hwspinlock: depend on OMAP4
[linux-2.6.git] / drivers / firewire / core-transaction.c
1 /*
2  * Core IEEE1394 transaction logic
3  *
4  * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/bug.h>
22 #include <linux/completion.h>
23 #include <linux/device.h>
24 #include <linux/errno.h>
25 #include <linux/firewire.h>
26 #include <linux/firewire-constants.h>
27 #include <linux/fs.h>
28 #include <linux/init.h>
29 #include <linux/idr.h>
30 #include <linux/jiffies.h>
31 #include <linux/kernel.h>
32 #include <linux/list.h>
33 #include <linux/module.h>
34 #include <linux/slab.h>
35 #include <linux/spinlock.h>
36 #include <linux/string.h>
37 #include <linux/timer.h>
38 #include <linux/types.h>
39
40 #include <asm/byteorder.h>
41
42 #include "core.h"
43
44 #define HEADER_PRI(pri)                 ((pri) << 0)
45 #define HEADER_TCODE(tcode)             ((tcode) << 4)
46 #define HEADER_RETRY(retry)             ((retry) << 8)
47 #define HEADER_TLABEL(tlabel)           ((tlabel) << 10)
48 #define HEADER_DESTINATION(destination) ((destination) << 16)
49 #define HEADER_SOURCE(source)           ((source) << 16)
50 #define HEADER_RCODE(rcode)             ((rcode) << 12)
51 #define HEADER_OFFSET_HIGH(offset_high) ((offset_high) << 0)
52 #define HEADER_DATA_LENGTH(length)      ((length) << 16)
53 #define HEADER_EXTENDED_TCODE(tcode)    ((tcode) << 0)
54
55 #define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
56 #define HEADER_GET_TLABEL(q)            (((q) >> 10) & 0x3f)
57 #define HEADER_GET_RCODE(q)             (((q) >> 12) & 0x0f)
58 #define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
59 #define HEADER_GET_SOURCE(q)            (((q) >> 16) & 0xffff)
60 #define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
61 #define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
62 #define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
63
64 #define HEADER_DESTINATION_IS_BROADCAST(q) \
65         (((q) & HEADER_DESTINATION(0x3f)) == HEADER_DESTINATION(0x3f))
66
67 #define PHY_PACKET_CONFIG       0x0
68 #define PHY_PACKET_LINK_ON      0x1
69 #define PHY_PACKET_SELF_ID      0x2
70
71 #define PHY_CONFIG_GAP_COUNT(gap_count) (((gap_count) << 16) | (1 << 22))
72 #define PHY_CONFIG_ROOT_ID(node_id)     ((((node_id) & 0x3f) << 24) | (1 << 23))
73 #define PHY_IDENTIFIER(id)              ((id) << 30)
74
75 /* returns 0 if the split timeout handler is already running */
76 static int try_cancel_split_timeout(struct fw_transaction *t)
77 {
78         if (t->is_split_transaction)
79                 return del_timer(&t->split_timeout_timer);
80         else
81                 return 1;
82 }
83
84 static int close_transaction(struct fw_transaction *transaction,
85                              struct fw_card *card, int rcode)
86 {
87         struct fw_transaction *t;
88         unsigned long flags;
89
90         spin_lock_irqsave(&card->lock, flags);
91         list_for_each_entry(t, &card->transaction_list, link) {
92                 if (t == transaction) {
93                         if (!try_cancel_split_timeout(t)) {
94                                 spin_unlock_irqrestore(&card->lock, flags);
95                                 goto timed_out;
96                         }
97                         list_del_init(&t->link);
98                         card->tlabel_mask &= ~(1ULL << t->tlabel);
99                         break;
100                 }
101         }
102         spin_unlock_irqrestore(&card->lock, flags);
103
104         if (&t->link != &card->transaction_list) {
105                 t->callback(card, rcode, NULL, 0, t->callback_data);
106                 return 0;
107         }
108
109  timed_out:
110         return -ENOENT;
111 }
112
113 /*
114  * Only valid for transactions that are potentially pending (ie have
115  * been sent).
116  */
117 int fw_cancel_transaction(struct fw_card *card,
118                           struct fw_transaction *transaction)
119 {
120         /*
121          * Cancel the packet transmission if it's still queued.  That
122          * will call the packet transmission callback which cancels
123          * the transaction.
124          */
125
126         if (card->driver->cancel_packet(card, &transaction->packet) == 0)
127                 return 0;
128
129         /*
130          * If the request packet has already been sent, we need to see
131          * if the transaction is still pending and remove it in that case.
132          */
133
134         return close_transaction(transaction, card, RCODE_CANCELLED);
135 }
136 EXPORT_SYMBOL(fw_cancel_transaction);
137
138 static void split_transaction_timeout_callback(unsigned long data)
139 {
140         struct fw_transaction *t = (struct fw_transaction *)data;
141         struct fw_card *card = t->card;
142         unsigned long flags;
143
144         spin_lock_irqsave(&card->lock, flags);
145         if (list_empty(&t->link)) {
146                 spin_unlock_irqrestore(&card->lock, flags);
147                 return;
148         }
149         list_del(&t->link);
150         card->tlabel_mask &= ~(1ULL << t->tlabel);
151         spin_unlock_irqrestore(&card->lock, flags);
152
153         t->callback(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
154 }
155
156 static void start_split_transaction_timeout(struct fw_transaction *t,
157                                             struct fw_card *card)
158 {
159         unsigned long flags;
160
161         spin_lock_irqsave(&card->lock, flags);
162
163         if (list_empty(&t->link) || WARN_ON(t->is_split_transaction)) {
164                 spin_unlock_irqrestore(&card->lock, flags);
165                 return;
166         }
167
168         t->is_split_transaction = true;
169         mod_timer(&t->split_timeout_timer,
170                   jiffies + card->split_timeout_jiffies);
171
172         spin_unlock_irqrestore(&card->lock, flags);
173 }
174
175 static void transmit_complete_callback(struct fw_packet *packet,
176                                        struct fw_card *card, int status)
177 {
178         struct fw_transaction *t =
179             container_of(packet, struct fw_transaction, packet);
180
181         switch (status) {
182         case ACK_COMPLETE:
183                 close_transaction(t, card, RCODE_COMPLETE);
184                 break;
185         case ACK_PENDING:
186                 start_split_transaction_timeout(t, card);
187                 break;
188         case ACK_BUSY_X:
189         case ACK_BUSY_A:
190         case ACK_BUSY_B:
191                 close_transaction(t, card, RCODE_BUSY);
192                 break;
193         case ACK_DATA_ERROR:
194                 close_transaction(t, card, RCODE_DATA_ERROR);
195                 break;
196         case ACK_TYPE_ERROR:
197                 close_transaction(t, card, RCODE_TYPE_ERROR);
198                 break;
199         default:
200                 /*
201                  * In this case the ack is really a juju specific
202                  * rcode, so just forward that to the callback.
203                  */
204                 close_transaction(t, card, status);
205                 break;
206         }
207 }
208
209 static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
210                 int destination_id, int source_id, int generation, int speed,
211                 unsigned long long offset, void *payload, size_t length)
212 {
213         int ext_tcode;
214
215         if (tcode == TCODE_STREAM_DATA) {
216                 packet->header[0] =
217                         HEADER_DATA_LENGTH(length) |
218                         destination_id |
219                         HEADER_TCODE(TCODE_STREAM_DATA);
220                 packet->header_length = 4;
221                 packet->payload = payload;
222                 packet->payload_length = length;
223
224                 goto common;
225         }
226
227         if (tcode > 0x10) {
228                 ext_tcode = tcode & ~0x10;
229                 tcode = TCODE_LOCK_REQUEST;
230         } else
231                 ext_tcode = 0;
232
233         packet->header[0] =
234                 HEADER_RETRY(RETRY_X) |
235                 HEADER_TLABEL(tlabel) |
236                 HEADER_TCODE(tcode) |
237                 HEADER_DESTINATION(destination_id);
238         packet->header[1] =
239                 HEADER_OFFSET_HIGH(offset >> 32) | HEADER_SOURCE(source_id);
240         packet->header[2] =
241                 offset;
242
243         switch (tcode) {
244         case TCODE_WRITE_QUADLET_REQUEST:
245                 packet->header[3] = *(u32 *)payload;
246                 packet->header_length = 16;
247                 packet->payload_length = 0;
248                 break;
249
250         case TCODE_LOCK_REQUEST:
251         case TCODE_WRITE_BLOCK_REQUEST:
252                 packet->header[3] =
253                         HEADER_DATA_LENGTH(length) |
254                         HEADER_EXTENDED_TCODE(ext_tcode);
255                 packet->header_length = 16;
256                 packet->payload = payload;
257                 packet->payload_length = length;
258                 break;
259
260         case TCODE_READ_QUADLET_REQUEST:
261                 packet->header_length = 12;
262                 packet->payload_length = 0;
263                 break;
264
265         case TCODE_READ_BLOCK_REQUEST:
266                 packet->header[3] =
267                         HEADER_DATA_LENGTH(length) |
268                         HEADER_EXTENDED_TCODE(ext_tcode);
269                 packet->header_length = 16;
270                 packet->payload_length = 0;
271                 break;
272
273         default:
274                 WARN(1, "wrong tcode %d\n", tcode);
275         }
276  common:
277         packet->speed = speed;
278         packet->generation = generation;
279         packet->ack = 0;
280         packet->payload_mapped = false;
281 }
282
283 static int allocate_tlabel(struct fw_card *card)
284 {
285         int tlabel;
286
287         tlabel = card->current_tlabel;
288         while (card->tlabel_mask & (1ULL << tlabel)) {
289                 tlabel = (tlabel + 1) & 0x3f;
290                 if (tlabel == card->current_tlabel)
291                         return -EBUSY;
292         }
293
294         card->current_tlabel = (tlabel + 1) & 0x3f;
295         card->tlabel_mask |= 1ULL << tlabel;
296
297         return tlabel;
298 }
299
300 /**
301  * fw_send_request() - submit a request packet for transmission
302  * @card:               interface to send the request at
303  * @t:                  transaction instance to which the request belongs
304  * @tcode:              transaction code
305  * @destination_id:     destination node ID, consisting of bus_ID and phy_ID
306  * @generation:         bus generation in which request and response are valid
307  * @speed:              transmission speed
308  * @offset:             48bit wide offset into destination's address space
309  * @payload:            data payload for the request subaction
310  * @length:             length of the payload, in bytes
311  * @callback:           function to be called when the transaction is completed
312  * @callback_data:      data to be passed to the transaction completion callback
313  *
314  * Submit a request packet into the asynchronous request transmission queue.
315  * Can be called from atomic context.  If you prefer a blocking API, use
316  * fw_run_transaction() in a context that can sleep.
317  *
318  * In case of lock requests, specify one of the firewire-core specific %TCODE_
319  * constants instead of %TCODE_LOCK_REQUEST in @tcode.
320  *
321  * Make sure that the value in @destination_id is not older than the one in
322  * @generation.  Otherwise the request is in danger to be sent to a wrong node.
323  *
324  * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
325  * needs to synthesize @destination_id with fw_stream_packet_destination_id().
326  * It will contain tag, channel, and sy data instead of a node ID then.
327  *
328  * The payload buffer at @data is going to be DMA-mapped except in case of
329  * quadlet-sized payload or of local (loopback) requests.  Hence make sure that
330  * the buffer complies with the restrictions for DMA-mapped memory.  The
331  * @payload must not be freed before the @callback is called.
332  *
333  * In case of request types without payload, @data is NULL and @length is 0.
334  *
335  * After the transaction is completed successfully or unsuccessfully, the
336  * @callback will be called.  Among its parameters is the response code which
337  * is either one of the rcodes per IEEE 1394 or, in case of internal errors,
338  * the firewire-core specific %RCODE_SEND_ERROR.  The other firewire-core
339  * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION,
340  * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request
341  * generation, or missing ACK respectively.
342  *
343  * Note some timing corner cases:  fw_send_request() may complete much earlier
344  * than when the request packet actually hits the wire.  On the other hand,
345  * transaction completion and hence execution of @callback may happen even
346  * before fw_send_request() returns.
347  */
348 void fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
349                      int destination_id, int generation, int speed,
350                      unsigned long long offset, void *payload, size_t length,
351                      fw_transaction_callback_t callback, void *callback_data)
352 {
353         unsigned long flags;
354         int tlabel;
355
356         /*
357          * Allocate tlabel from the bitmap and put the transaction on
358          * the list while holding the card spinlock.
359          */
360
361         spin_lock_irqsave(&card->lock, flags);
362
363         tlabel = allocate_tlabel(card);
364         if (tlabel < 0) {
365                 spin_unlock_irqrestore(&card->lock, flags);
366                 callback(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
367                 return;
368         }
369
370         t->node_id = destination_id;
371         t->tlabel = tlabel;
372         t->card = card;
373         t->is_split_transaction = false;
374         setup_timer(&t->split_timeout_timer,
375                     split_transaction_timeout_callback, (unsigned long)t);
376         t->callback = callback;
377         t->callback_data = callback_data;
378
379         fw_fill_request(&t->packet, tcode, t->tlabel,
380                         destination_id, card->node_id, generation,
381                         speed, offset, payload, length);
382         t->packet.callback = transmit_complete_callback;
383
384         list_add_tail(&t->link, &card->transaction_list);
385
386         spin_unlock_irqrestore(&card->lock, flags);
387
388         card->driver->send_request(card, &t->packet);
389 }
390 EXPORT_SYMBOL(fw_send_request);
391
392 struct transaction_callback_data {
393         struct completion done;
394         void *payload;
395         int rcode;
396 };
397
398 static void transaction_callback(struct fw_card *card, int rcode,
399                                  void *payload, size_t length, void *data)
400 {
401         struct transaction_callback_data *d = data;
402
403         if (rcode == RCODE_COMPLETE)
404                 memcpy(d->payload, payload, length);
405         d->rcode = rcode;
406         complete(&d->done);
407 }
408
409 /**
410  * fw_run_transaction() - send request and sleep until transaction is completed
411  *
412  * Returns the RCODE.  See fw_send_request() for parameter documentation.
413  * Unlike fw_send_request(), @data points to the payload of the request or/and
414  * to the payload of the response.
415  */
416 int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
417                        int generation, int speed, unsigned long long offset,
418                        void *payload, size_t length)
419 {
420         struct transaction_callback_data d;
421         struct fw_transaction t;
422
423         init_timer_on_stack(&t.split_timeout_timer);
424         init_completion(&d.done);
425         d.payload = payload;
426         fw_send_request(card, &t, tcode, destination_id, generation, speed,
427                         offset, payload, length, transaction_callback, &d);
428         wait_for_completion(&d.done);
429         destroy_timer_on_stack(&t.split_timeout_timer);
430
431         return d.rcode;
432 }
433 EXPORT_SYMBOL(fw_run_transaction);
434
435 static DEFINE_MUTEX(phy_config_mutex);
436 static DECLARE_COMPLETION(phy_config_done);
437
438 static void transmit_phy_packet_callback(struct fw_packet *packet,
439                                          struct fw_card *card, int status)
440 {
441         complete(&phy_config_done);
442 }
443
444 static struct fw_packet phy_config_packet = {
445         .header_length  = 12,
446         .header[0]      = TCODE_LINK_INTERNAL << 4,
447         .payload_length = 0,
448         .speed          = SCODE_100,
449         .callback       = transmit_phy_packet_callback,
450 };
451
452 void fw_send_phy_config(struct fw_card *card,
453                         int node_id, int generation, int gap_count)
454 {
455         long timeout = DIV_ROUND_UP(HZ, 10);
456         u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG);
457
458         if (node_id != FW_PHY_CONFIG_NO_NODE_ID)
459                 data |= PHY_CONFIG_ROOT_ID(node_id);
460
461         if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
462                 gap_count = card->driver->read_phy_reg(card, 1);
463                 if (gap_count < 0)
464                         return;
465
466                 gap_count &= 63;
467                 if (gap_count == 63)
468                         return;
469         }
470         data |= PHY_CONFIG_GAP_COUNT(gap_count);
471
472         mutex_lock(&phy_config_mutex);
473
474         phy_config_packet.header[1] = data;
475         phy_config_packet.header[2] = ~data;
476         phy_config_packet.generation = generation;
477         INIT_COMPLETION(phy_config_done);
478
479         card->driver->send_request(card, &phy_config_packet);
480         wait_for_completion_timeout(&phy_config_done, timeout);
481
482         mutex_unlock(&phy_config_mutex);
483 }
484
485 static struct fw_address_handler *lookup_overlapping_address_handler(
486         struct list_head *list, unsigned long long offset, size_t length)
487 {
488         struct fw_address_handler *handler;
489
490         list_for_each_entry(handler, list, link) {
491                 if (handler->offset < offset + length &&
492                     offset < handler->offset + handler->length)
493                         return handler;
494         }
495
496         return NULL;
497 }
498
499 static bool is_enclosing_handler(struct fw_address_handler *handler,
500                                  unsigned long long offset, size_t length)
501 {
502         return handler->offset <= offset &&
503                 offset + length <= handler->offset + handler->length;
504 }
505
506 static struct fw_address_handler *lookup_enclosing_address_handler(
507         struct list_head *list, unsigned long long offset, size_t length)
508 {
509         struct fw_address_handler *handler;
510
511         list_for_each_entry(handler, list, link) {
512                 if (is_enclosing_handler(handler, offset, length))
513                         return handler;
514         }
515
516         return NULL;
517 }
518
519 static DEFINE_SPINLOCK(address_handler_lock);
520 static LIST_HEAD(address_handler_list);
521
522 const struct fw_address_region fw_high_memory_region =
523         { .start = 0x000100000000ULL, .end = 0xffffe0000000ULL,  };
524 EXPORT_SYMBOL(fw_high_memory_region);
525
526 #if 0
527 const struct fw_address_region fw_low_memory_region =
528         { .start = 0x000000000000ULL, .end = 0x000100000000ULL,  };
529 const struct fw_address_region fw_private_region =
530         { .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL,  };
531 const struct fw_address_region fw_csr_region =
532         { .start = CSR_REGISTER_BASE,
533           .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END,  };
534 const struct fw_address_region fw_unit_space_region =
535         { .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
536 #endif  /*  0  */
537
538 static bool is_in_fcp_region(u64 offset, size_t length)
539 {
540         return offset >= (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
541                 offset + length <= (CSR_REGISTER_BASE | CSR_FCP_END);
542 }
543
544 /**
545  * fw_core_add_address_handler() - register for incoming requests
546  * @handler:    callback
547  * @region:     region in the IEEE 1212 node space address range
548  *
549  * region->start, ->end, and handler->length have to be quadlet-aligned.
550  *
551  * When a request is received that falls within the specified address range,
552  * the specified callback is invoked.  The parameters passed to the callback
553  * give the details of the particular request.
554  *
555  * Return value:  0 on success, non-zero otherwise.
556  *
557  * The start offset of the handler's address region is determined by
558  * fw_core_add_address_handler() and is returned in handler->offset.
559  *
560  * Address allocations are exclusive, except for the FCP registers.
561  */
562 int fw_core_add_address_handler(struct fw_address_handler *handler,
563                                 const struct fw_address_region *region)
564 {
565         struct fw_address_handler *other;
566         unsigned long flags;
567         int ret = -EBUSY;
568
569         if (region->start & 0xffff000000000003ULL ||
570             region->start >= region->end ||
571             region->end   > 0x0001000000000000ULL ||
572             handler->length & 3 ||
573             handler->length == 0)
574                 return -EINVAL;
575
576         spin_lock_irqsave(&address_handler_lock, flags);
577
578         handler->offset = region->start;
579         while (handler->offset + handler->length <= region->end) {
580                 if (is_in_fcp_region(handler->offset, handler->length))
581                         other = NULL;
582                 else
583                         other = lookup_overlapping_address_handler
584                                         (&address_handler_list,
585                                          handler->offset, handler->length);
586                 if (other != NULL) {
587                         handler->offset += other->length;
588                 } else {
589                         list_add_tail(&handler->link, &address_handler_list);
590                         ret = 0;
591                         break;
592                 }
593         }
594
595         spin_unlock_irqrestore(&address_handler_lock, flags);
596
597         return ret;
598 }
599 EXPORT_SYMBOL(fw_core_add_address_handler);
600
601 /**
602  * fw_core_remove_address_handler() - unregister an address handler
603  */
604 void fw_core_remove_address_handler(struct fw_address_handler *handler)
605 {
606         unsigned long flags;
607
608         spin_lock_irqsave(&address_handler_lock, flags);
609         list_del(&handler->link);
610         spin_unlock_irqrestore(&address_handler_lock, flags);
611 }
612 EXPORT_SYMBOL(fw_core_remove_address_handler);
613
614 struct fw_request {
615         struct fw_packet response;
616         u32 request_header[4];
617         int ack;
618         u32 length;
619         u32 data[0];
620 };
621
622 static void free_response_callback(struct fw_packet *packet,
623                                    struct fw_card *card, int status)
624 {
625         struct fw_request *request;
626
627         request = container_of(packet, struct fw_request, response);
628         kfree(request);
629 }
630
631 int fw_get_response_length(struct fw_request *r)
632 {
633         int tcode, ext_tcode, data_length;
634
635         tcode = HEADER_GET_TCODE(r->request_header[0]);
636
637         switch (tcode) {
638         case TCODE_WRITE_QUADLET_REQUEST:
639         case TCODE_WRITE_BLOCK_REQUEST:
640                 return 0;
641
642         case TCODE_READ_QUADLET_REQUEST:
643                 return 4;
644
645         case TCODE_READ_BLOCK_REQUEST:
646                 data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
647                 return data_length;
648
649         case TCODE_LOCK_REQUEST:
650                 ext_tcode = HEADER_GET_EXTENDED_TCODE(r->request_header[3]);
651                 data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
652                 switch (ext_tcode) {
653                 case EXTCODE_FETCH_ADD:
654                 case EXTCODE_LITTLE_ADD:
655                         return data_length;
656                 default:
657                         return data_length / 2;
658                 }
659
660         default:
661                 WARN(1, "wrong tcode %d\n", tcode);
662                 return 0;
663         }
664 }
665
666 void fw_fill_response(struct fw_packet *response, u32 *request_header,
667                       int rcode, void *payload, size_t length)
668 {
669         int tcode, tlabel, extended_tcode, source, destination;
670
671         tcode          = HEADER_GET_TCODE(request_header[0]);
672         tlabel         = HEADER_GET_TLABEL(request_header[0]);
673         source         = HEADER_GET_DESTINATION(request_header[0]);
674         destination    = HEADER_GET_SOURCE(request_header[1]);
675         extended_tcode = HEADER_GET_EXTENDED_TCODE(request_header[3]);
676
677         response->header[0] =
678                 HEADER_RETRY(RETRY_1) |
679                 HEADER_TLABEL(tlabel) |
680                 HEADER_DESTINATION(destination);
681         response->header[1] =
682                 HEADER_SOURCE(source) |
683                 HEADER_RCODE(rcode);
684         response->header[2] = 0;
685
686         switch (tcode) {
687         case TCODE_WRITE_QUADLET_REQUEST:
688         case TCODE_WRITE_BLOCK_REQUEST:
689                 response->header[0] |= HEADER_TCODE(TCODE_WRITE_RESPONSE);
690                 response->header_length = 12;
691                 response->payload_length = 0;
692                 break;
693
694         case TCODE_READ_QUADLET_REQUEST:
695                 response->header[0] |=
696                         HEADER_TCODE(TCODE_READ_QUADLET_RESPONSE);
697                 if (payload != NULL)
698                         response->header[3] = *(u32 *)payload;
699                 else
700                         response->header[3] = 0;
701                 response->header_length = 16;
702                 response->payload_length = 0;
703                 break;
704
705         case TCODE_READ_BLOCK_REQUEST:
706         case TCODE_LOCK_REQUEST:
707                 response->header[0] |= HEADER_TCODE(tcode + 2);
708                 response->header[3] =
709                         HEADER_DATA_LENGTH(length) |
710                         HEADER_EXTENDED_TCODE(extended_tcode);
711                 response->header_length = 16;
712                 response->payload = payload;
713                 response->payload_length = length;
714                 break;
715
716         default:
717                 WARN(1, "wrong tcode %d\n", tcode);
718         }
719
720         response->payload_mapped = false;
721 }
722 EXPORT_SYMBOL(fw_fill_response);
723
724 static u32 compute_split_timeout_timestamp(struct fw_card *card,
725                                            u32 request_timestamp)
726 {
727         unsigned int cycles;
728         u32 timestamp;
729
730         cycles = card->split_timeout_cycles;
731         cycles += request_timestamp & 0x1fff;
732
733         timestamp = request_timestamp & ~0x1fff;
734         timestamp += (cycles / 8000) << 13;
735         timestamp |= cycles % 8000;
736
737         return timestamp;
738 }
739
740 static struct fw_request *allocate_request(struct fw_card *card,
741                                            struct fw_packet *p)
742 {
743         struct fw_request *request;
744         u32 *data, length;
745         int request_tcode;
746
747         request_tcode = HEADER_GET_TCODE(p->header[0]);
748         switch (request_tcode) {
749         case TCODE_WRITE_QUADLET_REQUEST:
750                 data = &p->header[3];
751                 length = 4;
752                 break;
753
754         case TCODE_WRITE_BLOCK_REQUEST:
755         case TCODE_LOCK_REQUEST:
756                 data = p->payload;
757                 length = HEADER_GET_DATA_LENGTH(p->header[3]);
758                 break;
759
760         case TCODE_READ_QUADLET_REQUEST:
761                 data = NULL;
762                 length = 4;
763                 break;
764
765         case TCODE_READ_BLOCK_REQUEST:
766                 data = NULL;
767                 length = HEADER_GET_DATA_LENGTH(p->header[3]);
768                 break;
769
770         default:
771                 fw_error("ERROR - corrupt request received - %08x %08x %08x\n",
772                          p->header[0], p->header[1], p->header[2]);
773                 return NULL;
774         }
775
776         request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
777         if (request == NULL)
778                 return NULL;
779
780         request->response.speed = p->speed;
781         request->response.timestamp =
782                         compute_split_timeout_timestamp(card, p->timestamp);
783         request->response.generation = p->generation;
784         request->response.ack = 0;
785         request->response.callback = free_response_callback;
786         request->ack = p->ack;
787         request->length = length;
788         if (data)
789                 memcpy(request->data, data, length);
790
791         memcpy(request->request_header, p->header, sizeof(p->header));
792
793         return request;
794 }
795
796 void fw_send_response(struct fw_card *card,
797                       struct fw_request *request, int rcode)
798 {
799         if (WARN_ONCE(!request, "invalid for FCP address handlers"))
800                 return;
801
802         /* unified transaction or broadcast transaction: don't respond */
803         if (request->ack != ACK_PENDING ||
804             HEADER_DESTINATION_IS_BROADCAST(request->request_header[0])) {
805                 kfree(request);
806                 return;
807         }
808
809         if (rcode == RCODE_COMPLETE)
810                 fw_fill_response(&request->response, request->request_header,
811                                  rcode, request->data,
812                                  fw_get_response_length(request));
813         else
814                 fw_fill_response(&request->response, request->request_header,
815                                  rcode, NULL, 0);
816
817         card->driver->send_response(card, &request->response);
818 }
819 EXPORT_SYMBOL(fw_send_response);
820
821 static void handle_exclusive_region_request(struct fw_card *card,
822                                             struct fw_packet *p,
823                                             struct fw_request *request,
824                                             unsigned long long offset)
825 {
826         struct fw_address_handler *handler;
827         unsigned long flags;
828         int tcode, destination, source;
829
830         destination = HEADER_GET_DESTINATION(p->header[0]);
831         source      = HEADER_GET_SOURCE(p->header[1]);
832         tcode       = HEADER_GET_TCODE(p->header[0]);
833         if (tcode == TCODE_LOCK_REQUEST)
834                 tcode = 0x10 + HEADER_GET_EXTENDED_TCODE(p->header[3]);
835
836         spin_lock_irqsave(&address_handler_lock, flags);
837         handler = lookup_enclosing_address_handler(&address_handler_list,
838                                                    offset, request->length);
839         spin_unlock_irqrestore(&address_handler_lock, flags);
840
841         /*
842          * FIXME: lookup the fw_node corresponding to the sender of
843          * this request and pass that to the address handler instead
844          * of the node ID.  We may also want to move the address
845          * allocations to fw_node so we only do this callback if the
846          * upper layers registered it for this node.
847          */
848
849         if (handler == NULL)
850                 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
851         else
852                 handler->address_callback(card, request,
853                                           tcode, destination, source,
854                                           p->generation, offset,
855                                           request->data, request->length,
856                                           handler->callback_data);
857 }
858
859 static void handle_fcp_region_request(struct fw_card *card,
860                                       struct fw_packet *p,
861                                       struct fw_request *request,
862                                       unsigned long long offset)
863 {
864         struct fw_address_handler *handler;
865         unsigned long flags;
866         int tcode, destination, source;
867
868         if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
869              offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
870             request->length > 0x200) {
871                 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
872
873                 return;
874         }
875
876         tcode       = HEADER_GET_TCODE(p->header[0]);
877         destination = HEADER_GET_DESTINATION(p->header[0]);
878         source      = HEADER_GET_SOURCE(p->header[1]);
879
880         if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
881             tcode != TCODE_WRITE_BLOCK_REQUEST) {
882                 fw_send_response(card, request, RCODE_TYPE_ERROR);
883
884                 return;
885         }
886
887         spin_lock_irqsave(&address_handler_lock, flags);
888         list_for_each_entry(handler, &address_handler_list, link) {
889                 if (is_enclosing_handler(handler, offset, request->length))
890                         handler->address_callback(card, NULL, tcode,
891                                                   destination, source,
892                                                   p->generation, offset,
893                                                   request->data,
894                                                   request->length,
895                                                   handler->callback_data);
896         }
897         spin_unlock_irqrestore(&address_handler_lock, flags);
898
899         fw_send_response(card, request, RCODE_COMPLETE);
900 }
901
902 void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
903 {
904         struct fw_request *request;
905         unsigned long long offset;
906
907         if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
908                 return;
909
910         if (TCODE_IS_LINK_INTERNAL(HEADER_GET_TCODE(p->header[0]))) {
911                 fw_cdev_handle_phy_packet(card, p);
912                 return;
913         }
914
915         request = allocate_request(card, p);
916         if (request == NULL) {
917                 /* FIXME: send statically allocated busy packet. */
918                 return;
919         }
920
921         offset = ((u64)HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) |
922                 p->header[2];
923
924         if (!is_in_fcp_region(offset, request->length))
925                 handle_exclusive_region_request(card, p, request, offset);
926         else
927                 handle_fcp_region_request(card, p, request, offset);
928
929 }
930 EXPORT_SYMBOL(fw_core_handle_request);
931
932 void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
933 {
934         struct fw_transaction *t;
935         unsigned long flags;
936         u32 *data;
937         size_t data_length;
938         int tcode, tlabel, source, rcode;
939
940         tcode   = HEADER_GET_TCODE(p->header[0]);
941         tlabel  = HEADER_GET_TLABEL(p->header[0]);
942         source  = HEADER_GET_SOURCE(p->header[1]);
943         rcode   = HEADER_GET_RCODE(p->header[1]);
944
945         spin_lock_irqsave(&card->lock, flags);
946         list_for_each_entry(t, &card->transaction_list, link) {
947                 if (t->node_id == source && t->tlabel == tlabel) {
948                         if (!try_cancel_split_timeout(t)) {
949                                 spin_unlock_irqrestore(&card->lock, flags);
950                                 goto timed_out;
951                         }
952                         list_del_init(&t->link);
953                         card->tlabel_mask &= ~(1ULL << t->tlabel);
954                         break;
955                 }
956         }
957         spin_unlock_irqrestore(&card->lock, flags);
958
959         if (&t->link == &card->transaction_list) {
960  timed_out:
961                 fw_notify("Unsolicited response (source %x, tlabel %x)\n",
962                           source, tlabel);
963                 return;
964         }
965
966         /*
967          * FIXME: sanity check packet, is length correct, does tcodes
968          * and addresses match.
969          */
970
971         switch (tcode) {
972         case TCODE_READ_QUADLET_RESPONSE:
973                 data = (u32 *) &p->header[3];
974                 data_length = 4;
975                 break;
976
977         case TCODE_WRITE_RESPONSE:
978                 data = NULL;
979                 data_length = 0;
980                 break;
981
982         case TCODE_READ_BLOCK_RESPONSE:
983         case TCODE_LOCK_RESPONSE:
984                 data = p->payload;
985                 data_length = HEADER_GET_DATA_LENGTH(p->header[3]);
986                 break;
987
988         default:
989                 /* Should never happen, this is just to shut up gcc. */
990                 data = NULL;
991                 data_length = 0;
992                 break;
993         }
994
995         /*
996          * The response handler may be executed while the request handler
997          * is still pending.  Cancel the request handler.
998          */
999         card->driver->cancel_packet(card, &t->packet);
1000
1001         t->callback(card, rcode, data, data_length, t->callback_data);
1002 }
1003 EXPORT_SYMBOL(fw_core_handle_response);
1004
1005 static const struct fw_address_region topology_map_region =
1006         { .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
1007           .end   = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
1008
1009 static void handle_topology_map(struct fw_card *card, struct fw_request *request,
1010                 int tcode, int destination, int source, int generation,
1011                 unsigned long long offset, void *payload, size_t length,
1012                 void *callback_data)
1013 {
1014         int start;
1015
1016         if (!TCODE_IS_READ_REQUEST(tcode)) {
1017                 fw_send_response(card, request, RCODE_TYPE_ERROR);
1018                 return;
1019         }
1020
1021         if ((offset & 3) > 0 || (length & 3) > 0) {
1022                 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1023                 return;
1024         }
1025
1026         start = (offset - topology_map_region.start) / 4;
1027         memcpy(payload, &card->topology_map[start], length);
1028
1029         fw_send_response(card, request, RCODE_COMPLETE);
1030 }
1031
1032 static struct fw_address_handler topology_map = {
1033         .length                 = 0x400,
1034         .address_callback       = handle_topology_map,
1035 };
1036
1037 static const struct fw_address_region registers_region =
1038         { .start = CSR_REGISTER_BASE,
1039           .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
1040
1041 static void update_split_timeout(struct fw_card *card)
1042 {
1043         unsigned int cycles;
1044
1045         cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19);
1046
1047         cycles = max(cycles, 800u); /* minimum as per the spec */
1048         cycles = min(cycles, 3u * 8000u); /* maximum OHCI timeout */
1049
1050         card->split_timeout_cycles = cycles;
1051         card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000);
1052 }
1053
1054 static void handle_registers(struct fw_card *card, struct fw_request *request,
1055                 int tcode, int destination, int source, int generation,
1056                 unsigned long long offset, void *payload, size_t length,
1057                 void *callback_data)
1058 {
1059         int reg = offset & ~CSR_REGISTER_BASE;
1060         __be32 *data = payload;
1061         int rcode = RCODE_COMPLETE;
1062         unsigned long flags;
1063
1064         switch (reg) {
1065         case CSR_PRIORITY_BUDGET:
1066                 if (!card->priority_budget_implemented) {
1067                         rcode = RCODE_ADDRESS_ERROR;
1068                         break;
1069                 }
1070                 /* else fall through */
1071
1072         case CSR_NODE_IDS:
1073                 /*
1074                  * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
1075                  * and 9.6, but interoperable with IEEE 1394.1-2004 bridges
1076                  */
1077                 /* fall through */
1078
1079         case CSR_STATE_CLEAR:
1080         case CSR_STATE_SET:
1081         case CSR_CYCLE_TIME:
1082         case CSR_BUS_TIME:
1083         case CSR_BUSY_TIMEOUT:
1084                 if (tcode == TCODE_READ_QUADLET_REQUEST)
1085                         *data = cpu_to_be32(card->driver->read_csr(card, reg));
1086                 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1087                         card->driver->write_csr(card, reg, be32_to_cpu(*data));
1088                 else
1089                         rcode = RCODE_TYPE_ERROR;
1090                 break;
1091
1092         case CSR_RESET_START:
1093                 if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1094                         card->driver->write_csr(card, CSR_STATE_CLEAR,
1095                                                 CSR_STATE_BIT_ABDICATE);
1096                 else
1097                         rcode = RCODE_TYPE_ERROR;
1098                 break;
1099
1100         case CSR_SPLIT_TIMEOUT_HI:
1101                 if (tcode == TCODE_READ_QUADLET_REQUEST) {
1102                         *data = cpu_to_be32(card->split_timeout_hi);
1103                 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1104                         spin_lock_irqsave(&card->lock, flags);
1105                         card->split_timeout_hi = be32_to_cpu(*data) & 7;
1106                         update_split_timeout(card);
1107                         spin_unlock_irqrestore(&card->lock, flags);
1108                 } else {
1109                         rcode = RCODE_TYPE_ERROR;
1110                 }
1111                 break;
1112
1113         case CSR_SPLIT_TIMEOUT_LO:
1114                 if (tcode == TCODE_READ_QUADLET_REQUEST) {
1115                         *data = cpu_to_be32(card->split_timeout_lo);
1116                 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1117                         spin_lock_irqsave(&card->lock, flags);
1118                         card->split_timeout_lo =
1119                                         be32_to_cpu(*data) & 0xfff80000;
1120                         update_split_timeout(card);
1121                         spin_unlock_irqrestore(&card->lock, flags);
1122                 } else {
1123                         rcode = RCODE_TYPE_ERROR;
1124                 }
1125                 break;
1126
1127         case CSR_MAINT_UTILITY:
1128                 if (tcode == TCODE_READ_QUADLET_REQUEST)
1129                         *data = card->maint_utility_register;
1130                 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1131                         card->maint_utility_register = *data;
1132                 else
1133                         rcode = RCODE_TYPE_ERROR;
1134                 break;
1135
1136         case CSR_BROADCAST_CHANNEL:
1137                 if (tcode == TCODE_READ_QUADLET_REQUEST)
1138                         *data = cpu_to_be32(card->broadcast_channel);
1139                 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1140                         card->broadcast_channel =
1141                             (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
1142                             BROADCAST_CHANNEL_INITIAL;
1143                 else
1144                         rcode = RCODE_TYPE_ERROR;
1145                 break;
1146
1147         case CSR_BUS_MANAGER_ID:
1148         case CSR_BANDWIDTH_AVAILABLE:
1149         case CSR_CHANNELS_AVAILABLE_HI:
1150         case CSR_CHANNELS_AVAILABLE_LO:
1151                 /*
1152                  * FIXME: these are handled by the OHCI hardware and
1153                  * the stack never sees these request. If we add
1154                  * support for a new type of controller that doesn't
1155                  * handle this in hardware we need to deal with these
1156                  * transactions.
1157                  */
1158                 BUG();
1159                 break;
1160
1161         default:
1162                 rcode = RCODE_ADDRESS_ERROR;
1163                 break;
1164         }
1165
1166         fw_send_response(card, request, rcode);
1167 }
1168
1169 static struct fw_address_handler registers = {
1170         .length                 = 0x400,
1171         .address_callback       = handle_registers,
1172 };
1173
1174 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1175 MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
1176 MODULE_LICENSE("GPL");
1177
1178 static const u32 vendor_textual_descriptor[] = {
1179         /* textual descriptor leaf () */
1180         0x00060000,
1181         0x00000000,
1182         0x00000000,
1183         0x4c696e75,             /* L i n u */
1184         0x78204669,             /* x   F i */
1185         0x72657769,             /* r e w i */
1186         0x72650000,             /* r e     */
1187 };
1188
1189 static const u32 model_textual_descriptor[] = {
1190         /* model descriptor leaf () */
1191         0x00030000,
1192         0x00000000,
1193         0x00000000,
1194         0x4a756a75,             /* J u j u */
1195 };
1196
1197 static struct fw_descriptor vendor_id_descriptor = {
1198         .length = ARRAY_SIZE(vendor_textual_descriptor),
1199         .immediate = 0x03d00d1e,
1200         .key = 0x81000000,
1201         .data = vendor_textual_descriptor,
1202 };
1203
1204 static struct fw_descriptor model_id_descriptor = {
1205         .length = ARRAY_SIZE(model_textual_descriptor),
1206         .immediate = 0x17000001,
1207         .key = 0x81000000,
1208         .data = model_textual_descriptor,
1209 };
1210
1211 static int __init fw_core_init(void)
1212 {
1213         int ret;
1214
1215         ret = bus_register(&fw_bus_type);
1216         if (ret < 0)
1217                 return ret;
1218
1219         fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
1220         if (fw_cdev_major < 0) {
1221                 bus_unregister(&fw_bus_type);
1222                 return fw_cdev_major;
1223         }
1224
1225         fw_core_add_address_handler(&topology_map, &topology_map_region);
1226         fw_core_add_address_handler(&registers, &registers_region);
1227         fw_core_add_descriptor(&vendor_id_descriptor);
1228         fw_core_add_descriptor(&model_id_descriptor);
1229
1230         return 0;
1231 }
1232
1233 static void __exit fw_core_cleanup(void)
1234 {
1235         unregister_chrdev(fw_cdev_major, "firewire");
1236         bus_unregister(&fw_bus_type);
1237         idr_destroy(&fw_device_idr);
1238 }
1239
1240 module_init(fw_core_init);
1241 module_exit(fw_core_cleanup);