU_BASE + PRCM_HOSTACCESS_REQ);
1491         if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
1492                 goto unlock_and_return;
1493
1494         writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
1495                 (_PRCMU_BASE + PRCM_HOSTACCESS_REQ));
1496
1497         if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
1498                         msecs_to_jiffies(20000))) {
1499                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1500                         __func__);
1501         }
1502
1503         atomic_set(&ac_wake_req_state, 0);
1504
1505 unlock_and_return:
1506         mutex_unlock(&mb0_transfer.ac_wake_lock);
1507 }
1508
1509 bool prcmu_is_ac_wake_requested(void)
1510 {
1511         return (atomic_read(&ac_wake_req_state) != 0);
1512 }
1513
1514 /**
1515  * prcmu_system_reset - System reset
1516  *
1517  * Saves the reset reason code and then sets the APE_SOFRST register which
1518  * fires interrupt to fw
1519  */
1520 void prcmu_system_reset(u16 reset_code)
1521 {
1522         writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
1523         writel(1, (_PRCMU_BASE + PRCM_APE_SOFTRST));
1524 }
1525
1526 /**
1527  * prcmu_reset_modem - ask the PRCMU to reset modem
1528  */
1529 void prcmu_modem_reset(void)
1530 {
1531         mutex_lock(&mb1_transfer.lock);
1532
1533         while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1534                 cpu_relax();
1535
1536         writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1537         writel(MBOX_BIT(1), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
1538         wait_for_completion(&mb1_transfer.work);
1539
1540         /*
1541          * No need to check return from PRCMU as modem should go in reset state
1542          * This state is already managed by upper layer
1543          */
1544
1545         mutex_unlock(&mb1_transfer.lock);
1546 }
1547
1548 static void ack_dbb_wakeup(void)
1549 {
1550         unsigned long flags;
1551
1552         spin_lock_irqsave(&mb0_transfer.lock, flags);
1553
1554         while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
1555                 cpu_relax();
1556
1557         writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
1558         writel(MBOX_BIT(0), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
1559
1560         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
1561 }
1562
1563 static inline void print_unknown_header_warning(u8 n, u8 header)
1564 {
1565         pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
1566                 header, n);
1567 }
1568
1569 static bool read_mailbox_0(void)
1570 {
1571         bool r;
1572         u32 ev;
1573         unsigned int n;
1574         u8 header;
1575
1576         header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
1577         switch (header) {
1578         case MB0H_WAKEUP_EXE:
1579         case MB0H_WAKEUP_SLEEP:
1580                 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
1581                         ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
1582                 else
1583                         ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
1584
1585                 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
1586                         complete(&mb0_transfer.ac_wake_work);
1587                 if (ev & WAKEUP_BIT_SYSCLK_OK)
1588                         complete(&mb3_transfer.sysclk_work);
1589
1590                 ev &= mb0_transfer.req.dbb_irqs;
1591
1592                 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
1593                         if (ev & prcmu_irq_bit[n])
1594                                 generic_handle_irq(IRQ_PRCMU_BASE + n);
1595                 }
1596                 r = true;
1597                 break;
1598         default:
1599                 print_unknown_header_warning(0, header);
1600                 r = false;
1601                 break;
1602         }
1603         writel(MBOX_BIT(0), (_PRCMU_BASE + PRCM_ARM_IT1_CLR));
1604         return r;
1605 }
1606
1607 static bool read_mailbox_1(void)
1608 {
1609         mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
1610         mb1_transfer.ack.arm_opp = readb(tcdm_base +
1611                 PRCM_ACK_MB1_CURRENT_ARM_OPP);
1612         mb1_transfer.ack.ape_opp = readb(tcdm_base +
1613                 PRCM_ACK_MB1_CURRENT_APE_OPP);
1614         mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
1615                 PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
1616         writel(MBOX_BIT(1), (_PRCMU_BASE + PRCM_ARM_IT1_CLR));
1617         complete(&mb1_transfer.work);
1618         return false;
1619 }
1620
1621 static bool read_mailbox_2(void)
1622 {
1623         mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
1624         writel(MBOX_BIT(2), (_PRCMU_BASE + PRCM_ARM_IT1_CLR));
1625         complete(&mb2_transfer.work);
1626         return false;
1627 }
1628
1629 static bool read_mailbox_3(void)
1630 {
1631         writel(MBOX_BIT(3), (_PRCMU_BASE + PRCM_ARM_IT1_CLR));
1632         return false;
1633 }
1634
1635 static bool read_mailbox_4(void)
1636 {
1637         u8 header;
1638         bool do_complete = true;
1639
1640         header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
1641         switch (header) {
1642         case MB4H_MEM_ST:
1643         case MB4H_HOTDOG:
1644         case MB4H_HOTMON:
1645         case MB4H_HOT_PERIOD:
1646                 break;
1647         default:
1648                 print_unknown_header_warning(4, header);
1649                 do_complete = false;
1650                 break;
1651         }
1652
1653         writel(MBOX_BIT(4), (_PRCMU_BASE + PRCM_ARM_IT1_CLR));
1654
1655         if (do_complete)
1656                 complete(&mb4_transfer.work);
1657
1658         return false;
1659 }
1660
1661 static bool read_mailbox_5(void)
1662 {
1663         mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
1664         mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
1665         writel(MBOX_BIT(5), (_PRCMU_BASE + PRCM_ARM_IT1_CLR));
1666         complete(&mb5_transfer.work);
1667         return false;
1668 }
1669
1670 static bool read_mailbox_6(void)
1671 {
1672         writel(MBOX_BIT(6), (_PRCMU_BASE + PRCM_ARM_IT1_CLR));
1673         return false;
1674 }
1675
1676 static bool read_mailbox_7(void)
1677 {
1678         writel(MBOX_BIT(7), (_PRCMU_BASE + PRCM_ARM_IT1_CLR));
1679         return false;
1680 }
1681
1682 static bool (* const read_mailbox[NUM_MB])(void) = {
1683         read_mailbox_0,
1684         read_mailbox_1,
1685         read_mailbox_2,
1686         read_mailbox_3,
1687         read_mailbox_4,
1688         read_mailbox_5,
1689         read_mailbox_6,
1690         read_mailbox_7
1691 };
1692
1693 static irqreturn_t prcmu_irq_handler(int irq, void *data)
1694 {
1695         u32 bits;
1696         u8 n;
1697         irqreturn_t r;
1698
1699         bits = (readl(_PRCMU_BASE + PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
1700         if (unlikely(!bits))
1701                 return IRQ_NONE;
1702
1703         r = IRQ_HANDLED;
1704         for (n = 0; bits; n++) {
1705                 if (bits & MBOX_BIT(n)) {
1706                         bits -= MBOX_BIT(n);
1707                         if (read_mailbox[n]())
1708                                 r = IRQ_WAKE_THREAD;
1709                 }
1710         }
1711         return r;
1712 }
1713
1714 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
1715 {
1716         ack_dbb_wakeup();
1717         return IRQ_HANDLED;
1718 }
1719
1720 static void prcmu_mask_work(struct work_struct *work)
1721 {
1722         unsigned long flags;
1723
1724         spin_lock_irqsave(&mb0_transfer.lock, flags);
1725
1726         config_wakeups();
1727
1728         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
1729 }
1730
1731 static void prcmu_irq_mask(struct irq_data *d)
1732 {
1733         unsigned long flags;
1734
1735         spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
1736
1737         mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
1738
1739         spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
1740
1741         if (d->irq != IRQ_PRCMU_CA_SLEEP)
1742                 schedule_work(&mb0_transfer.mask_work);
1743 }
1744
1745 static void prcmu_irq_unmask(struct irq_data *d)
1746 {
1747         unsigned long flags;
1748
1749         spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
1750
1751         mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
1752
1753         spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
1754
1755         if (d->irq != IRQ_PRCMU_CA_SLEEP)
1756                 schedule_work(&mb0_transfer.mask_work);
1757 }
1758
1759 static void noop(struct irq_data *d)
1760 {
1761 }
1762
1763 static struct irq_chip prcmu_irq_chip = {
1764         .name           = "prcmu",
1765         .irq_disable    = prcmu_irq_mask,
1766         .irq_ack        = noop,
1767         .irq_mask       = prcmu_irq_mask,
1768         .irq_unmask     = prcmu_irq_unmask,
1769 };
1770
1771 void __init prcmu_early_init(void)
1772 {
1773         unsigned int i;
1774
1775         if (cpu_is_u8500v1()) {
1776                 tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE_V1);
1777         } else if (cpu_is_u8500v2()) {
1778                 void *tcpm_base = ioremap_nocache(U8500_PRCMU_TCPM_BASE, SZ_4K);
1779
1780                 if (tcpm_base != NULL) {
1781                         int version;
1782                         version = readl(tcpm_base + PRCMU_FW_VERSION_OFFSET);
1783                         prcmu_version.project_number = version & 0xFF;
1784                         prcmu_version.api_version = (version >> 8) & 0xFF;
1785                         prcmu_version.func_version = (version >> 16) & 0xFF;
1786                         prcmu_version.errata = (version >> 24) & 0xFF;
1787                         pr_info("PRCMU firmware version %d.%d.%d\n",
1788                                 (version >> 8) & 0xFF, (version >> 16) & 0xFF,
1789                                 (version >> 24) & 0xFF);
1790                         iounmap(tcpm_base);
1791                 }
1792
1793                 tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE);
1794         } else {
1795                 pr_err("prcmu: Unsupported chip version\n");
1796                 BUG();
1797         }
1798
1799         spin_lock_init(&mb0_transfer.lock);
1800         spin_lock_init(&mb0_transfer.dbb_irqs_lock);
1801         mutex_init(&mb0_transfer.ac_wake_lock);
1802         init_completion(&mb0_transfer.ac_wake_work);
1803         mutex_init(&mb1_transfer.lock);
1804         init_completion(&mb1_transfer.work);
1805         mutex_init(&mb2_transfer.lock);
1806         init_completion(&mb2_transfer.work);
1807         spin_lock_init(&mb2_transfer.auto_pm_lock);
1808         spin_lock_init(&mb3_transfer.lock);
1809         mutex_init(&mb3_transfer.sysclk_lock);
1810         init_completion(&mb3_transfer.sysclk_work);
1811         mutex_init(&mb4_transfer.lock);
1812         init_completion(&mb4_transfer.work);
1813         mutex_init(&mb5_transfer.lock);
1814         init_completion(&mb5_transfer.work);
1815
1816         INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
1817
1818         /* Initalize irqs. */
1819         for (i = 0; i < NUM_PRCMU_WAKEUPS; i++) {
1820                 unsigned int irq;
1821
1822                 irq = IRQ_PRCMU_BASE + i;
1823                 irq_set_chip_and_handler(irq, &prcmu_irq_chip,
1824                                          handle_simple_irq);
1825                 set_irq_flags(irq, IRQF_VALID);
1826         }
1827 }
1828
1829 /*
1830  * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
1831  */
1832 static struct regulator_consumer_supply db8500_vape_consumers[] = {
1833         REGULATOR_SUPPLY("v-ape", NULL),
1834         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
1835         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
1836         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
1837         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
1838         /* "v-mmc" changed to "vcore" in the mainline kernel */
1839         REGULATOR_SUPPLY("vcore", "sdi0"),
1840         REGULATOR_SUPPLY("vcore", "sdi1"),
1841         REGULATOR_SUPPLY("vcore", "sdi2"),
1842         REGULATOR_SUPPLY("vcore", "sdi3"),
1843         REGULATOR_SUPPLY("vcore", "sdi4"),
1844         REGULATOR_SUPPLY("v-dma", "dma40.0"),
1845         REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
1846         /* "v-uart" changed to "vcore" in the mainline kernel */
1847         REGULATOR_SUPPLY("vcore", "uart0"),
1848         REGULATOR_SUPPLY("vcore", "uart1"),
1849         REGULATOR_SUPPLY("vcore", "uart2"),
1850         REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
1851 };
1852
1853 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
1854         /* CG2900 and CW1200 power to off-chip peripherals */
1855         REGULATOR_SUPPLY("gbf_1v8", "cg2900-uart.0"),
1856         REGULATOR_SUPPLY("wlan_1v8", "cw1200.0"),
1857         REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
1858         /* AV8100 regulator */
1859         REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
1860 };
1861
1862 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
1863         REGULATOR_SUPPLY("vsupply", "b2r2.0"),
1864         REGULATOR_SUPPLY("vsupply", "mcde.0"),
1865 };
1866
1867 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
1868         [DB8500_REGULATOR_VAPE] = {
1869                 .constraints = {
1870                         .name = "db8500-vape",
1871                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1872                 },
1873                 .consumer_supplies = db8500_vape_consumers,
1874                 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
1875         },
1876         [DB8500_REGULATOR_VARM] = {
1877                 .constraints = {
1878                         .name = "db8500-varm",
1879                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1880                 },
1881         },
1882         [DB8500_REGULATOR_VMODEM] = {
1883                 .constraints = {
1884                         .name = "db8500-vmodem",
1885                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1886                 },
1887         },
1888         [DB8500_REGULATOR_VPLL] = {
1889                 .constraints = {
1890                         .name = "db8500-vpll",
1891                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1892                 },
1893         },
1894         [DB8500_REGULATOR_VSMPS1] = {
1895                 .constraints = {
1896                         .name = "db8500-vsmps1",
1897                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1898                 },
1899         },
1900         [DB8500_REGULATOR_VSMPS2] = {
1901                 .constraints = {
1902                         .name = "db8500-vsmps2",
1903                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1904                 },
1905                 .consumer_supplies = db8500_vsmps2_consumers,
1906                 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
1907         },
1908         [DB8500_REGULATOR_VSMPS3] = {
1909                 .constraints = {
1910                         .name = "db8500-vsmps3",
1911                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1912                 },
1913         },
1914         [DB8500_REGULATOR_VRF1] = {
1915                 .constraints = {
1916                         .name = "db8500-vrf1",
1917                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1918                 },
1919         },
1920         [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
1921                 .supply_regulator = "db8500-vape",
1922                 .constraints = {
1923                         .name = "db8500-sva-mmdsp",
1924                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1925                 },
1926         },
1927         [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
1928                 .constraints = {
1929                         /* "ret" means "retention" */
1930                         .name = "db8500-sva-mmdsp-ret",
1931                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1932                 },
1933         },
1934         [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
1935                 .supply_regulator = "db8500-vape",
1936                 .constraints = {
1937                         .name = "db8500-sva-pipe",
1938                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1939                 },
1940         },
1941         [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
1942                 .supply_regulator = "db8500-vape",
1943                 .constraints = {
1944                         .name = "db8500-sia-mmdsp",
1945                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1946                 },
1947         },
1948         [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
1949                 .constraints = {
1950                         .name = "db8500-sia-mmdsp-ret",
1951                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1952                 },
1953         },
1954         [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
1955                 .supply_regulator = "db8500-vape",
1956                 .constraints = {
1957                         .name = "db8500-sia-pipe",
1958                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1959                 },
1960         },
1961         [DB8500_REGULATOR_SWITCH_SGA] = {
1962                 .supply_regulator = "db8500-vape",
1963                 .constraints = {
1964                         .name = "db8500-sga",
1965                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1966                 },
1967         },
1968         [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
1969                 .supply_regulator = "db8500-vape",
1970                 .constraints = {
1971                         .name = "db8500-b2r2-mcde",
1972                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1973                 },
1974                 .consumer_supplies = db8500_b2r2_mcde_consumers,
1975                 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
1976         },
1977         [DB8500_REGULATOR_SWITCH_ESRAM12] = {
1978                 .supply_regulator = "db8500-vape",
1979                 .constraints = {
1980                         .name = "db8500-esram12",
1981                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1982                 },
1983         },
1984         [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
1985                 .constraints = {
1986                         .name = "db8500-esram12-ret",
1987                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1988                 },
1989         },
1990         [DB8500_REGULATOR_SWITCH_ESRAM34] = {
1991                 .supply_regulator = "db8500-vape",
1992                 .constraints = {
1993                         .name = "db8500-esram34",
1994                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1995                 },
1996         },
1997         [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
1998                 .constraints = {
1999                         .name = "db8500-esram34-ret",
2000                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2001                 },
2002         },
2003 };
2004
2005 static struct mfd_cell db8500_prcmu_devs[] = {
2006         {
2007                 .name = "db8500-prcmu-regulators",
2008                 .platform_data = &db8500_regulators,
2009                 .pdata_size = sizeof(db8500_regulators),
2010         },
2011         {
2012                 .name = "cpufreq-u8500",
2013         },
2014 };
2015
2016 /**
2017  * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
2018  *
2019  */
2020 static int __init db8500_prcmu_probe(struct platform_device *pdev)
2021 {
2022         int err = 0;
2023
2024         if (ux500_is_svp())
2025                 return -ENODEV;
2026
2027         /* Clean up the mailbox interrupts after pre-kernel code. */
2028         writel(ALL_MBOX_BITS, (_PRCMU_BASE + PRCM_ARM_IT1_CLR));
2029
2030         err = request_threaded_irq(IRQ_DB8500_PRCMU1, prcmu_irq_handler,
2031                 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
2032         if (err < 0) {
2033                 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
2034                 err = -EBUSY;
2035                 goto no_irq_return;
2036         }
2037
2038         if (cpu_is_u8500v20_or_later())
2039                 prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
2040
2041         err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
2042                               ARRAY_SIZE(db8500_prcmu_devs), NULL,
2043                               0);
2044
2045         if (err)
2046                 pr_err("prcmu: Failed to add subdevices\n");
2047         else
2048                 pr_info("DB8500 PRCMU initialized\n");
2049
2050 no_irq_return:
2051         return err;
2052 }
2053
2054 static struct platform_driver db8500_prcmu_driver = {
2055         .driver = {
2056                 .name = "db8500-prcmu",
2057                 .owner = THIS_MODULE,
2058         },
2059 };
2060
2061 static int __init db8500_prcmu_init(void)
2062 {
2063         return platform_driver_probe(&db8500_prcmu_driver, db8500_prcmu_probe);
2064 }
2065
2066 arch_initcall(db8500_prcmu_init);
2067
2068 MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
2069 MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
2070 MODULE_LICENSE("GPL v2");