ide: move ide_config_drive_speed() calls to upper layers (take 2)
[linux-2.6.git] / drivers / ide / ide-iops.c
1 /*
2  * linux/drivers/ide/ide-iops.c Version 0.37    Mar 05, 2003
3  *
4  *  Copyright (C) 2000-2002     Andre Hedrick <andre@linux-ide.org>
5  *  Copyright (C) 2003          Red Hat <alan@redhat.com>
6  *
7  */
8
9 #include <linux/module.h>
10 #include <linux/types.h>
11 #include <linux/string.h>
12 #include <linux/kernel.h>
13 #include <linux/timer.h>
14 #include <linux/mm.h>
15 #include <linux/interrupt.h>
16 #include <linux/major.h>
17 #include <linux/errno.h>
18 #include <linux/genhd.h>
19 #include <linux/blkpg.h>
20 #include <linux/slab.h>
21 #include <linux/pci.h>
22 #include <linux/delay.h>
23 #include <linux/hdreg.h>
24 #include <linux/ide.h>
25 #include <linux/bitops.h>
26 #include <linux/nmi.h>
27
28 #include <asm/byteorder.h>
29 #include <asm/irq.h>
30 #include <asm/uaccess.h>
31 #include <asm/io.h>
32
33 /*
34  *      Conventional PIO operations for ATA devices
35  */
36
37 static u8 ide_inb (unsigned long port)
38 {
39         return (u8) inb(port);
40 }
41
42 static u16 ide_inw (unsigned long port)
43 {
44         return (u16) inw(port);
45 }
46
47 static void ide_insw (unsigned long port, void *addr, u32 count)
48 {
49         insw(port, addr, count);
50 }
51
52 static void ide_insl (unsigned long port, void *addr, u32 count)
53 {
54         insl(port, addr, count);
55 }
56
57 static void ide_outb (u8 val, unsigned long port)
58 {
59         outb(val, port);
60 }
61
62 static void ide_outbsync (ide_drive_t *drive, u8 addr, unsigned long port)
63 {
64         outb(addr, port);
65 }
66
67 static void ide_outw (u16 val, unsigned long port)
68 {
69         outw(val, port);
70 }
71
72 static void ide_outsw (unsigned long port, void *addr, u32 count)
73 {
74         outsw(port, addr, count);
75 }
76
77 static void ide_outsl (unsigned long port, void *addr, u32 count)
78 {
79         outsl(port, addr, count);
80 }
81
82 void default_hwif_iops (ide_hwif_t *hwif)
83 {
84         hwif->OUTB      = ide_outb;
85         hwif->OUTBSYNC  = ide_outbsync;
86         hwif->OUTW      = ide_outw;
87         hwif->OUTSW     = ide_outsw;
88         hwif->OUTSL     = ide_outsl;
89         hwif->INB       = ide_inb;
90         hwif->INW       = ide_inw;
91         hwif->INSW      = ide_insw;
92         hwif->INSL      = ide_insl;
93 }
94
95 /*
96  *      MMIO operations, typically used for SATA controllers
97  */
98
99 static u8 ide_mm_inb (unsigned long port)
100 {
101         return (u8) readb((void __iomem *) port);
102 }
103
104 static u16 ide_mm_inw (unsigned long port)
105 {
106         return (u16) readw((void __iomem *) port);
107 }
108
109 static void ide_mm_insw (unsigned long port, void *addr, u32 count)
110 {
111         __ide_mm_insw((void __iomem *) port, addr, count);
112 }
113
114 static void ide_mm_insl (unsigned long port, void *addr, u32 count)
115 {
116         __ide_mm_insl((void __iomem *) port, addr, count);
117 }
118
119 static void ide_mm_outb (u8 value, unsigned long port)
120 {
121         writeb(value, (void __iomem *) port);
122 }
123
124 static void ide_mm_outbsync (ide_drive_t *drive, u8 value, unsigned long port)
125 {
126         writeb(value, (void __iomem *) port);
127 }
128
129 static void ide_mm_outw (u16 value, unsigned long port)
130 {
131         writew(value, (void __iomem *) port);
132 }
133
134 static void ide_mm_outsw (unsigned long port, void *addr, u32 count)
135 {
136         __ide_mm_outsw((void __iomem *) port, addr, count);
137 }
138
139 static void ide_mm_outsl (unsigned long port, void *addr, u32 count)
140 {
141         __ide_mm_outsl((void __iomem *) port, addr, count);
142 }
143
144 void default_hwif_mmiops (ide_hwif_t *hwif)
145 {
146         hwif->OUTB      = ide_mm_outb;
147         /* Most systems will need to override OUTBSYNC, alas however
148            this one is controller specific! */
149         hwif->OUTBSYNC  = ide_mm_outbsync;
150         hwif->OUTW      = ide_mm_outw;
151         hwif->OUTSW     = ide_mm_outsw;
152         hwif->OUTSL     = ide_mm_outsl;
153         hwif->INB       = ide_mm_inb;
154         hwif->INW       = ide_mm_inw;
155         hwif->INSW      = ide_mm_insw;
156         hwif->INSL      = ide_mm_insl;
157 }
158
159 EXPORT_SYMBOL(default_hwif_mmiops);
160
161 u32 ide_read_24 (ide_drive_t *drive)
162 {
163         u8 hcyl = HWIF(drive)->INB(IDE_HCYL_REG);
164         u8 lcyl = HWIF(drive)->INB(IDE_LCYL_REG);
165         u8 sect = HWIF(drive)->INB(IDE_SECTOR_REG);
166         return (hcyl<<16)|(lcyl<<8)|sect;
167 }
168
169 void SELECT_DRIVE (ide_drive_t *drive)
170 {
171         if (HWIF(drive)->selectproc)
172                 HWIF(drive)->selectproc(drive);
173         HWIF(drive)->OUTB(drive->select.all, IDE_SELECT_REG);
174 }
175
176 EXPORT_SYMBOL(SELECT_DRIVE);
177
178 void SELECT_INTERRUPT (ide_drive_t *drive)
179 {
180         if (HWIF(drive)->intrproc)
181                 HWIF(drive)->intrproc(drive);
182         else
183                 HWIF(drive)->OUTB(drive->ctl|2, IDE_CONTROL_REG);
184 }
185
186 void SELECT_MASK (ide_drive_t *drive, int mask)
187 {
188         if (HWIF(drive)->maskproc)
189                 HWIF(drive)->maskproc(drive, mask);
190 }
191
192 void QUIRK_LIST (ide_drive_t *drive)
193 {
194         if (HWIF(drive)->quirkproc)
195                 drive->quirk_list = HWIF(drive)->quirkproc(drive);
196 }
197
198 /*
199  * Some localbus EIDE interfaces require a special access sequence
200  * when using 32-bit I/O instructions to transfer data.  We call this
201  * the "vlb_sync" sequence, which consists of three successive reads
202  * of the sector count register location, with interrupts disabled
203  * to ensure that the reads all happen together.
204  */
205 static void ata_vlb_sync(ide_drive_t *drive, unsigned long port)
206 {
207         (void) HWIF(drive)->INB(port);
208         (void) HWIF(drive)->INB(port);
209         (void) HWIF(drive)->INB(port);
210 }
211
212 /*
213  * This is used for most PIO data transfers *from* the IDE interface
214  */
215 static void ata_input_data(ide_drive_t *drive, void *buffer, u32 wcount)
216 {
217         ide_hwif_t *hwif        = HWIF(drive);
218         u8 io_32bit             = drive->io_32bit;
219
220         if (io_32bit) {
221                 if (io_32bit & 2) {
222                         unsigned long flags;
223                         local_irq_save(flags);
224                         ata_vlb_sync(drive, IDE_NSECTOR_REG);
225                         hwif->INSL(IDE_DATA_REG, buffer, wcount);
226                         local_irq_restore(flags);
227                 } else
228                         hwif->INSL(IDE_DATA_REG, buffer, wcount);
229         } else {
230                 hwif->INSW(IDE_DATA_REG, buffer, wcount<<1);
231         }
232 }
233
234 /*
235  * This is used for most PIO data transfers *to* the IDE interface
236  */
237 static void ata_output_data(ide_drive_t *drive, void *buffer, u32 wcount)
238 {
239         ide_hwif_t *hwif        = HWIF(drive);
240         u8 io_32bit             = drive->io_32bit;
241
242         if (io_32bit) {
243                 if (io_32bit & 2) {
244                         unsigned long flags;
245                         local_irq_save(flags);
246                         ata_vlb_sync(drive, IDE_NSECTOR_REG);
247                         hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
248                         local_irq_restore(flags);
249                 } else
250                         hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
251         } else {
252                 hwif->OUTSW(IDE_DATA_REG, buffer, wcount<<1);
253         }
254 }
255
256 /*
257  * The following routines are mainly used by the ATAPI drivers.
258  *
259  * These routines will round up any request for an odd number of bytes,
260  * so if an odd bytecount is specified, be sure that there's at least one
261  * extra byte allocated for the buffer.
262  */
263
264 static void atapi_input_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
265 {
266         ide_hwif_t *hwif = HWIF(drive);
267
268         ++bytecount;
269 #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
270         if (MACH_IS_ATARI || MACH_IS_Q40) {
271                 /* Atari has a byte-swapped IDE interface */
272                 insw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
273                 return;
274         }
275 #endif /* CONFIG_ATARI || CONFIG_Q40 */
276         hwif->ata_input_data(drive, buffer, bytecount / 4);
277         if ((bytecount & 0x03) >= 2)
278                 hwif->INSW(IDE_DATA_REG, ((u8 *)buffer)+(bytecount & ~0x03), 1);
279 }
280
281 static void atapi_output_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
282 {
283         ide_hwif_t *hwif = HWIF(drive);
284
285         ++bytecount;
286 #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
287         if (MACH_IS_ATARI || MACH_IS_Q40) {
288                 /* Atari has a byte-swapped IDE interface */
289                 outsw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
290                 return;
291         }
292 #endif /* CONFIG_ATARI || CONFIG_Q40 */
293         hwif->ata_output_data(drive, buffer, bytecount / 4);
294         if ((bytecount & 0x03) >= 2)
295                 hwif->OUTSW(IDE_DATA_REG, ((u8*)buffer)+(bytecount & ~0x03), 1);
296 }
297
298 void default_hwif_transport(ide_hwif_t *hwif)
299 {
300         hwif->ata_input_data            = ata_input_data;
301         hwif->ata_output_data           = ata_output_data;
302         hwif->atapi_input_bytes         = atapi_input_bytes;
303         hwif->atapi_output_bytes        = atapi_output_bytes;
304 }
305
306 /*
307  * Beginning of Taskfile OPCODE Library and feature sets.
308  */
309 void ide_fix_driveid (struct hd_driveid *id)
310 {
311 #ifndef __LITTLE_ENDIAN
312 # ifdef __BIG_ENDIAN
313         int i;
314         u16 *stringcast;
315
316         id->config         = __le16_to_cpu(id->config);
317         id->cyls           = __le16_to_cpu(id->cyls);
318         id->reserved2      = __le16_to_cpu(id->reserved2);
319         id->heads          = __le16_to_cpu(id->heads);
320         id->track_bytes    = __le16_to_cpu(id->track_bytes);
321         id->sector_bytes   = __le16_to_cpu(id->sector_bytes);
322         id->sectors        = __le16_to_cpu(id->sectors);
323         id->vendor0        = __le16_to_cpu(id->vendor0);
324         id->vendor1        = __le16_to_cpu(id->vendor1);
325         id->vendor2        = __le16_to_cpu(id->vendor2);
326         stringcast = (u16 *)&id->serial_no[0];
327         for (i = 0; i < (20/2); i++)
328                 stringcast[i] = __le16_to_cpu(stringcast[i]);
329         id->buf_type       = __le16_to_cpu(id->buf_type);
330         id->buf_size       = __le16_to_cpu(id->buf_size);
331         id->ecc_bytes      = __le16_to_cpu(id->ecc_bytes);
332         stringcast = (u16 *)&id->fw_rev[0];
333         for (i = 0; i < (8/2); i++)
334                 stringcast[i] = __le16_to_cpu(stringcast[i]);
335         stringcast = (u16 *)&id->model[0];
336         for (i = 0; i < (40/2); i++)
337                 stringcast[i] = __le16_to_cpu(stringcast[i]);
338         id->dword_io       = __le16_to_cpu(id->dword_io);
339         id->reserved50     = __le16_to_cpu(id->reserved50);
340         id->field_valid    = __le16_to_cpu(id->field_valid);
341         id->cur_cyls       = __le16_to_cpu(id->cur_cyls);
342         id->cur_heads      = __le16_to_cpu(id->cur_heads);
343         id->cur_sectors    = __le16_to_cpu(id->cur_sectors);
344         id->cur_capacity0  = __le16_to_cpu(id->cur_capacity0);
345         id->cur_capacity1  = __le16_to_cpu(id->cur_capacity1);
346         id->lba_capacity   = __le32_to_cpu(id->lba_capacity);
347         id->dma_1word      = __le16_to_cpu(id->dma_1word);
348         id->dma_mword      = __le16_to_cpu(id->dma_mword);
349         id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
350         id->eide_dma_min   = __le16_to_cpu(id->eide_dma_min);
351         id->eide_dma_time  = __le16_to_cpu(id->eide_dma_time);
352         id->eide_pio       = __le16_to_cpu(id->eide_pio);
353         id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
354         for (i = 0; i < 2; ++i)
355                 id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
356         for (i = 0; i < 4; ++i)
357                 id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
358         id->queue_depth    = __le16_to_cpu(id->queue_depth);
359         for (i = 0; i < 4; ++i)
360                 id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
361         id->major_rev_num  = __le16_to_cpu(id->major_rev_num);
362         id->minor_rev_num  = __le16_to_cpu(id->minor_rev_num);
363         id->command_set_1  = __le16_to_cpu(id->command_set_1);
364         id->command_set_2  = __le16_to_cpu(id->command_set_2);
365         id->cfsse          = __le16_to_cpu(id->cfsse);
366         id->cfs_enable_1   = __le16_to_cpu(id->cfs_enable_1);
367         id->cfs_enable_2   = __le16_to_cpu(id->cfs_enable_2);
368         id->csf_default    = __le16_to_cpu(id->csf_default);
369         id->dma_ultra      = __le16_to_cpu(id->dma_ultra);
370         id->trseuc         = __le16_to_cpu(id->trseuc);
371         id->trsEuc         = __le16_to_cpu(id->trsEuc);
372         id->CurAPMvalues   = __le16_to_cpu(id->CurAPMvalues);
373         id->mprc           = __le16_to_cpu(id->mprc);
374         id->hw_config      = __le16_to_cpu(id->hw_config);
375         id->acoustic       = __le16_to_cpu(id->acoustic);
376         id->msrqs          = __le16_to_cpu(id->msrqs);
377         id->sxfert         = __le16_to_cpu(id->sxfert);
378         id->sal            = __le16_to_cpu(id->sal);
379         id->spg            = __le32_to_cpu(id->spg);
380         id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
381         for (i = 0; i < 22; i++)
382                 id->words104_125[i]   = __le16_to_cpu(id->words104_125[i]);
383         id->last_lun       = __le16_to_cpu(id->last_lun);
384         id->word127        = __le16_to_cpu(id->word127);
385         id->dlf            = __le16_to_cpu(id->dlf);
386         id->csfo           = __le16_to_cpu(id->csfo);
387         for (i = 0; i < 26; i++)
388                 id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
389         id->word156        = __le16_to_cpu(id->word156);
390         for (i = 0; i < 3; i++)
391                 id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
392         id->cfa_power      = __le16_to_cpu(id->cfa_power);
393         for (i = 0; i < 14; i++)
394                 id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
395         for (i = 0; i < 31; i++)
396                 id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
397         for (i = 0; i < 48; i++)
398                 id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
399         id->integrity_word  = __le16_to_cpu(id->integrity_word);
400 # else
401 #  error "Please fix <asm/byteorder.h>"
402 # endif
403 #endif
404 }
405
406 /* FIXME: exported for use by the USB storage (isd200.c) code only */
407 EXPORT_SYMBOL(ide_fix_driveid);
408
409 void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
410 {
411         u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
412
413         if (byteswap) {
414                 /* convert from big-endian to host byte order */
415                 for (p = end ; p != s;) {
416                         unsigned short *pp = (unsigned short *) (p -= 2);
417                         *pp = ntohs(*pp);
418                 }
419         }
420         /* strip leading blanks */
421         while (s != end && *s == ' ')
422                 ++s;
423         /* compress internal blanks and strip trailing blanks */
424         while (s != end && *s) {
425                 if (*s++ != ' ' || (s != end && *s && *s != ' '))
426                         *p++ = *(s-1);
427         }
428         /* wipe out trailing garbage */
429         while (p != end)
430                 *p++ = '\0';
431 }
432
433 EXPORT_SYMBOL(ide_fixstring);
434
435 /*
436  * Needed for PCI irq sharing
437  */
438 int drive_is_ready (ide_drive_t *drive)
439 {
440         ide_hwif_t *hwif        = HWIF(drive);
441         u8 stat                 = 0;
442
443         if (drive->waiting_for_dma)
444                 return hwif->ide_dma_test_irq(drive);
445
446 #if 0
447         /* need to guarantee 400ns since last command was issued */
448         udelay(1);
449 #endif
450
451 #ifdef CONFIG_IDEPCI_SHARE_IRQ
452         /*
453          * We do a passive status test under shared PCI interrupts on
454          * cards that truly share the ATA side interrupt, but may also share
455          * an interrupt with another pci card/device.  We make no assumptions
456          * about possible isa-pnp and pci-pnp issues yet.
457          */
458         if (IDE_CONTROL_REG)
459                 stat = hwif->INB(IDE_ALTSTATUS_REG);
460         else
461 #endif /* CONFIG_IDEPCI_SHARE_IRQ */
462                 /* Note: this may clear a pending IRQ!! */
463                 stat = hwif->INB(IDE_STATUS_REG);
464
465         if (stat & BUSY_STAT)
466                 /* drive busy:  definitely not interrupting */
467                 return 0;
468
469         /* drive ready: *might* be interrupting */
470         return 1;
471 }
472
473 EXPORT_SYMBOL(drive_is_ready);
474
475 /*
476  * This routine busy-waits for the drive status to be not "busy".
477  * It then checks the status for all of the "good" bits and none
478  * of the "bad" bits, and if all is okay it returns 0.  All other
479  * cases return error -- caller may then invoke ide_error().
480  *
481  * This routine should get fixed to not hog the cpu during extra long waits..
482  * That could be done by busy-waiting for the first jiffy or two, and then
483  * setting a timer to wake up at half second intervals thereafter,
484  * until timeout is achieved, before timing out.
485  */
486 static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
487 {
488         ide_hwif_t *hwif = drive->hwif;
489         unsigned long flags;
490         int i;
491         u8 stat;
492
493         udelay(1);      /* spec allows drive 400ns to assert "BUSY" */
494         if ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
495                 local_irq_set(flags);
496                 timeout += jiffies;
497                 while ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
498                         if (time_after(jiffies, timeout)) {
499                                 /*
500                                  * One last read after the timeout in case
501                                  * heavy interrupt load made us not make any
502                                  * progress during the timeout..
503                                  */
504                                 stat = hwif->INB(IDE_STATUS_REG);
505                                 if (!(stat & BUSY_STAT))
506                                         break;
507
508                                 local_irq_restore(flags);
509                                 *rstat = stat;
510                                 return -EBUSY;
511                         }
512                 }
513                 local_irq_restore(flags);
514         }
515         /*
516          * Allow status to settle, then read it again.
517          * A few rare drives vastly violate the 400ns spec here,
518          * so we'll wait up to 10usec for a "good" status
519          * rather than expensively fail things immediately.
520          * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
521          */
522         for (i = 0; i < 10; i++) {
523                 udelay(1);
524                 if (OK_STAT((stat = hwif->INB(IDE_STATUS_REG)), good, bad)) {
525                         *rstat = stat;
526                         return 0;
527                 }
528         }
529         *rstat = stat;
530         return -EFAULT;
531 }
532
533 /*
534  * In case of error returns error value after doing "*startstop = ide_error()".
535  * The caller should return the updated value of "startstop" in this case,
536  * "startstop" is unchanged when the function returns 0.
537  */
538 int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
539 {
540         int err;
541         u8 stat;
542
543         /* bail early if we've exceeded max_failures */
544         if (drive->max_failures && (drive->failures > drive->max_failures)) {
545                 *startstop = ide_stopped;
546                 return 1;
547         }
548
549         err = __ide_wait_stat(drive, good, bad, timeout, &stat);
550
551         if (err) {
552                 char *s = (err == -EBUSY) ? "status timeout" : "status error";
553                 *startstop = ide_error(drive, s, stat);
554         }
555
556         return err;
557 }
558
559 EXPORT_SYMBOL(ide_wait_stat);
560
561 /**
562  *      ide_in_drive_list       -       look for drive in black/white list
563  *      @id: drive identifier
564  *      @drive_table: list to inspect
565  *
566  *      Look for a drive in the blacklist and the whitelist tables
567  *      Returns 1 if the drive is found in the table.
568  */
569
570 int ide_in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table)
571 {
572         for ( ; drive_table->id_model; drive_table++)
573                 if ((!strcmp(drive_table->id_model, id->model)) &&
574                     (!drive_table->id_firmware ||
575                      strstr(id->fw_rev, drive_table->id_firmware)))
576                         return 1;
577         return 0;
578 }
579
580 EXPORT_SYMBOL_GPL(ide_in_drive_list);
581
582 /*
583  * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
584  * We list them here and depend on the device side cable detection for them.
585  */
586 static const struct drive_list_entry ivb_list[] = {
587         { "QUANTUM FIREBALLlct10 05"    , "A03.0900"    },
588         { NULL                          , NULL          }
589 };
590
591 /*
592  *  All hosts that use the 80c ribbon must use!
593  *  The name is derived from upper byte of word 93 and the 80c ribbon.
594  */
595 u8 eighty_ninty_three (ide_drive_t *drive)
596 {
597         ide_hwif_t *hwif = drive->hwif;
598         struct hd_driveid *id = drive->id;
599         int ivb = ide_in_drive_list(id, ivb_list);
600
601         if (hwif->cbl == ATA_CBL_PATA40_SHORT)
602                 return 1;
603
604         if (ivb)
605                 printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
606                                   drive->name);
607
608         if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
609                 goto no_80w;
610
611         if (ide_dev_is_sata(id))
612                 return 1;
613
614         /*
615          * FIXME:
616          * - change master/slave IDENTIFY order
617          * - force bit13 (80c cable present) check also for !ivb devices
618          *   (unless the slave device is pre-ATA3)
619          */
620 #ifndef CONFIG_IDEDMA_IVB
621         if ((id->hw_config & 0x4000) || (ivb && (id->hw_config & 0x2000)))
622 #else
623         if (id->hw_config & 0x6000)
624 #endif
625                 return 1;
626
627 no_80w:
628         if (drive->udma33_warned == 1)
629                 return 0;
630
631         printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
632                             "limiting max speed to UDMA33\n",
633                             drive->name,
634                             hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
635
636         drive->udma33_warned = 1;
637
638         return 0;
639 }
640
641 int ide_ata66_check (ide_drive_t *drive, ide_task_t *args)
642 {
643         if ((args->tfRegister[IDE_COMMAND_OFFSET] == WIN_SETFEATURES) &&
644             (args->tfRegister[IDE_SECTOR_OFFSET] > XFER_UDMA_2) &&
645             (args->tfRegister[IDE_FEATURE_OFFSET] == SETFEATURES_XFER)) {
646                 if (eighty_ninty_three(drive) == 0) {
647                         printk(KERN_WARNING "%s: UDMA speeds >UDMA33 cannot "
648                                             "be set\n", drive->name);
649                         return 1;
650                 }
651         }
652
653         return 0;
654 }
655
656 /*
657  * Backside of HDIO_DRIVE_CMD call of SETFEATURES_XFER.
658  * 1 : Safe to update drive->id DMA registers.
659  * 0 : OOPs not allowed.
660  */
661 int set_transfer (ide_drive_t *drive, ide_task_t *args)
662 {
663         if ((args->tfRegister[IDE_COMMAND_OFFSET] == WIN_SETFEATURES) &&
664             (args->tfRegister[IDE_SECTOR_OFFSET] >= XFER_SW_DMA_0) &&
665             (args->tfRegister[IDE_FEATURE_OFFSET] == SETFEATURES_XFER) &&
666             (drive->id->dma_ultra ||
667              drive->id->dma_mword ||
668              drive->id->dma_1word))
669                 return 1;
670
671         return 0;
672 }
673
674 #ifdef CONFIG_BLK_DEV_IDEDMA
675 static u8 ide_auto_reduce_xfer (ide_drive_t *drive)
676 {
677         if (!drive->crc_count)
678                 return drive->current_speed;
679         drive->crc_count = 0;
680
681         switch(drive->current_speed) {
682                 case XFER_UDMA_7:       return XFER_UDMA_6;
683                 case XFER_UDMA_6:       return XFER_UDMA_5;
684                 case XFER_UDMA_5:       return XFER_UDMA_4;
685                 case XFER_UDMA_4:       return XFER_UDMA_3;
686                 case XFER_UDMA_3:       return XFER_UDMA_2;
687                 case XFER_UDMA_2:       return XFER_UDMA_1;
688                 case XFER_UDMA_1:       return XFER_UDMA_0;
689                         /*
690                          * OOPS we do not goto non Ultra DMA modes
691                          * without iCRC's available we force
692                          * the system to PIO and make the user
693                          * invoke the ATA-1 ATA-2 DMA modes.
694                          */
695                 case XFER_UDMA_0:
696                 default:                return XFER_PIO_4;
697         }
698 }
699 #endif /* CONFIG_BLK_DEV_IDEDMA */
700
701 /*
702  * Update the 
703  */
704 int ide_driveid_update (ide_drive_t *drive)
705 {
706         ide_hwif_t *hwif        = HWIF(drive);
707         struct hd_driveid *id;
708 #if 0
709         id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
710         if (!id)
711                 return 0;
712
713         taskfile_lib_get_identify(drive, (char *)&id);
714
715         ide_fix_driveid(id);
716         if (id) {
717                 drive->id->dma_ultra = id->dma_ultra;
718                 drive->id->dma_mword = id->dma_mword;
719                 drive->id->dma_1word = id->dma_1word;
720                 /* anything more ? */
721                 kfree(id);
722         }
723         return 1;
724 #else
725         /*
726          * Re-read drive->id for possible DMA mode
727          * change (copied from ide-probe.c)
728          */
729         unsigned long timeout, flags;
730
731         SELECT_MASK(drive, 1);
732         if (IDE_CONTROL_REG)
733                 hwif->OUTB(drive->ctl,IDE_CONTROL_REG);
734         msleep(50);
735         hwif->OUTB(WIN_IDENTIFY, IDE_COMMAND_REG);
736         timeout = jiffies + WAIT_WORSTCASE;
737         do {
738                 if (time_after(jiffies, timeout)) {
739                         SELECT_MASK(drive, 0);
740                         return 0;       /* drive timed-out */
741                 }
742                 msleep(50);     /* give drive a breather */
743         } while (hwif->INB(IDE_ALTSTATUS_REG) & BUSY_STAT);
744         msleep(50);     /* wait for IRQ and DRQ_STAT */
745         if (!OK_STAT(hwif->INB(IDE_STATUS_REG),DRQ_STAT,BAD_R_STAT)) {
746                 SELECT_MASK(drive, 0);
747                 printk("%s: CHECK for good STATUS\n", drive->name);
748                 return 0;
749         }
750         local_irq_save(flags);
751         SELECT_MASK(drive, 0);
752         id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
753         if (!id) {
754                 local_irq_restore(flags);
755                 return 0;
756         }
757         ata_input_data(drive, id, SECTOR_WORDS);
758         (void) hwif->INB(IDE_STATUS_REG);       /* clear drive IRQ */
759         local_irq_enable();
760         local_irq_restore(flags);
761         ide_fix_driveid(id);
762         if (id) {
763                 drive->id->dma_ultra = id->dma_ultra;
764                 drive->id->dma_mword = id->dma_mword;
765                 drive->id->dma_1word = id->dma_1word;
766                 /* anything more ? */
767                 kfree(id);
768         }
769
770         return 1;
771 #endif
772 }
773
774 int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
775 {
776         ide_hwif_t *hwif = drive->hwif;
777         int error;
778         u8 stat;
779
780 //      while (HWGROUP(drive)->busy)
781 //              msleep(50);
782
783 #ifdef CONFIG_BLK_DEV_IDEDMA
784         if (hwif->ide_dma_check)         /* check if host supports DMA */
785                 hwif->dma_host_off(drive);
786 #endif
787
788         /*
789          * Don't use ide_wait_cmd here - it will
790          * attempt to set_geometry and recalibrate,
791          * but for some reason these don't work at
792          * this point (lost interrupt).
793          */
794         /*
795          * Select the drive, and issue the SETFEATURES command
796          */
797         disable_irq_nosync(hwif->irq);
798         
799         /*
800          *      FIXME: we race against the running IRQ here if
801          *      this is called from non IRQ context. If we use
802          *      disable_irq() we hang on the error path. Work
803          *      is needed.
804          */
805          
806         udelay(1);
807         SELECT_DRIVE(drive);
808         SELECT_MASK(drive, 0);
809         udelay(1);
810         if (IDE_CONTROL_REG)
811                 hwif->OUTB(drive->ctl | 2, IDE_CONTROL_REG);
812         hwif->OUTB(speed, IDE_NSECTOR_REG);
813         hwif->OUTB(SETFEATURES_XFER, IDE_FEATURE_REG);
814         hwif->OUTBSYNC(drive, WIN_SETFEATURES, IDE_COMMAND_REG);
815         if ((IDE_CONTROL_REG) && (drive->quirk_list == 2))
816                 hwif->OUTB(drive->ctl, IDE_CONTROL_REG);
817
818         error = __ide_wait_stat(drive, drive->ready_stat,
819                                 BUSY_STAT|DRQ_STAT|ERR_STAT,
820                                 WAIT_CMD, &stat);
821
822         SELECT_MASK(drive, 0);
823
824         enable_irq(hwif->irq);
825
826         if (error) {
827                 (void) ide_dump_status(drive, "set_drive_speed_status", stat);
828                 return error;
829         }
830
831         drive->id->dma_ultra &= ~0xFF00;
832         drive->id->dma_mword &= ~0x0F00;
833         drive->id->dma_1word &= ~0x0F00;
834
835 #ifdef CONFIG_BLK_DEV_IDEDMA
836         if (speed >= XFER_SW_DMA_0)
837                 hwif->dma_host_on(drive);
838         else if (hwif->ide_dma_check)   /* check if host supports DMA */
839                 hwif->dma_off_quietly(drive);
840 #endif
841
842         switch(speed) {
843                 case XFER_UDMA_7:   drive->id->dma_ultra |= 0x8080; break;
844                 case XFER_UDMA_6:   drive->id->dma_ultra |= 0x4040; break;
845                 case XFER_UDMA_5:   drive->id->dma_ultra |= 0x2020; break;
846                 case XFER_UDMA_4:   drive->id->dma_ultra |= 0x1010; break;
847                 case XFER_UDMA_3:   drive->id->dma_ultra |= 0x0808; break;
848                 case XFER_UDMA_2:   drive->id->dma_ultra |= 0x0404; break;
849                 case XFER_UDMA_1:   drive->id->dma_ultra |= 0x0202; break;
850                 case XFER_UDMA_0:   drive->id->dma_ultra |= 0x0101; break;
851                 case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
852                 case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
853                 case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
854                 case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
855                 case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
856                 case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
857                 default: break;
858         }
859         if (!drive->init_speed)
860                 drive->init_speed = speed;
861         drive->current_speed = speed;
862         return error;
863 }
864
865 /*
866  * This should get invoked any time we exit the driver to
867  * wait for an interrupt response from a drive.  handler() points
868  * at the appropriate code to handle the next interrupt, and a
869  * timer is started to prevent us from waiting forever in case
870  * something goes wrong (see the ide_timer_expiry() handler later on).
871  *
872  * See also ide_execute_command
873  */
874 static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
875                       unsigned int timeout, ide_expiry_t *expiry)
876 {
877         ide_hwgroup_t *hwgroup = HWGROUP(drive);
878
879         if (hwgroup->handler != NULL) {
880                 printk(KERN_CRIT "%s: ide_set_handler: handler not null; "
881                         "old=%p, new=%p\n",
882                         drive->name, hwgroup->handler, handler);
883         }
884         hwgroup->handler        = handler;
885         hwgroup->expiry         = expiry;
886         hwgroup->timer.expires  = jiffies + timeout;
887         hwgroup->req_gen_timer = hwgroup->req_gen;
888         add_timer(&hwgroup->timer);
889 }
890
891 void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
892                       unsigned int timeout, ide_expiry_t *expiry)
893 {
894         unsigned long flags;
895         spin_lock_irqsave(&ide_lock, flags);
896         __ide_set_handler(drive, handler, timeout, expiry);
897         spin_unlock_irqrestore(&ide_lock, flags);
898 }
899
900 EXPORT_SYMBOL(ide_set_handler);
901  
902 /**
903  *      ide_execute_command     -       execute an IDE command
904  *      @drive: IDE drive to issue the command against
905  *      @command: command byte to write
906  *      @handler: handler for next phase
907  *      @timeout: timeout for command
908  *      @expiry:  handler to run on timeout
909  *
910  *      Helper function to issue an IDE command. This handles the
911  *      atomicity requirements, command timing and ensures that the 
912  *      handler and IRQ setup do not race. All IDE command kick off
913  *      should go via this function or do equivalent locking.
914  */
915  
916 void ide_execute_command(ide_drive_t *drive, task_ioreg_t cmd, ide_handler_t *handler, unsigned timeout, ide_expiry_t *expiry)
917 {
918         unsigned long flags;
919         ide_hwgroup_t *hwgroup = HWGROUP(drive);
920         ide_hwif_t *hwif = HWIF(drive);
921         
922         spin_lock_irqsave(&ide_lock, flags);
923         
924         BUG_ON(hwgroup->handler);
925         hwgroup->handler        = handler;
926         hwgroup->expiry         = expiry;
927         hwgroup->timer.expires  = jiffies + timeout;
928         hwgroup->req_gen_timer = hwgroup->req_gen;
929         add_timer(&hwgroup->timer);
930         hwif->OUTBSYNC(drive, cmd, IDE_COMMAND_REG);
931         /* Drive takes 400nS to respond, we must avoid the IRQ being
932            serviced before that. 
933            
934            FIXME: we could skip this delay with care on non shared
935            devices 
936         */
937         ndelay(400);
938         spin_unlock_irqrestore(&ide_lock, flags);
939 }
940
941 EXPORT_SYMBOL(ide_execute_command);
942
943
944 /* needed below */
945 static ide_startstop_t do_reset1 (ide_drive_t *, int);
946
947 /*
948  * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
949  * during an atapi drive reset operation. If the drive has not yet responded,
950  * and we have not yet hit our maximum waiting time, then the timer is restarted
951  * for another 50ms.
952  */
953 static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
954 {
955         ide_hwgroup_t *hwgroup  = HWGROUP(drive);
956         ide_hwif_t *hwif        = HWIF(drive);
957         u8 stat;
958
959         SELECT_DRIVE(drive);
960         udelay (10);
961
962         if (OK_STAT(stat = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
963                 printk("%s: ATAPI reset complete\n", drive->name);
964         } else {
965                 if (time_before(jiffies, hwgroup->poll_timeout)) {
966                         BUG_ON(HWGROUP(drive)->handler != NULL);
967                         ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
968                         /* continue polling */
969                         return ide_started;
970                 }
971                 /* end of polling */
972                 hwgroup->polling = 0;
973                 printk("%s: ATAPI reset timed-out, status=0x%02x\n",
974                                 drive->name, stat);
975                 /* do it the old fashioned way */
976                 return do_reset1(drive, 1);
977         }
978         /* done polling */
979         hwgroup->polling = 0;
980         hwgroup->resetting = 0;
981         return ide_stopped;
982 }
983
984 /*
985  * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
986  * during an ide reset operation. If the drives have not yet responded,
987  * and we have not yet hit our maximum waiting time, then the timer is restarted
988  * for another 50ms.
989  */
990 static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
991 {
992         ide_hwgroup_t *hwgroup  = HWGROUP(drive);
993         ide_hwif_t *hwif        = HWIF(drive);
994         u8 tmp;
995
996         if (hwif->reset_poll != NULL) {
997                 if (hwif->reset_poll(drive)) {
998                         printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
999                                 hwif->name, drive->name);
1000                         return ide_stopped;
1001                 }
1002         }
1003
1004         if (!OK_STAT(tmp = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
1005                 if (time_before(jiffies, hwgroup->poll_timeout)) {
1006                         BUG_ON(HWGROUP(drive)->handler != NULL);
1007                         ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1008                         /* continue polling */
1009                         return ide_started;
1010                 }
1011                 printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
1012                 drive->failures++;
1013         } else  {
1014                 printk("%s: reset: ", hwif->name);
1015                 if ((tmp = hwif->INB(IDE_ERROR_REG)) == 1) {
1016                         printk("success\n");
1017                         drive->failures = 0;
1018                 } else {
1019                         drive->failures++;
1020                         printk("master: ");
1021                         switch (tmp & 0x7f) {
1022                                 case 1: printk("passed");
1023                                         break;
1024                                 case 2: printk("formatter device error");
1025                                         break;
1026                                 case 3: printk("sector buffer error");
1027                                         break;
1028                                 case 4: printk("ECC circuitry error");
1029                                         break;
1030                                 case 5: printk("controlling MPU error");
1031                                         break;
1032                                 default:printk("error (0x%02x?)", tmp);
1033                         }
1034                         if (tmp & 0x80)
1035                                 printk("; slave: failed");
1036                         printk("\n");
1037                 }
1038         }
1039         hwgroup->polling = 0;   /* done polling */
1040         hwgroup->resetting = 0; /* done reset attempt */
1041         return ide_stopped;
1042 }
1043
1044 static void check_dma_crc(ide_drive_t *drive)
1045 {
1046 #ifdef CONFIG_BLK_DEV_IDEDMA
1047         if (drive->crc_count) {
1048                 drive->hwif->dma_off_quietly(drive);
1049                 ide_set_xfer_rate(drive, ide_auto_reduce_xfer(drive));
1050                 if (drive->current_speed >= XFER_SW_DMA_0)
1051                         (void) HWIF(drive)->ide_dma_on(drive);
1052         } else
1053                 ide_dma_off(drive);
1054 #endif
1055 }
1056
1057 static void ide_disk_pre_reset(ide_drive_t *drive)
1058 {
1059         int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
1060
1061         drive->special.all = 0;
1062         drive->special.b.set_geometry = legacy;
1063         drive->special.b.recalibrate  = legacy;
1064         if (OK_TO_RESET_CONTROLLER)
1065                 drive->mult_count = 0;
1066         if (!drive->keep_settings && !drive->using_dma)
1067                 drive->mult_req = 0;
1068         if (drive->mult_req != drive->mult_count)
1069                 drive->special.b.set_multmode = 1;
1070 }
1071
1072 static void pre_reset(ide_drive_t *drive)
1073 {
1074         if (drive->media == ide_disk)
1075                 ide_disk_pre_reset(drive);
1076         else
1077                 drive->post_reset = 1;
1078
1079         if (!drive->keep_settings) {
1080                 if (drive->using_dma) {
1081                         check_dma_crc(drive);
1082                 } else {
1083                         drive->unmask = 0;
1084                         drive->io_32bit = 0;
1085                 }
1086                 return;
1087         }
1088         if (drive->using_dma)
1089                 check_dma_crc(drive);
1090
1091         if (HWIF(drive)->pre_reset != NULL)
1092                 HWIF(drive)->pre_reset(drive);
1093
1094         if (drive->current_speed != 0xff)
1095                 drive->desired_speed = drive->current_speed;
1096         drive->current_speed = 0xff;
1097 }
1098
1099 /*
1100  * do_reset1() attempts to recover a confused drive by resetting it.
1101  * Unfortunately, resetting a disk drive actually resets all devices on
1102  * the same interface, so it can really be thought of as resetting the
1103  * interface rather than resetting the drive.
1104  *
1105  * ATAPI devices have their own reset mechanism which allows them to be
1106  * individually reset without clobbering other devices on the same interface.
1107  *
1108  * Unfortunately, the IDE interface does not generate an interrupt to let
1109  * us know when the reset operation has finished, so we must poll for this.
1110  * Equally poor, though, is the fact that this may a very long time to complete,
1111  * (up to 30 seconds worstcase).  So, instead of busy-waiting here for it,
1112  * we set a timer to poll at 50ms intervals.
1113  */
1114 static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1115 {
1116         unsigned int unit;
1117         unsigned long flags;
1118         ide_hwif_t *hwif;
1119         ide_hwgroup_t *hwgroup;
1120         
1121         spin_lock_irqsave(&ide_lock, flags);
1122         hwif = HWIF(drive);
1123         hwgroup = HWGROUP(drive);
1124
1125         /* We must not reset with running handlers */
1126         BUG_ON(hwgroup->handler != NULL);
1127
1128         /* For an ATAPI device, first try an ATAPI SRST. */
1129         if (drive->media != ide_disk && !do_not_try_atapi) {
1130                 hwgroup->resetting = 1;
1131                 pre_reset(drive);
1132                 SELECT_DRIVE(drive);
1133                 udelay (20);
1134                 hwif->OUTBSYNC(drive, WIN_SRST, IDE_COMMAND_REG);
1135                 ndelay(400);
1136                 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1137                 hwgroup->polling = 1;
1138                 __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1139                 spin_unlock_irqrestore(&ide_lock, flags);
1140                 return ide_started;
1141         }
1142
1143         /*
1144          * First, reset any device state data we were maintaining
1145          * for any of the drives on this interface.
1146          */
1147         for (unit = 0; unit < MAX_DRIVES; ++unit)
1148                 pre_reset(&hwif->drives[unit]);
1149
1150 #if OK_TO_RESET_CONTROLLER
1151         if (!IDE_CONTROL_REG) {
1152                 spin_unlock_irqrestore(&ide_lock, flags);
1153                 return ide_stopped;
1154         }
1155
1156         hwgroup->resetting = 1;
1157         /*
1158          * Note that we also set nIEN while resetting the device,
1159          * to mask unwanted interrupts from the interface during the reset.
1160          * However, due to the design of PC hardware, this will cause an
1161          * immediate interrupt due to the edge transition it produces.
1162          * This single interrupt gives us a "fast poll" for drives that
1163          * recover from reset very quickly, saving us the first 50ms wait time.
1164          */
1165         /* set SRST and nIEN */
1166         hwif->OUTBSYNC(drive, drive->ctl|6,IDE_CONTROL_REG);
1167         /* more than enough time */
1168         udelay(10);
1169         if (drive->quirk_list == 2) {
1170                 /* clear SRST and nIEN */
1171                 hwif->OUTBSYNC(drive, drive->ctl, IDE_CONTROL_REG);
1172         } else {
1173                 /* clear SRST, leave nIEN */
1174                 hwif->OUTBSYNC(drive, drive->ctl|2, IDE_CONTROL_REG);
1175         }
1176         /* more than enough time */
1177         udelay(10);
1178         hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1179         hwgroup->polling = 1;
1180         __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1181
1182         /*
1183          * Some weird controller like resetting themselves to a strange
1184          * state when the disks are reset this way. At least, the Winbond
1185          * 553 documentation says that
1186          */
1187         if (hwif->resetproc != NULL) {
1188                 hwif->resetproc(drive);
1189         }
1190         
1191 #endif  /* OK_TO_RESET_CONTROLLER */
1192
1193         spin_unlock_irqrestore(&ide_lock, flags);
1194         return ide_started;
1195 }
1196
1197 /*
1198  * ide_do_reset() is the entry point to the drive/interface reset code.
1199  */
1200
1201 ide_startstop_t ide_do_reset (ide_drive_t *drive)
1202 {
1203         return do_reset1(drive, 0);
1204 }
1205
1206 EXPORT_SYMBOL(ide_do_reset);
1207
1208 /*
1209  * ide_wait_not_busy() waits for the currently selected device on the hwif
1210  * to report a non-busy status, see comments in probe_hwif().
1211  */
1212 int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1213 {
1214         u8 stat = 0;
1215
1216         while(timeout--) {
1217                 /*
1218                  * Turn this into a schedule() sleep once I'm sure
1219                  * about locking issues (2.5 work ?).
1220                  */
1221                 mdelay(1);
1222                 stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1223                 if ((stat & BUSY_STAT) == 0)
1224                         return 0;
1225                 /*
1226                  * Assume a value of 0xff means nothing is connected to
1227                  * the interface and it doesn't implement the pull-down
1228                  * resistor on D7.
1229                  */
1230                 if (stat == 0xff)
1231                         return -ENODEV;
1232                 touch_softlockup_watchdog();
1233                 touch_nmi_watchdog();
1234         }
1235         return -EBUSY;
1236 }
1237
1238 EXPORT_SYMBOL_GPL(ide_wait_not_busy);
1239