drm/i915: Remove a bad BUG_ON in the fence management code.
[linux-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include <linux/swap.h>
33 #include <linux/pci.h>
34
35 #define I915_GEM_GPU_DOMAINS    (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
36
37 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
38 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
39 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
40 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
41                                              int write);
42 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
43                                                      uint64_t offset,
44                                                      uint64_t size);
45 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
46 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
47 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
48                                            unsigned alignment);
49 static int i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write);
50 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
51 static int i915_gem_evict_something(struct drm_device *dev);
52 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
53                                 struct drm_i915_gem_pwrite *args,
54                                 struct drm_file *file_priv);
55
56 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
57                      unsigned long end)
58 {
59         drm_i915_private_t *dev_priv = dev->dev_private;
60
61         if (start >= end ||
62             (start & (PAGE_SIZE - 1)) != 0 ||
63             (end & (PAGE_SIZE - 1)) != 0) {
64                 return -EINVAL;
65         }
66
67         drm_mm_init(&dev_priv->mm.gtt_space, start,
68                     end - start);
69
70         dev->gtt_total = (uint32_t) (end - start);
71
72         return 0;
73 }
74
75 int
76 i915_gem_init_ioctl(struct drm_device *dev, void *data,
77                     struct drm_file *file_priv)
78 {
79         struct drm_i915_gem_init *args = data;
80         int ret;
81
82         mutex_lock(&dev->struct_mutex);
83         ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
84         mutex_unlock(&dev->struct_mutex);
85
86         return ret;
87 }
88
89 int
90 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
91                             struct drm_file *file_priv)
92 {
93         struct drm_i915_gem_get_aperture *args = data;
94
95         if (!(dev->driver->driver_features & DRIVER_GEM))
96                 return -ENODEV;
97
98         args->aper_size = dev->gtt_total;
99         args->aper_available_size = (args->aper_size -
100                                      atomic_read(&dev->pin_memory));
101
102         return 0;
103 }
104
105
106 /**
107  * Creates a new mm object and returns a handle to it.
108  */
109 int
110 i915_gem_create_ioctl(struct drm_device *dev, void *data,
111                       struct drm_file *file_priv)
112 {
113         struct drm_i915_gem_create *args = data;
114         struct drm_gem_object *obj;
115         int handle, ret;
116
117         args->size = roundup(args->size, PAGE_SIZE);
118
119         /* Allocate the new object */
120         obj = drm_gem_object_alloc(dev, args->size);
121         if (obj == NULL)
122                 return -ENOMEM;
123
124         ret = drm_gem_handle_create(file_priv, obj, &handle);
125         mutex_lock(&dev->struct_mutex);
126         drm_gem_object_handle_unreference(obj);
127         mutex_unlock(&dev->struct_mutex);
128
129         if (ret)
130                 return ret;
131
132         args->handle = handle;
133
134         return 0;
135 }
136
137 static inline int
138 fast_shmem_read(struct page **pages,
139                 loff_t page_base, int page_offset,
140                 char __user *data,
141                 int length)
142 {
143         char __iomem *vaddr;
144         int unwritten;
145
146         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
147         if (vaddr == NULL)
148                 return -ENOMEM;
149         unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
150         kunmap_atomic(vaddr, KM_USER0);
151
152         if (unwritten)
153                 return -EFAULT;
154
155         return 0;
156 }
157
158 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
159 {
160         drm_i915_private_t *dev_priv = obj->dev->dev_private;
161         struct drm_i915_gem_object *obj_priv = obj->driver_private;
162
163         return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
164                 obj_priv->tiling_mode != I915_TILING_NONE;
165 }
166
167 static inline int
168 slow_shmem_copy(struct page *dst_page,
169                 int dst_offset,
170                 struct page *src_page,
171                 int src_offset,
172                 int length)
173 {
174         char *dst_vaddr, *src_vaddr;
175
176         dst_vaddr = kmap_atomic(dst_page, KM_USER0);
177         if (dst_vaddr == NULL)
178                 return -ENOMEM;
179
180         src_vaddr = kmap_atomic(src_page, KM_USER1);
181         if (src_vaddr == NULL) {
182                 kunmap_atomic(dst_vaddr, KM_USER0);
183                 return -ENOMEM;
184         }
185
186         memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
187
188         kunmap_atomic(src_vaddr, KM_USER1);
189         kunmap_atomic(dst_vaddr, KM_USER0);
190
191         return 0;
192 }
193
194 static inline int
195 slow_shmem_bit17_copy(struct page *gpu_page,
196                       int gpu_offset,
197                       struct page *cpu_page,
198                       int cpu_offset,
199                       int length,
200                       int is_read)
201 {
202         char *gpu_vaddr, *cpu_vaddr;
203
204         /* Use the unswizzled path if this page isn't affected. */
205         if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
206                 if (is_read)
207                         return slow_shmem_copy(cpu_page, cpu_offset,
208                                                gpu_page, gpu_offset, length);
209                 else
210                         return slow_shmem_copy(gpu_page, gpu_offset,
211                                                cpu_page, cpu_offset, length);
212         }
213
214         gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
215         if (gpu_vaddr == NULL)
216                 return -ENOMEM;
217
218         cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
219         if (cpu_vaddr == NULL) {
220                 kunmap_atomic(gpu_vaddr, KM_USER0);
221                 return -ENOMEM;
222         }
223
224         /* Copy the data, XORing A6 with A17 (1). The user already knows he's
225          * XORing with the other bits (A9 for Y, A9 and A10 for X)
226          */
227         while (length > 0) {
228                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
229                 int this_length = min(cacheline_end - gpu_offset, length);
230                 int swizzled_gpu_offset = gpu_offset ^ 64;
231
232                 if (is_read) {
233                         memcpy(cpu_vaddr + cpu_offset,
234                                gpu_vaddr + swizzled_gpu_offset,
235                                this_length);
236                 } else {
237                         memcpy(gpu_vaddr + swizzled_gpu_offset,
238                                cpu_vaddr + cpu_offset,
239                                this_length);
240                 }
241                 cpu_offset += this_length;
242                 gpu_offset += this_length;
243                 length -= this_length;
244         }
245
246         kunmap_atomic(cpu_vaddr, KM_USER1);
247         kunmap_atomic(gpu_vaddr, KM_USER0);
248
249         return 0;
250 }
251
252 /**
253  * This is the fast shmem pread path, which attempts to copy_from_user directly
254  * from the backing pages of the object to the user's address space.  On a
255  * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
256  */
257 static int
258 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
259                           struct drm_i915_gem_pread *args,
260                           struct drm_file *file_priv)
261 {
262         struct drm_i915_gem_object *obj_priv = obj->driver_private;
263         ssize_t remain;
264         loff_t offset, page_base;
265         char __user *user_data;
266         int page_offset, page_length;
267         int ret;
268
269         user_data = (char __user *) (uintptr_t) args->data_ptr;
270         remain = args->size;
271
272         mutex_lock(&dev->struct_mutex);
273
274         ret = i915_gem_object_get_pages(obj);
275         if (ret != 0)
276                 goto fail_unlock;
277
278         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
279                                                         args->size);
280         if (ret != 0)
281                 goto fail_put_pages;
282
283         obj_priv = obj->driver_private;
284         offset = args->offset;
285
286         while (remain > 0) {
287                 /* Operation in this page
288                  *
289                  * page_base = page offset within aperture
290                  * page_offset = offset within page
291                  * page_length = bytes to copy for this page
292                  */
293                 page_base = (offset & ~(PAGE_SIZE-1));
294                 page_offset = offset & (PAGE_SIZE-1);
295                 page_length = remain;
296                 if ((page_offset + remain) > PAGE_SIZE)
297                         page_length = PAGE_SIZE - page_offset;
298
299                 ret = fast_shmem_read(obj_priv->pages,
300                                       page_base, page_offset,
301                                       user_data, page_length);
302                 if (ret)
303                         goto fail_put_pages;
304
305                 remain -= page_length;
306                 user_data += page_length;
307                 offset += page_length;
308         }
309
310 fail_put_pages:
311         i915_gem_object_put_pages(obj);
312 fail_unlock:
313         mutex_unlock(&dev->struct_mutex);
314
315         return ret;
316 }
317
318 /**
319  * This is the fallback shmem pread path, which allocates temporary storage
320  * in kernel space to copy_to_user into outside of the struct_mutex, so we
321  * can copy out of the object's backing pages while holding the struct mutex
322  * and not take page faults.
323  */
324 static int
325 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
326                           struct drm_i915_gem_pread *args,
327                           struct drm_file *file_priv)
328 {
329         struct drm_i915_gem_object *obj_priv = obj->driver_private;
330         struct mm_struct *mm = current->mm;
331         struct page **user_pages;
332         ssize_t remain;
333         loff_t offset, pinned_pages, i;
334         loff_t first_data_page, last_data_page, num_pages;
335         int shmem_page_index, shmem_page_offset;
336         int data_page_index,  data_page_offset;
337         int page_length;
338         int ret;
339         uint64_t data_ptr = args->data_ptr;
340         int do_bit17_swizzling;
341
342         remain = args->size;
343
344         /* Pin the user pages containing the data.  We can't fault while
345          * holding the struct mutex, yet we want to hold it while
346          * dereferencing the user data.
347          */
348         first_data_page = data_ptr / PAGE_SIZE;
349         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
350         num_pages = last_data_page - first_data_page + 1;
351
352         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
353         if (user_pages == NULL)
354                 return -ENOMEM;
355
356         down_read(&mm->mmap_sem);
357         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
358                                       num_pages, 1, 0, user_pages, NULL);
359         up_read(&mm->mmap_sem);
360         if (pinned_pages < num_pages) {
361                 ret = -EFAULT;
362                 goto fail_put_user_pages;
363         }
364
365         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
366
367         mutex_lock(&dev->struct_mutex);
368
369         ret = i915_gem_object_get_pages(obj);
370         if (ret != 0)
371                 goto fail_unlock;
372
373         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
374                                                         args->size);
375         if (ret != 0)
376                 goto fail_put_pages;
377
378         obj_priv = obj->driver_private;
379         offset = args->offset;
380
381         while (remain > 0) {
382                 /* Operation in this page
383                  *
384                  * shmem_page_index = page number within shmem file
385                  * shmem_page_offset = offset within page in shmem file
386                  * data_page_index = page number in get_user_pages return
387                  * data_page_offset = offset with data_page_index page.
388                  * page_length = bytes to copy for this page
389                  */
390                 shmem_page_index = offset / PAGE_SIZE;
391                 shmem_page_offset = offset & ~PAGE_MASK;
392                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
393                 data_page_offset = data_ptr & ~PAGE_MASK;
394
395                 page_length = remain;
396                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
397                         page_length = PAGE_SIZE - shmem_page_offset;
398                 if ((data_page_offset + page_length) > PAGE_SIZE)
399                         page_length = PAGE_SIZE - data_page_offset;
400
401                 if (do_bit17_swizzling) {
402                         ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
403                                                     shmem_page_offset,
404                                                     user_pages[data_page_index],
405                                                     data_page_offset,
406                                                     page_length,
407                                                     1);
408                 } else {
409                         ret = slow_shmem_copy(user_pages[data_page_index],
410                                               data_page_offset,
411                                               obj_priv->pages[shmem_page_index],
412                                               shmem_page_offset,
413                                               page_length);
414                 }
415                 if (ret)
416                         goto fail_put_pages;
417
418                 remain -= page_length;
419                 data_ptr += page_length;
420                 offset += page_length;
421         }
422
423 fail_put_pages:
424         i915_gem_object_put_pages(obj);
425 fail_unlock:
426         mutex_unlock(&dev->struct_mutex);
427 fail_put_user_pages:
428         for (i = 0; i < pinned_pages; i++) {
429                 SetPageDirty(user_pages[i]);
430                 page_cache_release(user_pages[i]);
431         }
432         drm_free_large(user_pages);
433
434         return ret;
435 }
436
437 /**
438  * Reads data from the object referenced by handle.
439  *
440  * On error, the contents of *data are undefined.
441  */
442 int
443 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
444                      struct drm_file *file_priv)
445 {
446         struct drm_i915_gem_pread *args = data;
447         struct drm_gem_object *obj;
448         struct drm_i915_gem_object *obj_priv;
449         int ret;
450
451         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
452         if (obj == NULL)
453                 return -EBADF;
454         obj_priv = obj->driver_private;
455
456         /* Bounds check source.
457          *
458          * XXX: This could use review for overflow issues...
459          */
460         if (args->offset > obj->size || args->size > obj->size ||
461             args->offset + args->size > obj->size) {
462                 drm_gem_object_unreference(obj);
463                 return -EINVAL;
464         }
465
466         if (i915_gem_object_needs_bit17_swizzle(obj)) {
467                 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
468         } else {
469                 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
470                 if (ret != 0)
471                         ret = i915_gem_shmem_pread_slow(dev, obj, args,
472                                                         file_priv);
473         }
474
475         drm_gem_object_unreference(obj);
476
477         return ret;
478 }
479
480 /* This is the fast write path which cannot handle
481  * page faults in the source data
482  */
483
484 static inline int
485 fast_user_write(struct io_mapping *mapping,
486                 loff_t page_base, int page_offset,
487                 char __user *user_data,
488                 int length)
489 {
490         char *vaddr_atomic;
491         unsigned long unwritten;
492
493         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
494         unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
495                                                       user_data, length);
496         io_mapping_unmap_atomic(vaddr_atomic);
497         if (unwritten)
498                 return -EFAULT;
499         return 0;
500 }
501
502 /* Here's the write path which can sleep for
503  * page faults
504  */
505
506 static inline int
507 slow_kernel_write(struct io_mapping *mapping,
508                   loff_t gtt_base, int gtt_offset,
509                   struct page *user_page, int user_offset,
510                   int length)
511 {
512         char *src_vaddr, *dst_vaddr;
513         unsigned long unwritten;
514
515         dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
516         src_vaddr = kmap_atomic(user_page, KM_USER1);
517         unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
518                                                       src_vaddr + user_offset,
519                                                       length);
520         kunmap_atomic(src_vaddr, KM_USER1);
521         io_mapping_unmap_atomic(dst_vaddr);
522         if (unwritten)
523                 return -EFAULT;
524         return 0;
525 }
526
527 static inline int
528 fast_shmem_write(struct page **pages,
529                  loff_t page_base, int page_offset,
530                  char __user *data,
531                  int length)
532 {
533         char __iomem *vaddr;
534         unsigned long unwritten;
535
536         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
537         if (vaddr == NULL)
538                 return -ENOMEM;
539         unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
540         kunmap_atomic(vaddr, KM_USER0);
541
542         if (unwritten)
543                 return -EFAULT;
544         return 0;
545 }
546
547 /**
548  * This is the fast pwrite path, where we copy the data directly from the
549  * user into the GTT, uncached.
550  */
551 static int
552 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
553                          struct drm_i915_gem_pwrite *args,
554                          struct drm_file *file_priv)
555 {
556         struct drm_i915_gem_object *obj_priv = obj->driver_private;
557         drm_i915_private_t *dev_priv = dev->dev_private;
558         ssize_t remain;
559         loff_t offset, page_base;
560         char __user *user_data;
561         int page_offset, page_length;
562         int ret;
563
564         user_data = (char __user *) (uintptr_t) args->data_ptr;
565         remain = args->size;
566         if (!access_ok(VERIFY_READ, user_data, remain))
567                 return -EFAULT;
568
569
570         mutex_lock(&dev->struct_mutex);
571         ret = i915_gem_object_pin(obj, 0);
572         if (ret) {
573                 mutex_unlock(&dev->struct_mutex);
574                 return ret;
575         }
576         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
577         if (ret)
578                 goto fail;
579
580         obj_priv = obj->driver_private;
581         offset = obj_priv->gtt_offset + args->offset;
582
583         while (remain > 0) {
584                 /* Operation in this page
585                  *
586                  * page_base = page offset within aperture
587                  * page_offset = offset within page
588                  * page_length = bytes to copy for this page
589                  */
590                 page_base = (offset & ~(PAGE_SIZE-1));
591                 page_offset = offset & (PAGE_SIZE-1);
592                 page_length = remain;
593                 if ((page_offset + remain) > PAGE_SIZE)
594                         page_length = PAGE_SIZE - page_offset;
595
596                 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
597                                        page_offset, user_data, page_length);
598
599                 /* If we get a fault while copying data, then (presumably) our
600                  * source page isn't available.  Return the error and we'll
601                  * retry in the slow path.
602                  */
603                 if (ret)
604                         goto fail;
605
606                 remain -= page_length;
607                 user_data += page_length;
608                 offset += page_length;
609         }
610
611 fail:
612         i915_gem_object_unpin(obj);
613         mutex_unlock(&dev->struct_mutex);
614
615         return ret;
616 }
617
618 /**
619  * This is the fallback GTT pwrite path, which uses get_user_pages to pin
620  * the memory and maps it using kmap_atomic for copying.
621  *
622  * This code resulted in x11perf -rgb10text consuming about 10% more CPU
623  * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
624  */
625 static int
626 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
627                          struct drm_i915_gem_pwrite *args,
628                          struct drm_file *file_priv)
629 {
630         struct drm_i915_gem_object *obj_priv = obj->driver_private;
631         drm_i915_private_t *dev_priv = dev->dev_private;
632         ssize_t remain;
633         loff_t gtt_page_base, offset;
634         loff_t first_data_page, last_data_page, num_pages;
635         loff_t pinned_pages, i;
636         struct page **user_pages;
637         struct mm_struct *mm = current->mm;
638         int gtt_page_offset, data_page_offset, data_page_index, page_length;
639         int ret;
640         uint64_t data_ptr = args->data_ptr;
641
642         remain = args->size;
643
644         /* Pin the user pages containing the data.  We can't fault while
645          * holding the struct mutex, and all of the pwrite implementations
646          * want to hold it while dereferencing the user data.
647          */
648         first_data_page = data_ptr / PAGE_SIZE;
649         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
650         num_pages = last_data_page - first_data_page + 1;
651
652         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
653         if (user_pages == NULL)
654                 return -ENOMEM;
655
656         down_read(&mm->mmap_sem);
657         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
658                                       num_pages, 0, 0, user_pages, NULL);
659         up_read(&mm->mmap_sem);
660         if (pinned_pages < num_pages) {
661                 ret = -EFAULT;
662                 goto out_unpin_pages;
663         }
664
665         mutex_lock(&dev->struct_mutex);
666         ret = i915_gem_object_pin(obj, 0);
667         if (ret)
668                 goto out_unlock;
669
670         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
671         if (ret)
672                 goto out_unpin_object;
673
674         obj_priv = obj->driver_private;
675         offset = obj_priv->gtt_offset + args->offset;
676
677         while (remain > 0) {
678                 /* Operation in this page
679                  *
680                  * gtt_page_base = page offset within aperture
681                  * gtt_page_offset = offset within page in aperture
682                  * data_page_index = page number in get_user_pages return
683                  * data_page_offset = offset with data_page_index page.
684                  * page_length = bytes to copy for this page
685                  */
686                 gtt_page_base = offset & PAGE_MASK;
687                 gtt_page_offset = offset & ~PAGE_MASK;
688                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
689                 data_page_offset = data_ptr & ~PAGE_MASK;
690
691                 page_length = remain;
692                 if ((gtt_page_offset + page_length) > PAGE_SIZE)
693                         page_length = PAGE_SIZE - gtt_page_offset;
694                 if ((data_page_offset + page_length) > PAGE_SIZE)
695                         page_length = PAGE_SIZE - data_page_offset;
696
697                 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
698                                         gtt_page_base, gtt_page_offset,
699                                         user_pages[data_page_index],
700                                         data_page_offset,
701                                         page_length);
702
703                 /* If we get a fault while copying data, then (presumably) our
704                  * source page isn't available.  Return the error and we'll
705                  * retry in the slow path.
706                  */
707                 if (ret)
708                         goto out_unpin_object;
709
710                 remain -= page_length;
711                 offset += page_length;
712                 data_ptr += page_length;
713         }
714
715 out_unpin_object:
716         i915_gem_object_unpin(obj);
717 out_unlock:
718         mutex_unlock(&dev->struct_mutex);
719 out_unpin_pages:
720         for (i = 0; i < pinned_pages; i++)
721                 page_cache_release(user_pages[i]);
722         drm_free_large(user_pages);
723
724         return ret;
725 }
726
727 /**
728  * This is the fast shmem pwrite path, which attempts to directly
729  * copy_from_user into the kmapped pages backing the object.
730  */
731 static int
732 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
733                            struct drm_i915_gem_pwrite *args,
734                            struct drm_file *file_priv)
735 {
736         struct drm_i915_gem_object *obj_priv = obj->driver_private;
737         ssize_t remain;
738         loff_t offset, page_base;
739         char __user *user_data;
740         int page_offset, page_length;
741         int ret;
742
743         user_data = (char __user *) (uintptr_t) args->data_ptr;
744         remain = args->size;
745
746         mutex_lock(&dev->struct_mutex);
747
748         ret = i915_gem_object_get_pages(obj);
749         if (ret != 0)
750                 goto fail_unlock;
751
752         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
753         if (ret != 0)
754                 goto fail_put_pages;
755
756         obj_priv = obj->driver_private;
757         offset = args->offset;
758         obj_priv->dirty = 1;
759
760         while (remain > 0) {
761                 /* Operation in this page
762                  *
763                  * page_base = page offset within aperture
764                  * page_offset = offset within page
765                  * page_length = bytes to copy for this page
766                  */
767                 page_base = (offset & ~(PAGE_SIZE-1));
768                 page_offset = offset & (PAGE_SIZE-1);
769                 page_length = remain;
770                 if ((page_offset + remain) > PAGE_SIZE)
771                         page_length = PAGE_SIZE - page_offset;
772
773                 ret = fast_shmem_write(obj_priv->pages,
774                                        page_base, page_offset,
775                                        user_data, page_length);
776                 if (ret)
777                         goto fail_put_pages;
778
779                 remain -= page_length;
780                 user_data += page_length;
781                 offset += page_length;
782         }
783
784 fail_put_pages:
785         i915_gem_object_put_pages(obj);
786 fail_unlock:
787         mutex_unlock(&dev->struct_mutex);
788
789         return ret;
790 }
791
792 /**
793  * This is the fallback shmem pwrite path, which uses get_user_pages to pin
794  * the memory and maps it using kmap_atomic for copying.
795  *
796  * This avoids taking mmap_sem for faulting on the user's address while the
797  * struct_mutex is held.
798  */
799 static int
800 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
801                            struct drm_i915_gem_pwrite *args,
802                            struct drm_file *file_priv)
803 {
804         struct drm_i915_gem_object *obj_priv = obj->driver_private;
805         struct mm_struct *mm = current->mm;
806         struct page **user_pages;
807         ssize_t remain;
808         loff_t offset, pinned_pages, i;
809         loff_t first_data_page, last_data_page, num_pages;
810         int shmem_page_index, shmem_page_offset;
811         int data_page_index,  data_page_offset;
812         int page_length;
813         int ret;
814         uint64_t data_ptr = args->data_ptr;
815         int do_bit17_swizzling;
816
817         remain = args->size;
818
819         /* Pin the user pages containing the data.  We can't fault while
820          * holding the struct mutex, and all of the pwrite implementations
821          * want to hold it while dereferencing the user data.
822          */
823         first_data_page = data_ptr / PAGE_SIZE;
824         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
825         num_pages = last_data_page - first_data_page + 1;
826
827         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
828         if (user_pages == NULL)
829                 return -ENOMEM;
830
831         down_read(&mm->mmap_sem);
832         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
833                                       num_pages, 0, 0, user_pages, NULL);
834         up_read(&mm->mmap_sem);
835         if (pinned_pages < num_pages) {
836                 ret = -EFAULT;
837                 goto fail_put_user_pages;
838         }
839
840         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
841
842         mutex_lock(&dev->struct_mutex);
843
844         ret = i915_gem_object_get_pages(obj);
845         if (ret != 0)
846                 goto fail_unlock;
847
848         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
849         if (ret != 0)
850                 goto fail_put_pages;
851
852         obj_priv = obj->driver_private;
853         offset = args->offset;
854         obj_priv->dirty = 1;
855
856         while (remain > 0) {
857                 /* Operation in this page
858                  *
859                  * shmem_page_index = page number within shmem file
860                  * shmem_page_offset = offset within page in shmem file
861                  * data_page_index = page number in get_user_pages return
862                  * data_page_offset = offset with data_page_index page.
863                  * page_length = bytes to copy for this page
864                  */
865                 shmem_page_index = offset / PAGE_SIZE;
866                 shmem_page_offset = offset & ~PAGE_MASK;
867                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
868                 data_page_offset = data_ptr & ~PAGE_MASK;
869
870                 page_length = remain;
871                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
872                         page_length = PAGE_SIZE - shmem_page_offset;
873                 if ((data_page_offset + page_length) > PAGE_SIZE)
874                         page_length = PAGE_SIZE - data_page_offset;
875
876                 if (do_bit17_swizzling) {
877                         ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
878                                                     shmem_page_offset,
879                                                     user_pages[data_page_index],
880                                                     data_page_offset,
881                                                     page_length,
882                                                     0);
883                 } else {
884                         ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
885                                               shmem_page_offset,
886                                               user_pages[data_page_index],
887                                               data_page_offset,
888                                               page_length);
889                 }
890                 if (ret)
891                         goto fail_put_pages;
892
893                 remain -= page_length;
894                 data_ptr += page_length;
895                 offset += page_length;
896         }
897
898 fail_put_pages:
899         i915_gem_object_put_pages(obj);
900 fail_unlock:
901         mutex_unlock(&dev->struct_mutex);
902 fail_put_user_pages:
903         for (i = 0; i < pinned_pages; i++)
904                 page_cache_release(user_pages[i]);
905         drm_free_large(user_pages);
906
907         return ret;
908 }
909
910 /**
911  * Writes data to the object referenced by handle.
912  *
913  * On error, the contents of the buffer that were to be modified are undefined.
914  */
915 int
916 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
917                       struct drm_file *file_priv)
918 {
919         struct drm_i915_gem_pwrite *args = data;
920         struct drm_gem_object *obj;
921         struct drm_i915_gem_object *obj_priv;
922         int ret = 0;
923
924         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
925         if (obj == NULL)
926                 return -EBADF;
927         obj_priv = obj->driver_private;
928
929         /* Bounds check destination.
930          *
931          * XXX: This could use review for overflow issues...
932          */
933         if (args->offset > obj->size || args->size > obj->size ||
934             args->offset + args->size > obj->size) {
935                 drm_gem_object_unreference(obj);
936                 return -EINVAL;
937         }
938
939         /* We can only do the GTT pwrite on untiled buffers, as otherwise
940          * it would end up going through the fenced access, and we'll get
941          * different detiling behavior between reading and writing.
942          * pread/pwrite currently are reading and writing from the CPU
943          * perspective, requiring manual detiling by the client.
944          */
945         if (obj_priv->phys_obj)
946                 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
947         else if (obj_priv->tiling_mode == I915_TILING_NONE &&
948                  dev->gtt_total != 0) {
949                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
950                 if (ret == -EFAULT) {
951                         ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
952                                                        file_priv);
953                 }
954         } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
955                 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
956         } else {
957                 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
958                 if (ret == -EFAULT) {
959                         ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
960                                                          file_priv);
961                 }
962         }
963
964 #if WATCH_PWRITE
965         if (ret)
966                 DRM_INFO("pwrite failed %d\n", ret);
967 #endif
968
969         drm_gem_object_unreference(obj);
970
971         return ret;
972 }
973
974 /**
975  * Called when user space prepares to use an object with the CPU, either
976  * through the mmap ioctl's mapping or a GTT mapping.
977  */
978 int
979 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
980                           struct drm_file *file_priv)
981 {
982         struct drm_i915_gem_set_domain *args = data;
983         struct drm_gem_object *obj;
984         uint32_t read_domains = args->read_domains;
985         uint32_t write_domain = args->write_domain;
986         int ret;
987
988         if (!(dev->driver->driver_features & DRIVER_GEM))
989                 return -ENODEV;
990
991         /* Only handle setting domains to types used by the CPU. */
992         if (write_domain & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
993                 return -EINVAL;
994
995         if (read_domains & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
996                 return -EINVAL;
997
998         /* Having something in the write domain implies it's in the read
999          * domain, and only that read domain.  Enforce that in the request.
1000          */
1001         if (write_domain != 0 && read_domains != write_domain)
1002                 return -EINVAL;
1003
1004         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1005         if (obj == NULL)
1006                 return -EBADF;
1007
1008         mutex_lock(&dev->struct_mutex);
1009 #if WATCH_BUF
1010         DRM_INFO("set_domain_ioctl %p(%d), %08x %08x\n",
1011                  obj, obj->size, read_domains, write_domain);
1012 #endif
1013         if (read_domains & I915_GEM_DOMAIN_GTT) {
1014                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1015
1016                 /* Silently promote "you're not bound, there was nothing to do"
1017                  * to success, since the client was just asking us to
1018                  * make sure everything was done.
1019                  */
1020                 if (ret == -EINVAL)
1021                         ret = 0;
1022         } else {
1023                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1024         }
1025
1026         drm_gem_object_unreference(obj);
1027         mutex_unlock(&dev->struct_mutex);
1028         return ret;
1029 }
1030
1031 /**
1032  * Called when user space has done writes to this buffer
1033  */
1034 int
1035 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1036                       struct drm_file *file_priv)
1037 {
1038         struct drm_i915_gem_sw_finish *args = data;
1039         struct drm_gem_object *obj;
1040         struct drm_i915_gem_object *obj_priv;
1041         int ret = 0;
1042
1043         if (!(dev->driver->driver_features & DRIVER_GEM))
1044                 return -ENODEV;
1045
1046         mutex_lock(&dev->struct_mutex);
1047         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1048         if (obj == NULL) {
1049                 mutex_unlock(&dev->struct_mutex);
1050                 return -EBADF;
1051         }
1052
1053 #if WATCH_BUF
1054         DRM_INFO("%s: sw_finish %d (%p %d)\n",
1055                  __func__, args->handle, obj, obj->size);
1056 #endif
1057         obj_priv = obj->driver_private;
1058
1059         /* Pinned buffers may be scanout, so flush the cache */
1060         if (obj_priv->pin_count)
1061                 i915_gem_object_flush_cpu_write_domain(obj);
1062
1063         drm_gem_object_unreference(obj);
1064         mutex_unlock(&dev->struct_mutex);
1065         return ret;
1066 }
1067
1068 /**
1069  * Maps the contents of an object, returning the address it is mapped
1070  * into.
1071  *
1072  * While the mapping holds a reference on the contents of the object, it doesn't
1073  * imply a ref on the object itself.
1074  */
1075 int
1076 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1077                    struct drm_file *file_priv)
1078 {
1079         struct drm_i915_gem_mmap *args = data;
1080         struct drm_gem_object *obj;
1081         loff_t offset;
1082         unsigned long addr;
1083
1084         if (!(dev->driver->driver_features & DRIVER_GEM))
1085                 return -ENODEV;
1086
1087         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1088         if (obj == NULL)
1089                 return -EBADF;
1090
1091         offset = args->offset;
1092
1093         down_write(&current->mm->mmap_sem);
1094         addr = do_mmap(obj->filp, 0, args->size,
1095                        PROT_READ | PROT_WRITE, MAP_SHARED,
1096                        args->offset);
1097         up_write(&current->mm->mmap_sem);
1098         mutex_lock(&dev->struct_mutex);
1099         drm_gem_object_unreference(obj);
1100         mutex_unlock(&dev->struct_mutex);
1101         if (IS_ERR((void *)addr))
1102                 return addr;
1103
1104         args->addr_ptr = (uint64_t) addr;
1105
1106         return 0;
1107 }
1108
1109 /**
1110  * i915_gem_fault - fault a page into the GTT
1111  * vma: VMA in question
1112  * vmf: fault info
1113  *
1114  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1115  * from userspace.  The fault handler takes care of binding the object to
1116  * the GTT (if needed), allocating and programming a fence register (again,
1117  * only if needed based on whether the old reg is still valid or the object
1118  * is tiled) and inserting a new PTE into the faulting process.
1119  *
1120  * Note that the faulting process may involve evicting existing objects
1121  * from the GTT and/or fence registers to make room.  So performance may
1122  * suffer if the GTT working set is large or there are few fence registers
1123  * left.
1124  */
1125 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1126 {
1127         struct drm_gem_object *obj = vma->vm_private_data;
1128         struct drm_device *dev = obj->dev;
1129         struct drm_i915_private *dev_priv = dev->dev_private;
1130         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1131         pgoff_t page_offset;
1132         unsigned long pfn;
1133         int ret = 0;
1134         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1135
1136         /* We don't use vmf->pgoff since that has the fake offset */
1137         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1138                 PAGE_SHIFT;
1139
1140         /* Now bind it into the GTT if needed */
1141         mutex_lock(&dev->struct_mutex);
1142         if (!obj_priv->gtt_space) {
1143                 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
1144                 if (ret) {
1145                         mutex_unlock(&dev->struct_mutex);
1146                         return VM_FAULT_SIGBUS;
1147                 }
1148
1149                 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1150                 if (ret) {
1151                         mutex_unlock(&dev->struct_mutex);
1152                         return VM_FAULT_SIGBUS;
1153                 }
1154
1155                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1156         }
1157
1158         /* Need a new fence register? */
1159         if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1160             obj_priv->tiling_mode != I915_TILING_NONE) {
1161                 ret = i915_gem_object_get_fence_reg(obj, write);
1162                 if (ret) {
1163                         mutex_unlock(&dev->struct_mutex);
1164                         return VM_FAULT_SIGBUS;
1165                 }
1166         }
1167
1168         pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1169                 page_offset;
1170
1171         /* Finally, remap it using the new GTT offset */
1172         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1173
1174         mutex_unlock(&dev->struct_mutex);
1175
1176         switch (ret) {
1177         case -ENOMEM:
1178         case -EAGAIN:
1179                 return VM_FAULT_OOM;
1180         case -EFAULT:
1181         case -EINVAL:
1182                 return VM_FAULT_SIGBUS;
1183         default:
1184                 return VM_FAULT_NOPAGE;
1185         }
1186 }
1187
1188 /**
1189  * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1190  * @obj: obj in question
1191  *
1192  * GEM memory mapping works by handing back to userspace a fake mmap offset
1193  * it can use in a subsequent mmap(2) call.  The DRM core code then looks
1194  * up the object based on the offset and sets up the various memory mapping
1195  * structures.
1196  *
1197  * This routine allocates and attaches a fake offset for @obj.
1198  */
1199 static int
1200 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1201 {
1202         struct drm_device *dev = obj->dev;
1203         struct drm_gem_mm *mm = dev->mm_private;
1204         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1205         struct drm_map_list *list;
1206         struct drm_local_map *map;
1207         int ret = 0;
1208
1209         /* Set the object up for mmap'ing */
1210         list = &obj->map_list;
1211         list->map = drm_calloc(1, sizeof(struct drm_map_list),
1212                                DRM_MEM_DRIVER);
1213         if (!list->map)
1214                 return -ENOMEM;
1215
1216         map = list->map;
1217         map->type = _DRM_GEM;
1218         map->size = obj->size;
1219         map->handle = obj;
1220
1221         /* Get a DRM GEM mmap offset allocated... */
1222         list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1223                                                     obj->size / PAGE_SIZE, 0, 0);
1224         if (!list->file_offset_node) {
1225                 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1226                 ret = -ENOMEM;
1227                 goto out_free_list;
1228         }
1229
1230         list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1231                                                   obj->size / PAGE_SIZE, 0);
1232         if (!list->file_offset_node) {
1233                 ret = -ENOMEM;
1234                 goto out_free_list;
1235         }
1236
1237         list->hash.key = list->file_offset_node->start;
1238         if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1239                 DRM_ERROR("failed to add to map hash\n");
1240                 goto out_free_mm;
1241         }
1242
1243         /* By now we should be all set, any drm_mmap request on the offset
1244          * below will get to our mmap & fault handler */
1245         obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1246
1247         return 0;
1248
1249 out_free_mm:
1250         drm_mm_put_block(list->file_offset_node);
1251 out_free_list:
1252         drm_free(list->map, sizeof(struct drm_map_list), DRM_MEM_DRIVER);
1253
1254         return ret;
1255 }
1256
1257 static void
1258 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1259 {
1260         struct drm_device *dev = obj->dev;
1261         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1262         struct drm_gem_mm *mm = dev->mm_private;
1263         struct drm_map_list *list;
1264
1265         list = &obj->map_list;
1266         drm_ht_remove_item(&mm->offset_hash, &list->hash);
1267
1268         if (list->file_offset_node) {
1269                 drm_mm_put_block(list->file_offset_node);
1270                 list->file_offset_node = NULL;
1271         }
1272
1273         if (list->map) {
1274                 drm_free(list->map, sizeof(struct drm_map), DRM_MEM_DRIVER);
1275                 list->map = NULL;
1276         }
1277
1278         obj_priv->mmap_offset = 0;
1279 }
1280
1281 /**
1282  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1283  * @obj: object to check
1284  *
1285  * Return the required GTT alignment for an object, taking into account
1286  * potential fence register mapping if needed.
1287  */
1288 static uint32_t
1289 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1290 {
1291         struct drm_device *dev = obj->dev;
1292         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1293         int start, i;
1294
1295         /*
1296          * Minimum alignment is 4k (GTT page size), but might be greater
1297          * if a fence register is needed for the object.
1298          */
1299         if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1300                 return 4096;
1301
1302         /*
1303          * Previous chips need to be aligned to the size of the smallest
1304          * fence register that can contain the object.
1305          */
1306         if (IS_I9XX(dev))
1307                 start = 1024*1024;
1308         else
1309                 start = 512*1024;
1310
1311         for (i = start; i < obj->size; i <<= 1)
1312                 ;
1313
1314         return i;
1315 }
1316
1317 /**
1318  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1319  * @dev: DRM device
1320  * @data: GTT mapping ioctl data
1321  * @file_priv: GEM object info
1322  *
1323  * Simply returns the fake offset to userspace so it can mmap it.
1324  * The mmap call will end up in drm_gem_mmap(), which will set things
1325  * up so we can get faults in the handler above.
1326  *
1327  * The fault handler will take care of binding the object into the GTT
1328  * (since it may have been evicted to make room for something), allocating
1329  * a fence register, and mapping the appropriate aperture address into
1330  * userspace.
1331  */
1332 int
1333 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1334                         struct drm_file *file_priv)
1335 {
1336         struct drm_i915_gem_mmap_gtt *args = data;
1337         struct drm_i915_private *dev_priv = dev->dev_private;
1338         struct drm_gem_object *obj;
1339         struct drm_i915_gem_object *obj_priv;
1340         int ret;
1341
1342         if (!(dev->driver->driver_features & DRIVER_GEM))
1343                 return -ENODEV;
1344
1345         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1346         if (obj == NULL)
1347                 return -EBADF;
1348
1349         mutex_lock(&dev->struct_mutex);
1350
1351         obj_priv = obj->driver_private;
1352
1353         if (!obj_priv->mmap_offset) {
1354                 ret = i915_gem_create_mmap_offset(obj);
1355                 if (ret) {
1356                         drm_gem_object_unreference(obj);
1357                         mutex_unlock(&dev->struct_mutex);
1358                         return ret;
1359                 }
1360         }
1361
1362         args->offset = obj_priv->mmap_offset;
1363
1364         obj_priv->gtt_alignment = i915_gem_get_gtt_alignment(obj);
1365
1366         /* Make sure the alignment is correct for fence regs etc */
1367         if (obj_priv->agp_mem &&
1368             (obj_priv->gtt_offset & (obj_priv->gtt_alignment - 1))) {
1369                 drm_gem_object_unreference(obj);
1370                 mutex_unlock(&dev->struct_mutex);
1371                 return -EINVAL;
1372         }
1373
1374         /*
1375          * Pull it into the GTT so that we have a page list (makes the
1376          * initial fault faster and any subsequent flushing possible).
1377          */
1378         if (!obj_priv->agp_mem) {
1379                 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
1380                 if (ret) {
1381                         drm_gem_object_unreference(obj);
1382                         mutex_unlock(&dev->struct_mutex);
1383                         return ret;
1384                 }
1385                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1386         }
1387
1388         drm_gem_object_unreference(obj);
1389         mutex_unlock(&dev->struct_mutex);
1390
1391         return 0;
1392 }
1393
1394 void
1395 i915_gem_object_put_pages(struct drm_gem_object *obj)
1396 {
1397         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1398         int page_count = obj->size / PAGE_SIZE;
1399         int i;
1400
1401         BUG_ON(obj_priv->pages_refcount == 0);
1402
1403         if (--obj_priv->pages_refcount != 0)
1404                 return;
1405
1406         if (obj_priv->tiling_mode != I915_TILING_NONE)
1407                 i915_gem_object_save_bit_17_swizzle(obj);
1408
1409         for (i = 0; i < page_count; i++)
1410                 if (obj_priv->pages[i] != NULL) {
1411                         if (obj_priv->dirty)
1412                                 set_page_dirty(obj_priv->pages[i]);
1413                         mark_page_accessed(obj_priv->pages[i]);
1414                         page_cache_release(obj_priv->pages[i]);
1415                 }
1416         obj_priv->dirty = 0;
1417
1418         drm_free_large(obj_priv->pages);
1419         obj_priv->pages = NULL;
1420 }
1421
1422 static void
1423 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
1424 {
1425         struct drm_device *dev = obj->dev;
1426         drm_i915_private_t *dev_priv = dev->dev_private;
1427         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1428
1429         /* Add a reference if we're newly entering the active list. */
1430         if (!obj_priv->active) {
1431                 drm_gem_object_reference(obj);
1432                 obj_priv->active = 1;
1433         }
1434         /* Move from whatever list we were on to the tail of execution. */
1435         spin_lock(&dev_priv->mm.active_list_lock);
1436         list_move_tail(&obj_priv->list,
1437                        &dev_priv->mm.active_list);
1438         spin_unlock(&dev_priv->mm.active_list_lock);
1439         obj_priv->last_rendering_seqno = seqno;
1440 }
1441
1442 static void
1443 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1444 {
1445         struct drm_device *dev = obj->dev;
1446         drm_i915_private_t *dev_priv = dev->dev_private;
1447         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1448
1449         BUG_ON(!obj_priv->active);
1450         list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1451         obj_priv->last_rendering_seqno = 0;
1452 }
1453
1454 static void
1455 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1456 {
1457         struct drm_device *dev = obj->dev;
1458         drm_i915_private_t *dev_priv = dev->dev_private;
1459         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1460
1461         i915_verify_inactive(dev, __FILE__, __LINE__);
1462         if (obj_priv->pin_count != 0)
1463                 list_del_init(&obj_priv->list);
1464         else
1465                 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1466
1467         obj_priv->last_rendering_seqno = 0;
1468         if (obj_priv->active) {
1469                 obj_priv->active = 0;
1470                 drm_gem_object_unreference(obj);
1471         }
1472         i915_verify_inactive(dev, __FILE__, __LINE__);
1473 }
1474
1475 /**
1476  * Creates a new sequence number, emitting a write of it to the status page
1477  * plus an interrupt, which will trigger i915_user_interrupt_handler.
1478  *
1479  * Must be called with struct_lock held.
1480  *
1481  * Returned sequence numbers are nonzero on success.
1482  */
1483 static uint32_t
1484 i915_add_request(struct drm_device *dev, uint32_t flush_domains)
1485 {
1486         drm_i915_private_t *dev_priv = dev->dev_private;
1487         struct drm_i915_gem_request *request;
1488         uint32_t seqno;
1489         int was_empty;
1490         RING_LOCALS;
1491
1492         request = drm_calloc(1, sizeof(*request), DRM_MEM_DRIVER);
1493         if (request == NULL)
1494                 return 0;
1495
1496         /* Grab the seqno we're going to make this request be, and bump the
1497          * next (skipping 0 so it can be the reserved no-seqno value).
1498          */
1499         seqno = dev_priv->mm.next_gem_seqno;
1500         dev_priv->mm.next_gem_seqno++;
1501         if (dev_priv->mm.next_gem_seqno == 0)
1502                 dev_priv->mm.next_gem_seqno++;
1503
1504         BEGIN_LP_RING(4);
1505         OUT_RING(MI_STORE_DWORD_INDEX);
1506         OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1507         OUT_RING(seqno);
1508
1509         OUT_RING(MI_USER_INTERRUPT);
1510         ADVANCE_LP_RING();
1511
1512         DRM_DEBUG("%d\n", seqno);
1513
1514         request->seqno = seqno;
1515         request->emitted_jiffies = jiffies;
1516         was_empty = list_empty(&dev_priv->mm.request_list);
1517         list_add_tail(&request->list, &dev_priv->mm.request_list);
1518
1519         /* Associate any objects on the flushing list matching the write
1520          * domain we're flushing with our flush.
1521          */
1522         if (flush_domains != 0) {
1523                 struct drm_i915_gem_object *obj_priv, *next;
1524
1525                 list_for_each_entry_safe(obj_priv, next,
1526                                          &dev_priv->mm.flushing_list, list) {
1527                         struct drm_gem_object *obj = obj_priv->obj;
1528
1529                         if ((obj->write_domain & flush_domains) ==
1530                             obj->write_domain) {
1531                                 obj->write_domain = 0;
1532                                 i915_gem_object_move_to_active(obj, seqno);
1533                         }
1534                 }
1535
1536         }
1537
1538         if (was_empty && !dev_priv->mm.suspended)
1539                 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
1540         return seqno;
1541 }
1542
1543 /**
1544  * Command execution barrier
1545  *
1546  * Ensures that all commands in the ring are finished
1547  * before signalling the CPU
1548  */
1549 static uint32_t
1550 i915_retire_commands(struct drm_device *dev)
1551 {
1552         drm_i915_private_t *dev_priv = dev->dev_private;
1553         uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1554         uint32_t flush_domains = 0;
1555         RING_LOCALS;
1556
1557         /* The sampler always gets flushed on i965 (sigh) */
1558         if (IS_I965G(dev))
1559                 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1560         BEGIN_LP_RING(2);
1561         OUT_RING(cmd);
1562         OUT_RING(0); /* noop */
1563         ADVANCE_LP_RING();
1564         return flush_domains;
1565 }
1566
1567 /**
1568  * Moves buffers associated only with the given active seqno from the active
1569  * to inactive list, potentially freeing them.
1570  */
1571 static void
1572 i915_gem_retire_request(struct drm_device *dev,
1573                         struct drm_i915_gem_request *request)
1574 {
1575         drm_i915_private_t *dev_priv = dev->dev_private;
1576
1577         /* Move any buffers on the active list that are no longer referenced
1578          * by the ringbuffer to the flushing/inactive lists as appropriate.
1579          */
1580         spin_lock(&dev_priv->mm.active_list_lock);
1581         while (!list_empty(&dev_priv->mm.active_list)) {
1582                 struct drm_gem_object *obj;
1583                 struct drm_i915_gem_object *obj_priv;
1584
1585                 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1586                                             struct drm_i915_gem_object,
1587                                             list);
1588                 obj = obj_priv->obj;
1589
1590                 /* If the seqno being retired doesn't match the oldest in the
1591                  * list, then the oldest in the list must still be newer than
1592                  * this seqno.
1593                  */
1594                 if (obj_priv->last_rendering_seqno != request->seqno)
1595                         goto out;
1596
1597 #if WATCH_LRU
1598                 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1599                          __func__, request->seqno, obj);
1600 #endif
1601
1602                 if (obj->write_domain != 0)
1603                         i915_gem_object_move_to_flushing(obj);
1604                 else {
1605                         /* Take a reference on the object so it won't be
1606                          * freed while the spinlock is held.  The list
1607                          * protection for this spinlock is safe when breaking
1608                          * the lock like this since the next thing we do
1609                          * is just get the head of the list again.
1610                          */
1611                         drm_gem_object_reference(obj);
1612                         i915_gem_object_move_to_inactive(obj);
1613                         spin_unlock(&dev_priv->mm.active_list_lock);
1614                         drm_gem_object_unreference(obj);
1615                         spin_lock(&dev_priv->mm.active_list_lock);
1616                 }
1617         }
1618 out:
1619         spin_unlock(&dev_priv->mm.active_list_lock);
1620 }
1621
1622 /**
1623  * Returns true if seq1 is later than seq2.
1624  */
1625 static int
1626 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1627 {
1628         return (int32_t)(seq1 - seq2) >= 0;
1629 }
1630
1631 uint32_t
1632 i915_get_gem_seqno(struct drm_device *dev)
1633 {
1634         drm_i915_private_t *dev_priv = dev->dev_private;
1635
1636         return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1637 }
1638
1639 /**
1640  * This function clears the request list as sequence numbers are passed.
1641  */
1642 void
1643 i915_gem_retire_requests(struct drm_device *dev)
1644 {
1645         drm_i915_private_t *dev_priv = dev->dev_private;
1646         uint32_t seqno;
1647
1648         if (!dev_priv->hw_status_page)
1649                 return;
1650
1651         seqno = i915_get_gem_seqno(dev);
1652
1653         while (!list_empty(&dev_priv->mm.request_list)) {
1654                 struct drm_i915_gem_request *request;
1655                 uint32_t retiring_seqno;
1656
1657                 request = list_first_entry(&dev_priv->mm.request_list,
1658                                            struct drm_i915_gem_request,
1659                                            list);
1660                 retiring_seqno = request->seqno;
1661
1662                 if (i915_seqno_passed(seqno, retiring_seqno) ||
1663                     dev_priv->mm.wedged) {
1664                         i915_gem_retire_request(dev, request);
1665
1666                         list_del(&request->list);
1667                         drm_free(request, sizeof(*request), DRM_MEM_DRIVER);
1668                 } else
1669                         break;
1670         }
1671 }
1672
1673 void
1674 i915_gem_retire_work_handler(struct work_struct *work)
1675 {
1676         drm_i915_private_t *dev_priv;
1677         struct drm_device *dev;
1678
1679         dev_priv = container_of(work, drm_i915_private_t,
1680                                 mm.retire_work.work);
1681         dev = dev_priv->dev;
1682
1683         mutex_lock(&dev->struct_mutex);
1684         i915_gem_retire_requests(dev);
1685         if (!dev_priv->mm.suspended &&
1686             !list_empty(&dev_priv->mm.request_list))
1687                 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
1688         mutex_unlock(&dev->struct_mutex);
1689 }
1690
1691 /**
1692  * Waits for a sequence number to be signaled, and cleans up the
1693  * request and object lists appropriately for that event.
1694  */
1695 static int
1696 i915_wait_request(struct drm_device *dev, uint32_t seqno)
1697 {
1698         drm_i915_private_t *dev_priv = dev->dev_private;
1699         u32 ier;
1700         int ret = 0;
1701
1702         BUG_ON(seqno == 0);
1703
1704         if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1705                 ier = I915_READ(IER);
1706                 if (!ier) {
1707                         DRM_ERROR("something (likely vbetool) disabled "
1708                                   "interrupts, re-enabling\n");
1709                         i915_driver_irq_preinstall(dev);
1710                         i915_driver_irq_postinstall(dev);
1711                 }
1712
1713                 dev_priv->mm.waiting_gem_seqno = seqno;
1714                 i915_user_irq_get(dev);
1715                 ret = wait_event_interruptible(dev_priv->irq_queue,
1716                                                i915_seqno_passed(i915_get_gem_seqno(dev),
1717                                                                  seqno) ||
1718                                                dev_priv->mm.wedged);
1719                 i915_user_irq_put(dev);
1720                 dev_priv->mm.waiting_gem_seqno = 0;
1721         }
1722         if (dev_priv->mm.wedged)
1723                 ret = -EIO;
1724
1725         if (ret && ret != -ERESTARTSYS)
1726                 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1727                           __func__, ret, seqno, i915_get_gem_seqno(dev));
1728
1729         /* Directly dispatch request retiring.  While we have the work queue
1730          * to handle this, the waiter on a request often wants an associated
1731          * buffer to have made it to the inactive list, and we would need
1732          * a separate wait queue to handle that.
1733          */
1734         if (ret == 0)
1735                 i915_gem_retire_requests(dev);
1736
1737         return ret;
1738 }
1739
1740 static void
1741 i915_gem_flush(struct drm_device *dev,
1742                uint32_t invalidate_domains,
1743                uint32_t flush_domains)
1744 {
1745         drm_i915_private_t *dev_priv = dev->dev_private;
1746         uint32_t cmd;
1747         RING_LOCALS;
1748
1749 #if WATCH_EXEC
1750         DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1751                   invalidate_domains, flush_domains);
1752 #endif
1753
1754         if (flush_domains & I915_GEM_DOMAIN_CPU)
1755                 drm_agp_chipset_flush(dev);
1756
1757         if ((invalidate_domains | flush_domains) & ~(I915_GEM_DOMAIN_CPU |
1758                                                      I915_GEM_DOMAIN_GTT)) {
1759                 /*
1760                  * read/write caches:
1761                  *
1762                  * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1763                  * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
1764                  * also flushed at 2d versus 3d pipeline switches.
1765                  *
1766                  * read-only caches:
1767                  *
1768                  * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1769                  * MI_READ_FLUSH is set, and is always flushed on 965.
1770                  *
1771                  * I915_GEM_DOMAIN_COMMAND may not exist?
1772                  *
1773                  * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1774                  * invalidated when MI_EXE_FLUSH is set.
1775                  *
1776                  * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1777                  * invalidated with every MI_FLUSH.
1778                  *
1779                  * TLBs:
1780                  *
1781                  * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1782                  * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1783                  * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1784                  * are flushed at any MI_FLUSH.
1785                  */
1786
1787                 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1788                 if ((invalidate_domains|flush_domains) &
1789                     I915_GEM_DOMAIN_RENDER)
1790                         cmd &= ~MI_NO_WRITE_FLUSH;
1791                 if (!IS_I965G(dev)) {
1792                         /*
1793                          * On the 965, the sampler cache always gets flushed
1794                          * and this bit is reserved.
1795                          */
1796                         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1797                                 cmd |= MI_READ_FLUSH;
1798                 }
1799                 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1800                         cmd |= MI_EXE_FLUSH;
1801
1802 #if WATCH_EXEC
1803                 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1804 #endif
1805                 BEGIN_LP_RING(2);
1806                 OUT_RING(cmd);
1807                 OUT_RING(0); /* noop */
1808                 ADVANCE_LP_RING();
1809         }
1810 }
1811
1812 /**
1813  * Ensures that all rendering to the object has completed and the object is
1814  * safe to unbind from the GTT or access from the CPU.
1815  */
1816 static int
1817 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1818 {
1819         struct drm_device *dev = obj->dev;
1820         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1821         int ret;
1822
1823         /* This function only exists to support waiting for existing rendering,
1824          * not for emitting required flushes.
1825          */
1826         BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1827
1828         /* If there is rendering queued on the buffer being evicted, wait for
1829          * it.
1830          */
1831         if (obj_priv->active) {
1832 #if WATCH_BUF
1833                 DRM_INFO("%s: object %p wait for seqno %08x\n",
1834                           __func__, obj, obj_priv->last_rendering_seqno);
1835 #endif
1836                 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1837                 if (ret != 0)
1838                         return ret;
1839         }
1840
1841         return 0;
1842 }
1843
1844 /**
1845  * Unbinds an object from the GTT aperture.
1846  */
1847 int
1848 i915_gem_object_unbind(struct drm_gem_object *obj)
1849 {
1850         struct drm_device *dev = obj->dev;
1851         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1852         loff_t offset;
1853         int ret = 0;
1854
1855 #if WATCH_BUF
1856         DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1857         DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1858 #endif
1859         if (obj_priv->gtt_space == NULL)
1860                 return 0;
1861
1862         if (obj_priv->pin_count != 0) {
1863                 DRM_ERROR("Attempting to unbind pinned buffer\n");
1864                 return -EINVAL;
1865         }
1866
1867         /* Move the object to the CPU domain to ensure that
1868          * any possible CPU writes while it's not in the GTT
1869          * are flushed when we go to remap it. This will
1870          * also ensure that all pending GPU writes are finished
1871          * before we unbind.
1872          */
1873         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1874         if (ret) {
1875                 if (ret != -ERESTARTSYS)
1876                         DRM_ERROR("set_domain failed: %d\n", ret);
1877                 return ret;
1878         }
1879
1880         if (obj_priv->agp_mem != NULL) {
1881                 drm_unbind_agp(obj_priv->agp_mem);
1882                 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1883                 obj_priv->agp_mem = NULL;
1884         }
1885
1886         BUG_ON(obj_priv->active);
1887
1888         /* blow away mappings if mapped through GTT */
1889         offset = ((loff_t) obj->map_list.hash.key) << PAGE_SHIFT;
1890         if (dev->dev_mapping)
1891                 unmap_mapping_range(dev->dev_mapping, offset, obj->size, 1);
1892
1893         if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1894                 i915_gem_clear_fence_reg(obj);
1895
1896         i915_gem_object_put_pages(obj);
1897
1898         if (obj_priv->gtt_space) {
1899                 atomic_dec(&dev->gtt_count);
1900                 atomic_sub(obj->size, &dev->gtt_memory);
1901
1902                 drm_mm_put_block(obj_priv->gtt_space);
1903                 obj_priv->gtt_space = NULL;
1904         }
1905
1906         /* Remove ourselves from the LRU list if present. */
1907         if (!list_empty(&obj_priv->list))
1908                 list_del_init(&obj_priv->list);
1909
1910         return 0;
1911 }
1912
1913 static int
1914 i915_gem_evict_something(struct drm_device *dev)
1915 {
1916         drm_i915_private_t *dev_priv = dev->dev_private;
1917         struct drm_gem_object *obj;
1918         struct drm_i915_gem_object *obj_priv;
1919         int ret = 0;
1920
1921         for (;;) {
1922                 /* If there's an inactive buffer available now, grab it
1923                  * and be done.
1924                  */
1925                 if (!list_empty(&dev_priv->mm.inactive_list)) {
1926                         obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
1927                                                     struct drm_i915_gem_object,
1928                                                     list);
1929                         obj = obj_priv->obj;
1930                         BUG_ON(obj_priv->pin_count != 0);
1931 #if WATCH_LRU
1932                         DRM_INFO("%s: evicting %p\n", __func__, obj);
1933 #endif
1934                         BUG_ON(obj_priv->active);
1935
1936                         /* Wait on the rendering and unbind the buffer. */
1937                         ret = i915_gem_object_unbind(obj);
1938                         break;
1939                 }
1940
1941                 /* If we didn't get anything, but the ring is still processing
1942                  * things, wait for one of those things to finish and hopefully
1943                  * leave us a buffer to evict.
1944                  */
1945                 if (!list_empty(&dev_priv->mm.request_list)) {
1946                         struct drm_i915_gem_request *request;
1947
1948                         request = list_first_entry(&dev_priv->mm.request_list,
1949                                                    struct drm_i915_gem_request,
1950                                                    list);
1951
1952                         ret = i915_wait_request(dev, request->seqno);
1953                         if (ret)
1954                                 break;
1955
1956                         /* if waiting caused an object to become inactive,
1957                          * then loop around and wait for it. Otherwise, we
1958                          * assume that waiting freed and unbound something,
1959                          * so there should now be some space in the GTT
1960                          */
1961                         if (!list_empty(&dev_priv->mm.inactive_list))
1962                                 continue;
1963                         break;
1964                 }
1965
1966                 /* If we didn't have anything on the request list but there
1967                  * are buffers awaiting a flush, emit one and try again.
1968                  * When we wait on it, those buffers waiting for that flush
1969                  * will get moved to inactive.
1970                  */
1971                 if (!list_empty(&dev_priv->mm.flushing_list)) {
1972                         obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1973                                                     struct drm_i915_gem_object,
1974                                                     list);
1975                         obj = obj_priv->obj;
1976
1977                         i915_gem_flush(dev,
1978                                        obj->write_domain,
1979                                        obj->write_domain);
1980                         i915_add_request(dev, obj->write_domain);
1981
1982                         obj = NULL;
1983                         continue;
1984                 }
1985
1986                 DRM_ERROR("inactive empty %d request empty %d "
1987                           "flushing empty %d\n",
1988                           list_empty(&dev_priv->mm.inactive_list),
1989                           list_empty(&dev_priv->mm.request_list),
1990                           list_empty(&dev_priv->mm.flushing_list));
1991                 /* If we didn't do any of the above, there's nothing to be done
1992                  * and we just can't fit it in.
1993                  */
1994                 return -ENOMEM;
1995         }
1996         return ret;
1997 }
1998
1999 static int
2000 i915_gem_evict_everything(struct drm_device *dev)
2001 {
2002         int ret;
2003
2004         for (;;) {
2005                 ret = i915_gem_evict_something(dev);
2006                 if (ret != 0)
2007                         break;
2008         }
2009         if (ret == -ENOMEM)
2010                 return 0;
2011         return ret;
2012 }
2013
2014 int
2015 i915_gem_object_get_pages(struct drm_gem_object *obj)
2016 {
2017         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2018         int page_count, i;
2019         struct address_space *mapping;
2020         struct inode *inode;
2021         struct page *page;
2022         int ret;
2023
2024         if (obj_priv->pages_refcount++ != 0)
2025                 return 0;
2026
2027         /* Get the list of pages out of our struct file.  They'll be pinned
2028          * at this point until we release them.
2029          */
2030         page_count = obj->size / PAGE_SIZE;
2031         BUG_ON(obj_priv->pages != NULL);
2032         obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2033         if (obj_priv->pages == NULL) {
2034                 DRM_ERROR("Faled to allocate page list\n");
2035                 obj_priv->pages_refcount--;
2036                 return -ENOMEM;
2037         }
2038
2039         inode = obj->filp->f_path.dentry->d_inode;
2040         mapping = inode->i_mapping;
2041         for (i = 0; i < page_count; i++) {
2042                 page = read_mapping_page(mapping, i, NULL);
2043                 if (IS_ERR(page)) {
2044                         ret = PTR_ERR(page);
2045                         DRM_ERROR("read_mapping_page failed: %d\n", ret);
2046                         i915_gem_object_put_pages(obj);
2047                         return ret;
2048                 }
2049                 obj_priv->pages[i] = page;
2050         }
2051
2052         if (obj_priv->tiling_mode != I915_TILING_NONE)
2053                 i915_gem_object_do_bit_17_swizzle(obj);
2054
2055         return 0;
2056 }
2057
2058 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2059 {
2060         struct drm_gem_object *obj = reg->obj;
2061         struct drm_device *dev = obj->dev;
2062         drm_i915_private_t *dev_priv = dev->dev_private;
2063         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2064         int regnum = obj_priv->fence_reg;
2065         uint64_t val;
2066
2067         val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2068                     0xfffff000) << 32;
2069         val |= obj_priv->gtt_offset & 0xfffff000;
2070         val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2071         if (obj_priv->tiling_mode == I915_TILING_Y)
2072                 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2073         val |= I965_FENCE_REG_VALID;
2074
2075         I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2076 }
2077
2078 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2079 {
2080         struct drm_gem_object *obj = reg->obj;
2081         struct drm_device *dev = obj->dev;
2082         drm_i915_private_t *dev_priv = dev->dev_private;
2083         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2084         int regnum = obj_priv->fence_reg;
2085         int tile_width;
2086         uint32_t fence_reg, val;
2087         uint32_t pitch_val;
2088
2089         if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2090             (obj_priv->gtt_offset & (obj->size - 1))) {
2091                 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2092                      __func__, obj_priv->gtt_offset, obj->size);
2093                 return;
2094         }
2095
2096         if (obj_priv->tiling_mode == I915_TILING_Y &&
2097             HAS_128_BYTE_Y_TILING(dev))
2098                 tile_width = 128;
2099         else
2100                 tile_width = 512;
2101
2102         /* Note: pitch better be a power of two tile widths */
2103         pitch_val = obj_priv->stride / tile_width;
2104         pitch_val = ffs(pitch_val) - 1;
2105
2106         val = obj_priv->gtt_offset;
2107         if (obj_priv->tiling_mode == I915_TILING_Y)
2108                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2109         val |= I915_FENCE_SIZE_BITS(obj->size);
2110         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2111         val |= I830_FENCE_REG_VALID;
2112
2113         if (regnum < 8)
2114                 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2115         else
2116                 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2117         I915_WRITE(fence_reg, val);
2118 }
2119
2120 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2121 {
2122         struct drm_gem_object *obj = reg->obj;
2123         struct drm_device *dev = obj->dev;
2124         drm_i915_private_t *dev_priv = dev->dev_private;
2125         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2126         int regnum = obj_priv->fence_reg;
2127         uint32_t val;
2128         uint32_t pitch_val;
2129         uint32_t fence_size_bits;
2130
2131         if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2132             (obj_priv->gtt_offset & (obj->size - 1))) {
2133                 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2134                      __func__, obj_priv->gtt_offset);
2135                 return;
2136         }
2137
2138         pitch_val = obj_priv->stride / 128;
2139         pitch_val = ffs(pitch_val) - 1;
2140         WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2141
2142         val = obj_priv->gtt_offset;
2143         if (obj_priv->tiling_mode == I915_TILING_Y)
2144                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2145         fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2146         WARN_ON(fence_size_bits & ~0x00000f00);
2147         val |= fence_size_bits;
2148         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2149         val |= I830_FENCE_REG_VALID;
2150
2151         I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2152
2153 }
2154
2155 /**
2156  * i915_gem_object_get_fence_reg - set up a fence reg for an object
2157  * @obj: object to map through a fence reg
2158  * @write: object is about to be written
2159  *
2160  * When mapping objects through the GTT, userspace wants to be able to write
2161  * to them without having to worry about swizzling if the object is tiled.
2162  *
2163  * This function walks the fence regs looking for a free one for @obj,
2164  * stealing one if it can't find any.
2165  *
2166  * It then sets up the reg based on the object's properties: address, pitch
2167  * and tiling format.
2168  */
2169 static int
2170 i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write)
2171 {
2172         struct drm_device *dev = obj->dev;
2173         struct drm_i915_private *dev_priv = dev->dev_private;
2174         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2175         struct drm_i915_fence_reg *reg = NULL;
2176         struct drm_i915_gem_object *old_obj_priv = NULL;
2177         int i, ret, avail;
2178
2179         switch (obj_priv->tiling_mode) {
2180         case I915_TILING_NONE:
2181                 WARN(1, "allocating a fence for non-tiled object?\n");
2182                 break;
2183         case I915_TILING_X:
2184                 if (!obj_priv->stride)
2185                         return -EINVAL;
2186                 WARN((obj_priv->stride & (512 - 1)),
2187                      "object 0x%08x is X tiled but has non-512B pitch\n",
2188                      obj_priv->gtt_offset);
2189                 break;
2190         case I915_TILING_Y:
2191                 if (!obj_priv->stride)
2192                         return -EINVAL;
2193                 WARN((obj_priv->stride & (128 - 1)),
2194                      "object 0x%08x is Y tiled but has non-128B pitch\n",
2195                      obj_priv->gtt_offset);
2196                 break;
2197         }
2198
2199         /* First try to find a free reg */
2200 try_again:
2201         avail = 0;
2202         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2203                 reg = &dev_priv->fence_regs[i];
2204                 if (!reg->obj)
2205                         break;
2206
2207                 old_obj_priv = reg->obj->driver_private;
2208                 if (!old_obj_priv->pin_count)
2209                     avail++;
2210         }
2211
2212         /* None available, try to steal one or wait for a user to finish */
2213         if (i == dev_priv->num_fence_regs) {
2214                 uint32_t seqno = dev_priv->mm.next_gem_seqno;
2215                 loff_t offset;
2216
2217                 if (avail == 0)
2218                         return -ENOMEM;
2219
2220                 for (i = dev_priv->fence_reg_start;
2221                      i < dev_priv->num_fence_regs; i++) {
2222                         uint32_t this_seqno;
2223
2224                         reg = &dev_priv->fence_regs[i];
2225                         old_obj_priv = reg->obj->driver_private;
2226
2227                         if (old_obj_priv->pin_count)
2228                                 continue;
2229
2230                         /* i915 uses fences for GPU access to tiled buffers */
2231                         if (IS_I965G(dev) || !old_obj_priv->active)
2232                                 break;
2233
2234                         /* find the seqno of the first available fence */
2235                         this_seqno = old_obj_priv->last_rendering_seqno;
2236                         if (this_seqno != 0 &&
2237                             reg->obj->write_domain == 0 &&
2238                             i915_seqno_passed(seqno, this_seqno))
2239                                 seqno = this_seqno;
2240                 }
2241
2242                 /*
2243                  * Now things get ugly... we have to wait for one of the
2244                  * objects to finish before trying again.
2245                  */
2246                 if (i == dev_priv->num_fence_regs) {
2247                         if (seqno == dev_priv->mm.next_gem_seqno) {
2248                                 i915_gem_flush(dev,
2249                                                I915_GEM_GPU_DOMAINS,
2250                                                I915_GEM_GPU_DOMAINS);
2251                                 seqno = i915_add_request(dev,
2252                                                          I915_GEM_GPU_DOMAINS);
2253                                 if (seqno == 0)
2254                                         return -ENOMEM;
2255                         }
2256
2257                         ret = i915_wait_request(dev, seqno);
2258                         if (ret)
2259                                 return ret;
2260                         goto try_again;
2261                 }
2262
2263                 /*
2264                  * Zap this virtual mapping so we can set up a fence again
2265                  * for this object next time we need it.
2266                  */
2267                 offset = ((loff_t) reg->obj->map_list.hash.key) << PAGE_SHIFT;
2268                 if (dev->dev_mapping)
2269                         unmap_mapping_range(dev->dev_mapping, offset,
2270                                             reg->obj->size, 1);
2271                 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
2272         }
2273
2274         obj_priv->fence_reg = i;
2275         reg->obj = obj;
2276
2277         if (IS_I965G(dev))
2278                 i965_write_fence_reg(reg);
2279         else if (IS_I9XX(dev))
2280                 i915_write_fence_reg(reg);
2281         else
2282                 i830_write_fence_reg(reg);
2283
2284         return 0;
2285 }
2286
2287 /**
2288  * i915_gem_clear_fence_reg - clear out fence register info
2289  * @obj: object to clear
2290  *
2291  * Zeroes out the fence register itself and clears out the associated
2292  * data structures in dev_priv and obj_priv.
2293  */
2294 static void
2295 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2296 {
2297         struct drm_device *dev = obj->dev;
2298         drm_i915_private_t *dev_priv = dev->dev_private;
2299         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2300
2301         if (IS_I965G(dev))
2302                 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2303         else {
2304                 uint32_t fence_reg;
2305
2306                 if (obj_priv->fence_reg < 8)
2307                         fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2308                 else
2309                         fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2310                                                        8) * 4;
2311
2312                 I915_WRITE(fence_reg, 0);
2313         }
2314
2315         dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2316         obj_priv->fence_reg = I915_FENCE_REG_NONE;
2317 }
2318
2319 /**
2320  * Finds free space in the GTT aperture and binds the object there.
2321  */
2322 static int
2323 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2324 {
2325         struct drm_device *dev = obj->dev;
2326         drm_i915_private_t *dev_priv = dev->dev_private;
2327         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2328         struct drm_mm_node *free_space;
2329         int page_count, ret;
2330
2331         if (dev_priv->mm.suspended)
2332                 return -EBUSY;
2333         if (alignment == 0)
2334                 alignment = i915_gem_get_gtt_alignment(obj);
2335         if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2336                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2337                 return -EINVAL;
2338         }
2339
2340  search_free:
2341         free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2342                                         obj->size, alignment, 0);
2343         if (free_space != NULL) {
2344                 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2345                                                        alignment);
2346                 if (obj_priv->gtt_space != NULL) {
2347                         obj_priv->gtt_space->private = obj;
2348                         obj_priv->gtt_offset = obj_priv->gtt_space->start;
2349                 }
2350         }
2351         if (obj_priv->gtt_space == NULL) {
2352                 bool lists_empty;
2353
2354                 /* If the gtt is empty and we're still having trouble
2355                  * fitting our object in, we're out of memory.
2356                  */
2357 #if WATCH_LRU
2358                 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2359 #endif
2360                 spin_lock(&dev_priv->mm.active_list_lock);
2361                 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2362                                list_empty(&dev_priv->mm.flushing_list) &&
2363                                list_empty(&dev_priv->mm.active_list));
2364                 spin_unlock(&dev_priv->mm.active_list_lock);
2365                 if (lists_empty) {
2366                         DRM_ERROR("GTT full, but LRU list empty\n");
2367                         return -ENOMEM;
2368                 }
2369
2370                 ret = i915_gem_evict_something(dev);
2371                 if (ret != 0) {
2372                         if (ret != -ERESTARTSYS)
2373                                 DRM_ERROR("Failed to evict a buffer %d\n", ret);
2374                         return ret;
2375                 }
2376                 goto search_free;
2377         }
2378
2379 #if WATCH_BUF
2380         DRM_INFO("Binding object of size %d at 0x%08x\n",
2381                  obj->size, obj_priv->gtt_offset);
2382 #endif
2383         ret = i915_gem_object_get_pages(obj);
2384         if (ret) {
2385                 drm_mm_put_block(obj_priv->gtt_space);
2386                 obj_priv->gtt_space = NULL;
2387                 return ret;
2388         }
2389
2390         page_count = obj->size / PAGE_SIZE;
2391         /* Create an AGP memory structure pointing at our pages, and bind it
2392          * into the GTT.
2393          */
2394         obj_priv->agp_mem = drm_agp_bind_pages(dev,
2395                                                obj_priv->pages,
2396                                                page_count,
2397                                                obj_priv->gtt_offset,
2398                                                obj_priv->agp_type);
2399         if (obj_priv->agp_mem == NULL) {
2400                 i915_gem_object_put_pages(obj);
2401                 drm_mm_put_block(obj_priv->gtt_space);
2402                 obj_priv->gtt_space = NULL;
2403                 return -ENOMEM;
2404         }
2405         atomic_inc(&dev->gtt_count);
2406         atomic_add(obj->size, &dev->gtt_memory);
2407
2408         /* Assert that the object is not currently in any GPU domain. As it
2409          * wasn't in the GTT, there shouldn't be any way it could have been in
2410          * a GPU cache
2411          */
2412         BUG_ON(obj->read_domains & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
2413         BUG_ON(obj->write_domain & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
2414
2415         return 0;
2416 }
2417
2418 void
2419 i915_gem_clflush_object(struct drm_gem_object *obj)
2420 {
2421         struct drm_i915_gem_object      *obj_priv = obj->driver_private;
2422
2423         /* If we don't have a page list set up, then we're not pinned
2424          * to GPU, and we can ignore the cache flush because it'll happen
2425          * again at bind time.
2426          */
2427         if (obj_priv->pages == NULL)
2428                 return;
2429
2430         /* XXX: The 865 in particular appears to be weird in how it handles
2431          * cache flushing.  We haven't figured it out, but the
2432          * clflush+agp_chipset_flush doesn't appear to successfully get the
2433          * data visible to the PGU, while wbinvd + agp_chipset_flush does.
2434          */
2435         if (IS_I865G(obj->dev)) {
2436                 wbinvd();
2437                 return;
2438         }
2439
2440         drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2441 }
2442
2443 /** Flushes any GPU write domain for the object if it's dirty. */
2444 static void
2445 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2446 {
2447         struct drm_device *dev = obj->dev;
2448         uint32_t seqno;
2449
2450         if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2451                 return;
2452
2453         /* Queue the GPU write cache flushing we need. */
2454         i915_gem_flush(dev, 0, obj->write_domain);
2455         seqno = i915_add_request(dev, obj->write_domain);
2456         obj->write_domain = 0;
2457         i915_gem_object_move_to_active(obj, seqno);
2458 }
2459
2460 /** Flushes the GTT write domain for the object if it's dirty. */
2461 static void
2462 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2463 {
2464         if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2465                 return;
2466
2467         /* No actual flushing is required for the GTT write domain.   Writes
2468          * to it immediately go to main memory as far as we know, so there's
2469          * no chipset flush.  It also doesn't land in render cache.
2470          */
2471         obj->write_domain = 0;
2472 }
2473
2474 /** Flushes the CPU write domain for the object if it's dirty. */
2475 static void
2476 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2477 {
2478         struct drm_device *dev = obj->dev;
2479
2480         if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2481                 return;
2482
2483         i915_gem_clflush_object(obj);
2484         drm_agp_chipset_flush(dev);
2485         obj->write_domain = 0;
2486 }
2487
2488 /**
2489  * Moves a single object to the GTT read, and possibly write domain.
2490  *
2491  * This function returns when the move is complete, including waiting on
2492  * flushes to occur.
2493  */
2494 int
2495 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2496 {
2497         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2498         int ret;
2499
2500         /* Not valid to be called on unbound objects. */
2501         if (obj_priv->gtt_space == NULL)
2502                 return -EINVAL;
2503
2504         i915_gem_object_flush_gpu_write_domain(obj);
2505         /* Wait on any GPU rendering and flushing to occur. */
2506         ret = i915_gem_object_wait_rendering(obj);
2507         if (ret != 0)
2508                 return ret;
2509
2510         /* If we're writing through the GTT domain, then CPU and GPU caches
2511          * will need to be invalidated at next use.
2512          */
2513         if (write)
2514                 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2515
2516         i915_gem_object_flush_cpu_write_domain(obj);
2517
2518         /* It should now be out of any other write domains, and we can update
2519          * the domain values for our changes.
2520          */
2521         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2522         obj->read_domains |= I915_GEM_DOMAIN_GTT;
2523         if (write) {
2524                 obj->write_domain = I915_GEM_DOMAIN_GTT;
2525                 obj_priv->dirty = 1;
2526         }
2527
2528         return 0;
2529 }
2530
2531 /**
2532  * Moves a single object to the CPU read, and possibly write domain.
2533  *
2534  * This function returns when the move is complete, including waiting on
2535  * flushes to occur.
2536  */
2537 static int
2538 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2539 {
2540         int ret;
2541
2542         i915_gem_object_flush_gpu_write_domain(obj);
2543         /* Wait on any GPU rendering and flushing to occur. */
2544         ret = i915_gem_object_wait_rendering(obj);
2545         if (ret != 0)
2546                 return ret;
2547
2548         i915_gem_object_flush_gtt_write_domain(obj);
2549
2550         /* If we have a partially-valid cache of the object in the CPU,
2551          * finish invalidating it and free the per-page flags.
2552          */
2553         i915_gem_object_set_to_full_cpu_read_domain(obj);
2554
2555         /* Flush the CPU cache if it's still invalid. */
2556         if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2557                 i915_gem_clflush_object(obj);
2558
2559                 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2560         }
2561
2562         /* It should now be out of any other write domains, and we can update
2563          * the domain values for our changes.
2564          */
2565         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2566
2567         /* If we're writing through the CPU, then the GPU read domains will
2568          * need to be invalidated at next use.
2569          */
2570         if (write) {
2571                 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2572                 obj->write_domain = I915_GEM_DOMAIN_CPU;
2573         }
2574
2575         return 0;
2576 }
2577
2578 /*
2579  * Set the next domain for the specified object. This
2580  * may not actually perform the necessary flushing/invaliding though,
2581  * as that may want to be batched with other set_domain operations
2582  *
2583  * This is (we hope) the only really tricky part of gem. The goal
2584  * is fairly simple -- track which caches hold bits of the object
2585  * and make sure they remain coherent. A few concrete examples may
2586  * help to explain how it works. For shorthand, we use the notation
2587  * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2588  * a pair of read and write domain masks.
2589  *
2590  * Case 1: the batch buffer
2591  *
2592  *      1. Allocated
2593  *      2. Written by CPU
2594  *      3. Mapped to GTT
2595  *      4. Read by GPU
2596  *      5. Unmapped from GTT
2597  *      6. Freed
2598  *
2599  *      Let's take these a step at a time
2600  *
2601  *      1. Allocated
2602  *              Pages allocated from the kernel may still have
2603  *              cache contents, so we set them to (CPU, CPU) always.
2604  *      2. Written by CPU (using pwrite)
2605  *              The pwrite function calls set_domain (CPU, CPU) and
2606  *              this function does nothing (as nothing changes)
2607  *      3. Mapped by GTT
2608  *              This function asserts that the object is not
2609  *              currently in any GPU-based read or write domains
2610  *      4. Read by GPU
2611  *              i915_gem_execbuffer calls set_domain (COMMAND, 0).
2612  *              As write_domain is zero, this function adds in the
2613  *              current read domains (CPU+COMMAND, 0).
2614  *              flush_domains is set to CPU.
2615  *              invalidate_domains is set to COMMAND
2616  *              clflush is run to get data out of the CPU caches
2617  *              then i915_dev_set_domain calls i915_gem_flush to
2618  *              emit an MI_FLUSH and drm_agp_chipset_flush
2619  *      5. Unmapped from GTT
2620  *              i915_gem_object_unbind calls set_domain (CPU, CPU)
2621  *              flush_domains and invalidate_domains end up both zero
2622  *              so no flushing/invalidating happens
2623  *      6. Freed
2624  *              yay, done
2625  *
2626  * Case 2: The shared render buffer
2627  *
2628  *      1. Allocated
2629  *      2. Mapped to GTT
2630  *      3. Read/written by GPU
2631  *      4. set_domain to (CPU,CPU)
2632  *      5. Read/written by CPU
2633  *      6. Read/written by GPU
2634  *
2635  *      1. Allocated
2636  *              Same as last example, (CPU, CPU)
2637  *      2. Mapped to GTT
2638  *              Nothing changes (assertions find that it is not in the GPU)
2639  *      3. Read/written by GPU
2640  *              execbuffer calls set_domain (RENDER, RENDER)
2641  *              flush_domains gets CPU
2642  *              invalidate_domains gets GPU
2643  *              clflush (obj)
2644  *              MI_FLUSH and drm_agp_chipset_flush
2645  *      4. set_domain (CPU, CPU)
2646  *              flush_domains gets GPU
2647  *              invalidate_domains gets CPU
2648  *              wait_rendering (obj) to make sure all drawing is complete.
2649  *              This will include an MI_FLUSH to get the data from GPU
2650  *              to memory
2651  *              clflush (obj) to invalidate the CPU cache
2652  *              Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2653  *      5. Read/written by CPU
2654  *              cache lines are loaded and dirtied
2655  *      6. Read written by GPU
2656  *              Same as last GPU access
2657  *
2658  * Case 3: The constant buffer
2659  *
2660  *      1. Allocated
2661  *      2. Written by CPU
2662  *      3. Read by GPU
2663  *      4. Updated (written) by CPU again
2664  *      5. Read by GPU
2665  *
2666  *      1. Allocated
2667  *              (CPU, CPU)
2668  *      2. Written by CPU
2669  *              (CPU, CPU)
2670  *      3. Read by GPU
2671  *              (CPU+RENDER, 0)
2672  *              flush_domains = CPU
2673  *              invalidate_domains = RENDER
2674  *              clflush (obj)
2675  *              MI_FLUSH
2676  *              drm_agp_chipset_flush
2677  *      4. Updated (written) by CPU again
2678  *              (CPU, CPU)
2679  *              flush_domains = 0 (no previous write domain)
2680  *              invalidate_domains = 0 (no new read domains)
2681  *      5. Read by GPU
2682  *              (CPU+RENDER, 0)
2683  *              flush_domains = CPU
2684  *              invalidate_domains = RENDER
2685  *              clflush (obj)
2686  *              MI_FLUSH
2687  *              drm_agp_chipset_flush
2688  */
2689 static void
2690 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
2691 {
2692         struct drm_device               *dev = obj->dev;
2693         struct drm_i915_gem_object      *obj_priv = obj->driver_private;
2694         uint32_t                        invalidate_domains = 0;
2695         uint32_t                        flush_domains = 0;
2696
2697         BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2698         BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
2699
2700 #if WATCH_BUF
2701         DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2702                  __func__, obj,
2703                  obj->read_domains, obj->pending_read_domains,
2704                  obj->write_domain, obj->pending_write_domain);
2705 #endif
2706         /*
2707          * If the object isn't moving to a new write domain,
2708          * let the object stay in multiple read domains
2709          */
2710         if (obj->pending_write_domain == 0)
2711                 obj->pending_read_domains |= obj->read_domains;
2712         else
2713                 obj_priv->dirty = 1;
2714
2715         /*
2716          * Flush the current write domain if
2717          * the new read domains don't match. Invalidate
2718          * any read domains which differ from the old
2719          * write domain
2720          */
2721         if (obj->write_domain &&
2722             obj->write_domain != obj->pending_read_domains) {
2723                 flush_domains |= obj->write_domain;
2724                 invalidate_domains |=
2725                         obj->pending_read_domains & ~obj->write_domain;
2726         }
2727         /*
2728          * Invalidate any read caches which may have
2729          * stale data. That is, any new read domains.
2730          */
2731         invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
2732         if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
2733 #if WATCH_BUF
2734                 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
2735                          __func__, flush_domains, invalidate_domains);
2736 #endif
2737                 i915_gem_clflush_object(obj);
2738         }
2739
2740         /* The actual obj->write_domain will be updated with
2741          * pending_write_domain after we emit the accumulated flush for all
2742          * of our domain changes in execbuffers (which clears objects'
2743          * write_domains).  So if we have a current write domain that we
2744          * aren't changing, set pending_write_domain to that.
2745          */
2746         if (flush_domains == 0 && obj->pending_write_domain == 0)
2747                 obj->pending_write_domain = obj->write_domain;
2748         obj->read_domains = obj->pending_read_domains;
2749
2750         dev->invalidate_domains |= invalidate_domains;
2751         dev->flush_domains |= flush_domains;
2752 #if WATCH_BUF
2753         DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
2754                  __func__,
2755                  obj->read_domains, obj->write_domain,
2756                  dev->invalidate_domains, dev->flush_domains);
2757 #endif
2758 }
2759
2760 /**
2761  * Moves the object from a partially CPU read to a full one.
2762  *
2763  * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
2764  * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
2765  */
2766 static void
2767 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
2768 {
2769         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2770
2771         if (!obj_priv->page_cpu_valid)
2772                 return;
2773
2774         /* If we're partially in the CPU read domain, finish moving it in.
2775          */
2776         if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
2777                 int i;
2778
2779                 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
2780                         if (obj_priv->page_cpu_valid[i])
2781                                 continue;
2782                         drm_clflush_pages(obj_priv->pages + i, 1);
2783                 }
2784         }
2785
2786         /* Free the page_cpu_valid mappings which are now stale, whether
2787          * or not we've got I915_GEM_DOMAIN_CPU.
2788          */
2789         drm_free(obj_priv->page_cpu_valid, obj->size / PAGE_SIZE,
2790                  DRM_MEM_DRIVER);
2791         obj_priv->page_cpu_valid = NULL;
2792 }
2793
2794 /**
2795  * Set the CPU read domain on a range of the object.
2796  *
2797  * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
2798  * not entirely valid.  The page_cpu_valid member of the object flags which
2799  * pages have been flushed, and will be respected by
2800  * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
2801  * of the whole object.
2802  *
2803  * This function returns when the move is complete, including waiting on
2804  * flushes to occur.
2805  */
2806 static int
2807 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
2808                                           uint64_t offset, uint64_t size)
2809 {
2810         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2811         int i, ret;
2812
2813         if (offset == 0 && size == obj->size)
2814                 return i915_gem_object_set_to_cpu_domain(obj, 0);
2815
2816         i915_gem_object_flush_gpu_write_domain(obj);
2817         /* Wait on any GPU rendering and flushing to occur. */
2818         ret = i915_gem_object_wait_rendering(obj);
2819         if (ret != 0)
2820                 return ret;
2821         i915_gem_object_flush_gtt_write_domain(obj);
2822
2823         /* If we're already fully in the CPU read domain, we're done. */
2824         if (obj_priv->page_cpu_valid == NULL &&
2825             (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
2826                 return 0;
2827
2828         /* Otherwise, create/clear the per-page CPU read domain flag if we're
2829          * newly adding I915_GEM_DOMAIN_CPU
2830          */
2831         if (obj_priv->page_cpu_valid == NULL) {
2832                 obj_priv->page_cpu_valid = drm_calloc(1, obj->size / PAGE_SIZE,
2833                                                       DRM_MEM_DRIVER);
2834                 if (obj_priv->page_cpu_valid == NULL)
2835                         return -ENOMEM;
2836         } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
2837                 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
2838
2839         /* Flush the cache on any pages that are still invalid from the CPU's
2840          * perspective.
2841          */
2842         for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
2843              i++) {
2844                 if (obj_priv->page_cpu_valid[i])
2845                         continue;
2846
2847                 drm_clflush_pages(obj_priv->pages + i, 1);
2848
2849                 obj_priv->page_cpu_valid[i] = 1;
2850         }
2851
2852         /* It should now be out of any other write domains, and we can update
2853          * the domain values for our changes.
2854          */
2855         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2856
2857         obj->read_domains |= I915_GEM_DOMAIN_CPU;
2858
2859         return 0;
2860 }
2861
2862 /**
2863  * Pin an object to the GTT and evaluate the relocations landing in it.
2864  */
2865 static int
2866 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
2867                                  struct drm_file *file_priv,
2868                                  struct drm_i915_gem_exec_object *entry,
2869                                  struct drm_i915_gem_relocation_entry *relocs)
2870 {
2871         struct drm_device *dev = obj->dev;
2872         drm_i915_private_t *dev_priv = dev->dev_private;
2873         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2874         int i, ret;
2875         void __iomem *reloc_page;
2876
2877         /* Choose the GTT offset for our buffer and put it there. */
2878         ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
2879         if (ret)
2880                 return ret;
2881
2882         entry->offset = obj_priv->gtt_offset;
2883
2884         /* Apply the relocations, using the GTT aperture to avoid cache
2885          * flushing requirements.
2886          */
2887         for (i = 0; i < entry->relocation_count; i++) {
2888                 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
2889                 struct drm_gem_object *target_obj;
2890                 struct drm_i915_gem_object *target_obj_priv;
2891                 uint32_t reloc_val, reloc_offset;
2892                 uint32_t __iomem *reloc_entry;
2893
2894                 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
2895                                                    reloc->target_handle);
2896                 if (target_obj == NULL) {
2897                         i915_gem_object_unpin(obj);
2898                         return -EBADF;
2899                 }
2900                 target_obj_priv = target_obj->driver_private;
2901
2902                 /* The target buffer should have appeared before us in the
2903                  * exec_object list, so it should have a GTT space bound by now.
2904                  */
2905                 if (target_obj_priv->gtt_space == NULL) {
2906                         DRM_ERROR("No GTT space found for object %d\n",
2907                                   reloc->target_handle);
2908                         drm_gem_object_unreference(target_obj);
2909                         i915_gem_object_unpin(obj);
2910                         return -EINVAL;
2911                 }
2912
2913                 if (reloc->offset > obj->size - 4) {
2914                         DRM_ERROR("Relocation beyond object bounds: "
2915                                   "obj %p target %d offset %d size %d.\n",
2916                                   obj, reloc->target_handle,
2917                                   (int) reloc->offset, (int) obj->size);
2918                         drm_gem_object_unreference(target_obj);
2919                         i915_gem_object_unpin(obj);
2920                         return -EINVAL;
2921                 }
2922                 if (reloc->offset & 3) {
2923                         DRM_ERROR("Relocation not 4-byte aligned: "
2924                                   "obj %p target %d offset %d.\n",
2925                                   obj, reloc->target_handle,
2926                                   (int) reloc->offset);
2927                         drm_gem_object_unreference(target_obj);
2928                         i915_gem_object_unpin(obj);
2929                         return -EINVAL;
2930                 }
2931
2932                 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
2933                     reloc->read_domains & I915_GEM_DOMAIN_CPU) {
2934                         DRM_ERROR("reloc with read/write CPU domains: "
2935                                   "obj %p target %d offset %d "
2936                                   "read %08x write %08x",
2937                                   obj, reloc->target_handle,
2938                                   (int) reloc->offset,
2939                                   reloc->read_domains,
2940                                   reloc->write_domain);
2941                         drm_gem_object_unreference(target_obj);
2942                         i915_gem_object_unpin(obj);
2943                         return -EINVAL;
2944                 }
2945
2946                 if (reloc->write_domain && target_obj->pending_write_domain &&
2947                     reloc->write_domain != target_obj->pending_write_domain) {
2948                         DRM_ERROR("Write domain conflict: "
2949                                   "obj %p target %d offset %d "
2950                                   "new %08x old %08x\n",
2951                                   obj, reloc->target_handle,
2952                                   (int) reloc->offset,
2953                                   reloc->write_domain,
2954                                   target_obj->pending_write_domain);
2955                         drm_gem_object_unreference(target_obj);
2956                         i915_gem_object_unpin(obj);
2957                         return -EINVAL;
2958                 }
2959
2960 #if WATCH_RELOC
2961                 DRM_INFO("%s: obj %p offset %08x target %d "
2962                          "read %08x write %08x gtt %08x "
2963                          "presumed %08x delta %08x\n",
2964                          __func__,
2965                          obj,
2966                          (int) reloc->offset,
2967                          (int) reloc->target_handle,
2968                          (int) reloc->read_domains,
2969                          (int) reloc->write_domain,
2970                          (int) target_obj_priv->gtt_offset,
2971                          (int) reloc->presumed_offset,
2972                          reloc->delta);
2973 #endif
2974
2975                 target_obj->pending_read_domains |= reloc->read_domains;
2976                 target_obj->pending_write_domain |= reloc->write_domain;
2977
2978                 /* If the relocation already has the right value in it, no
2979                  * more work needs to be done.
2980                  */
2981                 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
2982                         drm_gem_object_unreference(target_obj);
2983                         continue;
2984                 }
2985
2986                 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
2987                 if (ret != 0) {
2988                         drm_gem_object_unreference(target_obj);
2989                         i915_gem_object_unpin(obj);
2990                         return -EINVAL;
2991                 }
2992
2993                 /* Map the page containing the relocation we're going to
2994                  * perform.
2995                  */
2996                 reloc_offset = obj_priv->gtt_offset + reloc->offset;
2997                 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
2998                                                       (reloc_offset &
2999                                                        ~(PAGE_SIZE - 1)));
3000                 reloc_entry = (uint32_t __iomem *)(reloc_page +
3001                                                    (reloc_offset & (PAGE_SIZE - 1)));
3002                 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3003
3004 #if WATCH_BUF
3005                 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3006                           obj, (unsigned int) reloc->offset,
3007                           readl(reloc_entry), reloc_val);
3008 #endif
3009                 writel(reloc_val, reloc_entry);
3010                 io_mapping_unmap_atomic(reloc_page);
3011
3012                 /* The updated presumed offset for this entry will be
3013                  * copied back out to the user.
3014                  */
3015                 reloc->presumed_offset = target_obj_priv->gtt_offset;
3016
3017                 drm_gem_object_unreference(target_obj);
3018         }
3019
3020 #if WATCH_BUF
3021         if (0)
3022                 i915_gem_dump_object(obj, 128, __func__, ~0);
3023 #endif
3024         return 0;
3025 }
3026
3027 /** Dispatch a batchbuffer to the ring
3028  */
3029 static int
3030 i915_dispatch_gem_execbuffer(struct drm_device *dev,
3031                               struct drm_i915_gem_execbuffer *exec,
3032                               struct drm_clip_rect *cliprects,
3033                               uint64_t exec_offset)
3034 {
3035         drm_i915_private_t *dev_priv = dev->dev_private;
3036         int nbox = exec->num_cliprects;
3037         int i = 0, count;
3038         uint32_t        exec_start, exec_len;
3039         RING_LOCALS;
3040
3041         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3042         exec_len = (uint32_t) exec->batch_len;
3043
3044         if ((exec_start | exec_len) & 0x7) {
3045                 DRM_ERROR("alignment\n");
3046                 return -EINVAL;
3047         }
3048
3049         if (!exec_start)
3050                 return -EINVAL;
3051
3052         count = nbox ? nbox : 1;
3053
3054         for (i = 0; i < count; i++) {
3055                 if (i < nbox) {
3056                         int ret = i915_emit_box(dev, cliprects, i,
3057                                                 exec->DR1, exec->DR4);
3058                         if (ret)
3059                                 return ret;
3060                 }
3061
3062                 if (IS_I830(dev) || IS_845G(dev)) {
3063                         BEGIN_LP_RING(4);
3064                         OUT_RING(MI_BATCH_BUFFER);
3065                         OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3066                         OUT_RING(exec_start + exec_len - 4);
3067                         OUT_RING(0);
3068                         ADVANCE_LP_RING();
3069                 } else {
3070                         BEGIN_LP_RING(2);
3071                         if (IS_I965G(dev)) {
3072                                 OUT_RING(MI_BATCH_BUFFER_START |
3073                                          (2 << 6) |
3074                                          MI_BATCH_NON_SECURE_I965);
3075                                 OUT_RING(exec_start);
3076                         } else {
3077                                 OUT_RING(MI_BATCH_BUFFER_START |
3078                                          (2 << 6));
3079                                 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3080                         }
3081                         ADVANCE_LP_RING();
3082                 }
3083         }
3084
3085         /* XXX breadcrumb */
3086         return 0;
3087 }
3088
3089 /* Throttle our rendering by waiting until the ring has completed our requests
3090  * emitted over 20 msec ago.
3091  *
3092  * This should get us reasonable parallelism between CPU and GPU but also
3093  * relatively low latency when blocking on a particular request to finish.
3094  */
3095 static int
3096 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3097 {
3098         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3099         int ret = 0;
3100         uint32_t seqno;
3101
3102         mutex_lock(&dev->struct_mutex);
3103         seqno = i915_file_priv->mm.last_gem_throttle_seqno;
3104         i915_file_priv->mm.last_gem_throttle_seqno =
3105                 i915_file_priv->mm.last_gem_seqno;
3106         if (seqno)
3107                 ret = i915_wait_request(dev, seqno);
3108         mutex_unlock(&dev->struct_mutex);
3109         return ret;
3110 }
3111
3112 static int
3113 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
3114                               uint32_t buffer_count,
3115                               struct drm_i915_gem_relocation_entry **relocs)
3116 {
3117         uint32_t reloc_count = 0, reloc_index = 0, i;
3118         int ret;
3119
3120         *relocs = NULL;
3121         for (i = 0; i < buffer_count; i++) {
3122                 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3123                         return -EINVAL;
3124                 reloc_count += exec_list[i].relocation_count;
3125         }
3126
3127         *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3128         if (*relocs == NULL)
3129                 return -ENOMEM;
3130
3131         for (i = 0; i < buffer_count; i++) {
3132                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3133
3134                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3135
3136                 ret = copy_from_user(&(*relocs)[reloc_index],
3137                                      user_relocs,
3138                                      exec_list[i].relocation_count *
3139                                      sizeof(**relocs));
3140                 if (ret != 0) {
3141                         drm_free_large(*relocs);
3142                         *relocs = NULL;
3143                         return -EFAULT;
3144                 }
3145
3146                 reloc_index += exec_list[i].relocation_count;
3147         }
3148
3149         return 0;
3150 }
3151
3152 static int
3153 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
3154                             uint32_t buffer_count,
3155                             struct drm_i915_gem_relocation_entry *relocs)
3156 {
3157         uint32_t reloc_count = 0, i;
3158         int ret = 0;
3159
3160         for (i = 0; i < buffer_count; i++) {
3161                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3162                 int unwritten;
3163
3164                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3165
3166                 unwritten = copy_to_user(user_relocs,
3167                                          &relocs[reloc_count],
3168                                          exec_list[i].relocation_count *
3169                                          sizeof(*relocs));
3170
3171                 if (unwritten) {
3172                         ret = -EFAULT;
3173                         goto err;
3174                 }
3175
3176                 reloc_count += exec_list[i].relocation_count;
3177         }
3178
3179 err:
3180         drm_free_large(relocs);
3181
3182         return ret;
3183 }
3184
3185 int
3186 i915_gem_execbuffer(struct drm_device *dev, void *data,
3187                     struct drm_file *file_priv)
3188 {
3189         drm_i915_private_t *dev_priv = dev->dev_private;
3190         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3191         struct drm_i915_gem_execbuffer *args = data;
3192         struct drm_i915_gem_exec_object *exec_list = NULL;
3193         struct drm_gem_object **object_list = NULL;
3194         struct drm_gem_object *batch_obj;
3195         struct drm_i915_gem_object *obj_priv;
3196         struct drm_clip_rect *cliprects = NULL;
3197         struct drm_i915_gem_relocation_entry *relocs;
3198         int ret, ret2, i, pinned = 0;
3199         uint64_t exec_offset;
3200         uint32_t seqno, flush_domains, reloc_index;
3201         int pin_tries;
3202
3203 #if WATCH_EXEC
3204         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3205                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3206 #endif
3207
3208         if (args->buffer_count < 1) {
3209                 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3210                 return -EINVAL;
3211         }
3212         /* Copy in the exec list from userland */
3213         exec_list = drm_calloc_large(sizeof(*exec_list), args->buffer_count);
3214         object_list = drm_calloc_large(sizeof(*object_list), args->buffer_count);
3215         if (exec_list == NULL || object_list == NULL) {
3216                 DRM_ERROR("Failed to allocate exec or object list "
3217                           "for %d buffers\n",
3218                           args->buffer_count);
3219                 ret = -ENOMEM;
3220                 goto pre_mutex_err;
3221         }
3222         ret = copy_from_user(exec_list,
3223                              (struct drm_i915_relocation_entry __user *)
3224                              (uintptr_t) args->buffers_ptr,
3225                              sizeof(*exec_list) * args->buffer_count);
3226         if (ret != 0) {
3227                 DRM_ERROR("copy %d exec entries failed %d\n",
3228                           args->buffer_count, ret);
3229                 goto pre_mutex_err;
3230         }
3231
3232         if (args->num_cliprects != 0) {
3233                 cliprects = drm_calloc(args->num_cliprects, sizeof(*cliprects),
3234                                        DRM_MEM_DRIVER);
3235                 if (cliprects == NULL)
3236                         goto pre_mutex_err;
3237
3238                 ret = copy_from_user(cliprects,
3239                                      (struct drm_clip_rect __user *)
3240                                      (uintptr_t) args->cliprects_ptr,
3241                                      sizeof(*cliprects) * args->num_cliprects);
3242                 if (ret != 0) {
3243                         DRM_ERROR("copy %d cliprects failed: %d\n",
3244                                   args->num_cliprects, ret);
3245                         goto pre_mutex_err;
3246                 }
3247         }
3248
3249         ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3250                                             &relocs);
3251         if (ret != 0)
3252                 goto pre_mutex_err;
3253
3254         mutex_lock(&dev->struct_mutex);
3255
3256         i915_verify_inactive(dev, __FILE__, __LINE__);
3257
3258         if (dev_priv->mm.wedged) {
3259                 DRM_ERROR("Execbuf while wedged\n");
3260                 mutex_unlock(&dev->struct_mutex);
3261                 ret = -EIO;
3262                 goto pre_mutex_err;
3263         }
3264
3265         if (dev_priv->mm.suspended) {
3266                 DRM_ERROR("Execbuf while VT-switched.\n");
3267                 mutex_unlock(&dev->struct_mutex);
3268                 ret = -EBUSY;
3269                 goto pre_mutex_err;
3270         }
3271
3272         /* Look up object handles */
3273         for (i = 0; i < args->buffer_count; i++) {
3274                 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3275                                                        exec_list[i].handle);
3276                 if (object_list[i] == NULL) {
3277                         DRM_ERROR("Invalid object handle %d at index %d\n",
3278                                    exec_list[i].handle, i);
3279                         ret = -EBADF;
3280                         goto err;
3281                 }
3282
3283                 obj_priv = object_list[i]->driver_private;
3284                 if (obj_priv->in_execbuffer) {
3285                         DRM_ERROR("Object %p appears more than once in object list\n",
3286                                    object_list[i]);
3287                         ret = -EBADF;
3288                         goto err;
3289                 }
3290                 obj_priv->in_execbuffer = true;
3291         }
3292
3293         /* Pin and relocate */
3294         for (pin_tries = 0; ; pin_tries++) {
3295                 ret = 0;
3296                 reloc_index = 0;
3297
3298                 for (i = 0; i < args->buffer_count; i++) {
3299                         object_list[i]->pending_read_domains = 0;
3300                         object_list[i]->pending_write_domain = 0;
3301                         ret = i915_gem_object_pin_and_relocate(object_list[i],
3302                                                                file_priv,
3303                                                                &exec_list[i],
3304                                                                &relocs[reloc_index]);
3305                         if (ret)
3306                                 break;
3307                         pinned = i + 1;
3308                         reloc_index += exec_list[i].relocation_count;
3309                 }
3310                 /* success */
3311                 if (ret == 0)
3312                         break;
3313
3314                 /* error other than GTT full, or we've already tried again */
3315                 if (ret != -ENOMEM || pin_tries >= 1) {
3316                         if (ret != -ERESTARTSYS)
3317                                 DRM_ERROR("Failed to pin buffers %d\n", ret);
3318                         goto err;
3319                 }
3320
3321                 /* unpin all of our buffers */
3322                 for (i = 0; i < pinned; i++)
3323                         i915_gem_object_unpin(object_list[i]);
3324                 pinned = 0;
3325
3326                 /* evict everyone we can from the aperture */
3327                 ret = i915_gem_evict_everything(dev);
3328                 if (ret)
3329                         goto err;
3330         }
3331
3332         /* Set the pending read domains for the batch buffer to COMMAND */
3333         batch_obj = object_list[args->buffer_count-1];
3334         batch_obj->pending_read_domains = I915_GEM_DOMAIN_COMMAND;
3335         batch_obj->pending_write_domain = 0;
3336
3337         i915_verify_inactive(dev, __FILE__, __LINE__);
3338
3339         /* Zero the global flush/invalidate flags. These
3340          * will be modified as new domains are computed
3341          * for each object
3342          */
3343         dev->invalidate_domains = 0;
3344         dev->flush_domains = 0;
3345
3346         for (i = 0; i < args->buffer_count; i++) {
3347                 struct drm_gem_object *obj = object_list[i];
3348
3349                 /* Compute new gpu domains and update invalidate/flush */
3350                 i915_gem_object_set_to_gpu_domain(obj);
3351         }
3352
3353         i915_verify_inactive(dev, __FILE__, __LINE__);
3354
3355         if (dev->invalidate_domains | dev->flush_domains) {
3356 #if WATCH_EXEC
3357                 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3358                           __func__,
3359                          dev->invalidate_domains,
3360                          dev->flush_domains);
3361 #endif
3362                 i915_gem_flush(dev,
3363                                dev->invalidate_domains,
3364                                dev->flush_domains);
3365                 if (dev->flush_domains)
3366                         (void)i915_add_request(dev, dev->flush_domains);
3367         }
3368
3369         for (i = 0; i < args->buffer_count; i++) {
3370                 struct drm_gem_object *obj = object_list[i];
3371
3372                 obj->write_domain = obj->pending_write_domain;
3373         }
3374
3375         i915_verify_inactive(dev, __FILE__, __LINE__);
3376
3377 #if WATCH_COHERENCY
3378         for (i = 0; i < args->buffer_count; i++) {
3379                 i915_gem_object_check_coherency(object_list[i],
3380                                                 exec_list[i].handle);
3381         }
3382 #endif
3383
3384         exec_offset = exec_list[args->buffer_count - 1].offset;
3385
3386 #if WATCH_EXEC
3387         i915_gem_dump_object(batch_obj,
3388                               args->batch_len,
3389                               __func__,
3390                               ~0);
3391 #endif
3392
3393         /* Exec the batchbuffer */
3394         ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
3395         if (ret) {
3396                 DRM_ERROR("dispatch failed %d\n", ret);
3397                 goto err;
3398         }
3399
3400         /*
3401          * Ensure that the commands in the batch buffer are
3402          * finished before the interrupt fires
3403          */
3404         flush_domains = i915_retire_commands(dev);
3405
3406         i915_verify_inactive(dev, __FILE__, __LINE__);
3407
3408         /*
3409          * Get a seqno representing the execution of the current buffer,
3410          * which we can wait on.  We would like to mitigate these interrupts,
3411          * likely by only creating seqnos occasionally (so that we have
3412          * *some* interrupts representing completion of buffers that we can
3413          * wait on when trying to clear up gtt space).
3414          */
3415         seqno = i915_add_request(dev, flush_domains);
3416         BUG_ON(seqno == 0);
3417         i915_file_priv->mm.last_gem_seqno = seqno;
3418         for (i = 0; i < args->buffer_count; i++) {
3419                 struct drm_gem_object *obj = object_list[i];
3420
3421                 i915_gem_object_move_to_active(obj, seqno);
3422 #if WATCH_LRU
3423                 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3424 #endif
3425         }
3426 #if WATCH_LRU
3427         i915_dump_lru(dev, __func__);
3428 #endif
3429
3430         i915_verify_inactive(dev, __FILE__, __LINE__);
3431
3432 err:
3433         for (i = 0; i < pinned; i++)
3434                 i915_gem_object_unpin(object_list[i]);
3435
3436         for (i = 0; i < args->buffer_count; i++) {
3437                 if (object_list[i]) {
3438                         obj_priv = object_list[i]->driver_private;
3439                         obj_priv->in_execbuffer = false;
3440                 }
3441                 drm_gem_object_unreference(object_list[i]);
3442         }
3443
3444         mutex_unlock(&dev->struct_mutex);
3445
3446         if (!ret) {
3447                 /* Copy the new buffer offsets back to the user's exec list. */
3448                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3449                                    (uintptr_t) args->buffers_ptr,
3450                                    exec_list,
3451                                    sizeof(*exec_list) * args->buffer_count);
3452                 if (ret) {
3453                         ret = -EFAULT;
3454                         DRM_ERROR("failed to copy %d exec entries "
3455                                   "back to user (%d)\n",
3456                                   args->buffer_count, ret);
3457                 }
3458         }
3459
3460         /* Copy the updated relocations out regardless of current error
3461          * state.  Failure to update the relocs would mean that the next
3462          * time userland calls execbuf, it would do so with presumed offset
3463          * state that didn't match the actual object state.
3464          */
3465         ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3466                                            relocs);
3467         if (ret2 != 0) {
3468                 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3469
3470                 if (ret == 0)
3471                         ret = ret2;
3472         }
3473
3474 pre_mutex_err:
3475         drm_free_large(object_list);
3476         drm_free_large(exec_list);
3477         drm_free(cliprects, sizeof(*cliprects) * args->num_cliprects,
3478                  DRM_MEM_DRIVER);
3479
3480         return ret;
3481 }
3482
3483 int
3484 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
3485 {
3486         struct drm_device *dev = obj->dev;
3487         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3488         int ret;
3489
3490         i915_verify_inactive(dev, __FILE__, __LINE__);
3491         if (obj_priv->gtt_space == NULL) {
3492                 ret = i915_gem_object_bind_to_gtt(obj, alignment);
3493                 if (ret != 0) {
3494                         if (ret != -EBUSY && ret != -ERESTARTSYS)
3495                                 DRM_ERROR("Failure to bind: %d\n", ret);
3496                         return ret;
3497                 }
3498         }
3499         /*
3500          * Pre-965 chips need a fence register set up in order to
3501          * properly handle tiled surfaces.
3502          */
3503         if (!IS_I965G(dev) &&
3504             obj_priv->fence_reg == I915_FENCE_REG_NONE &&
3505             obj_priv->tiling_mode != I915_TILING_NONE) {
3506                 ret = i915_gem_object_get_fence_reg(obj, true);
3507                 if (ret != 0) {
3508                         if (ret != -EBUSY && ret != -ERESTARTSYS)
3509                                 DRM_ERROR("Failure to install fence: %d\n",
3510                                           ret);
3511                         return ret;
3512                 }
3513         }
3514         obj_priv->pin_count++;
3515
3516         /* If the object is not active and not pending a flush,
3517          * remove it from the inactive list
3518          */
3519         if (obj_priv->pin_count == 1) {
3520                 atomic_inc(&dev->pin_count);
3521                 atomic_add(obj->size, &dev->pin_memory);
3522                 if (!obj_priv->active &&
3523                     (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
3524                                            I915_GEM_DOMAIN_GTT)) == 0 &&
3525                     !list_empty(&obj_priv->list))
3526                         list_del_init(&obj_priv->list);
3527         }
3528         i915_verify_inactive(dev, __FILE__, __LINE__);
3529
3530         return 0;
3531 }
3532
3533 void
3534 i915_gem_object_unpin(struct drm_gem_object *obj)
3535 {
3536         struct drm_device *dev = obj->dev;
3537         drm_i915_private_t *dev_priv = dev->dev_private;
3538         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3539
3540         i915_verify_inactive(dev, __FILE__, __LINE__);
3541         obj_priv->pin_count--;
3542         BUG_ON(obj_priv->pin_count < 0);
3543         BUG_ON(obj_priv->gtt_space == NULL);
3544
3545         /* If the object is no longer pinned, and is
3546          * neither active nor being flushed, then stick it on
3547          * the inactive list
3548          */
3549         if (obj_priv->pin_count == 0) {
3550                 if (!obj_priv->active &&
3551                     (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
3552                                            I915_GEM_DOMAIN_GTT)) == 0)
3553                         list_move_tail(&obj_priv->list,
3554                                        &dev_priv->mm.inactive_list);
3555                 atomic_dec(&dev->pin_count);
3556                 atomic_sub(obj->size, &dev->pin_memory);
3557         }
3558         i915_verify_inactive(dev, __FILE__, __LINE__);
3559 }
3560
3561 int
3562 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3563                    struct drm_file *file_priv)
3564 {
3565         struct drm_i915_gem_pin *args = data;
3566         struct drm_gem_object *obj;
3567         struct drm_i915_gem_object *obj_priv;
3568         int ret;
3569
3570         mutex_lock(&dev->struct_mutex);
3571
3572         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3573         if (obj == NULL) {
3574                 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
3575                           args->handle);
3576                 mutex_unlock(&dev->struct_mutex);
3577                 return -EBADF;
3578         }
3579         obj_priv = obj->driver_private;
3580
3581         if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
3582                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3583                           args->handle);
3584                 drm_gem_object_unreference(obj);
3585                 mutex_unlock(&dev->struct_mutex);
3586                 return -EINVAL;
3587         }
3588
3589         obj_priv->user_pin_count++;
3590         obj_priv->pin_filp = file_priv;
3591         if (obj_priv->user_pin_count == 1) {
3592                 ret = i915_gem_object_pin(obj, args->alignment);
3593                 if (ret != 0) {
3594                         drm_gem_object_unreference(obj);
3595                         mutex_unlock(&dev->struct_mutex);
3596                         return ret;
3597                 }
3598         }
3599
3600         /* XXX - flush the CPU caches for pinned objects
3601          * as the X server doesn't manage domains yet
3602          */
3603         i915_gem_object_flush_cpu_write_domain(obj);
3604         args->offset = obj_priv->gtt_offset;
3605         drm_gem_object_unreference(obj);
3606         mutex_unlock(&dev->struct_mutex);
3607
3608         return 0;
3609 }
3610
3611 int
3612 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3613                      struct drm_file *file_priv)
3614 {
3615         struct drm_i915_gem_pin *args = data;
3616         struct drm_gem_object *obj;
3617         struct drm_i915_gem_object *obj_priv;
3618
3619         mutex_lock(&dev->struct_mutex);
3620
3621         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3622         if (obj == NULL) {
3623                 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
3624                           args->handle);
3625                 mutex_unlock(&dev->struct_mutex);
3626                 return -EBADF;
3627         }
3628
3629         obj_priv = obj->driver_private;
3630         if (obj_priv->pin_filp != file_priv) {
3631                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3632                           args->handle);
3633                 drm_gem_object_unreference(obj);
3634                 mutex_unlock(&dev->struct_mutex);
3635                 return -EINVAL;
3636         }
3637         obj_priv->user_pin_count--;
3638         if (obj_priv->user_pin_count == 0) {
3639                 obj_priv->pin_filp = NULL;
3640                 i915_gem_object_unpin(obj);
3641         }
3642
3643         drm_gem_object_unreference(obj);
3644         mutex_unlock(&dev->struct_mutex);
3645         return 0;
3646 }
3647
3648 int
3649 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3650                     struct drm_file *file_priv)
3651 {
3652         struct drm_i915_gem_busy *args = data;
3653         struct drm_gem_object *obj;
3654         struct drm_i915_gem_object *obj_priv;
3655
3656         mutex_lock(&dev->struct_mutex);
3657         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3658         if (obj == NULL) {
3659                 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
3660                           args->handle);
3661                 mutex_unlock(&dev->struct_mutex);
3662                 return -EBADF;
3663         }
3664
3665         /* Update the active list for the hardware's current position.
3666          * Otherwise this only updates on a delayed timer or when irqs are
3667          * actually unmasked, and our working set ends up being larger than
3668          * required.
3669          */
3670         i915_gem_retire_requests(dev);
3671
3672         obj_priv = obj->driver_private;
3673         /* Don't count being on the flushing list against the object being
3674          * done.  Otherwise, a buffer left on the flushing list but not getting
3675          * flushed (because nobody's flushing that domain) won't ever return
3676          * unbusy and get reused by libdrm's bo cache.  The other expected
3677          * consumer of this interface, OpenGL's occlusion queries, also specs
3678          * that the objects get unbusy "eventually" without any interference.
3679          */
3680         args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
3681
3682         drm_gem_object_unreference(obj);
3683         mutex_unlock(&dev->struct_mutex);
3684         return 0;
3685 }
3686
3687 int
3688 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3689                         struct drm_file *file_priv)
3690 {
3691     return i915_gem_ring_throttle(dev, file_priv);
3692 }
3693
3694 int i915_gem_init_object(struct drm_gem_object *obj)
3695 {
3696         struct drm_i915_gem_object *obj_priv;
3697
3698         obj_priv = drm_calloc(1, sizeof(*obj_priv), DRM_MEM_DRIVER);
3699         if (obj_priv == NULL)
3700                 return -ENOMEM;
3701
3702         /*
3703          * We've just allocated pages from the kernel,
3704          * so they've just been written by the CPU with
3705          * zeros. They'll need to be clflushed before we
3706          * use them with the GPU.
3707          */
3708         obj->write_domain = I915_GEM_DOMAIN_CPU;
3709         obj->read_domains = I915_GEM_DOMAIN_CPU;
3710
3711         obj_priv->agp_type = AGP_USER_MEMORY;
3712
3713         obj->driver_private = obj_priv;
3714         obj_priv->obj = obj;
3715         obj_priv->fence_reg = I915_FENCE_REG_NONE;
3716         INIT_LIST_HEAD(&obj_priv->list);
3717
3718         return 0;
3719 }
3720
3721 void i915_gem_free_object(struct drm_gem_object *obj)
3722 {
3723         struct drm_device *dev = obj->dev;
3724         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3725
3726         while (obj_priv->pin_count > 0)
3727                 i915_gem_object_unpin(obj);
3728
3729         if (obj_priv->phys_obj)
3730                 i915_gem_detach_phys_object(dev, obj);
3731
3732         i915_gem_object_unbind(obj);
3733
3734         i915_gem_free_mmap_offset(obj);
3735
3736         drm_free(obj_priv->page_cpu_valid, 1, DRM_MEM_DRIVER);
3737         kfree(obj_priv->bit_17);
3738         drm_free(obj->driver_private, 1, DRM_MEM_DRIVER);
3739 }
3740
3741 /** Unbinds all objects that are on the given buffer list. */
3742 static int
3743 i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
3744 {
3745         struct drm_gem_object *obj;
3746         struct drm_i915_gem_object *obj_priv;
3747         int ret;
3748
3749         while (!list_empty(head)) {
3750                 obj_priv = list_first_entry(head,
3751                                             struct drm_i915_gem_object,
3752                                             list);
3753                 obj = obj_priv->obj;
3754
3755                 if (obj_priv->pin_count != 0) {
3756                         DRM_ERROR("Pinned object in unbind list\n");
3757                         mutex_unlock(&dev->struct_mutex);
3758                         return -EINVAL;
3759                 }
3760
3761                 ret = i915_gem_object_unbind(obj);
3762                 if (ret != 0) {
3763                         DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
3764                                   ret);
3765                         mutex_unlock(&dev->struct_mutex);
3766                         return ret;
3767                 }
3768         }
3769
3770
3771         return 0;
3772 }
3773
3774 int
3775 i915_gem_idle(struct drm_device *dev)
3776 {
3777         drm_i915_private_t *dev_priv = dev->dev_private;
3778         uint32_t seqno, cur_seqno, last_seqno;
3779         int stuck, ret;
3780
3781         mutex_lock(&dev->struct_mutex);
3782
3783         if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
3784                 mutex_unlock(&dev->struct_mutex);
3785                 return 0;
3786         }
3787
3788         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
3789          * We need to replace this with a semaphore, or something.
3790          */
3791         dev_priv->mm.suspended = 1;
3792
3793         /* Cancel the retire work handler, wait for it to finish if running
3794          */
3795         mutex_unlock(&dev->struct_mutex);
3796         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3797         mutex_lock(&dev->struct_mutex);
3798
3799         i915_kernel_lost_context(dev);
3800
3801         /* Flush the GPU along with all non-CPU write domains
3802          */
3803         i915_gem_flush(dev, ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT),
3804                        ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
3805         seqno = i915_add_request(dev, ~I915_GEM_DOMAIN_CPU);
3806
3807         if (seqno == 0) {
3808                 mutex_unlock(&dev->struct_mutex);
3809                 return -ENOMEM;
3810         }
3811
3812         dev_priv->mm.waiting_gem_seqno = seqno;
3813         last_seqno = 0;
3814         stuck = 0;
3815         for (;;) {
3816                 cur_seqno = i915_get_gem_seqno(dev);
3817                 if (i915_seqno_passed(cur_seqno, seqno))
3818                         break;
3819                 if (last_seqno == cur_seqno) {
3820                         if (stuck++ > 100) {
3821                                 DRM_ERROR("hardware wedged\n");
3822                                 dev_priv->mm.wedged = 1;
3823                                 DRM_WAKEUP(&dev_priv->irq_queue);
3824                                 break;
3825                         }
3826                 }
3827                 msleep(10);
3828                 last_seqno = cur_seqno;
3829         }
3830         dev_priv->mm.waiting_gem_seqno = 0;
3831
3832         i915_gem_retire_requests(dev);
3833
3834         spin_lock(&dev_priv->mm.active_list_lock);
3835         if (!dev_priv->mm.wedged) {
3836                 /* Active and flushing should now be empty as we've
3837                  * waited for a sequence higher than any pending execbuffer
3838                  */
3839                 WARN_ON(!list_empty(&dev_priv->mm.active_list));
3840                 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
3841                 /* Request should now be empty as we've also waited
3842                  * for the last request in the list
3843                  */
3844                 WARN_ON(!list_empty(&dev_priv->mm.request_list));
3845         }
3846
3847         /* Empty the active and flushing lists to inactive.  If there's
3848          * anything left at this point, it means that we're wedged and
3849          * nothing good's going to happen by leaving them there.  So strip
3850          * the GPU domains and just stuff them onto inactive.
3851          */
3852         while (!list_empty(&dev_priv->mm.active_list)) {
3853                 struct drm_i915_gem_object *obj_priv;
3854
3855                 obj_priv = list_first_entry(&dev_priv->mm.active_list,
3856                                             struct drm_i915_gem_object,
3857                                             list);
3858                 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3859                 i915_gem_object_move_to_inactive(obj_priv->obj);
3860         }
3861         spin_unlock(&dev_priv->mm.active_list_lock);
3862
3863         while (!list_empty(&dev_priv->mm.flushing_list)) {
3864                 struct drm_i915_gem_object *obj_priv;
3865
3866                 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
3867                                             struct drm_i915_gem_object,
3868                                             list);
3869                 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3870                 i915_gem_object_move_to_inactive(obj_priv->obj);
3871         }
3872
3873
3874         /* Move all inactive buffers out of the GTT. */
3875         ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
3876         WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
3877         if (ret) {
3878                 mutex_unlock(&dev->struct_mutex);
3879                 return ret;
3880         }
3881
3882         i915_gem_cleanup_ringbuffer(dev);
3883         mutex_unlock(&dev->struct_mutex);
3884
3885         return 0;
3886 }
3887
3888 static int
3889 i915_gem_init_hws(struct drm_device *dev)
3890 {
3891         drm_i915_private_t *dev_priv = dev->dev_private;
3892         struct drm_gem_object *obj;
3893         struct drm_i915_gem_object *obj_priv;
3894         int ret;
3895
3896         /* If we need a physical address for the status page, it's already
3897          * initialized at driver load time.
3898          */
3899         if (!I915_NEED_GFX_HWS(dev))
3900                 return 0;
3901
3902         obj = drm_gem_object_alloc(dev, 4096);
3903         if (obj == NULL) {
3904                 DRM_ERROR("Failed to allocate status page\n");
3905                 return -ENOMEM;
3906         }
3907         obj_priv = obj->driver_private;
3908         obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
3909
3910         ret = i915_gem_object_pin(obj, 4096);
3911         if (ret != 0) {
3912                 drm_gem_object_unreference(obj);
3913                 return ret;
3914         }
3915
3916         dev_priv->status_gfx_addr = obj_priv->gtt_offset;
3917
3918         dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
3919         if (dev_priv->hw_status_page == NULL) {
3920                 DRM_ERROR("Failed to map status page.\n");
3921                 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
3922                 i915_gem_object_unpin(obj);
3923                 drm_gem_object_unreference(obj);
3924                 return -EINVAL;
3925         }
3926         dev_priv->hws_obj = obj;
3927         memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
3928         I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
3929         I915_READ(HWS_PGA); /* posting read */
3930         DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
3931
3932         return 0;
3933 }
3934
3935 static void
3936 i915_gem_cleanup_hws(struct drm_device *dev)
3937 {
3938         drm_i915_private_t *dev_priv = dev->dev_private;
3939         struct drm_gem_object *obj;
3940         struct drm_i915_gem_object *obj_priv;
3941
3942         if (dev_priv->hws_obj == NULL)
3943                 return;
3944
3945         obj = dev_priv->hws_obj;
3946         obj_priv = obj->driver_private;
3947
3948         kunmap(obj_priv->pages[0]);
3949         i915_gem_object_unpin(obj);
3950         drm_gem_object_unreference(obj);
3951         dev_priv->hws_obj = NULL;
3952
3953         memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
3954         dev_priv->hw_status_page = NULL;
3955
3956         /* Write high address into HWS_PGA when disabling. */
3957         I915_WRITE(HWS_PGA, 0x1ffff000);
3958 }
3959
3960 int
3961 i915_gem_init_ringbuffer(struct drm_device *dev)
3962 {
3963         drm_i915_private_t *dev_priv = dev->dev_private;
3964         struct drm_gem_object *obj;
3965         struct drm_i915_gem_object *obj_priv;
3966         drm_i915_ring_buffer_t *ring = &dev_priv->ring;
3967         int ret;
3968         u32 head;
3969
3970         ret = i915_gem_init_hws(dev);
3971         if (ret != 0)
3972                 return ret;
3973
3974         obj = drm_gem_object_alloc(dev, 128 * 1024);
3975         if (obj == NULL) {
3976                 DRM_ERROR("Failed to allocate ringbuffer\n");
3977                 i915_gem_cleanup_hws(dev);
3978                 return -ENOMEM;
3979         }
3980         obj_priv = obj->driver_private;
3981
3982         ret = i915_gem_object_pin(obj, 4096);
3983         if (ret != 0) {
3984                 drm_gem_object_unreference(obj);
3985                 i915_gem_cleanup_hws(dev);
3986                 return ret;
3987         }
3988
3989         /* Set up the kernel mapping for the ring. */
3990         ring->Size = obj->size;
3991         ring->tail_mask = obj->size - 1;
3992
3993         ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
3994         ring->map.size = obj->size;
3995         ring->map.type = 0;
3996         ring->map.flags = 0;
3997         ring->map.mtrr = 0;
3998
3999         drm_core_ioremap_wc(&ring->map, dev);
4000         if (ring->map.handle == NULL) {
4001                 DRM_ERROR("Failed to map ringbuffer.\n");
4002                 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4003                 i915_gem_object_unpin(obj);
4004                 drm_gem_object_unreference(obj);
4005                 i915_gem_cleanup_hws(dev);
4006                 return -EINVAL;
4007         }
4008         ring->ring_obj = obj;
4009         ring->virtual_start = ring->map.handle;
4010
4011         /* Stop the ring if it's running. */
4012         I915_WRITE(PRB0_CTL, 0);
4013         I915_WRITE(PRB0_TAIL, 0);
4014         I915_WRITE(PRB0_HEAD, 0);
4015
4016         /* Initialize the ring. */
4017         I915_WRITE(PRB0_START, obj_priv->gtt_offset);
4018         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4019
4020         /* G45 ring initialization fails to reset head to zero */
4021         if (head != 0) {
4022                 DRM_ERROR("Ring head not reset to zero "
4023                           "ctl %08x head %08x tail %08x start %08x\n",
4024                           I915_READ(PRB0_CTL),
4025                           I915_READ(PRB0_HEAD),
4026                           I915_READ(PRB0_TAIL),
4027                           I915_READ(PRB0_START));
4028                 I915_WRITE(PRB0_HEAD, 0);
4029
4030                 DRM_ERROR("Ring head forced to zero "
4031                           "ctl %08x head %08x tail %08x start %08x\n",
4032                           I915_READ(PRB0_CTL),
4033                           I915_READ(PRB0_HEAD),
4034                           I915_READ(PRB0_TAIL),
4035                           I915_READ(PRB0_START));
4036         }
4037
4038         I915_WRITE(PRB0_CTL,
4039                    ((obj->size - 4096) & RING_NR_PAGES) |
4040                    RING_NO_REPORT |
4041                    RING_VALID);
4042
4043         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4044
4045         /* If the head is still not zero, the ring is dead */
4046         if (head != 0) {
4047                 DRM_ERROR("Ring initialization failed "
4048                           "ctl %08x head %08x tail %08x start %08x\n",
4049                           I915_READ(PRB0_CTL),
4050                           I915_READ(PRB0_HEAD),
4051                           I915_READ(PRB0_TAIL),
4052                           I915_READ(PRB0_START));
4053                 return -EIO;
4054         }
4055
4056         /* Update our cache of the ring state */
4057         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4058                 i915_kernel_lost_context(dev);
4059         else {
4060                 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4061                 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
4062                 ring->space = ring->head - (ring->tail + 8);
4063                 if (ring->space < 0)
4064                         ring->space += ring->Size;
4065         }
4066
4067         return 0;
4068 }
4069
4070 void
4071 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4072 {
4073         drm_i915_private_t *dev_priv = dev->dev_private;
4074
4075         if (dev_priv->ring.ring_obj == NULL)
4076                 return;
4077
4078         drm_core_ioremapfree(&dev_priv->ring.map, dev);
4079
4080         i915_gem_object_unpin(dev_priv->ring.ring_obj);
4081         drm_gem_object_unreference(dev_priv->ring.ring_obj);
4082         dev_priv->ring.ring_obj = NULL;
4083         memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4084
4085         i915_gem_cleanup_hws(dev);
4086 }
4087
4088 int
4089 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4090                        struct drm_file *file_priv)
4091 {
4092         drm_i915_private_t *dev_priv = dev->dev_private;
4093         int ret;
4094
4095         if (drm_core_check_feature(dev, DRIVER_MODESET))
4096                 return 0;
4097
4098         if (dev_priv->mm.wedged) {
4099                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4100                 dev_priv->mm.wedged = 0;
4101         }
4102
4103         mutex_lock(&dev->struct_mutex);
4104         dev_priv->mm.suspended = 0;
4105
4106         ret = i915_gem_init_ringbuffer(dev);
4107         if (ret != 0) {
4108                 mutex_unlock(&dev->struct_mutex);
4109                 return ret;
4110         }
4111
4112         spin_lock(&dev_priv->mm.active_list_lock);
4113         BUG_ON(!list_empty(&dev_priv->mm.active_list));
4114         spin_unlock(&dev_priv->mm.active_list_lock);
4115
4116         BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4117         BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4118         BUG_ON(!list_empty(&dev_priv->mm.request_list));
4119         mutex_unlock(&dev->struct_mutex);
4120
4121         drm_irq_install(dev);
4122
4123         return 0;
4124 }
4125
4126 int
4127 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4128                        struct drm_file *file_priv)
4129 {
4130         int ret;
4131
4132         if (drm_core_check_feature(dev, DRIVER_MODESET))
4133                 return 0;
4134
4135         ret = i915_gem_idle(dev);
4136         drm_irq_uninstall(dev);
4137
4138         return ret;
4139 }
4140
4141 void
4142 i915_gem_lastclose(struct drm_device *dev)
4143 {
4144         int ret;
4145
4146         if (drm_core_check_feature(dev, DRIVER_MODESET))
4147                 return;
4148
4149         ret = i915_gem_idle(dev);
4150         if (ret)
4151                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4152 }
4153
4154 void
4155 i915_gem_load(struct drm_device *dev)
4156 {
4157         drm_i915_private_t *dev_priv = dev->dev_private;
4158
4159         spin_lock_init(&dev_priv->mm.active_list_lock);
4160         INIT_LIST_HEAD(&dev_priv->mm.active_list);
4161         INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4162         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4163         INIT_LIST_HEAD(&dev_priv->mm.request_list);
4164         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4165                           i915_gem_retire_work_handler);
4166         dev_priv->mm.next_gem_seqno = 1;
4167
4168         /* Old X drivers will take 0-2 for front, back, depth buffers */
4169         dev_priv->fence_reg_start = 3;
4170
4171         if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4172                 dev_priv->num_fence_regs = 16;
4173         else
4174                 dev_priv->num_fence_regs = 8;
4175
4176         i915_gem_detect_bit_6_swizzle(dev);
4177 }
4178
4179 /*
4180  * Create a physically contiguous memory object for this object
4181  * e.g. for cursor + overlay regs
4182  */
4183 int i915_gem_init_phys_object(struct drm_device *dev,
4184                               int id, int size)
4185 {
4186         drm_i915_private_t *dev_priv = dev->dev_private;
4187         struct drm_i915_gem_phys_object *phys_obj;
4188         int ret;
4189
4190         if (dev_priv->mm.phys_objs[id - 1] || !size)
4191                 return 0;
4192
4193         phys_obj = drm_calloc(1, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
4194         if (!phys_obj)
4195                 return -ENOMEM;
4196
4197         phys_obj->id = id;
4198
4199         phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
4200         if (!phys_obj->handle) {
4201                 ret = -ENOMEM;
4202                 goto kfree_obj;
4203         }
4204 #ifdef CONFIG_X86
4205         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4206 #endif
4207
4208         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4209
4210         return 0;
4211 kfree_obj:
4212         drm_free(phys_obj, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
4213         return ret;
4214 }
4215
4216 void i915_gem_free_phys_object(struct drm_device *dev, int id)
4217 {
4218         drm_i915_private_t *dev_priv = dev->dev_private;
4219         struct drm_i915_gem_phys_object *phys_obj;
4220
4221         if (!dev_priv->mm.phys_objs[id - 1])
4222                 return;
4223
4224         phys_obj = dev_priv->mm.phys_objs[id - 1];
4225         if (phys_obj->cur_obj) {
4226                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4227         }
4228
4229 #ifdef CONFIG_X86
4230         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4231 #endif
4232         drm_pci_free(dev, phys_obj->handle);
4233         kfree(phys_obj);
4234         dev_priv->mm.phys_objs[id - 1] = NULL;
4235 }
4236
4237 void i915_gem_free_all_phys_object(struct drm_device *dev)
4238 {
4239         int i;
4240
4241         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4242                 i915_gem_free_phys_object(dev, i);
4243 }
4244
4245 void i915_gem_detach_phys_object(struct drm_device *dev,
4246                                  struct drm_gem_object *obj)
4247 {
4248         struct drm_i915_gem_object *obj_priv;
4249         int i;
4250         int ret;
4251         int page_count;
4252
4253         obj_priv = obj->driver_private;
4254         if (!obj_priv->phys_obj)
4255                 return;
4256
4257         ret = i915_gem_object_get_pages(obj);
4258         if (ret)
4259                 goto out;
4260
4261         page_count = obj->size / PAGE_SIZE;
4262
4263         for (i = 0; i < page_count; i++) {
4264                 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4265                 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4266
4267                 memcpy(dst, src, PAGE_SIZE);
4268                 kunmap_atomic(dst, KM_USER0);
4269         }
4270         drm_clflush_pages(obj_priv->pages, page_count);
4271         drm_agp_chipset_flush(dev);
4272 out:
4273         obj_priv->phys_obj->cur_obj = NULL;
4274         obj_priv->phys_obj = NULL;
4275 }
4276
4277 int
4278 i915_gem_attach_phys_object(struct drm_device *dev,
4279                             struct drm_gem_object *obj, int id)
4280 {
4281         drm_i915_private_t *dev_priv = dev->dev_private;
4282         struct drm_i915_gem_object *obj_priv;
4283         int ret = 0;
4284         int page_count;
4285         int i;
4286
4287         if (id > I915_MAX_PHYS_OBJECT)
4288                 return -EINVAL;
4289
4290         obj_priv = obj->driver_private;
4291
4292         if (obj_priv->phys_obj) {
4293                 if (obj_priv->phys_obj->id == id)
4294                         return 0;
4295                 i915_gem_detach_phys_object(dev, obj);
4296         }
4297
4298
4299         /* create a new object */
4300         if (!dev_priv->mm.phys_objs[id - 1]) {
4301                 ret = i915_gem_init_phys_object(dev, id,
4302                                                 obj->size);
4303                 if (ret) {
4304                         DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4305                         goto out;
4306                 }
4307         }
4308
4309         /* bind to the object */
4310         obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4311         obj_priv->phys_obj->cur_obj = obj;
4312
4313         ret = i915_gem_object_get_pages(obj);
4314         if (ret) {
4315                 DRM_ERROR("failed to get page list\n");
4316                 goto out;
4317         }
4318
4319         page_count = obj->size / PAGE_SIZE;
4320
4321         for (i = 0; i < page_count; i++) {
4322                 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4323                 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4324
4325                 memcpy(dst, src, PAGE_SIZE);
4326                 kunmap_atomic(src, KM_USER0);
4327         }
4328
4329         return 0;
4330 out:
4331         return ret;
4332 }
4333
4334 static int
4335 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4336                      struct drm_i915_gem_pwrite *args,
4337                      struct drm_file *file_priv)
4338 {
4339         struct drm_i915_gem_object *obj_priv = obj->driver_private;
4340         void *obj_addr;
4341         int ret;
4342         char __user *user_data;
4343
4344         user_data = (char __user *) (uintptr_t) args->data_ptr;
4345         obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4346
4347         DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
4348         ret = copy_from_user(obj_addr, user_data, args->size);
4349         if (ret)
4350                 return -EFAULT;
4351
4352         drm_agp_chipset_flush(dev);
4353         return 0;
4354 }