arm: tegra: fb: Apply new mode even if its current
[linux-2.6.git] / drivers / ieee802154 / fakehard.c
1 /*
2  * Sample driver for HardMAC IEEE 802.15.4 devices
3  *
4  * Copyright (C) 2009 Siemens AG
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program; if not, write to the Free Software Foundation, Inc.,
17  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Written by:
20  * Dmitry Eremin-Solenikov <dmitry.baryshkov@siemens.com>
21  */
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/netdevice.h>
26 #include <linux/skbuff.h>
27 #include <linux/if_arp.h>
28
29 #include <net/af_ieee802154.h>
30 #include <net/ieee802154_netdev.h>
31 #include <net/ieee802154.h>
32 #include <net/nl802154.h>
33 #include <net/wpan-phy.h>
34
35 struct fakehard_priv {
36         struct wpan_phy *phy;
37 };
38
39 static struct wpan_phy *fake_to_phy(const struct net_device *dev)
40 {
41         struct fakehard_priv *priv = netdev_priv(dev);
42         return priv->phy;
43 }
44
45 /**
46  * fake_get_phy - Return a phy corresponding to this device.
47  * @dev: The network device for which to return the wan-phy object
48  *
49  * This function returns a wpan-phy object corresponding to the passed
50  * network device. Reference counter for wpan-phy object is incremented,
51  * so when the wpan-phy isn't necessary, you should drop the reference
52  * via @wpan_phy_put() call.
53  */
54 static struct wpan_phy *fake_get_phy(const struct net_device *dev)
55 {
56         struct wpan_phy *phy = fake_to_phy(dev);
57         return to_phy(get_device(&phy->dev));
58 }
59
60 /**
61  * fake_get_pan_id - Retrieve the PAN ID of the device.
62  * @dev: The network device to retrieve the PAN of.
63  *
64  * Return the ID of the PAN from the PIB.
65  */
66 static u16 fake_get_pan_id(const struct net_device *dev)
67 {
68         BUG_ON(dev->type != ARPHRD_IEEE802154);
69
70         return 0xeba1;
71 }
72
73 /**
74  * fake_get_short_addr - Retrieve the short address of the device.
75  * @dev: The network device to retrieve the short address of.
76  *
77  * Returns the IEEE 802.15.4 short-form address cached for this
78  * device. If the device has not yet had a short address assigned
79  * then this should return 0xFFFF to indicate a lack of association.
80  */
81 static u16 fake_get_short_addr(const struct net_device *dev)
82 {
83         BUG_ON(dev->type != ARPHRD_IEEE802154);
84
85         return 0x1;
86 }
87
88 /**
89  * fake_get_dsn - Retrieve the DSN of the device.
90  * @dev: The network device to retrieve the DSN for.
91  *
92  * Returns the IEEE 802.15.4 DSN for the network device.
93  * The DSN is the sequence number which will be added to each
94  * packet or MAC command frame by the MAC during transmission.
95  *
96  * DSN means 'Data Sequence Number'.
97  *
98  * Note: This is in section 7.2.1.2 of the IEEE 802.15.4-2006
99  *       document.
100  */
101 static u8 fake_get_dsn(const struct net_device *dev)
102 {
103         BUG_ON(dev->type != ARPHRD_IEEE802154);
104
105         return 0x00; /* DSN are implemented in HW, so return just 0 */
106 }
107
108 /**
109  * fake_get_bsn - Retrieve the BSN of the device.
110  * @dev: The network device to retrieve the BSN for.
111  *
112  * Returns the IEEE 802.15.4 BSN for the network device.
113  * The BSN is the sequence number which will be added to each
114  * beacon frame sent by the MAC.
115  *
116  * BSN means 'Beacon Sequence Number'.
117  *
118  * Note: This is in section 7.2.1.2 of the IEEE 802.15.4-2006
119  *       document.
120  */
121 static u8 fake_get_bsn(const struct net_device *dev)
122 {
123         BUG_ON(dev->type != ARPHRD_IEEE802154);
124
125         return 0x00; /* BSN are implemented in HW, so return just 0 */
126 }
127
128 /**
129  * fake_assoc_req - Make an association request to the HW.
130  * @dev: The network device which we are associating to a network.
131  * @addr: The coordinator with which we wish to associate.
132  * @channel: The channel on which to associate.
133  * @cap: The capability information field to use in the association.
134  *
135  * Start an association with a coordinator. The coordinator's address
136  * and PAN ID can be found in @addr.
137  *
138  * Note: This is in section 7.3.1 and 7.5.3.1 of the IEEE
139  *       802.15.4-2006 document.
140  */
141 static int fake_assoc_req(struct net_device *dev,
142                 struct ieee802154_addr *addr, u8 channel, u8 page, u8 cap)
143 {
144         struct wpan_phy *phy = fake_to_phy(dev);
145
146         mutex_lock(&phy->pib_lock);
147         phy->current_channel = channel;
148         phy->current_page = page;
149         mutex_unlock(&phy->pib_lock);
150
151         /* We simply emulate it here */
152         return ieee802154_nl_assoc_confirm(dev, fake_get_short_addr(dev),
153                         IEEE802154_SUCCESS);
154 }
155
156 /**
157  * fake_assoc_resp - Send an association response to a device.
158  * @dev: The network device on which to send the response.
159  * @addr: The address of the device to respond to.
160  * @short_addr: The assigned short address for the device (if any).
161  * @status: The result of the association request.
162  *
163  * Queue the association response of the coordinator to another
164  * device's attempt to associate with the network which we
165  * coordinate. This is then added to the indirect-send queue to be
166  * transmitted to the end device when it polls for data.
167  *
168  * Note: This is in section 7.3.2 and 7.5.3.1 of the IEEE
169  *       802.15.4-2006 document.
170  */
171 static int fake_assoc_resp(struct net_device *dev,
172                 struct ieee802154_addr *addr, u16 short_addr, u8 status)
173 {
174         return 0;
175 }
176
177 /**
178  * fake_disassoc_req - Disassociate a device from a network.
179  * @dev: The network device on which we're disassociating a device.
180  * @addr: The device to disassociate from the network.
181  * @reason: The reason to give to the device for being disassociated.
182  *
183  * This sends a disassociation notification to the device being
184  * disassociated from the network.
185  *
186  * Note: This is in section 7.5.3.2 of the IEEE 802.15.4-2006
187  *       document, with the reason described in 7.3.3.2.
188  */
189 static int fake_disassoc_req(struct net_device *dev,
190                 struct ieee802154_addr *addr, u8 reason)
191 {
192         return ieee802154_nl_disassoc_confirm(dev, IEEE802154_SUCCESS);
193 }
194
195 /**
196  * fake_start_req - Start an IEEE 802.15.4 PAN.
197  * @dev: The network device on which to start the PAN.
198  * @addr: The coordinator address to use when starting the PAN.
199  * @channel: The channel on which to start the PAN.
200  * @bcn_ord: Beacon order.
201  * @sf_ord: Superframe order.
202  * @pan_coord: Whether or not we are the PAN coordinator or just
203  *             requesting a realignment perhaps?
204  * @blx: Battery Life Extension feature bitfield.
205  * @coord_realign: Something to realign something else.
206  *
207  * If pan_coord is non-zero then this starts a network with the
208  * provided parameters, otherwise it attempts a coordinator
209  * realignment of the stated network instead.
210  *
211  * Note: This is in section 7.5.2.3 of the IEEE 802.15.4-2006
212  * document, with 7.3.8 describing coordinator realignment.
213  */
214 static int fake_start_req(struct net_device *dev, struct ieee802154_addr *addr,
215                                 u8 channel, u8 page,
216                                 u8 bcn_ord, u8 sf_ord, u8 pan_coord, u8 blx,
217                                 u8 coord_realign)
218 {
219         struct wpan_phy *phy = fake_to_phy(dev);
220
221         mutex_lock(&phy->pib_lock);
222         phy->current_channel = channel;
223         phy->current_page = page;
224         mutex_unlock(&phy->pib_lock);
225
226         /* We don't emulate beacons here at all, so START should fail */
227         ieee802154_nl_start_confirm(dev, IEEE802154_INVALID_PARAMETER);
228         return 0;
229 }
230
231 /**
232  * fake_scan_req - Start a channel scan.
233  * @dev: The network device on which to perform a channel scan.
234  * @type: The type of scan to perform.
235  * @channels: The channel bitmask to scan.
236  * @duration: How long to spend on each channel.
237  *
238  * This starts either a passive (energy) scan or an active (PAN) scan
239  * on the channels indicated in the @channels bitmask. The duration of
240  * the scan is measured in terms of superframe duration. Specifically,
241  * the scan will spend aBaseSuperFrameDuration * ((2^n) + 1) on each
242  * channel.
243  *
244  * Note: This is in section 7.5.2.1 of the IEEE 802.15.4-2006 document.
245  */
246 static int fake_scan_req(struct net_device *dev, u8 type, u32 channels,
247                 u8 page, u8 duration)
248 {
249         u8 edl[27] = {};
250         return ieee802154_nl_scan_confirm(dev, IEEE802154_SUCCESS, type,
251                         channels, page,
252                         type == IEEE802154_MAC_SCAN_ED ? edl : NULL);
253 }
254
255 static struct ieee802154_mlme_ops fake_mlme = {
256         .assoc_req = fake_assoc_req,
257         .assoc_resp = fake_assoc_resp,
258         .disassoc_req = fake_disassoc_req,
259         .start_req = fake_start_req,
260         .scan_req = fake_scan_req,
261
262         .get_phy = fake_get_phy,
263
264         .get_pan_id = fake_get_pan_id,
265         .get_short_addr = fake_get_short_addr,
266         .get_dsn = fake_get_dsn,
267         .get_bsn = fake_get_bsn,
268 };
269
270 static int ieee802154_fake_open(struct net_device *dev)
271 {
272         netif_start_queue(dev);
273         return 0;
274 }
275
276 static int ieee802154_fake_close(struct net_device *dev)
277 {
278         netif_stop_queue(dev);
279         return 0;
280 }
281
282 static netdev_tx_t ieee802154_fake_xmit(struct sk_buff *skb,
283                                               struct net_device *dev)
284 {
285         dev->stats.tx_packets++;
286         dev->stats.tx_bytes += skb->len;
287
288         /* FIXME: do hardware work here ... */
289
290         dev_kfree_skb(skb);
291         return NETDEV_TX_OK;
292 }
293
294
295 static int ieee802154_fake_ioctl(struct net_device *dev, struct ifreq *ifr,
296                 int cmd)
297 {
298         struct sockaddr_ieee802154 *sa =
299                 (struct sockaddr_ieee802154 *)&ifr->ifr_addr;
300         u16 pan_id, short_addr;
301
302         switch (cmd) {
303         case SIOCGIFADDR:
304                 /* FIXME: fixed here, get from device IRL */
305                 pan_id = fake_get_pan_id(dev);
306                 short_addr = fake_get_short_addr(dev);
307                 if (pan_id == IEEE802154_PANID_BROADCAST ||
308                     short_addr == IEEE802154_ADDR_BROADCAST)
309                         return -EADDRNOTAVAIL;
310
311                 sa->family = AF_IEEE802154;
312                 sa->addr.addr_type = IEEE802154_ADDR_SHORT;
313                 sa->addr.pan_id = pan_id;
314                 sa->addr.short_addr = short_addr;
315                 return 0;
316         }
317         return -ENOIOCTLCMD;
318 }
319
320 static int ieee802154_fake_mac_addr(struct net_device *dev, void *p)
321 {
322         return -EBUSY; /* HW address is built into the device */
323 }
324
325 static const struct net_device_ops fake_ops = {
326         .ndo_open               = ieee802154_fake_open,
327         .ndo_stop               = ieee802154_fake_close,
328         .ndo_start_xmit         = ieee802154_fake_xmit,
329         .ndo_do_ioctl           = ieee802154_fake_ioctl,
330         .ndo_set_mac_address    = ieee802154_fake_mac_addr,
331 };
332
333 static void ieee802154_fake_destruct(struct net_device *dev)
334 {
335         struct wpan_phy *phy = fake_to_phy(dev);
336
337         wpan_phy_unregister(phy);
338         free_netdev(dev);
339         wpan_phy_free(phy);
340 }
341
342 static void ieee802154_fake_setup(struct net_device *dev)
343 {
344         dev->addr_len           = IEEE802154_ADDR_LEN;
345         memset(dev->broadcast, 0xff, IEEE802154_ADDR_LEN);
346         dev->features           = NETIF_F_NO_CSUM;
347         dev->needed_tailroom    = 2; /* FCS */
348         dev->mtu                = 127;
349         dev->tx_queue_len       = 10;
350         dev->type               = ARPHRD_IEEE802154;
351         dev->flags              = IFF_NOARP | IFF_BROADCAST;
352         dev->watchdog_timeo     = 0;
353         dev->destructor         = ieee802154_fake_destruct;
354 }
355
356
357 static int __devinit ieee802154fake_probe(struct platform_device *pdev)
358 {
359         struct net_device *dev;
360         struct fakehard_priv *priv;
361         struct wpan_phy *phy = wpan_phy_alloc(0);
362         int err;
363
364         if (!phy)
365                 return -ENOMEM;
366
367         dev = alloc_netdev(sizeof(struct fakehard_priv), "hardwpan%d", ieee802154_fake_setup);
368         if (!dev) {
369                 wpan_phy_free(phy);
370                 return -ENOMEM;
371         }
372
373         memcpy(dev->dev_addr, "\xba\xbe\xca\xfe\xde\xad\xbe\xef",
374                         dev->addr_len);
375         memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
376
377         /*
378          * For now we'd like to emulate 2.4 GHz-only device,
379          * both O-QPSK and CSS
380          */
381         /* 2.4 GHz O-QPSK 802.15.4-2003 */
382         phy->channels_supported[0] |= 0x7FFF800;
383         /* 2.4 GHz CSS 802.15.4a-2007 */
384         phy->channels_supported[3] |= 0x3fff;
385
386         phy->transmit_power = 0xbf;
387
388         dev->netdev_ops = &fake_ops;
389         dev->ml_priv = &fake_mlme;
390
391         priv = netdev_priv(dev);
392         priv->phy = phy;
393
394         wpan_phy_set_dev(phy, &pdev->dev);
395         SET_NETDEV_DEV(dev, &phy->dev);
396
397         platform_set_drvdata(pdev, dev);
398
399         err = wpan_phy_register(phy);
400         if (err)
401                 goto out;
402
403         err = register_netdev(dev);
404         if (err < 0)
405                 goto out;
406
407         dev_info(&pdev->dev, "Added ieee802154 HardMAC hardware\n");
408         return 0;
409
410 out:
411         unregister_netdev(dev);
412         return err;
413 }
414
415 static int __devexit ieee802154fake_remove(struct platform_device *pdev)
416 {
417         struct net_device *dev = platform_get_drvdata(pdev);
418         unregister_netdev(dev);
419         return 0;
420 }
421
422 static struct platform_device *ieee802154fake_dev;
423
424 static struct platform_driver ieee802154fake_driver = {
425         .probe = ieee802154fake_probe,
426         .remove = __devexit_p(ieee802154fake_remove),
427         .driver = {
428                         .name = "ieee802154hardmac",
429                         .owner = THIS_MODULE,
430         },
431 };
432
433 static __init int fake_init(void)
434 {
435         ieee802154fake_dev = platform_device_register_simple(
436                         "ieee802154hardmac", -1, NULL, 0);
437         return platform_driver_register(&ieee802154fake_driver);
438 }
439
440 static __exit void fake_exit(void)
441 {
442         platform_driver_unregister(&ieee802154fake_driver);
443         platform_device_unregister(ieee802154fake_dev);
444 }
445
446 module_init(fake_init);
447 module_exit(fake_exit);
448 MODULE_LICENSE("GPL");
449