Merge branch 'for-linus2' of git://git.profusion.mobi/users/lucas/linux-2.6
[linux-2.6.git] / drivers / media / radio / wl128x / fmdrv_common.c
1 /*
2  *  FM Driver for Connectivity chip of Texas Instruments.
3  *
4  *  This sub-module of FM driver is common for FM RX and TX
5  *  functionality. This module is responsible for:
6  *  1) Forming group of Channel-8 commands to perform particular
7  *     functionality (eg., frequency set require more than
8  *     one Channel-8 command to be sent to the chip).
9  *  2) Sending each Channel-8 command to the chip and reading
10  *     response back over Shared Transport.
11  *  3) Managing TX and RX Queues and Tasklets.
12  *  4) Handling FM Interrupt packet and taking appropriate action.
13  *  5) Loading FM firmware to the chip (common, FM TX, and FM RX
14  *     firmware files based on mode selection)
15  *
16  *  Copyright (C) 2011 Texas Instruments
17  *  Author: Raja Mani <raja_mani@ti.com>
18  *  Author: Manjunatha Halli <manjunatha_halli@ti.com>
19  *
20  *  This program is free software; you can redistribute it and/or modify
21  *  it under the terms of the GNU General Public License version 2 as
22  *  published by the Free Software Foundation.
23  *
24  *  This program is distributed in the hope that it will be useful,
25  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
26  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
27  *  GNU General Public License for more details.
28  *
29  *  You should have received a copy of the GNU General Public License
30  *  along with this program; if not, write to the Free Software
31  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
32  *
33  */
34
35 #include <linux/module.h>
36 #include <linux/firmware.h>
37 #include <linux/delay.h>
38 #include "fmdrv.h"
39 #include "fmdrv_v4l2.h"
40 #include "fmdrv_common.h"
41 #include <linux/ti_wilink_st.h>
42 #include "fmdrv_rx.h"
43 #include "fmdrv_tx.h"
44
45 /* Region info */
46 static struct region_info region_configs[] = {
47         /* Europe/US */
48         {
49          .chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL,
50          .bot_freq = 87500,     /* 87.5 MHz */
51          .top_freq = 108000,    /* 108 MHz */
52          .fm_band = 0,
53          },
54         /* Japan */
55         {
56          .chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL,
57          .bot_freq = 76000,     /* 76 MHz */
58          .top_freq = 90000,     /* 90 MHz */
59          .fm_band = 1,
60          },
61 };
62
63 /* Band selection */
64 static u8 default_radio_region; /* Europe/US */
65 module_param(default_radio_region, byte, 0);
66 MODULE_PARM_DESC(default_radio_region, "Region: 0=Europe/US, 1=Japan");
67
68 /* RDS buffer blocks */
69 static u32 default_rds_buf = 300;
70 module_param(default_rds_buf, uint, 0444);
71 MODULE_PARM_DESC(rds_buf, "RDS buffer entries");
72
73 /* Radio Nr */
74 static u32 radio_nr = -1;
75 module_param(radio_nr, int, 0444);
76 MODULE_PARM_DESC(radio_nr, "Radio Nr");
77
78 /* FM irq handlers forward declaration */
79 static void fm_irq_send_flag_getcmd(struct fmdev *);
80 static void fm_irq_handle_flag_getcmd_resp(struct fmdev *);
81 static void fm_irq_handle_hw_malfunction(struct fmdev *);
82 static void fm_irq_handle_rds_start(struct fmdev *);
83 static void fm_irq_send_rdsdata_getcmd(struct fmdev *);
84 static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *);
85 static void fm_irq_handle_rds_finish(struct fmdev *);
86 static void fm_irq_handle_tune_op_ended(struct fmdev *);
87 static void fm_irq_handle_power_enb(struct fmdev *);
88 static void fm_irq_handle_low_rssi_start(struct fmdev *);
89 static void fm_irq_afjump_set_pi(struct fmdev *);
90 static void fm_irq_handle_set_pi_resp(struct fmdev *);
91 static void fm_irq_afjump_set_pimask(struct fmdev *);
92 static void fm_irq_handle_set_pimask_resp(struct fmdev *);
93 static void fm_irq_afjump_setfreq(struct fmdev *);
94 static void fm_irq_handle_setfreq_resp(struct fmdev *);
95 static void fm_irq_afjump_enableint(struct fmdev *);
96 static void fm_irq_afjump_enableint_resp(struct fmdev *);
97 static void fm_irq_start_afjump(struct fmdev *);
98 static void fm_irq_handle_start_afjump_resp(struct fmdev *);
99 static void fm_irq_afjump_rd_freq(struct fmdev *);
100 static void fm_irq_afjump_rd_freq_resp(struct fmdev *);
101 static void fm_irq_handle_low_rssi_finish(struct fmdev *);
102 static void fm_irq_send_intmsk_cmd(struct fmdev *);
103 static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *);
104
105 /*
106  * When FM common module receives interrupt packet, following handlers
107  * will be executed one after another to service the interrupt(s)
108  */
109 enum fmc_irq_handler_index {
110         FM_SEND_FLAG_GETCMD_IDX,
111         FM_HANDLE_FLAG_GETCMD_RESP_IDX,
112
113         /* HW malfunction irq handler */
114         FM_HW_MAL_FUNC_IDX,
115
116         /* RDS threshold reached irq handler */
117         FM_RDS_START_IDX,
118         FM_RDS_SEND_RDS_GETCMD_IDX,
119         FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX,
120         FM_RDS_FINISH_IDX,
121
122         /* Tune operation ended irq handler */
123         FM_HW_TUNE_OP_ENDED_IDX,
124
125         /* TX power enable irq handler */
126         FM_HW_POWER_ENB_IDX,
127
128         /* Low RSSI irq handler */
129         FM_LOW_RSSI_START_IDX,
130         FM_AF_JUMP_SETPI_IDX,
131         FM_AF_JUMP_HANDLE_SETPI_RESP_IDX,
132         FM_AF_JUMP_SETPI_MASK_IDX,
133         FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX,
134         FM_AF_JUMP_SET_AF_FREQ_IDX,
135         FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX,
136         FM_AF_JUMP_ENABLE_INT_IDX,
137         FM_AF_JUMP_ENABLE_INT_RESP_IDX,
138         FM_AF_JUMP_START_AFJUMP_IDX,
139         FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX,
140         FM_AF_JUMP_RD_FREQ_IDX,
141         FM_AF_JUMP_RD_FREQ_RESP_IDX,
142         FM_LOW_RSSI_FINISH_IDX,
143
144         /* Interrupt process post action */
145         FM_SEND_INTMSK_CMD_IDX,
146         FM_HANDLE_INTMSK_CMD_RESP_IDX,
147 };
148
149 /* FM interrupt handler table */
150 static int_handler_prototype int_handler_table[] = {
151         fm_irq_send_flag_getcmd,
152         fm_irq_handle_flag_getcmd_resp,
153         fm_irq_handle_hw_malfunction,
154         fm_irq_handle_rds_start, /* RDS threshold reached irq handler */
155         fm_irq_send_rdsdata_getcmd,
156         fm_irq_handle_rdsdata_getcmd_resp,
157         fm_irq_handle_rds_finish,
158         fm_irq_handle_tune_op_ended,
159         fm_irq_handle_power_enb, /* TX power enable irq handler */
160         fm_irq_handle_low_rssi_start,
161         fm_irq_afjump_set_pi,
162         fm_irq_handle_set_pi_resp,
163         fm_irq_afjump_set_pimask,
164         fm_irq_handle_set_pimask_resp,
165         fm_irq_afjump_setfreq,
166         fm_irq_handle_setfreq_resp,
167         fm_irq_afjump_enableint,
168         fm_irq_afjump_enableint_resp,
169         fm_irq_start_afjump,
170         fm_irq_handle_start_afjump_resp,
171         fm_irq_afjump_rd_freq,
172         fm_irq_afjump_rd_freq_resp,
173         fm_irq_handle_low_rssi_finish,
174         fm_irq_send_intmsk_cmd, /* Interrupt process post action */
175         fm_irq_handle_intmsk_cmd_resp
176 };
177
178 long (*g_st_write) (struct sk_buff *skb);
179 static struct completion wait_for_fmdrv_reg_comp;
180
181 static inline void fm_irq_call(struct fmdev *fmdev)
182 {
183         fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev);
184 }
185
186 /* Continue next function in interrupt handler table */
187 static inline void fm_irq_call_stage(struct fmdev *fmdev, u8 stage)
188 {
189         fmdev->irq_info.stage = stage;
190         fm_irq_call(fmdev);
191 }
192
193 static inline void fm_irq_timeout_stage(struct fmdev *fmdev, u8 stage)
194 {
195         fmdev->irq_info.stage = stage;
196         mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT);
197 }
198
199 #ifdef FM_DUMP_TXRX_PKT
200  /* To dump outgoing FM Channel-8 packets */
201 inline void dump_tx_skb_data(struct sk_buff *skb)
202 {
203         int len, len_org;
204         u8 index;
205         struct fm_cmd_msg_hdr *cmd_hdr;
206
207         cmd_hdr = (struct fm_cmd_msg_hdr *)skb->data;
208         printk(KERN_INFO "<<%shdr:%02x len:%02x opcode:%02x type:%s dlen:%02x",
209                fm_cb(skb)->completion ? " " : "*", cmd_hdr->hdr,
210                cmd_hdr->len, cmd_hdr->op,
211                cmd_hdr->rd_wr ? "RD" : "WR", cmd_hdr->dlen);
212
213         len_org = skb->len - FM_CMD_MSG_HDR_SIZE;
214         if (len_org > 0) {
215                 printk("\n   data(%d): ", cmd_hdr->dlen);
216                 len = min(len_org, 14);
217                 for (index = 0; index < len; index++)
218                         printk("%x ",
219                                skb->data[FM_CMD_MSG_HDR_SIZE + index]);
220                 printk("%s", (len_org > 14) ? ".." : "");
221         }
222         printk("\n");
223 }
224
225  /* To dump incoming FM Channel-8 packets */
226 inline void dump_rx_skb_data(struct sk_buff *skb)
227 {
228         int len, len_org;
229         u8 index;
230         struct fm_event_msg_hdr *evt_hdr;
231
232         evt_hdr = (struct fm_event_msg_hdr *)skb->data;
233         printk(KERN_INFO ">> hdr:%02x len:%02x sts:%02x numhci:%02x "
234             "opcode:%02x type:%s dlen:%02x", evt_hdr->hdr, evt_hdr->len,
235             evt_hdr->status, evt_hdr->num_fm_hci_cmds, evt_hdr->op,
236             (evt_hdr->rd_wr) ? "RD" : "WR", evt_hdr->dlen);
237
238         len_org = skb->len - FM_EVT_MSG_HDR_SIZE;
239         if (len_org > 0) {
240                 printk("\n   data(%d): ", evt_hdr->dlen);
241                 len = min(len_org, 14);
242                 for (index = 0; index < len; index++)
243                         printk("%x ",
244                                skb->data[FM_EVT_MSG_HDR_SIZE + index]);
245                 printk("%s", (len_org > 14) ? ".." : "");
246         }
247         printk("\n");
248 }
249 #endif
250
251 void fmc_update_region_info(struct fmdev *fmdev, u8 region_to_set)
252 {
253         fmdev->rx.region = region_configs[region_to_set];
254 }
255
256 /*
257  * FM common sub-module will schedule this tasklet whenever it receives
258  * FM packet from ST driver.
259  */
260 static void recv_tasklet(unsigned long arg)
261 {
262         struct fmdev *fmdev;
263         struct fm_irq *irq_info;
264         struct fm_event_msg_hdr *evt_hdr;
265         struct sk_buff *skb;
266         u8 num_fm_hci_cmds;
267         unsigned long flags;
268
269         fmdev = (struct fmdev *)arg;
270         irq_info = &fmdev->irq_info;
271         /* Process all packets in the RX queue */
272         while ((skb = skb_dequeue(&fmdev->rx_q))) {
273                 if (skb->len < sizeof(struct fm_event_msg_hdr)) {
274                         fmerr("skb(%p) has only %d bytes, "
275                                 "at least need %zu bytes to decode\n", skb,
276                                 skb->len, sizeof(struct fm_event_msg_hdr));
277                         kfree_skb(skb);
278                         continue;
279                 }
280
281                 evt_hdr = (void *)skb->data;
282                 num_fm_hci_cmds = evt_hdr->num_fm_hci_cmds;
283
284                 /* FM interrupt packet? */
285                 if (evt_hdr->op == FM_INTERRUPT) {
286                         /* FM interrupt handler started already? */
287                         if (!test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) {
288                                 set_bit(FM_INTTASK_RUNNING, &fmdev->flag);
289                                 if (irq_info->stage != 0) {
290                                         fmerr("Inval stage resetting to zero\n");
291                                         irq_info->stage = 0;
292                                 }
293
294                                 /*
295                                  * Execute first function in interrupt handler
296                                  * table.
297                                  */
298                                 irq_info->handlers[irq_info->stage](fmdev);
299                         } else {
300                                 set_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag);
301                         }
302                         kfree_skb(skb);
303                 }
304                 /* Anyone waiting for this with completion handler? */
305                 else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp != NULL) {
306
307                         spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
308                         fmdev->resp_skb = skb;
309                         spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
310                         complete(fmdev->resp_comp);
311
312                         fmdev->resp_comp = NULL;
313                         atomic_set(&fmdev->tx_cnt, 1);
314                 }
315                 /* Is this for interrupt handler? */
316                 else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp == NULL) {
317                         if (fmdev->resp_skb != NULL)
318                                 fmerr("Response SKB ptr not NULL\n");
319
320                         spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
321                         fmdev->resp_skb = skb;
322                         spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
323
324                         /* Execute interrupt handler where state index points */
325                         irq_info->handlers[irq_info->stage](fmdev);
326
327                         kfree_skb(skb);
328                         atomic_set(&fmdev->tx_cnt, 1);
329                 } else {
330                         fmerr("Nobody claimed SKB(%p),purging\n", skb);
331                 }
332
333                 /*
334                  * Check flow control field. If Num_FM_HCI_Commands field is
335                  * not zero, schedule FM TX tasklet.
336                  */
337                 if (num_fm_hci_cmds && atomic_read(&fmdev->tx_cnt))
338                         if (!skb_queue_empty(&fmdev->tx_q))
339                                 tasklet_schedule(&fmdev->tx_task);
340         }
341 }
342
343 /* FM send tasklet: is scheduled when FM packet has to be sent to chip */
344 static void send_tasklet(unsigned long arg)
345 {
346         struct fmdev *fmdev;
347         struct sk_buff *skb;
348         int len;
349
350         fmdev = (struct fmdev *)arg;
351
352         if (!atomic_read(&fmdev->tx_cnt))
353                 return;
354
355         /* Check, is there any timeout happened to last transmitted packet */
356         if ((jiffies - fmdev->last_tx_jiffies) > FM_DRV_TX_TIMEOUT) {
357                 fmerr("TX timeout occurred\n");
358                 atomic_set(&fmdev->tx_cnt, 1);
359         }
360
361         /* Send queued FM TX packets */
362         skb = skb_dequeue(&fmdev->tx_q);
363         if (!skb)
364                 return;
365
366         atomic_dec(&fmdev->tx_cnt);
367         fmdev->pre_op = fm_cb(skb)->fm_op;
368
369         if (fmdev->resp_comp != NULL)
370                 fmerr("Response completion handler is not NULL\n");
371
372         fmdev->resp_comp = fm_cb(skb)->completion;
373
374         /* Write FM packet to ST driver */
375         len = g_st_write(skb);
376         if (len < 0) {
377                 kfree_skb(skb);
378                 fmdev->resp_comp = NULL;
379                 fmerr("TX tasklet failed to send skb(%p)\n", skb);
380                 atomic_set(&fmdev->tx_cnt, 1);
381         } else {
382                 fmdev->last_tx_jiffies = jiffies;
383         }
384 }
385
386 /*
387  * Queues FM Channel-8 packet to FM TX queue and schedules FM TX tasklet for
388  * transmission
389  */
390 static u32 fm_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type, void *payload,
391                 int payload_len, struct completion *wait_completion)
392 {
393         struct sk_buff *skb;
394         struct fm_cmd_msg_hdr *hdr;
395         int size;
396
397         if (fm_op >= FM_INTERRUPT) {
398                 fmerr("Invalid fm opcode - %d\n", fm_op);
399                 return -EINVAL;
400         }
401         if (test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) && payload == NULL) {
402                 fmerr("Payload data is NULL during fw download\n");
403                 return -EINVAL;
404         }
405         if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag))
406                 size =
407                     FM_CMD_MSG_HDR_SIZE + ((payload == NULL) ? 0 : payload_len);
408         else
409                 size = payload_len;
410
411         skb = alloc_skb(size, GFP_ATOMIC);
412         if (!skb) {
413                 fmerr("No memory to create new SKB\n");
414                 return -ENOMEM;
415         }
416         /*
417          * Don't fill FM header info for the commands which come from
418          * FM firmware file.
419          */
420         if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) ||
421                         test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) {
422                 /* Fill command header info */
423                 hdr = (struct fm_cmd_msg_hdr *)skb_put(skb, FM_CMD_MSG_HDR_SIZE);
424                 hdr->hdr = FM_PKT_LOGICAL_CHAN_NUMBER;  /* 0x08 */
425
426                 /* 3 (fm_opcode,rd_wr,dlen) + payload len) */
427                 hdr->len = ((payload == NULL) ? 0 : payload_len) + 3;
428
429                 /* FM opcode */
430                 hdr->op = fm_op;
431
432                 /* read/write type */
433                 hdr->rd_wr = type;
434                 hdr->dlen = payload_len;
435                 fm_cb(skb)->fm_op = fm_op;
436
437                 /*
438                  * If firmware download has finished and the command is
439                  * not a read command then payload is != NULL - a write
440                  * command with u16 payload - convert to be16
441                  */
442                 if (payload != NULL)
443                         *(u16 *)payload = cpu_to_be16(*(u16 *)payload);
444
445         } else if (payload != NULL) {
446                 fm_cb(skb)->fm_op = *((u8 *)payload + 2);
447         }
448         if (payload != NULL)
449                 memcpy(skb_put(skb, payload_len), payload, payload_len);
450
451         fm_cb(skb)->completion = wait_completion;
452         skb_queue_tail(&fmdev->tx_q, skb);
453         tasklet_schedule(&fmdev->tx_task);
454
455         return 0;
456 }
457
458 /* Sends FM Channel-8 command to the chip and waits for the response */
459 u32 fmc_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type, void *payload,
460                 unsigned int payload_len, void *response, int *response_len)
461 {
462         struct sk_buff *skb;
463         struct fm_event_msg_hdr *evt_hdr;
464         unsigned long flags;
465         u32 ret;
466
467         init_completion(&fmdev->maintask_comp);
468         ret = fm_send_cmd(fmdev, fm_op, type, payload, payload_len,
469                             &fmdev->maintask_comp);
470         if (ret)
471                 return ret;
472
473         ret = wait_for_completion_timeout(&fmdev->maintask_comp, FM_DRV_TX_TIMEOUT);
474         if (!ret) {
475                 fmerr("Timeout(%d sec),didn't get reg"
476                            "completion signal from RX tasklet\n",
477                            jiffies_to_msecs(FM_DRV_TX_TIMEOUT) / 1000);
478                 return -ETIMEDOUT;
479         }
480         if (!fmdev->resp_skb) {
481                 fmerr("Response SKB is missing\n");
482                 return -EFAULT;
483         }
484         spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
485         skb = fmdev->resp_skb;
486         fmdev->resp_skb = NULL;
487         spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
488
489         evt_hdr = (void *)skb->data;
490         if (evt_hdr->status != 0) {
491                 fmerr("Received event pkt status(%d) is not zero\n",
492                            evt_hdr->status);
493                 kfree_skb(skb);
494                 return -EIO;
495         }
496         /* Send response data to caller */
497         if (response != NULL && response_len != NULL && evt_hdr->dlen) {
498                 /* Skip header info and copy only response data */
499                 skb_pull(skb, sizeof(struct fm_event_msg_hdr));
500                 memcpy(response, skb->data, evt_hdr->dlen);
501                 *response_len = evt_hdr->dlen;
502         } else if (response_len != NULL && evt_hdr->dlen == 0) {
503                 *response_len = 0;
504         }
505         kfree_skb(skb);
506
507         return 0;
508 }
509
510 /* --- Helper functions used in FM interrupt handlers ---*/
511 static inline u32 check_cmdresp_status(struct fmdev *fmdev,
512                 struct sk_buff **skb)
513 {
514         struct fm_event_msg_hdr *fm_evt_hdr;
515         unsigned long flags;
516
517         del_timer(&fmdev->irq_info.timer);
518
519         spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
520         *skb = fmdev->resp_skb;
521         fmdev->resp_skb = NULL;
522         spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
523
524         fm_evt_hdr = (void *)(*skb)->data;
525         if (fm_evt_hdr->status != 0) {
526                 fmerr("irq: opcode %x response status is not zero "
527                                 "Initiating irq recovery process\n",
528                                 fm_evt_hdr->op);
529
530                 mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT);
531                 return -1;
532         }
533
534         return 0;
535 }
536
537 static inline void fm_irq_common_cmd_resp_helper(struct fmdev *fmdev, u8 stage)
538 {
539         struct sk_buff *skb;
540
541         if (!check_cmdresp_status(fmdev, &skb))
542                 fm_irq_call_stage(fmdev, stage);
543 }
544
545 /*
546  * Interrupt process timeout handler.
547  * One of the irq handler did not get proper response from the chip. So take
548  * recovery action here. FM interrupts are disabled in the beginning of
549  * interrupt process. Therefore reset stage index to re-enable default
550  * interrupts. So that next interrupt will be processed as usual.
551  */
552 static void int_timeout_handler(unsigned long data)
553 {
554         struct fmdev *fmdev;
555         struct fm_irq *fmirq;
556
557         fmdbg("irq: timeout,trying to re-enable fm interrupts\n");
558         fmdev = (struct fmdev *)data;
559         fmirq = &fmdev->irq_info;
560         fmirq->retry++;
561
562         if (fmirq->retry > FM_IRQ_TIMEOUT_RETRY_MAX) {
563                 /* Stop recovery action (interrupt reenable process) and
564                  * reset stage index & retry count values */
565                 fmirq->stage = 0;
566                 fmirq->retry = 0;
567                 fmerr("Recovery action failed during"
568                                 "irq processing, max retry reached\n");
569                 return;
570         }
571         fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX);
572 }
573
574 /* --------- FM interrupt handlers ------------*/
575 static void fm_irq_send_flag_getcmd(struct fmdev *fmdev)
576 {
577         u16 flag;
578
579         /* Send FLAG_GET command , to know the source of interrupt */
580         if (!fm_send_cmd(fmdev, FLAG_GET, REG_RD, NULL, sizeof(flag), NULL))
581                 fm_irq_timeout_stage(fmdev, FM_HANDLE_FLAG_GETCMD_RESP_IDX);
582 }
583
584 static void fm_irq_handle_flag_getcmd_resp(struct fmdev *fmdev)
585 {
586         struct sk_buff *skb;
587         struct fm_event_msg_hdr *fm_evt_hdr;
588
589         if (check_cmdresp_status(fmdev, &skb))
590                 return;
591
592         fm_evt_hdr = (void *)skb->data;
593
594         /* Skip header info and copy only response data */
595         skb_pull(skb, sizeof(struct fm_event_msg_hdr));
596         memcpy(&fmdev->irq_info.flag, skb->data, fm_evt_hdr->dlen);
597
598         fmdev->irq_info.flag = be16_to_cpu(fmdev->irq_info.flag);
599         fmdbg("irq: flag register(0x%x)\n", fmdev->irq_info.flag);
600
601         /* Continue next function in interrupt handler table */
602         fm_irq_call_stage(fmdev, FM_HW_MAL_FUNC_IDX);
603 }
604
605 static void fm_irq_handle_hw_malfunction(struct fmdev *fmdev)
606 {
607         if (fmdev->irq_info.flag & FM_MAL_EVENT & fmdev->irq_info.mask)
608                 fmerr("irq: HW MAL int received - do nothing\n");
609
610         /* Continue next function in interrupt handler table */
611         fm_irq_call_stage(fmdev, FM_RDS_START_IDX);
612 }
613
614 static void fm_irq_handle_rds_start(struct fmdev *fmdev)
615 {
616         if (fmdev->irq_info.flag & FM_RDS_EVENT & fmdev->irq_info.mask) {
617                 fmdbg("irq: rds threshold reached\n");
618                 fmdev->irq_info.stage = FM_RDS_SEND_RDS_GETCMD_IDX;
619         } else {
620                 /* Continue next function in interrupt handler table */
621                 fmdev->irq_info.stage = FM_HW_TUNE_OP_ENDED_IDX;
622         }
623
624         fm_irq_call(fmdev);
625 }
626
627 static void fm_irq_send_rdsdata_getcmd(struct fmdev *fmdev)
628 {
629         /* Send the command to read RDS data from the chip */
630         if (!fm_send_cmd(fmdev, RDS_DATA_GET, REG_RD, NULL,
631                             (FM_RX_RDS_FIFO_THRESHOLD * 3), NULL))
632                 fm_irq_timeout_stage(fmdev, FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX);
633 }
634
635 /* Keeps track of current RX channel AF (Alternate Frequency) */
636 static void fm_rx_update_af_cache(struct fmdev *fmdev, u8 af)
637 {
638         struct tuned_station_info *stat_info = &fmdev->rx.stat_info;
639         u8 reg_idx = fmdev->rx.region.fm_band;
640         u8 index;
641         u32 freq;
642
643         /* First AF indicates the number of AF follows. Reset the list */
644         if ((af >= FM_RDS_1_AF_FOLLOWS) && (af <= FM_RDS_25_AF_FOLLOWS)) {
645                 fmdev->rx.stat_info.af_list_max = (af - FM_RDS_1_AF_FOLLOWS + 1);
646                 fmdev->rx.stat_info.afcache_size = 0;
647                 fmdbg("No of expected AF : %d\n", fmdev->rx.stat_info.af_list_max);
648                 return;
649         }
650
651         if (af < FM_RDS_MIN_AF)
652                 return;
653         if (reg_idx == FM_BAND_EUROPE_US && af > FM_RDS_MAX_AF)
654                 return;
655         if (reg_idx == FM_BAND_JAPAN && af > FM_RDS_MAX_AF_JAPAN)
656                 return;
657
658         freq = fmdev->rx.region.bot_freq + (af * 100);
659         if (freq == fmdev->rx.freq) {
660                 fmdbg("Current freq(%d) is matching with received AF(%d)\n",
661                                 fmdev->rx.freq, freq);
662                 return;
663         }
664         /* Do check in AF cache */
665         for (index = 0; index < stat_info->afcache_size; index++) {
666                 if (stat_info->af_cache[index] == freq)
667                         break;
668         }
669         /* Reached the limit of the list - ignore the next AF */
670         if (index == stat_info->af_list_max) {
671                 fmdbg("AF cache is full\n");
672                 return;
673         }
674         /*
675          * If we reached the end of the list then this AF is not
676          * in the list - add it.
677          */
678         if (index == stat_info->afcache_size) {
679                 fmdbg("Storing AF %d to cache index %d\n", freq, index);
680                 stat_info->af_cache[index] = freq;
681                 stat_info->afcache_size++;
682         }
683 }
684
685 /*
686  * Converts RDS buffer data from big endian format
687  * to little endian format.
688  */
689 static void fm_rdsparse_swapbytes(struct fmdev *fmdev,
690                 struct fm_rdsdata_format *rds_format)
691 {
692         u8 byte1;
693         u8 index = 0;
694         u8 *rds_buff;
695
696         /*
697          * Since in Orca the 2 RDS Data bytes are in little endian and
698          * in Dolphin they are in big endian, the parsing of the RDS data
699          * is chip dependent
700          */
701         if (fmdev->asci_id != 0x6350) {
702                 rds_buff = &rds_format->data.groupdatabuff.buff[0];
703                 while (index + 1 < FM_RX_RDS_INFO_FIELD_MAX) {
704                         byte1 = rds_buff[index];
705                         rds_buff[index] = rds_buff[index + 1];
706                         rds_buff[index + 1] = byte1;
707                         index += 2;
708                 }
709         }
710 }
711
712 static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *fmdev)
713 {
714         struct sk_buff *skb;
715         struct fm_rdsdata_format rds_fmt;
716         struct fm_rds *rds = &fmdev->rx.rds;
717         unsigned long group_idx, flags;
718         u8 *rds_data, meta_data, tmpbuf[3];
719         u8 type, blk_idx;
720         u16 cur_picode;
721         u32 rds_len;
722
723         if (check_cmdresp_status(fmdev, &skb))
724                 return;
725
726         /* Skip header info */
727         skb_pull(skb, sizeof(struct fm_event_msg_hdr));
728         rds_data = skb->data;
729         rds_len = skb->len;
730
731         /* Parse the RDS data */
732         while (rds_len >= FM_RDS_BLK_SIZE) {
733                 meta_data = rds_data[2];
734                 /* Get the type: 0=A, 1=B, 2=C, 3=C', 4=D, 5=E */
735                 type = (meta_data & 0x07);
736
737                 /* Transform the blk type into index sequence (0, 1, 2, 3, 4) */
738                 blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1));
739                 fmdbg("Block index:%d(%s)\n", blk_idx,
740                            (meta_data & FM_RDS_STATUS_ERR_MASK) ? "Bad" : "Ok");
741
742                 if ((meta_data & FM_RDS_STATUS_ERR_MASK) != 0)
743                         break;
744
745                 if (blk_idx < FM_RDS_BLK_IDX_A || blk_idx > FM_RDS_BLK_IDX_D) {
746                         fmdbg("Block sequence mismatch\n");
747                         rds->last_blk_idx = -1;
748                         break;
749                 }
750
751                 /* Skip checkword (control) byte and copy only data byte */
752                 memcpy(&rds_fmt.data.groupdatabuff.
753                                 buff[blk_idx * (FM_RDS_BLK_SIZE - 1)],
754                                 rds_data, (FM_RDS_BLK_SIZE - 1));
755
756                 rds->last_blk_idx = blk_idx;
757
758                 /* If completed a whole group then handle it */
759                 if (blk_idx == FM_RDS_BLK_IDX_D) {
760                         fmdbg("Good block received\n");
761                         fm_rdsparse_swapbytes(fmdev, &rds_fmt);
762
763                         /*
764                          * Extract PI code and store in local cache.
765                          * We need this during AF switch processing.
766                          */
767                         cur_picode = be16_to_cpu(rds_fmt.data.groupgeneral.pidata);
768                         if (fmdev->rx.stat_info.picode != cur_picode)
769                                 fmdev->rx.stat_info.picode = cur_picode;
770
771                         fmdbg("picode:%d\n", cur_picode);
772
773                         group_idx = (rds_fmt.data.groupgeneral.blk_b[0] >> 3);
774                         fmdbg("(fmdrv):Group:%ld%s\n", group_idx/2,
775                                         (group_idx % 2) ? "B" : "A");
776
777                         group_idx = 1 << (rds_fmt.data.groupgeneral.blk_b[0] >> 3);
778                         if (group_idx == FM_RDS_GROUP_TYPE_MASK_0A) {
779                                 fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[0]);
780                                 fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[1]);
781                         }
782                 }
783                 rds_len -= FM_RDS_BLK_SIZE;
784                 rds_data += FM_RDS_BLK_SIZE;
785         }
786
787         /* Copy raw rds data to internal rds buffer */
788         rds_data = skb->data;
789         rds_len = skb->len;
790
791         spin_lock_irqsave(&fmdev->rds_buff_lock, flags);
792         while (rds_len > 0) {
793                 /*
794                  * Fill RDS buffer as per V4L2 specification.
795                  * Store control byte
796                  */
797                 type = (rds_data[2] & 0x07);
798                 blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1));
799                 tmpbuf[2] = blk_idx;    /* Offset name */
800                 tmpbuf[2] |= blk_idx << 3;      /* Received offset */
801
802                 /* Store data byte */
803                 tmpbuf[0] = rds_data[0];
804                 tmpbuf[1] = rds_data[1];
805
806                 memcpy(&rds->buff[rds->wr_idx], &tmpbuf, FM_RDS_BLK_SIZE);
807                 rds->wr_idx = (rds->wr_idx + FM_RDS_BLK_SIZE) % rds->buf_size;
808
809                 /* Check for overflow & start over */
810                 if (rds->wr_idx == rds->rd_idx) {
811                         fmdbg("RDS buffer overflow\n");
812                         rds->wr_idx = 0;
813                         rds->rd_idx = 0;
814                         break;
815                 }
816                 rds_len -= FM_RDS_BLK_SIZE;
817                 rds_data += FM_RDS_BLK_SIZE;
818         }
819         spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
820
821         /* Wakeup read queue */
822         if (rds->wr_idx != rds->rd_idx)
823                 wake_up_interruptible(&rds->read_queue);
824
825         fm_irq_call_stage(fmdev, FM_RDS_FINISH_IDX);
826 }
827
828 static void fm_irq_handle_rds_finish(struct fmdev *fmdev)
829 {
830         fm_irq_call_stage(fmdev, FM_HW_TUNE_OP_ENDED_IDX);
831 }
832
833 static void fm_irq_handle_tune_op_ended(struct fmdev *fmdev)
834 {
835         if (fmdev->irq_info.flag & (FM_FR_EVENT | FM_BL_EVENT) & fmdev->
836             irq_info.mask) {
837                 fmdbg("irq: tune ended/bandlimit reached\n");
838                 if (test_and_clear_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag)) {
839                         fmdev->irq_info.stage = FM_AF_JUMP_RD_FREQ_IDX;
840                 } else {
841                         complete(&fmdev->maintask_comp);
842                         fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX;
843                 }
844         } else
845                 fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX;
846
847         fm_irq_call(fmdev);
848 }
849
850 static void fm_irq_handle_power_enb(struct fmdev *fmdev)
851 {
852         if (fmdev->irq_info.flag & FM_POW_ENB_EVENT) {
853                 fmdbg("irq: Power Enabled/Disabled\n");
854                 complete(&fmdev->maintask_comp);
855         }
856
857         fm_irq_call_stage(fmdev, FM_LOW_RSSI_START_IDX);
858 }
859
860 static void fm_irq_handle_low_rssi_start(struct fmdev *fmdev)
861 {
862         if ((fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON) &&
863             (fmdev->irq_info.flag & FM_LEV_EVENT & fmdev->irq_info.mask) &&
864             (fmdev->rx.freq != FM_UNDEFINED_FREQ) &&
865             (fmdev->rx.stat_info.afcache_size != 0)) {
866                 fmdbg("irq: rssi level has fallen below threshold level\n");
867
868                 /* Disable further low RSSI interrupts */
869                 fmdev->irq_info.mask &= ~FM_LEV_EVENT;
870
871                 fmdev->rx.afjump_idx = 0;
872                 fmdev->rx.freq_before_jump = fmdev->rx.freq;
873                 fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX;
874         } else {
875                 /* Continue next function in interrupt handler table */
876                 fmdev->irq_info.stage = FM_SEND_INTMSK_CMD_IDX;
877         }
878
879         fm_irq_call(fmdev);
880 }
881
882 static void fm_irq_afjump_set_pi(struct fmdev *fmdev)
883 {
884         u16 payload;
885
886         /* Set PI code - must be updated if the AF list is not empty */
887         payload = fmdev->rx.stat_info.picode;
888         if (!fm_send_cmd(fmdev, RDS_PI_SET, REG_WR, &payload, sizeof(payload), NULL))
889                 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_RESP_IDX);
890 }
891
892 static void fm_irq_handle_set_pi_resp(struct fmdev *fmdev)
893 {
894         fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SETPI_MASK_IDX);
895 }
896
897 /*
898  * Set PI mask.
899  * 0xFFFF = Enable PI code matching
900  * 0x0000 = Disable PI code matching
901  */
902 static void fm_irq_afjump_set_pimask(struct fmdev *fmdev)
903 {
904         u16 payload;
905
906         payload = 0x0000;
907         if (!fm_send_cmd(fmdev, RDS_PI_MASK_SET, REG_WR, &payload, sizeof(payload), NULL))
908                 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX);
909 }
910
911 static void fm_irq_handle_set_pimask_resp(struct fmdev *fmdev)
912 {
913         fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SET_AF_FREQ_IDX);
914 }
915
916 static void fm_irq_afjump_setfreq(struct fmdev *fmdev)
917 {
918         u16 frq_index;
919         u16 payload;
920
921         fmdbg("Swtich to %d KHz\n", fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx]);
922         frq_index = (fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx] -
923              fmdev->rx.region.bot_freq) / FM_FREQ_MUL;
924
925         payload = frq_index;
926         if (!fm_send_cmd(fmdev, AF_FREQ_SET, REG_WR, &payload, sizeof(payload), NULL))
927                 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX);
928 }
929
930 static void fm_irq_handle_setfreq_resp(struct fmdev *fmdev)
931 {
932         fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_ENABLE_INT_IDX);
933 }
934
935 static void fm_irq_afjump_enableint(struct fmdev *fmdev)
936 {
937         u16 payload;
938
939         /* Enable FR (tuning operation ended) interrupt */
940         payload = FM_FR_EVENT;
941         if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload, sizeof(payload), NULL))
942                 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_ENABLE_INT_RESP_IDX);
943 }
944
945 static void fm_irq_afjump_enableint_resp(struct fmdev *fmdev)
946 {
947         fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_START_AFJUMP_IDX);
948 }
949
950 static void fm_irq_start_afjump(struct fmdev *fmdev)
951 {
952         u16 payload;
953
954         payload = FM_TUNER_AF_JUMP_MODE;
955         if (!fm_send_cmd(fmdev, TUNER_MODE_SET, REG_WR, &payload,
956                         sizeof(payload), NULL))
957                 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX);
958 }
959
960 static void fm_irq_handle_start_afjump_resp(struct fmdev *fmdev)
961 {
962         struct sk_buff *skb;
963
964         if (check_cmdresp_status(fmdev, &skb))
965                 return;
966
967         fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX;
968         set_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag);
969         clear_bit(FM_INTTASK_RUNNING, &fmdev->flag);
970 }
971
972 static void fm_irq_afjump_rd_freq(struct fmdev *fmdev)
973 {
974         u16 payload;
975
976         if (!fm_send_cmd(fmdev, FREQ_SET, REG_RD, NULL, sizeof(payload), NULL))
977                 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_RD_FREQ_RESP_IDX);
978 }
979
980 static void fm_irq_afjump_rd_freq_resp(struct fmdev *fmdev)
981 {
982         struct sk_buff *skb;
983         u16 read_freq;
984         u32 curr_freq, jumped_freq;
985
986         if (check_cmdresp_status(fmdev, &skb))
987                 return;
988
989         /* Skip header info and copy only response data */
990         skb_pull(skb, sizeof(struct fm_event_msg_hdr));
991         memcpy(&read_freq, skb->data, sizeof(read_freq));
992         read_freq = be16_to_cpu(read_freq);
993         curr_freq = fmdev->rx.region.bot_freq + ((u32)read_freq * FM_FREQ_MUL);
994
995         jumped_freq = fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx];
996
997         /* If the frequency was changed the jump succeeded */
998         if ((curr_freq != fmdev->rx.freq_before_jump) && (curr_freq == jumped_freq)) {
999                 fmdbg("Successfully switched to alternate freq %d\n", curr_freq);
1000                 fmdev->rx.freq = curr_freq;
1001                 fm_rx_reset_rds_cache(fmdev);
1002
1003                 /* AF feature is on, enable low level RSSI interrupt */
1004                 if (fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON)
1005                         fmdev->irq_info.mask |= FM_LEV_EVENT;
1006
1007                 fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX;
1008         } else {                /* jump to the next freq in the AF list */
1009                 fmdev->rx.afjump_idx++;
1010
1011                 /* If we reached the end of the list - stop searching */
1012                 if (fmdev->rx.afjump_idx >= fmdev->rx.stat_info.afcache_size) {
1013                         fmdbg("AF switch processing failed\n");
1014                         fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX;
1015                 } else {        /* AF List is not over - try next one */
1016
1017                         fmdbg("Trying next freq in AF cache\n");
1018                         fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX;
1019                 }
1020         }
1021         fm_irq_call(fmdev);
1022 }
1023
1024 static void fm_irq_handle_low_rssi_finish(struct fmdev *fmdev)
1025 {
1026         fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX);
1027 }
1028
1029 static void fm_irq_send_intmsk_cmd(struct fmdev *fmdev)
1030 {
1031         u16 payload;
1032
1033         /* Re-enable FM interrupts */
1034         payload = fmdev->irq_info.mask;
1035
1036         if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload,
1037                         sizeof(payload), NULL))
1038                 fm_irq_timeout_stage(fmdev, FM_HANDLE_INTMSK_CMD_RESP_IDX);
1039 }
1040
1041 static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *fmdev)
1042 {
1043         struct sk_buff *skb;
1044
1045         if (check_cmdresp_status(fmdev, &skb))
1046                 return;
1047         /*
1048          * This is last function in interrupt table to be executed.
1049          * So, reset stage index to 0.
1050          */
1051         fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX;
1052
1053         /* Start processing any pending interrupt */
1054         if (test_and_clear_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag))
1055                 fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev);
1056         else
1057                 clear_bit(FM_INTTASK_RUNNING, &fmdev->flag);
1058 }
1059
1060 /* Returns availability of RDS data in internel buffer */
1061 u32 fmc_is_rds_data_available(struct fmdev *fmdev, struct file *file,
1062                                 struct poll_table_struct *pts)
1063 {
1064         poll_wait(file, &fmdev->rx.rds.read_queue, pts);
1065         if (fmdev->rx.rds.rd_idx != fmdev->rx.rds.wr_idx)
1066                 return 0;
1067
1068         return -EAGAIN;
1069 }
1070
1071 /* Copies RDS data from internal buffer to user buffer */
1072 u32 fmc_transfer_rds_from_internal_buff(struct fmdev *fmdev, struct file *file,
1073                 u8 __user *buf, size_t count)
1074 {
1075         u32 block_count;
1076         unsigned long flags;
1077         int ret;
1078
1079         if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) {
1080                 if (file->f_flags & O_NONBLOCK)
1081                         return -EWOULDBLOCK;
1082
1083                 ret = wait_event_interruptible(fmdev->rx.rds.read_queue,
1084                                 (fmdev->rx.rds.wr_idx != fmdev->rx.rds.rd_idx));
1085                 if (ret)
1086                         return -EINTR;
1087         }
1088
1089         /* Calculate block count from byte count */
1090         count /= 3;
1091         block_count = 0;
1092         ret = 0;
1093
1094         spin_lock_irqsave(&fmdev->rds_buff_lock, flags);
1095
1096         while (block_count < count) {
1097                 if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx)
1098                         break;
1099
1100                 if (copy_to_user(buf, &fmdev->rx.rds.buff[fmdev->rx.rds.rd_idx],
1101                                         FM_RDS_BLK_SIZE))
1102                         break;
1103
1104                 fmdev->rx.rds.rd_idx += FM_RDS_BLK_SIZE;
1105                 if (fmdev->rx.rds.rd_idx >= fmdev->rx.rds.buf_size)
1106                         fmdev->rx.rds.rd_idx = 0;
1107
1108                 block_count++;
1109                 buf += FM_RDS_BLK_SIZE;
1110                 ret += FM_RDS_BLK_SIZE;
1111         }
1112         spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
1113         return ret;
1114 }
1115
1116 u32 fmc_set_freq(struct fmdev *fmdev, u32 freq_to_set)
1117 {
1118         switch (fmdev->curr_fmmode) {
1119         case FM_MODE_RX:
1120                 return fm_rx_set_freq(fmdev, freq_to_set);
1121
1122         case FM_MODE_TX:
1123                 return fm_tx_set_freq(fmdev, freq_to_set);
1124
1125         default:
1126                 return -EINVAL;
1127         }
1128 }
1129
1130 u32 fmc_get_freq(struct fmdev *fmdev, u32 *cur_tuned_frq)
1131 {
1132         if (fmdev->rx.freq == FM_UNDEFINED_FREQ) {
1133                 fmerr("RX frequency is not set\n");
1134                 return -EPERM;
1135         }
1136         if (cur_tuned_frq == NULL) {
1137                 fmerr("Invalid memory\n");
1138                 return -ENOMEM;
1139         }
1140
1141         switch (fmdev->curr_fmmode) {
1142         case FM_MODE_RX:
1143                 *cur_tuned_frq = fmdev->rx.freq;
1144                 return 0;
1145
1146         case FM_MODE_TX:
1147                 *cur_tuned_frq = 0;     /* TODO : Change this later */
1148                 return 0;
1149
1150         default:
1151                 return -EINVAL;
1152         }
1153
1154 }
1155
1156 u32 fmc_set_region(struct fmdev *fmdev, u8 region_to_set)
1157 {
1158         switch (fmdev->curr_fmmode) {
1159         case FM_MODE_RX:
1160                 return fm_rx_set_region(fmdev, region_to_set);
1161
1162         case FM_MODE_TX:
1163                 return fm_tx_set_region(fmdev, region_to_set);
1164
1165         default:
1166                 return -EINVAL;
1167         }
1168 }
1169
1170 u32 fmc_set_mute_mode(struct fmdev *fmdev, u8 mute_mode_toset)
1171 {
1172         switch (fmdev->curr_fmmode) {
1173         case FM_MODE_RX:
1174                 return fm_rx_set_mute_mode(fmdev, mute_mode_toset);
1175
1176         case FM_MODE_TX:
1177                 return fm_tx_set_mute_mode(fmdev, mute_mode_toset);
1178
1179         default:
1180                 return -EINVAL;
1181         }
1182 }
1183
1184 u32 fmc_set_stereo_mono(struct fmdev *fmdev, u16 mode)
1185 {
1186         switch (fmdev->curr_fmmode) {
1187         case FM_MODE_RX:
1188                 return fm_rx_set_stereo_mono(fmdev, mode);
1189
1190         case FM_MODE_TX:
1191                 return fm_tx_set_stereo_mono(fmdev, mode);
1192
1193         default:
1194                 return -EINVAL;
1195         }
1196 }
1197
1198 u32 fmc_set_rds_mode(struct fmdev *fmdev, u8 rds_en_dis)
1199 {
1200         switch (fmdev->curr_fmmode) {
1201         case FM_MODE_RX:
1202                 return fm_rx_set_rds_mode(fmdev, rds_en_dis);
1203
1204         case FM_MODE_TX:
1205                 return fm_tx_set_rds_mode(fmdev, rds_en_dis);
1206
1207         default:
1208                 return -EINVAL;
1209         }
1210 }
1211
1212 /* Sends power off command to the chip */
1213 static u32 fm_power_down(struct fmdev *fmdev)
1214 {
1215         u16 payload;
1216         u32 ret;
1217
1218         if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1219                 fmerr("FM core is not ready\n");
1220                 return -EPERM;
1221         }
1222         if (fmdev->curr_fmmode == FM_MODE_OFF) {
1223                 fmdbg("FM chip is already in OFF state\n");
1224                 return 0;
1225         }
1226
1227         payload = 0x0;
1228         ret = fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload,
1229                 sizeof(payload), NULL, NULL);
1230         if (ret < 0)
1231                 return ret;
1232
1233         return fmc_release(fmdev);
1234 }
1235
1236 /* Reads init command from FM firmware file and loads to the chip */
1237 static u32 fm_download_firmware(struct fmdev *fmdev, const u8 *fw_name)
1238 {
1239         const struct firmware *fw_entry;
1240         struct bts_header *fw_header;
1241         struct bts_action *action;
1242         struct bts_action_delay *delay;
1243         u8 *fw_data;
1244         int ret, fw_len, cmd_cnt;
1245
1246         cmd_cnt = 0;
1247         set_bit(FM_FW_DW_INPROGRESS, &fmdev->flag);
1248
1249         ret = request_firmware(&fw_entry, fw_name,
1250                                 &fmdev->radio_dev->dev);
1251         if (ret < 0) {
1252                 fmerr("Unable to read firmware(%s) content\n", fw_name);
1253                 return ret;
1254         }
1255         fmdbg("Firmware(%s) length : %d bytes\n", fw_name, fw_entry->size);
1256
1257         fw_data = (void *)fw_entry->data;
1258         fw_len = fw_entry->size;
1259
1260         fw_header = (struct bts_header *)fw_data;
1261         if (fw_header->magic != FM_FW_FILE_HEADER_MAGIC) {
1262                 fmerr("%s not a legal TI firmware file\n", fw_name);
1263                 ret = -EINVAL;
1264                 goto rel_fw;
1265         }
1266         fmdbg("FW(%s) magic number : 0x%x\n", fw_name, fw_header->magic);
1267
1268         /* Skip file header info , we already verified it */
1269         fw_data += sizeof(struct bts_header);
1270         fw_len -= sizeof(struct bts_header);
1271
1272         while (fw_data && fw_len > 0) {
1273                 action = (struct bts_action *)fw_data;
1274
1275                 switch (action->type) {
1276                 case ACTION_SEND_COMMAND:       /* Send */
1277                         if (fmc_send_cmd(fmdev, 0, 0, action->data,
1278                                                 action->size, NULL, NULL))
1279                                 goto rel_fw;
1280
1281                         cmd_cnt++;
1282                         break;
1283
1284                 case ACTION_DELAY:      /* Delay */
1285                         delay = (struct bts_action_delay *)action->data;
1286                         mdelay(delay->msec);
1287                         break;
1288                 }
1289
1290                 fw_data += (sizeof(struct bts_action) + (action->size));
1291                 fw_len -= (sizeof(struct bts_action) + (action->size));
1292         }
1293         fmdbg("Firmware commands(%d) loaded to chip\n", cmd_cnt);
1294 rel_fw:
1295         release_firmware(fw_entry);
1296         clear_bit(FM_FW_DW_INPROGRESS, &fmdev->flag);
1297
1298         return ret;
1299 }
1300
1301 /* Loads default RX configuration to the chip */
1302 static u32 load_default_rx_configuration(struct fmdev *fmdev)
1303 {
1304         int ret;
1305
1306         ret = fm_rx_set_volume(fmdev, FM_DEFAULT_RX_VOLUME);
1307         if (ret < 0)
1308                 return ret;
1309
1310         return fm_rx_set_rssi_threshold(fmdev, FM_DEFAULT_RSSI_THRESHOLD);
1311 }
1312
1313 /* Does FM power on sequence */
1314 static u32 fm_power_up(struct fmdev *fmdev, u8 mode)
1315 {
1316         u16 payload, asic_id, asic_ver;
1317         int resp_len, ret;
1318         u8 fw_name[50];
1319
1320         if (mode >= FM_MODE_ENTRY_MAX) {
1321                 fmerr("Invalid firmware download option\n");
1322                 return -EINVAL;
1323         }
1324
1325         /*
1326          * Initialize FM common module. FM GPIO toggling is
1327          * taken care in Shared Transport driver.
1328          */
1329         ret = fmc_prepare(fmdev);
1330         if (ret < 0) {
1331                 fmerr("Unable to prepare FM Common\n");
1332                 return ret;
1333         }
1334
1335         payload = FM_ENABLE;
1336         if (fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload,
1337                         sizeof(payload), NULL, NULL))
1338                 goto rel;
1339
1340         /* Allow the chip to settle down in Channel-8 mode */
1341         msleep(20);
1342
1343         if (fmc_send_cmd(fmdev, ASIC_ID_GET, REG_RD, NULL,
1344                         sizeof(asic_id), &asic_id, &resp_len))
1345                 goto rel;
1346
1347         if (fmc_send_cmd(fmdev, ASIC_VER_GET, REG_RD, NULL,
1348                         sizeof(asic_ver), &asic_ver, &resp_len))
1349                 goto rel;
1350
1351         fmdbg("ASIC ID: 0x%x , ASIC Version: %d\n",
1352                 be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1353
1354         sprintf(fw_name, "%s_%x.%d.bts", FM_FMC_FW_FILE_START,
1355                 be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1356
1357         ret = fm_download_firmware(fmdev, fw_name);
1358         if (ret < 0) {
1359                 fmdbg("Failed to download firmware file %s\n", fw_name);
1360                 goto rel;
1361         }
1362         sprintf(fw_name, "%s_%x.%d.bts", (mode == FM_MODE_RX) ?
1363                         FM_RX_FW_FILE_START : FM_TX_FW_FILE_START,
1364                         be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1365
1366         ret = fm_download_firmware(fmdev, fw_name);
1367         if (ret < 0) {
1368                 fmdbg("Failed to download firmware file %s\n", fw_name);
1369                 goto rel;
1370         } else
1371                 return ret;
1372 rel:
1373         return fmc_release(fmdev);
1374 }
1375
1376 /* Set FM Modes(TX, RX, OFF) */
1377 u32 fmc_set_mode(struct fmdev *fmdev, u8 fm_mode)
1378 {
1379         int ret = 0;
1380
1381         if (fm_mode >= FM_MODE_ENTRY_MAX) {
1382                 fmerr("Invalid FM mode\n");
1383                 return -EINVAL;
1384         }
1385         if (fmdev->curr_fmmode == fm_mode) {
1386                 fmdbg("Already fm is in mode(%d)\n", fm_mode);
1387                 return ret;
1388         }
1389
1390         switch (fm_mode) {
1391         case FM_MODE_OFF:       /* OFF Mode */
1392                 ret = fm_power_down(fmdev);
1393                 if (ret < 0) {
1394                         fmerr("Failed to set OFF mode\n");
1395                         return ret;
1396                 }
1397                 break;
1398
1399         case FM_MODE_TX:        /* TX Mode */
1400         case FM_MODE_RX:        /* RX Mode */
1401                 /* Power down before switching to TX or RX mode */
1402                 if (fmdev->curr_fmmode != FM_MODE_OFF) {
1403                         ret = fm_power_down(fmdev);
1404                         if (ret < 0) {
1405                                 fmerr("Failed to set OFF mode\n");
1406                                 return ret;
1407                         }
1408                         msleep(30);
1409                 }
1410                 ret = fm_power_up(fmdev, fm_mode);
1411                 if (ret < 0) {
1412                         fmerr("Failed to load firmware\n");
1413                         return ret;
1414                 }
1415         }
1416         fmdev->curr_fmmode = fm_mode;
1417
1418         /* Set default configuration */
1419         if (fmdev->curr_fmmode == FM_MODE_RX) {
1420                 fmdbg("Loading default rx configuration..\n");
1421                 ret = load_default_rx_configuration(fmdev);
1422                 if (ret < 0)
1423                         fmerr("Failed to load default values\n");
1424         }
1425
1426         return ret;
1427 }
1428
1429 /* Returns current FM mode (TX, RX, OFF) */
1430 u32 fmc_get_mode(struct fmdev *fmdev, u8 *fmmode)
1431 {
1432         if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1433                 fmerr("FM core is not ready\n");
1434                 return -EPERM;
1435         }
1436         if (fmmode == NULL) {
1437                 fmerr("Invalid memory\n");
1438                 return -ENOMEM;
1439         }
1440
1441         *fmmode = fmdev->curr_fmmode;
1442         return 0;
1443 }
1444
1445 /* Called by ST layer when FM packet is available */
1446 static long fm_st_receive(void *arg, struct sk_buff *skb)
1447 {
1448         struct fmdev *fmdev;
1449
1450         fmdev = (struct fmdev *)arg;
1451
1452         if (skb == NULL) {
1453                 fmerr("Invalid SKB received from ST\n");
1454                 return -EFAULT;
1455         }
1456
1457         if (skb->cb[0] != FM_PKT_LOGICAL_CHAN_NUMBER) {
1458                 fmerr("Received SKB (%p) is not FM Channel 8 pkt\n", skb);
1459                 return -EINVAL;
1460         }
1461
1462         memcpy(skb_push(skb, 1), &skb->cb[0], 1);
1463         skb_queue_tail(&fmdev->rx_q, skb);
1464         tasklet_schedule(&fmdev->rx_task);
1465
1466         return 0;
1467 }
1468
1469 /*
1470  * Called by ST layer to indicate protocol registration completion
1471  * status.
1472  */
1473 static void fm_st_reg_comp_cb(void *arg, char data)
1474 {
1475         struct fmdev *fmdev;
1476
1477         fmdev = (struct fmdev *)arg;
1478         fmdev->streg_cbdata = data;
1479         complete(&wait_for_fmdrv_reg_comp);
1480 }
1481
1482 /*
1483  * This function will be called from FM V4L2 open function.
1484  * Register with ST driver and initialize driver data.
1485  */
1486 u32 fmc_prepare(struct fmdev *fmdev)
1487 {
1488         static struct st_proto_s fm_st_proto;
1489         u32 ret;
1490
1491         if (test_bit(FM_CORE_READY, &fmdev->flag)) {
1492                 fmdbg("FM Core is already up\n");
1493                 return 0;
1494         }
1495
1496         memset(&fm_st_proto, 0, sizeof(fm_st_proto));
1497         fm_st_proto.recv = fm_st_receive;
1498         fm_st_proto.match_packet = NULL;
1499         fm_st_proto.reg_complete_cb = fm_st_reg_comp_cb;
1500         fm_st_proto.write = NULL; /* TI ST driver will fill write pointer */
1501         fm_st_proto.priv_data = fmdev;
1502         fm_st_proto.chnl_id = 0x08;
1503         fm_st_proto.max_frame_size = 0xff;
1504         fm_st_proto.hdr_len = 1;
1505         fm_st_proto.offset_len_in_hdr = 0;
1506         fm_st_proto.len_size = 1;
1507         fm_st_proto.reserve = 1;
1508
1509         ret = st_register(&fm_st_proto);
1510         if (ret == -EINPROGRESS) {
1511                 init_completion(&wait_for_fmdrv_reg_comp);
1512                 fmdev->streg_cbdata = -EINPROGRESS;
1513                 fmdbg("%s waiting for ST reg completion signal\n", __func__);
1514
1515                 ret = wait_for_completion_timeout(&wait_for_fmdrv_reg_comp,
1516                                 FM_ST_REG_TIMEOUT);
1517
1518                 if (!ret) {
1519                         fmerr("Timeout(%d sec), didn't get reg "
1520                                         "completion signal from ST\n",
1521                                         jiffies_to_msecs(FM_ST_REG_TIMEOUT) / 1000);
1522                         return -ETIMEDOUT;
1523                 }
1524                 if (fmdev->streg_cbdata != 0) {
1525                         fmerr("ST reg comp CB called with error "
1526                                         "status %d\n", fmdev->streg_cbdata);
1527                         return -EAGAIN;
1528                 }
1529
1530                 ret = 0;
1531         } else if (ret == -1) {
1532                 fmerr("st_register failed %d\n", ret);
1533                 return -EAGAIN;
1534         }
1535
1536         if (fm_st_proto.write != NULL) {
1537                 g_st_write = fm_st_proto.write;
1538         } else {
1539                 fmerr("Failed to get ST write func pointer\n");
1540                 ret = st_unregister(&fm_st_proto);
1541                 if (ret < 0)
1542                         fmerr("st_unregister failed %d\n", ret);
1543                 return -EAGAIN;
1544         }
1545
1546         spin_lock_init(&fmdev->rds_buff_lock);
1547         spin_lock_init(&fmdev->resp_skb_lock);
1548
1549         /* Initialize TX queue and TX tasklet */
1550         skb_queue_head_init(&fmdev->tx_q);
1551         tasklet_init(&fmdev->tx_task, send_tasklet, (unsigned long)fmdev);
1552
1553         /* Initialize RX Queue and RX tasklet */
1554         skb_queue_head_init(&fmdev->rx_q);
1555         tasklet_init(&fmdev->rx_task, recv_tasklet, (unsigned long)fmdev);
1556
1557         fmdev->irq_info.stage = 0;
1558         atomic_set(&fmdev->tx_cnt, 1);
1559         fmdev->resp_comp = NULL;
1560
1561         init_timer(&fmdev->irq_info.timer);
1562         fmdev->irq_info.timer.function = &int_timeout_handler;
1563         fmdev->irq_info.timer.data = (unsigned long)fmdev;
1564         /*TODO: add FM_STIC_EVENT later */
1565         fmdev->irq_info.mask = FM_MAL_EVENT;
1566
1567         /* Region info */
1568         memcpy(&fmdev->rx.region, &region_configs[default_radio_region],
1569                         sizeof(struct region_info));
1570
1571         fmdev->rx.mute_mode = FM_MUTE_OFF;
1572         fmdev->rx.rf_depend_mute = FM_RX_RF_DEPENDENT_MUTE_OFF;
1573         fmdev->rx.rds.flag = FM_RDS_DISABLE;
1574         fmdev->rx.freq = FM_UNDEFINED_FREQ;
1575         fmdev->rx.rds_mode = FM_RDS_SYSTEM_RDS;
1576         fmdev->rx.af_mode = FM_RX_RDS_AF_SWITCH_MODE_OFF;
1577         fmdev->irq_info.retry = 0;
1578
1579         fm_rx_reset_rds_cache(fmdev);
1580         init_waitqueue_head(&fmdev->rx.rds.read_queue);
1581
1582         fm_rx_reset_station_info(fmdev);
1583         set_bit(FM_CORE_READY, &fmdev->flag);
1584
1585         return ret;
1586 }
1587
1588 /*
1589  * This function will be called from FM V4L2 release function.
1590  * Unregister from ST driver.
1591  */
1592 u32 fmc_release(struct fmdev *fmdev)
1593 {
1594         static struct st_proto_s fm_st_proto;
1595         u32 ret;
1596
1597         if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1598                 fmdbg("FM Core is already down\n");
1599                 return 0;
1600         }
1601         /* Service pending read */
1602         wake_up_interruptible(&fmdev->rx.rds.read_queue);
1603
1604         tasklet_kill(&fmdev->tx_task);
1605         tasklet_kill(&fmdev->rx_task);
1606
1607         skb_queue_purge(&fmdev->tx_q);
1608         skb_queue_purge(&fmdev->rx_q);
1609
1610         fmdev->resp_comp = NULL;
1611         fmdev->rx.freq = 0;
1612
1613         memset(&fm_st_proto, 0, sizeof(fm_st_proto));
1614         fm_st_proto.chnl_id = 0x08;
1615
1616         ret = st_unregister(&fm_st_proto);
1617
1618         if (ret < 0)
1619                 fmerr("Failed to de-register FM from ST %d\n", ret);
1620         else
1621                 fmdbg("Successfully unregistered from ST\n");
1622
1623         clear_bit(FM_CORE_READY, &fmdev->flag);
1624         return ret;
1625 }
1626
1627 /*
1628  * Module init function. Ask FM V4L module to register video device.
1629  * Allocate memory for FM driver context and RX RDS buffer.
1630  */
1631 static int __init fm_drv_init(void)
1632 {
1633         struct fmdev *fmdev = NULL;
1634         u32 ret = -ENOMEM;
1635
1636         fmdbg("FM driver version %s\n", FM_DRV_VERSION);
1637
1638         fmdev = kzalloc(sizeof(struct fmdev), GFP_KERNEL);
1639         if (NULL == fmdev) {
1640                 fmerr("Can't allocate operation structure memory\n");
1641                 return ret;
1642         }
1643         fmdev->rx.rds.buf_size = default_rds_buf * FM_RDS_BLK_SIZE;
1644         fmdev->rx.rds.buff = kzalloc(fmdev->rx.rds.buf_size, GFP_KERNEL);
1645         if (NULL == fmdev->rx.rds.buff) {
1646                 fmerr("Can't allocate rds ring buffer\n");
1647                 goto rel_dev;
1648         }
1649
1650         ret = fm_v4l2_init_video_device(fmdev, radio_nr);
1651         if (ret < 0)
1652                 goto rel_rdsbuf;
1653
1654         fmdev->irq_info.handlers = int_handler_table;
1655         fmdev->curr_fmmode = FM_MODE_OFF;
1656         fmdev->tx_data.pwr_lvl = FM_PWR_LVL_DEF;
1657         fmdev->tx_data.preemph = FM_TX_PREEMPH_50US;
1658         return ret;
1659
1660 rel_rdsbuf:
1661         kfree(fmdev->rx.rds.buff);
1662 rel_dev:
1663         kfree(fmdev);
1664
1665         return ret;
1666 }
1667
1668 /* Module exit function. Ask FM V4L module to unregister video device */
1669 static void __exit fm_drv_exit(void)
1670 {
1671         struct fmdev *fmdev = NULL;
1672
1673         fmdev = fm_v4l2_deinit_video_device();
1674         if (fmdev != NULL) {
1675                 kfree(fmdev->rx.rds.buff);
1676                 kfree(fmdev);
1677         }
1678 }
1679
1680 module_init(fm_drv_init);
1681 module_exit(fm_drv_exit);
1682
1683 /* ------------- Module Info ------------- */
1684 MODULE_AUTHOR("Manjunatha Halli <manjunatha_halli@ti.com>");
1685 MODULE_DESCRIPTION("FM Driver for TI's Connectivity chip. " FM_DRV_VERSION);
1686 MODULE_VERSION(FM_DRV_VERSION);
1687 MODULE_LICENSE("GPL");