1b4fc922180386cd4107ec42f4328b4f50584be4
[linux-2.6.git] / drivers / edac / edac_mc.c
1 /*
2  * edac_mc kernel module
3  * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4  * This file may be distributed under the terms of the
5  * GNU General Public License.
6  *
7  * Written by Thayne Harbaugh
8  * Based on work by Dan Hollis <goemon at anime dot net> and others.
9  *      http://www.anime.net/~goemon/linux-ecc/
10  *
11  * Modified by Dave Peterson and Doug Thompson
12  *
13  */
14
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/sysdev.h>
29 #include <linux/ctype.h>
30 #include <linux/kthread.h>
31 #include <linux/freezer.h>
32 #include <asm/uaccess.h>
33 #include <asm/page.h>
34 #include <asm/edac.h>
35 #include "edac_mc.h"
36
37 #define EDAC_MC_VERSION "Ver: 2.0.1 " __DATE__
38
39
40 #ifdef CONFIG_EDAC_DEBUG
41 /* Values of 0 to 4 will generate output */
42 int edac_debug_level = 1;
43 EXPORT_SYMBOL_GPL(edac_debug_level);
44 #endif
45
46 /* EDAC Controls, setable by module parameter, and sysfs */
47 static int log_ue = 1;
48 static int log_ce = 1;
49 static int panic_on_ue;
50 static int poll_msec = 1000;
51
52 /* lock to memory controller's control array */
53 static DECLARE_MUTEX(mem_ctls_mutex);
54 static struct list_head mc_devices = LIST_HEAD_INIT(mc_devices);
55
56 static struct task_struct *edac_thread;
57
58 #ifdef CONFIG_PCI
59 static int check_pci_parity = 0;        /* default YES check PCI parity */
60 static int panic_on_pci_parity;         /* default no panic on PCI Parity */
61 static atomic_t pci_parity_count = ATOMIC_INIT(0);
62
63 static struct kobject edac_pci_kobj; /* /sys/devices/system/edac/pci */
64 static struct completion edac_pci_kobj_complete;
65 #endif  /* CONFIG_PCI */
66
67 /*  START sysfs data and methods */
68
69
70 static const char *mem_types[] = {
71         [MEM_EMPTY] = "Empty",
72         [MEM_RESERVED] = "Reserved",
73         [MEM_UNKNOWN] = "Unknown",
74         [MEM_FPM] = "FPM",
75         [MEM_EDO] = "EDO",
76         [MEM_BEDO] = "BEDO",
77         [MEM_SDR] = "Unbuffered-SDR",
78         [MEM_RDR] = "Registered-SDR",
79         [MEM_DDR] = "Unbuffered-DDR",
80         [MEM_RDDR] = "Registered-DDR",
81         [MEM_RMBS] = "RMBS"
82 };
83
84 static const char *dev_types[] = {
85         [DEV_UNKNOWN] = "Unknown",
86         [DEV_X1] = "x1",
87         [DEV_X2] = "x2",
88         [DEV_X4] = "x4",
89         [DEV_X8] = "x8",
90         [DEV_X16] = "x16",
91         [DEV_X32] = "x32",
92         [DEV_X64] = "x64"
93 };
94
95 static const char *edac_caps[] = {
96         [EDAC_UNKNOWN] = "Unknown",
97         [EDAC_NONE] = "None",
98         [EDAC_RESERVED] = "Reserved",
99         [EDAC_PARITY] = "PARITY",
100         [EDAC_EC] = "EC",
101         [EDAC_SECDED] = "SECDED",
102         [EDAC_S2ECD2ED] = "S2ECD2ED",
103         [EDAC_S4ECD4ED] = "S4ECD4ED",
104         [EDAC_S8ECD8ED] = "S8ECD8ED",
105         [EDAC_S16ECD16ED] = "S16ECD16ED"
106 };
107
108 /* sysfs object: /sys/devices/system/edac */
109 static struct sysdev_class edac_class = {
110         set_kset_name("edac"),
111 };
112
113 /* sysfs object:
114  *      /sys/devices/system/edac/mc
115  */
116 static struct kobject edac_memctrl_kobj;
117
118 /* We use these to wait for the reference counts on edac_memctrl_kobj and
119  * edac_pci_kobj to reach 0.
120  */
121 static struct completion edac_memctrl_kobj_complete;
122
123 /*
124  * /sys/devices/system/edac/mc;
125  *      data structures and methods
126  */
127 static ssize_t memctrl_int_show(void *ptr, char *buffer)
128 {
129         int *value = (int*) ptr;
130         return sprintf(buffer, "%u\n", *value);
131 }
132
133 static ssize_t memctrl_int_store(void *ptr, const char *buffer, size_t count)
134 {
135         int *value = (int*) ptr;
136
137         if (isdigit(*buffer))
138                 *value = simple_strtoul(buffer, NULL, 0);
139
140         return count;
141 }
142
143 struct memctrl_dev_attribute {
144         struct attribute attr;
145         void *value;
146         ssize_t (*show)(void *,char *);
147         ssize_t (*store)(void *, const char *, size_t);
148 };
149
150 /* Set of show/store abstract level functions for memory control object */
151 static ssize_t memctrl_dev_show(struct kobject *kobj,
152                 struct attribute *attr, char *buffer)
153 {
154         struct memctrl_dev_attribute *memctrl_dev;
155         memctrl_dev = (struct memctrl_dev_attribute*)attr;
156
157         if (memctrl_dev->show)
158                 return memctrl_dev->show(memctrl_dev->value, buffer);
159
160         return -EIO;
161 }
162
163 static ssize_t memctrl_dev_store(struct kobject *kobj, struct attribute *attr,
164                 const char *buffer, size_t count)
165 {
166         struct memctrl_dev_attribute *memctrl_dev;
167         memctrl_dev = (struct memctrl_dev_attribute*)attr;
168
169         if (memctrl_dev->store)
170                 return memctrl_dev->store(memctrl_dev->value, buffer, count);
171
172         return -EIO;
173 }
174
175 static struct sysfs_ops memctrlfs_ops = {
176         .show   = memctrl_dev_show,
177         .store  = memctrl_dev_store
178 };
179
180 #define MEMCTRL_ATTR(_name,_mode,_show,_store)                  \
181 struct memctrl_dev_attribute attr_##_name = {                   \
182         .attr = {.name = __stringify(_name), .mode = _mode },   \
183         .value  = &_name,                                       \
184         .show   = _show,                                        \
185         .store  = _store,                                       \
186 };
187
188 #define MEMCTRL_STRING_ATTR(_name,_data,_mode,_show,_store)     \
189 struct memctrl_dev_attribute attr_##_name = {                   \
190         .attr = {.name = __stringify(_name), .mode = _mode },   \
191         .value  = _data,                                        \
192         .show   = _show,                                        \
193         .store  = _store,                                       \
194 };
195
196 /* csrow<id> control files */
197 MEMCTRL_ATTR(panic_on_ue,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
198 MEMCTRL_ATTR(log_ue,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
199 MEMCTRL_ATTR(log_ce,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
200 MEMCTRL_ATTR(poll_msec,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
201
202 /* Base Attributes of the memory ECC object */
203 static struct memctrl_dev_attribute *memctrl_attr[] = {
204         &attr_panic_on_ue,
205         &attr_log_ue,
206         &attr_log_ce,
207         &attr_poll_msec,
208         NULL,
209 };
210
211 /* Main MC kobject release() function */
212 static void edac_memctrl_master_release(struct kobject *kobj)
213 {
214         debugf1("%s()\n", __func__);
215         complete(&edac_memctrl_kobj_complete);
216 }
217
218 static struct kobj_type ktype_memctrl = {
219         .release = edac_memctrl_master_release,
220         .sysfs_ops = &memctrlfs_ops,
221         .default_attrs = (struct attribute **) memctrl_attr,
222 };
223
224 /* Initialize the main sysfs entries for edac:
225  *   /sys/devices/system/edac
226  *
227  * and children
228  *
229  * Return:  0 SUCCESS
230  *         !0 FAILURE
231  */
232 static int edac_sysfs_memctrl_setup(void)
233 {
234         int err = 0;
235
236         debugf1("%s()\n", __func__);
237
238         /* create the /sys/devices/system/edac directory */
239         err = sysdev_class_register(&edac_class);
240
241         if (err) {
242                 debugf1("%s() error=%d\n", __func__, err);
243                 return err;
244         }
245
246         /* Init the MC's kobject */
247         memset(&edac_memctrl_kobj, 0, sizeof (edac_memctrl_kobj));
248         edac_memctrl_kobj.parent = &edac_class.kset.kobj;
249         edac_memctrl_kobj.ktype = &ktype_memctrl;
250
251         /* generate sysfs "..../edac/mc"   */
252         err = kobject_set_name(&edac_memctrl_kobj,"mc");
253
254         if (err)
255                 goto fail;
256
257         /* FIXME: maybe new sysdev_create_subdir() */
258         err = kobject_register(&edac_memctrl_kobj);
259
260         if (err) {
261                 debugf1("Failed to register '.../edac/mc'\n");
262                 goto fail;
263         }
264
265         debugf1("Registered '.../edac/mc' kobject\n");
266
267         return 0;
268
269 fail:
270         sysdev_class_unregister(&edac_class);
271         return err;
272 }
273
274 /*
275  * MC teardown:
276  *      the '..../edac/mc' kobject followed by '..../edac' itself
277  */
278 static void edac_sysfs_memctrl_teardown(void)
279 {
280         debugf0("MC: " __FILE__ ": %s()\n", __func__);
281
282         /* Unregister the MC's kobject and wait for reference count to reach
283          * 0.
284          */
285         init_completion(&edac_memctrl_kobj_complete);
286         kobject_unregister(&edac_memctrl_kobj);
287         wait_for_completion(&edac_memctrl_kobj_complete);
288
289         /* Unregister the 'edac' object */
290         sysdev_class_unregister(&edac_class);
291 }
292
293 #ifdef CONFIG_PCI
294 static ssize_t edac_pci_int_show(void *ptr, char *buffer)
295 {
296         int *value = ptr;
297         return sprintf(buffer,"%d\n",*value);
298 }
299
300 static ssize_t edac_pci_int_store(void *ptr, const char *buffer, size_t count)
301 {
302         int *value = ptr;
303
304         if (isdigit(*buffer))
305                 *value = simple_strtoul(buffer,NULL,0);
306
307         return count;
308 }
309
310 struct edac_pci_dev_attribute {
311         struct attribute attr;
312         void *value;
313         ssize_t (*show)(void *,char *);
314         ssize_t (*store)(void *, const char *,size_t);
315 };
316
317 /* Set of show/store abstract level functions for PCI Parity object */
318 static ssize_t edac_pci_dev_show(struct kobject *kobj, struct attribute *attr,
319                 char *buffer)
320 {
321         struct edac_pci_dev_attribute *edac_pci_dev;
322         edac_pci_dev= (struct edac_pci_dev_attribute*)attr;
323
324         if (edac_pci_dev->show)
325                 return edac_pci_dev->show(edac_pci_dev->value, buffer);
326         return -EIO;
327 }
328
329 static ssize_t edac_pci_dev_store(struct kobject *kobj,
330                 struct attribute *attr, const char *buffer, size_t count)
331 {
332         struct edac_pci_dev_attribute *edac_pci_dev;
333         edac_pci_dev= (struct edac_pci_dev_attribute*)attr;
334
335         if (edac_pci_dev->show)
336                 return edac_pci_dev->store(edac_pci_dev->value, buffer, count);
337         return -EIO;
338 }
339
340 static struct sysfs_ops edac_pci_sysfs_ops = {
341         .show   = edac_pci_dev_show,
342         .store  = edac_pci_dev_store
343 };
344
345 #define EDAC_PCI_ATTR(_name,_mode,_show,_store)                 \
346 struct edac_pci_dev_attribute edac_pci_attr_##_name = {         \
347         .attr = {.name = __stringify(_name), .mode = _mode },   \
348         .value  = &_name,                                       \
349         .show   = _show,                                        \
350         .store  = _store,                                       \
351 };
352
353 #define EDAC_PCI_STRING_ATTR(_name,_data,_mode,_show,_store)    \
354 struct edac_pci_dev_attribute edac_pci_attr_##_name = {         \
355         .attr = {.name = __stringify(_name), .mode = _mode },   \
356         .value  = _data,                                        \
357         .show   = _show,                                        \
358         .store  = _store,                                       \
359 };
360
361 /* PCI Parity control files */
362 EDAC_PCI_ATTR(check_pci_parity, S_IRUGO|S_IWUSR, edac_pci_int_show,
363         edac_pci_int_store);
364 EDAC_PCI_ATTR(panic_on_pci_parity, S_IRUGO|S_IWUSR, edac_pci_int_show,
365         edac_pci_int_store);
366 EDAC_PCI_ATTR(pci_parity_count, S_IRUGO, edac_pci_int_show, NULL);
367
368 /* Base Attributes of the memory ECC object */
369 static struct edac_pci_dev_attribute *edac_pci_attr[] = {
370         &edac_pci_attr_check_pci_parity,
371         &edac_pci_attr_panic_on_pci_parity,
372         &edac_pci_attr_pci_parity_count,
373         NULL,
374 };
375
376 /* No memory to release */
377 static void edac_pci_release(struct kobject *kobj)
378 {
379         debugf1("%s()\n", __func__);
380         complete(&edac_pci_kobj_complete);
381 }
382
383 static struct kobj_type ktype_edac_pci = {
384         .release = edac_pci_release,
385         .sysfs_ops = &edac_pci_sysfs_ops,
386         .default_attrs = (struct attribute **) edac_pci_attr,
387 };
388
389 /**
390  * edac_sysfs_pci_setup()
391  *
392  */
393 static int edac_sysfs_pci_setup(void)
394 {
395         int err;
396
397         debugf1("%s()\n", __func__);
398
399         memset(&edac_pci_kobj, 0, sizeof(edac_pci_kobj));
400         edac_pci_kobj.parent = &edac_class.kset.kobj;
401         edac_pci_kobj.ktype = &ktype_edac_pci;
402         err = kobject_set_name(&edac_pci_kobj, "pci");
403
404         if (!err) {
405                 /* Instanstiate the csrow object */
406                 /* FIXME: maybe new sysdev_create_subdir() */
407                 err = kobject_register(&edac_pci_kobj);
408
409                 if (err)
410                         debugf1("Failed to register '.../edac/pci'\n");
411                 else
412                         debugf1("Registered '.../edac/pci' kobject\n");
413         }
414
415         return err;
416 }
417
418 static void edac_sysfs_pci_teardown(void)
419 {
420         debugf0("%s()\n", __func__);
421         init_completion(&edac_pci_kobj_complete);
422         kobject_unregister(&edac_pci_kobj);
423         wait_for_completion(&edac_pci_kobj_complete);
424 }
425
426
427 static u16 get_pci_parity_status(struct pci_dev *dev, int secondary)
428 {
429         int where;
430         u16 status;
431
432         where = secondary ? PCI_SEC_STATUS : PCI_STATUS;
433         pci_read_config_word(dev, where, &status);
434
435         /* If we get back 0xFFFF then we must suspect that the card has been
436          * pulled but the Linux PCI layer has not yet finished cleaning up.
437          * We don't want to report on such devices
438          */
439
440         if (status == 0xFFFF) {
441                 u32 sanity;
442
443                 pci_read_config_dword(dev, 0, &sanity);
444
445                 if (sanity == 0xFFFFFFFF)
446                         return 0;
447         }
448
449         status &= PCI_STATUS_DETECTED_PARITY | PCI_STATUS_SIG_SYSTEM_ERROR |
450                 PCI_STATUS_PARITY;
451
452         if (status)
453                 /* reset only the bits we are interested in */
454                 pci_write_config_word(dev, where, status);
455
456         return status;
457 }
458
459 typedef void (*pci_parity_check_fn_t) (struct pci_dev *dev);
460
461 /* Clear any PCI parity errors logged by this device. */
462 static void edac_pci_dev_parity_clear(struct pci_dev *dev)
463 {
464         u8 header_type;
465
466         get_pci_parity_status(dev, 0);
467
468         /* read the device TYPE, looking for bridges */
469         pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type);
470
471         if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE)
472                 get_pci_parity_status(dev, 1);
473 }
474
475 /*
476  *  PCI Parity polling
477  *
478  */
479 static void edac_pci_dev_parity_test(struct pci_dev *dev)
480 {
481         u16 status;
482         u8  header_type;
483
484         /* read the STATUS register on this device
485          */
486         status = get_pci_parity_status(dev, 0);
487
488         debugf2("PCI STATUS= 0x%04x %s\n", status, dev->dev.bus_id );
489
490         /* check the status reg for errors */
491         if (status) {
492                 if (status & (PCI_STATUS_SIG_SYSTEM_ERROR))
493                         edac_printk(KERN_CRIT, EDAC_PCI,
494                                 "Signaled System Error on %s\n",
495                                 pci_name(dev));
496
497                 if (status & (PCI_STATUS_PARITY)) {
498                         edac_printk(KERN_CRIT, EDAC_PCI,
499                                 "Master Data Parity Error on %s\n",
500                                 pci_name(dev));
501
502                         atomic_inc(&pci_parity_count);
503                 }
504
505                 if (status & (PCI_STATUS_DETECTED_PARITY)) {
506                         edac_printk(KERN_CRIT, EDAC_PCI,
507                                 "Detected Parity Error on %s\n",
508                                 pci_name(dev));
509
510                         atomic_inc(&pci_parity_count);
511                 }
512         }
513
514         /* read the device TYPE, looking for bridges */
515         pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type);
516
517         debugf2("PCI HEADER TYPE= 0x%02x %s\n", header_type, dev->dev.bus_id );
518
519         if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
520                 /* On bridges, need to examine secondary status register  */
521                 status = get_pci_parity_status(dev, 1);
522
523                 debugf2("PCI SEC_STATUS= 0x%04x %s\n",
524                                 status, dev->dev.bus_id );
525
526                 /* check the secondary status reg for errors */
527                 if (status) {
528                         if (status & (PCI_STATUS_SIG_SYSTEM_ERROR))
529                                 edac_printk(KERN_CRIT, EDAC_PCI, "Bridge "
530                                         "Signaled System Error on %s\n",
531                                         pci_name(dev));
532
533                         if (status & (PCI_STATUS_PARITY)) {
534                                 edac_printk(KERN_CRIT, EDAC_PCI, "Bridge "
535                                         "Master Data Parity Error on "
536                                         "%s\n", pci_name(dev));
537
538                                 atomic_inc(&pci_parity_count);
539                         }
540
541                         if (status & (PCI_STATUS_DETECTED_PARITY)) {
542                                 edac_printk(KERN_CRIT, EDAC_PCI, "Bridge "
543                                         "Detected Parity Error on %s\n",
544                                         pci_name(dev));
545
546                                 atomic_inc(&pci_parity_count);
547                         }
548                 }
549         }
550 }
551
552 /*
553  * pci_dev parity list iterator
554  *      Scan the PCI device list for one iteration, looking for SERRORs
555  *      Master Parity ERRORS or Parity ERRORs on primary or secondary devices
556  */
557 static inline void edac_pci_dev_parity_iterator(pci_parity_check_fn_t fn)
558 {
559         struct pci_dev *dev = NULL;
560
561         /* request for kernel access to the next PCI device, if any,
562          * and while we are looking at it have its reference count
563          * bumped until we are done with it
564          */
565         while((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
566                 fn(dev);
567         }
568 }
569
570 static void do_pci_parity_check(void)
571 {
572         unsigned long flags;
573         int before_count;
574
575         debugf3("%s()\n", __func__);
576
577         if (!check_pci_parity)
578                 return;
579
580         before_count = atomic_read(&pci_parity_count);
581
582         /* scan all PCI devices looking for a Parity Error on devices and
583          * bridges
584          */
585         local_irq_save(flags);
586         edac_pci_dev_parity_iterator(edac_pci_dev_parity_test);
587         local_irq_restore(flags);
588
589         /* Only if operator has selected panic on PCI Error */
590         if (panic_on_pci_parity) {
591                 /* If the count is different 'after' from 'before' */
592                 if (before_count != atomic_read(&pci_parity_count))
593                         panic("EDAC: PCI Parity Error");
594         }
595 }
596
597 static inline void clear_pci_parity_errors(void)
598 {
599         /* Clear any PCI bus parity errors that devices initially have logged
600          * in their registers.
601          */
602         edac_pci_dev_parity_iterator(edac_pci_dev_parity_clear);
603 }
604
605 #else   /* CONFIG_PCI */
606
607 /* pre-process these away */
608 #define do_pci_parity_check()
609 #define clear_pci_parity_errors()
610 #define edac_sysfs_pci_teardown()
611 #define edac_sysfs_pci_setup()  (0)
612
613 #endif  /* CONFIG_PCI */
614
615 /* EDAC sysfs CSROW data structures and methods
616  */
617
618 /* Set of more default csrow<id> attribute show/store functions */
619 static ssize_t csrow_ue_count_show(struct csrow_info *csrow, char *data, int private)
620 {
621         return sprintf(data,"%u\n", csrow->ue_count);
622 }
623
624 static ssize_t csrow_ce_count_show(struct csrow_info *csrow, char *data, int private)
625 {
626         return sprintf(data,"%u\n", csrow->ce_count);
627 }
628
629 static ssize_t csrow_size_show(struct csrow_info *csrow, char *data, int private)
630 {
631         return sprintf(data,"%u\n", PAGES_TO_MiB(csrow->nr_pages));
632 }
633
634 static ssize_t csrow_mem_type_show(struct csrow_info *csrow, char *data, int private)
635 {
636         return sprintf(data,"%s\n", mem_types[csrow->mtype]);
637 }
638
639 static ssize_t csrow_dev_type_show(struct csrow_info *csrow, char *data, int private)
640 {
641         return sprintf(data,"%s\n", dev_types[csrow->dtype]);
642 }
643
644 static ssize_t csrow_edac_mode_show(struct csrow_info *csrow, char *data, int private)
645 {
646         return sprintf(data,"%s\n", edac_caps[csrow->edac_mode]);
647 }
648
649 /* show/store functions for DIMM Label attributes */
650 static ssize_t channel_dimm_label_show(struct csrow_info *csrow,
651                 char *data, int channel)
652 {
653         return snprintf(data, EDAC_MC_LABEL_LEN,"%s",
654                         csrow->channels[channel].label);
655 }
656
657 static ssize_t channel_dimm_label_store(struct csrow_info *csrow,
658                                 const char *data,
659                                 size_t count,
660                                 int channel)
661 {
662         ssize_t max_size = 0;
663
664         max_size = min((ssize_t)count,(ssize_t)EDAC_MC_LABEL_LEN-1);
665         strncpy(csrow->channels[channel].label, data, max_size);
666         csrow->channels[channel].label[max_size] = '\0';
667
668         return max_size;
669 }
670
671 /* show function for dynamic chX_ce_count attribute */
672 static ssize_t channel_ce_count_show(struct csrow_info *csrow,
673                                 char *data,
674                                 int channel)
675 {
676         return sprintf(data, "%u\n", csrow->channels[channel].ce_count);
677 }
678
679 /* csrow specific attribute structure */
680 struct csrowdev_attribute {
681         struct attribute attr;
682         ssize_t (*show)(struct csrow_info *,char *,int);
683         ssize_t (*store)(struct csrow_info *, const char *,size_t,int);
684         int    private;
685 };
686
687 #define to_csrow(k) container_of(k, struct csrow_info, kobj)
688 #define to_csrowdev_attr(a) container_of(a, struct csrowdev_attribute, attr)
689
690 /* Set of show/store higher level functions for default csrow attributes */
691 static ssize_t csrowdev_show(struct kobject *kobj,
692                         struct attribute *attr,
693                         char *buffer)
694 {
695         struct csrow_info *csrow = to_csrow(kobj);
696         struct csrowdev_attribute *csrowdev_attr = to_csrowdev_attr(attr);
697
698         if (csrowdev_attr->show)
699                 return csrowdev_attr->show(csrow,
700                                         buffer,
701                                         csrowdev_attr->private);
702         return -EIO;
703 }
704
705 static ssize_t csrowdev_store(struct kobject *kobj, struct attribute *attr,
706                 const char *buffer, size_t count)
707 {
708         struct csrow_info *csrow = to_csrow(kobj);
709         struct csrowdev_attribute * csrowdev_attr = to_csrowdev_attr(attr);
710
711         if (csrowdev_attr->store)
712                 return csrowdev_attr->store(csrow,
713                                         buffer,
714                                         count,
715                                         csrowdev_attr->private);
716         return -EIO;
717 }
718
719 static struct sysfs_ops csrowfs_ops = {
720         .show   = csrowdev_show,
721         .store  = csrowdev_store
722 };
723
724 #define CSROWDEV_ATTR(_name,_mode,_show,_store,_private)        \
725 struct csrowdev_attribute attr_##_name = {                      \
726         .attr = {.name = __stringify(_name), .mode = _mode },   \
727         .show   = _show,                                        \
728         .store  = _store,                                       \
729         .private = _private,                                    \
730 };
731
732 /* default cwrow<id>/attribute files */
733 CSROWDEV_ATTR(size_mb,S_IRUGO,csrow_size_show,NULL,0);
734 CSROWDEV_ATTR(dev_type,S_IRUGO,csrow_dev_type_show,NULL,0);
735 CSROWDEV_ATTR(mem_type,S_IRUGO,csrow_mem_type_show,NULL,0);
736 CSROWDEV_ATTR(edac_mode,S_IRUGO,csrow_edac_mode_show,NULL,0);
737 CSROWDEV_ATTR(ue_count,S_IRUGO,csrow_ue_count_show,NULL,0);
738 CSROWDEV_ATTR(ce_count,S_IRUGO,csrow_ce_count_show,NULL,0);
739
740 /* default attributes of the CSROW<id> object */
741 static struct csrowdev_attribute *default_csrow_attr[] = {
742         &attr_dev_type,
743         &attr_mem_type,
744         &attr_edac_mode,
745         &attr_size_mb,
746         &attr_ue_count,
747         &attr_ce_count,
748         NULL,
749 };
750
751
752 /* possible dynamic channel DIMM Label attribute files */
753 CSROWDEV_ATTR(ch0_dimm_label,S_IRUGO|S_IWUSR,
754                 channel_dimm_label_show,
755                 channel_dimm_label_store,
756                 0 );
757 CSROWDEV_ATTR(ch1_dimm_label,S_IRUGO|S_IWUSR,
758                 channel_dimm_label_show,
759                 channel_dimm_label_store,
760                 1 );
761 CSROWDEV_ATTR(ch2_dimm_label,S_IRUGO|S_IWUSR,
762                 channel_dimm_label_show,
763                 channel_dimm_label_store,
764                 2 );
765 CSROWDEV_ATTR(ch3_dimm_label,S_IRUGO|S_IWUSR,
766                 channel_dimm_label_show,
767                 channel_dimm_label_store,
768                 3 );
769 CSROWDEV_ATTR(ch4_dimm_label,S_IRUGO|S_IWUSR,
770                 channel_dimm_label_show,
771                 channel_dimm_label_store,
772                 4 );
773 CSROWDEV_ATTR(ch5_dimm_label,S_IRUGO|S_IWUSR,
774                 channel_dimm_label_show,
775                 channel_dimm_label_store,
776                 5 );
777
778 /* Total possible dynamic DIMM Label attribute file table */
779 static struct csrowdev_attribute *dynamic_csrow_dimm_attr[] = {
780                 &attr_ch0_dimm_label,
781                 &attr_ch1_dimm_label,
782                 &attr_ch2_dimm_label,
783                 &attr_ch3_dimm_label,
784                 &attr_ch4_dimm_label,
785                 &attr_ch5_dimm_label
786 };
787
788 /* possible dynamic channel ce_count attribute files */
789 CSROWDEV_ATTR(ch0_ce_count,S_IRUGO|S_IWUSR,
790                 channel_ce_count_show,
791                 NULL,
792                 0 );
793 CSROWDEV_ATTR(ch1_ce_count,S_IRUGO|S_IWUSR,
794                 channel_ce_count_show,
795                 NULL,
796                 1 );
797 CSROWDEV_ATTR(ch2_ce_count,S_IRUGO|S_IWUSR,
798                 channel_ce_count_show,
799                 NULL,
800                 2 );
801 CSROWDEV_ATTR(ch3_ce_count,S_IRUGO|S_IWUSR,
802                 channel_ce_count_show,
803                 NULL,
804                 3 );
805 CSROWDEV_ATTR(ch4_ce_count,S_IRUGO|S_IWUSR,
806                 channel_ce_count_show,
807                 NULL,
808                 4 );
809 CSROWDEV_ATTR(ch5_ce_count,S_IRUGO|S_IWUSR,
810                 channel_ce_count_show,
811                 NULL,
812                 5 );
813
814 /* Total possible dynamic ce_count attribute file table */
815 static struct csrowdev_attribute *dynamic_csrow_ce_count_attr[] = {
816                 &attr_ch0_ce_count,
817                 &attr_ch1_ce_count,
818                 &attr_ch2_ce_count,
819                 &attr_ch3_ce_count,
820                 &attr_ch4_ce_count,
821                 &attr_ch5_ce_count
822 };
823
824
825 #define EDAC_NR_CHANNELS        6
826
827 /* Create dynamic CHANNEL files, indexed by 'chan',  under specifed CSROW */
828 static int edac_create_channel_files(struct kobject *kobj, int chan)
829 {
830         int err=-ENODEV;
831
832         if (chan >= EDAC_NR_CHANNELS)
833                 return err;
834
835         /* create the DIMM label attribute file */
836         err = sysfs_create_file(kobj,
837                         (struct attribute *) dynamic_csrow_dimm_attr[chan]);
838
839         if (!err) {
840                 /* create the CE Count attribute file */
841                 err = sysfs_create_file(kobj,
842                         (struct attribute *) dynamic_csrow_ce_count_attr[chan]);
843         } else {
844                 debugf1("%s()  dimm labels and ce_count files created", __func__);
845         }
846
847         return err;
848 }
849
850 /* No memory to release for this kobj */
851 static void edac_csrow_instance_release(struct kobject *kobj)
852 {
853         struct csrow_info *cs;
854
855         cs = container_of(kobj, struct csrow_info, kobj);
856         complete(&cs->kobj_complete);
857 }
858
859 /* the kobj_type instance for a CSROW */
860 static struct kobj_type ktype_csrow = {
861         .release = edac_csrow_instance_release,
862         .sysfs_ops = &csrowfs_ops,
863         .default_attrs = (struct attribute **) default_csrow_attr,
864 };
865
866 /* Create a CSROW object under specifed edac_mc_device */
867 static int edac_create_csrow_object(
868                 struct kobject *edac_mci_kobj,
869                 struct csrow_info *csrow,
870                 int index)
871 {
872         int err = 0;
873         int chan;
874
875         memset(&csrow->kobj, 0, sizeof(csrow->kobj));
876
877         /* generate ..../edac/mc/mc<id>/csrow<index>   */
878
879         csrow->kobj.parent = edac_mci_kobj;
880         csrow->kobj.ktype = &ktype_csrow;
881
882         /* name this instance of csrow<id> */
883         err = kobject_set_name(&csrow->kobj,"csrow%d",index);
884         if (err)
885                 goto error_exit;
886
887         /* Instanstiate the csrow object */
888         err = kobject_register(&csrow->kobj);
889         if (!err) {
890                 /* Create the dyanmic attribute files on this csrow,
891                  * namely, the DIMM labels and the channel ce_count
892                  */
893                 for (chan = 0; chan < csrow->nr_channels; chan++) {
894                         err = edac_create_channel_files(&csrow->kobj,chan);
895                         if (err)
896                                 break;
897                 }
898         }
899
900 error_exit:
901         return err;
902 }
903
904 /* default sysfs methods and data structures for the main MCI kobject */
905
906 static ssize_t mci_reset_counters_store(struct mem_ctl_info *mci,
907                 const char *data, size_t count)
908 {
909         int row, chan;
910
911         mci->ue_noinfo_count = 0;
912         mci->ce_noinfo_count = 0;
913         mci->ue_count = 0;
914         mci->ce_count = 0;
915
916         for (row = 0; row < mci->nr_csrows; row++) {
917                 struct csrow_info *ri = &mci->csrows[row];
918
919                 ri->ue_count = 0;
920                 ri->ce_count = 0;
921
922                 for (chan = 0; chan < ri->nr_channels; chan++)
923                         ri->channels[chan].ce_count = 0;
924         }
925
926         mci->start_time = jiffies;
927         return count;
928 }
929
930 /* default attribute files for the MCI object */
931 static ssize_t mci_ue_count_show(struct mem_ctl_info *mci, char *data)
932 {
933         return sprintf(data,"%d\n", mci->ue_count);
934 }
935
936 static ssize_t mci_ce_count_show(struct mem_ctl_info *mci, char *data)
937 {
938         return sprintf(data,"%d\n", mci->ce_count);
939 }
940
941 static ssize_t mci_ce_noinfo_show(struct mem_ctl_info *mci, char *data)
942 {
943         return sprintf(data,"%d\n", mci->ce_noinfo_count);
944 }
945
946 static ssize_t mci_ue_noinfo_show(struct mem_ctl_info *mci, char *data)
947 {
948         return sprintf(data,"%d\n", mci->ue_noinfo_count);
949 }
950
951 static ssize_t mci_seconds_show(struct mem_ctl_info *mci, char *data)
952 {
953         return sprintf(data,"%ld\n", (jiffies - mci->start_time) / HZ);
954 }
955
956 static ssize_t mci_ctl_name_show(struct mem_ctl_info *mci, char *data)
957 {
958         return sprintf(data,"%s\n", mci->ctl_name);
959 }
960
961 static ssize_t mci_size_mb_show(struct mem_ctl_info *mci, char *data)
962 {
963         int total_pages, csrow_idx;
964
965         for (total_pages = csrow_idx = 0; csrow_idx < mci->nr_csrows;
966                         csrow_idx++) {
967                 struct csrow_info *csrow = &mci->csrows[csrow_idx];
968
969                 if (!csrow->nr_pages)
970                         continue;
971
972                 total_pages += csrow->nr_pages;
973         }
974
975         return sprintf(data,"%u\n", PAGES_TO_MiB(total_pages));
976 }
977
978 struct mcidev_attribute {
979         struct attribute attr;
980         ssize_t (*show)(struct mem_ctl_info *,char *);
981         ssize_t (*store)(struct mem_ctl_info *, const char *,size_t);
982 };
983
984 #define to_mci(k) container_of(k, struct mem_ctl_info, edac_mci_kobj)
985 #define to_mcidev_attr(a) container_of(a, struct mcidev_attribute, attr)
986
987 /* MCI show/store functions for top most object */
988 static ssize_t mcidev_show(struct kobject *kobj, struct attribute *attr,
989                 char *buffer)
990 {
991         struct mem_ctl_info *mem_ctl_info = to_mci(kobj);
992         struct mcidev_attribute * mcidev_attr = to_mcidev_attr(attr);
993
994         if (mcidev_attr->show)
995                 return mcidev_attr->show(mem_ctl_info, buffer);
996
997         return -EIO;
998 }
999
1000 static ssize_t mcidev_store(struct kobject *kobj, struct attribute *attr,
1001                 const char *buffer, size_t count)
1002 {
1003         struct mem_ctl_info *mem_ctl_info = to_mci(kobj);
1004         struct mcidev_attribute * mcidev_attr = to_mcidev_attr(attr);
1005
1006         if (mcidev_attr->store)
1007                 return mcidev_attr->store(mem_ctl_info, buffer, count);
1008
1009         return -EIO;
1010 }
1011
1012 static struct sysfs_ops mci_ops = {
1013         .show = mcidev_show,
1014         .store = mcidev_store
1015 };
1016
1017 #define MCIDEV_ATTR(_name,_mode,_show,_store)                   \
1018 struct mcidev_attribute mci_attr_##_name = {                    \
1019         .attr = {.name = __stringify(_name), .mode = _mode },   \
1020         .show   = _show,                                        \
1021         .store  = _store,                                       \
1022 };
1023
1024 /* default Control file */
1025 MCIDEV_ATTR(reset_counters,S_IWUSR,NULL,mci_reset_counters_store);
1026
1027 /* default Attribute files */
1028 MCIDEV_ATTR(mc_name,S_IRUGO,mci_ctl_name_show,NULL);
1029 MCIDEV_ATTR(size_mb,S_IRUGO,mci_size_mb_show,NULL);
1030 MCIDEV_ATTR(seconds_since_reset,S_IRUGO,mci_seconds_show,NULL);
1031 MCIDEV_ATTR(ue_noinfo_count,S_IRUGO,mci_ue_noinfo_show,NULL);
1032 MCIDEV_ATTR(ce_noinfo_count,S_IRUGO,mci_ce_noinfo_show,NULL);
1033 MCIDEV_ATTR(ue_count,S_IRUGO,mci_ue_count_show,NULL);
1034 MCIDEV_ATTR(ce_count,S_IRUGO,mci_ce_count_show,NULL);
1035
1036 static struct mcidev_attribute *mci_attr[] = {
1037         &mci_attr_reset_counters,
1038         &mci_attr_mc_name,
1039         &mci_attr_size_mb,
1040         &mci_attr_seconds_since_reset,
1041         &mci_attr_ue_noinfo_count,
1042         &mci_attr_ce_noinfo_count,
1043         &mci_attr_ue_count,
1044         &mci_attr_ce_count,
1045         NULL
1046 };
1047
1048 /*
1049  * Release of a MC controlling instance
1050  */
1051 static void edac_mci_instance_release(struct kobject *kobj)
1052 {
1053         struct mem_ctl_info *mci;
1054
1055         mci = to_mci(kobj);
1056         debugf0("%s() idx=%d\n", __func__, mci->mc_idx);
1057         complete(&mci->kobj_complete);
1058 }
1059
1060 static struct kobj_type ktype_mci = {
1061         .release = edac_mci_instance_release,
1062         .sysfs_ops = &mci_ops,
1063         .default_attrs = (struct attribute **) mci_attr,
1064 };
1065
1066
1067 #define EDAC_DEVICE_SYMLINK     "device"
1068
1069 /*
1070  * Create a new Memory Controller kobject instance,
1071  *      mc<id> under the 'mc' directory
1072  *
1073  * Return:
1074  *      0       Success
1075  *      !0      Failure
1076  */
1077 static int edac_create_sysfs_mci_device(struct mem_ctl_info *mci)
1078 {
1079         int i;
1080         int err;
1081         struct csrow_info *csrow;
1082         struct kobject *edac_mci_kobj=&mci->edac_mci_kobj;
1083
1084         debugf0("%s() idx=%d\n", __func__, mci->mc_idx);
1085         memset(edac_mci_kobj, 0, sizeof(*edac_mci_kobj));
1086
1087         /* set the name of the mc<id> object */
1088         err = kobject_set_name(edac_mci_kobj,"mc%d",mci->mc_idx);
1089         if (err)
1090                 return err;
1091
1092         /* link to our parent the '..../edac/mc' object */
1093         edac_mci_kobj->parent = &edac_memctrl_kobj;
1094         edac_mci_kobj->ktype = &ktype_mci;
1095
1096         /* register the mc<id> kobject */
1097         err = kobject_register(edac_mci_kobj);
1098         if (err)
1099                 return err;
1100
1101         /* create a symlink for the device */
1102         err = sysfs_create_link(edac_mci_kobj, &mci->dev->kobj,
1103                                 EDAC_DEVICE_SYMLINK);
1104         if (err)
1105                 goto fail0;
1106
1107         /* Make directories for each CSROW object
1108          * under the mc<id> kobject
1109          */
1110         for (i = 0; i < mci->nr_csrows; i++) {
1111                 csrow = &mci->csrows[i];
1112
1113                 /* Only expose populated CSROWs */
1114                 if (csrow->nr_pages > 0) {
1115                         err = edac_create_csrow_object(edac_mci_kobj,csrow,i);
1116                         if (err)
1117                                 goto fail1;
1118                 }
1119         }
1120
1121         return 0;
1122
1123         /* CSROW error: backout what has already been registered,  */
1124 fail1:
1125         for ( i--; i >= 0; i--) {
1126                 if (csrow->nr_pages > 0) {
1127                         init_completion(&csrow->kobj_complete);
1128                         kobject_unregister(&mci->csrows[i].kobj);
1129                         wait_for_completion(&csrow->kobj_complete);
1130                 }
1131         }
1132
1133 fail0:
1134         init_completion(&mci->kobj_complete);
1135         kobject_unregister(edac_mci_kobj);
1136         wait_for_completion(&mci->kobj_complete);
1137         return err;
1138 }
1139
1140 /*
1141  * remove a Memory Controller instance
1142  */
1143 static void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
1144 {
1145         int i;
1146
1147         debugf0("%s()\n", __func__);
1148
1149         /* remove all csrow kobjects */
1150         for (i = 0; i < mci->nr_csrows; i++) {
1151                 if (mci->csrows[i].nr_pages > 0) {
1152                         init_completion(&mci->csrows[i].kobj_complete);
1153                         kobject_unregister(&mci->csrows[i].kobj);
1154                         wait_for_completion(&mci->csrows[i].kobj_complete);
1155                 }
1156         }
1157
1158         sysfs_remove_link(&mci->edac_mci_kobj, EDAC_DEVICE_SYMLINK);
1159         init_completion(&mci->kobj_complete);
1160         kobject_unregister(&mci->edac_mci_kobj);
1161         wait_for_completion(&mci->kobj_complete);
1162 }
1163
1164 /* END OF sysfs data and methods */
1165
1166 #ifdef CONFIG_EDAC_DEBUG
1167
1168 void edac_mc_dump_channel(struct channel_info *chan)
1169 {
1170         debugf4("\tchannel = %p\n", chan);
1171         debugf4("\tchannel->chan_idx = %d\n", chan->chan_idx);
1172         debugf4("\tchannel->ce_count = %d\n", chan->ce_count);
1173         debugf4("\tchannel->label = '%s'\n", chan->label);
1174         debugf4("\tchannel->csrow = %p\n\n", chan->csrow);
1175 }
1176 EXPORT_SYMBOL_GPL(edac_mc_dump_channel);
1177
1178 void edac_mc_dump_csrow(struct csrow_info *csrow)
1179 {
1180         debugf4("\tcsrow = %p\n", csrow);
1181         debugf4("\tcsrow->csrow_idx = %d\n", csrow->csrow_idx);
1182         debugf4("\tcsrow->first_page = 0x%lx\n",
1183                 csrow->first_page);
1184         debugf4("\tcsrow->last_page = 0x%lx\n", csrow->last_page);
1185         debugf4("\tcsrow->page_mask = 0x%lx\n", csrow->page_mask);
1186         debugf4("\tcsrow->nr_pages = 0x%x\n", csrow->nr_pages);
1187         debugf4("\tcsrow->nr_channels = %d\n",
1188                 csrow->nr_channels);
1189         debugf4("\tcsrow->channels = %p\n", csrow->channels);
1190         debugf4("\tcsrow->mci = %p\n\n", csrow->mci);
1191 }
1192 EXPORT_SYMBOL_GPL(edac_mc_dump_csrow);
1193
1194 void edac_mc_dump_mci(struct mem_ctl_info *mci)
1195 {
1196         debugf3("\tmci = %p\n", mci);
1197         debugf3("\tmci->mtype_cap = %lx\n", mci->mtype_cap);
1198         debugf3("\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
1199         debugf3("\tmci->edac_cap = %lx\n", mci->edac_cap);
1200         debugf4("\tmci->edac_check = %p\n", mci->edac_check);
1201         debugf3("\tmci->nr_csrows = %d, csrows = %p\n",
1202                 mci->nr_csrows, mci->csrows);
1203         debugf3("\tdev = %p\n", mci->dev);
1204         debugf3("\tmod_name:ctl_name = %s:%s\n",
1205                 mci->mod_name, mci->ctl_name);
1206         debugf3("\tpvt_info = %p\n\n", mci->pvt_info);
1207 }
1208 EXPORT_SYMBOL_GPL(edac_mc_dump_mci);
1209
1210 #endif  /* CONFIG_EDAC_DEBUG */
1211
1212 /* 'ptr' points to a possibly unaligned item X such that sizeof(X) is 'size'.
1213  * Adjust 'ptr' so that its alignment is at least as stringent as what the
1214  * compiler would provide for X and return the aligned result.
1215  *
1216  * If 'size' is a constant, the compiler will optimize this whole function
1217  * down to either a no-op or the addition of a constant to the value of 'ptr'.
1218  */
1219 static inline char * align_ptr(void *ptr, unsigned size)
1220 {
1221         unsigned align, r;
1222
1223         /* Here we assume that the alignment of a "long long" is the most
1224          * stringent alignment that the compiler will ever provide by default.
1225          * As far as I know, this is a reasonable assumption.
1226          */
1227         if (size > sizeof(long))
1228                 align = sizeof(long long);
1229         else if (size > sizeof(int))
1230                 align = sizeof(long);
1231         else if (size > sizeof(short))
1232                 align = sizeof(int);
1233         else if (size > sizeof(char))
1234                 align = sizeof(short);
1235         else
1236                 return (char *) ptr;
1237
1238         r = size % align;
1239
1240         if (r == 0)
1241                 return (char *) ptr;
1242
1243         return (char *) (((unsigned long) ptr) + align - r);
1244 }
1245
1246 /**
1247  * edac_mc_alloc: Allocate a struct mem_ctl_info structure
1248  * @size_pvt:   size of private storage needed
1249  * @nr_csrows:  Number of CWROWS needed for this MC
1250  * @nr_chans:   Number of channels for the MC
1251  *
1252  * Everything is kmalloc'ed as one big chunk - more efficient.
1253  * Only can be used if all structures have the same lifetime - otherwise
1254  * you have to allocate and initialize your own structures.
1255  *
1256  * Use edac_mc_free() to free mc structures allocated by this function.
1257  *
1258  * Returns:
1259  *      NULL allocation failed
1260  *      struct mem_ctl_info pointer
1261  */
1262 struct mem_ctl_info *edac_mc_alloc(unsigned sz_pvt, unsigned nr_csrows,
1263                 unsigned nr_chans)
1264 {
1265         struct mem_ctl_info *mci;
1266         struct csrow_info *csi, *csrow;
1267         struct channel_info *chi, *chp, *chan;
1268         void *pvt;
1269         unsigned size;
1270         int row, chn;
1271
1272         /* Figure out the offsets of the various items from the start of an mc
1273          * structure.  We want the alignment of each item to be at least as
1274          * stringent as what the compiler would provide if we could simply
1275          * hardcode everything into a single struct.
1276          */
1277         mci = (struct mem_ctl_info *) 0;
1278         csi = (struct csrow_info *)align_ptr(&mci[1], sizeof(*csi));
1279         chi = (struct channel_info *)
1280                         align_ptr(&csi[nr_csrows], sizeof(*chi));
1281         pvt = align_ptr(&chi[nr_chans * nr_csrows], sz_pvt);
1282         size = ((unsigned long) pvt) + sz_pvt;
1283
1284         if ((mci = kmalloc(size, GFP_KERNEL)) == NULL)
1285                 return NULL;
1286
1287         /* Adjust pointers so they point within the memory we just allocated
1288          * rather than an imaginary chunk of memory located at address 0.
1289          */
1290         csi = (struct csrow_info *) (((char *) mci) + ((unsigned long) csi));
1291         chi = (struct channel_info *) (((char *) mci) + ((unsigned long) chi));
1292         pvt = sz_pvt ? (((char *) mci) + ((unsigned long) pvt)) : NULL;
1293
1294         memset(mci, 0, size);  /* clear all fields */
1295         mci->csrows = csi;
1296         mci->pvt_info = pvt;
1297         mci->nr_csrows = nr_csrows;
1298
1299         for (row = 0; row < nr_csrows; row++) {
1300                 csrow = &csi[row];
1301                 csrow->csrow_idx = row;
1302                 csrow->mci = mci;
1303                 csrow->nr_channels = nr_chans;
1304                 chp = &chi[row * nr_chans];
1305                 csrow->channels = chp;
1306
1307                 for (chn = 0; chn < nr_chans; chn++) {
1308                         chan = &chp[chn];
1309                         chan->chan_idx = chn;
1310                         chan->csrow = csrow;
1311                 }
1312         }
1313
1314         return mci;
1315 }
1316 EXPORT_SYMBOL_GPL(edac_mc_alloc);
1317
1318 /**
1319  * edac_mc_free:  Free a previously allocated 'mci' structure
1320  * @mci: pointer to a struct mem_ctl_info structure
1321  */
1322 void edac_mc_free(struct mem_ctl_info *mci)
1323 {
1324         kfree(mci);
1325 }
1326 EXPORT_SYMBOL_GPL(edac_mc_free);
1327
1328 static struct mem_ctl_info *find_mci_by_dev(struct device *dev)
1329 {
1330         struct mem_ctl_info *mci;
1331         struct list_head *item;
1332
1333         debugf3("%s()\n", __func__);
1334
1335         list_for_each(item, &mc_devices) {
1336                 mci = list_entry(item, struct mem_ctl_info, link);
1337
1338                 if (mci->dev == dev)
1339                         return mci;
1340         }
1341
1342         return NULL;
1343 }
1344
1345 /* Return 0 on success, 1 on failure.
1346  * Before calling this function, caller must
1347  * assign a unique value to mci->mc_idx.
1348  */
1349 static int add_mc_to_global_list (struct mem_ctl_info *mci)
1350 {
1351         struct list_head *item, *insert_before;
1352         struct mem_ctl_info *p;
1353
1354         insert_before = &mc_devices;
1355
1356         if (unlikely((p = find_mci_by_dev(mci->dev)) != NULL))
1357                 goto fail0;
1358
1359         list_for_each(item, &mc_devices) {
1360                 p = list_entry(item, struct mem_ctl_info, link);
1361
1362                 if (p->mc_idx >= mci->mc_idx) {
1363                         if (unlikely(p->mc_idx == mci->mc_idx))
1364                                 goto fail1;
1365
1366                         insert_before = item;
1367                         break;
1368                 }
1369         }
1370
1371         list_add_tail_rcu(&mci->link, insert_before);
1372         return 0;
1373
1374 fail0:
1375         edac_printk(KERN_WARNING, EDAC_MC,
1376                     "%s (%s) %s %s already assigned %d\n", p->dev->bus_id,
1377                     dev_name(p->dev), p->mod_name, p->ctl_name, p->mc_idx);
1378         return 1;
1379
1380 fail1:
1381         edac_printk(KERN_WARNING, EDAC_MC,
1382                     "bug in low-level driver: attempt to assign\n"
1383                     "    duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
1384         return 1;
1385 }
1386
1387 static void complete_mc_list_del(struct rcu_head *head)
1388 {
1389         struct mem_ctl_info *mci;
1390
1391         mci = container_of(head, struct mem_ctl_info, rcu);
1392         INIT_LIST_HEAD(&mci->link);
1393         complete(&mci->complete);
1394 }
1395
1396 static void del_mc_from_global_list(struct mem_ctl_info *mci)
1397 {
1398         list_del_rcu(&mci->link);
1399         init_completion(&mci->complete);
1400         call_rcu(&mci->rcu, complete_mc_list_del);
1401         wait_for_completion(&mci->complete);
1402 }
1403
1404 /**
1405  * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and
1406  *                 create sysfs entries associated with mci structure
1407  * @mci: pointer to the mci structure to be added to the list
1408  * @mc_idx: A unique numeric identifier to be assigned to the 'mci' structure.
1409  *
1410  * Return:
1411  *      0       Success
1412  *      !0      Failure
1413  */
1414
1415 /* FIXME - should a warning be printed if no error detection? correction? */
1416 int edac_mc_add_mc(struct mem_ctl_info *mci, int mc_idx)
1417 {
1418         debugf0("%s()\n", __func__);
1419         mci->mc_idx = mc_idx;
1420 #ifdef CONFIG_EDAC_DEBUG
1421         if (edac_debug_level >= 3)
1422                 edac_mc_dump_mci(mci);
1423
1424         if (edac_debug_level >= 4) {
1425                 int i;
1426
1427                 for (i = 0; i < mci->nr_csrows; i++) {
1428                         int j;
1429
1430                         edac_mc_dump_csrow(&mci->csrows[i]);
1431                         for (j = 0; j < mci->csrows[i].nr_channels; j++)
1432                                 edac_mc_dump_channel(
1433                                         &mci->csrows[i].channels[j]);
1434                 }
1435         }
1436 #endif
1437         down(&mem_ctls_mutex);
1438
1439         if (add_mc_to_global_list(mci))
1440                 goto fail0;
1441
1442         /* set load time so that error rate can be tracked */
1443         mci->start_time = jiffies;
1444
1445         if (edac_create_sysfs_mci_device(mci)) {
1446                 edac_mc_printk(mci, KERN_WARNING,
1447                         "failed to create sysfs device\n");
1448                 goto fail1;
1449         }
1450
1451         /* Report action taken */
1452         edac_mc_printk(mci, KERN_INFO, "Giving out device to %s %s: DEV %s\n",
1453                 mci->mod_name, mci->ctl_name, dev_name(mci->dev));
1454
1455         up(&mem_ctls_mutex);
1456         return 0;
1457
1458 fail1:
1459         del_mc_from_global_list(mci);
1460
1461 fail0:
1462         up(&mem_ctls_mutex);
1463         return 1;
1464 }
1465 EXPORT_SYMBOL_GPL(edac_mc_add_mc);
1466
1467 /**
1468  * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
1469  *                 remove mci structure from global list
1470  * @pdev: Pointer to 'struct device' representing mci structure to remove.
1471  *
1472  * Return pointer to removed mci structure, or NULL if device not found.
1473  */
1474 struct mem_ctl_info * edac_mc_del_mc(struct device *dev)
1475 {
1476         struct mem_ctl_info *mci;
1477
1478         debugf0("MC: %s()\n", __func__);
1479         down(&mem_ctls_mutex);
1480
1481         if ((mci = find_mci_by_dev(dev)) == NULL) {
1482                 up(&mem_ctls_mutex);
1483                 return NULL;
1484         }
1485
1486         edac_remove_sysfs_mci_device(mci);
1487         del_mc_from_global_list(mci);
1488         up(&mem_ctls_mutex);
1489         edac_printk(KERN_INFO, EDAC_MC,
1490                 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
1491                 mci->mod_name, mci->ctl_name, dev_name(mci->dev));
1492         return mci;
1493 }
1494 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
1495
1496 void edac_mc_scrub_block(unsigned long page, unsigned long offset, u32 size)
1497 {
1498         struct page *pg;
1499         void *virt_addr;
1500         unsigned long flags = 0;
1501
1502         debugf3("%s()\n", __func__);
1503
1504         /* ECC error page was not in our memory. Ignore it. */
1505         if(!pfn_valid(page))
1506                 return;
1507
1508         /* Find the actual page structure then map it and fix */
1509         pg = pfn_to_page(page);
1510
1511         if (PageHighMem(pg))
1512                 local_irq_save(flags);
1513
1514         virt_addr = kmap_atomic(pg, KM_BOUNCE_READ);
1515
1516         /* Perform architecture specific atomic scrub operation */
1517         atomic_scrub(virt_addr + offset, size);
1518
1519         /* Unmap and complete */
1520         kunmap_atomic(virt_addr, KM_BOUNCE_READ);
1521
1522         if (PageHighMem(pg))
1523                 local_irq_restore(flags);
1524 }
1525 EXPORT_SYMBOL_GPL(edac_mc_scrub_block);
1526
1527 /* FIXME - should return -1 */
1528 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
1529 {
1530         struct csrow_info *csrows = mci->csrows;
1531         int row, i;
1532
1533         debugf1("MC%d: %s(): 0x%lx\n", mci->mc_idx, __func__, page);
1534         row = -1;
1535
1536         for (i = 0; i < mci->nr_csrows; i++) {
1537                 struct csrow_info *csrow = &csrows[i];
1538
1539                 if (csrow->nr_pages == 0)
1540                         continue;
1541
1542                 debugf3("MC%d: %s(): first(0x%lx) page(0x%lx) last(0x%lx) "
1543                         "mask(0x%lx)\n", mci->mc_idx, __func__,
1544                         csrow->first_page, page, csrow->last_page,
1545                         csrow->page_mask);
1546
1547                 if ((page >= csrow->first_page) &&
1548                     (page <= csrow->last_page) &&
1549                     ((page & csrow->page_mask) ==
1550                      (csrow->first_page & csrow->page_mask))) {
1551                         row = i;
1552                         break;
1553                 }
1554         }
1555
1556         if (row == -1)
1557                 edac_mc_printk(mci, KERN_ERR,
1558                         "could not look up page error address %lx\n",
1559                         (unsigned long) page);
1560
1561         return row;
1562 }
1563 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
1564
1565 /* FIXME - setable log (warning/emerg) levels */
1566 /* FIXME - integrate with evlog: http://evlog.sourceforge.net/ */
1567 void edac_mc_handle_ce(struct mem_ctl_info *mci,
1568                 unsigned long page_frame_number, unsigned long offset_in_page,
1569                 unsigned long syndrome, int row, int channel, const char *msg)
1570 {
1571         unsigned long remapped_page;
1572
1573         debugf3("MC%d: %s()\n", mci->mc_idx, __func__);
1574
1575         /* FIXME - maybe make panic on INTERNAL ERROR an option */
1576         if (row >= mci->nr_csrows || row < 0) {
1577                 /* something is wrong */
1578                 edac_mc_printk(mci, KERN_ERR,
1579                         "INTERNAL ERROR: row out of range "
1580                         "(%d >= %d)\n", row, mci->nr_csrows);
1581                 edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
1582                 return;
1583         }
1584
1585         if (channel >= mci->csrows[row].nr_channels || channel < 0) {
1586                 /* something is wrong */
1587                 edac_mc_printk(mci, KERN_ERR,
1588                         "INTERNAL ERROR: channel out of range "
1589                         "(%d >= %d)\n", channel,
1590                         mci->csrows[row].nr_channels);
1591                 edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
1592                 return;
1593         }
1594
1595         if (log_ce)
1596                 /* FIXME - put in DIMM location */
1597                 edac_mc_printk(mci, KERN_WARNING,
1598                         "CE page 0x%lx, offset 0x%lx, grain %d, syndrome "
1599                         "0x%lx, row %d, channel %d, label \"%s\": %s\n",
1600                         page_frame_number, offset_in_page,
1601                         mci->csrows[row].grain, syndrome, row, channel,
1602                         mci->csrows[row].channels[channel].label, msg);
1603
1604         mci->ce_count++;
1605         mci->csrows[row].ce_count++;
1606         mci->csrows[row].channels[channel].ce_count++;
1607
1608         if (mci->scrub_mode & SCRUB_SW_SRC) {
1609                 /*
1610                  * Some MC's can remap memory so that it is still available
1611                  * at a different address when PCI devices map into memory.
1612                  * MC's that can't do this lose the memory where PCI devices
1613                  * are mapped.  This mapping is MC dependant and so we call
1614                  * back into the MC driver for it to map the MC page to
1615                  * a physical (CPU) page which can then be mapped to a virtual
1616                  * page - which can then be scrubbed.
1617                  */
1618                 remapped_page = mci->ctl_page_to_phys ?
1619                     mci->ctl_page_to_phys(mci, page_frame_number) :
1620                     page_frame_number;
1621
1622                 edac_mc_scrub_block(remapped_page, offset_in_page,
1623                                         mci->csrows[row].grain);
1624         }
1625 }
1626 EXPORT_SYMBOL_GPL(edac_mc_handle_ce);
1627
1628 void edac_mc_handle_ce_no_info(struct mem_ctl_info *mci, const char *msg)
1629 {
1630         if (log_ce)
1631                 edac_mc_printk(mci, KERN_WARNING,
1632                         "CE - no information available: %s\n", msg);
1633
1634         mci->ce_noinfo_count++;
1635         mci->ce_count++;
1636 }
1637 EXPORT_SYMBOL_GPL(edac_mc_handle_ce_no_info);
1638
1639 void edac_mc_handle_ue(struct mem_ctl_info *mci,
1640                 unsigned long page_frame_number, unsigned long offset_in_page,
1641                 int row, const char *msg)
1642 {
1643         int len = EDAC_MC_LABEL_LEN * 4;
1644         char labels[len + 1];
1645         char *pos = labels;
1646         int chan;
1647         int chars;
1648
1649         debugf3("MC%d: %s()\n", mci->mc_idx, __func__);
1650
1651         /* FIXME - maybe make panic on INTERNAL ERROR an option */
1652         if (row >= mci->nr_csrows || row < 0) {
1653                 /* something is wrong */
1654                 edac_mc_printk(mci, KERN_ERR,
1655                         "INTERNAL ERROR: row out of range "
1656                         "(%d >= %d)\n", row, mci->nr_csrows);
1657                 edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR");
1658                 return;
1659         }
1660
1661         chars = snprintf(pos, len + 1, "%s",
1662                         mci->csrows[row].channels[0].label);
1663         len -= chars;
1664         pos += chars;
1665
1666         for (chan = 1; (chan < mci->csrows[row].nr_channels) && (len > 0);
1667              chan++) {
1668                 chars = snprintf(pos, len + 1, ":%s",
1669                                 mci->csrows[row].channels[chan].label);
1670                 len -= chars;
1671                 pos += chars;
1672         }
1673
1674         if (log_ue)
1675                 edac_mc_printk(mci, KERN_EMERG,
1676                         "UE page 0x%lx, offset 0x%lx, grain %d, row %d, "
1677                         "labels \"%s\": %s\n", page_frame_number,
1678                         offset_in_page, mci->csrows[row].grain, row, labels,
1679                         msg);
1680
1681         if (panic_on_ue)
1682                 panic("EDAC MC%d: UE page 0x%lx, offset 0x%lx, grain %d, "
1683                         "row %d, labels \"%s\": %s\n", mci->mc_idx,
1684                         page_frame_number, offset_in_page,
1685                         mci->csrows[row].grain, row, labels, msg);
1686
1687         mci->ue_count++;
1688         mci->csrows[row].ue_count++;
1689 }
1690 EXPORT_SYMBOL_GPL(edac_mc_handle_ue);
1691
1692 void edac_mc_handle_ue_no_info(struct mem_ctl_info *mci, const char *msg)
1693 {
1694         if (panic_on_ue)
1695                 panic("EDAC MC%d: Uncorrected Error", mci->mc_idx);
1696
1697         if (log_ue)
1698                 edac_mc_printk(mci, KERN_WARNING,
1699                         "UE - no information available: %s\n", msg);
1700         mci->ue_noinfo_count++;
1701         mci->ue_count++;
1702 }
1703 EXPORT_SYMBOL_GPL(edac_mc_handle_ue_no_info);
1704
1705
1706 /*
1707  * Iterate over all MC instances and check for ECC, et al, errors
1708  */
1709 static inline void check_mc_devices(void)
1710 {
1711         struct list_head *item;
1712         struct mem_ctl_info *mci;
1713
1714         debugf3("%s()\n", __func__);
1715         down(&mem_ctls_mutex);
1716
1717         list_for_each(item, &mc_devices) {
1718                 mci = list_entry(item, struct mem_ctl_info, link);
1719
1720                 if (mci->edac_check != NULL)
1721                         mci->edac_check(mci);
1722         }
1723
1724         up(&mem_ctls_mutex);
1725 }
1726
1727 /*
1728  * Check MC status every poll_msec.
1729  * Check PCI status every poll_msec as well.
1730  *
1731  * This where the work gets done for edac.
1732  *
1733  * SMP safe, doesn't use NMI, and auto-rate-limits.
1734  */
1735 static void do_edac_check(void)
1736 {
1737         debugf3("%s()\n", __func__);
1738         check_mc_devices();
1739         do_pci_parity_check();
1740 }
1741
1742 static int edac_kernel_thread(void *arg)
1743 {
1744         while (!kthread_should_stop()) {
1745                 do_edac_check();
1746
1747                 /* goto sleep for the interval */
1748                 schedule_timeout_interruptible((HZ * poll_msec) / 1000);
1749                 try_to_freeze();
1750         }
1751
1752         return 0;
1753 }
1754
1755 /*
1756  * edac_mc_init
1757  *      module initialization entry point
1758  */
1759 static int __init edac_mc_init(void)
1760 {
1761         edac_printk(KERN_INFO, EDAC_MC, EDAC_MC_VERSION "\n");
1762
1763         /*
1764          * Harvest and clear any boot/initialization PCI parity errors
1765          *
1766          * FIXME: This only clears errors logged by devices present at time of
1767          *      module initialization.  We should also do an initial clear
1768          *      of each newly hotplugged device.
1769          */
1770         clear_pci_parity_errors();
1771
1772         /* Create the MC sysfs entries */
1773         if (edac_sysfs_memctrl_setup()) {
1774                 edac_printk(KERN_ERR, EDAC_MC,
1775                         "Error initializing sysfs code\n");
1776                 return -ENODEV;
1777         }
1778
1779         /* Create the PCI parity sysfs entries */
1780         if (edac_sysfs_pci_setup()) {
1781                 edac_sysfs_memctrl_teardown();
1782                 edac_printk(KERN_ERR, EDAC_MC,
1783                         "EDAC PCI: Error initializing sysfs code\n");
1784                 return -ENODEV;
1785         }
1786
1787         /* create our kernel thread */
1788         edac_thread = kthread_run(edac_kernel_thread, NULL, "kedac");
1789
1790         if (IS_ERR(edac_thread)) {
1791                 /* remove the sysfs entries */
1792                 edac_sysfs_memctrl_teardown();
1793                 edac_sysfs_pci_teardown();
1794                 return PTR_ERR(edac_thread);
1795         }
1796
1797         return 0;
1798 }
1799
1800 /*
1801  * edac_mc_exit()
1802  *      module exit/termination functioni
1803  */
1804 static void __exit edac_mc_exit(void)
1805 {
1806         debugf0("%s()\n", __func__);
1807         kthread_stop(edac_thread);
1808
1809         /* tear down the sysfs device */
1810         edac_sysfs_memctrl_teardown();
1811         edac_sysfs_pci_teardown();
1812 }
1813
1814 module_init(edac_mc_init);
1815 module_exit(edac_mc_exit);
1816
1817 MODULE_LICENSE("GPL");
1818 MODULE_AUTHOR("Linux Networx (http://lnxi.com) Thayne Harbaugh et al\n"
1819         "Based on work by Dan Hollis et al");
1820 MODULE_DESCRIPTION("Core library routines for MC reporting");
1821
1822 module_param(panic_on_ue, int, 0644);
1823 MODULE_PARM_DESC(panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
1824 #ifdef CONFIG_PCI
1825 module_param(check_pci_parity, int, 0644);
1826 MODULE_PARM_DESC(check_pci_parity, "Check for PCI bus parity errors: 0=off 1=on");
1827 module_param(panic_on_pci_parity, int, 0644);
1828 MODULE_PARM_DESC(panic_on_pci_parity, "Panic on PCI Bus Parity error: 0=off 1=on");
1829 #endif
1830 module_param(log_ue, int, 0644);
1831 MODULE_PARM_DESC(log_ue, "Log uncorrectable error to console: 0=off 1=on");
1832 module_param(log_ce, int, 0644);
1833 MODULE_PARM_DESC(log_ce, "Log correctable error to console: 0=off 1=on");
1834 module_param(poll_msec, int, 0644);
1835 MODULE_PARM_DESC(poll_msec, "Polling period in milliseconds");
1836 #ifdef CONFIG_EDAC_DEBUG
1837 module_param(edac_debug_level, int, 0644);
1838 MODULE_PARM_DESC(edac_debug_level, "Debug level");
1839 #endif