]> nv-tegra.nvidia Code Review - linux-2.6.git/blob - drivers/dma/pch_dma.c
dmaengine: shdma: add dmaor_is_32bit flag
[linux-2.6.git] / drivers / dma / pch_dma.c
1 /*
2  * Topcliff PCH DMA controller driver
3  * Copyright (c) 2010 Intel Corporation
4  * Copyright (C) 2011 OKI SEMICONDUCTOR CO., LTD.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18  */
19
20 #include <linux/dmaengine.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/init.h>
23 #include <linux/pci.h>
24 #include <linux/interrupt.h>
25 #include <linux/module.h>
26 #include <linux/pch_dma.h>
27
28 #define DRV_NAME "pch-dma"
29
30 #define DMA_CTL0_DISABLE                0x0
31 #define DMA_CTL0_SG                     0x1
32 #define DMA_CTL0_ONESHOT                0x2
33 #define DMA_CTL0_MODE_MASK_BITS         0x3
34 #define DMA_CTL0_DIR_SHIFT_BITS         2
35 #define DMA_CTL0_BITS_PER_CH            4
36
37 #define DMA_CTL2_START_SHIFT_BITS       8
38 #define DMA_CTL2_IRQ_ENABLE_MASK        ((1UL << DMA_CTL2_START_SHIFT_BITS) - 1)
39
40 #define DMA_STATUS_IDLE                 0x0
41 #define DMA_STATUS_DESC_READ            0x1
42 #define DMA_STATUS_WAIT                 0x2
43 #define DMA_STATUS_ACCESS               0x3
44 #define DMA_STATUS_BITS_PER_CH          2
45 #define DMA_STATUS_MASK_BITS            0x3
46 #define DMA_STATUS_SHIFT_BITS           16
47 #define DMA_STATUS_IRQ(x)               (0x1 << (x))
48 #define DMA_STATUS_ERR(x)               (0x1 << ((x) + 8))
49
50 #define DMA_DESC_WIDTH_SHIFT_BITS       12
51 #define DMA_DESC_WIDTH_1_BYTE           (0x3 << DMA_DESC_WIDTH_SHIFT_BITS)
52 #define DMA_DESC_WIDTH_2_BYTES          (0x2 << DMA_DESC_WIDTH_SHIFT_BITS)
53 #define DMA_DESC_WIDTH_4_BYTES          (0x0 << DMA_DESC_WIDTH_SHIFT_BITS)
54 #define DMA_DESC_MAX_COUNT_1_BYTE       0x3FF
55 #define DMA_DESC_MAX_COUNT_2_BYTES      0x3FF
56 #define DMA_DESC_MAX_COUNT_4_BYTES      0x7FF
57 #define DMA_DESC_END_WITHOUT_IRQ        0x0
58 #define DMA_DESC_END_WITH_IRQ           0x1
59 #define DMA_DESC_FOLLOW_WITHOUT_IRQ     0x2
60 #define DMA_DESC_FOLLOW_WITH_IRQ        0x3
61
62 #define MAX_CHAN_NR                     8
63
64 static unsigned int init_nr_desc_per_channel = 64;
65 module_param(init_nr_desc_per_channel, uint, 0644);
66 MODULE_PARM_DESC(init_nr_desc_per_channel,
67                  "initial descriptors per channel (default: 64)");
68
69 struct pch_dma_desc_regs {
70         u32     dev_addr;
71         u32     mem_addr;
72         u32     size;
73         u32     next;
74 };
75
76 struct pch_dma_regs {
77         u32     dma_ctl0;
78         u32     dma_ctl1;
79         u32     dma_ctl2;
80         u32     dma_ctl3;
81         u32     dma_sts0;
82         u32     dma_sts1;
83         u32     dma_sts2;
84         u32     reserved3;
85         struct pch_dma_desc_regs desc[MAX_CHAN_NR];
86 };
87
88 struct pch_dma_desc {
89         struct pch_dma_desc_regs regs;
90         struct dma_async_tx_descriptor txd;
91         struct list_head        desc_node;
92         struct list_head        tx_list;
93 };
94
95 struct pch_dma_chan {
96         struct dma_chan         chan;
97         void __iomem *membase;
98         enum dma_data_direction dir;
99         struct tasklet_struct   tasklet;
100         unsigned long           err_status;
101
102         spinlock_t              lock;
103
104         dma_cookie_t            completed_cookie;
105         struct list_head        active_list;
106         struct list_head        queue;
107         struct list_head        free_list;
108         unsigned int            descs_allocated;
109 };
110
111 #define PDC_DEV_ADDR    0x00
112 #define PDC_MEM_ADDR    0x04
113 #define PDC_SIZE        0x08
114 #define PDC_NEXT        0x0C
115
116 #define channel_readl(pdc, name) \
117         readl((pdc)->membase + PDC_##name)
118 #define channel_writel(pdc, name, val) \
119         writel((val), (pdc)->membase + PDC_##name)
120
121 struct pch_dma {
122         struct dma_device       dma;
123         void __iomem *membase;
124         struct pci_pool         *pool;
125         struct pch_dma_regs     regs;
126         struct pch_dma_desc_regs ch_regs[MAX_CHAN_NR];
127         struct pch_dma_chan     channels[MAX_CHAN_NR];
128 };
129
130 #define PCH_DMA_CTL0    0x00
131 #define PCH_DMA_CTL1    0x04
132 #define PCH_DMA_CTL2    0x08
133 #define PCH_DMA_CTL3    0x0C
134 #define PCH_DMA_STS0    0x10
135 #define PCH_DMA_STS1    0x14
136
137 #define dma_readl(pd, name) \
138         readl((pd)->membase + PCH_DMA_##name)
139 #define dma_writel(pd, name, val) \
140         writel((val), (pd)->membase + PCH_DMA_##name)
141
142 static inline
143 struct pch_dma_desc *to_pd_desc(struct dma_async_tx_descriptor *txd)
144 {
145         return container_of(txd, struct pch_dma_desc, txd);
146 }
147
148 static inline struct pch_dma_chan *to_pd_chan(struct dma_chan *chan)
149 {
150         return container_of(chan, struct pch_dma_chan, chan);
151 }
152
153 static inline struct pch_dma *to_pd(struct dma_device *ddev)
154 {
155         return container_of(ddev, struct pch_dma, dma);
156 }
157
158 static inline struct device *chan2dev(struct dma_chan *chan)
159 {
160         return &chan->dev->device;
161 }
162
163 static inline struct device *chan2parent(struct dma_chan *chan)
164 {
165         return chan->dev->device.parent;
166 }
167
168 static inline
169 struct pch_dma_desc *pdc_first_active(struct pch_dma_chan *pd_chan)
170 {
171         return list_first_entry(&pd_chan->active_list,
172                                 struct pch_dma_desc, desc_node);
173 }
174
175 static inline
176 struct pch_dma_desc *pdc_first_queued(struct pch_dma_chan *pd_chan)
177 {
178         return list_first_entry(&pd_chan->queue,
179                                 struct pch_dma_desc, desc_node);
180 }
181
182 static void pdc_enable_irq(struct dma_chan *chan, int enable)
183 {
184         struct pch_dma *pd = to_pd(chan->device);
185         u32 val;
186
187         val = dma_readl(pd, CTL2);
188
189         if (enable)
190                 val |= 0x1 << chan->chan_id;
191         else
192                 val &= ~(0x1 << chan->chan_id);
193
194         dma_writel(pd, CTL2, val);
195
196         dev_dbg(chan2dev(chan), "pdc_enable_irq: chan %d -> %x\n",
197                 chan->chan_id, val);
198 }
199
200 static void pdc_set_dir(struct dma_chan *chan)
201 {
202         struct pch_dma_chan *pd_chan = to_pd_chan(chan);
203         struct pch_dma *pd = to_pd(chan->device);
204         u32 val;
205
206         if (chan->chan_id < 8) {
207                 val = dma_readl(pd, CTL0);
208
209                 if (pd_chan->dir == DMA_TO_DEVICE)
210                         val |= 0x1 << (DMA_CTL0_BITS_PER_CH * chan->chan_id +
211                                        DMA_CTL0_DIR_SHIFT_BITS);
212                 else
213                         val &= ~(0x1 << (DMA_CTL0_BITS_PER_CH * chan->chan_id +
214                                          DMA_CTL0_DIR_SHIFT_BITS));
215
216                 dma_writel(pd, CTL0, val);
217         } else {
218                 int ch = chan->chan_id - 8; /* ch8-->0 ch9-->1 ... ch11->3 */
219                 val = dma_readl(pd, CTL3);
220
221                 if (pd_chan->dir == DMA_TO_DEVICE)
222                         val |= 0x1 << (DMA_CTL0_BITS_PER_CH * ch +
223                                        DMA_CTL0_DIR_SHIFT_BITS);
224                 else
225                         val &= ~(0x1 << (DMA_CTL0_BITS_PER_CH * ch +
226                                          DMA_CTL0_DIR_SHIFT_BITS));
227
228                 dma_writel(pd, CTL3, val);
229         }
230
231         dev_dbg(chan2dev(chan), "pdc_set_dir: chan %d -> %x\n",
232                 chan->chan_id, val);
233 }
234
235 static void pdc_set_mode(struct dma_chan *chan, u32 mode)
236 {
237         struct pch_dma *pd = to_pd(chan->device);
238         u32 val;
239
240         if (chan->chan_id < 8) {
241                 val = dma_readl(pd, CTL0);
242
243                 val &= ~(DMA_CTL0_MODE_MASK_BITS <<
244                         (DMA_CTL0_BITS_PER_CH * chan->chan_id));
245                 val |= mode << (DMA_CTL0_BITS_PER_CH * chan->chan_id);
246
247                 dma_writel(pd, CTL0, val);
248         } else {
249                 int ch = chan->chan_id - 8; /* ch8-->0 ch9-->1 ... ch11->3 */
250
251                 val = dma_readl(pd, CTL3);
252
253                 val &= ~(DMA_CTL0_MODE_MASK_BITS <<
254                         (DMA_CTL0_BITS_PER_CH * ch));
255                 val |= mode << (DMA_CTL0_BITS_PER_CH * ch);
256
257                 dma_writel(pd, CTL3, val);
258
259         }
260
261         dev_dbg(chan2dev(chan), "pdc_set_mode: chan %d -> %x\n",
262                 chan->chan_id, val);
263 }
264
265 static u32 pdc_get_status(struct pch_dma_chan *pd_chan)
266 {
267         struct pch_dma *pd = to_pd(pd_chan->chan.device);
268         u32 val;
269
270         val = dma_readl(pd, STS0);
271         return DMA_STATUS_MASK_BITS & (val >> (DMA_STATUS_SHIFT_BITS +
272                         DMA_STATUS_BITS_PER_CH * pd_chan->chan.chan_id));
273 }
274
275 static bool pdc_is_idle(struct pch_dma_chan *pd_chan)
276 {
277         if (pdc_get_status(pd_chan) == DMA_STATUS_IDLE)
278                 return true;
279         else
280                 return false;
281 }
282
283 static void pdc_dostart(struct pch_dma_chan *pd_chan, struct pch_dma_desc* desc)
284 {
285         if (!pdc_is_idle(pd_chan)) {
286                 dev_err(chan2dev(&pd_chan->chan),
287                         "BUG: Attempt to start non-idle channel\n");
288                 return;
289         }
290
291         dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> dev_addr: %x\n",
292                 pd_chan->chan.chan_id, desc->regs.dev_addr);
293         dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> mem_addr: %x\n",
294                 pd_chan->chan.chan_id, desc->regs.mem_addr);
295         dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> size: %x\n",
296                 pd_chan->chan.chan_id, desc->regs.size);
297         dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> next: %x\n",
298                 pd_chan->chan.chan_id, desc->regs.next);
299
300         if (list_empty(&desc->tx_list)) {
301                 channel_writel(pd_chan, DEV_ADDR, desc->regs.dev_addr);
302                 channel_writel(pd_chan, MEM_ADDR, desc->regs.mem_addr);
303                 channel_writel(pd_chan, SIZE, desc->regs.size);
304                 channel_writel(pd_chan, NEXT, desc->regs.next);
305                 pdc_set_mode(&pd_chan->chan, DMA_CTL0_ONESHOT);
306         } else {
307                 channel_writel(pd_chan, NEXT, desc->txd.phys);
308                 pdc_set_mode(&pd_chan->chan, DMA_CTL0_SG);
309         }
310 }
311
312 static void pdc_chain_complete(struct pch_dma_chan *pd_chan,
313                                struct pch_dma_desc *desc)
314 {
315         struct dma_async_tx_descriptor *txd = &desc->txd;
316         dma_async_tx_callback callback = txd->callback;
317         void *param = txd->callback_param;
318
319         list_splice_init(&desc->tx_list, &pd_chan->free_list);
320         list_move(&desc->desc_node, &pd_chan->free_list);
321
322         if (callback)
323                 callback(param);
324 }
325
326 static void pdc_complete_all(struct pch_dma_chan *pd_chan)
327 {
328         struct pch_dma_desc *desc, *_d;
329         LIST_HEAD(list);
330
331         BUG_ON(!pdc_is_idle(pd_chan));
332
333         if (!list_empty(&pd_chan->queue))
334                 pdc_dostart(pd_chan, pdc_first_queued(pd_chan));
335
336         list_splice_init(&pd_chan->active_list, &list);
337         list_splice_init(&pd_chan->queue, &pd_chan->active_list);
338
339         list_for_each_entry_safe(desc, _d, &list, desc_node)
340                 pdc_chain_complete(pd_chan, desc);
341 }
342
343 static void pdc_handle_error(struct pch_dma_chan *pd_chan)
344 {
345         struct pch_dma_desc *bad_desc;
346
347         bad_desc = pdc_first_active(pd_chan);
348         list_del(&bad_desc->desc_node);
349
350         list_splice_init(&pd_chan->queue, pd_chan->active_list.prev);
351
352         if (!list_empty(&pd_chan->active_list))
353                 pdc_dostart(pd_chan, pdc_first_active(pd_chan));
354
355         dev_crit(chan2dev(&pd_chan->chan), "Bad descriptor submitted\n");
356         dev_crit(chan2dev(&pd_chan->chan), "descriptor cookie: %d\n",
357                  bad_desc->txd.cookie);
358
359         pdc_chain_complete(pd_chan, bad_desc);
360 }
361
362 static void pdc_advance_work(struct pch_dma_chan *pd_chan)
363 {
364         if (list_empty(&pd_chan->active_list) ||
365                 list_is_singular(&pd_chan->active_list)) {
366                 pdc_complete_all(pd_chan);
367         } else {
368                 pdc_chain_complete(pd_chan, pdc_first_active(pd_chan));
369                 pdc_dostart(pd_chan, pdc_first_active(pd_chan));
370         }
371 }
372
373 static dma_cookie_t pdc_assign_cookie(struct pch_dma_chan *pd_chan,
374                                       struct pch_dma_desc *desc)
375 {
376         dma_cookie_t cookie = pd_chan->chan.cookie;
377
378         if (++cookie < 0)
379                 cookie = 1;
380
381         pd_chan->chan.cookie = cookie;
382         desc->txd.cookie = cookie;
383
384         return cookie;
385 }
386
387 static dma_cookie_t pd_tx_submit(struct dma_async_tx_descriptor *txd)
388 {
389         struct pch_dma_desc *desc = to_pd_desc(txd);
390         struct pch_dma_chan *pd_chan = to_pd_chan(txd->chan);
391         dma_cookie_t cookie;
392
393         spin_lock(&pd_chan->lock);
394         cookie = pdc_assign_cookie(pd_chan, desc);
395
396         if (list_empty(&pd_chan->active_list)) {
397                 list_add_tail(&desc->desc_node, &pd_chan->active_list);
398                 pdc_dostart(pd_chan, desc);
399         } else {
400                 list_add_tail(&desc->desc_node, &pd_chan->queue);
401         }
402
403         spin_unlock(&pd_chan->lock);
404         return 0;
405 }
406
407 static struct pch_dma_desc *pdc_alloc_desc(struct dma_chan *chan, gfp_t flags)
408 {
409         struct pch_dma_desc *desc = NULL;
410         struct pch_dma *pd = to_pd(chan->device);
411         dma_addr_t addr;
412
413         desc = pci_pool_alloc(pd->pool, flags, &addr);
414         if (desc) {
415                 memset(desc, 0, sizeof(struct pch_dma_desc));
416                 INIT_LIST_HEAD(&desc->tx_list);
417                 dma_async_tx_descriptor_init(&desc->txd, chan);
418                 desc->txd.tx_submit = pd_tx_submit;
419                 desc->txd.flags = DMA_CTRL_ACK;
420                 desc->txd.phys = addr;
421         }
422
423         return desc;
424 }
425
426 static struct pch_dma_desc *pdc_desc_get(struct pch_dma_chan *pd_chan)
427 {
428         struct pch_dma_desc *desc, *_d;
429         struct pch_dma_desc *ret = NULL;
430         int i = 0;
431
432         spin_lock(&pd_chan->lock);
433         list_for_each_entry_safe(desc, _d, &pd_chan->free_list, desc_node) {
434                 i++;
435                 if (async_tx_test_ack(&desc->txd)) {
436                         list_del(&desc->desc_node);
437                         ret = desc;
438                         break;
439                 }
440                 dev_dbg(chan2dev(&pd_chan->chan), "desc %p not ACKed\n", desc);
441         }
442         spin_unlock(&pd_chan->lock);
443         dev_dbg(chan2dev(&pd_chan->chan), "scanned %d descriptors\n", i);
444
445         if (!ret) {
446                 ret = pdc_alloc_desc(&pd_chan->chan, GFP_NOIO);
447                 if (ret) {
448                         spin_lock(&pd_chan->lock);
449                         pd_chan->descs_allocated++;
450                         spin_unlock(&pd_chan->lock);
451                 } else {
452                         dev_err(chan2dev(&pd_chan->chan),
453                                 "failed to alloc desc\n");
454                 }
455         }
456
457         return ret;
458 }
459
460 static void pdc_desc_put(struct pch_dma_chan *pd_chan,
461                          struct pch_dma_desc *desc)
462 {
463         if (desc) {
464                 spin_lock(&pd_chan->lock);
465                 list_splice_init(&desc->tx_list, &pd_chan->free_list);
466                 list_add(&desc->desc_node, &pd_chan->free_list);
467                 spin_unlock(&pd_chan->lock);
468         }
469 }
470
471 static int pd_alloc_chan_resources(struct dma_chan *chan)
472 {
473         struct pch_dma_chan *pd_chan = to_pd_chan(chan);
474         struct pch_dma_desc *desc;
475         LIST_HEAD(tmp_list);
476         int i;
477
478         if (!pdc_is_idle(pd_chan)) {
479                 dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
480                 return -EIO;
481         }
482
483         if (!list_empty(&pd_chan->free_list))
484                 return pd_chan->descs_allocated;
485
486         for (i = 0; i < init_nr_desc_per_channel; i++) {
487                 desc = pdc_alloc_desc(chan, GFP_KERNEL);
488
489                 if (!desc) {
490                         dev_warn(chan2dev(chan),
491                                 "Only allocated %d initial descriptors\n", i);
492                         break;
493                 }
494
495                 list_add_tail(&desc->desc_node, &tmp_list);
496         }
497
498         spin_lock_bh(&pd_chan->lock);
499         list_splice(&tmp_list, &pd_chan->free_list);
500         pd_chan->descs_allocated = i;
501         pd_chan->completed_cookie = chan->cookie = 1;
502         spin_unlock_bh(&pd_chan->lock);
503
504         pdc_enable_irq(chan, 1);
505
506         return pd_chan->descs_allocated;
507 }
508
509 static void pd_free_chan_resources(struct dma_chan *chan)
510 {
511         struct pch_dma_chan *pd_chan = to_pd_chan(chan);
512         struct pch_dma *pd = to_pd(chan->device);
513         struct pch_dma_desc *desc, *_d;
514         LIST_HEAD(tmp_list);
515
516         BUG_ON(!pdc_is_idle(pd_chan));
517         BUG_ON(!list_empty(&pd_chan->active_list));
518         BUG_ON(!list_empty(&pd_chan->queue));
519
520         spin_lock_bh(&pd_chan->lock);
521         list_splice_init(&pd_chan->free_list, &tmp_list);
522         pd_chan->descs_allocated = 0;
523         spin_unlock_bh(&pd_chan->lock);
524
525         list_for_each_entry_safe(desc, _d, &tmp_list, desc_node)
526                 pci_pool_free(pd->pool, desc, desc->txd.phys);
527
528         pdc_enable_irq(chan, 0);
529 }
530
531 static enum dma_status pd_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
532                                     struct dma_tx_state *txstate)
533 {
534         struct pch_dma_chan *pd_chan = to_pd_chan(chan);
535         dma_cookie_t last_used;
536         dma_cookie_t last_completed;
537         int ret;
538
539         spin_lock_bh(&pd_chan->lock);
540         last_completed = pd_chan->completed_cookie;
541         last_used = chan->cookie;
542         spin_unlock_bh(&pd_chan->lock);
543
544         ret = dma_async_is_complete(cookie, last_completed, last_used);
545
546         dma_set_tx_state(txstate, last_completed, last_used, 0);
547
548         return ret;
549 }
550
551 static void pd_issue_pending(struct dma_chan *chan)
552 {
553         struct pch_dma_chan *pd_chan = to_pd_chan(chan);
554
555         if (pdc_is_idle(pd_chan)) {
556                 spin_lock(&pd_chan->lock);
557                 pdc_advance_work(pd_chan);
558                 spin_unlock(&pd_chan->lock);
559         }
560 }
561
562 static struct dma_async_tx_descriptor *pd_prep_slave_sg(struct dma_chan *chan,
563                         struct scatterlist *sgl, unsigned int sg_len,
564                         enum dma_data_direction direction, unsigned long flags)
565 {
566         struct pch_dma_chan *pd_chan = to_pd_chan(chan);
567         struct pch_dma_slave *pd_slave = chan->private;
568         struct pch_dma_desc *first = NULL;
569         struct pch_dma_desc *prev = NULL;
570         struct pch_dma_desc *desc = NULL;
571         struct scatterlist *sg;
572         dma_addr_t reg;
573         int i;
574
575         if (unlikely(!sg_len)) {
576                 dev_info(chan2dev(chan), "prep_slave_sg: length is zero!\n");
577                 return NULL;
578         }
579
580         if (direction == DMA_FROM_DEVICE)
581                 reg = pd_slave->rx_reg;
582         else if (direction == DMA_TO_DEVICE)
583                 reg = pd_slave->tx_reg;
584         else
585                 return NULL;
586
587         pd_chan->dir = direction;
588         pdc_set_dir(chan);
589
590         for_each_sg(sgl, sg, sg_len, i) {
591                 desc = pdc_desc_get(pd_chan);
592
593                 if (!desc)
594                         goto err_desc_get;
595
596                 desc->regs.dev_addr = reg;
597                 desc->regs.mem_addr = sg_phys(sg);
598                 desc->regs.size = sg_dma_len(sg);
599                 desc->regs.next = DMA_DESC_FOLLOW_WITHOUT_IRQ;
600
601                 switch (pd_slave->width) {
602                 case PCH_DMA_WIDTH_1_BYTE:
603                         if (desc->regs.size > DMA_DESC_MAX_COUNT_1_BYTE)
604                                 goto err_desc_get;
605                         desc->regs.size |= DMA_DESC_WIDTH_1_BYTE;
606                         break;
607                 case PCH_DMA_WIDTH_2_BYTES:
608                         if (desc->regs.size > DMA_DESC_MAX_COUNT_2_BYTES)
609                                 goto err_desc_get;
610                         desc->regs.size |= DMA_DESC_WIDTH_2_BYTES;
611                         break;
612                 case PCH_DMA_WIDTH_4_BYTES:
613                         if (desc->regs.size > DMA_DESC_MAX_COUNT_4_BYTES)
614                                 goto err_desc_get;
615                         desc->regs.size |= DMA_DESC_WIDTH_4_BYTES;
616                         break;
617                 default:
618                         goto err_desc_get;
619                 }
620
621                 if (!first) {
622                         first = desc;
623                 } else {
624                         prev->regs.next |= desc->txd.phys;
625                         list_add_tail(&desc->desc_node, &first->tx_list);
626                 }
627
628                 prev = desc;
629         }
630
631         if (flags & DMA_PREP_INTERRUPT)
632                 desc->regs.next = DMA_DESC_END_WITH_IRQ;
633         else
634                 desc->regs.next = DMA_DESC_END_WITHOUT_IRQ;
635
636         first->txd.cookie = -EBUSY;
637         desc->txd.flags = flags;
638
639         return &first->txd;
640
641 err_desc_get:
642         dev_err(chan2dev(chan), "failed to get desc or wrong parameters\n");
643         pdc_desc_put(pd_chan, first);
644         return NULL;
645 }
646
647 static int pd_device_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
648                              unsigned long arg)
649 {
650         struct pch_dma_chan *pd_chan = to_pd_chan(chan);
651         struct pch_dma_desc *desc, *_d;
652         LIST_HEAD(list);
653
654         if (cmd != DMA_TERMINATE_ALL)
655                 return -ENXIO;
656
657         spin_lock_bh(&pd_chan->lock);
658
659         pdc_set_mode(&pd_chan->chan, DMA_CTL0_DISABLE);
660
661         list_splice_init(&pd_chan->active_list, &list);
662         list_splice_init(&pd_chan->queue, &list);
663
664         list_for_each_entry_safe(desc, _d, &list, desc_node)
665                 pdc_chain_complete(pd_chan, desc);
666
667         spin_unlock_bh(&pd_chan->lock);
668
669         return 0;
670 }
671
672 static void pdc_tasklet(unsigned long data)
673 {
674         struct pch_dma_chan *pd_chan = (struct pch_dma_chan *)data;
675         unsigned long flags;
676
677         if (!pdc_is_idle(pd_chan)) {
678                 dev_err(chan2dev(&pd_chan->chan),
679                         "BUG: handle non-idle channel in tasklet\n");
680                 return;
681         }
682
683         spin_lock_irqsave(&pd_chan->lock, flags);
684         if (test_and_clear_bit(0, &pd_chan->err_status))
685                 pdc_handle_error(pd_chan);
686         else
687                 pdc_advance_work(pd_chan);
688         spin_unlock_irqrestore(&pd_chan->lock, flags);
689 }
690
691 static irqreturn_t pd_irq(int irq, void *devid)
692 {
693         struct pch_dma *pd = (struct pch_dma *)devid;
694         struct pch_dma_chan *pd_chan;
695         u32 sts0;
696         int i;
697         int ret = IRQ_NONE;
698
699         sts0 = dma_readl(pd, STS0);
700
701         dev_dbg(pd->dma.dev, "pd_irq sts0: %x\n", sts0);
702
703         for (i = 0; i < pd->dma.chancnt; i++) {
704                 pd_chan = &pd->channels[i];
705
706                 if (sts0 & DMA_STATUS_IRQ(i)) {
707                         if (sts0 & DMA_STATUS_ERR(i))
708                                 set_bit(0, &pd_chan->err_status);
709
710                         tasklet_schedule(&pd_chan->tasklet);
711                         ret = IRQ_HANDLED;
712                 }
713
714         }
715
716         /* clear interrupt bits in status register */
717         dma_writel(pd, STS0, sts0);
718
719         return ret;
720 }
721
722 #ifdef  CONFIG_PM
723 static void pch_dma_save_regs(struct pch_dma *pd)
724 {
725         struct pch_dma_chan *pd_chan;
726         struct dma_chan *chan, *_c;
727         int i = 0;
728
729         pd->regs.dma_ctl0 = dma_readl(pd, CTL0);
730         pd->regs.dma_ctl1 = dma_readl(pd, CTL1);
731         pd->regs.dma_ctl2 = dma_readl(pd, CTL2);
732         pd->regs.dma_ctl3 = dma_readl(pd, CTL3);
733
734         list_for_each_entry_safe(chan, _c, &pd->dma.channels, device_node) {
735                 pd_chan = to_pd_chan(chan);
736
737                 pd->ch_regs[i].dev_addr = channel_readl(pd_chan, DEV_ADDR);
738                 pd->ch_regs[i].mem_addr = channel_readl(pd_chan, MEM_ADDR);
739                 pd->ch_regs[i].size = channel_readl(pd_chan, SIZE);
740                 pd->ch_regs[i].next = channel_readl(pd_chan, NEXT);
741
742                 i++;
743         }
744 }
745
746 static void pch_dma_restore_regs(struct pch_dma *pd)
747 {
748         struct pch_dma_chan *pd_chan;
749         struct dma_chan *chan, *_c;
750         int i = 0;
751
752         dma_writel(pd, CTL0, pd->regs.dma_ctl0);
753         dma_writel(pd, CTL1, pd->regs.dma_ctl1);
754         dma_writel(pd, CTL2, pd->regs.dma_ctl2);
755         dma_writel(pd, CTL3, pd->regs.dma_ctl3);
756
757         list_for_each_entry_safe(chan, _c, &pd->dma.channels, device_node) {
758                 pd_chan = to_pd_chan(chan);
759
760                 channel_writel(pd_chan, DEV_ADDR, pd->ch_regs[i].dev_addr);
761                 channel_writel(pd_chan, MEM_ADDR, pd->ch_regs[i].mem_addr);
762                 channel_writel(pd_chan, SIZE, pd->ch_regs[i].size);
763                 channel_writel(pd_chan, NEXT, pd->ch_regs[i].next);
764
765                 i++;
766         }
767 }
768
769 static int pch_dma_suspend(struct pci_dev *pdev, pm_message_t state)
770 {
771         struct pch_dma *pd = pci_get_drvdata(pdev);
772
773         if (pd)
774                 pch_dma_save_regs(pd);
775
776         pci_save_state(pdev);
777         pci_disable_device(pdev);
778         pci_set_power_state(pdev, pci_choose_state(pdev, state));
779
780         return 0;
781 }
782
783 static int pch_dma_resume(struct pci_dev *pdev)
784 {
785         struct pch_dma *pd = pci_get_drvdata(pdev);
786         int err;
787
788         pci_set_power_state(pdev, PCI_D0);
789         pci_restore_state(pdev);
790
791         err = pci_enable_device(pdev);
792         if (err) {
793                 dev_dbg(&pdev->dev, "failed to enable device\n");
794                 return err;
795         }
796
797         if (pd)
798                 pch_dma_restore_regs(pd);
799
800         return 0;
801 }
802 #endif
803
804 static int __devinit pch_dma_probe(struct pci_dev *pdev,
805                                    const struct pci_device_id *id)
806 {
807         struct pch_dma *pd;
808         struct pch_dma_regs *regs;
809         unsigned int nr_channels;
810         int err;
811         int i;
812
813         nr_channels = id->driver_data;
814         pd = kzalloc(sizeof(struct pch_dma)+
815                 sizeof(struct pch_dma_chan) * nr_channels, GFP_KERNEL);
816         if (!pd)
817                 return -ENOMEM;
818
819         pci_set_drvdata(pdev, pd);
820
821         err = pci_enable_device(pdev);
822         if (err) {
823                 dev_err(&pdev->dev, "Cannot enable PCI device\n");
824                 goto err_free_mem;
825         }
826
827         if (!(pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
828                 dev_err(&pdev->dev, "Cannot find proper base address\n");
829                 goto err_disable_pdev;
830         }
831
832         err = pci_request_regions(pdev, DRV_NAME);
833         if (err) {
834                 dev_err(&pdev->dev, "Cannot obtain PCI resources\n");
835                 goto err_disable_pdev;
836         }
837
838         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
839         if (err) {
840                 dev_err(&pdev->dev, "Cannot set proper DMA config\n");
841                 goto err_free_res;
842         }
843
844         regs = pd->membase = pci_iomap(pdev, 1, 0);
845         if (!pd->membase) {
846                 dev_err(&pdev->dev, "Cannot map MMIO registers\n");
847                 err = -ENOMEM;
848                 goto err_free_res;
849         }
850
851         pci_set_master(pdev);
852
853         err = request_irq(pdev->irq, pd_irq, IRQF_SHARED, DRV_NAME, pd);
854         if (err) {
855                 dev_err(&pdev->dev, "Failed to request IRQ\n");
856                 goto err_iounmap;
857         }
858
859         pd->pool = pci_pool_create("pch_dma_desc_pool", pdev,
860                                    sizeof(struct pch_dma_desc), 4, 0);
861         if (!pd->pool) {
862                 dev_err(&pdev->dev, "Failed to alloc DMA descriptors\n");
863                 err = -ENOMEM;
864                 goto err_free_irq;
865         }
866
867         pd->dma.dev = &pdev->dev;
868         pd->dma.chancnt = nr_channels;
869
870         INIT_LIST_HEAD(&pd->dma.channels);
871
872         for (i = 0; i < nr_channels; i++) {
873                 struct pch_dma_chan *pd_chan = &pd->channels[i];
874
875                 pd_chan->chan.device = &pd->dma;
876                 pd_chan->chan.cookie = 1;
877                 pd_chan->chan.chan_id = i;
878
879                 pd_chan->membase = &regs->desc[i];
880
881                 spin_lock_init(&pd_chan->lock);
882
883                 INIT_LIST_HEAD(&pd_chan->active_list);
884                 INIT_LIST_HEAD(&pd_chan->queue);
885                 INIT_LIST_HEAD(&pd_chan->free_list);
886
887                 tasklet_init(&pd_chan->tasklet, pdc_tasklet,
888                              (unsigned long)pd_chan);
889                 list_add_tail(&pd_chan->chan.device_node, &pd->dma.channels);
890         }
891
892         dma_cap_zero(pd->dma.cap_mask);
893         dma_cap_set(DMA_PRIVATE, pd->dma.cap_mask);
894         dma_cap_set(DMA_SLAVE, pd->dma.cap_mask);
895
896         pd->dma.device_alloc_chan_resources = pd_alloc_chan_resources;
897         pd->dma.device_free_chan_resources = pd_free_chan_resources;
898         pd->dma.device_tx_status = pd_tx_status;
899         pd->dma.device_issue_pending = pd_issue_pending;
900         pd->dma.device_prep_slave_sg = pd_prep_slave_sg;
901         pd->dma.device_control = pd_device_control;
902
903         err = dma_async_device_register(&pd->dma);
904         if (err) {
905                 dev_err(&pdev->dev, "Failed to register DMA device\n");
906                 goto err_free_pool;
907         }
908
909         return 0;
910
911 err_free_pool:
912         pci_pool_destroy(pd->pool);
913 err_free_irq:
914         free_irq(pdev->irq, pd);
915 err_iounmap:
916         pci_iounmap(pdev, pd->membase);
917 err_free_res:
918         pci_release_regions(pdev);
919 err_disable_pdev:
920         pci_disable_device(pdev);
921 err_free_mem:
922         return err;
923 }
924
925 static void __devexit pch_dma_remove(struct pci_dev *pdev)
926 {
927         struct pch_dma *pd = pci_get_drvdata(pdev);
928         struct pch_dma_chan *pd_chan;
929         struct dma_chan *chan, *_c;
930
931         if (pd) {
932                 dma_async_device_unregister(&pd->dma);
933
934                 list_for_each_entry_safe(chan, _c, &pd->dma.channels,
935                                          device_node) {
936                         pd_chan = to_pd_chan(chan);
937
938                         tasklet_disable(&pd_chan->tasklet);
939                         tasklet_kill(&pd_chan->tasklet);
940                 }
941
942                 pci_pool_destroy(pd->pool);
943                 free_irq(pdev->irq, pd);
944                 pci_iounmap(pdev, pd->membase);
945                 pci_release_regions(pdev);
946                 pci_disable_device(pdev);
947                 kfree(pd);
948         }
949 }
950
951 /* PCI Device ID of DMA device */
952 #define PCI_VENDOR_ID_ROHM             0x10DB
953 #define PCI_DEVICE_ID_EG20T_PCH_DMA_8CH        0x8810
954 #define PCI_DEVICE_ID_EG20T_PCH_DMA_4CH        0x8815
955 #define PCI_DEVICE_ID_ML7213_DMA1_8CH   0x8026
956 #define PCI_DEVICE_ID_ML7213_DMA2_8CH   0x802B
957 #define PCI_DEVICE_ID_ML7213_DMA3_4CH   0x8034
958 #define PCI_DEVICE_ID_ML7213_DMA4_12CH  0x8032
959 #define PCI_DEVICE_ID_ML7223_DMA1_4CH   0x800B
960 #define PCI_DEVICE_ID_ML7223_DMA2_4CH   0x800E
961 #define PCI_DEVICE_ID_ML7223_DMA3_4CH   0x8017
962 #define PCI_DEVICE_ID_ML7223_DMA4_4CH   0x803B
963
964 DEFINE_PCI_DEVICE_TABLE(pch_dma_id_table) = {
965         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_EG20T_PCH_DMA_8CH), 8 },
966         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_EG20T_PCH_DMA_4CH), 4 },
967         { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_DMA1_8CH), 8}, /* UART Video */
968         { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_DMA2_8CH), 8}, /* PCMIF SPI */
969         { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_DMA3_4CH), 4}, /* FPGA */
970         { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_DMA4_12CH), 12}, /* I2S */
971         { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_DMA1_4CH), 4}, /* UART */
972         { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_DMA2_4CH), 4}, /* Video SPI */
973         { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_DMA3_4CH), 4}, /* Security */
974         { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_DMA4_4CH), 4}, /* FPGA */
975         { 0, },
976 };
977
978 static struct pci_driver pch_dma_driver = {
979         .name           = DRV_NAME,
980         .id_table       = pch_dma_id_table,
981         .probe          = pch_dma_probe,
982         .remove         = __devexit_p(pch_dma_remove),
983 #ifdef CONFIG_PM
984         .suspend        = pch_dma_suspend,
985         .resume         = pch_dma_resume,
986 #endif
987 };
988
989 static int __init pch_dma_init(void)
990 {
991         return pci_register_driver(&pch_dma_driver);
992 }
993
994 static void __exit pch_dma_exit(void)
995 {
996         pci_unregister_driver(&pch_dma_driver);
997 }
998
999 module_init(pch_dma_init);
1000 module_exit(pch_dma_exit);
1001
1002 MODULE_DESCRIPTION("Intel EG20T PCH / OKI SEMICONDUCTOR ML7213 IOH "
1003                    "DMA controller driver");
1004 MODULE_AUTHOR("Yong Wang <yong.y.wang@intel.com>");
1005 MODULE_LICENSE("GPL v2");