]> nv-tegra.nvidia Code Review - linux-2.6.git/blob - drivers/ieee1394/ohci1394.c
ieee1394: small header cleanup
[linux-2.6.git] / drivers / ieee1394 / ohci1394.c
1 /*
2  * ohci1394.c - driver for OHCI 1394 boards
3  * Copyright (C)1999,2000 Sebastien Rougeaux <sebastien.rougeaux@anu.edu.au>
4  *                        Gord Peters <GordPeters@smarttech.com>
5  *              2001      Ben Collins <bcollins@debian.org>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software Foundation,
19  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20  */
21
22 /*
23  * Things known to be working:
24  * . Async Request Transmit
25  * . Async Response Receive
26  * . Async Request Receive
27  * . Async Response Transmit
28  * . Iso Receive
29  * . DMA mmap for iso receive
30  * . Config ROM generation
31  *
32  * Things implemented, but still in test phase:
33  * . Iso Transmit
34  * . Async Stream Packets Transmit (Receive done via Iso interface)
35  *
36  * Things not implemented:
37  * . DMA error recovery
38  *
39  * Known bugs:
40  * . devctl BUS_RESET arg confusion (reset type or root holdoff?)
41  *   added LONG_RESET_ROOT and SHORT_RESET_ROOT for root holdoff --kk
42  */
43
44 /*
45  * Acknowledgments:
46  *
47  * Adam J Richter <adam@yggdrasil.com>
48  *  . Use of pci_class to find device
49  *
50  * Emilie Chung <emilie.chung@axis.com>
51  *  . Tip on Async Request Filter
52  *
53  * Pascal Drolet <pascal.drolet@informission.ca>
54  *  . Various tips for optimization and functionnalities
55  *
56  * Robert Ficklin <rficklin@westengineering.com>
57  *  . Loop in irq_handler
58  *
59  * James Goodwin <jamesg@Filanet.com>
60  *  . Various tips on initialization, self-id reception, etc.
61  *
62  * Albrecht Dress <ad@mpifr-bonn.mpg.de>
63  *  . Apple PowerBook detection
64  *
65  * Daniel Kobras <daniel.kobras@student.uni-tuebingen.de>
66  *  . Reset the board properly before leaving + misc cleanups
67  *
68  * Leon van Stuivenberg <leonvs@iae.nl>
69  *  . Bug fixes
70  *
71  * Ben Collins <bcollins@debian.org>
72  *  . Working big-endian support
73  *  . Updated to 2.4.x module scheme (PCI aswell)
74  *  . Config ROM generation
75  *
76  * Manfred Weihs <weihs@ict.tuwien.ac.at>
77  *  . Reworked code for initiating bus resets
78  *    (long, short, with or without hold-off)
79  *
80  * Nandu Santhi <contactnandu@users.sourceforge.net>
81  *  . Added support for nVidia nForce2 onboard Firewire chipset
82  *
83  */
84
85 #include <linux/kernel.h>
86 #include <linux/list.h>
87 #include <linux/slab.h>
88 #include <linux/interrupt.h>
89 #include <linux/wait.h>
90 #include <linux/errno.h>
91 #include <linux/module.h>
92 #include <linux/moduleparam.h>
93 #include <linux/pci.h>
94 #include <linux/fs.h>
95 #include <linux/poll.h>
96 #include <asm/byteorder.h>
97 #include <asm/atomic.h>
98 #include <asm/uaccess.h>
99 #include <linux/delay.h>
100 #include <linux/spinlock.h>
101
102 #include <asm/pgtable.h>
103 #include <asm/page.h>
104 #include <asm/irq.h>
105 #include <linux/types.h>
106 #include <linux/vmalloc.h>
107 #include <linux/init.h>
108
109 #ifdef CONFIG_PPC_PMAC
110 #include <asm/machdep.h>
111 #include <asm/pmac_feature.h>
112 #include <asm/prom.h>
113 #include <asm/pci-bridge.h>
114 #endif
115
116 #include "csr1212.h"
117 #include "ieee1394.h"
118 #include "ieee1394_types.h"
119 #include "hosts.h"
120 #include "dma.h"
121 #include "iso.h"
122 #include "ieee1394_core.h"
123 #include "highlevel.h"
124 #include "ohci1394.h"
125
126 #ifdef CONFIG_IEEE1394_VERBOSEDEBUG
127 #define OHCI1394_DEBUG
128 #endif
129
130 #ifdef DBGMSG
131 #undef DBGMSG
132 #endif
133
134 #ifdef OHCI1394_DEBUG
135 #define DBGMSG(fmt, args...) \
136 printk(KERN_INFO "%s: fw-host%d: " fmt "\n" , OHCI1394_DRIVER_NAME, ohci->host->id , ## args)
137 #else
138 #define DBGMSG(fmt, args...) do {} while (0)
139 #endif
140
141 #ifdef CONFIG_IEEE1394_OHCI_DMA_DEBUG
142 #define OHCI_DMA_ALLOC(fmt, args...) \
143         HPSB_ERR("%s(%s)alloc(%d): "fmt, OHCI1394_DRIVER_NAME, __FUNCTION__, \
144                 ++global_outstanding_dmas, ## args)
145 #define OHCI_DMA_FREE(fmt, args...) \
146         HPSB_ERR("%s(%s)free(%d): "fmt, OHCI1394_DRIVER_NAME, __FUNCTION__, \
147                 --global_outstanding_dmas, ## args)
148 static int global_outstanding_dmas = 0;
149 #else
150 #define OHCI_DMA_ALLOC(fmt, args...) do {} while (0)
151 #define OHCI_DMA_FREE(fmt, args...) do {} while (0)
152 #endif
153
154 /* print general (card independent) information */
155 #define PRINT_G(level, fmt, args...) \
156 printk(level "%s: " fmt "\n" , OHCI1394_DRIVER_NAME , ## args)
157
158 /* print card specific information */
159 #define PRINT(level, fmt, args...) \
160 printk(level "%s: fw-host%d: " fmt "\n" , OHCI1394_DRIVER_NAME, ohci->host->id , ## args)
161
162 /* Module Parameters */
163 static int phys_dma = 1;
164 module_param(phys_dma, int, 0444);
165 MODULE_PARM_DESC(phys_dma, "Enable physical dma (default = 1).");
166
167 static void dma_trm_tasklet(unsigned long data);
168 static void dma_trm_reset(struct dma_trm_ctx *d);
169
170 static int alloc_dma_rcv_ctx(struct ti_ohci *ohci, struct dma_rcv_ctx *d,
171                              enum context_type type, int ctx, int num_desc,
172                              int buf_size, int split_buf_size, int context_base);
173 static void stop_dma_rcv_ctx(struct dma_rcv_ctx *d);
174 static void free_dma_rcv_ctx(struct dma_rcv_ctx *d);
175
176 static int alloc_dma_trm_ctx(struct ti_ohci *ohci, struct dma_trm_ctx *d,
177                              enum context_type type, int ctx, int num_desc,
178                              int context_base);
179
180 static void ohci1394_pci_remove(struct pci_dev *pdev);
181
182 #ifndef __LITTLE_ENDIAN
183 static const size_t hdr_sizes[] = {
184         3,      /* TCODE_WRITEQ */
185         4,      /* TCODE_WRITEB */
186         3,      /* TCODE_WRITE_RESPONSE */
187         0,      /* reserved */
188         3,      /* TCODE_READQ */
189         4,      /* TCODE_READB */
190         3,      /* TCODE_READQ_RESPONSE */
191         4,      /* TCODE_READB_RESPONSE */
192         1,      /* TCODE_CYCLE_START */
193         4,      /* TCODE_LOCK_REQUEST */
194         2,      /* TCODE_ISO_DATA */
195         4,      /* TCODE_LOCK_RESPONSE */
196                 /* rest is reserved or link-internal */
197 };
198
199 static inline void header_le32_to_cpu(quadlet_t *data, unsigned char tcode)
200 {
201         size_t size;
202
203         if (unlikely(tcode >= ARRAY_SIZE(hdr_sizes)))
204                 return;
205
206         size = hdr_sizes[tcode];
207         while (size--)
208                 data[size] = le32_to_cpu(data[size]);
209 }
210 #else
211 #define header_le32_to_cpu(w,x) do {} while (0)
212 #endif /* !LITTLE_ENDIAN */
213
214 /***********************************
215  * IEEE-1394 functionality section *
216  ***********************************/
217
218 static u8 get_phy_reg(struct ti_ohci *ohci, u8 addr)
219 {
220         int i;
221         unsigned long flags;
222         quadlet_t r;
223
224         spin_lock_irqsave (&ohci->phy_reg_lock, flags);
225
226         reg_write(ohci, OHCI1394_PhyControl, (addr << 8) | 0x00008000);
227
228         for (i = 0; i < OHCI_LOOP_COUNT; i++) {
229                 if (reg_read(ohci, OHCI1394_PhyControl) & 0x80000000)
230                         break;
231
232                 mdelay(1);
233         }
234
235         r = reg_read(ohci, OHCI1394_PhyControl);
236
237         if (i >= OHCI_LOOP_COUNT)
238                 PRINT (KERN_ERR, "Get PHY Reg timeout [0x%08x/0x%08x/%d]",
239                        r, r & 0x80000000, i);
240
241         spin_unlock_irqrestore (&ohci->phy_reg_lock, flags);
242
243         return (r & 0x00ff0000) >> 16;
244 }
245
246 static void set_phy_reg(struct ti_ohci *ohci, u8 addr, u8 data)
247 {
248         int i;
249         unsigned long flags;
250         u32 r = 0;
251
252         spin_lock_irqsave (&ohci->phy_reg_lock, flags);
253
254         reg_write(ohci, OHCI1394_PhyControl, (addr << 8) | data | 0x00004000);
255
256         for (i = 0; i < OHCI_LOOP_COUNT; i++) {
257                 r = reg_read(ohci, OHCI1394_PhyControl);
258                 if (!(r & 0x00004000))
259                         break;
260
261                 mdelay(1);
262         }
263
264         if (i == OHCI_LOOP_COUNT)
265                 PRINT (KERN_ERR, "Set PHY Reg timeout [0x%08x/0x%08x/%d]",
266                        r, r & 0x00004000, i);
267
268         spin_unlock_irqrestore (&ohci->phy_reg_lock, flags);
269
270         return;
271 }
272
273 /* Or's our value into the current value */
274 static void set_phy_reg_mask(struct ti_ohci *ohci, u8 addr, u8 data)
275 {
276         u8 old;
277
278         old = get_phy_reg (ohci, addr);
279         old |= data;
280         set_phy_reg (ohci, addr, old);
281
282         return;
283 }
284
285 static void handle_selfid(struct ti_ohci *ohci, struct hpsb_host *host,
286                                 int phyid, int isroot)
287 {
288         quadlet_t *q = ohci->selfid_buf_cpu;
289         quadlet_t self_id_count=reg_read(ohci, OHCI1394_SelfIDCount);
290         size_t size;
291         quadlet_t q0, q1;
292
293         /* Check status of self-id reception */
294
295         if (ohci->selfid_swap)
296                 q0 = le32_to_cpu(q[0]);
297         else
298                 q0 = q[0];
299
300         if ((self_id_count & 0x80000000) ||
301             ((self_id_count & 0x00FF0000) != (q0 & 0x00FF0000))) {
302                 PRINT(KERN_ERR,
303                       "Error in reception of SelfID packets [0x%08x/0x%08x] (count: %d)",
304                       self_id_count, q0, ohci->self_id_errors);
305
306                 /* Tip by James Goodwin <jamesg@Filanet.com>:
307                  * We had an error, generate another bus reset in response.  */
308                 if (ohci->self_id_errors<OHCI1394_MAX_SELF_ID_ERRORS) {
309                         set_phy_reg_mask (ohci, 1, 0x40);
310                         ohci->self_id_errors++;
311                 } else {
312                         PRINT(KERN_ERR,
313                               "Too many errors on SelfID error reception, giving up!");
314                 }
315                 return;
316         }
317
318         /* SelfID Ok, reset error counter. */
319         ohci->self_id_errors = 0;
320
321         size = ((self_id_count & 0x00001FFC) >> 2) - 1;
322         q++;
323
324         while (size > 0) {
325                 if (ohci->selfid_swap) {
326                         q0 = le32_to_cpu(q[0]);
327                         q1 = le32_to_cpu(q[1]);
328                 } else {
329                         q0 = q[0];
330                         q1 = q[1];
331                 }
332
333                 if (q0 == ~q1) {
334                         DBGMSG ("SelfID packet 0x%x received", q0);
335                         hpsb_selfid_received(host, cpu_to_be32(q0));
336                         if (((q0 & 0x3f000000) >> 24) == phyid)
337                                 DBGMSG ("SelfID for this node is 0x%08x", q0);
338                 } else {
339                         PRINT(KERN_ERR,
340                               "SelfID is inconsistent [0x%08x/0x%08x]", q0, q1);
341                 }
342                 q += 2;
343                 size -= 2;
344         }
345
346         DBGMSG("SelfID complete");
347
348         return;
349 }
350
351 static void ohci_soft_reset(struct ti_ohci *ohci) {
352         int i;
353
354         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
355
356         for (i = 0; i < OHCI_LOOP_COUNT; i++) {
357                 if (!(reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_softReset))
358                         break;
359                 mdelay(1);
360         }
361         DBGMSG ("Soft reset finished");
362 }
363
364
365 /* Generate the dma receive prgs and start the context */
366 static void initialize_dma_rcv_ctx(struct dma_rcv_ctx *d, int generate_irq)
367 {
368         struct ti_ohci *ohci = (struct ti_ohci*)(d->ohci);
369         int i;
370
371         ohci1394_stop_context(ohci, d->ctrlClear, NULL);
372
373         for (i=0; i<d->num_desc; i++) {
374                 u32 c;
375
376                 c = DMA_CTL_INPUT_MORE | DMA_CTL_UPDATE | DMA_CTL_BRANCH;
377                 if (generate_irq)
378                         c |= DMA_CTL_IRQ;
379
380                 d->prg_cpu[i]->control = cpu_to_le32(c | d->buf_size);
381
382                 /* End of descriptor list? */
383                 if (i + 1 < d->num_desc) {
384                         d->prg_cpu[i]->branchAddress =
385                                 cpu_to_le32((d->prg_bus[i+1] & 0xfffffff0) | 0x1);
386                 } else {
387                         d->prg_cpu[i]->branchAddress =
388                                 cpu_to_le32((d->prg_bus[0] & 0xfffffff0));
389                 }
390
391                 d->prg_cpu[i]->address = cpu_to_le32(d->buf_bus[i]);
392                 d->prg_cpu[i]->status = cpu_to_le32(d->buf_size);
393         }
394
395         d->buf_ind = 0;
396         d->buf_offset = 0;
397
398         if (d->type == DMA_CTX_ISO) {
399                 /* Clear contextControl */
400                 reg_write(ohci, d->ctrlClear, 0xffffffff);
401
402                 /* Set bufferFill, isochHeader, multichannel for IR context */
403                 reg_write(ohci, d->ctrlSet, 0xd0000000);
404
405                 /* Set the context match register to match on all tags */
406                 reg_write(ohci, d->ctxtMatch, 0xf0000000);
407
408                 /* Clear the multi channel mask high and low registers */
409                 reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, 0xffffffff);
410                 reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, 0xffffffff);
411
412                 /* Set up isoRecvIntMask to generate interrupts */
413                 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << d->ctx);
414         }
415
416         /* Tell the controller where the first AR program is */
417         reg_write(ohci, d->cmdPtr, d->prg_bus[0] | 0x1);
418
419         /* Run context */
420         reg_write(ohci, d->ctrlSet, 0x00008000);
421
422         DBGMSG("Receive DMA ctx=%d initialized", d->ctx);
423 }
424
425 /* Initialize the dma transmit context */
426 static void initialize_dma_trm_ctx(struct dma_trm_ctx *d)
427 {
428         struct ti_ohci *ohci = (struct ti_ohci*)(d->ohci);
429
430         /* Stop the context */
431         ohci1394_stop_context(ohci, d->ctrlClear, NULL);
432
433         d->prg_ind = 0;
434         d->sent_ind = 0;
435         d->free_prgs = d->num_desc;
436         d->branchAddrPtr = NULL;
437         INIT_LIST_HEAD(&d->fifo_list);
438         INIT_LIST_HEAD(&d->pending_list);
439
440         if (d->type == DMA_CTX_ISO) {
441                 /* enable interrupts */
442                 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << d->ctx);
443         }
444
445         DBGMSG("Transmit DMA ctx=%d initialized", d->ctx);
446 }
447
448 /* Count the number of available iso contexts */
449 static int get_nb_iso_ctx(struct ti_ohci *ohci, int reg)
450 {
451         int i,ctx=0;
452         u32 tmp;
453
454         reg_write(ohci, reg, 0xffffffff);
455         tmp = reg_read(ohci, reg);
456
457         DBGMSG("Iso contexts reg: %08x implemented: %08x", reg, tmp);
458
459         /* Count the number of contexts */
460         for (i=0; i<32; i++) {
461                 if (tmp & 1) ctx++;
462                 tmp >>= 1;
463         }
464         return ctx;
465 }
466
467 /* Global initialization */
468 static void ohci_initialize(struct ti_ohci *ohci)
469 {
470         quadlet_t buf;
471         int num_ports, i;
472
473         spin_lock_init(&ohci->phy_reg_lock);
474
475         /* Put some defaults to these undefined bus options */
476         buf = reg_read(ohci, OHCI1394_BusOptions);
477         buf |=  0x60000000; /* Enable CMC and ISC */
478         if (hpsb_disable_irm)
479                 buf &= ~0x80000000;
480         else
481                 buf |=  0x80000000; /* Enable IRMC */
482         buf &= ~0x00ff0000; /* XXX: Set cyc_clk_acc to zero for now */
483         buf &= ~0x18000000; /* Disable PMC and BMC */
484         reg_write(ohci, OHCI1394_BusOptions, buf);
485
486         /* Set the bus number */
487         reg_write(ohci, OHCI1394_NodeID, 0x0000ffc0);
488
489         /* Enable posted writes */
490         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_postedWriteEnable);
491
492         /* Clear link control register */
493         reg_write(ohci, OHCI1394_LinkControlClear, 0xffffffff);
494
495         /* Enable cycle timer and cycle master and set the IRM
496          * contender bit in our self ID packets if appropriate. */
497         reg_write(ohci, OHCI1394_LinkControlSet,
498                   OHCI1394_LinkControl_CycleTimerEnable |
499                   OHCI1394_LinkControl_CycleMaster);
500         i = get_phy_reg(ohci, 4) | PHY_04_LCTRL;
501         if (hpsb_disable_irm)
502                 i &= ~PHY_04_CONTENDER;
503         else
504                 i |= PHY_04_CONTENDER;
505         set_phy_reg(ohci, 4, i);
506
507         /* Set up self-id dma buffer */
508         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->selfid_buf_bus);
509
510         /* enable self-id and phys */
511         reg_write(ohci, OHCI1394_LinkControlSet, OHCI1394_LinkControl_RcvSelfID |
512                   OHCI1394_LinkControl_RcvPhyPkt);
513
514         /* Set the Config ROM mapping register */
515         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->csr_config_rom_bus);
516
517         /* Now get our max packet size */
518         ohci->max_packet_size =
519                 1<<(((reg_read(ohci, OHCI1394_BusOptions)>>12)&0xf)+1);
520                 
521         /* Don't accept phy packets into AR request context */
522         reg_write(ohci, OHCI1394_LinkControlClear, 0x00000400);
523
524         /* Clear the interrupt mask */
525         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 0xffffffff);
526         reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 0xffffffff);
527
528         /* Clear the interrupt mask */
529         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 0xffffffff);
530         reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 0xffffffff);
531
532         /* Initialize AR dma */
533         initialize_dma_rcv_ctx(&ohci->ar_req_context, 0);
534         initialize_dma_rcv_ctx(&ohci->ar_resp_context, 0);
535
536         /* Initialize AT dma */
537         initialize_dma_trm_ctx(&ohci->at_req_context);
538         initialize_dma_trm_ctx(&ohci->at_resp_context);
539         
540         /* Initialize IR Legacy DMA channel mask */
541         ohci->ir_legacy_channels = 0;
542
543         /* Accept AR requests from all nodes */
544         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
545
546         /* Set the address range of the physical response unit.
547          * Most controllers do not implement it as a writable register though.
548          * They will keep a hardwired offset of 0x00010000 and show 0x0 as
549          * register content.
550          * To actually enable physical responses is the job of our interrupt
551          * handler which programs the physical request filter. */
552         reg_write(ohci, OHCI1394_PhyUpperBound,
553                   OHCI1394_PHYS_UPPER_BOUND_PROGRAMMED >> 16);
554
555         DBGMSG("physUpperBoundOffset=%08x",
556                reg_read(ohci, OHCI1394_PhyUpperBound));
557
558         /* Specify AT retries */
559         reg_write(ohci, OHCI1394_ATRetries,
560                   OHCI1394_MAX_AT_REQ_RETRIES |
561                   (OHCI1394_MAX_AT_RESP_RETRIES<<4) |
562                   (OHCI1394_MAX_PHYS_RESP_RETRIES<<8));
563
564         /* We don't want hardware swapping */
565         reg_write(ohci, OHCI1394_HCControlClear, OHCI1394_HCControl_noByteSwap);
566
567         /* Enable interrupts */
568         reg_write(ohci, OHCI1394_IntMaskSet,
569                   OHCI1394_unrecoverableError |
570                   OHCI1394_masterIntEnable |
571                   OHCI1394_busReset |
572                   OHCI1394_selfIDComplete |
573                   OHCI1394_RSPkt |
574                   OHCI1394_RQPkt |
575                   OHCI1394_respTxComplete |
576                   OHCI1394_reqTxComplete |
577                   OHCI1394_isochRx |
578                   OHCI1394_isochTx |
579                   OHCI1394_postedWriteErr |
580                   OHCI1394_cycleTooLong |
581                   OHCI1394_cycleInconsistent);
582
583         /* Enable link */
584         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_linkEnable);
585
586         buf = reg_read(ohci, OHCI1394_Version);
587         PRINT(KERN_INFO, "OHCI-1394 %d.%d (PCI): IRQ=[%d]  "
588               "MMIO=[%llx-%llx]  Max Packet=[%d]  IR/IT contexts=[%d/%d]",
589               ((((buf) >> 16) & 0xf) + (((buf) >> 20) & 0xf) * 10),
590               ((((buf) >> 4) & 0xf) + ((buf) & 0xf) * 10), ohci->dev->irq,
591               (unsigned long long)pci_resource_start(ohci->dev, 0),
592               (unsigned long long)pci_resource_start(ohci->dev, 0) + OHCI1394_REGISTER_SIZE - 1,
593               ohci->max_packet_size,
594               ohci->nb_iso_rcv_ctx, ohci->nb_iso_xmit_ctx);
595
596         /* Check all of our ports to make sure that if anything is
597          * connected, we enable that port. */
598         num_ports = get_phy_reg(ohci, 2) & 0xf;
599         for (i = 0; i < num_ports; i++) {
600                 unsigned int status;
601
602                 set_phy_reg(ohci, 7, i);
603                 status = get_phy_reg(ohci, 8);
604
605                 if (status & 0x20)
606                         set_phy_reg(ohci, 8, status & ~1);
607         }
608
609         /* Serial EEPROM Sanity check. */
610         if ((ohci->max_packet_size < 512) ||
611             (ohci->max_packet_size > 4096)) {
612                 /* Serial EEPROM contents are suspect, set a sane max packet
613                  * size and print the raw contents for bug reports if verbose
614                  * debug is enabled. */
615 #ifdef CONFIG_IEEE1394_VERBOSEDEBUG
616                 int i;
617 #endif
618
619                 PRINT(KERN_DEBUG, "Serial EEPROM has suspicious values, "
620                       "attempting to setting max_packet_size to 512 bytes");
621                 reg_write(ohci, OHCI1394_BusOptions,
622                           (reg_read(ohci, OHCI1394_BusOptions) & 0xf007) | 0x8002);
623                 ohci->max_packet_size = 512;
624 #ifdef CONFIG_IEEE1394_VERBOSEDEBUG
625                 PRINT(KERN_DEBUG, "    EEPROM Present: %d",
626                       (reg_read(ohci, OHCI1394_Version) >> 24) & 0x1);
627                 reg_write(ohci, OHCI1394_GUID_ROM, 0x80000000);
628
629                 for (i = 0;
630                      ((i < 1000) &&
631                       (reg_read(ohci, OHCI1394_GUID_ROM) & 0x80000000)); i++)
632                         udelay(10);
633
634                 for (i = 0; i < 0x20; i++) {
635                         reg_write(ohci, OHCI1394_GUID_ROM, 0x02000000);
636                         PRINT(KERN_DEBUG, "    EEPROM %02x: %02x", i,
637                               (reg_read(ohci, OHCI1394_GUID_ROM) >> 16) & 0xff);
638                 }
639 #endif
640         }
641 }
642
643 /*
644  * Insert a packet in the DMA fifo and generate the DMA prg
645  * FIXME: rewrite the program in order to accept packets crossing
646  *        page boundaries.
647  *        check also that a single dma descriptor doesn't cross a
648  *        page boundary.
649  */
650 static void insert_packet(struct ti_ohci *ohci,
651                           struct dma_trm_ctx *d, struct hpsb_packet *packet)
652 {
653         u32 cycleTimer;
654         int idx = d->prg_ind;
655
656         DBGMSG("Inserting packet for node " NODE_BUS_FMT
657                ", tlabel=%d, tcode=0x%x, speed=%d",
658                NODE_BUS_ARGS(ohci->host, packet->node_id), packet->tlabel,
659                packet->tcode, packet->speed_code);
660
661         d->prg_cpu[idx]->begin.address = 0;
662         d->prg_cpu[idx]->begin.branchAddress = 0;
663
664         if (d->type == DMA_CTX_ASYNC_RESP) {
665                 /*
666                  * For response packets, we need to put a timeout value in
667                  * the 16 lower bits of the status... let's try 1 sec timeout
668                  */
669                 cycleTimer = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
670                 d->prg_cpu[idx]->begin.status = cpu_to_le32(
671                         (((((cycleTimer>>25)&0x7)+1)&0x7)<<13) |
672                         ((cycleTimer&0x01fff000)>>12));
673
674                 DBGMSG("cycleTimer: %08x timeStamp: %08x",
675                        cycleTimer, d->prg_cpu[idx]->begin.status);
676         } else 
677                 d->prg_cpu[idx]->begin.status = 0;
678
679         if ( (packet->type == hpsb_async) || (packet->type == hpsb_raw) ) {
680
681                 if (packet->type == hpsb_raw) {
682                         d->prg_cpu[idx]->data[0] = cpu_to_le32(OHCI1394_TCODE_PHY<<4);
683                         d->prg_cpu[idx]->data[1] = cpu_to_le32(packet->header[0]);
684                         d->prg_cpu[idx]->data[2] = cpu_to_le32(packet->header[1]);
685                 } else {
686                         d->prg_cpu[idx]->data[0] = packet->speed_code<<16 |
687                                 (packet->header[0] & 0xFFFF);
688
689                         if (packet->tcode == TCODE_ISO_DATA) {
690                                 /* Sending an async stream packet */
691                                 d->prg_cpu[idx]->data[1] = packet->header[0] & 0xFFFF0000;
692                         } else {
693                                 /* Sending a normal async request or response */
694                                 d->prg_cpu[idx]->data[1] =
695                                         (packet->header[1] & 0xFFFF) |
696                                         (packet->header[0] & 0xFFFF0000);
697                                 d->prg_cpu[idx]->data[2] = packet->header[2];
698                                 d->prg_cpu[idx]->data[3] = packet->header[3];
699                         }
700                         header_le32_to_cpu(d->prg_cpu[idx]->data, packet->tcode);
701                 }
702
703                 if (packet->data_size) { /* block transmit */
704                         if (packet->tcode == TCODE_STREAM_DATA){
705                                 d->prg_cpu[idx]->begin.control =
706                                         cpu_to_le32(DMA_CTL_OUTPUT_MORE |
707                                                     DMA_CTL_IMMEDIATE | 0x8);
708                         } else {
709                                 d->prg_cpu[idx]->begin.control =
710                                         cpu_to_le32(DMA_CTL_OUTPUT_MORE |
711                                                     DMA_CTL_IMMEDIATE | 0x10);
712                         }
713                         d->prg_cpu[idx]->end.control =
714                                 cpu_to_le32(DMA_CTL_OUTPUT_LAST |
715                                             DMA_CTL_IRQ |
716                                             DMA_CTL_BRANCH |
717                                             packet->data_size);
718                         /*
719                          * Check that the packet data buffer
720                          * does not cross a page boundary.
721                          *
722                          * XXX Fix this some day. eth1394 seems to trigger
723                          * it, but ignoring it doesn't seem to cause a
724                          * problem.
725                          */
726 #if 0
727                         if (cross_bound((unsigned long)packet->data,
728                                         packet->data_size)>0) {
729                                 /* FIXME: do something about it */
730                                 PRINT(KERN_ERR,
731                                       "%s: packet data addr: %p size %Zd bytes "
732                                       "cross page boundary", __FUNCTION__,
733                                       packet->data, packet->data_size);
734                         }
735 #endif
736                         d->prg_cpu[idx]->end.address = cpu_to_le32(
737                                 pci_map_single(ohci->dev, packet->data,
738                                                packet->data_size,
739                                                PCI_DMA_TODEVICE));
740                         OHCI_DMA_ALLOC("single, block transmit packet");
741
742                         d->prg_cpu[idx]->end.branchAddress = 0;
743                         d->prg_cpu[idx]->end.status = 0;
744                         if (d->branchAddrPtr)
745                                 *(d->branchAddrPtr) =
746                                         cpu_to_le32(d->prg_bus[idx] | 0x3);
747                         d->branchAddrPtr =
748                                 &(d->prg_cpu[idx]->end.branchAddress);
749                 } else { /* quadlet transmit */
750                         if (packet->type == hpsb_raw)
751                                 d->prg_cpu[idx]->begin.control =
752                                         cpu_to_le32(DMA_CTL_OUTPUT_LAST |
753                                                     DMA_CTL_IMMEDIATE |
754                                                     DMA_CTL_IRQ |
755                                                     DMA_CTL_BRANCH |
756                                                     (packet->header_size + 4));
757                         else
758                                 d->prg_cpu[idx]->begin.control =
759                                         cpu_to_le32(DMA_CTL_OUTPUT_LAST |
760                                                     DMA_CTL_IMMEDIATE |
761                                                     DMA_CTL_IRQ |
762                                                     DMA_CTL_BRANCH |
763                                                     packet->header_size);
764
765                         if (d->branchAddrPtr)
766                                 *(d->branchAddrPtr) =
767                                         cpu_to_le32(d->prg_bus[idx] | 0x2);
768                         d->branchAddrPtr =
769                                 &(d->prg_cpu[idx]->begin.branchAddress);
770                 }
771
772         } else { /* iso packet */
773                 d->prg_cpu[idx]->data[0] = packet->speed_code<<16 |
774                         (packet->header[0] & 0xFFFF);
775                 d->prg_cpu[idx]->data[1] = packet->header[0] & 0xFFFF0000;
776                 header_le32_to_cpu(d->prg_cpu[idx]->data, packet->tcode);
777
778                 d->prg_cpu[idx]->begin.control =
779                         cpu_to_le32(DMA_CTL_OUTPUT_MORE |
780                                     DMA_CTL_IMMEDIATE | 0x8);
781                 d->prg_cpu[idx]->end.control =
782                         cpu_to_le32(DMA_CTL_OUTPUT_LAST |
783                                     DMA_CTL_UPDATE |
784                                     DMA_CTL_IRQ |
785                                     DMA_CTL_BRANCH |
786                                     packet->data_size);
787                 d->prg_cpu[idx]->end.address = cpu_to_le32(
788                                 pci_map_single(ohci->dev, packet->data,
789                                 packet->data_size, PCI_DMA_TODEVICE));
790                 OHCI_DMA_ALLOC("single, iso transmit packet");
791
792                 d->prg_cpu[idx]->end.branchAddress = 0;
793                 d->prg_cpu[idx]->end.status = 0;
794                 DBGMSG("Iso xmit context info: header[%08x %08x]\n"
795                        "                       begin=%08x %08x %08x %08x\n"
796                        "                             %08x %08x %08x %08x\n"
797                        "                       end  =%08x %08x %08x %08x",
798                        d->prg_cpu[idx]->data[0], d->prg_cpu[idx]->data[1],
799                        d->prg_cpu[idx]->begin.control,
800                        d->prg_cpu[idx]->begin.address,
801                        d->prg_cpu[idx]->begin.branchAddress,
802                        d->prg_cpu[idx]->begin.status,
803                        d->prg_cpu[idx]->data[0],
804                        d->prg_cpu[idx]->data[1],
805                        d->prg_cpu[idx]->data[2],
806                        d->prg_cpu[idx]->data[3],
807                        d->prg_cpu[idx]->end.control,
808                        d->prg_cpu[idx]->end.address,
809                        d->prg_cpu[idx]->end.branchAddress,
810                        d->prg_cpu[idx]->end.status);
811                 if (d->branchAddrPtr)
812                         *(d->branchAddrPtr) = cpu_to_le32(d->prg_bus[idx] | 0x3);
813                 d->branchAddrPtr = &(d->prg_cpu[idx]->end.branchAddress);
814         }
815         d->free_prgs--;
816
817         /* queue the packet in the appropriate context queue */
818         list_add_tail(&packet->driver_list, &d->fifo_list);
819         d->prg_ind = (d->prg_ind + 1) % d->num_desc;
820 }
821
822 /*
823  * This function fills the FIFO with the (eventual) pending packets
824  * and runs or wakes up the DMA prg if necessary.
825  *
826  * The function MUST be called with the d->lock held.
827  */
828 static void dma_trm_flush(struct ti_ohci *ohci, struct dma_trm_ctx *d)
829 {
830         struct hpsb_packet *packet, *ptmp;
831         int idx = d->prg_ind;
832         int z = 0;
833
834         /* insert the packets into the dma fifo */
835         list_for_each_entry_safe(packet, ptmp, &d->pending_list, driver_list) {
836                 if (!d->free_prgs)
837                         break;
838
839                 /* For the first packet only */
840                 if (!z)
841                         z = (packet->data_size) ? 3 : 2;
842
843                 /* Insert the packet */
844                 list_del_init(&packet->driver_list);
845                 insert_packet(ohci, d, packet);
846         }
847
848         /* Nothing must have been done, either no free_prgs or no packets */
849         if (z == 0)
850                 return;
851
852         /* Is the context running ? (should be unless it is
853            the first packet to be sent in this context) */
854         if (!(reg_read(ohci, d->ctrlSet) & 0x8000)) {
855                 u32 nodeId = reg_read(ohci, OHCI1394_NodeID);
856
857                 DBGMSG("Starting transmit DMA ctx=%d",d->ctx);
858                 reg_write(ohci, d->cmdPtr, d->prg_bus[idx] | z);
859
860                 /* Check that the node id is valid, and not 63 */
861                 if (!(nodeId & 0x80000000) || (nodeId & 0x3f) == 63)
862                         PRINT(KERN_ERR, "Running dma failed because Node ID is not valid");
863                 else
864                         reg_write(ohci, d->ctrlSet, 0x8000);
865         } else {
866                 /* Wake up the dma context if necessary */
867                 if (!(reg_read(ohci, d->ctrlSet) & 0x400))
868                         DBGMSG("Waking transmit DMA ctx=%d",d->ctx);
869
870                 /* do this always, to avoid race condition */
871                 reg_write(ohci, d->ctrlSet, 0x1000);
872         }
873
874         return;
875 }
876
877 /* Transmission of an async or iso packet */
878 static int ohci_transmit(struct hpsb_host *host, struct hpsb_packet *packet)
879 {
880         struct ti_ohci *ohci = host->hostdata;
881         struct dma_trm_ctx *d;
882         unsigned long flags;
883
884         if (packet->data_size > ohci->max_packet_size) {
885                 PRINT(KERN_ERR,
886                       "Transmit packet size %Zd is too big",
887                       packet->data_size);
888                 return -EOVERFLOW;
889         }
890
891         /* Decide whether we have an iso, a request, or a response packet */
892         if (packet->type == hpsb_raw)
893                 d = &ohci->at_req_context;
894         else if ((packet->tcode == TCODE_ISO_DATA) && (packet->type == hpsb_iso)) {
895                 /* The legacy IT DMA context is initialized on first
896                  * use.  However, the alloc cannot be run from
897                  * interrupt context, so we bail out if that is the
898                  * case. I don't see anyone sending ISO packets from
899                  * interrupt context anyway... */
900
901                 if (ohci->it_legacy_context.ohci == NULL) {
902                         if (in_interrupt()) {
903                                 PRINT(KERN_ERR,
904                                       "legacy IT context cannot be initialized during interrupt");
905                                 return -EINVAL;
906                         }
907
908                         if (alloc_dma_trm_ctx(ohci, &ohci->it_legacy_context,
909                                               DMA_CTX_ISO, 0, IT_NUM_DESC,
910                                               OHCI1394_IsoXmitContextBase) < 0) {
911                                 PRINT(KERN_ERR,
912                                       "error initializing legacy IT context");
913                                 return -ENOMEM;
914                         }
915
916                         initialize_dma_trm_ctx(&ohci->it_legacy_context);
917                 }
918
919                 d = &ohci->it_legacy_context;
920         } else if ((packet->tcode & 0x02) && (packet->tcode != TCODE_ISO_DATA))
921                 d = &ohci->at_resp_context;
922         else
923                 d = &ohci->at_req_context;
924
925         spin_lock_irqsave(&d->lock,flags);
926
927         list_add_tail(&packet->driver_list, &d->pending_list);
928
929         dma_trm_flush(ohci, d);
930
931         spin_unlock_irqrestore(&d->lock,flags);
932
933         return 0;
934 }
935
936 static int ohci_devctl(struct hpsb_host *host, enum devctl_cmd cmd, int arg)
937 {
938         struct ti_ohci *ohci = host->hostdata;
939         int retval = 0;
940         unsigned long flags;
941         int phy_reg;
942
943         switch (cmd) {
944         case RESET_BUS:
945                 switch (arg) {
946                 case SHORT_RESET:
947                         phy_reg = get_phy_reg(ohci, 5);
948                         phy_reg |= 0x40;
949                         set_phy_reg(ohci, 5, phy_reg); /* set ISBR */
950                         break;
951                 case LONG_RESET:
952                         phy_reg = get_phy_reg(ohci, 1);
953                         phy_reg |= 0x40;
954                         set_phy_reg(ohci, 1, phy_reg); /* set IBR */
955                         break;
956                 case SHORT_RESET_NO_FORCE_ROOT:
957                         phy_reg = get_phy_reg(ohci, 1);
958                         if (phy_reg & 0x80) {
959                                 phy_reg &= ~0x80;
960                                 set_phy_reg(ohci, 1, phy_reg); /* clear RHB */
961                         }
962
963                         phy_reg = get_phy_reg(ohci, 5);
964                         phy_reg |= 0x40;
965                         set_phy_reg(ohci, 5, phy_reg); /* set ISBR */
966                         break;
967                 case LONG_RESET_NO_FORCE_ROOT:
968                         phy_reg = get_phy_reg(ohci, 1);
969                         phy_reg &= ~0x80;
970                         phy_reg |= 0x40;
971                         set_phy_reg(ohci, 1, phy_reg); /* clear RHB, set IBR */
972                         break;
973                 case SHORT_RESET_FORCE_ROOT:
974                         phy_reg = get_phy_reg(ohci, 1);
975                         if (!(phy_reg & 0x80)) {
976                                 phy_reg |= 0x80;
977                                 set_phy_reg(ohci, 1, phy_reg); /* set RHB */
978                         }
979
980                         phy_reg = get_phy_reg(ohci, 5);
981                         phy_reg |= 0x40;
982                         set_phy_reg(ohci, 5, phy_reg); /* set ISBR */
983                         break;
984                 case LONG_RESET_FORCE_ROOT:
985                         phy_reg = get_phy_reg(ohci, 1);
986                         phy_reg |= 0xc0;
987                         set_phy_reg(ohci, 1, phy_reg); /* set RHB and IBR */
988                         break;
989                 default:
990                         retval = -1;
991                 }
992                 break;
993
994         case GET_CYCLE_COUNTER:
995                 retval = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
996                 break;
997
998         case SET_CYCLE_COUNTER:
999                 reg_write(ohci, OHCI1394_IsochronousCycleTimer, arg);
1000                 break;
1001
1002         case SET_BUS_ID:
1003                 PRINT(KERN_ERR, "devctl command SET_BUS_ID err");
1004                 break;
1005
1006         case ACT_CYCLE_MASTER:
1007                 if (arg) {
1008                         /* check if we are root and other nodes are present */
1009                         u32 nodeId = reg_read(ohci, OHCI1394_NodeID);
1010                         if ((nodeId & (1<<30)) && (nodeId & 0x3f)) {
1011                                 /*
1012                                  * enable cycleTimer, cycleMaster
1013                                  */
1014                                 DBGMSG("Cycle master enabled");
1015                                 reg_write(ohci, OHCI1394_LinkControlSet,
1016                                           OHCI1394_LinkControl_CycleTimerEnable |
1017                                           OHCI1394_LinkControl_CycleMaster);
1018                         }
1019                 } else {
1020                         /* disable cycleTimer, cycleMaster, cycleSource */
1021                         reg_write(ohci, OHCI1394_LinkControlClear,
1022                                   OHCI1394_LinkControl_CycleTimerEnable |
1023                                   OHCI1394_LinkControl_CycleMaster |
1024                                   OHCI1394_LinkControl_CycleSource);
1025                 }
1026                 break;
1027
1028         case CANCEL_REQUESTS:
1029                 DBGMSG("Cancel request received");
1030                 dma_trm_reset(&ohci->at_req_context);
1031                 dma_trm_reset(&ohci->at_resp_context);
1032                 break;
1033
1034         case ISO_LISTEN_CHANNEL:
1035         {
1036                 u64 mask;
1037                 struct dma_rcv_ctx *d = &ohci->ir_legacy_context;
1038                 int ir_legacy_active;
1039
1040                 if (arg<0 || arg>63) {
1041                         PRINT(KERN_ERR,
1042                               "%s: IS0 listen channel %d is out of range",
1043                               __FUNCTION__, arg);
1044                         return -EFAULT;
1045                 }
1046
1047                 mask = (u64)0x1<<arg;
1048
1049                 spin_lock_irqsave(&ohci->IR_channel_lock, flags);
1050
1051                 if (ohci->ISO_channel_usage & mask) {
1052                         PRINT(KERN_ERR,
1053                               "%s: IS0 listen channel %d is already used",
1054                               __FUNCTION__, arg);
1055                         spin_unlock_irqrestore(&ohci->IR_channel_lock, flags);
1056                         return -EFAULT;
1057                 }
1058
1059                 ir_legacy_active = ohci->ir_legacy_channels;
1060
1061                 ohci->ISO_channel_usage |= mask;
1062                 ohci->ir_legacy_channels |= mask;
1063
1064                 spin_unlock_irqrestore(&ohci->IR_channel_lock, flags);
1065
1066                 if (!ir_legacy_active) {
1067                         if (ohci1394_register_iso_tasklet(ohci,
1068                                           &ohci->ir_legacy_tasklet) < 0) {
1069                                 PRINT(KERN_ERR, "No IR DMA context available");
1070                                 return -EBUSY;
1071                         }
1072
1073                         /* the IR context can be assigned to any DMA context
1074                          * by ohci1394_register_iso_tasklet */
1075                         d->ctx = ohci->ir_legacy_tasklet.context;
1076                         d->ctrlSet = OHCI1394_IsoRcvContextControlSet +
1077                                 32*d->ctx;
1078                         d->ctrlClear = OHCI1394_IsoRcvContextControlClear +
1079                                 32*d->ctx;
1080                         d->cmdPtr = OHCI1394_IsoRcvCommandPtr + 32*d->ctx;
1081                         d->ctxtMatch = OHCI1394_IsoRcvContextMatch + 32*d->ctx;
1082
1083                         initialize_dma_rcv_ctx(&ohci->ir_legacy_context, 1);
1084
1085                         if (printk_ratelimit())
1086                                 DBGMSG("IR legacy activated");
1087                 }
1088
1089                 spin_lock_irqsave(&ohci->IR_channel_lock, flags);
1090
1091                 if (arg>31)
1092                         reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet,
1093                                   1<<(arg-32));
1094                 else
1095                         reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet,
1096                                   1<<arg);
1097
1098                 spin_unlock_irqrestore(&ohci->IR_channel_lock, flags);
1099                 DBGMSG("Listening enabled on channel %d", arg);
1100                 break;
1101         }
1102         case ISO_UNLISTEN_CHANNEL:
1103         {
1104                 u64 mask;
1105
1106                 if (arg<0 || arg>63) {
1107                         PRINT(KERN_ERR,
1108                               "%s: IS0 unlisten channel %d is out of range",
1109                               __FUNCTION__, arg);
1110                         return -EFAULT;
1111                 }
1112
1113                 mask = (u64)0x1<<arg;
1114
1115                 spin_lock_irqsave(&ohci->IR_channel_lock, flags);
1116
1117                 if (!(ohci->ISO_channel_usage & mask)) {
1118                         PRINT(KERN_ERR,
1119                               "%s: IS0 unlisten channel %d is not used",
1120                               __FUNCTION__, arg);
1121                         spin_unlock_irqrestore(&ohci->IR_channel_lock, flags);
1122                         return -EFAULT;
1123                 }
1124
1125                 ohci->ISO_channel_usage &= ~mask;
1126                 ohci->ir_legacy_channels &= ~mask;
1127
1128                 if (arg>31)
1129                         reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear,
1130                                   1<<(arg-32));
1131                 else
1132                         reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear,
1133                                   1<<arg);
1134
1135                 spin_unlock_irqrestore(&ohci->IR_channel_lock, flags);
1136                 DBGMSG("Listening disabled on channel %d", arg);
1137
1138                 if (ohci->ir_legacy_channels == 0) {
1139                         stop_dma_rcv_ctx(&ohci->ir_legacy_context);
1140                         DBGMSG("ISO legacy receive context stopped");
1141                 }
1142
1143                 break;
1144         }
1145         default:
1146                 PRINT_G(KERN_ERR, "ohci_devctl cmd %d not implemented yet",
1147                         cmd);
1148                 break;
1149         }
1150         return retval;
1151 }
1152
1153 /***********************************
1154  * rawiso ISO reception            *
1155  ***********************************/
1156
1157 /*
1158   We use either buffer-fill or packet-per-buffer DMA mode. The DMA
1159   buffer is split into "blocks" (regions described by one DMA
1160   descriptor). Each block must be one page or less in size, and
1161   must not cross a page boundary.
1162
1163   There is one little wrinkle with buffer-fill mode: a packet that
1164   starts in the final block may wrap around into the first block. But
1165   the user API expects all packets to be contiguous. Our solution is
1166   to keep the very last page of the DMA buffer in reserve - if a
1167   packet spans the gap, we copy its tail into this page.
1168 */
1169
1170 struct ohci_iso_recv {
1171         struct ti_ohci *ohci;
1172
1173         struct ohci1394_iso_tasklet task;
1174         int task_active;
1175
1176         enum { BUFFER_FILL_MODE = 0,
1177                PACKET_PER_BUFFER_MODE = 1 } dma_mode;
1178
1179         /* memory and PCI mapping for the DMA descriptors */
1180         struct dma_prog_region prog;
1181         struct dma_cmd *block; /* = (struct dma_cmd*) prog.virt */
1182
1183         /* how many DMA blocks fit in the buffer */
1184         unsigned int nblocks;
1185
1186         /* stride of DMA blocks */
1187         unsigned int buf_stride;
1188
1189         /* number of blocks to batch between interrupts */
1190         int block_irq_interval;
1191
1192         /* block that DMA will finish next */
1193         int block_dma;
1194
1195         /* (buffer-fill only) block that the reader will release next */
1196         int block_reader;
1197
1198         /* (buffer-fill only) bytes of buffer the reader has released,
1199            less than one block */
1200         int released_bytes;
1201
1202         /* (buffer-fill only) buffer offset at which the next packet will appear */
1203         int dma_offset;
1204
1205         /* OHCI DMA context control registers */
1206         u32 ContextControlSet;
1207         u32 ContextControlClear;
1208         u32 CommandPtr;
1209         u32 ContextMatch;
1210 };
1211
1212 static void ohci_iso_recv_task(unsigned long data);
1213 static void ohci_iso_recv_stop(struct hpsb_iso *iso);
1214 static void ohci_iso_recv_shutdown(struct hpsb_iso *iso);
1215 static int  ohci_iso_recv_start(struct hpsb_iso *iso, int cycle, int tag_mask, int sync);
1216 static void ohci_iso_recv_program(struct hpsb_iso *iso);
1217
1218 static int ohci_iso_recv_init(struct hpsb_iso *iso)
1219 {
1220         struct ti_ohci *ohci = iso->host->hostdata;
1221         struct ohci_iso_recv *recv;
1222         int ctx;
1223         int ret = -ENOMEM;
1224
1225         recv = kmalloc(sizeof(*recv), GFP_KERNEL);
1226         if (!recv)
1227                 return -ENOMEM;
1228
1229         iso->hostdata = recv;
1230         recv->ohci = ohci;
1231         recv->task_active = 0;
1232         dma_prog_region_init(&recv->prog);
1233         recv->block = NULL;
1234
1235         /* use buffer-fill mode, unless irq_interval is 1
1236            (note: multichannel requires buffer-fill) */
1237
1238         if (((iso->irq_interval == 1 && iso->dma_mode == HPSB_ISO_DMA_OLD_ABI) ||
1239              iso->dma_mode == HPSB_ISO_DMA_PACKET_PER_BUFFER) && iso->channel != -1) {
1240                 recv->dma_mode = PACKET_PER_BUFFER_MODE;
1241         } else {
1242                 recv->dma_mode = BUFFER_FILL_MODE;
1243         }
1244
1245         /* set nblocks, buf_stride, block_irq_interval */
1246
1247         if (recv->dma_mode == BUFFER_FILL_MODE) {
1248                 recv->buf_stride = PAGE_SIZE;
1249
1250                 /* one block per page of data in the DMA buffer, minus the final guard page */
1251                 recv->nblocks = iso->buf_size/PAGE_SIZE - 1;
1252                 if (recv->nblocks < 3) {
1253                         DBGMSG("ohci_iso_recv_init: DMA buffer too small");
1254                         goto err;
1255                 }
1256
1257                 /* iso->irq_interval is in packets - translate that to blocks */
1258                 if (iso->irq_interval == 1)
1259                         recv->block_irq_interval = 1;
1260                 else
1261                         recv->block_irq_interval = iso->irq_interval *
1262                                                         ((recv->nblocks+1)/iso->buf_packets);
1263                 if (recv->block_irq_interval*4 > recv->nblocks)
1264                         recv->block_irq_interval = recv->nblocks/4;
1265                 if (recv->block_irq_interval < 1)
1266                         recv->block_irq_interval = 1;
1267
1268         } else {
1269                 int max_packet_size;
1270
1271                 recv->nblocks = iso->buf_packets;
1272                 recv->block_irq_interval = iso->irq_interval;
1273                 if (recv->block_irq_interval * 4 > iso->buf_packets)
1274                         recv->block_irq_interval = iso->buf_packets / 4;
1275                 if (recv->block_irq_interval < 1)
1276                 recv->block_irq_interval = 1;
1277
1278                 /* choose a buffer stride */
1279                 /* must be a power of 2, and <= PAGE_SIZE */
1280
1281                 max_packet_size = iso->buf_size / iso->buf_packets;
1282
1283                 for (recv->buf_stride = 8; recv->buf_stride < max_packet_size;
1284                     recv->buf_stride *= 2);
1285
1286                 if (recv->buf_stride*iso->buf_packets > iso->buf_size ||
1287                    recv->buf_stride > PAGE_SIZE) {
1288                         /* this shouldn't happen, but anyway... */
1289                         DBGMSG("ohci_iso_recv_init: problem choosing a buffer stride");
1290                         goto err;
1291                 }
1292         }
1293
1294         recv->block_reader = 0;
1295         recv->released_bytes = 0;
1296         recv->block_dma = 0;
1297         recv->dma_offset = 0;
1298
1299         /* size of DMA program = one descriptor per block */
1300         if (dma_prog_region_alloc(&recv->prog,
1301                                  sizeof(struct dma_cmd) * recv->nblocks,
1302                                  recv->ohci->dev))
1303                 goto err;
1304
1305         recv->block = (struct dma_cmd*) recv->prog.kvirt;
1306
1307         ohci1394_init_iso_tasklet(&recv->task,
1308                                   iso->channel == -1 ? OHCI_ISO_MULTICHANNEL_RECEIVE :
1309                                                        OHCI_ISO_RECEIVE,
1310                                   ohci_iso_recv_task, (unsigned long) iso);
1311
1312         if (ohci1394_register_iso_tasklet(recv->ohci, &recv->task) < 0) {
1313                 ret = -EBUSY;
1314                 goto err;
1315         }
1316
1317         recv->task_active = 1;
1318
1319         /* recv context registers are spaced 32 bytes apart */
1320         ctx = recv->task.context;
1321         recv->ContextControlSet = OHCI1394_IsoRcvContextControlSet + 32 * ctx;
1322         recv->ContextControlClear = OHCI1394_IsoRcvContextControlClear + 32 * ctx;
1323         recv->CommandPtr = OHCI1394_IsoRcvCommandPtr + 32 * ctx;
1324         recv->ContextMatch = OHCI1394_IsoRcvContextMatch + 32 * ctx;
1325
1326         if (iso->channel == -1) {
1327                 /* clear multi-channel selection mask */
1328                 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskHiClear, 0xFFFFFFFF);
1329                 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskLoClear, 0xFFFFFFFF);
1330         }
1331
1332         /* write the DMA program */
1333         ohci_iso_recv_program(iso);
1334
1335         DBGMSG("ohci_iso_recv_init: %s mode, DMA buffer is %lu pages"
1336                " (%u bytes), using %u blocks, buf_stride %u, block_irq_interval %d",
1337                recv->dma_mode == BUFFER_FILL_MODE ?
1338                "buffer-fill" : "packet-per-buffer",
1339                iso->buf_size/PAGE_SIZE, iso->buf_size,
1340                recv->nblocks, recv->buf_stride, recv->block_irq_interval);
1341
1342         return 0;
1343
1344 err:
1345         ohci_iso_recv_shutdown(iso);
1346         return ret;
1347 }
1348
1349 static void ohci_iso_recv_stop(struct hpsb_iso *iso)
1350 {
1351         struct ohci_iso_recv *recv = iso->hostdata;
1352
1353         /* disable interrupts */
1354         reg_write(recv->ohci, OHCI1394_IsoRecvIntMaskClear, 1 << recv->task.context);
1355
1356         /* halt DMA */
1357         ohci1394_stop_context(recv->ohci, recv->ContextControlClear, NULL);
1358 }
1359
1360 static void ohci_iso_recv_shutdown(struct hpsb_iso *iso)
1361 {
1362         struct ohci_iso_recv *recv = iso->hostdata;
1363
1364         if (recv->task_active) {
1365                 ohci_iso_recv_stop(iso);
1366                 ohci1394_unregister_iso_tasklet(recv->ohci, &recv->task);
1367                 recv->task_active = 0;
1368         }
1369
1370         dma_prog_region_free(&recv->prog);
1371         kfree(recv);
1372         iso->hostdata = NULL;
1373 }
1374
1375 /* set up a "gapped" ring buffer DMA program */
1376 static void ohci_iso_recv_program(struct hpsb_iso *iso)
1377 {
1378         struct ohci_iso_recv *recv = iso->hostdata;
1379         int blk;
1380
1381         /* address of 'branch' field in previous DMA descriptor */
1382         u32 *prev_branch = NULL;
1383
1384         for (blk = 0; blk < recv->nblocks; blk++) {
1385                 u32 control;
1386
1387                 /* the DMA descriptor */
1388                 struct dma_cmd *cmd = &recv->block[blk];
1389
1390                 /* offset of the DMA descriptor relative to the DMA prog buffer */
1391                 unsigned long prog_offset = blk * sizeof(struct dma_cmd);
1392
1393                 /* offset of this packet's data within the DMA buffer */
1394                 unsigned long buf_offset = blk * recv->buf_stride;
1395
1396                 if (recv->dma_mode == BUFFER_FILL_MODE) {
1397                         control = 2 << 28; /* INPUT_MORE */
1398                 } else {
1399                         control = 3 << 28; /* INPUT_LAST */
1400                 }
1401
1402                 control |= 8 << 24; /* s = 1, update xferStatus and resCount */
1403
1404                 /* interrupt on last block, and at intervals */
1405                 if (blk == recv->nblocks-1 || (blk % recv->block_irq_interval) == 0) {
1406                         control |= 3 << 20; /* want interrupt */
1407                 }
1408
1409                 control |= 3 << 18; /* enable branch to address */
1410                 control |= recv->buf_stride;
1411
1412                 cmd->control = cpu_to_le32(control);
1413                 cmd->address = cpu_to_le32(dma_region_offset_to_bus(&iso->data_buf, buf_offset));
1414                 cmd->branchAddress = 0; /* filled in on next loop */
1415                 cmd->status = cpu_to_le32(recv->buf_stride);
1416
1417                 /* link the previous descriptor to this one */
1418                 if (prev_branch) {
1419                         *prev_branch = cpu_to_le32(dma_prog_region_offset_to_bus(&recv->prog, prog_offset) | 1);
1420                 }
1421
1422                 prev_branch = &cmd->branchAddress;
1423         }
1424
1425         /* the final descriptor's branch address and Z should be left at 0 */
1426 }
1427
1428 /* listen or unlisten to a specific channel (multi-channel mode only) */
1429 static void ohci_iso_recv_change_channel(struct hpsb_iso *iso, unsigned char channel, int listen)
1430 {
1431         struct ohci_iso_recv *recv = iso->hostdata;
1432         int reg, i;
1433
1434         if (channel < 32) {
1435                 reg = listen ? OHCI1394_IRMultiChanMaskLoSet : OHCI1394_IRMultiChanMaskLoClear;
1436                 i = channel;
1437         } else {
1438                 reg = listen ? OHCI1394_IRMultiChanMaskHiSet : OHCI1394_IRMultiChanMaskHiClear;
1439                 i = channel - 32;
1440         }
1441
1442         reg_write(recv->ohci, reg, (1 << i));
1443
1444         /* issue a dummy read to force all PCI writes to be posted immediately */
1445         mb();
1446         reg_read(recv->ohci, OHCI1394_IsochronousCycleTimer);
1447 }
1448
1449 static void ohci_iso_recv_set_channel_mask(struct hpsb_iso *iso, u64 mask)
1450 {
1451         struct ohci_iso_recv *recv = iso->hostdata;
1452         int i;
1453
1454         for (i = 0; i < 64; i++) {
1455                 if (mask & (1ULL << i)) {
1456                         if (i < 32)
1457                                 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskLoSet, (1 << i));
1458                         else
1459                                 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskHiSet, (1 << (i-32)));
1460                 } else {
1461                         if (i < 32)
1462                                 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskLoClear, (1 << i));
1463                         else
1464                                 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskHiClear, (1 << (i-32)));
1465                 }
1466         }
1467
1468         /* issue a dummy read to force all PCI writes to be posted immediately */
1469         mb();
1470         reg_read(recv->ohci, OHCI1394_IsochronousCycleTimer);
1471 }
1472
1473 static int ohci_iso_recv_start(struct hpsb_iso *iso, int cycle, int tag_mask, int sync)
1474 {
1475         struct ohci_iso_recv *recv = iso->hostdata;
1476         struct ti_ohci *ohci = recv->ohci;
1477         u32 command, contextMatch;
1478
1479         reg_write(recv->ohci, recv->ContextControlClear, 0xFFFFFFFF);
1480         wmb();
1481
1482         /* always keep ISO headers */
1483         command = (1 << 30);
1484
1485         if (recv->dma_mode == BUFFER_FILL_MODE)
1486                 command |= (1 << 31);
1487
1488         reg_write(recv->ohci, recv->ContextControlSet, command);
1489
1490         /* match on specified tags */
1491         contextMatch = tag_mask << 28;
1492
1493         if (iso->channel == -1) {
1494                 /* enable multichannel reception */
1495                 reg_write(recv->ohci, recv->ContextControlSet, (1 << 28));
1496         } else {
1497                 /* listen on channel */
1498                 contextMatch |= iso->channel;
1499         }
1500
1501         if (cycle != -1) {
1502                 u32 seconds;
1503
1504                 /* enable cycleMatch */
1505                 reg_write(recv->ohci, recv->ContextControlSet, (1 << 29));
1506
1507                 /* set starting cycle */
1508                 cycle &= 0x1FFF;
1509
1510                 /* 'cycle' is only mod 8000, but we also need two 'seconds' bits -
1511                    just snarf them from the current time */
1512                 seconds = reg_read(recv->ohci, OHCI1394_IsochronousCycleTimer) >> 25;
1513
1514                 /* advance one second to give some extra time for DMA to start */
1515                 seconds += 1;
1516
1517                 cycle |= (seconds & 3) << 13;
1518
1519                 contextMatch |= cycle << 12;
1520         }
1521
1522         if (sync != -1) {
1523                 /* set sync flag on first DMA descriptor */
1524                 struct dma_cmd *cmd = &recv->block[recv->block_dma];
1525                 cmd->control |= cpu_to_le32(DMA_CTL_WAIT);
1526
1527                 /* match sync field */
1528                 contextMatch |= (sync&0xf)<<8;
1529         }
1530
1531         reg_write(recv->ohci, recv->ContextMatch, contextMatch);
1532
1533         /* address of first descriptor block */
1534         command = dma_prog_region_offset_to_bus(&recv->prog,
1535                                                 recv->block_dma * sizeof(struct dma_cmd));
1536         command |= 1; /* Z=1 */
1537
1538         reg_write(recv->ohci, recv->CommandPtr, command);
1539
1540         /* enable interrupts */
1541         reg_write(recv->ohci, OHCI1394_IsoRecvIntMaskSet, 1 << recv->task.context);
1542
1543         wmb();
1544
1545         /* run */
1546         reg_write(recv->ohci, recv->ContextControlSet, 0x8000);
1547
1548         /* issue a dummy read of the cycle timer register to force
1549            all PCI writes to be posted immediately */
1550         mb();
1551         reg_read(recv->ohci, OHCI1394_IsochronousCycleTimer);
1552
1553         /* check RUN */
1554         if (!(reg_read(recv->ohci, recv->ContextControlSet) & 0x8000)) {
1555                 PRINT(KERN_ERR,
1556                       "Error starting IR DMA (ContextControl 0x%08x)\n",
1557                       reg_read(recv->ohci, recv->ContextControlSet));
1558                 return -1;
1559         }
1560
1561         return 0;
1562 }
1563
1564 static void ohci_iso_recv_release_block(struct ohci_iso_recv *recv, int block)
1565 {
1566         /* re-use the DMA descriptor for the block */
1567         /* by linking the previous descriptor to it */
1568
1569         int next_i = block;
1570         int prev_i = (next_i == 0) ? (recv->nblocks - 1) : (next_i - 1);
1571
1572         struct dma_cmd *next = &recv->block[next_i];
1573         struct dma_cmd *prev = &recv->block[prev_i];
1574         
1575         /* ignore out-of-range requests */
1576         if ((block < 0) || (block > recv->nblocks))
1577                 return;
1578
1579         /* 'next' becomes the new end of the DMA chain,
1580            so disable branch and enable interrupt */
1581         next->branchAddress = 0;
1582         next->control |= cpu_to_le32(3 << 20);
1583         next->status = cpu_to_le32(recv->buf_stride);
1584
1585         /* link prev to next */
1586         prev->branchAddress = cpu_to_le32(dma_prog_region_offset_to_bus(&recv->prog,
1587                                                                         sizeof(struct dma_cmd) * next_i)
1588                                           | 1); /* Z=1 */
1589
1590         /* disable interrupt on previous DMA descriptor, except at intervals */
1591         if ((prev_i % recv->block_irq_interval) == 0) {
1592                 prev->control |= cpu_to_le32(3 << 20); /* enable interrupt */
1593         } else {
1594                 prev->control &= cpu_to_le32(~(3<<20)); /* disable interrupt */
1595         }
1596         wmb();
1597
1598         /* wake up DMA in case it fell asleep */
1599         reg_write(recv->ohci, recv->ContextControlSet, (1 << 12));
1600 }
1601
1602 static void ohci_iso_recv_bufferfill_release(struct ohci_iso_recv *recv,
1603                                              struct hpsb_iso_packet_info *info)
1604 {
1605         /* release the memory where the packet was */
1606         recv->released_bytes += info->total_len;
1607
1608         /* have we released enough memory for one block? */
1609         while (recv->released_bytes > recv->buf_stride) {
1610                 ohci_iso_recv_release_block(recv, recv->block_reader);
1611                 recv->block_reader = (recv->block_reader + 1) % recv->nblocks;
1612                 recv->released_bytes -= recv->buf_stride;
1613         }
1614 }
1615
1616 static inline void ohci_iso_recv_release(struct hpsb_iso *iso, struct hpsb_iso_packet_info *info)
1617 {
1618         struct ohci_iso_recv *recv = iso->hostdata;
1619         if (recv->dma_mode == BUFFER_FILL_MODE) {
1620                 ohci_iso_recv_bufferfill_release(recv, info);
1621         } else {
1622                 ohci_iso_recv_release_block(recv, info - iso->infos);
1623         }
1624 }
1625
1626 /* parse all packets from blocks that have been fully received */
1627 static void ohci_iso_recv_bufferfill_parse(struct hpsb_iso *iso, struct ohci_iso_recv *recv)
1628 {
1629         int wake = 0;
1630         int runaway = 0;
1631         struct ti_ohci *ohci = recv->ohci;
1632
1633         while (1) {
1634                 /* we expect the next parsable packet to begin at recv->dma_offset */
1635                 /* note: packet layout is as shown in section 10.6.1.1 of the OHCI spec */
1636
1637                 unsigned int offset;
1638                 unsigned short len, cycle, total_len;
1639                 unsigned char channel, tag, sy;
1640
1641                 unsigned char *p = iso->data_buf.kvirt;
1642
1643                 unsigned int this_block = recv->dma_offset/recv->buf_stride;
1644
1645                 /* don't loop indefinitely */
1646                 if (runaway++ > 100000) {
1647                         atomic_inc(&iso->overflows);
1648                         PRINT(KERN_ERR,
1649                               "IR DMA error - Runaway during buffer parsing!\n");
1650                         break;
1651                 }
1652
1653                 /* stop parsing once we arrive at block_dma (i.e. don't get ahead of DMA) */
1654                 if (this_block == recv->block_dma)
1655                         break;
1656
1657                 wake = 1;
1658
1659                 /* parse data length, tag, channel, and sy */
1660
1661                 /* note: we keep our own local copies of 'len' and 'offset'
1662                    so the user can't mess with them by poking in the mmap area */
1663
1664                 len = p[recv->dma_offset+2] | (p[recv->dma_offset+3] << 8);
1665
1666                 if (len > 4096) {
1667                         PRINT(KERN_ERR,
1668                               "IR DMA error - bogus 'len' value %u\n", len);
1669                 }
1670
1671                 channel = p[recv->dma_offset+1] & 0x3F;
1672                 tag = p[recv->dma_offset+1] >> 6;
1673                 sy = p[recv->dma_offset+0] & 0xF;
1674
1675                 /* advance to data payload */
1676                 recv->dma_offset += 4;
1677
1678                 /* check for wrap-around */
1679                 if (recv->dma_offset >= recv->buf_stride*recv->nblocks) {
1680                         recv->dma_offset -= recv->buf_stride*recv->nblocks;
1681                 }
1682
1683                 /* dma_offset now points to the first byte of the data payload */
1684                 offset = recv->dma_offset;
1685
1686                 /* advance to xferStatus/timeStamp */
1687                 recv->dma_offset += len;
1688
1689                 total_len = len + 8; /* 8 bytes header+trailer in OHCI packet */
1690                 /* payload is padded to 4 bytes */
1691                 if (len % 4) {
1692                         recv->dma_offset += 4 - (len%4);
1693                         total_len += 4 - (len%4);
1694                 }
1695
1696                 /* check for wrap-around */
1697                 if (recv->dma_offset >= recv->buf_stride*recv->nblocks) {
1698                         /* uh oh, the packet data wraps from the last
1699                            to the first DMA block - make the packet
1700                            contiguous by copying its "tail" into the
1701                            guard page */
1702
1703                         int guard_off = recv->buf_stride*recv->nblocks;
1704                         int tail_len = len - (guard_off - offset);
1705
1706                         if (tail_len > 0  && tail_len < recv->buf_stride) {
1707                                 memcpy(iso->data_buf.kvirt + guard_off,
1708                                        iso->data_buf.kvirt,
1709                                        tail_len);
1710                         }
1711
1712                         recv->dma_offset -= recv->buf_stride*recv->nblocks;
1713                 }
1714
1715                 /* parse timestamp */
1716                 cycle = p[recv->dma_offset+0] | (p[recv->dma_offset+1]<<8);
1717                 cycle &= 0x1FFF;
1718
1719                 /* advance to next packet */
1720                 recv->dma_offset += 4;
1721
1722                 /* check for wrap-around */
1723                 if (recv->dma_offset >= recv->buf_stride*recv->nblocks) {
1724                         recv->dma_offset -= recv->buf_stride*recv->nblocks;
1725                 }
1726
1727                 hpsb_iso_packet_received(iso, offset, len, total_len, cycle, channel, tag, sy);
1728         }
1729
1730         if (wake)
1731                 hpsb_iso_wake(iso);
1732 }
1733
1734 static void ohci_iso_recv_bufferfill_task(struct hpsb_iso *iso, struct ohci_iso_recv *recv)
1735 {
1736         int loop;
1737         struct ti_ohci *ohci = recv->ohci;
1738
1739         /* loop over all blocks */
1740         for (loop = 0; loop < recv->nblocks; loop++) {
1741
1742                 /* check block_dma to see if it's done */
1743                 struct dma_cmd *im = &recv->block[recv->block_dma];
1744
1745                 /* check the DMA descriptor for new writes to xferStatus */
1746                 u16 xferstatus = le32_to_cpu(im->status) >> 16;
1747
1748                 /* rescount is the number of bytes *remaining to be written* in the block */
1749                 u16 rescount = le32_to_cpu(im->status) & 0xFFFF;
1750
1751                 unsigned char event = xferstatus & 0x1F;
1752
1753                 if (!event) {
1754                         /* nothing has happened to this block yet */
1755                         break;
1756                 }
1757
1758                 if (event != 0x11) {
1759                         atomic_inc(&iso->overflows);
1760                         PRINT(KERN_ERR,
1761                               "IR DMA error - OHCI error code 0x%02x\n", event);
1762                 }
1763
1764                 if (rescount != 0) {
1765                         /* the card is still writing to this block;
1766                            we can't touch it until it's done */
1767                         break;
1768                 }
1769
1770                 /* OK, the block is finished... */
1771
1772                 /* sync our view of the block */
1773                 dma_region_sync_for_cpu(&iso->data_buf, recv->block_dma*recv->buf_stride, recv->buf_stride);
1774
1775                 /* reset the DMA descriptor */
1776                 im->status = recv->buf_stride;
1777
1778                 /* advance block_dma */
1779                 recv->block_dma = (recv->block_dma + 1) % recv->nblocks;
1780
1781                 if ((recv->block_dma+1) % recv->nblocks == recv->block_reader) {
1782                         atomic_inc(&iso->overflows);
1783                         DBGMSG("ISO reception overflow - "
1784                                "ran out of DMA blocks");
1785                 }
1786         }
1787
1788         /* parse any packets that have arrived */
1789         ohci_iso_recv_bufferfill_parse(iso, recv);
1790 }
1791
1792 static void ohci_iso_recv_packetperbuf_task(struct hpsb_iso *iso, struct ohci_iso_recv *recv)
1793 {
1794         int count;
1795         int wake = 0;
1796         struct ti_ohci *ohci = recv->ohci;
1797
1798         /* loop over the entire buffer */
1799         for (count = 0; count < recv->nblocks; count++) {
1800                 u32 packet_len = 0;
1801
1802                 /* pointer to the DMA descriptor */
1803                 struct dma_cmd *il = ((struct dma_cmd*) recv->prog.kvirt) + iso->pkt_dma;
1804
1805                 /* check the DMA descriptor for new writes to xferStatus */
1806                 u16 xferstatus = le32_to_cpu(il->status) >> 16;
1807                 u16 rescount = le32_to_cpu(il->status) & 0xFFFF;
1808
1809                 unsigned char event = xferstatus & 0x1F;
1810
1811                 if (!event) {
1812                         /* this packet hasn't come in yet; we are done for now */
1813                         goto out;
1814                 }
1815
1816                 if (event == 0x11) {
1817                         /* packet received successfully! */
1818
1819                         /* rescount is the number of bytes *remaining* in the packet buffer,
1820                            after the packet was written */
1821                         packet_len = recv->buf_stride - rescount;
1822
1823                 } else if (event == 0x02) {
1824                         PRINT(KERN_ERR, "IR DMA error - packet too long for buffer\n");
1825                 } else if (event) {
1826                         PRINT(KERN_ERR, "IR DMA error - OHCI error code 0x%02x\n", event);
1827                 }
1828
1829                 /* sync our view of the buffer */
1830                 dma_region_sync_for_cpu(&iso->data_buf, iso->pkt_dma * recv->buf_stride, recv->buf_stride);
1831
1832                 /* record the per-packet info */
1833                 {
1834                         /* iso header is 8 bytes ahead of the data payload */
1835                         unsigned char *hdr;
1836
1837                         unsigned int offset;
1838                         unsigned short cycle;
1839                         unsigned char channel, tag, sy;
1840
1841                         offset = iso->pkt_dma * recv->buf_stride;
1842                         hdr = iso->data_buf.kvirt + offset;
1843
1844                         /* skip iso header */
1845                         offset += 8;
1846                         packet_len -= 8;
1847
1848                         cycle = (hdr[0] | (hdr[1] << 8)) & 0x1FFF;
1849                         channel = hdr[5] & 0x3F;
1850                         tag = hdr[5] >> 6;
1851                         sy = hdr[4] & 0xF;
1852
1853                         hpsb_iso_packet_received(iso, offset, packet_len,
1854                                         recv->buf_stride, cycle, channel, tag, sy);
1855                 }
1856
1857                 /* reset the DMA descriptor */
1858                 il->status = recv->buf_stride;
1859
1860                 wake = 1;
1861                 recv->block_dma = iso->pkt_dma;
1862         }
1863
1864 out:
1865         if (wake)
1866                 hpsb_iso_wake(iso);
1867 }
1868
1869 static void ohci_iso_recv_task(unsigned long data)
1870 {
1871         struct hpsb_iso *iso = (struct hpsb_iso*) data;
1872         struct ohci_iso_recv *recv = iso->hostdata;
1873
1874         if (recv->dma_mode == BUFFER_FILL_MODE)
1875                 ohci_iso_recv_bufferfill_task(iso, recv);
1876         else
1877                 ohci_iso_recv_packetperbuf_task(iso, recv);
1878 }
1879
1880 /***********************************
1881  * rawiso ISO transmission         *
1882  ***********************************/
1883
1884 struct ohci_iso_xmit {
1885         struct ti_ohci *ohci;
1886         struct dma_prog_region prog;
1887         struct ohci1394_iso_tasklet task;
1888         int task_active;
1889
1890         u32 ContextControlSet;
1891         u32 ContextControlClear;
1892         u32 CommandPtr;
1893 };
1894
1895 /* transmission DMA program:
1896    one OUTPUT_MORE_IMMEDIATE for the IT header
1897    one OUTPUT_LAST for the buffer data */
1898
1899 struct iso_xmit_cmd {
1900         struct dma_cmd output_more_immediate;
1901         u8 iso_hdr[8];
1902         u32 unused[2];
1903         struct dma_cmd output_last;
1904 };
1905
1906 static int ohci_iso_xmit_init(struct hpsb_iso *iso);
1907 static int ohci_iso_xmit_start(struct hpsb_iso *iso, int cycle);
1908 static void ohci_iso_xmit_shutdown(struct hpsb_iso *iso);
1909 static void ohci_iso_xmit_task(unsigned long data);
1910
1911 static int ohci_iso_xmit_init(struct hpsb_iso *iso)
1912 {
1913         struct ohci_iso_xmit *xmit;
1914         unsigned int prog_size;
1915         int ctx;
1916         int ret = -ENOMEM;
1917
1918         xmit = kmalloc(sizeof(*xmit), GFP_KERNEL);
1919         if (!xmit)
1920                 return -ENOMEM;
1921
1922         iso->hostdata = xmit;
1923         xmit->ohci = iso->host->hostdata;
1924         xmit->task_active = 0;
1925
1926         dma_prog_region_init(&xmit->prog);
1927
1928         prog_size = sizeof(struct iso_xmit_cmd) * iso->buf_packets;
1929
1930         if (dma_prog_region_alloc(&xmit->prog, prog_size, xmit->ohci->dev))
1931                 goto err;
1932
1933         ohci1394_init_iso_tasklet(&xmit->task, OHCI_ISO_TRANSMIT,
1934                                   ohci_iso_xmit_task, (unsigned long) iso);
1935
1936         if (ohci1394_register_iso_tasklet(xmit->ohci, &xmit->task) < 0) {
1937                 ret = -EBUSY;
1938                 goto err;
1939         }
1940
1941         xmit->task_active = 1;
1942
1943         /* xmit context registers are spaced 16 bytes apart */
1944         ctx = xmit->task.context;
1945         xmit->ContextControlSet = OHCI1394_IsoXmitContextControlSet + 16 * ctx;
1946         xmit->ContextControlClear = OHCI1394_IsoXmitContextControlClear + 16 * ctx;
1947         xmit->CommandPtr = OHCI1394_IsoXmitCommandPtr + 16 * ctx;
1948
1949         return 0;
1950
1951 err:
1952         ohci_iso_xmit_shutdown(iso);
1953         return ret;
1954 }
1955
1956 static void ohci_iso_xmit_stop(struct hpsb_iso *iso)
1957 {
1958         struct ohci_iso_xmit *xmit = iso->hostdata;
1959         struct ti_ohci *ohci = xmit->ohci;
1960
1961         /* disable interrupts */
1962         reg_write(xmit->ohci, OHCI1394_IsoXmitIntMaskClear, 1 << xmit->task.context);
1963
1964         /* halt DMA */
1965         if (ohci1394_stop_context(xmit->ohci, xmit->ContextControlClear, NULL)) {
1966                 /* XXX the DMA context will lock up if you try to send too much data! */
1967                 PRINT(KERN_ERR,
1968                       "you probably exceeded the OHCI card's bandwidth limit - "
1969                       "reload the module and reduce xmit bandwidth");
1970         }
1971 }
1972
1973 static void ohci_iso_xmit_shutdown(struct hpsb_iso *iso)
1974 {
1975         struct ohci_iso_xmit *xmit = iso->hostdata;
1976
1977         if (xmit->task_active) {
1978                 ohci_iso_xmit_stop(iso);
1979                 ohci1394_unregister_iso_tasklet(xmit->ohci, &xmit->task);
1980                 xmit->task_active = 0;
1981         }
1982
1983         dma_prog_region_free(&xmit->prog);
1984         kfree(xmit);
1985         iso->hostdata = NULL;
1986 }
1987
1988 static void ohci_iso_xmit_task(unsigned long data)
1989 {
1990         struct hpsb_iso *iso = (struct hpsb_iso*) data;
1991         struct ohci_iso_xmit *xmit = iso->hostdata;
1992         struct ti_ohci *ohci = xmit->ohci;
1993         int wake = 0;
1994         int count;
1995
1996         /* check the whole buffer if necessary, starting at pkt_dma */
1997         for (count = 0; count < iso->buf_packets; count++) {
1998                 int cycle;
1999
2000                 /* DMA descriptor */
2001                 struct iso_xmit_cmd *cmd = dma_region_i(&xmit->prog, struct iso_xmit_cmd, iso->pkt_dma);
2002
2003                 /* check for new writes to xferStatus */
2004                 u16 xferstatus = le32_to_cpu(cmd->output_last.status) >> 16;
2005                 u8  event = xferstatus & 0x1F;
2006
2007                 if (!event) {
2008                         /* packet hasn't been sent yet; we are done for now */
2009                         break;
2010                 }
2011
2012                 if (event != 0x11)
2013                         PRINT(KERN_ERR,
2014                               "IT DMA error - OHCI error code 0x%02x\n", event);
2015
2016                 /* at least one packet went out, so wake up the writer */
2017                 wake = 1;
2018
2019                 /* parse cycle */
2020                 cycle = le32_to_cpu(cmd->output_last.status) & 0x1FFF;
2021
2022                 /* tell the subsystem the packet has gone out */
2023                 hpsb_iso_packet_sent(iso, cycle, event != 0x11);
2024
2025                 /* reset the DMA descriptor for next time */
2026                 cmd->output_last.status = 0;
2027         }
2028
2029         if (wake)
2030                 hpsb_iso_wake(iso);
2031 }
2032
2033 static int ohci_iso_xmit_queue(struct hpsb_iso *iso, struct hpsb_iso_packet_info *info)
2034 {
2035         struct ohci_iso_xmit *xmit = iso->hostdata;
2036         struct ti_ohci *ohci = xmit->ohci;
2037
2038         int next_i, prev_i;
2039         struct iso_xmit_cmd *next, *prev;
2040
2041         unsigned int offset;
2042         unsigned short len;
2043         unsigned char tag, sy;
2044
2045         /* check that the packet doesn't cross a page boundary
2046            (we could allow this if we added OUTPUT_MORE descriptor support) */
2047         if (cross_bound(info->offset, info->len)) {
2048                 PRINT(KERN_ERR,
2049                       "rawiso xmit: packet %u crosses a page boundary",
2050                       iso->first_packet);
2051                 return -EINVAL;
2052         }
2053
2054         offset = info->offset;
2055         len = info->len;
2056         tag = info->tag;
2057         sy = info->sy;
2058
2059         /* sync up the card's view of the buffer */
2060         dma_region_sync_for_device(&iso->data_buf, offset, len);
2061
2062         /* append first_packet to the DMA chain */
2063         /* by linking the previous descriptor to it */
2064         /* (next will become the new end of the DMA chain) */
2065
2066         next_i = iso->first_packet;
2067         prev_i = (next_i == 0) ? (iso->buf_packets - 1) : (next_i - 1);
2068
2069         next = dma_region_i(&xmit->prog, struct iso_xmit_cmd, next_i);
2070         prev = dma_region_i(&xmit->prog, struct iso_xmit_cmd, prev_i);
2071
2072         /* set up the OUTPUT_MORE_IMMEDIATE descriptor */
2073         memset(next, 0, sizeof(struct iso_xmit_cmd));
2074         next->output_more_immediate.control = cpu_to_le32(0x02000008);
2075
2076         /* ISO packet header is embedded in the OUTPUT_MORE_IMMEDIATE */
2077
2078         /* tcode = 0xA, and sy */
2079         next->iso_hdr[0] = 0xA0 | (sy & 0xF);
2080
2081         /* tag and channel number */
2082         next->iso_hdr[1] = (tag << 6) | (iso->channel & 0x3F);
2083
2084         /* transmission speed */
2085         next->iso_hdr[2] = iso->speed & 0x7;
2086
2087         /* payload size */
2088         next->iso_hdr[6] = len & 0xFF;
2089         next->iso_hdr[7] = len >> 8;
2090
2091         /* set up the OUTPUT_LAST */
2092         next->output_last.control = cpu_to_le32(1 << 28);
2093         next->output_last.control |= cpu_to_le32(1 << 27); /* update timeStamp */
2094         next->output_last.control |= cpu_to_le32(3 << 20); /* want interrupt */
2095         next->output_last.control |= cpu_to_le32(3 << 18); /* enable branch */
2096         next->output_last.control |= cpu_to_le32(len);
2097
2098         /* payload bus address */
2099         next->output_last.address = cpu_to_le32(dma_region_offset_to_bus(&iso->data_buf, offset));
2100
2101         /* leave branchAddress at zero for now */
2102
2103         /* re-write the previous DMA descriptor to chain to this one */
2104
2105         /* set prev branch address to point to next (Z=3) */
2106         prev->output_last.branchAddress = cpu_to_le32(
2107                 dma_prog_region_offset_to_bus(&xmit->prog, sizeof(struct iso_xmit_cmd) * next_i) | 3);
2108
2109         /* disable interrupt, unless required by the IRQ interval */
2110         if (prev_i % iso->irq_interval) {
2111                 prev->output_last.control &= cpu_to_le32(~(3 << 20)); /* no interrupt */
2112         } else {
2113                 prev->output_last.control |= cpu_to_le32(3 << 20); /* enable interrupt */
2114         }
2115
2116         wmb();
2117
2118         /* wake DMA in case it is sleeping */
2119         reg_write(xmit->ohci, xmit->ContextControlSet, 1 << 12);
2120
2121         /* issue a dummy read of the cycle timer to force all PCI
2122            writes to be posted immediately */
2123         mb();
2124         reg_read(xmit->ohci, OHCI1394_IsochronousCycleTimer);
2125
2126         return 0;
2127 }
2128
2129 static int ohci_iso_xmit_start(struct hpsb_iso *iso, int cycle)
2130 {
2131         struct ohci_iso_xmit *xmit = iso->hostdata;
2132         struct ti_ohci *ohci = xmit->ohci;
2133
2134         /* clear out the control register */
2135         reg_write(xmit->ohci, xmit->ContextControlClear, 0xFFFFFFFF);
2136         wmb();
2137
2138         /* address and length of first descriptor block (Z=3) */
2139         reg_write(xmit->ohci, xmit->CommandPtr,
2140                   dma_prog_region_offset_to_bus(&xmit->prog, iso->pkt_dma * sizeof(struct iso_xmit_cmd)) | 3);
2141
2142         /* cycle match */
2143         if (cycle != -1) {
2144                 u32 start = cycle & 0x1FFF;
2145
2146                 /* 'cycle' is only mod 8000, but we also need two 'seconds' bits -
2147                    just snarf them from the current time */
2148                 u32 seconds = reg_read(xmit->ohci, OHCI1394_IsochronousCycleTimer) >> 25;
2149
2150                 /* advance one second to give some extra time for DMA to start */
2151                 seconds += 1;
2152
2153                 start |= (seconds & 3) << 13;
2154
2155                 reg_write(xmit->ohci, xmit->ContextControlSet, 0x80000000 | (start << 16));
2156         }
2157
2158         /* enable interrupts */
2159         reg_write(xmit->ohci, OHCI1394_IsoXmitIntMaskSet, 1 << xmit->task.context);
2160
2161         /* run */
2162         reg_write(xmit->ohci, xmit->ContextControlSet, 0x8000);
2163         mb();
2164
2165         /* wait 100 usec to give the card time to go active */
2166         udelay(100);
2167
2168         /* check the RUN bit */
2169         if (!(reg_read(xmit->ohci, xmit->ContextControlSet) & 0x8000)) {
2170                 PRINT(KERN_ERR, "Error starting IT DMA (ContextControl 0x%08x)\n",
2171                       reg_read(xmit->ohci, xmit->ContextControlSet));
2172                 return -1;
2173         }
2174
2175         return 0;
2176 }
2177
2178 static int ohci_isoctl(struct hpsb_iso *iso, enum isoctl_cmd cmd, unsigned long arg)
2179 {
2180
2181         switch(cmd) {
2182         case XMIT_INIT:
2183                 return ohci_iso_xmit_init(iso);
2184         case XMIT_START:
2185                 return ohci_iso_xmit_start(iso, arg);
2186         case XMIT_STOP:
2187                 ohci_iso_xmit_stop(iso);
2188                 return 0;
2189         case XMIT_QUEUE:
2190                 return ohci_iso_xmit_queue(iso, (struct hpsb_iso_packet_info*) arg);
2191         case XMIT_SHUTDOWN:
2192                 ohci_iso_xmit_shutdown(iso);
2193                 return 0;
2194
2195         case RECV_INIT:
2196                 return ohci_iso_recv_init(iso);
2197         case RECV_START: {
2198                 int *args = (int*) arg;
2199                 return ohci_iso_recv_start(iso, args[0], args[1], args[2]);
2200         }
2201         case RECV_STOP:
2202                 ohci_iso_recv_stop(iso);
2203                 return 0;
2204         case RECV_RELEASE:
2205                 ohci_iso_recv_release(iso, (struct hpsb_iso_packet_info*) arg);
2206                 return 0;
2207         case RECV_FLUSH:
2208                 ohci_iso_recv_task((unsigned long) iso);
2209                 return 0;
2210         case RECV_SHUTDOWN:
2211                 ohci_iso_recv_shutdown(iso);
2212                 return 0;
2213         case RECV_LISTEN_CHANNEL:
2214                 ohci_iso_recv_change_channel(iso, arg, 1);
2215                 return 0;
2216         case RECV_UNLISTEN_CHANNEL:
2217                 ohci_iso_recv_change_channel(iso, arg, 0);
2218                 return 0;
2219         case RECV_SET_CHANNEL_MASK:
2220                 ohci_iso_recv_set_channel_mask(iso, *((u64*) arg));
2221                 return 0;
2222
2223         default:
2224                 PRINT_G(KERN_ERR, "ohci_isoctl cmd %d not implemented yet",
2225                         cmd);
2226                 break;
2227         }
2228         return -EINVAL;
2229 }
2230
2231 /***************************************
2232  * IEEE-1394 functionality section END *
2233  ***************************************/
2234
2235
2236 /********************************************************
2237  * Global stuff (interrupt handler, init/shutdown code) *
2238  ********************************************************/
2239
2240 static void dma_trm_reset(struct dma_trm_ctx *d)
2241 {
2242         unsigned long flags;
2243         LIST_HEAD(packet_list);
2244         struct ti_ohci *ohci = d->ohci;
2245         struct hpsb_packet *packet, *ptmp;
2246
2247         ohci1394_stop_context(ohci, d->ctrlClear, NULL);
2248
2249         /* Lock the context, reset it and release it. Move the packets
2250          * that were pending in the context to packet_list and free
2251          * them after releasing the lock. */
2252
2253         spin_lock_irqsave(&d->lock, flags);
2254
2255         list_splice(&d->fifo_list, &packet_list);
2256         list_splice(&d->pending_list, &packet_list);
2257         INIT_LIST_HEAD(&d->fifo_list);
2258         INIT_LIST_HEAD(&d->pending_list);
2259
2260         d->branchAddrPtr = NULL;
2261         d->sent_ind = d->prg_ind;
2262         d->free_prgs = d->num_desc;
2263
2264         spin_unlock_irqrestore(&d->lock, flags);
2265
2266         if (list_empty(&packet_list))
2267                 return;
2268
2269         PRINT(KERN_INFO, "AT dma reset ctx=%d, aborting transmission", d->ctx);
2270
2271         /* Now process subsystem callbacks for the packets from this
2272          * context. */
2273         list_for_each_entry_safe(packet, ptmp, &packet_list, driver_list) {
2274                 list_del_init(&packet->driver_list);
2275                 hpsb_packet_sent(ohci->host, packet, ACKX_ABORTED);
2276         }
2277 }
2278
2279 static void ohci_schedule_iso_tasklets(struct ti_ohci *ohci,
2280                                        quadlet_t rx_event,
2281                                        quadlet_t tx_event)
2282 {
2283         struct ohci1394_iso_tasklet *t;
2284         unsigned long mask;
2285         unsigned long flags;
2286
2287         spin_lock_irqsave(&ohci->iso_tasklet_list_lock, flags);
2288
2289         list_for_each_entry(t, &ohci->iso_tasklet_list, link) {
2290                 mask = 1 << t->context;
2291
2292                 if (t->type == OHCI_ISO_TRANSMIT && tx_event & mask)
2293                         tasklet_schedule(&t->tasklet);
2294                 else if (rx_event & mask)
2295                         tasklet_schedule(&t->tasklet);
2296         }
2297
2298         spin_unlock_irqrestore(&ohci->iso_tasklet_list_lock, flags);
2299 }
2300
2301 static irqreturn_t ohci_irq_handler(int irq, void *dev_id)
2302 {
2303         quadlet_t event, node_id;
2304         struct ti_ohci *ohci = (struct ti_ohci *)dev_id;
2305         struct hpsb_host *host = ohci->host;
2306         int phyid = -1, isroot = 0;
2307         unsigned long flags;
2308
2309         /* Read and clear the interrupt event register.  Don't clear
2310          * the busReset event, though. This is done when we get the
2311          * selfIDComplete interrupt. */
2312         spin_lock_irqsave(&ohci->event_lock, flags);
2313         event = reg_read(ohci, OHCI1394_IntEventClear);
2314         reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
2315         spin_unlock_irqrestore(&ohci->event_lock, flags);
2316
2317         if (!event)
2318                 return IRQ_NONE;
2319
2320         /* If event is ~(u32)0 cardbus card was ejected.  In this case
2321          * we just return, and clean up in the ohci1394_pci_remove
2322          * function. */
2323         if (event == ~(u32) 0) {
2324                 DBGMSG("Device removed.");
2325                 return IRQ_NONE;
2326         }
2327
2328         DBGMSG("IntEvent: %08x", event);
2329
2330         if (event & OHCI1394_unrecoverableError) {
2331                 int ctx;
2332                 PRINT(KERN_ERR, "Unrecoverable error!");
2333
2334                 if (reg_read(ohci, OHCI1394_AsReqTrContextControlSet) & 0x800)
2335                         PRINT(KERN_ERR, "Async Req Tx Context died: "
2336                                 "ctrl[%08x] cmdptr[%08x]",
2337                                 reg_read(ohci, OHCI1394_AsReqTrContextControlSet),
2338                                 reg_read(ohci, OHCI1394_AsReqTrCommandPtr));
2339
2340                 if (reg_read(ohci, OHCI1394_AsRspTrContextControlSet) & 0x800)
2341                         PRINT(KERN_ERR, "Async Rsp Tx Context died: "
2342                                 "ctrl[%08x] cmdptr[%08x]",
2343                                 reg_read(ohci, OHCI1394_AsRspTrContextControlSet),
2344                                 reg_read(ohci, OHCI1394_AsRspTrCommandPtr));
2345
2346                 if (reg_read(ohci, OHCI1394_AsReqRcvContextControlSet) & 0x800)
2347                         PRINT(KERN_ERR, "Async Req Rcv Context died: "
2348                                 "ctrl[%08x] cmdptr[%08x]",
2349                                 reg_read(ohci, OHCI1394_AsReqRcvContextControlSet),
2350                                 reg_read(ohci, OHCI1394_AsReqRcvCommandPtr));
2351
2352                 if (reg_read(ohci, OHCI1394_AsRspRcvContextControlSet) & 0x800)
2353                         PRINT(KERN_ERR, "Async Rsp Rcv Context died: "
2354                                 "ctrl[%08x] cmdptr[%08x]",
2355                                 reg_read(ohci, OHCI1394_AsRspRcvContextControlSet),
2356                                 reg_read(ohci, OHCI1394_AsRspRcvCommandPtr));
2357
2358                 for (ctx = 0; ctx < ohci->nb_iso_xmit_ctx; ctx++) {
2359                         if (reg_read(ohci, OHCI1394_IsoXmitContextControlSet + (16 * ctx)) & 0x800)
2360                                 PRINT(KERN_ERR, "Iso Xmit %d Context died: "
2361                                         "ctrl[%08x] cmdptr[%08x]", ctx,
2362                                         reg_read(ohci, OHCI1394_IsoXmitContextControlSet + (16 * ctx)),
2363                                         reg_read(ohci, OHCI1394_IsoXmitCommandPtr + (16 * ctx)));
2364                 }
2365
2366                 for (ctx = 0; ctx < ohci->nb_iso_rcv_ctx; ctx++) {
2367                         if (reg_read(ohci, OHCI1394_IsoRcvContextControlSet + (32 * ctx)) & 0x800)
2368                                 PRINT(KERN_ERR, "Iso Recv %d Context died: "
2369                                         "ctrl[%08x] cmdptr[%08x] match[%08x]", ctx,
2370                                         reg_read(ohci, OHCI1394_IsoRcvContextControlSet + (32 * ctx)),
2371                                         reg_read(ohci, OHCI1394_IsoRcvCommandPtr + (32 * ctx)),
2372                                         reg_read(ohci, OHCI1394_IsoRcvContextMatch + (32 * ctx)));
2373                 }
2374
2375                 event &= ~OHCI1394_unrecoverableError;
2376         }
2377         if (event & OHCI1394_postedWriteErr) {
2378                 PRINT(KERN_ERR, "physical posted write error");
2379                 /* no recovery strategy yet, had to involve protocol drivers */
2380         }
2381         if (event & OHCI1394_cycleTooLong) {
2382                 if(printk_ratelimit())
2383                         PRINT(KERN_WARNING, "isochronous cycle too long");
2384                 else
2385                         DBGMSG("OHCI1394_cycleTooLong");
2386                 reg_write(ohci, OHCI1394_LinkControlSet,
2387                           OHCI1394_LinkControl_CycleMaster);
2388                 event &= ~OHCI1394_cycleTooLong;
2389         }
2390         if (event & OHCI1394_cycleInconsistent) {
2391                 /* We subscribe to the cycleInconsistent event only to
2392                  * clear the corresponding event bit... otherwise,
2393                  * isochronous cycleMatch DMA won't work. */
2394                 DBGMSG("OHCI1394_cycleInconsistent");
2395                 event &= ~OHCI1394_cycleInconsistent;
2396         }
2397         if (event & OHCI1394_busReset) {
2398                 /* The busReset event bit can't be cleared during the
2399                  * selfID phase, so we disable busReset interrupts, to
2400                  * avoid burying the cpu in interrupt requests. */
2401                 spin_lock_irqsave(&ohci->event_lock, flags);
2402                 reg_write(ohci, OHCI1394_IntMaskClear, OHCI1394_busReset);
2403
2404                 if (ohci->check_busreset) {
2405                         int loop_count = 0;
2406
2407                         udelay(10);
2408
2409                         while (reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
2410                                 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2411
2412                                 spin_unlock_irqrestore(&ohci->event_lock, flags);
2413                                 udelay(10);
2414                                 spin_lock_irqsave(&ohci->event_lock, flags);
2415
2416                                 /* The loop counter check is to prevent the driver
2417                                  * from remaining in this state forever. For the
2418                                  * initial bus reset, the loop continues for ever
2419                                  * and the system hangs, until some device is plugged-in
2420                                  * or out manually into a port! The forced reset seems
2421                                  * to solve this problem. This mainly effects nForce2. */
2422                                 if (loop_count > 10000) {
2423                                         ohci_devctl(host, RESET_BUS, LONG_RESET);
2424                                         DBGMSG("Detected bus-reset loop. Forced a bus reset!");
2425                                         loop_count = 0;
2426                                 }
2427
2428                                 loop_count++;
2429                         }
2430                 }
2431                 spin_unlock_irqrestore(&ohci->event_lock, flags);
2432                 if (!host->in_bus_reset) {
2433                         DBGMSG("irq_handler: Bus reset requested");
2434
2435                         /* Subsystem call */
2436                         hpsb_bus_reset(ohci->host);
2437                 }
2438                 event &= ~OHCI1394_busReset;
2439         }
2440         if (event & OHCI1394_reqTxComplete) {
2441                 struct dma_trm_ctx *d = &ohci->at_req_context;
2442                 DBGMSG("Got reqTxComplete interrupt "
2443                        "status=0x%08X", reg_read(ohci, d->ctrlSet));
2444                 if (reg_read(ohci, d->ctrlSet) & 0x800)
2445                         ohci1394_stop_context(ohci, d->ctrlClear,
2446                                               "reqTxComplete");
2447                 else
2448                         dma_trm_tasklet((unsigned long)d);
2449                         //tasklet_schedule(&d->task);
2450                 event &= ~OHCI1394_reqTxComplete;
2451         }
2452         if (event & OHCI1394_respTxComplete) {
2453                 struct dma_trm_ctx *d = &ohci->at_resp_context;
2454                 DBGMSG("Got respTxComplete interrupt "
2455                        "status=0x%08X", reg_read(ohci, d->ctrlSet));
2456                 if (reg_read(ohci, d->ctrlSet) & 0x800)
2457                         ohci1394_stop_context(ohci, d->ctrlClear,
2458                                               "respTxComplete");
2459                 else
2460                         tasklet_schedule(&d->task);
2461                 event &= ~OHCI1394_respTxComplete;
2462         }
2463         if (event & OHCI1394_RQPkt) {
2464                 struct dma_rcv_ctx *d = &ohci->ar_req_context;
2465                 DBGMSG("Got RQPkt interrupt status=0x%08X",
2466                        reg_read(ohci, d->ctrlSet));
2467                 if (reg_read(ohci, d->ctrlSet) & 0x800)
2468                         ohci1394_stop_context(ohci, d->ctrlClear, "RQPkt");
2469                 else
2470                         tasklet_schedule(&d->task);
2471                 event &= ~OHCI1394_RQPkt;
2472         }
2473         if (event & OHCI1394_RSPkt) {
2474                 struct dma_rcv_ctx *d = &ohci->ar_resp_context;
2475                 DBGMSG("Got RSPkt interrupt status=0x%08X",
2476                        reg_read(ohci, d->ctrlSet));
2477                 if (reg_read(ohci, d->ctrlSet) & 0x800)
2478                         ohci1394_stop_context(ohci, d->ctrlClear, "RSPkt");
2479                 else
2480                         tasklet_schedule(&d->task);
2481                 event &= ~OHCI1394_RSPkt;
2482         }
2483         if (event & OHCI1394_isochRx) {
2484                 quadlet_t rx_event;
2485
2486                 rx_event = reg_read(ohci, OHCI1394_IsoRecvIntEventSet);
2487                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, rx_event);
2488                 ohci_schedule_iso_tasklets(ohci, rx_event, 0);
2489                 event &= ~OHCI1394_isochRx;
2490         }
2491         if (event & OHCI1394_isochTx) {
2492                 quadlet_t tx_event;
2493
2494                 tx_event = reg_read(ohci, OHCI1394_IsoXmitIntEventSet);
2495                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, tx_event);
2496                 ohci_schedule_iso_tasklets(ohci, 0, tx_event);
2497                 event &= ~OHCI1394_isochTx;
2498         }
2499         if (event & OHCI1394_selfIDComplete) {
2500                 if (host->in_bus_reset) {
2501                         node_id = reg_read(ohci, OHCI1394_NodeID);
2502
2503                         if (!(node_id & 0x80000000)) {
2504                                 PRINT(KERN_ERR,
2505                                       "SelfID received, but NodeID invalid "
2506                                       "(probably new bus reset occurred): %08X",
2507                                       node_id);
2508                                 goto selfid_not_valid;
2509                         }
2510
2511                         phyid =  node_id & 0x0000003f;
2512                         isroot = (node_id & 0x40000000) != 0;
2513
2514                         DBGMSG("SelfID interrupt received "
2515                               "(phyid %d, %s)", phyid,
2516                               (isroot ? "root" : "not root"));
2517
2518                         handle_selfid(ohci, host, phyid, isroot);
2519
2520                         /* Clear the bus reset event and re-enable the
2521                          * busReset interrupt.  */
2522                         spin_lock_irqsave(&ohci->event_lock, flags);
2523                         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2524                         reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
2525                         spin_unlock_irqrestore(&ohci->event_lock, flags);
2526
2527                         /* Turn on phys dma reception.
2528                          *
2529                          * TODO: Enable some sort of filtering management.
2530                          */
2531                         if (phys_dma) {
2532                                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet,
2533                                           0xffffffff);
2534                                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet,
2535                                           0xffffffff);
2536                         }
2537
2538                         DBGMSG("PhyReqFilter=%08x%08x",
2539                                reg_read(ohci, OHCI1394_PhyReqFilterHiSet),
2540                                reg_read(ohci, OHCI1394_PhyReqFilterLoSet));
2541
2542                         hpsb_selfid_complete(host, phyid, isroot);
2543                 } else
2544                         PRINT(KERN_ERR,
2545                               "SelfID received outside of bus reset sequence");
2546
2547 selfid_not_valid:
2548                 event &= ~OHCI1394_selfIDComplete;
2549         }
2550
2551         /* Make sure we handle everything, just in case we accidentally
2552          * enabled an interrupt that we didn't write a handler for.  */
2553         if (event)
2554                 PRINT(KERN_ERR, "Unhandled interrupt(s) 0x%08x",
2555                       event);
2556
2557         return IRQ_HANDLED;
2558 }
2559
2560 /* Put the buffer back into the dma context */
2561 static void insert_dma_buffer(struct dma_rcv_ctx *d, int idx)
2562 {
2563         struct ti_ohci *ohci = (struct ti_ohci*)(d->ohci);
2564         DBGMSG("Inserting dma buf ctx=%d idx=%d", d->ctx, idx);
2565
2566         d->prg_cpu[idx]->status = cpu_to_le32(d->buf_size);
2567         d->prg_cpu[idx]->branchAddress &= le32_to_cpu(0xfffffff0);
2568         idx = (idx + d->num_desc - 1 ) % d->num_desc;
2569         d->prg_cpu[idx]->branchAddress |= le32_to_cpu(0x00000001);
2570
2571         /* To avoid a race, ensure 1394 interface hardware sees the inserted
2572          * context program descriptors before it sees the wakeup bit set. */
2573         wmb();
2574         
2575         /* wake up the dma context if necessary */
2576         if (!(reg_read(ohci, d->ctrlSet) & 0x400)) {
2577                 PRINT(KERN_INFO,
2578                       "Waking dma ctx=%d ... processing is probably too slow",
2579                       d->ctx);
2580         }
2581
2582         /* do this always, to avoid race condition */
2583         reg_write(ohci, d->ctrlSet, 0x1000);
2584 }
2585
2586 #define cond_le32_to_cpu(data, noswap) \
2587         (noswap ? data : le32_to_cpu(data))
2588
2589 static const int TCODE_SIZE[16] = {20, 0, 16, -1, 16, 20, 20, 0,
2590                             -1, 0, -1, 0, -1, -1, 16, -1};
2591
2592 /*
2593  * Determine the length of a packet in the buffer
2594  * Optimization suggested by Pascal Drolet <pascal.drolet@informission.ca>
2595  */
2596 static inline int packet_length(struct dma_rcv_ctx *d, int idx,
2597                                 quadlet_t *buf_ptr, int offset,
2598                                 unsigned char tcode, int noswap)
2599 {
2600         int length = -1;
2601
2602         if (d->type == DMA_CTX_ASYNC_REQ || d->type == DMA_CTX_ASYNC_RESP) {
2603                 length = TCODE_SIZE[tcode];
2604                 if (length == 0) {
2605                         if (offset + 12 >= d->buf_size) {
2606                                 length = (cond_le32_to_cpu(d->buf_cpu[(idx + 1) % d->num_desc]
2607                                                 [3 - ((d->buf_size - offset) >> 2)], noswap) >> 16);
2608                         } else {
2609                                 length = (cond_le32_to_cpu(buf_ptr[3], noswap) >> 16);
2610                         }
2611                         length += 20;
2612                 }
2613         } else if (d->type == DMA_CTX_ISO) {
2614                 /* Assumption: buffer fill mode with header/trailer */
2615                 length = (cond_le32_to_cpu(buf_ptr[0], noswap) >> 16) + 8;
2616         }
2617
2618         if (length > 0 && length % 4)
2619                 length += 4 - (length % 4);
2620
2621         return length;
2622 }
2623
2624 /* Tasklet that processes dma receive buffers */
2625 static void dma_rcv_tasklet (unsigned long data)
2626 {
2627         struct dma_rcv_ctx *d = (struct dma_rcv_ctx*)data;
2628         struct ti_ohci *ohci = (struct ti_ohci*)(d->ohci);
2629         unsigned int split_left, idx, offset, rescount;
2630         unsigned char tcode;
2631         int length, bytes_left, ack;
2632         unsigned long flags;
2633         quadlet_t *buf_ptr;
2634         char *split_ptr;
2635         char msg[256];
2636
2637         spin_lock_irqsave(&d->lock, flags);
2638
2639         idx = d->buf_ind;
2640         offset = d->buf_offset;
2641         buf_ptr = d->buf_cpu[idx] + offset/4;
2642
2643         rescount = le32_to_cpu(d->prg_cpu[idx]->status) & 0xffff;
2644         bytes_left = d->buf_size - rescount - offset;
2645
2646         while (bytes_left > 0) {
2647                 tcode = (cond_le32_to_cpu(buf_ptr[0], ohci->no_swap_incoming) >> 4) & 0xf;
2648
2649                 /* packet_length() will return < 4 for an error */
2650                 length = packet_length(d, idx, buf_ptr, offset, tcode, ohci->no_swap_incoming);
2651
2652                 if (length < 4) { /* something is wrong */
2653                         sprintf(msg,"Unexpected tcode 0x%x(0x%08x) in AR ctx=%d, length=%d",
2654                                 tcode, cond_le32_to_cpu(buf_ptr[0], ohci->no_swap_incoming),
2655                                 d->ctx, length);
2656                         ohci1394_stop_context(ohci, d->ctrlClear, msg);
2657                         spin_unlock_irqrestore(&d->lock, flags);
2658                         return;
2659                 }
2660
2661                 /* The first case is where we have a packet that crosses
2662                  * over more than one descriptor. The next case is where
2663                  * it's all in the first descriptor.  */
2664                 if ((offset + length) > d->buf_size) {
2665                         DBGMSG("Split packet rcv'd");
2666                         if (length > d->split_buf_size) {
2667                                 ohci1394_stop_context(ohci, d->ctrlClear,
2668                                              "Split packet size exceeded");
2669                                 d->buf_ind = idx;
2670                                 d->buf_offset = offset;
2671                                 spin_unlock_irqrestore(&d->lock, flags);
2672                                 return;
2673                         }
2674
2675                         if (le32_to_cpu(d->prg_cpu[(idx+1)%d->num_desc]->status)
2676                             == d->buf_size) {
2677                                 /* Other part of packet not written yet.
2678                                  * this should never happen I think
2679                                  * anyway we'll get it on the next call.  */
2680                                 PRINT(KERN_INFO,
2681                                       "Got only half a packet!");
2682                                 d->buf_ind = idx;
2683                                 d->buf_offset = offset;
2684                                 spin_unlock_irqrestore(&d->lock, flags);
2685                                 return;
2686                         }
2687
2688                         split_left = length;
2689                         split_ptr = (char *)d->spb;
2690                         memcpy(split_ptr,buf_ptr,d->buf_size-offset);
2691                         split_left -= d->buf_size-offset;
2692                         split_ptr += d->buf_size-offset;
2693                         insert_dma_buffer(d, idx);
2694                         idx = (idx+1) % d->num_desc;
2695                         buf_ptr = d->buf_cpu[idx];
2696                         offset=0;
2697
2698                         while (split_left >= d->buf_size) {
2699                                 memcpy(split_ptr,buf_ptr,d->buf_size);
2700                                 split_ptr += d->buf_size;
2701                                 split_left -= d->buf_size;
2702                                 insert_dma_buffer(d, idx);
2703                                 idx = (idx+1) % d->num_desc;
2704                                 buf_ptr = d->buf_cpu[idx];
2705                         }
2706
2707                         if (split_left > 0) {
2708                                 memcpy(split_ptr, buf_ptr, split_left);
2709                                 offset = split_left;
2710                                 buf_ptr += offset/4;
2711                         }
2712                 } else {
2713                         DBGMSG("Single packet rcv'd");
2714                         memcpy(d->spb, buf_ptr, length);
2715                         offset += length;
2716                         buf_ptr += length/4;
2717                         if (offset==d->buf_size) {
2718                                 insert_dma_buffer(d, idx);
2719                                 idx = (idx+1) % d->num_desc;
2720                                 buf_ptr = d->buf_cpu[idx];
2721                                 offset=0;
2722                         }
2723                 }
2724
2725                 /* We get one phy packet to the async descriptor for each
2726                  * bus reset. We always ignore it.  */
2727                 if (tcode != OHCI1394_TCODE_PHY) {
2728                         if (!ohci->no_swap_incoming)
2729                                 header_le32_to_cpu(d->spb, tcode);
2730                         DBGMSG("Packet received from node"
2731                                 " %d ack=0x%02X spd=%d tcode=0x%X"
2732                                 " length=%d ctx=%d tlabel=%d",
2733                                 (d->spb[1]>>16)&0x3f,
2734                                 (cond_le32_to_cpu(d->spb[length/4-1], ohci->no_swap_incoming)>>16)&0x1f,
2735                                 (cond_le32_to_cpu(d->spb[length/4-1], ohci->no_swap_incoming)>>21)&0x3,
2736                                 tcode, length, d->ctx,
2737                                 (d->spb[0]>>10)&0x3f);
2738
2739                         ack = (((cond_le32_to_cpu(d->spb[length/4-1], ohci->no_swap_incoming)>>16)&0x1f)
2740                                 == 0x11) ? 1 : 0;
2741
2742                         hpsb_packet_received(ohci->host, d->spb,
2743                                              length-4, ack);
2744                 }
2745 #ifdef OHCI1394_DEBUG
2746                 else
2747                         PRINT (KERN_DEBUG, "Got phy packet ctx=%d ... discarded",
2748                                d->ctx);
2749 #endif
2750
2751                 rescount = le32_to_cpu(d->prg_cpu[idx]->status) & 0xffff;
2752
2753                 bytes_left = d->buf_size - rescount - offset;
2754
2755         }
2756
2757         d->buf_ind = idx;
2758         d->buf_offset = offset;
2759
2760         spin_unlock_irqrestore(&d->lock, flags);
2761 }
2762
2763 /* Bottom half that processes sent packets */
2764 static void dma_trm_tasklet (unsigned long data)
2765 {
2766         struct dma_trm_ctx *d = (struct dma_trm_ctx*)data;
2767         struct ti_ohci *ohci = (struct ti_ohci*)(d->ohci);
2768         struct hpsb_packet *packet, *ptmp;
2769         unsigned long flags;
2770         u32 status, ack;
2771         size_t datasize;
2772
2773         spin_lock_irqsave(&d->lock, flags);
2774
2775         list_for_each_entry_safe(packet, ptmp, &d->fifo_list, driver_list) {
2776                 datasize = packet->data_size;
2777                 if (datasize && packet->type != hpsb_raw)
2778                         status = le32_to_cpu(
2779                                 d->prg_cpu[d->sent_ind]->end.status) >> 16;
2780                 else
2781                         status = le32_to_cpu(
2782                                 d->prg_cpu[d->sent_ind]->begin.status) >> 16;
2783
2784                 if (status == 0)
2785                         /* this packet hasn't been sent yet*/
2786                         break;
2787
2788 #ifdef OHCI1394_DEBUG
2789                 if (datasize)
2790                         if (((le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])>>4)&0xf) == 0xa)
2791                                 DBGMSG("Stream packet sent to channel %d tcode=0x%X "
2792                                        "ack=0x%X spd=%d dataLength=%d ctx=%d",
2793                                        (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])>>8)&0x3f,
2794                                        (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])>>4)&0xf,
2795                                        status&0x1f, (status>>5)&0x3,
2796                                        le32_to_cpu(d->prg_cpu[d->sent_ind]->data[1])>>16,
2797                                        d->ctx);
2798                         else
2799                                 DBGMSG("Packet sent to node %d tcode=0x%X tLabel="
2800                                        "%d ack=0x%X spd=%d dataLength=%d ctx=%d",
2801                                        (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[1])>>16)&0x3f,
2802                                        (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])>>4)&0xf,
2803                                        (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])>>10)&0x3f,
2804                                        status&0x1f, (status>>5)&0x3,
2805                                        le32_to_cpu(d->prg_cpu[d->sent_ind]->data[3])>>16,
2806                                        d->ctx);
2807                 else
2808                         DBGMSG("Packet sent to node %d tcode=0x%X tLabel="
2809                                "%d ack=0x%X spd=%d data=0x%08X ctx=%d",
2810                                 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[1])
2811                                         >>16)&0x3f,
2812                                 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])
2813                                         >>4)&0xf,
2814                                 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])
2815                                         >>10)&0x3f,
2816                                 status&0x1f, (status>>5)&0x3,
2817                                 le32_to_cpu(d->prg_cpu[d->sent_ind]->data[3]),
2818                                 d->ctx);
2819 #endif
2820
2821                 if (status & 0x10) {
2822                         ack = status & 0xf;
2823                 } else {
2824                         switch (status & 0x1f) {
2825                         case EVT_NO_STATUS: /* that should never happen */
2826                         case EVT_RESERVED_A: /* that should never happen */
2827                         case EVT_LONG_PACKET: /* that should never happen */
2828                                 PRINT(KERN_WARNING, "Received OHCI evt_* error 0x%x", status & 0x1f);
2829                                 ack = ACKX_SEND_ERROR;
2830                                 break;
2831                         case EVT_MISSING_ACK:
2832                                 ack = ACKX_TIMEOUT;
2833                                 break;
2834                         case EVT_UNDERRUN:
2835                                 ack = ACKX_SEND_ERROR;
2836                                 break;
2837                         case EVT_OVERRUN: /* that should never happen */
2838                                 PRINT(KERN_WARNING, "Received OHCI evt_* error 0x%x", status & 0x1f);
2839                                 ack = ACKX_SEND_ERROR;
2840                                 break;
2841                         case EVT_DESCRIPTOR_READ:
2842                         case EVT_DATA_READ:
2843                         case EVT_DATA_WRITE:
2844                                 ack = ACKX_SEND_ERROR;
2845                                 break;
2846                         case EVT_BUS_RESET: /* that should never happen */
2847                                 PRINT(KERN_WARNING, "Received OHCI evt_* error 0x%x", status & 0x1f);
2848                                 ack = ACKX_SEND_ERROR;
2849                                 break;
2850                         case EVT_TIMEOUT:
2851                                 ack = ACKX_TIMEOUT;
2852                                 break;
2853                         case EVT_TCODE_ERR:
2854                                 ack = ACKX_SEND_ERROR;
2855                                 break;
2856                         case EVT_RESERVED_B: /* that should never happen */
2857                         case EVT_RESERVED_C: /* that should never happen */
2858                                 PRINT(KERN_WARNING, "Received OHCI evt_* error 0x%x", status & 0x1f);
2859                                 ack = ACKX_SEND_ERROR;
2860                                 break;
2861                         case EVT_UNKNOWN:
2862                         case EVT_FLUSHED:
2863                                 ack = ACKX_SEND_ERROR;
2864                                 break;
2865                         default:
2866                                 PRINT(KERN_ERR, "Unhandled OHCI evt_* error 0x%x", status & 0x1f);
2867                                 ack = ACKX_SEND_ERROR;
2868                                 BUG();
2869                         }
2870                 }
2871
2872                 list_del_init(&packet->driver_list);
2873                 hpsb_packet_sent(ohci->host, packet, ack);
2874
2875                 if (datasize) {
2876                         pci_unmap_single(ohci->dev,
2877                                          cpu_to_le32(d->prg_cpu[d->sent_ind]->end.address),
2878                                          datasize, PCI_DMA_TODEVICE);
2879                         OHCI_DMA_FREE("single Xmit data packet");
2880                 }
2881
2882                 d->sent_ind = (d->sent_ind+1)%d->num_desc;
2883                 d->free_prgs++;
2884         }
2885
2886         dma_trm_flush(ohci, d);
2887
2888         spin_unlock_irqrestore(&d->lock, flags);
2889 }
2890
2891 static void stop_dma_rcv_ctx(struct dma_rcv_ctx *d)
2892 {
2893         if (d->ctrlClear) {
2894                 ohci1394_stop_context(d->ohci, d->ctrlClear, NULL);
2895
2896                 if (d->type == DMA_CTX_ISO) {
2897                         /* disable interrupts */
2898                         reg_write(d->ohci, OHCI1394_IsoRecvIntMaskClear, 1 << d->ctx);
2899                         ohci1394_unregister_iso_tasklet(d->ohci, &d->ohci->ir_legacy_tasklet);
2900                 } else {
2901                         tasklet_kill(&d->task);
2902                 }
2903         }
2904 }
2905
2906
2907 static void free_dma_rcv_ctx(struct dma_rcv_ctx *d)
2908 {
2909         int i;
2910         struct ti_ohci *ohci = d->ohci;
2911
2912         if (ohci == NULL)
2913                 return;
2914
2915         DBGMSG("Freeing dma_rcv_ctx %d", d->ctx);
2916
2917         if (d->buf_cpu) {
2918                 for (i=0; i<d->num_desc; i++)
2919                         if (d->buf_cpu[i] && d->buf_bus[i]) {
2920                                 pci_free_consistent(
2921                                         ohci->dev, d->buf_size,
2922                                         d->buf_cpu[i], d->buf_bus[i]);
2923                                 OHCI_DMA_FREE("consistent dma_rcv buf[%d]", i);
2924                         }
2925                 kfree(d->buf_cpu);
2926                 kfree(d->buf_bus);
2927         }
2928         if (d->prg_cpu) {
2929                 for (i=0; i<d->num_desc; i++)
2930                         if (d->prg_cpu[i] && d->prg_bus[i]) {
2931                                 pci_pool_free(d->prg_pool, d->prg_cpu[i], d->prg_bus[i]);
2932                                 OHCI_DMA_FREE("consistent dma_rcv prg[%d]", i);
2933                         }
2934                 pci_pool_destroy(d->prg_pool);
2935                 OHCI_DMA_FREE("dma_rcv prg pool");
2936                 kfree(d->prg_cpu);
2937                 kfree(d->prg_bus);
2938         }
2939         kfree(d->spb);
2940
2941         /* Mark this context as freed. */
2942         d->ohci = NULL;
2943 }
2944
2945 static int
2946 alloc_dma_rcv_ctx(struct ti_ohci *ohci, struct dma_rcv_ctx *d,
2947                   enum context_type type, int ctx, int num_desc,
2948                   int buf_size, int split_buf_size, int context_base)
2949 {
2950         int i, len;
2951         static int num_allocs;
2952         static char pool_name[20];
2953
2954         d->ohci = ohci;
2955         d->type = type;
2956         d->ctx = ctx;
2957
2958         d->num_desc = num_desc;
2959         d->buf_size = buf_size;
2960         d->split_buf_size = split_buf_size;
2961
2962         d->ctrlSet = 0;
2963         d->ctrlClear = 0;
2964         d->cmdPtr = 0;
2965
2966         d->buf_cpu = kzalloc(d->num_desc * sizeof(*d->buf_cpu), GFP_ATOMIC);
2967         d->buf_bus = kzalloc(d->num_desc * sizeof(*d->buf_bus), GFP_ATOMIC);
2968
2969         if (d->buf_cpu == NULL || d->buf_bus == NULL) {
2970                 PRINT(KERN_ERR, "Failed to allocate dma buffer");
2971                 free_dma_rcv_ctx(d);
2972                 return -ENOMEM;
2973         }
2974
2975         d->prg_cpu = kzalloc(d->num_desc * sizeof(*d->prg_cpu), GFP_ATOMIC);
2976         d->prg_bus = kzalloc(d->num_desc * sizeof(*d->prg_bus), GFP_ATOMIC);
2977
2978         if (d->prg_cpu == NULL || d->prg_bus == NULL) {
2979                 PRINT(KERN_ERR, "Failed to allocate dma prg");
2980                 free_dma_rcv_ctx(d);
2981                 return -ENOMEM;
2982         }
2983
2984         d->spb = kmalloc(d->split_buf_size, GFP_ATOMIC);
2985
2986         if (d->spb == NULL) {
2987                 PRINT(KERN_ERR, "Failed to allocate split buffer");
2988                 free_dma_rcv_ctx(d);
2989                 return -ENOMEM;
2990         }
2991         
2992         len = sprintf(pool_name, "ohci1394_rcv_prg");
2993         sprintf(pool_name+len, "%d", num_allocs);
2994         d->prg_pool = pci_pool_create(pool_name, ohci->dev,
2995                                 sizeof(struct dma_cmd), 4, 0);
2996         if(d->prg_pool == NULL)
2997         {
2998                 PRINT(KERN_ERR, "pci_pool_create failed for %s", pool_name);
2999                 free_dma_rcv_ctx(d);
3000                 return -ENOMEM;
3001         }
3002         num_allocs++;
3003
3004         OHCI_DMA_ALLOC("dma_rcv prg pool");
3005
3006         for (i=0; i<d->num_desc; i++) {
3007                 d->buf_cpu[i] = pci_alloc_consistent(ohci->dev,
3008                                                      d->buf_size,
3009                                                      d->buf_bus+i);
3010                 OHCI_DMA_ALLOC("consistent dma_rcv buf[%d]", i);
3011
3012                 if (d->buf_cpu[i] != NULL) {
3013                         memset(d->buf_cpu[i], 0, d->buf_size);
3014                 } else {
3015                         PRINT(KERN_ERR,
3016                               "Failed to allocate dma buffer");
3017                         free_dma_rcv_ctx(d);
3018                         return -ENOMEM;
3019                 }
3020
3021                 d->prg_cpu[i] = pci_pool_alloc(d->prg_pool, GFP_KERNEL, d->prg_bus+i);
3022                 OHCI_DMA_ALLOC("pool dma_rcv prg[%d]", i);
3023
3024                 if (d->prg_cpu[i] != NULL) {
3025                         memset(d->prg_cpu[i], 0, sizeof(struct dma_cmd));
3026                 } else {
3027                         PRINT(KERN_ERR,
3028                               "Failed to allocate dma prg");
3029                         free_dma_rcv_ctx(d);
3030                         return -ENOMEM;
3031                 }
3032         }
3033
3034         spin_lock_init(&d->lock);
3035
3036         if (type == DMA_CTX_ISO) {
3037                 ohci1394_init_iso_tasklet(&ohci->ir_legacy_tasklet,
3038                                           OHCI_ISO_MULTICHANNEL_RECEIVE,
3039                                           dma_rcv_tasklet, (unsigned long) d);
3040         } else {
3041                 d->ctrlSet = context_base + OHCI1394_ContextControlSet;
3042                 d->ctrlClear = context_base + OHCI1394_ContextControlClear;
3043                 d->cmdPtr = context_base + OHCI1394_ContextCommandPtr;
3044
3045                 tasklet_init (&d->task, dma_rcv_tasklet, (unsigned long) d);
3046         }
3047
3048         return 0;
3049 }
3050
3051 static void free_dma_trm_ctx(struct dma_trm_ctx *d)
3052 {
3053         int i;
3054         struct ti_ohci *ohci = d->ohci;
3055
3056         if (ohci == NULL)
3057                 return;
3058
3059         DBGMSG("Freeing dma_trm_ctx %d", d->ctx);
3060
3061         if (d->prg_cpu) {
3062                 for (i=0; i<d->num_desc; i++)
3063                         if (d->prg_cpu[i] && d->prg_bus[i]) {
3064                                 pci_pool_free(d->prg_pool, d->prg_cpu[i], d->prg_bus[i]);
3065                                 OHCI_DMA_FREE("pool dma_trm prg[%d]", i);
3066                         }
3067                 pci_pool_destroy(d->prg_pool);
3068                 OHCI_DMA_FREE("dma_trm prg pool");
3069                 kfree(d->prg_cpu);
3070                 kfree(d->prg_bus);
3071         }
3072
3073         /* Mark this context as freed. */
3074         d->ohci = NULL;
3075 }
3076
3077 static int
3078 alloc_dma_trm_ctx(struct ti_ohci *ohci, struct dma_trm_ctx *d,
3079                   enum context_type type, int ctx, int num_desc,
3080                   int context_base)
3081 {
3082         int i, len;
3083         static char pool_name[20];
3084         static int num_allocs=0;
3085
3086         d->ohci = ohci;
3087         d->type = type;
3088         d->ctx = ctx;
3089         d->num_desc = num_desc;
3090         d->ctrlSet = 0;
3091         d->ctrlClear = 0;
3092         d->cmdPtr = 0;
3093
3094         d->prg_cpu = kzalloc(d->num_desc * sizeof(*d->prg_cpu), GFP_KERNEL);
3095         d->prg_bus = kzalloc(d->num_desc * sizeof(*d->prg_bus), GFP_KERNEL);
3096
3097         if (d->prg_cpu == NULL || d->prg_bus == NULL) {
3098                 PRINT(KERN_ERR, "Failed to allocate at dma prg");
3099                 free_dma_trm_ctx(d);
3100                 return -ENOMEM;
3101         }
3102
3103         len = sprintf(pool_name, "ohci1394_trm_prg");
3104         sprintf(pool_name+len, "%d", num_allocs);
3105         d->prg_pool = pci_pool_create(pool_name, ohci->dev,
3106                                 sizeof(struct at_dma_prg), 4, 0);
3107         if (d->prg_pool == NULL) {
3108                 PRINT(KERN_ERR, "pci_pool_create failed for %s", pool_name);
3109                 free_dma_trm_ctx(d);
3110                 return -ENOMEM;
3111         }
3112         num_allocs++;
3113
3114         OHCI_DMA_ALLOC("dma_rcv prg pool");
3115
3116         for (i = 0; i < d->num_desc; i++) {
3117                 d->prg_cpu[i] = pci_pool_alloc(d->prg_pool, GFP_KERNEL, d->prg_bus+i);
3118                 OHCI_DMA_ALLOC("pool dma_trm prg[%d]", i);
3119
3120                 if (d->prg_cpu[i] != NULL) {
3121                         memset(d->prg_cpu[i], 0, sizeof(struct at_dma_prg));
3122                 } else {
3123                         PRINT(KERN_ERR,
3124                               "Failed to allocate at dma prg");
3125                         free_dma_trm_ctx(d);
3126                         return -ENOMEM;
3127                 }
3128         }
3129
3130         spin_lock_init(&d->lock);
3131
3132         /* initialize tasklet */
3133         if (type == DMA_CTX_ISO) {
3134                 ohci1394_init_iso_tasklet(&ohci->it_legacy_tasklet, OHCI_ISO_TRANSMIT,
3135                                           dma_trm_tasklet, (unsigned long) d);
3136                 if (ohci1394_register_iso_tasklet(ohci,
3137                                                   &ohci->it_legacy_tasklet) < 0) {
3138                         PRINT(KERN_ERR, "No IT DMA context available");
3139                         free_dma_trm_ctx(d);
3140                         return -EBUSY;
3141                 }
3142
3143                 /* IT can be assigned to any context by register_iso_tasklet */
3144                 d->ctx = ohci->it_legacy_tasklet.context;
3145                 d->ctrlSet = OHCI1394_IsoXmitContextControlSet + 16 * d->ctx;
3146                 d->ctrlClear = OHCI1394_IsoXmitContextControlClear + 16 * d->ctx;
3147                 d->cmdPtr = OHCI1394_IsoXmitCommandPtr + 16 * d->ctx;
3148         } else {
3149                 d->ctrlSet = context_base + OHCI1394_ContextControlSet;
3150                 d->ctrlClear = context_base + OHCI1394_ContextControlClear;
3151                 d->cmdPtr = context_base + OHCI1394_ContextCommandPtr;
3152                 tasklet_init (&d->task, dma_trm_tasklet, (unsigned long)d);
3153         }
3154
3155         return 0;
3156 }
3157
3158 static void ohci_set_hw_config_rom(struct hpsb_host *host, quadlet_t *config_rom)
3159 {
3160         struct ti_ohci *ohci = host->hostdata;
3161
3162         reg_write(ohci, OHCI1394_ConfigROMhdr, be32_to_cpu(config_rom[0]));
3163         reg_write(ohci, OHCI1394_BusOptions, be32_to_cpu(config_rom[2]));
3164
3165         memcpy(ohci->csr_config_rom_cpu, config_rom, OHCI_CONFIG_ROM_LEN);
3166 }
3167
3168
3169 static quadlet_t ohci_hw_csr_reg(struct hpsb_host *host, int reg,
3170                                  quadlet_t data, quadlet_t compare)
3171 {
3172         struct ti_ohci *ohci = host->hostdata;
3173         int i;
3174
3175         reg_write(ohci, OHCI1394_CSRData, data);
3176         reg_write(ohci, OHCI1394_CSRCompareData, compare);
3177         reg_write(ohci, OHCI1394_CSRControl, reg & 0x3);
3178
3179         for (i = 0; i < OHCI_LOOP_COUNT; i++) {
3180                 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
3181                         break;
3182
3183                 mdelay(1);
3184         }
3185
3186         return reg_read(ohci, OHCI1394_CSRData);
3187 }
3188
3189 static struct hpsb_host_driver ohci1394_driver = {
3190         .owner =                THIS_MODULE,
3191         .name =                 OHCI1394_DRIVER_NAME,
3192         .set_hw_config_rom =    ohci_set_hw_config_rom,
3193         .transmit_packet =      ohci_transmit,
3194         .devctl =               ohci_devctl,
3195         .isoctl =               ohci_isoctl,
3196         .hw_csr_reg =           ohci_hw_csr_reg,
3197 };
3198
3199 /***********************************
3200  * PCI Driver Interface functions  *
3201  ***********************************/
3202
3203 #define FAIL(err, fmt, args...)                 \
3204 do {                                            \
3205         PRINT_G(KERN_ERR, fmt , ## args);       \
3206         ohci1394_pci_remove(dev);               \
3207         return err;                             \
3208 } while (0)
3209
3210 static int __devinit ohci1394_pci_probe(struct pci_dev *dev,
3211                                         const struct pci_device_id *ent)
3212 {
3213         struct hpsb_host *host;
3214         struct ti_ohci *ohci;   /* shortcut to currently handled device */
3215         resource_size_t ohci_base;
3216
3217 #ifdef CONFIG_PPC_PMAC
3218         /* Necessary on some machines if ohci1394 was loaded/ unloaded before */
3219         if (machine_is(powermac)) {
3220                 struct device_node *ofn = pci_device_to_OF_node(dev);
3221
3222                 if (ofn) {
3223                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3224                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3225                 }
3226         }
3227 #endif /* CONFIG_PPC_PMAC */
3228
3229         if (pci_enable_device(dev))
3230                 FAIL(-ENXIO, "Failed to enable OHCI hardware");
3231         pci_set_master(dev);
3232
3233         host = hpsb_alloc_host(&ohci1394_driver, sizeof(struct ti_ohci), &dev->dev);
3234         if (!host) FAIL(-ENOMEM, "Failed to allocate host structure");
3235
3236         ohci = host->hostdata;
3237         ohci->dev = dev;
3238         ohci->host = host;
3239         ohci->init_state = OHCI_INIT_ALLOC_HOST;
3240         host->pdev = dev;
3241         pci_set_drvdata(dev, ohci);
3242
3243         /* We don't want hardware swapping */
3244         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3245
3246         /* Some oddball Apple controllers do not order the selfid
3247          * properly, so we make up for it here.  */
3248 #ifndef __LITTLE_ENDIAN
3249         /* XXX: Need a better way to check this. I'm wondering if we can
3250          * read the values of the OHCI1394_PCI_HCI_Control and the
3251          * noByteSwapData registers to see if they were not cleared to
3252          * zero. Should this work? Obviously it's not defined what these
3253          * registers will read when they aren't supported. Bleh! */
3254         if (dev->vendor == PCI_VENDOR_ID_APPLE &&
3255             dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW) {
3256                 ohci->no_swap_incoming = 1;
3257                 ohci->selfid_swap = 0;
3258         } else
3259                 ohci->selfid_swap = 1;
3260 #endif
3261
3262
3263 #ifndef PCI_DEVICE_ID_NVIDIA_NFORCE2_FW
3264 #define PCI_DEVICE_ID_NVIDIA_NFORCE2_FW 0x006e
3265 #endif
3266
3267         /* These chipsets require a bit of extra care when checking after
3268          * a busreset.  */
3269         if ((dev->vendor == PCI_VENDOR_ID_APPLE &&
3270              dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW) ||
3271             (dev->vendor ==  PCI_VENDOR_ID_NVIDIA &&
3272              dev->device == PCI_DEVICE_ID_NVIDIA_NFORCE2_FW))
3273                 ohci->check_busreset = 1;
3274
3275         /* We hardwire the MMIO length, since some CardBus adaptors
3276          * fail to report the right length.  Anyway, the ohci spec
3277          * clearly says it's 2kb, so this shouldn't be a problem. */
3278         ohci_base = pci_resource_start(dev, 0);
3279         if (pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE)
3280                 PRINT(KERN_WARNING, "PCI resource length of 0x%llx too small!",
3281                       (unsigned long long)pci_resource_len(dev, 0));
3282
3283         if (!request_mem_region(ohci_base, OHCI1394_REGISTER_SIZE,
3284                                 OHCI1394_DRIVER_NAME))
3285                 FAIL(-ENOMEM, "MMIO resource (0x%llx - 0x%llx) unavailable",
3286                         (unsigned long long)ohci_base,
3287                         (unsigned long long)ohci_base + OHCI1394_REGISTER_SIZE);
3288         ohci->init_state = OHCI_INIT_HAVE_MEM_REGION;
3289
3290         ohci->registers = ioremap(ohci_base, OHCI1394_REGISTER_SIZE);
3291         if (ohci->registers == NULL)
3292                 FAIL(-ENXIO, "Failed to remap registers - card not accessible");
3293         ohci->init_state = OHCI_INIT_HAVE_IOMAPPING;
3294         DBGMSG("Remapped memory spaces reg 0x%p", ohci->registers);
3295
3296         /* csr_config rom allocation */
3297         ohci->csr_config_rom_cpu =
3298                 pci_alloc_consistent(ohci->dev, OHCI_CONFIG_ROM_LEN,
3299                                      &ohci->csr_config_rom_bus);
3300         OHCI_DMA_ALLOC("consistent csr_config_rom");
3301         if (ohci->csr_config_rom_cpu == NULL)
3302                 FAIL(-ENOMEM, "Failed to allocate buffer config rom");
3303         ohci->init_state = OHCI_INIT_HAVE_CONFIG_ROM_BUFFER;
3304
3305         /* self-id dma buffer allocation */
3306         ohci->selfid_buf_cpu =
3307                 pci_alloc_consistent(ohci->dev, OHCI1394_SI_DMA_BUF_SIZE,
3308                       &ohci->selfid_buf_bus);
3309         OHCI_DMA_ALLOC("consistent selfid_buf");
3310
3311         if (ohci->selfid_buf_cpu == NULL)
3312                 FAIL(-ENOMEM, "Failed to allocate DMA buffer for self-id packets");
3313         ohci->init_state = OHCI_INIT_HAVE_SELFID_BUFFER;
3314
3315         if ((unsigned long)ohci->selfid_buf_cpu & 0x1fff)
3316                 PRINT(KERN_INFO, "SelfID buffer %p is not aligned on "
3317                       "8Kb boundary... may cause problems on some CXD3222 chip",
3318                       ohci->selfid_buf_cpu);
3319
3320         /* No self-id errors at startup */
3321         ohci->self_id_errors = 0;
3322
3323         ohci->init_state = OHCI_INIT_HAVE_TXRX_BUFFERS__MAYBE;
3324         /* AR DMA request context allocation */
3325         if (alloc_dma_rcv_ctx(ohci, &ohci->ar_req_context,
3326                               DMA_CTX_ASYNC_REQ, 0, AR_REQ_NUM_DESC,
3327                               AR_REQ_BUF_SIZE, AR_REQ_SPLIT_BUF_SIZE,
3328                               OHCI1394_AsReqRcvContextBase) < 0)
3329                 FAIL(-ENOMEM, "Failed to allocate AR Req context");
3330
3331         /* AR DMA response context allocation */
3332         if (alloc_dma_rcv_ctx(ohci, &ohci->ar_resp_context,
3333                               DMA_CTX_ASYNC_RESP, 0, AR_RESP_NUM_DESC,
3334                               AR_RESP_BUF_SIZE, AR_RESP_SPLIT_BUF_SIZE,
3335                               OHCI1394_AsRspRcvContextBase) < 0)
3336                 FAIL(-ENOMEM, "Failed to allocate AR Resp context");
3337
3338         /* AT DMA request context */
3339         if (alloc_dma_trm_ctx(ohci, &ohci->at_req_context,
3340                               DMA_CTX_ASYNC_REQ, 0, AT_REQ_NUM_DESC,
3341                               OHCI1394_AsReqTrContextBase) < 0)
3342                 FAIL(-ENOMEM, "Failed to allocate AT Req context");
3343
3344         /* AT DMA response context */
3345         if (alloc_dma_trm_ctx(ohci, &ohci->at_resp_context,
3346                               DMA_CTX_ASYNC_RESP, 1, AT_RESP_NUM_DESC,
3347                               OHCI1394_AsRspTrContextBase) < 0)
3348                 FAIL(-ENOMEM, "Failed to allocate AT Resp context");
3349
3350         /* Start off with a soft reset, to clear everything to a sane
3351          * state. */
3352         ohci_soft_reset(ohci);
3353
3354         /* Now enable LPS, which we need in order to start accessing
3355          * most of the registers.  In fact, on some cards (ALI M5251),
3356          * accessing registers in the SClk domain without LPS enabled
3357          * will lock up the machine.  Wait 50msec to make sure we have
3358          * full link enabled.  */
3359         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_LPS);
3360
3361         /* Disable and clear interrupts */
3362         reg_write(ohci, OHCI1394_IntEventClear, 0xffffffff);
3363         reg_write(ohci, OHCI1394_IntMaskClear, 0xffffffff);
3364
3365         mdelay(50);
3366
3367         /* Determine the number of available IR and IT contexts. */
3368         ohci->nb_iso_rcv_ctx =
3369                 get_nb_iso_ctx(ohci, OHCI1394_IsoRecvIntMaskSet);
3370         ohci->nb_iso_xmit_ctx =
3371                 get_nb_iso_ctx(ohci, OHCI1394_IsoXmitIntMaskSet);
3372
3373         /* Set the usage bits for non-existent contexts so they can't
3374          * be allocated */
3375         ohci->ir_ctx_usage = ~0 << ohci->nb_iso_rcv_ctx;
3376         ohci->it_ctx_usage = ~0 << ohci->nb_iso_xmit_ctx;
3377
3378         INIT_LIST_HEAD(&ohci->iso_tasklet_list);
3379         spin_lock_init(&ohci->iso_tasklet_list_lock);
3380         ohci->ISO_channel_usage = 0;
3381         spin_lock_init(&ohci->IR_channel_lock);
3382
3383         /* Allocate the IR DMA context right here so we don't have
3384          * to do it in interrupt path - note that this doesn't
3385          * waste much memory and avoids the jugglery required to
3386          * allocate it in IRQ path. */
3387         if (alloc_dma_rcv_ctx(ohci, &ohci->ir_legacy_context,
3388                               DMA_CTX_ISO, 0, IR_NUM_DESC,
3389                               IR_BUF_SIZE, IR_SPLIT_BUF_SIZE,
3390                               OHCI1394_IsoRcvContextBase) < 0) {
3391                 FAIL(-ENOMEM, "Cannot allocate IR Legacy DMA context");
3392         }
3393
3394         /* We hopefully don't have to pre-allocate IT DMA like we did
3395          * for IR DMA above. Allocate it on-demand and mark inactive. */
3396         ohci->it_legacy_context.ohci = NULL;
3397         spin_lock_init(&ohci->event_lock);
3398
3399         /*
3400          * interrupts are disabled, all right, but... due to IRQF_SHARED we
3401          * might get called anyway.  We'll see no event, of course, but
3402          * we need to get to that "no event", so enough should be initialized
3403          * by that point.
3404          */
3405         if (request_irq(dev->irq, ohci_irq_handler, IRQF_SHARED,
3406                          OHCI1394_DRIVER_NAME, ohci))
3407                 FAIL(-ENOMEM, "Failed to allocate shared interrupt %d", dev->irq);
3408
3409         ohci->init_state = OHCI_INIT_HAVE_IRQ;
3410         ohci_initialize(ohci);
3411
3412         /* Set certain csr values */
3413         host->csr.guid_hi = reg_read(ohci, OHCI1394_GUIDHi);
3414         host->csr.guid_lo = reg_read(ohci, OHCI1394_GUIDLo);
3415         host->csr.cyc_clk_acc = 100;  /* how do we determine clk accuracy? */
3416         host->csr.max_rec = (reg_read(ohci, OHCI1394_BusOptions) >> 12) & 0xf;
3417         host->csr.lnk_spd = reg_read(ohci, OHCI1394_BusOptions) & 0x7;
3418
3419         if (phys_dma) {
3420                 host->low_addr_space =
3421                         (u64) reg_read(ohci, OHCI1394_PhyUpperBound) << 16;
3422                 if (!host->low_addr_space)
3423                         host->low_addr_space = OHCI1394_PHYS_UPPER_BOUND_FIXED;
3424         }
3425         host->middle_addr_space = OHCI1394_MIDDLE_ADDRESS_SPACE;
3426
3427         /* Tell the highlevel this host is ready */
3428         if (hpsb_add_host(host))
3429                 FAIL(-ENOMEM, "Failed to register host with highlevel");
3430
3431         ohci->init_state = OHCI_INIT_DONE;
3432
3433         return 0;
3434 #undef FAIL
3435 }
3436
3437 static void ohci1394_pci_remove(struct pci_dev *pdev)
3438 {
3439         struct ti_ohci *ohci;
3440         struct device *dev;
3441
3442         ohci = pci_get_drvdata(pdev);
3443         if (!ohci)
3444                 return;
3445
3446         dev = get_device(&ohci->host->device);
3447
3448         switch (ohci->init_state) {
3449         case OHCI_INIT_DONE:
3450                 hpsb_remove_host(ohci->host);
3451
3452                 /* Clear out BUS Options */
3453                 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
3454                 reg_write(ohci, OHCI1394_BusOptions,
3455                           (reg_read(ohci, OHCI1394_BusOptions) & 0x0000f007) |
3456                           0x00ff0000);
3457                 memset(ohci->csr_config_rom_cpu, 0, OHCI_CONFIG_ROM_LEN);
3458
3459         case OHCI_INIT_HAVE_IRQ:
3460                 /* Clear interrupt registers */
3461                 reg_write(ohci, OHCI1394_IntMaskClear, 0xffffffff);
3462                 reg_write(ohci, OHCI1394_IntEventClear, 0xffffffff);
3463                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 0xffffffff);
3464                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 0xffffffff);
3465                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 0xffffffff);
3466                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 0xffffffff);
3467
3468                 /* Disable IRM Contender */
3469                 set_phy_reg(ohci, 4, ~0xc0 & get_phy_reg(ohci, 4));
3470
3471                 /* Clear link control register */
3472                 reg_write(ohci, OHCI1394_LinkControlClear, 0xffffffff);
3473
3474                 /* Let all other nodes know to ignore us */
3475                 ohci_devctl(ohci->host, RESET_BUS, LONG_RESET_NO_FORCE_ROOT);
3476
3477                 /* Soft reset before we start - this disables
3478                  * interrupts and clears linkEnable and LPS. */
3479                 ohci_soft_reset(ohci);
3480                 free_irq(ohci->dev->irq, ohci);
3481
3482         case OHCI_INIT_HAVE_TXRX_BUFFERS__MAYBE:
3483                 /* The ohci_soft_reset() stops all DMA contexts, so we
3484                  * dont need to do this.  */
3485                 free_dma_rcv_ctx(&ohci->ar_req_context);
3486                 free_dma_rcv_ctx(&ohci->ar_resp_context);
3487                 free_dma_trm_ctx(&ohci->at_req_context);
3488                 free_dma_trm_ctx(&ohci->at_resp_context);
3489                 free_dma_rcv_ctx(&ohci->ir_legacy_context);
3490                 free_dma_trm_ctx(&ohci->it_legacy_context);
3491
3492         case OHCI_INIT_HAVE_SELFID_BUFFER:
3493                 pci_free_consistent(ohci->dev, OHCI1394_SI_DMA_BUF_SIZE,
3494                                     ohci->selfid_buf_cpu,
3495                                     ohci->selfid_buf_bus);
3496                 OHCI_DMA_FREE("consistent selfid_buf");
3497
3498         case OHCI_INIT_HAVE_CONFIG_ROM_BUFFER:
3499                 pci_free_consistent(ohci->dev, OHCI_CONFIG_ROM_LEN,
3500                                     ohci->csr_config_rom_cpu,
3501                                     ohci->csr_config_rom_bus);
3502                 OHCI_DMA_FREE("consistent csr_config_rom");
3503
3504         case OHCI_INIT_HAVE_IOMAPPING:
3505                 iounmap(ohci->registers);
3506
3507         case OHCI_INIT_HAVE_MEM_REGION:
3508                 release_mem_region(pci_resource_start(ohci->dev, 0),
3509                                    OHCI1394_REGISTER_SIZE);
3510
3511 #ifdef CONFIG_PPC_PMAC
3512         /* On UniNorth, power down the cable and turn off the chip clock
3513          * to save power on laptops */
3514         if (machine_is(powermac)) {
3515                 struct device_node* ofn = pci_device_to_OF_node(ohci->dev);
3516
3517                 if (ofn) {
3518                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3519                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3520                 }
3521         }
3522 #endif /* CONFIG_PPC_PMAC */
3523
3524         case OHCI_INIT_ALLOC_HOST:
3525                 pci_set_drvdata(ohci->dev, NULL);
3526         }
3527
3528         if (dev)
3529                 put_device(dev);
3530 }
3531
3532 #ifdef CONFIG_PM
3533 static int ohci1394_pci_suspend(struct pci_dev *pdev, pm_message_t state)
3534 {
3535         int err;
3536         struct ti_ohci *ohci = pci_get_drvdata(pdev);
3537
3538         if (!ohci) {
3539                 printk(KERN_ERR "%s: tried to suspend nonexisting host\n",
3540                        OHCI1394_DRIVER_NAME);
3541                 return -ENXIO;
3542         }
3543         DBGMSG("suspend called");
3544
3545         /* Clear the async DMA contexts and stop using the controller */
3546         hpsb_bus_reset(ohci->host);
3547
3548         /* See ohci1394_pci_remove() for comments on this sequence */
3549         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
3550         reg_write(ohci, OHCI1394_BusOptions,
3551                   (reg_read(ohci, OHCI1394_BusOptions) & 0x0000f007) |
3552                   0x00ff0000);
3553         reg_write(ohci, OHCI1394_IntMaskClear, 0xffffffff);
3554         reg_write(ohci, OHCI1394_IntEventClear, 0xffffffff);
3555         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 0xffffffff);
3556         reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 0xffffffff);
3557         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 0xffffffff);
3558         reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 0xffffffff);
3559         set_phy_reg(ohci, 4, ~0xc0 & get_phy_reg(ohci, 4));
3560         reg_write(ohci, OHCI1394_LinkControlClear, 0xffffffff);
3561         ohci_devctl(ohci->host, RESET_BUS, LONG_RESET_NO_FORCE_ROOT);
3562         ohci_soft_reset(ohci);
3563
3564         err = pci_save_state(pdev);
3565         if (err) {
3566                 PRINT(KERN_ERR, "pci_save_state failed with %d", err);
3567                 return err;
3568         }
3569         err = pci_set_power_state(pdev, pci_choose_state(pdev, state));
3570         if (err)
3571                 DBGMSG("pci_set_power_state failed with %d", err);
3572
3573 /* PowerMac suspend code comes last */
3574 #ifdef CONFIG_PPC_PMAC
3575         if (machine_is(powermac)) {
3576                 struct device_node *ofn = pci_device_to_OF_node(pdev);
3577
3578                 if (ofn)
3579                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3580         }
3581 #endif /* CONFIG_PPC_PMAC */
3582
3583         return 0;
3584 }
3585
3586 static int ohci1394_pci_resume(struct pci_dev *pdev)
3587 {
3588         int err;
3589         struct ti_ohci *ohci = pci_get_drvdata(pdev);
3590
3591         if (!ohci) {
3592                 printk(KERN_ERR "%s: tried to resume nonexisting host\n",
3593                        OHCI1394_DRIVER_NAME);
3594                 return -ENXIO;
3595         }
3596         DBGMSG("resume called");
3597
3598 /* PowerMac resume code comes first */
3599 #ifdef CONFIG_PPC_PMAC
3600         if (machine_is(powermac)) {
3601                 struct device_node *ofn = pci_device_to_OF_node(pdev);
3602
3603                 if (ofn)
3604                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3605         }
3606 #endif /* CONFIG_PPC_PMAC */
3607
3608         pci_set_power_state(pdev, PCI_D0);
3609         pci_restore_state(pdev);
3610         err = pci_enable_device(pdev);
3611         if (err) {
3612                 PRINT(KERN_ERR, "pci_enable_device failed with %d", err);
3613                 return err;
3614         }
3615
3616         /* See ohci1394_pci_probe() for comments on this sequence */
3617         ohci_soft_reset(ohci);
3618         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_LPS);
3619         reg_write(ohci, OHCI1394_IntEventClear, 0xffffffff);
3620         reg_write(ohci, OHCI1394_IntMaskClear, 0xffffffff);
3621         mdelay(50);
3622         ohci_initialize(ohci);
3623
3624         hpsb_resume_host(ohci->host);
3625         return 0;
3626 }
3627 #endif /* CONFIG_PM */
3628
3629 static struct pci_device_id ohci1394_pci_tbl[] = {
3630         {
3631                 .class =        PCI_CLASS_SERIAL_FIREWIRE_OHCI,
3632                 .class_mask =   PCI_ANY_ID,
3633                 .vendor =       PCI_ANY_ID,
3634                 .device =       PCI_ANY_ID,
3635                 .subvendor =    PCI_ANY_ID,
3636                 .subdevice =    PCI_ANY_ID,
3637         },
3638         { 0, },
3639 };
3640
3641 MODULE_DEVICE_TABLE(pci, ohci1394_pci_tbl);
3642
3643 static struct pci_driver ohci1394_pci_driver = {
3644         .name =         OHCI1394_DRIVER_NAME,
3645         .id_table =     ohci1394_pci_tbl,
3646         .probe =        ohci1394_pci_probe,
3647         .remove =       ohci1394_pci_remove,
3648 #ifdef CONFIG_PM
3649         .resume =       ohci1394_pci_resume,
3650         .suspend =      ohci1394_pci_suspend,
3651 #endif
3652 };
3653
3654 /***********************************
3655  * OHCI1394 Video Interface        *
3656  ***********************************/
3657
3658 /* essentially the only purpose of this code is to allow another
3659    module to hook into ohci's interrupt handler */
3660
3661 /* returns zero if successful, one if DMA context is locked up */
3662 int ohci1394_stop_context(struct ti_ohci *ohci, int reg, char *msg)
3663 {
3664         int i=0;
3665
3666         /* stop the channel program if it's still running */
3667         reg_write(ohci, reg, 0x8000);
3668
3669         /* Wait until it effectively stops */
3670         while (reg_read(ohci, reg) & 0x400) {
3671                 i++;
3672                 if (i>5000) {
3673                         PRINT(KERN_ERR,
3674                               "Runaway loop while stopping context: %s...", msg ? msg : "");
3675                         return 1;
3676                 }
3677
3678                 mb();
3679                 udelay(10);
3680         }
3681         if (msg) PRINT(KERN_ERR, "%s: dma prg stopped", msg);
3682         return 0;
3683 }
3684
3685 void ohci1394_init_iso_tasklet(struct ohci1394_iso_tasklet *tasklet, int type,
3686                                void (*func)(unsigned long), unsigned long data)
3687 {
3688         tasklet_init(&tasklet->tasklet, func, data);
3689         tasklet->type = type;
3690         /* We init the tasklet->link field, so we can list_del() it
3691          * without worrying whether it was added to the list or not. */
3692         INIT_LIST_HEAD(&tasklet->link);
3693 }
3694
3695 int ohci1394_register_iso_tasklet(struct ti_ohci *ohci,
3696                                   struct ohci1394_iso_tasklet *tasklet)
3697 {
3698         unsigned long flags, *usage;
3699         int n, i, r = -EBUSY;
3700
3701         if (tasklet->type == OHCI_ISO_TRANSMIT) {
3702                 n = ohci->nb_iso_xmit_ctx;
3703                 usage = &ohci->it_ctx_usage;
3704         }
3705         else {
3706                 n = ohci->nb_iso_rcv_ctx;
3707                 usage = &ohci->ir_ctx_usage;
3708
3709                 /* only one receive context can be multichannel (OHCI sec 10.4.1) */
3710                 if (tasklet->type == OHCI_ISO_MULTICHANNEL_RECEIVE) {
3711                         if (test_and_set_bit(0, &ohci->ir_multichannel_used)) {
3712                                 return r;
3713                         }
3714                 }
3715         }
3716
3717         spin_lock_irqsave(&ohci->iso_tasklet_list_lock, flags);
3718
3719         for (i = 0; i < n; i++)
3720                 if (!test_and_set_bit(i, usage)) {
3721                         tasklet->context = i;
3722                         list_add_tail(&tasklet->link, &ohci->iso_tasklet_list);
3723                         r = 0;
3724                         break;
3725                 }
3726
3727         spin_unlock_irqrestore(&ohci->iso_tasklet_list_lock, flags);
3728
3729         return r;
3730 }
3731
3732 void ohci1394_unregister_iso_tasklet(struct ti_ohci *ohci,
3733                                      struct ohci1394_iso_tasklet *tasklet)
3734 {
3735         unsigned long flags;
3736
3737         tasklet_kill(&tasklet->tasklet);
3738
3739         spin_lock_irqsave(&ohci->iso_tasklet_list_lock, flags);
3740
3741         if (tasklet->type == OHCI_ISO_TRANSMIT)
3742                 clear_bit(tasklet->context, &ohci->it_ctx_usage);
3743         else {
3744                 clear_bit(tasklet->context, &ohci->ir_ctx_usage);
3745
3746                 if (tasklet->type == OHCI_ISO_MULTICHANNEL_RECEIVE) {
3747                         clear_bit(0, &ohci->ir_multichannel_used);
3748                 }
3749         }
3750
3751         list_del(&tasklet->link);
3752
3753         spin_unlock_irqrestore(&ohci->iso_tasklet_list_lock, flags);
3754 }
3755
3756 EXPORT_SYMBOL(ohci1394_stop_context);
3757 EXPORT_SYMBOL(ohci1394_init_iso_tasklet);
3758 EXPORT_SYMBOL(ohci1394_register_iso_tasklet);
3759 EXPORT_SYMBOL(ohci1394_unregister_iso_tasklet);
3760
3761 /***********************************
3762  * General module initialization   *
3763  ***********************************/
3764
3765 MODULE_AUTHOR("Sebastien Rougeaux <sebastien.rougeaux@anu.edu.au>");
3766 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE-1394 controllers");
3767 MODULE_LICENSE("GPL");
3768
3769 static void __exit ohci1394_cleanup (void)
3770 {
3771         pci_unregister_driver(&ohci1394_pci_driver);
3772 }
3773
3774 static int __init ohci1394_init(void)
3775 {
3776         return pci_register_driver(&ohci1394_pci_driver);
3777 }
3778
3779 /* Register before most other device drivers.
3780  * Useful for remote debugging via physical DMA, e.g. using firescope. */
3781 fs_initcall(ohci1394_init);
3782 module_exit(ohci1394_cleanup);