]> nv-tegra.nvidia Code Review - linux-2.6.git/blob - drivers/gpu/drm/i915/i915_gem.c
drm/i915: drop pointer to drm_gem_object
[linux-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37
38 #define I915_GEM_GPU_DOMAINS    (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
39
40 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
43 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
44                                              int write);
45 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
46                                                      uint64_t offset,
47                                                      uint64_t size);
48 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
49 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
50 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
51                                            unsigned alignment);
52 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
53 static int i915_gem_evict_something(struct drm_device *dev, int min_size);
54 static int i915_gem_evict_from_inactive_list(struct drm_device *dev);
55 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
56                                 struct drm_i915_gem_pwrite *args,
57                                 struct drm_file *file_priv);
58
59 static LIST_HEAD(shrink_list);
60 static DEFINE_SPINLOCK(shrink_list_lock);
61
62 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
63                      unsigned long end)
64 {
65         drm_i915_private_t *dev_priv = dev->dev_private;
66
67         if (start >= end ||
68             (start & (PAGE_SIZE - 1)) != 0 ||
69             (end & (PAGE_SIZE - 1)) != 0) {
70                 return -EINVAL;
71         }
72
73         drm_mm_init(&dev_priv->mm.gtt_space, start,
74                     end - start);
75
76         dev->gtt_total = (uint32_t) (end - start);
77
78         return 0;
79 }
80
81 int
82 i915_gem_init_ioctl(struct drm_device *dev, void *data,
83                     struct drm_file *file_priv)
84 {
85         struct drm_i915_gem_init *args = data;
86         int ret;
87
88         mutex_lock(&dev->struct_mutex);
89         ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
90         mutex_unlock(&dev->struct_mutex);
91
92         return ret;
93 }
94
95 int
96 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
97                             struct drm_file *file_priv)
98 {
99         struct drm_i915_gem_get_aperture *args = data;
100
101         if (!(dev->driver->driver_features & DRIVER_GEM))
102                 return -ENODEV;
103
104         args->aper_size = dev->gtt_total;
105         args->aper_available_size = (args->aper_size -
106                                      atomic_read(&dev->pin_memory));
107
108         return 0;
109 }
110
111
112 /**
113  * Creates a new mm object and returns a handle to it.
114  */
115 int
116 i915_gem_create_ioctl(struct drm_device *dev, void *data,
117                       struct drm_file *file_priv)
118 {
119         struct drm_i915_gem_create *args = data;
120         struct drm_gem_object *obj;
121         int ret;
122         u32 handle;
123
124         args->size = roundup(args->size, PAGE_SIZE);
125
126         /* Allocate the new object */
127         obj = i915_gem_alloc_object(dev, args->size);
128         if (obj == NULL)
129                 return -ENOMEM;
130
131         ret = drm_gem_handle_create(file_priv, obj, &handle);
132         drm_gem_object_handle_unreference_unlocked(obj);
133
134         if (ret)
135                 return ret;
136
137         args->handle = handle;
138
139         return 0;
140 }
141
142 static inline int
143 fast_shmem_read(struct page **pages,
144                 loff_t page_base, int page_offset,
145                 char __user *data,
146                 int length)
147 {
148         char __iomem *vaddr;
149         int unwritten;
150
151         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
152         if (vaddr == NULL)
153                 return -ENOMEM;
154         unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
155         kunmap_atomic(vaddr, KM_USER0);
156
157         if (unwritten)
158                 return -EFAULT;
159
160         return 0;
161 }
162
163 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
164 {
165         drm_i915_private_t *dev_priv = obj->dev->dev_private;
166         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
167
168         return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
169                 obj_priv->tiling_mode != I915_TILING_NONE;
170 }
171
172 static inline int
173 slow_shmem_copy(struct page *dst_page,
174                 int dst_offset,
175                 struct page *src_page,
176                 int src_offset,
177                 int length)
178 {
179         char *dst_vaddr, *src_vaddr;
180
181         dst_vaddr = kmap_atomic(dst_page, KM_USER0);
182         if (dst_vaddr == NULL)
183                 return -ENOMEM;
184
185         src_vaddr = kmap_atomic(src_page, KM_USER1);
186         if (src_vaddr == NULL) {
187                 kunmap_atomic(dst_vaddr, KM_USER0);
188                 return -ENOMEM;
189         }
190
191         memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
192
193         kunmap_atomic(src_vaddr, KM_USER1);
194         kunmap_atomic(dst_vaddr, KM_USER0);
195
196         return 0;
197 }
198
199 static inline int
200 slow_shmem_bit17_copy(struct page *gpu_page,
201                       int gpu_offset,
202                       struct page *cpu_page,
203                       int cpu_offset,
204                       int length,
205                       int is_read)
206 {
207         char *gpu_vaddr, *cpu_vaddr;
208
209         /* Use the unswizzled path if this page isn't affected. */
210         if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
211                 if (is_read)
212                         return slow_shmem_copy(cpu_page, cpu_offset,
213                                                gpu_page, gpu_offset, length);
214                 else
215                         return slow_shmem_copy(gpu_page, gpu_offset,
216                                                cpu_page, cpu_offset, length);
217         }
218
219         gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
220         if (gpu_vaddr == NULL)
221                 return -ENOMEM;
222
223         cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
224         if (cpu_vaddr == NULL) {
225                 kunmap_atomic(gpu_vaddr, KM_USER0);
226                 return -ENOMEM;
227         }
228
229         /* Copy the data, XORing A6 with A17 (1). The user already knows he's
230          * XORing with the other bits (A9 for Y, A9 and A10 for X)
231          */
232         while (length > 0) {
233                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
234                 int this_length = min(cacheline_end - gpu_offset, length);
235                 int swizzled_gpu_offset = gpu_offset ^ 64;
236
237                 if (is_read) {
238                         memcpy(cpu_vaddr + cpu_offset,
239                                gpu_vaddr + swizzled_gpu_offset,
240                                this_length);
241                 } else {
242                         memcpy(gpu_vaddr + swizzled_gpu_offset,
243                                cpu_vaddr + cpu_offset,
244                                this_length);
245                 }
246                 cpu_offset += this_length;
247                 gpu_offset += this_length;
248                 length -= this_length;
249         }
250
251         kunmap_atomic(cpu_vaddr, KM_USER1);
252         kunmap_atomic(gpu_vaddr, KM_USER0);
253
254         return 0;
255 }
256
257 /**
258  * This is the fast shmem pread path, which attempts to copy_from_user directly
259  * from the backing pages of the object to the user's address space.  On a
260  * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
261  */
262 static int
263 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
264                           struct drm_i915_gem_pread *args,
265                           struct drm_file *file_priv)
266 {
267         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
268         ssize_t remain;
269         loff_t offset, page_base;
270         char __user *user_data;
271         int page_offset, page_length;
272         int ret;
273
274         user_data = (char __user *) (uintptr_t) args->data_ptr;
275         remain = args->size;
276
277         mutex_lock(&dev->struct_mutex);
278
279         ret = i915_gem_object_get_pages(obj, 0);
280         if (ret != 0)
281                 goto fail_unlock;
282
283         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
284                                                         args->size);
285         if (ret != 0)
286                 goto fail_put_pages;
287
288         obj_priv = to_intel_bo(obj);
289         offset = args->offset;
290
291         while (remain > 0) {
292                 /* Operation in this page
293                  *
294                  * page_base = page offset within aperture
295                  * page_offset = offset within page
296                  * page_length = bytes to copy for this page
297                  */
298                 page_base = (offset & ~(PAGE_SIZE-1));
299                 page_offset = offset & (PAGE_SIZE-1);
300                 page_length = remain;
301                 if ((page_offset + remain) > PAGE_SIZE)
302                         page_length = PAGE_SIZE - page_offset;
303
304                 ret = fast_shmem_read(obj_priv->pages,
305                                       page_base, page_offset,
306                                       user_data, page_length);
307                 if (ret)
308                         goto fail_put_pages;
309
310                 remain -= page_length;
311                 user_data += page_length;
312                 offset += page_length;
313         }
314
315 fail_put_pages:
316         i915_gem_object_put_pages(obj);
317 fail_unlock:
318         mutex_unlock(&dev->struct_mutex);
319
320         return ret;
321 }
322
323 static int
324 i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
325 {
326         int ret;
327
328         ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
329
330         /* If we've insufficient memory to map in the pages, attempt
331          * to make some space by throwing out some old buffers.
332          */
333         if (ret == -ENOMEM) {
334                 struct drm_device *dev = obj->dev;
335
336                 ret = i915_gem_evict_something(dev, obj->size);
337                 if (ret)
338                         return ret;
339
340                 ret = i915_gem_object_get_pages(obj, 0);
341         }
342
343         return ret;
344 }
345
346 /**
347  * This is the fallback shmem pread path, which allocates temporary storage
348  * in kernel space to copy_to_user into outside of the struct_mutex, so we
349  * can copy out of the object's backing pages while holding the struct mutex
350  * and not take page faults.
351  */
352 static int
353 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
354                           struct drm_i915_gem_pread *args,
355                           struct drm_file *file_priv)
356 {
357         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
358         struct mm_struct *mm = current->mm;
359         struct page **user_pages;
360         ssize_t remain;
361         loff_t offset, pinned_pages, i;
362         loff_t first_data_page, last_data_page, num_pages;
363         int shmem_page_index, shmem_page_offset;
364         int data_page_index,  data_page_offset;
365         int page_length;
366         int ret;
367         uint64_t data_ptr = args->data_ptr;
368         int do_bit17_swizzling;
369
370         remain = args->size;
371
372         /* Pin the user pages containing the data.  We can't fault while
373          * holding the struct mutex, yet we want to hold it while
374          * dereferencing the user data.
375          */
376         first_data_page = data_ptr / PAGE_SIZE;
377         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
378         num_pages = last_data_page - first_data_page + 1;
379
380         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
381         if (user_pages == NULL)
382                 return -ENOMEM;
383
384         down_read(&mm->mmap_sem);
385         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
386                                       num_pages, 1, 0, user_pages, NULL);
387         up_read(&mm->mmap_sem);
388         if (pinned_pages < num_pages) {
389                 ret = -EFAULT;
390                 goto fail_put_user_pages;
391         }
392
393         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
394
395         mutex_lock(&dev->struct_mutex);
396
397         ret = i915_gem_object_get_pages_or_evict(obj);
398         if (ret)
399                 goto fail_unlock;
400
401         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
402                                                         args->size);
403         if (ret != 0)
404                 goto fail_put_pages;
405
406         obj_priv = to_intel_bo(obj);
407         offset = args->offset;
408
409         while (remain > 0) {
410                 /* Operation in this page
411                  *
412                  * shmem_page_index = page number within shmem file
413                  * shmem_page_offset = offset within page in shmem file
414                  * data_page_index = page number in get_user_pages return
415                  * data_page_offset = offset with data_page_index page.
416                  * page_length = bytes to copy for this page
417                  */
418                 shmem_page_index = offset / PAGE_SIZE;
419                 shmem_page_offset = offset & ~PAGE_MASK;
420                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
421                 data_page_offset = data_ptr & ~PAGE_MASK;
422
423                 page_length = remain;
424                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
425                         page_length = PAGE_SIZE - shmem_page_offset;
426                 if ((data_page_offset + page_length) > PAGE_SIZE)
427                         page_length = PAGE_SIZE - data_page_offset;
428
429                 if (do_bit17_swizzling) {
430                         ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
431                                                     shmem_page_offset,
432                                                     user_pages[data_page_index],
433                                                     data_page_offset,
434                                                     page_length,
435                                                     1);
436                 } else {
437                         ret = slow_shmem_copy(user_pages[data_page_index],
438                                               data_page_offset,
439                                               obj_priv->pages[shmem_page_index],
440                                               shmem_page_offset,
441                                               page_length);
442                 }
443                 if (ret)
444                         goto fail_put_pages;
445
446                 remain -= page_length;
447                 data_ptr += page_length;
448                 offset += page_length;
449         }
450
451 fail_put_pages:
452         i915_gem_object_put_pages(obj);
453 fail_unlock:
454         mutex_unlock(&dev->struct_mutex);
455 fail_put_user_pages:
456         for (i = 0; i < pinned_pages; i++) {
457                 SetPageDirty(user_pages[i]);
458                 page_cache_release(user_pages[i]);
459         }
460         drm_free_large(user_pages);
461
462         return ret;
463 }
464
465 /**
466  * Reads data from the object referenced by handle.
467  *
468  * On error, the contents of *data are undefined.
469  */
470 int
471 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
472                      struct drm_file *file_priv)
473 {
474         struct drm_i915_gem_pread *args = data;
475         struct drm_gem_object *obj;
476         struct drm_i915_gem_object *obj_priv;
477         int ret;
478
479         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
480         if (obj == NULL)
481                 return -EBADF;
482         obj_priv = to_intel_bo(obj);
483
484         /* Bounds check source.
485          *
486          * XXX: This could use review for overflow issues...
487          */
488         if (args->offset > obj->size || args->size > obj->size ||
489             args->offset + args->size > obj->size) {
490                 drm_gem_object_unreference_unlocked(obj);
491                 return -EINVAL;
492         }
493
494         if (i915_gem_object_needs_bit17_swizzle(obj)) {
495                 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
496         } else {
497                 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
498                 if (ret != 0)
499                         ret = i915_gem_shmem_pread_slow(dev, obj, args,
500                                                         file_priv);
501         }
502
503         drm_gem_object_unreference_unlocked(obj);
504
505         return ret;
506 }
507
508 /* This is the fast write path which cannot handle
509  * page faults in the source data
510  */
511
512 static inline int
513 fast_user_write(struct io_mapping *mapping,
514                 loff_t page_base, int page_offset,
515                 char __user *user_data,
516                 int length)
517 {
518         char *vaddr_atomic;
519         unsigned long unwritten;
520
521         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
522         unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
523                                                       user_data, length);
524         io_mapping_unmap_atomic(vaddr_atomic);
525         if (unwritten)
526                 return -EFAULT;
527         return 0;
528 }
529
530 /* Here's the write path which can sleep for
531  * page faults
532  */
533
534 static inline int
535 slow_kernel_write(struct io_mapping *mapping,
536                   loff_t gtt_base, int gtt_offset,
537                   struct page *user_page, int user_offset,
538                   int length)
539 {
540         char *src_vaddr, *dst_vaddr;
541         unsigned long unwritten;
542
543         dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
544         src_vaddr = kmap_atomic(user_page, KM_USER1);
545         unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
546                                                       src_vaddr + user_offset,
547                                                       length);
548         kunmap_atomic(src_vaddr, KM_USER1);
549         io_mapping_unmap_atomic(dst_vaddr);
550         if (unwritten)
551                 return -EFAULT;
552         return 0;
553 }
554
555 static inline int
556 fast_shmem_write(struct page **pages,
557                  loff_t page_base, int page_offset,
558                  char __user *data,
559                  int length)
560 {
561         char __iomem *vaddr;
562         unsigned long unwritten;
563
564         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
565         if (vaddr == NULL)
566                 return -ENOMEM;
567         unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
568         kunmap_atomic(vaddr, KM_USER0);
569
570         if (unwritten)
571                 return -EFAULT;
572         return 0;
573 }
574
575 /**
576  * This is the fast pwrite path, where we copy the data directly from the
577  * user into the GTT, uncached.
578  */
579 static int
580 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
581                          struct drm_i915_gem_pwrite *args,
582                          struct drm_file *file_priv)
583 {
584         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
585         drm_i915_private_t *dev_priv = dev->dev_private;
586         ssize_t remain;
587         loff_t offset, page_base;
588         char __user *user_data;
589         int page_offset, page_length;
590         int ret;
591
592         user_data = (char __user *) (uintptr_t) args->data_ptr;
593         remain = args->size;
594         if (!access_ok(VERIFY_READ, user_data, remain))
595                 return -EFAULT;
596
597
598         mutex_lock(&dev->struct_mutex);
599         ret = i915_gem_object_pin(obj, 0);
600         if (ret) {
601                 mutex_unlock(&dev->struct_mutex);
602                 return ret;
603         }
604         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
605         if (ret)
606                 goto fail;
607
608         obj_priv = to_intel_bo(obj);
609         offset = obj_priv->gtt_offset + args->offset;
610
611         while (remain > 0) {
612                 /* Operation in this page
613                  *
614                  * page_base = page offset within aperture
615                  * page_offset = offset within page
616                  * page_length = bytes to copy for this page
617                  */
618                 page_base = (offset & ~(PAGE_SIZE-1));
619                 page_offset = offset & (PAGE_SIZE-1);
620                 page_length = remain;
621                 if ((page_offset + remain) > PAGE_SIZE)
622                         page_length = PAGE_SIZE - page_offset;
623
624                 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
625                                        page_offset, user_data, page_length);
626
627                 /* If we get a fault while copying data, then (presumably) our
628                  * source page isn't available.  Return the error and we'll
629                  * retry in the slow path.
630                  */
631                 if (ret)
632                         goto fail;
633
634                 remain -= page_length;
635                 user_data += page_length;
636                 offset += page_length;
637         }
638
639 fail:
640         i915_gem_object_unpin(obj);
641         mutex_unlock(&dev->struct_mutex);
642
643         return ret;
644 }
645
646 /**
647  * This is the fallback GTT pwrite path, which uses get_user_pages to pin
648  * the memory and maps it using kmap_atomic for copying.
649  *
650  * This code resulted in x11perf -rgb10text consuming about 10% more CPU
651  * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
652  */
653 static int
654 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
655                          struct drm_i915_gem_pwrite *args,
656                          struct drm_file *file_priv)
657 {
658         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
659         drm_i915_private_t *dev_priv = dev->dev_private;
660         ssize_t remain;
661         loff_t gtt_page_base, offset;
662         loff_t first_data_page, last_data_page, num_pages;
663         loff_t pinned_pages, i;
664         struct page **user_pages;
665         struct mm_struct *mm = current->mm;
666         int gtt_page_offset, data_page_offset, data_page_index, page_length;
667         int ret;
668         uint64_t data_ptr = args->data_ptr;
669
670         remain = args->size;
671
672         /* Pin the user pages containing the data.  We can't fault while
673          * holding the struct mutex, and all of the pwrite implementations
674          * want to hold it while dereferencing the user data.
675          */
676         first_data_page = data_ptr / PAGE_SIZE;
677         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
678         num_pages = last_data_page - first_data_page + 1;
679
680         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
681         if (user_pages == NULL)
682                 return -ENOMEM;
683
684         down_read(&mm->mmap_sem);
685         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
686                                       num_pages, 0, 0, user_pages, NULL);
687         up_read(&mm->mmap_sem);
688         if (pinned_pages < num_pages) {
689                 ret = -EFAULT;
690                 goto out_unpin_pages;
691         }
692
693         mutex_lock(&dev->struct_mutex);
694         ret = i915_gem_object_pin(obj, 0);
695         if (ret)
696                 goto out_unlock;
697
698         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
699         if (ret)
700                 goto out_unpin_object;
701
702         obj_priv = to_intel_bo(obj);
703         offset = obj_priv->gtt_offset + args->offset;
704
705         while (remain > 0) {
706                 /* Operation in this page
707                  *
708                  * gtt_page_base = page offset within aperture
709                  * gtt_page_offset = offset within page in aperture
710                  * data_page_index = page number in get_user_pages return
711                  * data_page_offset = offset with data_page_index page.
712                  * page_length = bytes to copy for this page
713                  */
714                 gtt_page_base = offset & PAGE_MASK;
715                 gtt_page_offset = offset & ~PAGE_MASK;
716                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
717                 data_page_offset = data_ptr & ~PAGE_MASK;
718
719                 page_length = remain;
720                 if ((gtt_page_offset + page_length) > PAGE_SIZE)
721                         page_length = PAGE_SIZE - gtt_page_offset;
722                 if ((data_page_offset + page_length) > PAGE_SIZE)
723                         page_length = PAGE_SIZE - data_page_offset;
724
725                 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
726                                         gtt_page_base, gtt_page_offset,
727                                         user_pages[data_page_index],
728                                         data_page_offset,
729                                         page_length);
730
731                 /* If we get a fault while copying data, then (presumably) our
732                  * source page isn't available.  Return the error and we'll
733                  * retry in the slow path.
734                  */
735                 if (ret)
736                         goto out_unpin_object;
737
738                 remain -= page_length;
739                 offset += page_length;
740                 data_ptr += page_length;
741         }
742
743 out_unpin_object:
744         i915_gem_object_unpin(obj);
745 out_unlock:
746         mutex_unlock(&dev->struct_mutex);
747 out_unpin_pages:
748         for (i = 0; i < pinned_pages; i++)
749                 page_cache_release(user_pages[i]);
750         drm_free_large(user_pages);
751
752         return ret;
753 }
754
755 /**
756  * This is the fast shmem pwrite path, which attempts to directly
757  * copy_from_user into the kmapped pages backing the object.
758  */
759 static int
760 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
761                            struct drm_i915_gem_pwrite *args,
762                            struct drm_file *file_priv)
763 {
764         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
765         ssize_t remain;
766         loff_t offset, page_base;
767         char __user *user_data;
768         int page_offset, page_length;
769         int ret;
770
771         user_data = (char __user *) (uintptr_t) args->data_ptr;
772         remain = args->size;
773
774         mutex_lock(&dev->struct_mutex);
775
776         ret = i915_gem_object_get_pages(obj, 0);
777         if (ret != 0)
778                 goto fail_unlock;
779
780         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
781         if (ret != 0)
782                 goto fail_put_pages;
783
784         obj_priv = to_intel_bo(obj);
785         offset = args->offset;
786         obj_priv->dirty = 1;
787
788         while (remain > 0) {
789                 /* Operation in this page
790                  *
791                  * page_base = page offset within aperture
792                  * page_offset = offset within page
793                  * page_length = bytes to copy for this page
794                  */
795                 page_base = (offset & ~(PAGE_SIZE-1));
796                 page_offset = offset & (PAGE_SIZE-1);
797                 page_length = remain;
798                 if ((page_offset + remain) > PAGE_SIZE)
799                         page_length = PAGE_SIZE - page_offset;
800
801                 ret = fast_shmem_write(obj_priv->pages,
802                                        page_base, page_offset,
803                                        user_data, page_length);
804                 if (ret)
805                         goto fail_put_pages;
806
807                 remain -= page_length;
808                 user_data += page_length;
809                 offset += page_length;
810         }
811
812 fail_put_pages:
813         i915_gem_object_put_pages(obj);
814 fail_unlock:
815         mutex_unlock(&dev->struct_mutex);
816
817         return ret;
818 }
819
820 /**
821  * This is the fallback shmem pwrite path, which uses get_user_pages to pin
822  * the memory and maps it using kmap_atomic for copying.
823  *
824  * This avoids taking mmap_sem for faulting on the user's address while the
825  * struct_mutex is held.
826  */
827 static int
828 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
829                            struct drm_i915_gem_pwrite *args,
830                            struct drm_file *file_priv)
831 {
832         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
833         struct mm_struct *mm = current->mm;
834         struct page **user_pages;
835         ssize_t remain;
836         loff_t offset, pinned_pages, i;
837         loff_t first_data_page, last_data_page, num_pages;
838         int shmem_page_index, shmem_page_offset;
839         int data_page_index,  data_page_offset;
840         int page_length;
841         int ret;
842         uint64_t data_ptr = args->data_ptr;
843         int do_bit17_swizzling;
844
845         remain = args->size;
846
847         /* Pin the user pages containing the data.  We can't fault while
848          * holding the struct mutex, and all of the pwrite implementations
849          * want to hold it while dereferencing the user data.
850          */
851         first_data_page = data_ptr / PAGE_SIZE;
852         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
853         num_pages = last_data_page - first_data_page + 1;
854
855         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
856         if (user_pages == NULL)
857                 return -ENOMEM;
858
859         down_read(&mm->mmap_sem);
860         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
861                                       num_pages, 0, 0, user_pages, NULL);
862         up_read(&mm->mmap_sem);
863         if (pinned_pages < num_pages) {
864                 ret = -EFAULT;
865                 goto fail_put_user_pages;
866         }
867
868         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
869
870         mutex_lock(&dev->struct_mutex);
871
872         ret = i915_gem_object_get_pages_or_evict(obj);
873         if (ret)
874                 goto fail_unlock;
875
876         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
877         if (ret != 0)
878                 goto fail_put_pages;
879
880         obj_priv = to_intel_bo(obj);
881         offset = args->offset;
882         obj_priv->dirty = 1;
883
884         while (remain > 0) {
885                 /* Operation in this page
886                  *
887                  * shmem_page_index = page number within shmem file
888                  * shmem_page_offset = offset within page in shmem file
889                  * data_page_index = page number in get_user_pages return
890                  * data_page_offset = offset with data_page_index page.
891                  * page_length = bytes to copy for this page
892                  */
893                 shmem_page_index = offset / PAGE_SIZE;
894                 shmem_page_offset = offset & ~PAGE_MASK;
895                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
896                 data_page_offset = data_ptr & ~PAGE_MASK;
897
898                 page_length = remain;
899                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
900                         page_length = PAGE_SIZE - shmem_page_offset;
901                 if ((data_page_offset + page_length) > PAGE_SIZE)
902                         page_length = PAGE_SIZE - data_page_offset;
903
904                 if (do_bit17_swizzling) {
905                         ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
906                                                     shmem_page_offset,
907                                                     user_pages[data_page_index],
908                                                     data_page_offset,
909                                                     page_length,
910                                                     0);
911                 } else {
912                         ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
913                                               shmem_page_offset,
914                                               user_pages[data_page_index],
915                                               data_page_offset,
916                                               page_length);
917                 }
918                 if (ret)
919                         goto fail_put_pages;
920
921                 remain -= page_length;
922                 data_ptr += page_length;
923                 offset += page_length;
924         }
925
926 fail_put_pages:
927         i915_gem_object_put_pages(obj);
928 fail_unlock:
929         mutex_unlock(&dev->struct_mutex);
930 fail_put_user_pages:
931         for (i = 0; i < pinned_pages; i++)
932                 page_cache_release(user_pages[i]);
933         drm_free_large(user_pages);
934
935         return ret;
936 }
937
938 /**
939  * Writes data to the object referenced by handle.
940  *
941  * On error, the contents of the buffer that were to be modified are undefined.
942  */
943 int
944 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
945                       struct drm_file *file_priv)
946 {
947         struct drm_i915_gem_pwrite *args = data;
948         struct drm_gem_object *obj;
949         struct drm_i915_gem_object *obj_priv;
950         int ret = 0;
951
952         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
953         if (obj == NULL)
954                 return -EBADF;
955         obj_priv = to_intel_bo(obj);
956
957         /* Bounds check destination.
958          *
959          * XXX: This could use review for overflow issues...
960          */
961         if (args->offset > obj->size || args->size > obj->size ||
962             args->offset + args->size > obj->size) {
963                 drm_gem_object_unreference_unlocked(obj);
964                 return -EINVAL;
965         }
966
967         /* We can only do the GTT pwrite on untiled buffers, as otherwise
968          * it would end up going through the fenced access, and we'll get
969          * different detiling behavior between reading and writing.
970          * pread/pwrite currently are reading and writing from the CPU
971          * perspective, requiring manual detiling by the client.
972          */
973         if (obj_priv->phys_obj)
974                 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
975         else if (obj_priv->tiling_mode == I915_TILING_NONE &&
976                  dev->gtt_total != 0) {
977                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
978                 if (ret == -EFAULT) {
979                         ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
980                                                        file_priv);
981                 }
982         } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
983                 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
984         } else {
985                 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
986                 if (ret == -EFAULT) {
987                         ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
988                                                          file_priv);
989                 }
990         }
991
992 #if WATCH_PWRITE
993         if (ret)
994                 DRM_INFO("pwrite failed %d\n", ret);
995 #endif
996
997         drm_gem_object_unreference_unlocked(obj);
998
999         return ret;
1000 }
1001
1002 /**
1003  * Called when user space prepares to use an object with the CPU, either
1004  * through the mmap ioctl's mapping or a GTT mapping.
1005  */
1006 int
1007 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1008                           struct drm_file *file_priv)
1009 {
1010         struct drm_i915_private *dev_priv = dev->dev_private;
1011         struct drm_i915_gem_set_domain *args = data;
1012         struct drm_gem_object *obj;
1013         struct drm_i915_gem_object *obj_priv;
1014         uint32_t read_domains = args->read_domains;
1015         uint32_t write_domain = args->write_domain;
1016         int ret;
1017
1018         if (!(dev->driver->driver_features & DRIVER_GEM))
1019                 return -ENODEV;
1020
1021         /* Only handle setting domains to types used by the CPU. */
1022         if (write_domain & I915_GEM_GPU_DOMAINS)
1023                 return -EINVAL;
1024
1025         if (read_domains & I915_GEM_GPU_DOMAINS)
1026                 return -EINVAL;
1027
1028         /* Having something in the write domain implies it's in the read
1029          * domain, and only that read domain.  Enforce that in the request.
1030          */
1031         if (write_domain != 0 && read_domains != write_domain)
1032                 return -EINVAL;
1033
1034         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1035         if (obj == NULL)
1036                 return -EBADF;
1037         obj_priv = to_intel_bo(obj);
1038
1039         mutex_lock(&dev->struct_mutex);
1040
1041         intel_mark_busy(dev, obj);
1042
1043 #if WATCH_BUF
1044         DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1045                  obj, obj->size, read_domains, write_domain);
1046 #endif
1047         if (read_domains & I915_GEM_DOMAIN_GTT) {
1048                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1049
1050                 /* Update the LRU on the fence for the CPU access that's
1051                  * about to occur.
1052                  */
1053                 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1054                         list_move_tail(&obj_priv->fence_list,
1055                                        &dev_priv->mm.fence_list);
1056                 }
1057
1058                 /* Silently promote "you're not bound, there was nothing to do"
1059                  * to success, since the client was just asking us to
1060                  * make sure everything was done.
1061                  */
1062                 if (ret == -EINVAL)
1063                         ret = 0;
1064         } else {
1065                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1066         }
1067
1068         drm_gem_object_unreference(obj);
1069         mutex_unlock(&dev->struct_mutex);
1070         return ret;
1071 }
1072
1073 /**
1074  * Called when user space has done writes to this buffer
1075  */
1076 int
1077 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1078                       struct drm_file *file_priv)
1079 {
1080         struct drm_i915_gem_sw_finish *args = data;
1081         struct drm_gem_object *obj;
1082         struct drm_i915_gem_object *obj_priv;
1083         int ret = 0;
1084
1085         if (!(dev->driver->driver_features & DRIVER_GEM))
1086                 return -ENODEV;
1087
1088         mutex_lock(&dev->struct_mutex);
1089         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1090         if (obj == NULL) {
1091                 mutex_unlock(&dev->struct_mutex);
1092                 return -EBADF;
1093         }
1094
1095 #if WATCH_BUF
1096         DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1097                  __func__, args->handle, obj, obj->size);
1098 #endif
1099         obj_priv = to_intel_bo(obj);
1100
1101         /* Pinned buffers may be scanout, so flush the cache */
1102         if (obj_priv->pin_count)
1103                 i915_gem_object_flush_cpu_write_domain(obj);
1104
1105         drm_gem_object_unreference(obj);
1106         mutex_unlock(&dev->struct_mutex);
1107         return ret;
1108 }
1109
1110 /**
1111  * Maps the contents of an object, returning the address it is mapped
1112  * into.
1113  *
1114  * While the mapping holds a reference on the contents of the object, it doesn't
1115  * imply a ref on the object itself.
1116  */
1117 int
1118 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1119                    struct drm_file *file_priv)
1120 {
1121         struct drm_i915_gem_mmap *args = data;
1122         struct drm_gem_object *obj;
1123         loff_t offset;
1124         unsigned long addr;
1125
1126         if (!(dev->driver->driver_features & DRIVER_GEM))
1127                 return -ENODEV;
1128
1129         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1130         if (obj == NULL)
1131                 return -EBADF;
1132
1133         offset = args->offset;
1134
1135         down_write(&current->mm->mmap_sem);
1136         addr = do_mmap(obj->filp, 0, args->size,
1137                        PROT_READ | PROT_WRITE, MAP_SHARED,
1138                        args->offset);
1139         up_write(&current->mm->mmap_sem);
1140         drm_gem_object_unreference_unlocked(obj);
1141         if (IS_ERR((void *)addr))
1142                 return addr;
1143
1144         args->addr_ptr = (uint64_t) addr;
1145
1146         return 0;
1147 }
1148
1149 /**
1150  * i915_gem_fault - fault a page into the GTT
1151  * vma: VMA in question
1152  * vmf: fault info
1153  *
1154  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1155  * from userspace.  The fault handler takes care of binding the object to
1156  * the GTT (if needed), allocating and programming a fence register (again,
1157  * only if needed based on whether the old reg is still valid or the object
1158  * is tiled) and inserting a new PTE into the faulting process.
1159  *
1160  * Note that the faulting process may involve evicting existing objects
1161  * from the GTT and/or fence registers to make room.  So performance may
1162  * suffer if the GTT working set is large or there are few fence registers
1163  * left.
1164  */
1165 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1166 {
1167         struct drm_gem_object *obj = vma->vm_private_data;
1168         struct drm_device *dev = obj->dev;
1169         struct drm_i915_private *dev_priv = dev->dev_private;
1170         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1171         pgoff_t page_offset;
1172         unsigned long pfn;
1173         int ret = 0;
1174         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1175
1176         /* We don't use vmf->pgoff since that has the fake offset */
1177         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1178                 PAGE_SHIFT;
1179
1180         /* Now bind it into the GTT if needed */
1181         mutex_lock(&dev->struct_mutex);
1182         if (!obj_priv->gtt_space) {
1183                 ret = i915_gem_object_bind_to_gtt(obj, 0);
1184                 if (ret)
1185                         goto unlock;
1186
1187                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1188
1189                 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1190                 if (ret)
1191                         goto unlock;
1192         }
1193
1194         /* Need a new fence register? */
1195         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1196                 ret = i915_gem_object_get_fence_reg(obj);
1197                 if (ret)
1198                         goto unlock;
1199         }
1200
1201         pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1202                 page_offset;
1203
1204         /* Finally, remap it using the new GTT offset */
1205         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1206 unlock:
1207         mutex_unlock(&dev->struct_mutex);
1208
1209         switch (ret) {
1210         case 0:
1211         case -ERESTARTSYS:
1212                 return VM_FAULT_NOPAGE;
1213         case -ENOMEM:
1214         case -EAGAIN:
1215                 return VM_FAULT_OOM;
1216         default:
1217                 return VM_FAULT_SIGBUS;
1218         }
1219 }
1220
1221 /**
1222  * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1223  * @obj: obj in question
1224  *
1225  * GEM memory mapping works by handing back to userspace a fake mmap offset
1226  * it can use in a subsequent mmap(2) call.  The DRM core code then looks
1227  * up the object based on the offset and sets up the various memory mapping
1228  * structures.
1229  *
1230  * This routine allocates and attaches a fake offset for @obj.
1231  */
1232 static int
1233 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1234 {
1235         struct drm_device *dev = obj->dev;
1236         struct drm_gem_mm *mm = dev->mm_private;
1237         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1238         struct drm_map_list *list;
1239         struct drm_local_map *map;
1240         int ret = 0;
1241
1242         /* Set the object up for mmap'ing */
1243         list = &obj->map_list;
1244         list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1245         if (!list->map)
1246                 return -ENOMEM;
1247
1248         map = list->map;
1249         map->type = _DRM_GEM;
1250         map->size = obj->size;
1251         map->handle = obj;
1252
1253         /* Get a DRM GEM mmap offset allocated... */
1254         list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1255                                                     obj->size / PAGE_SIZE, 0, 0);
1256         if (!list->file_offset_node) {
1257                 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1258                 ret = -ENOMEM;
1259                 goto out_free_list;
1260         }
1261
1262         list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1263                                                   obj->size / PAGE_SIZE, 0);
1264         if (!list->file_offset_node) {
1265                 ret = -ENOMEM;
1266                 goto out_free_list;
1267         }
1268
1269         list->hash.key = list->file_offset_node->start;
1270         if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1271                 DRM_ERROR("failed to add to map hash\n");
1272                 ret = -ENOMEM;
1273                 goto out_free_mm;
1274         }
1275
1276         /* By now we should be all set, any drm_mmap request on the offset
1277          * below will get to our mmap & fault handler */
1278         obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1279
1280         return 0;
1281
1282 out_free_mm:
1283         drm_mm_put_block(list->file_offset_node);
1284 out_free_list:
1285         kfree(list->map);
1286
1287         return ret;
1288 }
1289
1290 /**
1291  * i915_gem_release_mmap - remove physical page mappings
1292  * @obj: obj in question
1293  *
1294  * Preserve the reservation of the mmapping with the DRM core code, but
1295  * relinquish ownership of the pages back to the system.
1296  *
1297  * It is vital that we remove the page mapping if we have mapped a tiled
1298  * object through the GTT and then lose the fence register due to
1299  * resource pressure. Similarly if the object has been moved out of the
1300  * aperture, than pages mapped into userspace must be revoked. Removing the
1301  * mapping will then trigger a page fault on the next user access, allowing
1302  * fixup by i915_gem_fault().
1303  */
1304 void
1305 i915_gem_release_mmap(struct drm_gem_object *obj)
1306 {
1307         struct drm_device *dev = obj->dev;
1308         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1309
1310         if (dev->dev_mapping)
1311                 unmap_mapping_range(dev->dev_mapping,
1312                                     obj_priv->mmap_offset, obj->size, 1);
1313 }
1314
1315 static void
1316 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1317 {
1318         struct drm_device *dev = obj->dev;
1319         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1320         struct drm_gem_mm *mm = dev->mm_private;
1321         struct drm_map_list *list;
1322
1323         list = &obj->map_list;
1324         drm_ht_remove_item(&mm->offset_hash, &list->hash);
1325
1326         if (list->file_offset_node) {
1327                 drm_mm_put_block(list->file_offset_node);
1328                 list->file_offset_node = NULL;
1329         }
1330
1331         if (list->map) {
1332                 kfree(list->map);
1333                 list->map = NULL;
1334         }
1335
1336         obj_priv->mmap_offset = 0;
1337 }
1338
1339 /**
1340  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1341  * @obj: object to check
1342  *
1343  * Return the required GTT alignment for an object, taking into account
1344  * potential fence register mapping if needed.
1345  */
1346 static uint32_t
1347 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1348 {
1349         struct drm_device *dev = obj->dev;
1350         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1351         int start, i;
1352
1353         /*
1354          * Minimum alignment is 4k (GTT page size), but might be greater
1355          * if a fence register is needed for the object.
1356          */
1357         if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1358                 return 4096;
1359
1360         /*
1361          * Previous chips need to be aligned to the size of the smallest
1362          * fence register that can contain the object.
1363          */
1364         if (IS_I9XX(dev))
1365                 start = 1024*1024;
1366         else
1367                 start = 512*1024;
1368
1369         for (i = start; i < obj->size; i <<= 1)
1370                 ;
1371
1372         return i;
1373 }
1374
1375 /**
1376  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1377  * @dev: DRM device
1378  * @data: GTT mapping ioctl data
1379  * @file_priv: GEM object info
1380  *
1381  * Simply returns the fake offset to userspace so it can mmap it.
1382  * The mmap call will end up in drm_gem_mmap(), which will set things
1383  * up so we can get faults in the handler above.
1384  *
1385  * The fault handler will take care of binding the object into the GTT
1386  * (since it may have been evicted to make room for something), allocating
1387  * a fence register, and mapping the appropriate aperture address into
1388  * userspace.
1389  */
1390 int
1391 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1392                         struct drm_file *file_priv)
1393 {
1394         struct drm_i915_gem_mmap_gtt *args = data;
1395         struct drm_i915_private *dev_priv = dev->dev_private;
1396         struct drm_gem_object *obj;
1397         struct drm_i915_gem_object *obj_priv;
1398         int ret;
1399
1400         if (!(dev->driver->driver_features & DRIVER_GEM))
1401                 return -ENODEV;
1402
1403         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1404         if (obj == NULL)
1405                 return -EBADF;
1406
1407         mutex_lock(&dev->struct_mutex);
1408
1409         obj_priv = to_intel_bo(obj);
1410
1411         if (obj_priv->madv != I915_MADV_WILLNEED) {
1412                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1413                 drm_gem_object_unreference(obj);
1414                 mutex_unlock(&dev->struct_mutex);
1415                 return -EINVAL;
1416         }
1417
1418
1419         if (!obj_priv->mmap_offset) {
1420                 ret = i915_gem_create_mmap_offset(obj);
1421                 if (ret) {
1422                         drm_gem_object_unreference(obj);
1423                         mutex_unlock(&dev->struct_mutex);
1424                         return ret;
1425                 }
1426         }
1427
1428         args->offset = obj_priv->mmap_offset;
1429
1430         /*
1431          * Pull it into the GTT so that we have a page list (makes the
1432          * initial fault faster and any subsequent flushing possible).
1433          */
1434         if (!obj_priv->agp_mem) {
1435                 ret = i915_gem_object_bind_to_gtt(obj, 0);
1436                 if (ret) {
1437                         drm_gem_object_unreference(obj);
1438                         mutex_unlock(&dev->struct_mutex);
1439                         return ret;
1440                 }
1441                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1442         }
1443
1444         drm_gem_object_unreference(obj);
1445         mutex_unlock(&dev->struct_mutex);
1446
1447         return 0;
1448 }
1449
1450 void
1451 i915_gem_object_put_pages(struct drm_gem_object *obj)
1452 {
1453         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1454         int page_count = obj->size / PAGE_SIZE;
1455         int i;
1456
1457         BUG_ON(obj_priv->pages_refcount == 0);
1458         BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1459
1460         if (--obj_priv->pages_refcount != 0)
1461                 return;
1462
1463         if (obj_priv->tiling_mode != I915_TILING_NONE)
1464                 i915_gem_object_save_bit_17_swizzle(obj);
1465
1466         if (obj_priv->madv == I915_MADV_DONTNEED)
1467                 obj_priv->dirty = 0;
1468
1469         for (i = 0; i < page_count; i++) {
1470                 if (obj_priv->dirty)
1471                         set_page_dirty(obj_priv->pages[i]);
1472
1473                 if (obj_priv->madv == I915_MADV_WILLNEED)
1474                         mark_page_accessed(obj_priv->pages[i]);
1475
1476                 page_cache_release(obj_priv->pages[i]);
1477         }
1478         obj_priv->dirty = 0;
1479
1480         drm_free_large(obj_priv->pages);
1481         obj_priv->pages = NULL;
1482 }
1483
1484 static void
1485 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
1486 {
1487         struct drm_device *dev = obj->dev;
1488         drm_i915_private_t *dev_priv = dev->dev_private;
1489         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1490
1491         /* Add a reference if we're newly entering the active list. */
1492         if (!obj_priv->active) {
1493                 drm_gem_object_reference(obj);
1494                 obj_priv->active = 1;
1495         }
1496         /* Move from whatever list we were on to the tail of execution. */
1497         spin_lock(&dev_priv->mm.active_list_lock);
1498         list_move_tail(&obj_priv->list,
1499                        &dev_priv->mm.active_list);
1500         spin_unlock(&dev_priv->mm.active_list_lock);
1501         obj_priv->last_rendering_seqno = seqno;
1502 }
1503
1504 static void
1505 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1506 {
1507         struct drm_device *dev = obj->dev;
1508         drm_i915_private_t *dev_priv = dev->dev_private;
1509         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1510
1511         BUG_ON(!obj_priv->active);
1512         list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1513         obj_priv->last_rendering_seqno = 0;
1514 }
1515
1516 /* Immediately discard the backing storage */
1517 static void
1518 i915_gem_object_truncate(struct drm_gem_object *obj)
1519 {
1520         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1521         struct inode *inode;
1522
1523         inode = obj->filp->f_path.dentry->d_inode;
1524         if (inode->i_op->truncate)
1525                 inode->i_op->truncate (inode);
1526
1527         obj_priv->madv = __I915_MADV_PURGED;
1528 }
1529
1530 static inline int
1531 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1532 {
1533         return obj_priv->madv == I915_MADV_DONTNEED;
1534 }
1535
1536 static void
1537 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1538 {
1539         struct drm_device *dev = obj->dev;
1540         drm_i915_private_t *dev_priv = dev->dev_private;
1541         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1542
1543         i915_verify_inactive(dev, __FILE__, __LINE__);
1544         if (obj_priv->pin_count != 0)
1545                 list_del_init(&obj_priv->list);
1546         else
1547                 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1548
1549         BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1550
1551         obj_priv->last_rendering_seqno = 0;
1552         if (obj_priv->active) {
1553                 obj_priv->active = 0;
1554                 drm_gem_object_unreference(obj);
1555         }
1556         i915_verify_inactive(dev, __FILE__, __LINE__);
1557 }
1558
1559 static void
1560 i915_gem_process_flushing_list(struct drm_device *dev,
1561                                uint32_t flush_domains, uint32_t seqno)
1562 {
1563         drm_i915_private_t *dev_priv = dev->dev_private;
1564         struct drm_i915_gem_object *obj_priv, *next;
1565
1566         list_for_each_entry_safe(obj_priv, next,
1567                                  &dev_priv->mm.gpu_write_list,
1568                                  gpu_write_list) {
1569                 struct drm_gem_object *obj = &obj_priv->base;
1570
1571                 if ((obj->write_domain & flush_domains) ==
1572                     obj->write_domain) {
1573                         uint32_t old_write_domain = obj->write_domain;
1574
1575                         obj->write_domain = 0;
1576                         list_del_init(&obj_priv->gpu_write_list);
1577                         i915_gem_object_move_to_active(obj, seqno);
1578
1579                         /* update the fence lru list */
1580                         if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1581                                 list_move_tail(&obj_priv->fence_list,
1582                                                 &dev_priv->mm.fence_list);
1583
1584                         trace_i915_gem_object_change_domain(obj,
1585                                                             obj->read_domains,
1586                                                             old_write_domain);
1587                 }
1588         }
1589 }
1590
1591 /**
1592  * Creates a new sequence number, emitting a write of it to the status page
1593  * plus an interrupt, which will trigger i915_user_interrupt_handler.
1594  *
1595  * Must be called with struct_lock held.
1596  *
1597  * Returned sequence numbers are nonzero on success.
1598  */
1599 uint32_t
1600 i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1601                  uint32_t flush_domains)
1602 {
1603         drm_i915_private_t *dev_priv = dev->dev_private;
1604         struct drm_i915_file_private *i915_file_priv = NULL;
1605         struct drm_i915_gem_request *request;
1606         uint32_t seqno;
1607         int was_empty;
1608         RING_LOCALS;
1609
1610         if (file_priv != NULL)
1611                 i915_file_priv = file_priv->driver_priv;
1612
1613         request = kzalloc(sizeof(*request), GFP_KERNEL);
1614         if (request == NULL)
1615                 return 0;
1616
1617         /* Grab the seqno we're going to make this request be, and bump the
1618          * next (skipping 0 so it can be the reserved no-seqno value).
1619          */
1620         seqno = dev_priv->mm.next_gem_seqno;
1621         dev_priv->mm.next_gem_seqno++;
1622         if (dev_priv->mm.next_gem_seqno == 0)
1623                 dev_priv->mm.next_gem_seqno++;
1624
1625         BEGIN_LP_RING(4);
1626         OUT_RING(MI_STORE_DWORD_INDEX);
1627         OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1628         OUT_RING(seqno);
1629
1630         OUT_RING(MI_USER_INTERRUPT);
1631         ADVANCE_LP_RING();
1632
1633         DRM_DEBUG_DRIVER("%d\n", seqno);
1634
1635         request->seqno = seqno;
1636         request->emitted_jiffies = jiffies;
1637         was_empty = list_empty(&dev_priv->mm.request_list);
1638         list_add_tail(&request->list, &dev_priv->mm.request_list);
1639         if (i915_file_priv) {
1640                 list_add_tail(&request->client_list,
1641                               &i915_file_priv->mm.request_list);
1642         } else {
1643                 INIT_LIST_HEAD(&request->client_list);
1644         }
1645
1646         /* Associate any objects on the flushing list matching the write
1647          * domain we're flushing with our flush.
1648          */
1649         if (flush_domains != 0) 
1650                 i915_gem_process_flushing_list(dev, flush_domains, seqno);
1651
1652         if (!dev_priv->mm.suspended) {
1653                 mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
1654                 if (was_empty)
1655                         queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1656         }
1657         return seqno;
1658 }
1659
1660 /**
1661  * Command execution barrier
1662  *
1663  * Ensures that all commands in the ring are finished
1664  * before signalling the CPU
1665  */
1666 static uint32_t
1667 i915_retire_commands(struct drm_device *dev)
1668 {
1669         drm_i915_private_t *dev_priv = dev->dev_private;
1670         uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1671         uint32_t flush_domains = 0;
1672         RING_LOCALS;
1673
1674         /* The sampler always gets flushed on i965 (sigh) */
1675         if (IS_I965G(dev))
1676                 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1677         BEGIN_LP_RING(2);
1678         OUT_RING(cmd);
1679         OUT_RING(0); /* noop */
1680         ADVANCE_LP_RING();
1681         return flush_domains;
1682 }
1683
1684 /**
1685  * Moves buffers associated only with the given active seqno from the active
1686  * to inactive list, potentially freeing them.
1687  */
1688 static void
1689 i915_gem_retire_request(struct drm_device *dev,
1690                         struct drm_i915_gem_request *request)
1691 {
1692         drm_i915_private_t *dev_priv = dev->dev_private;
1693
1694         trace_i915_gem_request_retire(dev, request->seqno);
1695
1696         /* Move any buffers on the active list that are no longer referenced
1697          * by the ringbuffer to the flushing/inactive lists as appropriate.
1698          */
1699         spin_lock(&dev_priv->mm.active_list_lock);
1700         while (!list_empty(&dev_priv->mm.active_list)) {
1701                 struct drm_gem_object *obj;
1702                 struct drm_i915_gem_object *obj_priv;
1703
1704                 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1705                                             struct drm_i915_gem_object,
1706                                             list);
1707                 obj = &obj_priv->base;
1708
1709                 /* If the seqno being retired doesn't match the oldest in the
1710                  * list, then the oldest in the list must still be newer than
1711                  * this seqno.
1712                  */
1713                 if (obj_priv->last_rendering_seqno != request->seqno)
1714                         goto out;
1715
1716 #if WATCH_LRU
1717                 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1718                          __func__, request->seqno, obj);
1719 #endif
1720
1721                 if (obj->write_domain != 0)
1722                         i915_gem_object_move_to_flushing(obj);
1723                 else {
1724                         /* Take a reference on the object so it won't be
1725                          * freed while the spinlock is held.  The list
1726                          * protection for this spinlock is safe when breaking
1727                          * the lock like this since the next thing we do
1728                          * is just get the head of the list again.
1729                          */
1730                         drm_gem_object_reference(obj);
1731                         i915_gem_object_move_to_inactive(obj);
1732                         spin_unlock(&dev_priv->mm.active_list_lock);
1733                         drm_gem_object_unreference(obj);
1734                         spin_lock(&dev_priv->mm.active_list_lock);
1735                 }
1736         }
1737 out:
1738         spin_unlock(&dev_priv->mm.active_list_lock);
1739 }
1740
1741 /**
1742  * Returns true if seq1 is later than seq2.
1743  */
1744 bool
1745 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1746 {
1747         return (int32_t)(seq1 - seq2) >= 0;
1748 }
1749
1750 uint32_t
1751 i915_get_gem_seqno(struct drm_device *dev)
1752 {
1753         drm_i915_private_t *dev_priv = dev->dev_private;
1754
1755         return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1756 }
1757
1758 /**
1759  * This function clears the request list as sequence numbers are passed.
1760  */
1761 void
1762 i915_gem_retire_requests(struct drm_device *dev)
1763 {
1764         drm_i915_private_t *dev_priv = dev->dev_private;
1765         uint32_t seqno;
1766
1767         if (!dev_priv->hw_status_page || list_empty(&dev_priv->mm.request_list))
1768                 return;
1769
1770         seqno = i915_get_gem_seqno(dev);
1771
1772         while (!list_empty(&dev_priv->mm.request_list)) {
1773                 struct drm_i915_gem_request *request;
1774                 uint32_t retiring_seqno;
1775
1776                 request = list_first_entry(&dev_priv->mm.request_list,
1777                                            struct drm_i915_gem_request,
1778                                            list);
1779                 retiring_seqno = request->seqno;
1780
1781                 if (i915_seqno_passed(seqno, retiring_seqno) ||
1782                     atomic_read(&dev_priv->mm.wedged)) {
1783                         i915_gem_retire_request(dev, request);
1784
1785                         list_del(&request->list);
1786                         list_del(&request->client_list);
1787                         kfree(request);
1788                 } else
1789                         break;
1790         }
1791
1792         if (unlikely (dev_priv->trace_irq_seqno &&
1793                       i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1794                 i915_user_irq_put(dev);
1795                 dev_priv->trace_irq_seqno = 0;
1796         }
1797 }
1798
1799 void
1800 i915_gem_retire_work_handler(struct work_struct *work)
1801 {
1802         drm_i915_private_t *dev_priv;
1803         struct drm_device *dev;
1804
1805         dev_priv = container_of(work, drm_i915_private_t,
1806                                 mm.retire_work.work);
1807         dev = dev_priv->dev;
1808
1809         mutex_lock(&dev->struct_mutex);
1810         i915_gem_retire_requests(dev);
1811         if (!dev_priv->mm.suspended &&
1812             !list_empty(&dev_priv->mm.request_list))
1813                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1814         mutex_unlock(&dev->struct_mutex);
1815 }
1816
1817 int
1818 i915_do_wait_request(struct drm_device *dev, uint32_t seqno, int interruptible)
1819 {
1820         drm_i915_private_t *dev_priv = dev->dev_private;
1821         u32 ier;
1822         int ret = 0;
1823
1824         BUG_ON(seqno == 0);
1825
1826         if (atomic_read(&dev_priv->mm.wedged))
1827                 return -EIO;
1828
1829         if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1830                 if (HAS_PCH_SPLIT(dev))
1831                         ier = I915_READ(DEIER) | I915_READ(GTIER);
1832                 else
1833                         ier = I915_READ(IER);
1834                 if (!ier) {
1835                         DRM_ERROR("something (likely vbetool) disabled "
1836                                   "interrupts, re-enabling\n");
1837                         i915_driver_irq_preinstall(dev);
1838                         i915_driver_irq_postinstall(dev);
1839                 }
1840
1841                 trace_i915_gem_request_wait_begin(dev, seqno);
1842
1843                 dev_priv->mm.waiting_gem_seqno = seqno;
1844                 i915_user_irq_get(dev);
1845                 if (interruptible)
1846                         ret = wait_event_interruptible(dev_priv->irq_queue,
1847                                 i915_seqno_passed(i915_get_gem_seqno(dev), seqno) ||
1848                                 atomic_read(&dev_priv->mm.wedged));
1849                 else
1850                         wait_event(dev_priv->irq_queue,
1851                                 i915_seqno_passed(i915_get_gem_seqno(dev), seqno) ||
1852                                 atomic_read(&dev_priv->mm.wedged));
1853
1854                 i915_user_irq_put(dev);
1855                 dev_priv->mm.waiting_gem_seqno = 0;
1856
1857                 trace_i915_gem_request_wait_end(dev, seqno);
1858         }
1859         if (atomic_read(&dev_priv->mm.wedged))
1860                 ret = -EIO;
1861
1862         if (ret && ret != -ERESTARTSYS)
1863                 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1864                           __func__, ret, seqno, i915_get_gem_seqno(dev));
1865
1866         /* Directly dispatch request retiring.  While we have the work queue
1867          * to handle this, the waiter on a request often wants an associated
1868          * buffer to have made it to the inactive list, and we would need
1869          * a separate wait queue to handle that.
1870          */
1871         if (ret == 0)
1872                 i915_gem_retire_requests(dev);
1873
1874         return ret;
1875 }
1876
1877 /**
1878  * Waits for a sequence number to be signaled, and cleans up the
1879  * request and object lists appropriately for that event.
1880  */
1881 static int
1882 i915_wait_request(struct drm_device *dev, uint32_t seqno)
1883 {
1884         return i915_do_wait_request(dev, seqno, 1);
1885 }
1886
1887 static void
1888 i915_gem_flush(struct drm_device *dev,
1889                uint32_t invalidate_domains,
1890                uint32_t flush_domains)
1891 {
1892         drm_i915_private_t *dev_priv = dev->dev_private;
1893         uint32_t cmd;
1894         RING_LOCALS;
1895
1896 #if WATCH_EXEC
1897         DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1898                   invalidate_domains, flush_domains);
1899 #endif
1900         trace_i915_gem_request_flush(dev, dev_priv->mm.next_gem_seqno,
1901                                      invalidate_domains, flush_domains);
1902
1903         if (flush_domains & I915_GEM_DOMAIN_CPU)
1904                 drm_agp_chipset_flush(dev);
1905
1906         if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
1907                 /*
1908                  * read/write caches:
1909                  *
1910                  * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1911                  * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
1912                  * also flushed at 2d versus 3d pipeline switches.
1913                  *
1914                  * read-only caches:
1915                  *
1916                  * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1917                  * MI_READ_FLUSH is set, and is always flushed on 965.
1918                  *
1919                  * I915_GEM_DOMAIN_COMMAND may not exist?
1920                  *
1921                  * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1922                  * invalidated when MI_EXE_FLUSH is set.
1923                  *
1924                  * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1925                  * invalidated with every MI_FLUSH.
1926                  *
1927                  * TLBs:
1928                  *
1929                  * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1930                  * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1931                  * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1932                  * are flushed at any MI_FLUSH.
1933                  */
1934
1935                 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1936                 if ((invalidate_domains|flush_domains) &
1937                     I915_GEM_DOMAIN_RENDER)
1938                         cmd &= ~MI_NO_WRITE_FLUSH;
1939                 if (!IS_I965G(dev)) {
1940                         /*
1941                          * On the 965, the sampler cache always gets flushed
1942                          * and this bit is reserved.
1943                          */
1944                         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1945                                 cmd |= MI_READ_FLUSH;
1946                 }
1947                 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1948                         cmd |= MI_EXE_FLUSH;
1949
1950 #if WATCH_EXEC
1951                 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1952 #endif
1953                 BEGIN_LP_RING(2);
1954                 OUT_RING(cmd);
1955                 OUT_RING(MI_NOOP);
1956                 ADVANCE_LP_RING();
1957         }
1958 }
1959
1960 /**
1961  * Ensures that all rendering to the object has completed and the object is
1962  * safe to unbind from the GTT or access from the CPU.
1963  */
1964 static int
1965 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1966 {
1967         struct drm_device *dev = obj->dev;
1968         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1969         int ret;
1970
1971         /* This function only exists to support waiting for existing rendering,
1972          * not for emitting required flushes.
1973          */
1974         BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1975
1976         /* If there is rendering queued on the buffer being evicted, wait for
1977          * it.
1978          */
1979         if (obj_priv->active) {
1980 #if WATCH_BUF
1981                 DRM_INFO("%s: object %p wait for seqno %08x\n",
1982                           __func__, obj, obj_priv->last_rendering_seqno);
1983 #endif
1984                 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1985                 if (ret != 0)
1986                         return ret;
1987         }
1988
1989         return 0;
1990 }
1991
1992 /**
1993  * Unbinds an object from the GTT aperture.
1994  */
1995 int
1996 i915_gem_object_unbind(struct drm_gem_object *obj)
1997 {
1998         struct drm_device *dev = obj->dev;
1999         drm_i915_private_t *dev_priv = dev->dev_private;
2000         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2001         int ret = 0;
2002
2003 #if WATCH_BUF
2004         DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
2005         DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
2006 #endif
2007         if (obj_priv->gtt_space == NULL)
2008                 return 0;
2009
2010         if (obj_priv->pin_count != 0) {
2011                 DRM_ERROR("Attempting to unbind pinned buffer\n");
2012                 return -EINVAL;
2013         }
2014
2015         /* blow away mappings if mapped through GTT */
2016         i915_gem_release_mmap(obj);
2017
2018         /* Move the object to the CPU domain to ensure that
2019          * any possible CPU writes while it's not in the GTT
2020          * are flushed when we go to remap it. This will
2021          * also ensure that all pending GPU writes are finished
2022          * before we unbind.
2023          */
2024         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2025         if (ret) {
2026                 if (ret != -ERESTARTSYS)
2027                         DRM_ERROR("set_domain failed: %d\n", ret);
2028                 return ret;
2029         }
2030
2031         BUG_ON(obj_priv->active);
2032
2033         /* release the fence reg _after_ flushing */
2034         if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2035                 i915_gem_clear_fence_reg(obj);
2036
2037         if (obj_priv->agp_mem != NULL) {
2038                 drm_unbind_agp(obj_priv->agp_mem);
2039                 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2040                 obj_priv->agp_mem = NULL;
2041         }
2042
2043         i915_gem_object_put_pages(obj);
2044         BUG_ON(obj_priv->pages_refcount);
2045
2046         if (obj_priv->gtt_space) {
2047                 atomic_dec(&dev->gtt_count);
2048                 atomic_sub(obj->size, &dev->gtt_memory);
2049
2050                 drm_mm_put_block(obj_priv->gtt_space);
2051                 obj_priv->gtt_space = NULL;
2052         }
2053
2054         /* Remove ourselves from the LRU list if present. */
2055         spin_lock(&dev_priv->mm.active_list_lock);
2056         if (!list_empty(&obj_priv->list))
2057                 list_del_init(&obj_priv->list);
2058         spin_unlock(&dev_priv->mm.active_list_lock);
2059
2060         if (i915_gem_object_is_purgeable(obj_priv))
2061                 i915_gem_object_truncate(obj);
2062
2063         trace_i915_gem_object_unbind(obj);
2064
2065         return 0;
2066 }
2067
2068 static struct drm_gem_object *
2069 i915_gem_find_inactive_object(struct drm_device *dev, int min_size)
2070 {
2071         drm_i915_private_t *dev_priv = dev->dev_private;
2072         struct drm_i915_gem_object *obj_priv;
2073         struct drm_gem_object *best = NULL;
2074         struct drm_gem_object *first = NULL;
2075
2076         /* Try to find the smallest clean object */
2077         list_for_each_entry(obj_priv, &dev_priv->mm.inactive_list, list) {
2078                 struct drm_gem_object *obj = &obj_priv->base;
2079                 if (obj->size >= min_size) {
2080                         if ((!obj_priv->dirty ||
2081                              i915_gem_object_is_purgeable(obj_priv)) &&
2082                             (!best || obj->size < best->size)) {
2083                                 best = obj;
2084                                 if (best->size == min_size)
2085                                         return best;
2086                         }
2087                         if (!first)
2088                             first = obj;
2089                 }
2090         }
2091
2092         return best ? best : first;
2093 }
2094
2095 static int
2096 i915_gpu_idle(struct drm_device *dev)
2097 {
2098         drm_i915_private_t *dev_priv = dev->dev_private;
2099         bool lists_empty;
2100         uint32_t seqno;
2101
2102         spin_lock(&dev_priv->mm.active_list_lock);
2103         lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
2104                       list_empty(&dev_priv->mm.active_list);
2105         spin_unlock(&dev_priv->mm.active_list_lock);
2106
2107         if (lists_empty)
2108                 return 0;
2109
2110         /* Flush everything onto the inactive list. */
2111         i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2112         seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
2113         if (seqno == 0)
2114                 return -ENOMEM;
2115
2116         return i915_wait_request(dev, seqno);
2117 }
2118
2119 static int
2120 i915_gem_evict_everything(struct drm_device *dev)
2121 {
2122         drm_i915_private_t *dev_priv = dev->dev_private;
2123         int ret;
2124         bool lists_empty;
2125
2126         spin_lock(&dev_priv->mm.active_list_lock);
2127         lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2128                        list_empty(&dev_priv->mm.flushing_list) &&
2129                        list_empty(&dev_priv->mm.active_list));
2130         spin_unlock(&dev_priv->mm.active_list_lock);
2131
2132         if (lists_empty)
2133                 return -ENOSPC;
2134
2135         /* Flush everything (on to the inactive lists) and evict */
2136         ret = i915_gpu_idle(dev);
2137         if (ret)
2138                 return ret;
2139
2140         BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
2141
2142         ret = i915_gem_evict_from_inactive_list(dev);
2143         if (ret)
2144                 return ret;
2145
2146         spin_lock(&dev_priv->mm.active_list_lock);
2147         lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2148                        list_empty(&dev_priv->mm.flushing_list) &&
2149                        list_empty(&dev_priv->mm.active_list));
2150         spin_unlock(&dev_priv->mm.active_list_lock);
2151         BUG_ON(!lists_empty);
2152
2153         return 0;
2154 }
2155
2156 static int
2157 i915_gem_evict_something(struct drm_device *dev, int min_size)
2158 {
2159         drm_i915_private_t *dev_priv = dev->dev_private;
2160         struct drm_gem_object *obj;
2161         int ret;
2162
2163         for (;;) {
2164                 i915_gem_retire_requests(dev);
2165
2166                 /* If there's an inactive buffer available now, grab it
2167                  * and be done.
2168                  */
2169                 obj = i915_gem_find_inactive_object(dev, min_size);
2170                 if (obj) {
2171                         struct drm_i915_gem_object *obj_priv;
2172
2173 #if WATCH_LRU
2174                         DRM_INFO("%s: evicting %p\n", __func__, obj);
2175 #endif
2176                         obj_priv = to_intel_bo(obj);
2177                         BUG_ON(obj_priv->pin_count != 0);
2178                         BUG_ON(obj_priv->active);
2179
2180                         /* Wait on the rendering and unbind the buffer. */
2181                         return i915_gem_object_unbind(obj);
2182                 }
2183
2184                 /* If we didn't get anything, but the ring is still processing
2185                  * things, wait for the next to finish and hopefully leave us
2186                  * a buffer to evict.
2187                  */
2188                 if (!list_empty(&dev_priv->mm.request_list)) {
2189                         struct drm_i915_gem_request *request;
2190
2191                         request = list_first_entry(&dev_priv->mm.request_list,
2192                                                    struct drm_i915_gem_request,
2193                                                    list);
2194
2195                         ret = i915_wait_request(dev, request->seqno);
2196                         if (ret)
2197                                 return ret;
2198
2199                         continue;
2200                 }
2201
2202                 /* If we didn't have anything on the request list but there
2203                  * are buffers awaiting a flush, emit one and try again.
2204                  * When we wait on it, those buffers waiting for that flush
2205                  * will get moved to inactive.
2206                  */
2207                 if (!list_empty(&dev_priv->mm.flushing_list)) {
2208                         struct drm_i915_gem_object *obj_priv;
2209
2210                         /* Find an object that we can immediately reuse */
2211                         list_for_each_entry(obj_priv, &dev_priv->mm.flushing_list, list) {
2212                                 obj = &obj_priv->base;
2213                                 if (obj->size >= min_size)
2214                                         break;
2215
2216                                 obj = NULL;
2217                         }
2218
2219                         if (obj != NULL) {
2220                                 uint32_t seqno;
2221
2222                                 i915_gem_flush(dev,
2223                                                obj->write_domain,
2224                                                obj->write_domain);
2225                                 seqno = i915_add_request(dev, NULL, obj->write_domain);
2226                                 if (seqno == 0)
2227                                         return -ENOMEM;
2228                                 continue;
2229                         }
2230                 }
2231
2232                 /* If we didn't do any of the above, there's no single buffer
2233                  * large enough to swap out for the new one, so just evict
2234                  * everything and start again. (This should be rare.)
2235                  */
2236                 if (!list_empty (&dev_priv->mm.inactive_list))
2237                         return i915_gem_evict_from_inactive_list(dev);
2238                 else
2239                         return i915_gem_evict_everything(dev);
2240         }
2241 }
2242
2243 int
2244 i915_gem_object_get_pages(struct drm_gem_object *obj,
2245                           gfp_t gfpmask)
2246 {
2247         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2248         int page_count, i;
2249         struct address_space *mapping;
2250         struct inode *inode;
2251         struct page *page;
2252
2253         if (obj_priv->pages_refcount++ != 0)
2254                 return 0;
2255
2256         /* Get the list of pages out of our struct file.  They'll be pinned
2257          * at this point until we release them.
2258          */
2259         page_count = obj->size / PAGE_SIZE;
2260         BUG_ON(obj_priv->pages != NULL);
2261         obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2262         if (obj_priv->pages == NULL) {
2263                 obj_priv->pages_refcount--;
2264                 return -ENOMEM;
2265         }
2266
2267         inode = obj->filp->f_path.dentry->d_inode;
2268         mapping = inode->i_mapping;
2269         for (i = 0; i < page_count; i++) {
2270                 page = read_cache_page_gfp(mapping, i,
2271                                            mapping_gfp_mask (mapping) |
2272                                            __GFP_COLD |
2273                                            gfpmask);
2274                 if (IS_ERR(page))
2275                         goto err_pages;
2276
2277                 obj_priv->pages[i] = page;
2278         }
2279
2280         if (obj_priv->tiling_mode != I915_TILING_NONE)
2281                 i915_gem_object_do_bit_17_swizzle(obj);
2282
2283         return 0;
2284
2285 err_pages:
2286         while (i--)
2287                 page_cache_release(obj_priv->pages[i]);
2288
2289         drm_free_large(obj_priv->pages);
2290         obj_priv->pages = NULL;
2291         obj_priv->pages_refcount--;
2292         return PTR_ERR(page);
2293 }
2294
2295 static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2296 {
2297         struct drm_gem_object *obj = reg->obj;
2298         struct drm_device *dev = obj->dev;
2299         drm_i915_private_t *dev_priv = dev->dev_private;
2300         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2301         int regnum = obj_priv->fence_reg;
2302         uint64_t val;
2303
2304         val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2305                     0xfffff000) << 32;
2306         val |= obj_priv->gtt_offset & 0xfffff000;
2307         val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2308                 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2309
2310         if (obj_priv->tiling_mode == I915_TILING_Y)
2311                 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2312         val |= I965_FENCE_REG_VALID;
2313
2314         I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2315 }
2316
2317 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2318 {
2319         struct drm_gem_object *obj = reg->obj;
2320         struct drm_device *dev = obj->dev;
2321         drm_i915_private_t *dev_priv = dev->dev_private;
2322         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2323         int regnum = obj_priv->fence_reg;
2324         uint64_t val;
2325
2326         val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2327                     0xfffff000) << 32;
2328         val |= obj_priv->gtt_offset & 0xfffff000;
2329         val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2330         if (obj_priv->tiling_mode == I915_TILING_Y)
2331                 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2332         val |= I965_FENCE_REG_VALID;
2333
2334         I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2335 }
2336
2337 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2338 {
2339         struct drm_gem_object *obj = reg->obj;
2340         struct drm_device *dev = obj->dev;
2341         drm_i915_private_t *dev_priv = dev->dev_private;
2342         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2343         int regnum = obj_priv->fence_reg;
2344         int tile_width;
2345         uint32_t fence_reg, val;
2346         uint32_t pitch_val;
2347
2348         if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2349             (obj_priv->gtt_offset & (obj->size - 1))) {
2350                 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2351                      __func__, obj_priv->gtt_offset, obj->size);
2352                 return;
2353         }
2354
2355         if (obj_priv->tiling_mode == I915_TILING_Y &&
2356             HAS_128_BYTE_Y_TILING(dev))
2357                 tile_width = 128;
2358         else
2359                 tile_width = 512;
2360
2361         /* Note: pitch better be a power of two tile widths */
2362         pitch_val = obj_priv->stride / tile_width;
2363         pitch_val = ffs(pitch_val) - 1;
2364
2365         val = obj_priv->gtt_offset;
2366         if (obj_priv->tiling_mode == I915_TILING_Y)
2367                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2368         val |= I915_FENCE_SIZE_BITS(obj->size);
2369         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2370         val |= I830_FENCE_REG_VALID;
2371
2372         if (regnum < 8)
2373                 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2374         else
2375                 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2376         I915_WRITE(fence_reg, val);
2377 }
2378
2379 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2380 {
2381         struct drm_gem_object *obj = reg->obj;
2382         struct drm_device *dev = obj->dev;
2383         drm_i915_private_t *dev_priv = dev->dev_private;
2384         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2385         int regnum = obj_priv->fence_reg;
2386         uint32_t val;
2387         uint32_t pitch_val;
2388         uint32_t fence_size_bits;
2389
2390         if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2391             (obj_priv->gtt_offset & (obj->size - 1))) {
2392                 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2393                      __func__, obj_priv->gtt_offset);
2394                 return;
2395         }
2396
2397         pitch_val = obj_priv->stride / 128;
2398         pitch_val = ffs(pitch_val) - 1;
2399         WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2400
2401         val = obj_priv->gtt_offset;
2402         if (obj_priv->tiling_mode == I915_TILING_Y)
2403                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2404         fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2405         WARN_ON(fence_size_bits & ~0x00000f00);
2406         val |= fence_size_bits;
2407         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2408         val |= I830_FENCE_REG_VALID;
2409
2410         I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2411 }
2412
2413 static int i915_find_fence_reg(struct drm_device *dev)
2414 {
2415         struct drm_i915_fence_reg *reg = NULL;
2416         struct drm_i915_gem_object *obj_priv = NULL;
2417         struct drm_i915_private *dev_priv = dev->dev_private;
2418         struct drm_gem_object *obj = NULL;
2419         int i, avail, ret;
2420
2421         /* First try to find a free reg */
2422         avail = 0;
2423         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2424                 reg = &dev_priv->fence_regs[i];
2425                 if (!reg->obj)
2426                         return i;
2427
2428                 obj_priv = to_intel_bo(reg->obj);
2429                 if (!obj_priv->pin_count)
2430                     avail++;
2431         }
2432
2433         if (avail == 0)
2434                 return -ENOSPC;
2435
2436         /* None available, try to steal one or wait for a user to finish */
2437         i = I915_FENCE_REG_NONE;
2438         list_for_each_entry(obj_priv, &dev_priv->mm.fence_list,
2439                             fence_list) {
2440                 obj = &obj_priv->base;
2441
2442                 if (obj_priv->pin_count)
2443                         continue;
2444
2445                 /* found one! */
2446                 i = obj_priv->fence_reg;
2447                 break;
2448         }
2449
2450         BUG_ON(i == I915_FENCE_REG_NONE);
2451
2452         /* We only have a reference on obj from the active list. put_fence_reg
2453          * might drop that one, causing a use-after-free in it. So hold a
2454          * private reference to obj like the other callers of put_fence_reg
2455          * (set_tiling ioctl) do. */
2456         drm_gem_object_reference(obj);
2457         ret = i915_gem_object_put_fence_reg(obj);
2458         drm_gem_object_unreference(obj);
2459         if (ret != 0)
2460                 return ret;
2461
2462         return i;
2463 }
2464
2465 /**
2466  * i915_gem_object_get_fence_reg - set up a fence reg for an object
2467  * @obj: object to map through a fence reg
2468  *
2469  * When mapping objects through the GTT, userspace wants to be able to write
2470  * to them without having to worry about swizzling if the object is tiled.
2471  *
2472  * This function walks the fence regs looking for a free one for @obj,
2473  * stealing one if it can't find any.
2474  *
2475  * It then sets up the reg based on the object's properties: address, pitch
2476  * and tiling format.
2477  */
2478 int
2479 i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2480 {
2481         struct drm_device *dev = obj->dev;
2482         struct drm_i915_private *dev_priv = dev->dev_private;
2483         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2484         struct drm_i915_fence_reg *reg = NULL;
2485         int ret;
2486
2487         /* Just update our place in the LRU if our fence is getting used. */
2488         if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2489                 list_move_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2490                 return 0;
2491         }
2492
2493         switch (obj_priv->tiling_mode) {
2494         case I915_TILING_NONE:
2495                 WARN(1, "allocating a fence for non-tiled object?\n");
2496                 break;
2497         case I915_TILING_X:
2498                 if (!obj_priv->stride)
2499                         return -EINVAL;
2500                 WARN((obj_priv->stride & (512 - 1)),
2501                      "object 0x%08x is X tiled but has non-512B pitch\n",
2502                      obj_priv->gtt_offset);
2503                 break;
2504         case I915_TILING_Y:
2505                 if (!obj_priv->stride)
2506                         return -EINVAL;
2507                 WARN((obj_priv->stride & (128 - 1)),
2508                      "object 0x%08x is Y tiled but has non-128B pitch\n",
2509                      obj_priv->gtt_offset);
2510                 break;
2511         }
2512
2513         ret = i915_find_fence_reg(dev);
2514         if (ret < 0)
2515                 return ret;
2516
2517         obj_priv->fence_reg = ret;
2518         reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2519         list_add_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2520
2521         reg->obj = obj;
2522
2523         if (IS_GEN6(dev))
2524                 sandybridge_write_fence_reg(reg);
2525         else if (IS_I965G(dev))
2526                 i965_write_fence_reg(reg);
2527         else if (IS_I9XX(dev))
2528                 i915_write_fence_reg(reg);
2529         else
2530                 i830_write_fence_reg(reg);
2531
2532         trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2533                         obj_priv->tiling_mode);
2534
2535         return 0;
2536 }
2537
2538 /**
2539  * i915_gem_clear_fence_reg - clear out fence register info
2540  * @obj: object to clear
2541  *
2542  * Zeroes out the fence register itself and clears out the associated
2543  * data structures in dev_priv and obj_priv.
2544  */
2545 static void
2546 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2547 {
2548         struct drm_device *dev = obj->dev;
2549         drm_i915_private_t *dev_priv = dev->dev_private;
2550         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2551
2552         if (IS_GEN6(dev)) {
2553                 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2554                              (obj_priv->fence_reg * 8), 0);
2555         } else if (IS_I965G(dev)) {
2556                 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2557         } else {
2558                 uint32_t fence_reg;
2559
2560                 if (obj_priv->fence_reg < 8)
2561                         fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2562                 else
2563                         fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2564                                                        8) * 4;
2565
2566                 I915_WRITE(fence_reg, 0);
2567         }
2568
2569         dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2570         obj_priv->fence_reg = I915_FENCE_REG_NONE;
2571         list_del_init(&obj_priv->fence_list);
2572 }
2573
2574 /**
2575  * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2576  * to the buffer to finish, and then resets the fence register.
2577  * @obj: tiled object holding a fence register.
2578  *
2579  * Zeroes out the fence register itself and clears out the associated
2580  * data structures in dev_priv and obj_priv.
2581  */
2582 int
2583 i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2584 {
2585         struct drm_device *dev = obj->dev;
2586         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2587
2588         if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2589                 return 0;
2590
2591         /* If we've changed tiling, GTT-mappings of the object
2592          * need to re-fault to ensure that the correct fence register
2593          * setup is in place.
2594          */
2595         i915_gem_release_mmap(obj);
2596
2597         /* On the i915, GPU access to tiled buffers is via a fence,
2598          * therefore we must wait for any outstanding access to complete
2599          * before clearing the fence.
2600          */
2601         if (!IS_I965G(dev)) {
2602                 int ret;
2603
2604                 i915_gem_object_flush_gpu_write_domain(obj);
2605                 ret = i915_gem_object_wait_rendering(obj);
2606                 if (ret != 0)
2607                         return ret;
2608         }
2609
2610         i915_gem_object_flush_gtt_write_domain(obj);
2611         i915_gem_clear_fence_reg (obj);
2612
2613         return 0;
2614 }
2615
2616 /**
2617  * Finds free space in the GTT aperture and binds the object there.
2618  */
2619 static int
2620 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2621 {
2622         struct drm_device *dev = obj->dev;
2623         drm_i915_private_t *dev_priv = dev->dev_private;
2624         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2625         struct drm_mm_node *free_space;
2626         gfp_t gfpmask =  __GFP_NORETRY | __GFP_NOWARN;
2627         int ret;
2628
2629         if (obj_priv->madv != I915_MADV_WILLNEED) {
2630                 DRM_ERROR("Attempting to bind a purgeable object\n");
2631                 return -EINVAL;
2632         }
2633
2634         if (alignment == 0)
2635                 alignment = i915_gem_get_gtt_alignment(obj);
2636         if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2637                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2638                 return -EINVAL;
2639         }
2640
2641  search_free:
2642         free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2643                                         obj->size, alignment, 0);
2644         if (free_space != NULL) {
2645                 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2646                                                        alignment);
2647                 if (obj_priv->gtt_space != NULL) {
2648                         obj_priv->gtt_space->private = obj;
2649                         obj_priv->gtt_offset = obj_priv->gtt_space->start;
2650                 }
2651         }
2652         if (obj_priv->gtt_space == NULL) {
2653                 /* If the gtt is empty and we're still having trouble
2654                  * fitting our object in, we're out of memory.
2655                  */
2656 #if WATCH_LRU
2657                 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2658 #endif
2659                 ret = i915_gem_evict_something(dev, obj->size);
2660                 if (ret)
2661                         return ret;
2662
2663                 goto search_free;
2664         }
2665
2666 #if WATCH_BUF
2667         DRM_INFO("Binding object of size %zd at 0x%08x\n",
2668                  obj->size, obj_priv->gtt_offset);
2669 #endif
2670         ret = i915_gem_object_get_pages(obj, gfpmask);
2671         if (ret) {
2672                 drm_mm_put_block(obj_priv->gtt_space);
2673                 obj_priv->gtt_space = NULL;
2674
2675                 if (ret == -ENOMEM) {
2676                         /* first try to clear up some space from the GTT */
2677                         ret = i915_gem_evict_something(dev, obj->size);
2678                         if (ret) {
2679                                 /* now try to shrink everyone else */
2680                                 if (gfpmask) {
2681                                         gfpmask = 0;
2682                                         goto search_free;
2683                                 }
2684
2685                                 return ret;
2686                         }
2687
2688                         goto search_free;
2689                 }
2690
2691                 return ret;
2692         }
2693
2694         /* Create an AGP memory structure pointing at our pages, and bind it
2695          * into the GTT.
2696          */
2697         obj_priv->agp_mem = drm_agp_bind_pages(dev,
2698                                                obj_priv->pages,
2699                                                obj->size >> PAGE_SHIFT,
2700                                                obj_priv->gtt_offset,
2701                                                obj_priv->agp_type);
2702         if (obj_priv->agp_mem == NULL) {
2703                 i915_gem_object_put_pages(obj);
2704                 drm_mm_put_block(obj_priv->gtt_space);
2705                 obj_priv->gtt_space = NULL;
2706
2707                 ret = i915_gem_evict_something(dev, obj->size);
2708                 if (ret)
2709                         return ret;
2710
2711                 goto search_free;
2712         }
2713         atomic_inc(&dev->gtt_count);
2714         atomic_add(obj->size, &dev->gtt_memory);
2715
2716         /* Assert that the object is not currently in any GPU domain. As it
2717          * wasn't in the GTT, there shouldn't be any way it could have been in
2718          * a GPU cache
2719          */
2720         BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2721         BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2722
2723         trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2724
2725         return 0;
2726 }
2727
2728 void
2729 i915_gem_clflush_object(struct drm_gem_object *obj)
2730 {
2731         struct drm_i915_gem_object      *obj_priv = to_intel_bo(obj);
2732
2733         /* If we don't have a page list set up, then we're not pinned
2734          * to GPU, and we can ignore the cache flush because it'll happen
2735          * again at bind time.
2736          */
2737         if (obj_priv->pages == NULL)
2738                 return;
2739
2740         trace_i915_gem_object_clflush(obj);
2741
2742         drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2743 }
2744
2745 /** Flushes any GPU write domain for the object if it's dirty. */
2746 static void
2747 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2748 {
2749         struct drm_device *dev = obj->dev;
2750         uint32_t old_write_domain;
2751
2752         if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2753                 return;
2754
2755         /* Queue the GPU write cache flushing we need. */
2756         old_write_domain = obj->write_domain;
2757         i915_gem_flush(dev, 0, obj->write_domain);
2758         (void) i915_add_request(dev, NULL, obj->write_domain);
2759         BUG_ON(obj->write_domain);
2760
2761         trace_i915_gem_object_change_domain(obj,
2762                                             obj->read_domains,
2763                                             old_write_domain);
2764 }
2765
2766 /** Flushes the GTT write domain for the object if it's dirty. */
2767 static void
2768 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2769 {
2770         uint32_t old_write_domain;
2771
2772         if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2773                 return;
2774
2775         /* No actual flushing is required for the GTT write domain.   Writes
2776          * to it immediately go to main memory as far as we know, so there's
2777          * no chipset flush.  It also doesn't land in render cache.
2778          */
2779         old_write_domain = obj->write_domain;
2780         obj->write_domain = 0;
2781
2782         trace_i915_gem_object_change_domain(obj,
2783                                             obj->read_domains,
2784                                             old_write_domain);
2785 }
2786
2787 /** Flushes the CPU write domain for the object if it's dirty. */
2788 static void
2789 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2790 {
2791         struct drm_device *dev = obj->dev;
2792         uint32_t old_write_domain;
2793
2794         if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2795                 return;
2796
2797         i915_gem_clflush_object(obj);
2798         drm_agp_chipset_flush(dev);
2799         old_write_domain = obj->write_domain;
2800         obj->write_domain = 0;
2801
2802         trace_i915_gem_object_change_domain(obj,
2803                                             obj->read_domains,
2804                                             old_write_domain);
2805 }
2806
2807 void
2808 i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
2809 {
2810         switch (obj->write_domain) {
2811         case I915_GEM_DOMAIN_GTT:
2812                 i915_gem_object_flush_gtt_write_domain(obj);
2813                 break;
2814         case I915_GEM_DOMAIN_CPU:
2815                 i915_gem_object_flush_cpu_write_domain(obj);
2816                 break;
2817         default:
2818                 i915_gem_object_flush_gpu_write_domain(obj);
2819                 break;
2820         }
2821 }
2822
2823 /**
2824  * Moves a single object to the GTT read, and possibly write domain.
2825  *
2826  * This function returns when the move is complete, including waiting on
2827  * flushes to occur.
2828  */
2829 int
2830 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2831 {
2832         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2833         uint32_t old_write_domain, old_read_domains;
2834         int ret;
2835
2836         /* Not valid to be called on unbound objects. */
2837         if (obj_priv->gtt_space == NULL)
2838                 return -EINVAL;
2839
2840         i915_gem_object_flush_gpu_write_domain(obj);
2841         /* Wait on any GPU rendering and flushing to occur. */
2842         ret = i915_gem_object_wait_rendering(obj);
2843         if (ret != 0)
2844                 return ret;
2845
2846         old_write_domain = obj->write_domain;
2847         old_read_domains = obj->read_domains;
2848
2849         /* If we're writing through the GTT domain, then CPU and GPU caches
2850          * will need to be invalidated at next use.
2851          */
2852         if (write)
2853                 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2854
2855         i915_gem_object_flush_cpu_write_domain(obj);
2856
2857         /* It should now be out of any other write domains, and we can update
2858          * the domain values for our changes.
2859          */
2860         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2861         obj->read_domains |= I915_GEM_DOMAIN_GTT;
2862         if (write) {
2863                 obj->write_domain = I915_GEM_DOMAIN_GTT;
2864                 obj_priv->dirty = 1;
2865         }
2866
2867         trace_i915_gem_object_change_domain(obj,
2868                                             old_read_domains,
2869                                             old_write_domain);
2870
2871         return 0;
2872 }
2873
2874 /*
2875  * Prepare buffer for display plane. Use uninterruptible for possible flush
2876  * wait, as in modesetting process we're not supposed to be interrupted.
2877  */
2878 int
2879 i915_gem_object_set_to_display_plane(struct drm_gem_object *obj)
2880 {
2881         struct drm_device *dev = obj->dev;
2882         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2883         uint32_t old_write_domain, old_read_domains;
2884         int ret;
2885
2886         /* Not valid to be called on unbound objects. */
2887         if (obj_priv->gtt_space == NULL)
2888                 return -EINVAL;
2889
2890         i915_gem_object_flush_gpu_write_domain(obj);
2891
2892         /* Wait on any GPU rendering and flushing to occur. */
2893         if (obj_priv->active) {
2894 #if WATCH_BUF
2895                 DRM_INFO("%s: object %p wait for seqno %08x\n",
2896                           __func__, obj, obj_priv->last_rendering_seqno);
2897 #endif
2898                 ret = i915_do_wait_request(dev, obj_priv->last_rendering_seqno, 0);
2899                 if (ret != 0)
2900                         return ret;
2901         }
2902
2903         old_write_domain = obj->write_domain;
2904         old_read_domains = obj->read_domains;
2905
2906         obj->read_domains &= I915_GEM_DOMAIN_GTT;
2907
2908         i915_gem_object_flush_cpu_write_domain(obj);
2909
2910         /* It should now be out of any other write domains, and we can update
2911          * the domain values for our changes.
2912          */
2913         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2914         obj->read_domains |= I915_GEM_DOMAIN_GTT;
2915         obj->write_domain = I915_GEM_DOMAIN_GTT;
2916         obj_priv->dirty = 1;
2917
2918         trace_i915_gem_object_change_domain(obj,
2919                                             old_read_domains,
2920                                             old_write_domain);
2921
2922         return 0;
2923 }
2924
2925 /**
2926  * Moves a single object to the CPU read, and possibly write domain.
2927  *
2928  * This function returns when the move is complete, including waiting on
2929  * flushes to occur.
2930  */
2931 static int
2932 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2933 {
2934         uint32_t old_write_domain, old_read_domains;
2935         int ret;
2936
2937         i915_gem_object_flush_gpu_write_domain(obj);
2938         /* Wait on any GPU rendering and flushing to occur. */
2939         ret = i915_gem_object_wait_rendering(obj);
2940         if (ret != 0)
2941                 return ret;
2942
2943         i915_gem_object_flush_gtt_write_domain(obj);
2944
2945         /* If we have a partially-valid cache of the object in the CPU,
2946          * finish invalidating it and free the per-page flags.
2947          */
2948         i915_gem_object_set_to_full_cpu_read_domain(obj);
2949
2950         old_write_domain = obj->write_domain;
2951         old_read_domains = obj->read_domains;
2952
2953         /* Flush the CPU cache if it's still invalid. */
2954         if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2955                 i915_gem_clflush_object(obj);
2956
2957                 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2958         }
2959
2960         /* It should now be out of any other write domains, and we can update
2961          * the domain values for our changes.
2962          */
2963         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2964
2965         /* If we're writing through the CPU, then the GPU read domains will
2966          * need to be invalidated at next use.
2967          */
2968         if (write) {
2969                 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2970                 obj->write_domain = I915_GEM_DOMAIN_CPU;
2971         }
2972
2973         trace_i915_gem_object_change_domain(obj,
2974                                             old_read_domains,
2975                                             old_write_domain);
2976
2977         return 0;
2978 }
2979
2980 /*
2981  * Set the next domain for the specified object. This
2982  * may not actually perform the necessary flushing/invaliding though,
2983  * as that may want to be batched with other set_domain operations
2984  *
2985  * This is (we hope) the only really tricky part of gem. The goal
2986  * is fairly simple -- track which caches hold bits of the object
2987  * and make sure they remain coherent. A few concrete examples may
2988  * help to explain how it works. For shorthand, we use the notation
2989  * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2990  * a pair of read and write domain masks.
2991  *
2992  * Case 1: the batch buffer
2993  *
2994  *      1. Allocated
2995  *      2. Written by CPU
2996  *      3. Mapped to GTT
2997  *      4. Read by GPU
2998  *      5. Unmapped from GTT
2999  *      6. Freed
3000  *
3001  *      Let's take these a step at a time
3002  *
3003  *      1. Allocated
3004  *              Pages allocated from the kernel may still have
3005  *              cache contents, so we set them to (CPU, CPU) always.
3006  *      2. Written by CPU (using pwrite)
3007  *              The pwrite function calls set_domain (CPU, CPU) and
3008  *              this function does nothing (as nothing changes)
3009  *      3. Mapped by GTT
3010  *              This function asserts that the object is not
3011  *              currently in any GPU-based read or write domains
3012  *      4. Read by GPU
3013  *              i915_gem_execbuffer calls set_domain (COMMAND, 0).
3014  *              As write_domain is zero, this function adds in the
3015  *              current read domains (CPU+COMMAND, 0).
3016  *              flush_domains is set to CPU.
3017  *              invalidate_domains is set to COMMAND
3018  *              clflush is run to get data out of the CPU caches
3019  *              then i915_dev_set_domain calls i915_gem_flush to
3020  *              emit an MI_FLUSH and drm_agp_chipset_flush
3021  *      5. Unmapped from GTT
3022  *              i915_gem_object_unbind calls set_domain (CPU, CPU)
3023  *              flush_domains and invalidate_domains end up both zero
3024  *              so no flushing/invalidating happens
3025  *      6. Freed
3026  *              yay, done
3027  *
3028  * Case 2: The shared render buffer
3029  *
3030  *      1. Allocated
3031  *      2. Mapped to GTT
3032  *      3. Read/written by GPU
3033  *      4. set_domain to (CPU,CPU)
3034  *      5. Read/written by CPU
3035  *      6. Read/written by GPU
3036  *
3037  *      1. Allocated
3038  *              Same as last example, (CPU, CPU)
3039  *      2. Mapped to GTT
3040  *              Nothing changes (assertions find that it is not in the GPU)
3041  *      3. Read/written by GPU
3042  *              execbuffer calls set_domain (RENDER, RENDER)
3043  *              flush_domains gets CPU
3044  *              invalidate_domains gets GPU
3045  *              clflush (obj)
3046  *              MI_FLUSH and drm_agp_chipset_flush
3047  *      4. set_domain (CPU, CPU)
3048  *              flush_domains gets GPU
3049  *              invalidate_domains gets CPU
3050  *              wait_rendering (obj) to make sure all drawing is complete.
3051  *              This will include an MI_FLUSH to get the data from GPU
3052  *              to memory
3053  *              clflush (obj) to invalidate the CPU cache
3054  *              Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3055  *      5. Read/written by CPU
3056  *              cache lines are loaded and dirtied
3057  *      6. Read written by GPU
3058  *              Same as last GPU access
3059  *
3060  * Case 3: The constant buffer
3061  *
3062  *      1. Allocated
3063  *      2. Written by CPU
3064  *      3. Read by GPU
3065  *      4. Updated (written) by CPU again
3066  *      5. Read by GPU
3067  *
3068  *      1. Allocated
3069  *              (CPU, CPU)
3070  *      2. Written by CPU
3071  *              (CPU, CPU)
3072  *      3. Read by GPU
3073  *              (CPU+RENDER, 0)
3074  *              flush_domains = CPU
3075  *              invalidate_domains = RENDER
3076  *              clflush (obj)
3077  *              MI_FLUSH
3078  *              drm_agp_chipset_flush
3079  *      4. Updated (written) by CPU again
3080  *              (CPU, CPU)
3081  *              flush_domains = 0 (no previous write domain)
3082  *              invalidate_domains = 0 (no new read domains)
3083  *      5. Read by GPU
3084  *              (CPU+RENDER, 0)
3085  *              flush_domains = CPU
3086  *              invalidate_domains = RENDER
3087  *              clflush (obj)
3088  *              MI_FLUSH
3089  *              drm_agp_chipset_flush
3090  */
3091 static void
3092 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
3093 {
3094         struct drm_device               *dev = obj->dev;
3095         struct drm_i915_gem_object      *obj_priv = to_intel_bo(obj);
3096         uint32_t                        invalidate_domains = 0;
3097         uint32_t                        flush_domains = 0;
3098         uint32_t                        old_read_domains;
3099
3100         BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
3101         BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
3102
3103         intel_mark_busy(dev, obj);
3104
3105 #if WATCH_BUF
3106         DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
3107                  __func__, obj,
3108                  obj->read_domains, obj->pending_read_domains,
3109                  obj->write_domain, obj->pending_write_domain);
3110 #endif
3111         /*
3112          * If the object isn't moving to a new write domain,
3113          * let the object stay in multiple read domains
3114          */
3115         if (obj->pending_write_domain == 0)
3116                 obj->pending_read_domains |= obj->read_domains;
3117         else
3118                 obj_priv->dirty = 1;
3119
3120         /*
3121          * Flush the current write domain if
3122          * the new read domains don't match. Invalidate
3123          * any read domains which differ from the old
3124          * write domain
3125          */
3126         if (obj->write_domain &&
3127             obj->write_domain != obj->pending_read_domains) {
3128                 flush_domains |= obj->write_domain;
3129                 invalidate_domains |=
3130                         obj->pending_read_domains & ~obj->write_domain;
3131         }
3132         /*
3133          * Invalidate any read caches which may have
3134          * stale data. That is, any new read domains.
3135          */
3136         invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3137         if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
3138 #if WATCH_BUF
3139                 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
3140                          __func__, flush_domains, invalidate_domains);
3141 #endif
3142                 i915_gem_clflush_object(obj);
3143         }
3144
3145         old_read_domains = obj->read_domains;
3146
3147         /* The actual obj->write_domain will be updated with
3148          * pending_write_domain after we emit the accumulated flush for all
3149          * of our domain changes in execbuffers (which clears objects'
3150          * write_domains).  So if we have a current write domain that we
3151          * aren't changing, set pending_write_domain to that.
3152          */
3153         if (flush_domains == 0 && obj->pending_write_domain == 0)
3154                 obj->pending_write_domain = obj->write_domain;
3155         obj->read_domains = obj->pending_read_domains;
3156
3157         dev->invalidate_domains |= invalidate_domains;
3158         dev->flush_domains |= flush_domains;
3159 #if WATCH_BUF
3160         DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
3161                  __func__,
3162                  obj->read_domains, obj->write_domain,
3163                  dev->invalidate_domains, dev->flush_domains);
3164 #endif
3165
3166         trace_i915_gem_object_change_domain(obj,
3167                                             old_read_domains,
3168                                             obj->write_domain);
3169 }
3170
3171 /**
3172  * Moves the object from a partially CPU read to a full one.
3173  *
3174  * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3175  * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3176  */
3177 static void
3178 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3179 {
3180         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3181
3182         if (!obj_priv->page_cpu_valid)
3183                 return;
3184
3185         /* If we're partially in the CPU read domain, finish moving it in.
3186          */
3187         if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3188                 int i;
3189
3190                 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3191                         if (obj_priv->page_cpu_valid[i])
3192                                 continue;
3193                         drm_clflush_pages(obj_priv->pages + i, 1);
3194                 }
3195         }
3196
3197         /* Free the page_cpu_valid mappings which are now stale, whether
3198          * or not we've got I915_GEM_DOMAIN_CPU.
3199          */
3200         kfree(obj_priv->page_cpu_valid);
3201         obj_priv->page_cpu_valid = NULL;
3202 }
3203
3204 /**
3205  * Set the CPU read domain on a range of the object.
3206  *
3207  * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3208  * not entirely valid.  The page_cpu_valid member of the object flags which
3209  * pages have been flushed, and will be respected by
3210  * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3211  * of the whole object.
3212  *
3213  * This function returns when the move is complete, including waiting on
3214  * flushes to occur.
3215  */
3216 static int
3217 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3218                                           uint64_t offset, uint64_t size)
3219 {
3220         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3221         uint32_t old_read_domains;
3222         int i, ret;
3223
3224         if (offset == 0 && size == obj->size)
3225                 return i915_gem_object_set_to_cpu_domain(obj, 0);
3226
3227         i915_gem_object_flush_gpu_write_domain(obj);
3228         /* Wait on any GPU rendering and flushing to occur. */
3229         ret = i915_gem_object_wait_rendering(obj);
3230         if (ret != 0)
3231                 return ret;
3232         i915_gem_object_flush_gtt_write_domain(obj);
3233
3234         /* If we're already fully in the CPU read domain, we're done. */
3235         if (obj_priv->page_cpu_valid == NULL &&
3236             (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3237                 return 0;
3238
3239         /* Otherwise, create/clear the per-page CPU read domain flag if we're
3240          * newly adding I915_GEM_DOMAIN_CPU
3241          */
3242         if (obj_priv->page_cpu_valid == NULL) {
3243                 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3244                                                    GFP_KERNEL);
3245                 if (obj_priv->page_cpu_valid == NULL)
3246                         return -ENOMEM;
3247         } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3248                 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3249
3250         /* Flush the cache on any pages that are still invalid from the CPU's
3251          * perspective.
3252          */
3253         for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3254              i++) {
3255                 if (obj_priv->page_cpu_valid[i])
3256                         continue;
3257
3258                 drm_clflush_pages(obj_priv->pages + i, 1);
3259
3260                 obj_priv->page_cpu_valid[i] = 1;
3261         }
3262
3263         /* It should now be out of any other write domains, and we can update
3264          * the domain values for our changes.
3265          */
3266         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3267
3268         old_read_domains = obj->read_domains;
3269         obj->read_domains |= I915_GEM_DOMAIN_CPU;
3270
3271         trace_i915_gem_object_change_domain(obj,
3272                                             old_read_domains,
3273                                             obj->write_domain);
3274
3275         return 0;
3276 }
3277
3278 /**
3279  * Pin an object to the GTT and evaluate the relocations landing in it.
3280  */
3281 static int
3282 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3283                                  struct drm_file *file_priv,
3284                                  struct drm_i915_gem_exec_object2 *entry,
3285                                  struct drm_i915_gem_relocation_entry *relocs)
3286 {
3287         struct drm_device *dev = obj->dev;
3288         drm_i915_private_t *dev_priv = dev->dev_private;
3289         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3290         int i, ret;
3291         void __iomem *reloc_page;
3292         bool need_fence;
3293
3294         need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3295                      obj_priv->tiling_mode != I915_TILING_NONE;
3296
3297         /* Check fence reg constraints and rebind if necessary */
3298         if (need_fence && !i915_gem_object_fence_offset_ok(obj,
3299             obj_priv->tiling_mode))
3300                 i915_gem_object_unbind(obj);
3301
3302         /* Choose the GTT offset for our buffer and put it there. */
3303         ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3304         if (ret)
3305                 return ret;
3306
3307         /*
3308          * Pre-965 chips need a fence register set up in order to
3309          * properly handle blits to/from tiled surfaces.
3310          */
3311         if (need_fence) {
3312                 ret = i915_gem_object_get_fence_reg(obj);
3313                 if (ret != 0) {
3314                         if (ret != -EBUSY && ret != -ERESTARTSYS)
3315                                 DRM_ERROR("Failure to install fence: %d\n",
3316                                           ret);
3317                         i915_gem_object_unpin(obj);
3318                         return ret;
3319                 }
3320         }
3321
3322         entry->offset = obj_priv->gtt_offset;
3323
3324         /* Apply the relocations, using the GTT aperture to avoid cache
3325          * flushing requirements.
3326          */
3327         for (i = 0; i < entry->relocation_count; i++) {
3328                 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
3329                 struct drm_gem_object *target_obj;
3330                 struct drm_i915_gem_object *target_obj_priv;
3331                 uint32_t reloc_val, reloc_offset;
3332                 uint32_t __iomem *reloc_entry;
3333
3334                 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3335                                                    reloc->target_handle);
3336                 if (target_obj == NULL) {
3337                         i915_gem_object_unpin(obj);
3338                         return -EBADF;
3339                 }
3340                 target_obj_priv = to_intel_bo(target_obj);
3341
3342 #if WATCH_RELOC
3343                 DRM_INFO("%s: obj %p offset %08x target %d "
3344                          "read %08x write %08x gtt %08x "
3345                          "presumed %08x delta %08x\n",
3346                          __func__,
3347                          obj,
3348                          (int) reloc->offset,
3349                          (int) reloc->target_handle,
3350                          (int) reloc->read_domains,
3351                          (int) reloc->write_domain,
3352                          (int) target_obj_priv->gtt_offset,
3353                          (int) reloc->presumed_offset,
3354                          reloc->delta);
3355 #endif
3356
3357                 /* The target buffer should have appeared before us in the
3358                  * exec_object list, so it should have a GTT space bound by now.
3359                  */
3360                 if (target_obj_priv->gtt_space == NULL) {
3361                         DRM_ERROR("No GTT space found for object %d\n",
3362                                   reloc->target_handle);
3363                         drm_gem_object_unreference(target_obj);
3364                         i915_gem_object_unpin(obj);
3365                         return -EINVAL;
3366                 }
3367
3368                 /* Validate that the target is in a valid r/w GPU domain */
3369                 if (reloc->write_domain & (reloc->write_domain - 1)) {
3370                         DRM_ERROR("reloc with multiple write domains: "
3371                                   "obj %p target %d offset %d "
3372                                   "read %08x write %08x",
3373                                   obj, reloc->target_handle,
3374                                   (int) reloc->offset,
3375                                   reloc->read_domains,
3376                                   reloc->write_domain);
3377                         return -EINVAL;
3378                 }
3379                 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3380                     reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3381                         DRM_ERROR("reloc with read/write CPU domains: "
3382                                   "obj %p target %d offset %d "
3383                                   "read %08x write %08x",
3384                                   obj, reloc->target_handle,
3385                                   (int) reloc->offset,
3386                                   reloc->read_domains,
3387                                   reloc->write_domain);
3388                         drm_gem_object_unreference(target_obj);
3389                         i915_gem_object_unpin(obj);
3390                         return -EINVAL;
3391                 }
3392                 if (reloc->write_domain && target_obj->pending_write_domain &&
3393                     reloc->write_domain != target_obj->pending_write_domain) {
3394                         DRM_ERROR("Write domain conflict: "
3395                                   "obj %p target %d offset %d "
3396                                   "new %08x old %08x\n",
3397                                   obj, reloc->target_handle,
3398                                   (int) reloc->offset,
3399                                   reloc->write_domain,
3400                                   target_obj->pending_write_domain);
3401                         drm_gem_object_unreference(target_obj);
3402                         i915_gem_object_unpin(obj);
3403                         return -EINVAL;
3404                 }
3405
3406                 target_obj->pending_read_domains |= reloc->read_domains;
3407                 target_obj->pending_write_domain |= reloc->write_domain;
3408
3409                 /* If the relocation already has the right value in it, no
3410                  * more work needs to be done.
3411                  */
3412                 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3413                         drm_gem_object_unreference(target_obj);
3414                         continue;
3415                 }
3416
3417                 /* Check that the relocation address is valid... */
3418                 if (reloc->offset > obj->size - 4) {
3419                         DRM_ERROR("Relocation beyond object bounds: "
3420                                   "obj %p target %d offset %d size %d.\n",
3421                                   obj, reloc->target_handle,
3422                                   (int) reloc->offset, (int) obj->size);
3423                         drm_gem_object_unreference(target_obj);
3424                         i915_gem_object_unpin(obj);
3425                         return -EINVAL;
3426                 }
3427                 if (reloc->offset & 3) {
3428                         DRM_ERROR("Relocation not 4-byte aligned: "
3429                                   "obj %p target %d offset %d.\n",
3430                                   obj, reloc->target_handle,
3431                                   (int) reloc->offset);
3432                         drm_gem_object_unreference(target_obj);
3433                         i915_gem_object_unpin(obj);
3434                         return -EINVAL;
3435                 }
3436
3437                 /* and points to somewhere within the target object. */
3438                 if (reloc->delta >= target_obj->size) {
3439                         DRM_ERROR("Relocation beyond target object bounds: "
3440                                   "obj %p target %d delta %d size %d.\n",
3441                                   obj, reloc->target_handle,
3442                                   (int) reloc->delta, (int) target_obj->size);
3443                         drm_gem_object_unreference(target_obj);
3444                         i915_gem_object_unpin(obj);
3445                         return -EINVAL;
3446                 }
3447
3448                 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3449                 if (ret != 0) {
3450                         drm_gem_object_unreference(target_obj);
3451                         i915_gem_object_unpin(obj);
3452                         return -EINVAL;
3453                 }
3454
3455                 /* Map the page containing the relocation we're going to
3456                  * perform.
3457                  */
3458                 reloc_offset = obj_priv->gtt_offset + reloc->offset;
3459                 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3460                                                       (reloc_offset &
3461                                                        ~(PAGE_SIZE - 1)));
3462                 reloc_entry = (uint32_t __iomem *)(reloc_page +
3463                                                    (reloc_offset & (PAGE_SIZE - 1)));
3464                 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3465
3466 #if WATCH_BUF
3467                 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3468                           obj, (unsigned int) reloc->offset,
3469                           readl(reloc_entry), reloc_val);
3470 #endif
3471                 writel(reloc_val, reloc_entry);
3472                 io_mapping_unmap_atomic(reloc_page);
3473
3474                 /* The updated presumed offset for this entry will be
3475                  * copied back out to the user.
3476                  */
3477                 reloc->presumed_offset = target_obj_priv->gtt_offset;
3478
3479                 drm_gem_object_unreference(target_obj);
3480         }
3481
3482 #if WATCH_BUF
3483         if (0)
3484                 i915_gem_dump_object(obj, 128, __func__, ~0);
3485 #endif
3486         return 0;
3487 }
3488
3489 /** Dispatch a batchbuffer to the ring
3490  */
3491 static int
3492 i915_dispatch_gem_execbuffer(struct drm_device *dev,
3493                               struct drm_i915_gem_execbuffer2 *exec,
3494                               struct drm_clip_rect *cliprects,
3495                               uint64_t exec_offset)
3496 {
3497         drm_i915_private_t *dev_priv = dev->dev_private;
3498         int nbox = exec->num_cliprects;
3499         int i = 0, count;
3500         uint32_t exec_start, exec_len;
3501         RING_LOCALS;
3502
3503         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3504         exec_len = (uint32_t) exec->batch_len;
3505
3506         trace_i915_gem_request_submit(dev, dev_priv->mm.next_gem_seqno + 1);
3507
3508         count = nbox ? nbox : 1;
3509
3510         for (i = 0; i < count; i++) {
3511                 if (i < nbox) {
3512                         int ret = i915_emit_box(dev, cliprects, i,
3513                                                 exec->DR1, exec->DR4);
3514                         if (ret)
3515                                 return ret;
3516                 }
3517
3518                 if (IS_I830(dev) || IS_845G(dev)) {
3519                         BEGIN_LP_RING(4);
3520                         OUT_RING(MI_BATCH_BUFFER);
3521                         OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3522                         OUT_RING(exec_start + exec_len - 4);
3523                         OUT_RING(0);
3524                         ADVANCE_LP_RING();
3525                 } else {
3526                         BEGIN_LP_RING(2);
3527                         if (IS_I965G(dev)) {
3528                                 OUT_RING(MI_BATCH_BUFFER_START |
3529                                          (2 << 6) |
3530                                          MI_BATCH_NON_SECURE_I965);
3531                                 OUT_RING(exec_start);
3532                         } else {
3533                                 OUT_RING(MI_BATCH_BUFFER_START |
3534                                          (2 << 6));
3535                                 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3536                         }
3537                         ADVANCE_LP_RING();
3538                 }
3539         }
3540
3541         /* XXX breadcrumb */
3542         return 0;
3543 }
3544
3545 /* Throttle our rendering by waiting until the ring has completed our requests
3546  * emitted over 20 msec ago.
3547  *
3548  * Note that if we were to use the current jiffies each time around the loop,
3549  * we wouldn't escape the function with any frames outstanding if the time to
3550  * render a frame was over 20ms.
3551  *
3552  * This should get us reasonable parallelism between CPU and GPU but also
3553  * relatively low latency when blocking on a particular request to finish.
3554  */
3555 static int
3556 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3557 {
3558         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3559         int ret = 0;
3560         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3561
3562         mutex_lock(&dev->struct_mutex);
3563         while (!list_empty(&i915_file_priv->mm.request_list)) {
3564                 struct drm_i915_gem_request *request;
3565
3566                 request = list_first_entry(&i915_file_priv->mm.request_list,
3567                                            struct drm_i915_gem_request,
3568                                            client_list);
3569
3570                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3571                         break;
3572
3573                 ret = i915_wait_request(dev, request->seqno);
3574                 if (ret != 0)
3575                         break;
3576         }
3577         mutex_unlock(&dev->struct_mutex);
3578
3579         return ret;
3580 }
3581
3582 static int
3583 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
3584                               uint32_t buffer_count,
3585                               struct drm_i915_gem_relocation_entry **relocs)
3586 {
3587         uint32_t reloc_count = 0, reloc_index = 0, i;
3588         int ret;
3589
3590         *relocs = NULL;
3591         for (i = 0; i < buffer_count; i++) {
3592                 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3593                         return -EINVAL;
3594                 reloc_count += exec_list[i].relocation_count;
3595         }
3596
3597         *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3598         if (*relocs == NULL) {
3599                 DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
3600                 return -ENOMEM;
3601         }
3602
3603         for (i = 0; i < buffer_count; i++) {
3604                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3605
3606                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3607
3608                 ret = copy_from_user(&(*relocs)[reloc_index],
3609                                      user_relocs,
3610                                      exec_list[i].relocation_count *
3611                                      sizeof(**relocs));
3612                 if (ret != 0) {
3613                         drm_free_large(*relocs);
3614                         *relocs = NULL;
3615                         return -EFAULT;
3616                 }
3617
3618                 reloc_index += exec_list[i].relocation_count;
3619         }
3620
3621         return 0;
3622 }
3623
3624 static int
3625 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
3626                             uint32_t buffer_count,
3627                             struct drm_i915_gem_relocation_entry *relocs)
3628 {
3629         uint32_t reloc_count = 0, i;
3630         int ret = 0;
3631
3632         if (relocs == NULL)
3633             return 0;
3634
3635         for (i = 0; i < buffer_count; i++) {
3636                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3637                 int unwritten;
3638
3639                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3640
3641                 unwritten = copy_to_user(user_relocs,
3642                                          &relocs[reloc_count],
3643                                          exec_list[i].relocation_count *
3644                                          sizeof(*relocs));
3645
3646                 if (unwritten) {
3647                         ret = -EFAULT;
3648                         goto err;
3649                 }
3650
3651                 reloc_count += exec_list[i].relocation_count;
3652         }
3653
3654 err:
3655         drm_free_large(relocs);
3656
3657         return ret;
3658 }
3659
3660 static int
3661 i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
3662                            uint64_t exec_offset)
3663 {
3664         uint32_t exec_start, exec_len;
3665
3666         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3667         exec_len = (uint32_t) exec->batch_len;
3668
3669         if ((exec_start | exec_len) & 0x7)
3670                 return -EINVAL;
3671
3672         if (!exec_start)
3673                 return -EINVAL;
3674
3675         return 0;
3676 }
3677
3678 static int
3679 i915_gem_wait_for_pending_flip(struct drm_device *dev,
3680                                struct drm_gem_object **object_list,
3681                                int count)
3682 {
3683         drm_i915_private_t *dev_priv = dev->dev_private;
3684         struct drm_i915_gem_object *obj_priv;
3685         DEFINE_WAIT(wait);
3686         int i, ret = 0;
3687
3688         for (;;) {
3689                 prepare_to_wait(&dev_priv->pending_flip_queue,
3690                                 &wait, TASK_INTERRUPTIBLE);
3691                 for (i = 0; i < count; i++) {
3692                         obj_priv = to_intel_bo(object_list[i]);
3693                         if (atomic_read(&obj_priv->pending_flip) > 0)
3694                                 break;
3695                 }
3696                 if (i == count)
3697                         break;
3698
3699                 if (!signal_pending(current)) {
3700                         mutex_unlock(&dev->struct_mutex);
3701                         schedule();
3702                         mutex_lock(&dev->struct_mutex);
3703                         continue;
3704                 }
3705                 ret = -ERESTARTSYS;
3706                 break;
3707         }
3708         finish_wait(&dev_priv->pending_flip_queue, &wait);
3709
3710         return ret;
3711 }
3712
3713 int
3714 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3715                        struct drm_file *file_priv,
3716                        struct drm_i915_gem_execbuffer2 *args,
3717                        struct drm_i915_gem_exec_object2 *exec_list)
3718 {
3719         drm_i915_private_t *dev_priv = dev->dev_private;
3720         struct drm_gem_object **object_list = NULL;
3721         struct drm_gem_object *batch_obj;
3722         struct drm_i915_gem_object *obj_priv;
3723         struct drm_clip_rect *cliprects = NULL;
3724         struct drm_i915_gem_relocation_entry *relocs = NULL;
3725         int ret = 0, ret2, i, pinned = 0;
3726         uint64_t exec_offset;
3727         uint32_t seqno, flush_domains, reloc_index;
3728         int pin_tries, flips;
3729
3730 #if WATCH_EXEC
3731         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3732                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3733 #endif
3734
3735         if (args->buffer_count < 1) {
3736                 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3737                 return -EINVAL;
3738         }
3739         object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
3740         if (object_list == NULL) {
3741                 DRM_ERROR("Failed to allocate object list for %d buffers\n",
3742                           args->buffer_count);
3743                 ret = -ENOMEM;
3744                 goto pre_mutex_err;
3745         }
3746
3747         if (args->num_cliprects != 0) {
3748                 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3749                                     GFP_KERNEL);
3750                 if (cliprects == NULL) {
3751                         ret = -ENOMEM;
3752                         goto pre_mutex_err;
3753                 }
3754
3755                 ret = copy_from_user(cliprects,
3756                                      (struct drm_clip_rect __user *)
3757                                      (uintptr_t) args->cliprects_ptr,
3758                                      sizeof(*cliprects) * args->num_cliprects);
3759                 if (ret != 0) {
3760                         DRM_ERROR("copy %d cliprects failed: %d\n",
3761                                   args->num_cliprects, ret);
3762                         goto pre_mutex_err;
3763                 }
3764         }
3765
3766         ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3767                                             &relocs);
3768         if (ret != 0)
3769                 goto pre_mutex_err;
3770
3771         mutex_lock(&dev->struct_mutex);
3772
3773         i915_verify_inactive(dev, __FILE__, __LINE__);
3774
3775         if (atomic_read(&dev_priv->mm.wedged)) {
3776                 mutex_unlock(&dev->struct_mutex);
3777                 ret = -EIO;
3778                 goto pre_mutex_err;
3779         }
3780
3781         if (dev_priv->mm.suspended) {
3782                 mutex_unlock(&dev->struct_mutex);
3783                 ret = -EBUSY;
3784                 goto pre_mutex_err;
3785         }
3786
3787         /* Look up object handles */
3788         flips = 0;
3789         for (i = 0; i < args->buffer_count; i++) {
3790                 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3791                                                        exec_list[i].handle);
3792                 if (object_list[i] == NULL) {
3793                         DRM_ERROR("Invalid object handle %d at index %d\n",
3794                                    exec_list[i].handle, i);
3795                         /* prevent error path from reading uninitialized data */
3796                         args->buffer_count = i + 1;
3797                         ret = -EBADF;
3798                         goto err;
3799                 }
3800
3801                 obj_priv = to_intel_bo(object_list[i]);
3802                 if (obj_priv->in_execbuffer) {
3803                         DRM_ERROR("Object %p appears more than once in object list\n",
3804                                    object_list[i]);
3805                         /* prevent error path from reading uninitialized data */
3806                         args->buffer_count = i + 1;
3807                         ret = -EBADF;
3808                         goto err;
3809                 }
3810                 obj_priv->in_execbuffer = true;
3811                 flips += atomic_read(&obj_priv->pending_flip);
3812         }
3813
3814         if (flips > 0) {
3815                 ret = i915_gem_wait_for_pending_flip(dev, object_list,
3816                                                      args->buffer_count);
3817                 if (ret)
3818                         goto err;
3819         }
3820
3821         /* Pin and relocate */
3822         for (pin_tries = 0; ; pin_tries++) {
3823                 ret = 0;
3824                 reloc_index = 0;
3825
3826                 for (i = 0; i < args->buffer_count; i++) {
3827                         object_list[i]->pending_read_domains = 0;
3828                         object_list[i]->pending_write_domain = 0;
3829                         ret = i915_gem_object_pin_and_relocate(object_list[i],
3830                                                                file_priv,
3831                                                                &exec_list[i],
3832                                                                &relocs[reloc_index]);
3833                         if (ret)
3834                                 break;
3835                         pinned = i + 1;
3836                         reloc_index += exec_list[i].relocation_count;
3837                 }
3838                 /* success */
3839                 if (ret == 0)
3840                         break;
3841
3842                 /* error other than GTT full, or we've already tried again */
3843                 if (ret != -ENOSPC || pin_tries >= 1) {
3844                         if (ret != -ERESTARTSYS) {
3845                                 unsigned long long total_size = 0;
3846                                 for (i = 0; i < args->buffer_count; i++)
3847                                         total_size += object_list[i]->size;
3848                                 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes: %d\n",
3849                                           pinned+1, args->buffer_count,
3850                                           total_size, ret);
3851                                 DRM_ERROR("%d objects [%d pinned], "
3852                                           "%d object bytes [%d pinned], "
3853                                           "%d/%d gtt bytes\n",
3854                                           atomic_read(&dev->object_count),
3855                                           atomic_read(&dev->pin_count),
3856                                           atomic_read(&dev->object_memory),
3857                                           atomic_read(&dev->pin_memory),
3858                                           atomic_read(&dev->gtt_memory),
3859                                           dev->gtt_total);
3860                         }
3861                         goto err;
3862                 }
3863
3864                 /* unpin all of our buffers */
3865                 for (i = 0; i < pinned; i++)
3866                         i915_gem_object_unpin(object_list[i]);
3867                 pinned = 0;
3868
3869                 /* evict everyone we can from the aperture */
3870                 ret = i915_gem_evict_everything(dev);
3871                 if (ret && ret != -ENOSPC)
3872                         goto err;
3873         }
3874
3875         /* Set the pending read domains for the batch buffer to COMMAND */
3876         batch_obj = object_list[args->buffer_count-1];
3877         if (batch_obj->pending_write_domain) {
3878                 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3879                 ret = -EINVAL;
3880                 goto err;
3881         }
3882         batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3883
3884         /* Sanity check the batch buffer, prior to moving objects */
3885         exec_offset = exec_list[args->buffer_count - 1].offset;
3886         ret = i915_gem_check_execbuffer (args, exec_offset);
3887         if (ret != 0) {
3888                 DRM_ERROR("execbuf with invalid offset/length\n");
3889                 goto err;
3890         }
3891
3892         i915_verify_inactive(dev, __FILE__, __LINE__);
3893
3894         /* Zero the global flush/invalidate flags. These
3895          * will be modified as new domains are computed
3896          * for each object
3897          */
3898         dev->invalidate_domains = 0;
3899         dev->flush_domains = 0;
3900
3901         for (i = 0; i < args->buffer_count; i++) {
3902                 struct drm_gem_object *obj = object_list[i];
3903
3904                 /* Compute new gpu domains and update invalidate/flush */
3905                 i915_gem_object_set_to_gpu_domain(obj);
3906         }
3907
3908         i915_verify_inactive(dev, __FILE__, __LINE__);
3909
3910         if (dev->invalidate_domains | dev->flush_domains) {
3911 #if WATCH_EXEC
3912                 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3913                           __func__,
3914                          dev->invalidate_domains,
3915                          dev->flush_domains);
3916 #endif
3917                 i915_gem_flush(dev,
3918                                dev->invalidate_domains,
3919                                dev->flush_domains);
3920                 if (dev->flush_domains & I915_GEM_GPU_DOMAINS)
3921                         (void)i915_add_request(dev, file_priv,
3922                                                dev->flush_domains);
3923         }
3924
3925         for (i = 0; i < args->buffer_count; i++) {
3926                 struct drm_gem_object *obj = object_list[i];
3927                 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3928                 uint32_t old_write_domain = obj->write_domain;
3929
3930                 obj->write_domain = obj->pending_write_domain;
3931                 if (obj->write_domain)
3932                         list_move_tail(&obj_priv->gpu_write_list,
3933                                        &dev_priv->mm.gpu_write_list);
3934                 else
3935                         list_del_init(&obj_priv->gpu_write_list);
3936
3937                 trace_i915_gem_object_change_domain(obj,
3938                                                     obj->read_domains,
3939                                                     old_write_domain);
3940         }
3941
3942         i915_verify_inactive(dev, __FILE__, __LINE__);
3943
3944 #if WATCH_COHERENCY
3945         for (i = 0; i < args->buffer_count; i++) {
3946                 i915_gem_object_check_coherency(object_list[i],
3947                                                 exec_list[i].handle);
3948         }
3949 #endif
3950
3951 #if WATCH_EXEC
3952         i915_gem_dump_object(batch_obj,
3953                               args->batch_len,
3954                               __func__,
3955                               ~0);
3956 #endif
3957
3958         /* Exec the batchbuffer */
3959         ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
3960         if (ret) {
3961                 DRM_ERROR("dispatch failed %d\n", ret);
3962                 goto err;
3963         }
3964
3965         /*
3966          * Ensure that the commands in the batch buffer are
3967          * finished before the interrupt fires
3968          */
3969         flush_domains = i915_retire_commands(dev);
3970
3971         i915_verify_inactive(dev, __FILE__, __LINE__);
3972
3973         /*
3974          * Get a seqno representing the execution of the current buffer,
3975          * which we can wait on.  We would like to mitigate these interrupts,
3976          * likely by only creating seqnos occasionally (so that we have
3977          * *some* interrupts representing completion of buffers that we can
3978          * wait on when trying to clear up gtt space).
3979          */
3980         seqno = i915_add_request(dev, file_priv, flush_domains);
3981         BUG_ON(seqno == 0);
3982         for (i = 0; i < args->buffer_count; i++) {
3983                 struct drm_gem_object *obj = object_list[i];
3984
3985                 i915_gem_object_move_to_active(obj, seqno);
3986 #if WATCH_LRU
3987                 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3988 #endif
3989         }
3990 #if WATCH_LRU
3991         i915_dump_lru(dev, __func__);
3992 #endif
3993
3994         i915_verify_inactive(dev, __FILE__, __LINE__);
3995
3996 err:
3997         for (i = 0; i < pinned; i++)
3998                 i915_gem_object_unpin(object_list[i]);
3999
4000         for (i = 0; i < args->buffer_count; i++) {
4001                 if (object_list[i]) {
4002                         obj_priv = to_intel_bo(object_list[i]);
4003                         obj_priv->in_execbuffer = false;
4004                 }
4005                 drm_gem_object_unreference(object_list[i]);
4006         }
4007
4008         mutex_unlock(&dev->struct_mutex);
4009
4010 pre_mutex_err:
4011         /* Copy the updated relocations out regardless of current error
4012          * state.  Failure to update the relocs would mean that the next
4013          * time userland calls execbuf, it would do so with presumed offset
4014          * state that didn't match the actual object state.
4015          */
4016         ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
4017                                            relocs);
4018         if (ret2 != 0) {
4019                 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
4020
4021                 if (ret == 0)
4022                         ret = ret2;
4023         }
4024
4025         drm_free_large(object_list);
4026         kfree(cliprects);
4027
4028         return ret;
4029 }
4030
4031 /*
4032  * Legacy execbuffer just creates an exec2 list from the original exec object
4033  * list array and passes it to the real function.
4034  */
4035 int
4036 i915_gem_execbuffer(struct drm_device *dev, void *data,
4037                     struct drm_file *file_priv)
4038 {
4039         struct drm_i915_gem_execbuffer *args = data;
4040         struct drm_i915_gem_execbuffer2 exec2;
4041         struct drm_i915_gem_exec_object *exec_list = NULL;
4042         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4043         int ret, i;
4044
4045 #if WATCH_EXEC
4046         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4047                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4048 #endif
4049
4050         if (args->buffer_count < 1) {
4051                 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
4052                 return -EINVAL;
4053         }
4054
4055         /* Copy in the exec list from userland */
4056         exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
4057         exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4058         if (exec_list == NULL || exec2_list == NULL) {
4059                 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4060                           args->buffer_count);
4061                 drm_free_large(exec_list);
4062                 drm_free_large(exec2_list);
4063                 return -ENOMEM;
4064         }
4065         ret = copy_from_user(exec_list,
4066                              (struct drm_i915_relocation_entry __user *)
4067                              (uintptr_t) args->buffers_ptr,
4068                              sizeof(*exec_list) * args->buffer_count);
4069         if (ret != 0) {
4070                 DRM_ERROR("copy %d exec entries failed %d\n",
4071                           args->buffer_count, ret);
4072                 drm_free_large(exec_list);
4073                 drm_free_large(exec2_list);
4074                 return -EFAULT;
4075         }
4076
4077         for (i = 0; i < args->buffer_count; i++) {
4078                 exec2_list[i].handle = exec_list[i].handle;
4079                 exec2_list[i].relocation_count = exec_list[i].relocation_count;
4080                 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
4081                 exec2_list[i].alignment = exec_list[i].alignment;
4082                 exec2_list[i].offset = exec_list[i].offset;
4083                 if (!IS_I965G(dev))
4084                         exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
4085                 else
4086                         exec2_list[i].flags = 0;
4087         }
4088
4089         exec2.buffers_ptr = args->buffers_ptr;
4090         exec2.buffer_count = args->buffer_count;
4091         exec2.batch_start_offset = args->batch_start_offset;
4092         exec2.batch_len = args->batch_len;
4093         exec2.DR1 = args->DR1;
4094         exec2.DR4 = args->DR4;
4095         exec2.num_cliprects = args->num_cliprects;
4096         exec2.cliprects_ptr = args->cliprects_ptr;
4097         exec2.flags = 0;
4098
4099         ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
4100         if (!ret) {
4101                 /* Copy the new buffer offsets back to the user's exec list. */
4102                 for (i = 0; i < args->buffer_count; i++)
4103                         exec_list[i].offset = exec2_list[i].offset;
4104                 /* ... and back out to userspace */
4105                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4106                                    (uintptr_t) args->buffers_ptr,
4107                                    exec_list,
4108                                    sizeof(*exec_list) * args->buffer_count);
4109                 if (ret) {
4110                         ret = -EFAULT;
4111                         DRM_ERROR("failed to copy %d exec entries "
4112                                   "back to user (%d)\n",
4113                                   args->buffer_count, ret);
4114                 }
4115         }
4116
4117         drm_free_large(exec_list);
4118         drm_free_large(exec2_list);
4119         return ret;
4120 }
4121
4122 int
4123 i915_gem_execbuffer2(struct drm_device *dev, void *data,
4124                      struct drm_file *file_priv)
4125 {
4126         struct drm_i915_gem_execbuffer2 *args = data;
4127         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4128         int ret;
4129
4130 #if WATCH_EXEC
4131         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4132                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4133 #endif
4134
4135         if (args->buffer_count < 1) {
4136                 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4137                 return -EINVAL;
4138         }
4139
4140         exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4141         if (exec2_list == NULL) {
4142                 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4143                           args->buffer_count);
4144                 return -ENOMEM;
4145         }
4146         ret = copy_from_user(exec2_list,
4147                              (struct drm_i915_relocation_entry __user *)
4148                              (uintptr_t) args->buffers_ptr,
4149                              sizeof(*exec2_list) * args->buffer_count);
4150         if (ret != 0) {
4151                 DRM_ERROR("copy %d exec entries failed %d\n",
4152                           args->buffer_count, ret);
4153                 drm_free_large(exec2_list);
4154                 return -EFAULT;
4155         }
4156
4157         ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4158         if (!ret) {
4159                 /* Copy the new buffer offsets back to the user's exec list. */
4160                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4161                                    (uintptr_t) args->buffers_ptr,
4162                                    exec2_list,
4163                                    sizeof(*exec2_list) * args->buffer_count);
4164                 if (ret) {
4165                         ret = -EFAULT;
4166                         DRM_ERROR("failed to copy %d exec entries "
4167                                   "back to user (%d)\n",
4168                                   args->buffer_count, ret);
4169                 }
4170         }
4171
4172         drm_free_large(exec2_list);
4173         return ret;
4174 }
4175
4176 int
4177 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4178 {
4179         struct drm_device *dev = obj->dev;
4180         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4181         int ret;
4182
4183         i915_verify_inactive(dev, __FILE__, __LINE__);
4184         if (obj_priv->gtt_space == NULL) {
4185                 ret = i915_gem_object_bind_to_gtt(obj, alignment);
4186                 if (ret)
4187                         return ret;
4188         }
4189
4190         obj_priv->pin_count++;
4191
4192         /* If the object is not active and not pending a flush,
4193          * remove it from the inactive list
4194          */
4195         if (obj_priv->pin_count == 1) {
4196                 atomic_inc(&dev->pin_count);
4197                 atomic_add(obj->size, &dev->pin_memory);
4198                 if (!obj_priv->active &&
4199                     (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
4200                     !list_empty(&obj_priv->list))
4201                         list_del_init(&obj_priv->list);
4202         }
4203         i915_verify_inactive(dev, __FILE__, __LINE__);
4204
4205         return 0;
4206 }
4207
4208 void
4209 i915_gem_object_unpin(struct drm_gem_object *obj)
4210 {
4211         struct drm_device *dev = obj->dev;
4212         drm_i915_private_t *dev_priv = dev->dev_private;
4213         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4214
4215         i915_verify_inactive(dev, __FILE__, __LINE__);
4216         obj_priv->pin_count--;
4217         BUG_ON(obj_priv->pin_count < 0);
4218         BUG_ON(obj_priv->gtt_space == NULL);
4219
4220         /* If the object is no longer pinned, and is
4221          * neither active nor being flushed, then stick it on
4222          * the inactive list
4223          */
4224         if (obj_priv->pin_count == 0) {
4225                 if (!obj_priv->active &&
4226                     (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
4227                         list_move_tail(&obj_priv->list,
4228                                        &dev_priv->mm.inactive_list);
4229                 atomic_dec(&dev->pin_count);
4230                 atomic_sub(obj->size, &dev->pin_memory);
4231         }
4232         i915_verify_inactive(dev, __FILE__, __LINE__);
4233 }
4234
4235 int
4236 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4237                    struct drm_file *file_priv)
4238 {
4239         struct drm_i915_gem_pin *args = data;
4240         struct drm_gem_object *obj;
4241         struct drm_i915_gem_object *obj_priv;
4242         int ret;
4243
4244         mutex_lock(&dev->struct_mutex);
4245
4246         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4247         if (obj == NULL) {
4248                 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4249                           args->handle);
4250                 mutex_unlock(&dev->struct_mutex);
4251                 return -EBADF;
4252         }
4253         obj_priv = to_intel_bo(obj);
4254
4255         if (obj_priv->madv != I915_MADV_WILLNEED) {
4256                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
4257                 drm_gem_object_unreference(obj);
4258                 mutex_unlock(&dev->struct_mutex);
4259                 return -EINVAL;
4260         }
4261
4262         if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4263                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4264                           args->handle);
4265                 drm_gem_object_unreference(obj);
4266                 mutex_unlock(&dev->struct_mutex);
4267                 return -EINVAL;
4268         }
4269
4270         obj_priv->user_pin_count++;
4271         obj_priv->pin_filp = file_priv;
4272         if (obj_priv->user_pin_count == 1) {
4273                 ret = i915_gem_object_pin(obj, args->alignment);
4274                 if (ret != 0) {
4275                         drm_gem_object_unreference(obj);
4276                         mutex_unlock(&dev->struct_mutex);
4277                         return ret;
4278                 }
4279         }
4280
4281         /* XXX - flush the CPU caches for pinned objects
4282          * as the X server doesn't manage domains yet
4283          */
4284         i915_gem_object_flush_cpu_write_domain(obj);
4285         args->offset = obj_priv->gtt_offset;
4286         drm_gem_object_unreference(obj);
4287         mutex_unlock(&dev->struct_mutex);
4288
4289         return 0;
4290 }
4291
4292 int
4293 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4294                      struct drm_file *file_priv)
4295 {
4296         struct drm_i915_gem_pin *args = data;
4297         struct drm_gem_object *obj;
4298         struct drm_i915_gem_object *obj_priv;
4299
4300         mutex_lock(&dev->struct_mutex);
4301
4302         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4303         if (obj == NULL) {
4304                 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4305                           args->handle);
4306                 mutex_unlock(&dev->struct_mutex);
4307                 return -EBADF;
4308         }
4309
4310         obj_priv = to_intel_bo(obj);
4311         if (obj_priv->pin_filp != file_priv) {
4312                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4313                           args->handle);
4314                 drm_gem_object_unreference(obj);
4315                 mutex_unlock(&dev->struct_mutex);
4316                 return -EINVAL;
4317         }
4318         obj_priv->user_pin_count--;
4319         if (obj_priv->user_pin_count == 0) {
4320                 obj_priv->pin_filp = NULL;
4321                 i915_gem_object_unpin(obj);
4322         }
4323
4324         drm_gem_object_unreference(obj);
4325         mutex_unlock(&dev->struct_mutex);
4326         return 0;
4327 }
4328
4329 int
4330 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4331                     struct drm_file *file_priv)
4332 {
4333         struct drm_i915_gem_busy *args = data;
4334         struct drm_gem_object *obj;
4335         struct drm_i915_gem_object *obj_priv;
4336
4337         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4338         if (obj == NULL) {
4339                 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4340                           args->handle);
4341                 return -EBADF;
4342         }
4343
4344         mutex_lock(&dev->struct_mutex);
4345         /* Update the active list for the hardware's current position.
4346          * Otherwise this only updates on a delayed timer or when irqs are
4347          * actually unmasked, and our working set ends up being larger than
4348          * required.
4349          */
4350         i915_gem_retire_requests(dev);
4351
4352         obj_priv = to_intel_bo(obj);
4353         /* Don't count being on the flushing list against the object being
4354          * done.  Otherwise, a buffer left on the flushing list but not getting
4355          * flushed (because nobody's flushing that domain) won't ever return
4356          * unbusy and get reused by libdrm's bo cache.  The other expected
4357          * consumer of this interface, OpenGL's occlusion queries, also specs
4358          * that the objects get unbusy "eventually" without any interference.
4359          */
4360         args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
4361
4362         drm_gem_object_unreference(obj);
4363         mutex_unlock(&dev->struct_mutex);
4364         return 0;
4365 }
4366
4367 int
4368 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4369                         struct drm_file *file_priv)
4370 {
4371     return i915_gem_ring_throttle(dev, file_priv);
4372 }
4373
4374 int
4375 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4376                        struct drm_file *file_priv)
4377 {
4378         struct drm_i915_gem_madvise *args = data;
4379         struct drm_gem_object *obj;
4380         struct drm_i915_gem_object *obj_priv;
4381
4382         switch (args->madv) {
4383         case I915_MADV_DONTNEED:
4384         case I915_MADV_WILLNEED:
4385             break;
4386         default:
4387             return -EINVAL;
4388         }
4389
4390         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4391         if (obj == NULL) {
4392                 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4393                           args->handle);
4394                 return -EBADF;
4395         }
4396
4397         mutex_lock(&dev->struct_mutex);
4398         obj_priv = to_intel_bo(obj);
4399
4400         if (obj_priv->pin_count) {
4401                 drm_gem_object_unreference(obj);
4402                 mutex_unlock(&dev->struct_mutex);
4403
4404                 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4405                 return -EINVAL;
4406         }
4407
4408         if (obj_priv->madv != __I915_MADV_PURGED)
4409                 obj_priv->madv = args->madv;
4410
4411         /* if the object is no longer bound, discard its backing storage */
4412         if (i915_gem_object_is_purgeable(obj_priv) &&
4413             obj_priv->gtt_space == NULL)
4414                 i915_gem_object_truncate(obj);
4415
4416         args->retained = obj_priv->madv != __I915_MADV_PURGED;
4417
4418         drm_gem_object_unreference(obj);
4419         mutex_unlock(&dev->struct_mutex);
4420
4421         return 0;
4422 }
4423
4424 struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4425                                               size_t size)
4426 {
4427         struct drm_i915_gem_object *obj;
4428
4429         obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4430         if (obj == NULL)
4431                 return NULL;
4432
4433         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4434                 kfree(obj);
4435                 return NULL;
4436         }
4437
4438         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4439         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4440
4441         obj->agp_type = AGP_USER_MEMORY;
4442
4443         obj->base.driver_private = NULL;
4444         obj->fence_reg = I915_FENCE_REG_NONE;
4445         INIT_LIST_HEAD(&obj->list);
4446         INIT_LIST_HEAD(&obj->gpu_write_list);
4447         INIT_LIST_HEAD(&obj->fence_list);
4448         obj->madv = I915_MADV_WILLNEED;
4449
4450         trace_i915_gem_object_create(&obj->base);
4451
4452         return &obj->base;
4453 }
4454
4455 int i915_gem_init_object(struct drm_gem_object *obj)
4456 {
4457         BUG();
4458
4459         return 0;
4460 }
4461
4462 void i915_gem_free_object(struct drm_gem_object *obj)
4463 {
4464         struct drm_device *dev = obj->dev;
4465         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4466
4467         trace_i915_gem_object_destroy(obj);
4468
4469         while (obj_priv->pin_count > 0)
4470                 i915_gem_object_unpin(obj);
4471
4472         if (obj_priv->phys_obj)
4473                 i915_gem_detach_phys_object(dev, obj);
4474
4475         i915_gem_object_unbind(obj);
4476
4477         if (obj_priv->mmap_offset)
4478                 i915_gem_free_mmap_offset(obj);
4479
4480         drm_gem_object_release(obj);
4481
4482         kfree(obj_priv->page_cpu_valid);
4483         kfree(obj_priv->bit_17);
4484         kfree(obj_priv);
4485 }
4486
4487 /** Unbinds all inactive objects. */
4488 static int
4489 i915_gem_evict_from_inactive_list(struct drm_device *dev)
4490 {
4491         drm_i915_private_t *dev_priv = dev->dev_private;
4492
4493         while (!list_empty(&dev_priv->mm.inactive_list)) {
4494                 struct drm_gem_object *obj;
4495                 int ret;
4496
4497                 obj = &list_first_entry(&dev_priv->mm.inactive_list,
4498                                         struct drm_i915_gem_object,
4499                                         list)->base;
4500
4501                 ret = i915_gem_object_unbind(obj);
4502                 if (ret != 0) {
4503                         DRM_ERROR("Error unbinding object: %d\n", ret);
4504                         return ret;
4505                 }
4506         }
4507
4508         return 0;
4509 }
4510
4511 int
4512 i915_gem_idle(struct drm_device *dev)
4513 {
4514         drm_i915_private_t *dev_priv = dev->dev_private;
4515         int ret;
4516
4517         mutex_lock(&dev->struct_mutex);
4518
4519         if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
4520                 mutex_unlock(&dev->struct_mutex);
4521                 return 0;
4522         }
4523
4524         ret = i915_gpu_idle(dev);
4525         if (ret) {
4526                 mutex_unlock(&dev->struct_mutex);
4527                 return ret;
4528         }
4529
4530         /* Under UMS, be paranoid and evict. */
4531         if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4532                 ret = i915_gem_evict_from_inactive_list(dev);
4533                 if (ret) {
4534                         mutex_unlock(&dev->struct_mutex);
4535                         return ret;
4536                 }
4537         }
4538
4539         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4540          * We need to replace this with a semaphore, or something.
4541          * And not confound mm.suspended!
4542          */
4543         dev_priv->mm.suspended = 1;
4544         del_timer(&dev_priv->hangcheck_timer);
4545
4546         i915_kernel_lost_context(dev);
4547         i915_gem_cleanup_ringbuffer(dev);
4548
4549         mutex_unlock(&dev->struct_mutex);
4550
4551         /* Cancel the retire work handler, which should be idle now. */
4552         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4553
4554         return 0;
4555 }
4556
4557 static int
4558 i915_gem_init_hws(struct drm_device *dev)
4559 {
4560         drm_i915_private_t *dev_priv = dev->dev_private;
4561         struct drm_gem_object *obj;
4562         struct drm_i915_gem_object *obj_priv;
4563         int ret;
4564
4565         /* If we need a physical address for the status page, it's already
4566          * initialized at driver load time.
4567          */
4568         if (!I915_NEED_GFX_HWS(dev))
4569                 return 0;
4570
4571         obj = i915_gem_alloc_object(dev, 4096);
4572         if (obj == NULL) {
4573                 DRM_ERROR("Failed to allocate status page\n");
4574                 return -ENOMEM;
4575         }
4576         obj_priv = to_intel_bo(obj);
4577         obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4578
4579         ret = i915_gem_object_pin(obj, 4096);
4580         if (ret != 0) {
4581                 drm_gem_object_unreference(obj);
4582                 return ret;
4583         }
4584
4585         dev_priv->status_gfx_addr = obj_priv->gtt_offset;
4586
4587         dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
4588         if (dev_priv->hw_status_page == NULL) {
4589                 DRM_ERROR("Failed to map status page.\n");
4590                 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4591                 i915_gem_object_unpin(obj);
4592                 drm_gem_object_unreference(obj);
4593                 return -EINVAL;
4594         }
4595         dev_priv->hws_obj = obj;
4596         memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
4597         if (IS_GEN6(dev)) {
4598                 I915_WRITE(HWS_PGA_GEN6, dev_priv->status_gfx_addr);
4599                 I915_READ(HWS_PGA_GEN6); /* posting read */
4600         } else {
4601                 I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
4602                 I915_READ(HWS_PGA); /* posting read */
4603         }
4604         DRM_DEBUG_DRIVER("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
4605
4606         return 0;
4607 }
4608
4609 static void
4610 i915_gem_cleanup_hws(struct drm_device *dev)
4611 {
4612         drm_i915_private_t *dev_priv = dev->dev_private;
4613         struct drm_gem_object *obj;
4614         struct drm_i915_gem_object *obj_priv;
4615
4616         if (dev_priv->hws_obj == NULL)
4617                 return;
4618
4619         obj = dev_priv->hws_obj;
4620         obj_priv = to_intel_bo(obj);
4621
4622         kunmap(obj_priv->pages[0]);
4623         i915_gem_object_unpin(obj);
4624         drm_gem_object_unreference(obj);
4625         dev_priv->hws_obj = NULL;
4626
4627         memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4628         dev_priv->hw_status_page = NULL;
4629
4630         /* Write high address into HWS_PGA when disabling. */
4631         I915_WRITE(HWS_PGA, 0x1ffff000);
4632 }
4633
4634 int
4635 i915_gem_init_ringbuffer(struct drm_device *dev)
4636 {
4637         drm_i915_private_t *dev_priv = dev->dev_private;
4638         struct drm_gem_object *obj;
4639         struct drm_i915_gem_object *obj_priv;
4640         drm_i915_ring_buffer_t *ring = &dev_priv->ring;
4641         int ret;
4642         u32 head;
4643
4644         ret = i915_gem_init_hws(dev);
4645         if (ret != 0)
4646                 return ret;
4647
4648         obj = i915_gem_alloc_object(dev, 128 * 1024);
4649         if (obj == NULL) {
4650                 DRM_ERROR("Failed to allocate ringbuffer\n");
4651                 i915_gem_cleanup_hws(dev);
4652                 return -ENOMEM;
4653         }
4654         obj_priv = to_intel_bo(obj);
4655
4656         ret = i915_gem_object_pin(obj, 4096);
4657         if (ret != 0) {
4658                 drm_gem_object_unreference(obj);
4659                 i915_gem_cleanup_hws(dev);
4660                 return ret;
4661         }
4662
4663         /* Set up the kernel mapping for the ring. */
4664         ring->Size = obj->size;
4665
4666         ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
4667         ring->map.size = obj->size;
4668         ring->map.type = 0;
4669         ring->map.flags = 0;
4670         ring->map.mtrr = 0;
4671
4672         drm_core_ioremap_wc(&ring->map, dev);
4673         if (ring->map.handle == NULL) {
4674                 DRM_ERROR("Failed to map ringbuffer.\n");
4675                 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4676                 i915_gem_object_unpin(obj);
4677                 drm_gem_object_unreference(obj);
4678                 i915_gem_cleanup_hws(dev);
4679                 return -EINVAL;
4680         }
4681         ring->ring_obj = obj;
4682         ring->virtual_start = ring->map.handle;
4683
4684         /* Stop the ring if it's running. */
4685         I915_WRITE(PRB0_CTL, 0);
4686         I915_WRITE(PRB0_TAIL, 0);
4687         I915_WRITE(PRB0_HEAD, 0);
4688
4689         /* Initialize the ring. */
4690         I915_WRITE(PRB0_START, obj_priv->gtt_offset);
4691         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4692
4693         /* G45 ring initialization fails to reset head to zero */
4694         if (head != 0) {
4695                 DRM_ERROR("Ring head not reset to zero "
4696                           "ctl %08x head %08x tail %08x start %08x\n",
4697                           I915_READ(PRB0_CTL),
4698                           I915_READ(PRB0_HEAD),
4699                           I915_READ(PRB0_TAIL),
4700                           I915_READ(PRB0_START));
4701                 I915_WRITE(PRB0_HEAD, 0);
4702
4703                 DRM_ERROR("Ring head forced to zero "
4704                           "ctl %08x head %08x tail %08x start %08x\n",
4705                           I915_READ(PRB0_CTL),
4706                           I915_READ(PRB0_HEAD),
4707                           I915_READ(PRB0_TAIL),
4708                           I915_READ(PRB0_START));
4709         }
4710
4711         I915_WRITE(PRB0_CTL,
4712                    ((obj->size - 4096) & RING_NR_PAGES) |
4713                    RING_NO_REPORT |
4714                    RING_VALID);
4715
4716         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4717
4718         /* If the head is still not zero, the ring is dead */
4719         if (head != 0) {
4720                 DRM_ERROR("Ring initialization failed "
4721                           "ctl %08x head %08x tail %08x start %08x\n",
4722                           I915_READ(PRB0_CTL),
4723                           I915_READ(PRB0_HEAD),
4724                           I915_READ(PRB0_TAIL),
4725                           I915_READ(PRB0_START));
4726                 return -EIO;
4727         }
4728
4729         /* Update our cache of the ring state */
4730         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4731                 i915_kernel_lost_context(dev);
4732         else {
4733                 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4734                 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
4735                 ring->space = ring->head - (ring->tail + 8);
4736                 if (ring->space < 0)
4737                         ring->space += ring->Size;
4738         }
4739
4740         if (IS_I9XX(dev) && !IS_GEN3(dev)) {
4741                 I915_WRITE(MI_MODE,
4742                            (VS_TIMER_DISPATCH) << 16 | VS_TIMER_DISPATCH);
4743         }
4744
4745         return 0;
4746 }
4747
4748 void
4749 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4750 {
4751         drm_i915_private_t *dev_priv = dev->dev_private;
4752
4753         if (dev_priv->ring.ring_obj == NULL)
4754                 return;
4755
4756         drm_core_ioremapfree(&dev_priv->ring.map, dev);
4757
4758         i915_gem_object_unpin(dev_priv->ring.ring_obj);
4759         drm_gem_object_unreference(dev_priv->ring.ring_obj);
4760         dev_priv->ring.ring_obj = NULL;
4761         memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4762
4763         i915_gem_cleanup_hws(dev);
4764 }
4765
4766 int
4767 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4768                        struct drm_file *file_priv)
4769 {
4770         drm_i915_private_t *dev_priv = dev->dev_private;
4771         int ret;
4772
4773         if (drm_core_check_feature(dev, DRIVER_MODESET))
4774                 return 0;
4775
4776         if (atomic_read(&dev_priv->mm.wedged)) {
4777                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4778                 atomic_set(&dev_priv->mm.wedged, 0);
4779         }
4780
4781         mutex_lock(&dev->struct_mutex);
4782         dev_priv->mm.suspended = 0;
4783
4784         ret = i915_gem_init_ringbuffer(dev);
4785         if (ret != 0) {
4786                 mutex_unlock(&dev->struct_mutex);
4787                 return ret;
4788         }
4789
4790         spin_lock(&dev_priv->mm.active_list_lock);
4791         BUG_ON(!list_empty(&dev_priv->mm.active_list));
4792         spin_unlock(&dev_priv->mm.active_list_lock);
4793
4794         BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4795         BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4796         BUG_ON(!list_empty(&dev_priv->mm.request_list));
4797         mutex_unlock(&dev->struct_mutex);
4798
4799         drm_irq_install(dev);
4800
4801         return 0;
4802 }
4803
4804 int
4805 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4806                        struct drm_file *file_priv)
4807 {
4808         if (drm_core_check_feature(dev, DRIVER_MODESET))
4809                 return 0;
4810
4811         drm_irq_uninstall(dev);
4812         return i915_gem_idle(dev);
4813 }
4814
4815 void
4816 i915_gem_lastclose(struct drm_device *dev)
4817 {
4818         int ret;
4819
4820         if (drm_core_check_feature(dev, DRIVER_MODESET))
4821                 return;
4822
4823         ret = i915_gem_idle(dev);
4824         if (ret)
4825                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4826 }
4827
4828 void
4829 i915_gem_load(struct drm_device *dev)
4830 {
4831         int i;
4832         drm_i915_private_t *dev_priv = dev->dev_private;
4833
4834         spin_lock_init(&dev_priv->mm.active_list_lock);
4835         INIT_LIST_HEAD(&dev_priv->mm.active_list);
4836         INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4837         INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
4838         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4839         INIT_LIST_HEAD(&dev_priv->mm.request_list);
4840         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4841         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4842                           i915_gem_retire_work_handler);
4843         dev_priv->mm.next_gem_seqno = 1;
4844
4845         spin_lock(&shrink_list_lock);
4846         list_add(&dev_priv->mm.shrink_list, &shrink_list);
4847         spin_unlock(&shrink_list_lock);
4848
4849         /* Old X drivers will take 0-2 for front, back, depth buffers */
4850         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4851                 dev_priv->fence_reg_start = 3;
4852
4853         if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4854                 dev_priv->num_fence_regs = 16;
4855         else
4856                 dev_priv->num_fence_regs = 8;
4857
4858         /* Initialize fence registers to zero */
4859         if (IS_I965G(dev)) {
4860                 for (i = 0; i < 16; i++)
4861                         I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4862         } else {
4863                 for (i = 0; i < 8; i++)
4864                         I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4865                 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4866                         for (i = 0; i < 8; i++)
4867                                 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4868         }
4869         i915_gem_detect_bit_6_swizzle(dev);
4870         init_waitqueue_head(&dev_priv->pending_flip_queue);
4871 }
4872
4873 /*
4874  * Create a physically contiguous memory object for this object
4875  * e.g. for cursor + overlay regs
4876  */
4877 int i915_gem_init_phys_object(struct drm_device *dev,
4878                               int id, int size)
4879 {
4880         drm_i915_private_t *dev_priv = dev->dev_private;
4881         struct drm_i915_gem_phys_object *phys_obj;
4882         int ret;
4883
4884         if (dev_priv->mm.phys_objs[id - 1] || !size)
4885                 return 0;
4886
4887         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4888         if (!phys_obj)
4889                 return -ENOMEM;
4890
4891         phys_obj->id = id;
4892
4893         phys_obj->handle = drm_pci_alloc(dev, size, 0);
4894         if (!phys_obj->handle) {
4895                 ret = -ENOMEM;
4896                 goto kfree_obj;
4897         }
4898 #ifdef CONFIG_X86
4899         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4900 #endif
4901
4902         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4903
4904         return 0;
4905 kfree_obj:
4906         kfree(phys_obj);
4907         return ret;
4908 }
4909
4910 void i915_gem_free_phys_object(struct drm_device *dev, int id)
4911 {
4912         drm_i915_private_t *dev_priv = dev->dev_private;
4913         struct drm_i915_gem_phys_object *phys_obj;
4914
4915         if (!dev_priv->mm.phys_objs[id - 1])
4916                 return;
4917
4918         phys_obj = dev_priv->mm.phys_objs[id - 1];
4919         if (phys_obj->cur_obj) {
4920                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4921         }
4922
4923 #ifdef CONFIG_X86
4924         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4925 #endif
4926         drm_pci_free(dev, phys_obj->handle);
4927         kfree(phys_obj);
4928         dev_priv->mm.phys_objs[id - 1] = NULL;
4929 }
4930
4931 void i915_gem_free_all_phys_object(struct drm_device *dev)
4932 {
4933         int i;
4934
4935         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4936                 i915_gem_free_phys_object(dev, i);
4937 }
4938
4939 void i915_gem_detach_phys_object(struct drm_device *dev,
4940                                  struct drm_gem_object *obj)
4941 {
4942         struct drm_i915_gem_object *obj_priv;
4943         int i;
4944         int ret;
4945         int page_count;
4946
4947         obj_priv = to_intel_bo(obj);
4948         if (!obj_priv->phys_obj)
4949                 return;
4950
4951         ret = i915_gem_object_get_pages(obj, 0);
4952         if (ret)
4953                 goto out;
4954
4955         page_count = obj->size / PAGE_SIZE;
4956
4957         for (i = 0; i < page_count; i++) {
4958                 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4959                 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4960
4961                 memcpy(dst, src, PAGE_SIZE);
4962                 kunmap_atomic(dst, KM_USER0);
4963         }
4964         drm_clflush_pages(obj_priv->pages, page_count);
4965         drm_agp_chipset_flush(dev);
4966
4967         i915_gem_object_put_pages(obj);
4968 out:
4969         obj_priv->phys_obj->cur_obj = NULL;
4970         obj_priv->phys_obj = NULL;
4971 }
4972
4973 int
4974 i915_gem_attach_phys_object(struct drm_device *dev,
4975                             struct drm_gem_object *obj, int id)
4976 {
4977         drm_i915_private_t *dev_priv = dev->dev_private;
4978         struct drm_i915_gem_object *obj_priv;
4979         int ret = 0;
4980         int page_count;
4981         int i;
4982
4983         if (id > I915_MAX_PHYS_OBJECT)
4984                 return -EINVAL;
4985
4986         obj_priv = to_intel_bo(obj);
4987
4988         if (obj_priv->phys_obj) {
4989                 if (obj_priv->phys_obj->id == id)
4990                         return 0;
4991                 i915_gem_detach_phys_object(dev, obj);
4992         }
4993
4994
4995         /* create a new object */
4996         if (!dev_priv->mm.phys_objs[id - 1]) {
4997                 ret = i915_gem_init_phys_object(dev, id,
4998                                                 obj->size);
4999                 if (ret) {
5000                         DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
5001                         goto out;
5002                 }
5003         }
5004
5005         /* bind to the object */
5006         obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
5007         obj_priv->phys_obj->cur_obj = obj;
5008
5009         ret = i915_gem_object_get_pages(obj, 0);
5010         if (ret) {
5011                 DRM_ERROR("failed to get page list\n");
5012                 goto out;
5013         }
5014
5015         page_count = obj->size / PAGE_SIZE;
5016
5017         for (i = 0; i < page_count; i++) {
5018                 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
5019                 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
5020
5021                 memcpy(dst, src, PAGE_SIZE);
5022                 kunmap_atomic(src, KM_USER0);
5023         }
5024
5025         i915_gem_object_put_pages(obj);
5026
5027         return 0;
5028 out:
5029         return ret;
5030 }
5031
5032 static int
5033 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
5034                      struct drm_i915_gem_pwrite *args,
5035                      struct drm_file *file_priv)
5036 {
5037         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
5038         void *obj_addr;
5039         int ret;
5040         char __user *user_data;
5041
5042         user_data = (char __user *) (uintptr_t) args->data_ptr;
5043         obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
5044
5045         DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
5046         ret = copy_from_user(obj_addr, user_data, args->size);
5047         if (ret)
5048                 return -EFAULT;
5049
5050         drm_agp_chipset_flush(dev);
5051         return 0;
5052 }
5053
5054 void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
5055 {
5056         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
5057
5058         /* Clean up our request list when the client is going away, so that
5059          * later retire_requests won't dereference our soon-to-be-gone
5060          * file_priv.
5061          */
5062         mutex_lock(&dev->struct_mutex);
5063         while (!list_empty(&i915_file_priv->mm.request_list))
5064                 list_del_init(i915_file_priv->mm.request_list.next);
5065         mutex_unlock(&dev->struct_mutex);
5066 }
5067
5068 static int
5069 i915_gem_shrink(int nr_to_scan, gfp_t gfp_mask)
5070 {
5071         drm_i915_private_t *dev_priv, *next_dev;
5072         struct drm_i915_gem_object *obj_priv, *next_obj;
5073         int cnt = 0;
5074         int would_deadlock = 1;
5075
5076         /* "fast-path" to count number of available objects */
5077         if (nr_to_scan == 0) {
5078                 spin_lock(&shrink_list_lock);
5079                 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5080                         struct drm_device *dev = dev_priv->dev;
5081
5082                         if (mutex_trylock(&dev->struct_mutex)) {
5083                                 list_for_each_entry(obj_priv,
5084                                                     &dev_priv->mm.inactive_list,
5085                                                     list)
5086                                         cnt++;
5087                                 mutex_unlock(&dev->struct_mutex);
5088                         }
5089                 }
5090                 spin_unlock(&shrink_list_lock);
5091
5092                 return (cnt / 100) * sysctl_vfs_cache_pressure;
5093         }
5094
5095         spin_lock(&shrink_list_lock);
5096
5097         /* first scan for clean buffers */
5098         list_for_each_entry_safe(dev_priv, next_dev,
5099                                  &shrink_list, mm.shrink_list) {
5100                 struct drm_device *dev = dev_priv->dev;
5101
5102                 if (! mutex_trylock(&dev->struct_mutex))
5103                         continue;
5104
5105                 spin_unlock(&shrink_list_lock);
5106
5107                 i915_gem_retire_requests(dev);
5108
5109                 list_for_each_entry_safe(obj_priv, next_obj,
5110                                          &dev_priv->mm.inactive_list,
5111                                          list) {
5112                         if (i915_gem_object_is_purgeable(obj_priv)) {
5113                                 i915_gem_object_unbind(&obj_priv->base);
5114                                 if (--nr_to_scan <= 0)
5115                                         break;
5116                         }
5117                 }
5118
5119                 spin_lock(&shrink_list_lock);
5120                 mutex_unlock(&dev->struct_mutex);
5121
5122                 would_deadlock = 0;
5123
5124                 if (nr_to_scan <= 0)
5125                         break;
5126         }
5127
5128         /* second pass, evict/count anything still on the inactive list */
5129         list_for_each_entry_safe(dev_priv, next_dev,
5130                                  &shrink_list, mm.shrink_list) {
5131                 struct drm_device *dev = dev_priv->dev;
5132
5133                 if (! mutex_trylock(&dev->struct_mutex))
5134                         continue;
5135
5136                 spin_unlock(&shrink_list_lock);
5137
5138                 list_for_each_entry_safe(obj_priv, next_obj,
5139                                          &dev_priv->mm.inactive_list,
5140                                          list) {
5141                         if (nr_to_scan > 0) {
5142                                 i915_gem_object_unbind(&obj_priv->base);
5143                                 nr_to_scan--;
5144                         } else
5145                                 cnt++;
5146                 }
5147
5148                 spin_lock(&shrink_list_lock);
5149                 mutex_unlock(&dev->struct_mutex);
5150
5151                 would_deadlock = 0;
5152         }
5153
5154         spin_unlock(&shrink_list_lock);
5155
5156         if (would_deadlock)
5157                 return -1;
5158         else if (cnt > 0)
5159                 return (cnt / 100) * sysctl_vfs_cache_pressure;
5160         else
5161                 return 0;
5162 }
5163
5164 static struct shrinker shrinker = {
5165         .shrink = i915_gem_shrink,
5166         .seeks = DEFAULT_SEEKS,
5167 };
5168
5169 __init void
5170 i915_gem_shrinker_init(void)
5171 {
5172     register_shrinker(&shrinker);
5173 }
5174
5175 __exit void
5176 i915_gem_shrinker_exit(void)
5177 {
5178     unregister_shrinker(&shrinker);
5179 }