Merge branch 'samsung/exynos5' into next/soc2
[linux-2.6.git] / drivers / cpufreq / powernow-k8.c
1 /*
2  *   (c) 2003-2012 Advanced Micro Devices, Inc.
3  *  Your use of this code is subject to the terms and conditions of the
4  *  GNU general public license version 2. See "COPYING" or
5  *  http://www.gnu.org/licenses/gpl.html
6  *
7  *  Maintainer:
8  *  Andreas Herrmann <andreas.herrmann3@amd.com>
9  *
10  *  Based on the powernow-k7.c module written by Dave Jones.
11  *  (C) 2003 Dave Jones on behalf of SuSE Labs
12  *  (C) 2004 Dominik Brodowski <linux@brodo.de>
13  *  (C) 2004 Pavel Machek <pavel@ucw.cz>
14  *  Licensed under the terms of the GNU GPL License version 2.
15  *  Based upon datasheets & sample CPUs kindly provided by AMD.
16  *
17  *  Valuable input gratefully received from Dave Jones, Pavel Machek,
18  *  Dominik Brodowski, Jacob Shin, and others.
19  *  Originally developed by Paul Devriendt.
20  *
21  *  Processor information obtained from Chapter 9 (Power and Thermal
22  *  Management) of the "BIOS and Kernel Developer's Guide (BKDG) for
23  *  the AMD Athlon 64 and AMD Opteron Processors" and section "2.x
24  *  Power Management" in BKDGs for newer AMD CPU families.
25  *
26  *  Tables for specific CPUs can be inferred from AMD's processor
27  *  power and thermal data sheets, (e.g. 30417.pdf, 30430.pdf, 43375.pdf)
28  */
29
30 #include <linux/kernel.h>
31 #include <linux/smp.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/slab.h>
36 #include <linux/string.h>
37 #include <linux/cpumask.h>
38 #include <linux/sched.h>        /* for current / set_cpus_allowed() */
39 #include <linux/io.h>
40 #include <linux/delay.h>
41
42 #include <asm/msr.h>
43 #include <asm/cpu_device_id.h>
44
45 #include <linux/acpi.h>
46 #include <linux/mutex.h>
47 #include <acpi/processor.h>
48
49 #define PFX "powernow-k8: "
50 #define VERSION "version 2.20.00"
51 #include "powernow-k8.h"
52 #include "mperf.h"
53
54 /* serialize freq changes  */
55 static DEFINE_MUTEX(fidvid_mutex);
56
57 static DEFINE_PER_CPU(struct powernow_k8_data *, powernow_data);
58
59 static int cpu_family = CPU_OPTERON;
60
61 /* array to map SW pstate number to acpi state */
62 static u32 ps_to_as[8];
63
64 /* core performance boost */
65 static bool cpb_capable, cpb_enabled;
66 static struct msr __percpu *msrs;
67
68 static struct cpufreq_driver cpufreq_amd64_driver;
69
70 #ifndef CONFIG_SMP
71 static inline const struct cpumask *cpu_core_mask(int cpu)
72 {
73         return cpumask_of(0);
74 }
75 #endif
76
77 /* Return a frequency in MHz, given an input fid */
78 static u32 find_freq_from_fid(u32 fid)
79 {
80         return 800 + (fid * 100);
81 }
82
83 /* Return a frequency in KHz, given an input fid */
84 static u32 find_khz_freq_from_fid(u32 fid)
85 {
86         return 1000 * find_freq_from_fid(fid);
87 }
88
89 static u32 find_khz_freq_from_pstate(struct cpufreq_frequency_table *data,
90                                      u32 pstate)
91 {
92         return data[ps_to_as[pstate]].frequency;
93 }
94
95 /* Return the vco fid for an input fid
96  *
97  * Each "low" fid has corresponding "high" fid, and you can get to "low" fids
98  * only from corresponding high fids. This returns "high" fid corresponding to
99  * "low" one.
100  */
101 static u32 convert_fid_to_vco_fid(u32 fid)
102 {
103         if (fid < HI_FID_TABLE_BOTTOM)
104                 return 8 + (2 * fid);
105         else
106                 return fid;
107 }
108
109 /*
110  * Return 1 if the pending bit is set. Unless we just instructed the processor
111  * to transition to a new state, seeing this bit set is really bad news.
112  */
113 static int pending_bit_stuck(void)
114 {
115         u32 lo, hi;
116
117         if (cpu_family == CPU_HW_PSTATE)
118                 return 0;
119
120         rdmsr(MSR_FIDVID_STATUS, lo, hi);
121         return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0;
122 }
123
124 /*
125  * Update the global current fid / vid values from the status msr.
126  * Returns 1 on error.
127  */
128 static int query_current_values_with_pending_wait(struct powernow_k8_data *data)
129 {
130         u32 lo, hi;
131         u32 i = 0;
132
133         if (cpu_family == CPU_HW_PSTATE) {
134                 rdmsr(MSR_PSTATE_STATUS, lo, hi);
135                 i = lo & HW_PSTATE_MASK;
136                 data->currpstate = i;
137
138                 /*
139                  * a workaround for family 11h erratum 311 might cause
140                  * an "out-of-range Pstate if the core is in Pstate-0
141                  */
142                 if ((boot_cpu_data.x86 == 0x11) && (i >= data->numps))
143                         data->currpstate = HW_PSTATE_0;
144
145                 return 0;
146         }
147         do {
148                 if (i++ > 10000) {
149                         pr_debug("detected change pending stuck\n");
150                         return 1;
151                 }
152                 rdmsr(MSR_FIDVID_STATUS, lo, hi);
153         } while (lo & MSR_S_LO_CHANGE_PENDING);
154
155         data->currvid = hi & MSR_S_HI_CURRENT_VID;
156         data->currfid = lo & MSR_S_LO_CURRENT_FID;
157
158         return 0;
159 }
160
161 /* the isochronous relief time */
162 static void count_off_irt(struct powernow_k8_data *data)
163 {
164         udelay((1 << data->irt) * 10);
165         return;
166 }
167
168 /* the voltage stabilization time */
169 static void count_off_vst(struct powernow_k8_data *data)
170 {
171         udelay(data->vstable * VST_UNITS_20US);
172         return;
173 }
174
175 /* need to init the control msr to a safe value (for each cpu) */
176 static void fidvid_msr_init(void)
177 {
178         u32 lo, hi;
179         u8 fid, vid;
180
181         rdmsr(MSR_FIDVID_STATUS, lo, hi);
182         vid = hi & MSR_S_HI_CURRENT_VID;
183         fid = lo & MSR_S_LO_CURRENT_FID;
184         lo = fid | (vid << MSR_C_LO_VID_SHIFT);
185         hi = MSR_C_HI_STP_GNT_BENIGN;
186         pr_debug("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi);
187         wrmsr(MSR_FIDVID_CTL, lo, hi);
188 }
189
190 /* write the new fid value along with the other control fields to the msr */
191 static int write_new_fid(struct powernow_k8_data *data, u32 fid)
192 {
193         u32 lo;
194         u32 savevid = data->currvid;
195         u32 i = 0;
196
197         if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) {
198                 printk(KERN_ERR PFX "internal error - overflow on fid write\n");
199                 return 1;
200         }
201
202         lo = fid;
203         lo |= (data->currvid << MSR_C_LO_VID_SHIFT);
204         lo |= MSR_C_LO_INIT_FID_VID;
205
206         pr_debug("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
207                 fid, lo, data->plllock * PLL_LOCK_CONVERSION);
208
209         do {
210                 wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION);
211                 if (i++ > 100) {
212                         printk(KERN_ERR PFX
213                                 "Hardware error - pending bit very stuck - "
214                                 "no further pstate changes possible\n");
215                         return 1;
216                 }
217         } while (query_current_values_with_pending_wait(data));
218
219         count_off_irt(data);
220
221         if (savevid != data->currvid) {
222                 printk(KERN_ERR PFX
223                         "vid change on fid trans, old 0x%x, new 0x%x\n",
224                         savevid, data->currvid);
225                 return 1;
226         }
227
228         if (fid != data->currfid) {
229                 printk(KERN_ERR PFX
230                         "fid trans failed, fid 0x%x, curr 0x%x\n", fid,
231                         data->currfid);
232                 return 1;
233         }
234
235         return 0;
236 }
237
238 /* Write a new vid to the hardware */
239 static int write_new_vid(struct powernow_k8_data *data, u32 vid)
240 {
241         u32 lo;
242         u32 savefid = data->currfid;
243         int i = 0;
244
245         if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
246                 printk(KERN_ERR PFX "internal error - overflow on vid write\n");
247                 return 1;
248         }
249
250         lo = data->currfid;
251         lo |= (vid << MSR_C_LO_VID_SHIFT);
252         lo |= MSR_C_LO_INIT_FID_VID;
253
254         pr_debug("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
255                 vid, lo, STOP_GRANT_5NS);
256
257         do {
258                 wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS);
259                 if (i++ > 100) {
260                         printk(KERN_ERR PFX "internal error - pending bit "
261                                         "very stuck - no further pstate "
262                                         "changes possible\n");
263                         return 1;
264                 }
265         } while (query_current_values_with_pending_wait(data));
266
267         if (savefid != data->currfid) {
268                 printk(KERN_ERR PFX "fid changed on vid trans, old "
269                         "0x%x new 0x%x\n",
270                        savefid, data->currfid);
271                 return 1;
272         }
273
274         if (vid != data->currvid) {
275                 printk(KERN_ERR PFX "vid trans failed, vid 0x%x, "
276                                 "curr 0x%x\n",
277                                 vid, data->currvid);
278                 return 1;
279         }
280
281         return 0;
282 }
283
284 /*
285  * Reduce the vid by the max of step or reqvid.
286  * Decreasing vid codes represent increasing voltages:
287  * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
288  */
289 static int decrease_vid_code_by_step(struct powernow_k8_data *data,
290                 u32 reqvid, u32 step)
291 {
292         if ((data->currvid - reqvid) > step)
293                 reqvid = data->currvid - step;
294
295         if (write_new_vid(data, reqvid))
296                 return 1;
297
298         count_off_vst(data);
299
300         return 0;
301 }
302
303 /* Change hardware pstate by single MSR write */
304 static int transition_pstate(struct powernow_k8_data *data, u32 pstate)
305 {
306         wrmsr(MSR_PSTATE_CTRL, pstate, 0);
307         data->currpstate = pstate;
308         return 0;
309 }
310
311 /* Change Opteron/Athlon64 fid and vid, by the 3 phases. */
312 static int transition_fid_vid(struct powernow_k8_data *data,
313                 u32 reqfid, u32 reqvid)
314 {
315         if (core_voltage_pre_transition(data, reqvid, reqfid))
316                 return 1;
317
318         if (core_frequency_transition(data, reqfid))
319                 return 1;
320
321         if (core_voltage_post_transition(data, reqvid))
322                 return 1;
323
324         if (query_current_values_with_pending_wait(data))
325                 return 1;
326
327         if ((reqfid != data->currfid) || (reqvid != data->currvid)) {
328                 printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, "
329                                 "curr 0x%x 0x%x\n",
330                                 smp_processor_id(),
331                                 reqfid, reqvid, data->currfid, data->currvid);
332                 return 1;
333         }
334
335         pr_debug("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
336                 smp_processor_id(), data->currfid, data->currvid);
337
338         return 0;
339 }
340
341 /* Phase 1 - core voltage transition ... setup voltage */
342 static int core_voltage_pre_transition(struct powernow_k8_data *data,
343                 u32 reqvid, u32 reqfid)
344 {
345         u32 rvosteps = data->rvo;
346         u32 savefid = data->currfid;
347         u32 maxvid, lo, rvomult = 1;
348
349         pr_debug("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, "
350                 "reqvid 0x%x, rvo 0x%x\n",
351                 smp_processor_id(),
352                 data->currfid, data->currvid, reqvid, data->rvo);
353
354         if ((savefid < LO_FID_TABLE_TOP) && (reqfid < LO_FID_TABLE_TOP))
355                 rvomult = 2;
356         rvosteps *= rvomult;
357         rdmsr(MSR_FIDVID_STATUS, lo, maxvid);
358         maxvid = 0x1f & (maxvid >> 16);
359         pr_debug("ph1 maxvid=0x%x\n", maxvid);
360         if (reqvid < maxvid) /* lower numbers are higher voltages */
361                 reqvid = maxvid;
362
363         while (data->currvid > reqvid) {
364                 pr_debug("ph1: curr 0x%x, req vid 0x%x\n",
365                         data->currvid, reqvid);
366                 if (decrease_vid_code_by_step(data, reqvid, data->vidmvs))
367                         return 1;
368         }
369
370         while ((rvosteps > 0) &&
371                         ((rvomult * data->rvo + data->currvid) > reqvid)) {
372                 if (data->currvid == maxvid) {
373                         rvosteps = 0;
374                 } else {
375                         pr_debug("ph1: changing vid for rvo, req 0x%x\n",
376                                 data->currvid - 1);
377                         if (decrease_vid_code_by_step(data, data->currvid-1, 1))
378                                 return 1;
379                         rvosteps--;
380                 }
381         }
382
383         if (query_current_values_with_pending_wait(data))
384                 return 1;
385
386         if (savefid != data->currfid) {
387                 printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n",
388                                 data->currfid);
389                 return 1;
390         }
391
392         pr_debug("ph1 complete, currfid 0x%x, currvid 0x%x\n",
393                 data->currfid, data->currvid);
394
395         return 0;
396 }
397
398 /* Phase 2 - core frequency transition */
399 static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid)
400 {
401         u32 vcoreqfid, vcocurrfid, vcofiddiff;
402         u32 fid_interval, savevid = data->currvid;
403
404         if (data->currfid == reqfid) {
405                 printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n",
406                                 data->currfid);
407                 return 0;
408         }
409
410         pr_debug("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, "
411                 "reqfid 0x%x\n",
412                 smp_processor_id(),
413                 data->currfid, data->currvid, reqfid);
414
415         vcoreqfid = convert_fid_to_vco_fid(reqfid);
416         vcocurrfid = convert_fid_to_vco_fid(data->currfid);
417         vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
418             : vcoreqfid - vcocurrfid;
419
420         if ((reqfid <= LO_FID_TABLE_TOP) && (data->currfid <= LO_FID_TABLE_TOP))
421                 vcofiddiff = 0;
422
423         while (vcofiddiff > 2) {
424                 (data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2);
425
426                 if (reqfid > data->currfid) {
427                         if (data->currfid > LO_FID_TABLE_TOP) {
428                                 if (write_new_fid(data,
429                                                 data->currfid + fid_interval))
430                                         return 1;
431                         } else {
432                                 if (write_new_fid
433                                     (data,
434                                      2 + convert_fid_to_vco_fid(data->currfid)))
435                                         return 1;
436                         }
437                 } else {
438                         if (write_new_fid(data, data->currfid - fid_interval))
439                                 return 1;
440                 }
441
442                 vcocurrfid = convert_fid_to_vco_fid(data->currfid);
443                 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
444                     : vcoreqfid - vcocurrfid;
445         }
446
447         if (write_new_fid(data, reqfid))
448                 return 1;
449
450         if (query_current_values_with_pending_wait(data))
451                 return 1;
452
453         if (data->currfid != reqfid) {
454                 printk(KERN_ERR PFX
455                         "ph2: mismatch, failed fid transition, "
456                         "curr 0x%x, req 0x%x\n",
457                         data->currfid, reqfid);
458                 return 1;
459         }
460
461         if (savevid != data->currvid) {
462                 printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n",
463                         savevid, data->currvid);
464                 return 1;
465         }
466
467         pr_debug("ph2 complete, currfid 0x%x, currvid 0x%x\n",
468                 data->currfid, data->currvid);
469
470         return 0;
471 }
472
473 /* Phase 3 - core voltage transition flow ... jump to the final vid. */
474 static int core_voltage_post_transition(struct powernow_k8_data *data,
475                 u32 reqvid)
476 {
477         u32 savefid = data->currfid;
478         u32 savereqvid = reqvid;
479
480         pr_debug("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
481                 smp_processor_id(),
482                 data->currfid, data->currvid);
483
484         if (reqvid != data->currvid) {
485                 if (write_new_vid(data, reqvid))
486                         return 1;
487
488                 if (savefid != data->currfid) {
489                         printk(KERN_ERR PFX
490                                "ph3: bad fid change, save 0x%x, curr 0x%x\n",
491                                savefid, data->currfid);
492                         return 1;
493                 }
494
495                 if (data->currvid != reqvid) {
496                         printk(KERN_ERR PFX
497                                "ph3: failed vid transition\n, "
498                                "req 0x%x, curr 0x%x",
499                                reqvid, data->currvid);
500                         return 1;
501                 }
502         }
503
504         if (query_current_values_with_pending_wait(data))
505                 return 1;
506
507         if (savereqvid != data->currvid) {
508                 pr_debug("ph3 failed, currvid 0x%x\n", data->currvid);
509                 return 1;
510         }
511
512         if (savefid != data->currfid) {
513                 pr_debug("ph3 failed, currfid changed 0x%x\n",
514                         data->currfid);
515                 return 1;
516         }
517
518         pr_debug("ph3 complete, currfid 0x%x, currvid 0x%x\n",
519                 data->currfid, data->currvid);
520
521         return 0;
522 }
523
524 static const struct x86_cpu_id powernow_k8_ids[] = {
525         /* IO based frequency switching */
526         { X86_VENDOR_AMD, 0xf },
527         /* MSR based frequency switching supported */
528         X86_FEATURE_MATCH(X86_FEATURE_HW_PSTATE),
529         {}
530 };
531 MODULE_DEVICE_TABLE(x86cpu, powernow_k8_ids);
532
533 static void check_supported_cpu(void *_rc)
534 {
535         u32 eax, ebx, ecx, edx;
536         int *rc = _rc;
537
538         *rc = -ENODEV;
539
540         eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
541
542         if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) {
543                 if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) ||
544                     ((eax & CPUID_XMOD) > CPUID_XMOD_REV_MASK)) {
545                         printk(KERN_INFO PFX
546                                 "Processor cpuid %x not supported\n", eax);
547                         return;
548                 }
549
550                 eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES);
551                 if (eax < CPUID_FREQ_VOLT_CAPABILITIES) {
552                         printk(KERN_INFO PFX
553                                "No frequency change capabilities detected\n");
554                         return;
555                 }
556
557                 cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
558                 if ((edx & P_STATE_TRANSITION_CAPABLE)
559                         != P_STATE_TRANSITION_CAPABLE) {
560                         printk(KERN_INFO PFX
561                                 "Power state transitions not supported\n");
562                         return;
563                 }
564         } else { /* must be a HW Pstate capable processor */
565                 cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
566                 if ((edx & USE_HW_PSTATE) == USE_HW_PSTATE)
567                         cpu_family = CPU_HW_PSTATE;
568                 else
569                         return;
570         }
571
572         *rc = 0;
573 }
574
575 static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst,
576                 u8 maxvid)
577 {
578         unsigned int j;
579         u8 lastfid = 0xff;
580
581         for (j = 0; j < data->numps; j++) {
582                 if (pst[j].vid > LEAST_VID) {
583                         printk(KERN_ERR FW_BUG PFX "vid %d invalid : 0x%x\n",
584                                j, pst[j].vid);
585                         return -EINVAL;
586                 }
587                 if (pst[j].vid < data->rvo) {
588                         /* vid + rvo >= 0 */
589                         printk(KERN_ERR FW_BUG PFX "0 vid exceeded with pstate"
590                                " %d\n", j);
591                         return -ENODEV;
592                 }
593                 if (pst[j].vid < maxvid + data->rvo) {
594                         /* vid + rvo >= maxvid */
595                         printk(KERN_ERR FW_BUG PFX "maxvid exceeded with pstate"
596                                " %d\n", j);
597                         return -ENODEV;
598                 }
599                 if (pst[j].fid > MAX_FID) {
600                         printk(KERN_ERR FW_BUG PFX "maxfid exceeded with pstate"
601                                " %d\n", j);
602                         return -ENODEV;
603                 }
604                 if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) {
605                         /* Only first fid is allowed to be in "low" range */
606                         printk(KERN_ERR FW_BUG PFX "two low fids - %d : "
607                                "0x%x\n", j, pst[j].fid);
608                         return -EINVAL;
609                 }
610                 if (pst[j].fid < lastfid)
611                         lastfid = pst[j].fid;
612         }
613         if (lastfid & 1) {
614                 printk(KERN_ERR FW_BUG PFX "lastfid invalid\n");
615                 return -EINVAL;
616         }
617         if (lastfid > LO_FID_TABLE_TOP)
618                 printk(KERN_INFO FW_BUG PFX
619                         "first fid not from lo freq table\n");
620
621         return 0;
622 }
623
624 static void invalidate_entry(struct cpufreq_frequency_table *powernow_table,
625                 unsigned int entry)
626 {
627         powernow_table[entry].frequency = CPUFREQ_ENTRY_INVALID;
628 }
629
630 static void print_basics(struct powernow_k8_data *data)
631 {
632         int j;
633         for (j = 0; j < data->numps; j++) {
634                 if (data->powernow_table[j].frequency !=
635                                 CPUFREQ_ENTRY_INVALID) {
636                         if (cpu_family == CPU_HW_PSTATE) {
637                                 printk(KERN_INFO PFX
638                                         "   %d : pstate %d (%d MHz)\n", j,
639                                         data->powernow_table[j].index,
640                                         data->powernow_table[j].frequency/1000);
641                         } else {
642                                 printk(KERN_INFO PFX
643                                         "fid 0x%x (%d MHz), vid 0x%x\n",
644                                         data->powernow_table[j].index & 0xff,
645                                         data->powernow_table[j].frequency/1000,
646                                         data->powernow_table[j].index >> 8);
647                         }
648                 }
649         }
650         if (data->batps)
651                 printk(KERN_INFO PFX "Only %d pstates on battery\n",
652                                 data->batps);
653 }
654
655 static u32 freq_from_fid_did(u32 fid, u32 did)
656 {
657         u32 mhz = 0;
658
659         if (boot_cpu_data.x86 == 0x10)
660                 mhz = (100 * (fid + 0x10)) >> did;
661         else if (boot_cpu_data.x86 == 0x11)
662                 mhz = (100 * (fid + 8)) >> did;
663         else
664                 BUG();
665
666         return mhz * 1000;
667 }
668
669 static int fill_powernow_table(struct powernow_k8_data *data,
670                 struct pst_s *pst, u8 maxvid)
671 {
672         struct cpufreq_frequency_table *powernow_table;
673         unsigned int j;
674
675         if (data->batps) {
676                 /* use ACPI support to get full speed on mains power */
677                 printk(KERN_WARNING PFX
678                         "Only %d pstates usable (use ACPI driver for full "
679                         "range\n", data->batps);
680                 data->numps = data->batps;
681         }
682
683         for (j = 1; j < data->numps; j++) {
684                 if (pst[j-1].fid >= pst[j].fid) {
685                         printk(KERN_ERR PFX "PST out of sequence\n");
686                         return -EINVAL;
687                 }
688         }
689
690         if (data->numps < 2) {
691                 printk(KERN_ERR PFX "no p states to transition\n");
692                 return -ENODEV;
693         }
694
695         if (check_pst_table(data, pst, maxvid))
696                 return -EINVAL;
697
698         powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
699                 * (data->numps + 1)), GFP_KERNEL);
700         if (!powernow_table) {
701                 printk(KERN_ERR PFX "powernow_table memory alloc failure\n");
702                 return -ENOMEM;
703         }
704
705         for (j = 0; j < data->numps; j++) {
706                 int freq;
707                 powernow_table[j].index = pst[j].fid; /* lower 8 bits */
708                 powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */
709                 freq = find_khz_freq_from_fid(pst[j].fid);
710                 powernow_table[j].frequency = freq;
711         }
712         powernow_table[data->numps].frequency = CPUFREQ_TABLE_END;
713         powernow_table[data->numps].index = 0;
714
715         if (query_current_values_with_pending_wait(data)) {
716                 kfree(powernow_table);
717                 return -EIO;
718         }
719
720         pr_debug("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid);
721         data->powernow_table = powernow_table;
722         if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
723                 print_basics(data);
724
725         for (j = 0; j < data->numps; j++)
726                 if ((pst[j].fid == data->currfid) &&
727                     (pst[j].vid == data->currvid))
728                         return 0;
729
730         pr_debug("currfid/vid do not match PST, ignoring\n");
731         return 0;
732 }
733
734 /* Find and validate the PSB/PST table in BIOS. */
735 static int find_psb_table(struct powernow_k8_data *data)
736 {
737         struct psb_s *psb;
738         unsigned int i;
739         u32 mvs;
740         u8 maxvid;
741         u32 cpst = 0;
742         u32 thiscpuid;
743
744         for (i = 0xc0000; i < 0xffff0; i += 0x10) {
745                 /* Scan BIOS looking for the signature. */
746                 /* It can not be at ffff0 - it is too big. */
747
748                 psb = phys_to_virt(i);
749                 if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0)
750                         continue;
751
752                 pr_debug("found PSB header at 0x%p\n", psb);
753
754                 pr_debug("table vers: 0x%x\n", psb->tableversion);
755                 if (psb->tableversion != PSB_VERSION_1_4) {
756                         printk(KERN_ERR FW_BUG PFX "PSB table is not v1.4\n");
757                         return -ENODEV;
758                 }
759
760                 pr_debug("flags: 0x%x\n", psb->flags1);
761                 if (psb->flags1) {
762                         printk(KERN_ERR FW_BUG PFX "unknown flags\n");
763                         return -ENODEV;
764                 }
765
766                 data->vstable = psb->vstable;
767                 pr_debug("voltage stabilization time: %d(*20us)\n",
768                                 data->vstable);
769
770                 pr_debug("flags2: 0x%x\n", psb->flags2);
771                 data->rvo = psb->flags2 & 3;
772                 data->irt = ((psb->flags2) >> 2) & 3;
773                 mvs = ((psb->flags2) >> 4) & 3;
774                 data->vidmvs = 1 << mvs;
775                 data->batps = ((psb->flags2) >> 6) & 3;
776
777                 pr_debug("ramp voltage offset: %d\n", data->rvo);
778                 pr_debug("isochronous relief time: %d\n", data->irt);
779                 pr_debug("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs);
780
781                 pr_debug("numpst: 0x%x\n", psb->num_tables);
782                 cpst = psb->num_tables;
783                 if ((psb->cpuid == 0x00000fc0) ||
784                     (psb->cpuid == 0x00000fe0)) {
785                         thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
786                         if ((thiscpuid == 0x00000fc0) ||
787                             (thiscpuid == 0x00000fe0))
788                                 cpst = 1;
789                 }
790                 if (cpst != 1) {
791                         printk(KERN_ERR FW_BUG PFX "numpst must be 1\n");
792                         return -ENODEV;
793                 }
794
795                 data->plllock = psb->plllocktime;
796                 pr_debug("plllocktime: 0x%x (units 1us)\n", psb->plllocktime);
797                 pr_debug("maxfid: 0x%x\n", psb->maxfid);
798                 pr_debug("maxvid: 0x%x\n", psb->maxvid);
799                 maxvid = psb->maxvid;
800
801                 data->numps = psb->numps;
802                 pr_debug("numpstates: 0x%x\n", data->numps);
803                 return fill_powernow_table(data,
804                                 (struct pst_s *)(psb+1), maxvid);
805         }
806         /*
807          * If you see this message, complain to BIOS manufacturer. If
808          * he tells you "we do not support Linux" or some similar
809          * nonsense, remember that Windows 2000 uses the same legacy
810          * mechanism that the old Linux PSB driver uses. Tell them it
811          * is broken with Windows 2000.
812          *
813          * The reference to the AMD documentation is chapter 9 in the
814          * BIOS and Kernel Developer's Guide, which is available on
815          * www.amd.com
816          */
817         printk(KERN_ERR FW_BUG PFX "No PSB or ACPI _PSS objects\n");
818         printk(KERN_ERR PFX "Make sure that your BIOS is up to date"
819                 " and Cool'N'Quiet support is enabled in BIOS setup\n");
820         return -ENODEV;
821 }
822
823 static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data,
824                 unsigned int index)
825 {
826         u64 control;
827
828         if (!data->acpi_data.state_count || (cpu_family == CPU_HW_PSTATE))
829                 return;
830
831         control = data->acpi_data.states[index].control;
832         data->irt = (control >> IRT_SHIFT) & IRT_MASK;
833         data->rvo = (control >> RVO_SHIFT) & RVO_MASK;
834         data->exttype = (control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK;
835         data->plllock = (control >> PLL_L_SHIFT) & PLL_L_MASK;
836         data->vidmvs = 1 << ((control >> MVS_SHIFT) & MVS_MASK);
837         data->vstable = (control >> VST_SHIFT) & VST_MASK;
838 }
839
840 static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
841 {
842         struct cpufreq_frequency_table *powernow_table;
843         int ret_val = -ENODEV;
844         u64 control, status;
845
846         if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) {
847                 pr_debug("register performance failed: bad ACPI data\n");
848                 return -EIO;
849         }
850
851         /* verify the data contained in the ACPI structures */
852         if (data->acpi_data.state_count <= 1) {
853                 pr_debug("No ACPI P-States\n");
854                 goto err_out;
855         }
856
857         control = data->acpi_data.control_register.space_id;
858         status = data->acpi_data.status_register.space_id;
859
860         if ((control != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
861             (status != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
862                 pr_debug("Invalid control/status registers (%llx - %llx)\n",
863                         control, status);
864                 goto err_out;
865         }
866
867         /* fill in data->powernow_table */
868         powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
869                 * (data->acpi_data.state_count + 1)), GFP_KERNEL);
870         if (!powernow_table) {
871                 pr_debug("powernow_table memory alloc failure\n");
872                 goto err_out;
873         }
874
875         /* fill in data */
876         data->numps = data->acpi_data.state_count;
877         powernow_k8_acpi_pst_values(data, 0);
878
879         if (cpu_family == CPU_HW_PSTATE)
880                 ret_val = fill_powernow_table_pstate(data, powernow_table);
881         else
882                 ret_val = fill_powernow_table_fidvid(data, powernow_table);
883         if (ret_val)
884                 goto err_out_mem;
885
886         powernow_table[data->acpi_data.state_count].frequency =
887                 CPUFREQ_TABLE_END;
888         powernow_table[data->acpi_data.state_count].index = 0;
889         data->powernow_table = powernow_table;
890
891         if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
892                 print_basics(data);
893
894         /* notify BIOS that we exist */
895         acpi_processor_notify_smm(THIS_MODULE);
896
897         if (!zalloc_cpumask_var(&data->acpi_data.shared_cpu_map, GFP_KERNEL)) {
898                 printk(KERN_ERR PFX
899                                 "unable to alloc powernow_k8_data cpumask\n");
900                 ret_val = -ENOMEM;
901                 goto err_out_mem;
902         }
903
904         return 0;
905
906 err_out_mem:
907         kfree(powernow_table);
908
909 err_out:
910         acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
911
912         /* data->acpi_data.state_count informs us at ->exit()
913          * whether ACPI was used */
914         data->acpi_data.state_count = 0;
915
916         return ret_val;
917 }
918
919 static int fill_powernow_table_pstate(struct powernow_k8_data *data,
920                 struct cpufreq_frequency_table *powernow_table)
921 {
922         int i;
923         u32 hi = 0, lo = 0;
924         rdmsr(MSR_PSTATE_CUR_LIMIT, lo, hi);
925         data->max_hw_pstate = (lo & HW_PSTATE_MAX_MASK) >> HW_PSTATE_MAX_SHIFT;
926
927         for (i = 0; i < data->acpi_data.state_count; i++) {
928                 u32 index;
929
930                 index = data->acpi_data.states[i].control & HW_PSTATE_MASK;
931                 if (index > data->max_hw_pstate) {
932                         printk(KERN_ERR PFX "invalid pstate %d - "
933                                         "bad value %d.\n", i, index);
934                         printk(KERN_ERR PFX "Please report to BIOS "
935                                         "manufacturer\n");
936                         invalidate_entry(powernow_table, i);
937                         continue;
938                 }
939
940                 ps_to_as[index] = i;
941
942                 /* Frequency may be rounded for these */
943                 if ((boot_cpu_data.x86 == 0x10 && boot_cpu_data.x86_model < 10)
944                                  || boot_cpu_data.x86 == 0x11) {
945
946                         rdmsr(MSR_PSTATE_DEF_BASE + index, lo, hi);
947                         if (!(hi & HW_PSTATE_VALID_MASK)) {
948                                 pr_debug("invalid pstate %d, ignoring\n", index);
949                                 invalidate_entry(powernow_table, i);
950                                 continue;
951                         }
952
953                         powernow_table[i].frequency =
954                                 freq_from_fid_did(lo & 0x3f, (lo >> 6) & 7);
955                 } else
956                         powernow_table[i].frequency =
957                                 data->acpi_data.states[i].core_frequency * 1000;
958
959                 powernow_table[i].index = index;
960         }
961         return 0;
962 }
963
964 static int fill_powernow_table_fidvid(struct powernow_k8_data *data,
965                 struct cpufreq_frequency_table *powernow_table)
966 {
967         int i;
968
969         for (i = 0; i < data->acpi_data.state_count; i++) {
970                 u32 fid;
971                 u32 vid;
972                 u32 freq, index;
973                 u64 status, control;
974
975                 if (data->exttype) {
976                         status =  data->acpi_data.states[i].status;
977                         fid = status & EXT_FID_MASK;
978                         vid = (status >> VID_SHIFT) & EXT_VID_MASK;
979                 } else {
980                         control =  data->acpi_data.states[i].control;
981                         fid = control & FID_MASK;
982                         vid = (control >> VID_SHIFT) & VID_MASK;
983                 }
984
985                 pr_debug("   %d : fid 0x%x, vid 0x%x\n", i, fid, vid);
986
987                 index = fid | (vid<<8);
988                 powernow_table[i].index = index;
989
990                 freq = find_khz_freq_from_fid(fid);
991                 powernow_table[i].frequency = freq;
992
993                 /* verify frequency is OK */
994                 if ((freq > (MAX_FREQ * 1000)) || (freq < (MIN_FREQ * 1000))) {
995                         pr_debug("invalid freq %u kHz, ignoring\n", freq);
996                         invalidate_entry(powernow_table, i);
997                         continue;
998                 }
999
1000                 /* verify voltage is OK -
1001                  * BIOSs are using "off" to indicate invalid */
1002                 if (vid == VID_OFF) {
1003                         pr_debug("invalid vid %u, ignoring\n", vid);
1004                         invalidate_entry(powernow_table, i);
1005                         continue;
1006                 }
1007
1008                 if (freq != (data->acpi_data.states[i].core_frequency * 1000)) {
1009                         printk(KERN_INFO PFX "invalid freq entries "
1010                                 "%u kHz vs. %u kHz\n", freq,
1011                                 (unsigned int)
1012                                 (data->acpi_data.states[i].core_frequency
1013                                  * 1000));
1014                         invalidate_entry(powernow_table, i);
1015                         continue;
1016                 }
1017         }
1018         return 0;
1019 }
1020
1021 static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
1022 {
1023         if (data->acpi_data.state_count)
1024                 acpi_processor_unregister_performance(&data->acpi_data,
1025                                 data->cpu);
1026         free_cpumask_var(data->acpi_data.shared_cpu_map);
1027 }
1028
1029 static int get_transition_latency(struct powernow_k8_data *data)
1030 {
1031         int max_latency = 0;
1032         int i;
1033         for (i = 0; i < data->acpi_data.state_count; i++) {
1034                 int cur_latency = data->acpi_data.states[i].transition_latency
1035                         + data->acpi_data.states[i].bus_master_latency;
1036                 if (cur_latency > max_latency)
1037                         max_latency = cur_latency;
1038         }
1039         if (max_latency == 0) {
1040                 /*
1041                  * Fam 11h and later may return 0 as transition latency. This
1042                  * is intended and means "very fast". While cpufreq core and
1043                  * governors currently can handle that gracefully, better set it
1044                  * to 1 to avoid problems in the future.
1045                  */
1046                 if (boot_cpu_data.x86 < 0x11)
1047                         printk(KERN_ERR FW_WARN PFX "Invalid zero transition "
1048                                 "latency\n");
1049                 max_latency = 1;
1050         }
1051         /* value in usecs, needs to be in nanoseconds */
1052         return 1000 * max_latency;
1053 }
1054
1055 /* Take a frequency, and issue the fid/vid transition command */
1056 static int transition_frequency_fidvid(struct powernow_k8_data *data,
1057                 unsigned int index)
1058 {
1059         u32 fid = 0;
1060         u32 vid = 0;
1061         int res, i;
1062         struct cpufreq_freqs freqs;
1063
1064         pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index);
1065
1066         /* fid/vid correctness check for k8 */
1067         /* fid are the lower 8 bits of the index we stored into
1068          * the cpufreq frequency table in find_psb_table, vid
1069          * are the upper 8 bits.
1070          */
1071         fid = data->powernow_table[index].index & 0xFF;
1072         vid = (data->powernow_table[index].index & 0xFF00) >> 8;
1073
1074         pr_debug("table matched fid 0x%x, giving vid 0x%x\n", fid, vid);
1075
1076         if (query_current_values_with_pending_wait(data))
1077                 return 1;
1078
1079         if ((data->currvid == vid) && (data->currfid == fid)) {
1080                 pr_debug("target matches current values (fid 0x%x, vid 0x%x)\n",
1081                         fid, vid);
1082                 return 0;
1083         }
1084
1085         pr_debug("cpu %d, changing to fid 0x%x, vid 0x%x\n",
1086                 smp_processor_id(), fid, vid);
1087         freqs.old = find_khz_freq_from_fid(data->currfid);
1088         freqs.new = find_khz_freq_from_fid(fid);
1089
1090         for_each_cpu(i, data->available_cores) {
1091                 freqs.cpu = i;
1092                 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1093         }
1094
1095         res = transition_fid_vid(data, fid, vid);
1096         if (res)
1097                 return res;
1098
1099         freqs.new = find_khz_freq_from_fid(data->currfid);
1100
1101         for_each_cpu(i, data->available_cores) {
1102                 freqs.cpu = i;
1103                 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1104         }
1105         return res;
1106 }
1107
1108 /* Take a frequency, and issue the hardware pstate transition command */
1109 static int transition_frequency_pstate(struct powernow_k8_data *data,
1110                 unsigned int index)
1111 {
1112         u32 pstate = 0;
1113         int res, i;
1114         struct cpufreq_freqs freqs;
1115
1116         pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index);
1117
1118         /* get MSR index for hardware pstate transition */
1119         pstate = index & HW_PSTATE_MASK;
1120         if (pstate > data->max_hw_pstate)
1121                 return -EINVAL;
1122
1123         freqs.old = find_khz_freq_from_pstate(data->powernow_table,
1124                         data->currpstate);
1125         freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1126
1127         for_each_cpu(i, data->available_cores) {
1128                 freqs.cpu = i;
1129                 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1130         }
1131
1132         res = transition_pstate(data, pstate);
1133         freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1134
1135         for_each_cpu(i, data->available_cores) {
1136                 freqs.cpu = i;
1137                 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1138         }
1139         return res;
1140 }
1141
1142 /* Driver entry point to switch to the target frequency */
1143 static int powernowk8_target(struct cpufreq_policy *pol,
1144                 unsigned targfreq, unsigned relation)
1145 {
1146         cpumask_var_t oldmask;
1147         struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1148         u32 checkfid;
1149         u32 checkvid;
1150         unsigned int newstate;
1151         int ret = -EIO;
1152
1153         if (!data)
1154                 return -EINVAL;
1155
1156         checkfid = data->currfid;
1157         checkvid = data->currvid;
1158
1159         /* only run on specific CPU from here on. */
1160         /* This is poor form: use a workqueue or smp_call_function_single */
1161         if (!alloc_cpumask_var(&oldmask, GFP_KERNEL))
1162                 return -ENOMEM;
1163
1164         cpumask_copy(oldmask, tsk_cpus_allowed(current));
1165         set_cpus_allowed_ptr(current, cpumask_of(pol->cpu));
1166
1167         if (smp_processor_id() != pol->cpu) {
1168                 printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu);
1169                 goto err_out;
1170         }
1171
1172         if (pending_bit_stuck()) {
1173                 printk(KERN_ERR PFX "failing targ, change pending bit set\n");
1174                 goto err_out;
1175         }
1176
1177         pr_debug("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n",
1178                 pol->cpu, targfreq, pol->min, pol->max, relation);
1179
1180         if (query_current_values_with_pending_wait(data))
1181                 goto err_out;
1182
1183         if (cpu_family != CPU_HW_PSTATE) {
1184                 pr_debug("targ: curr fid 0x%x, vid 0x%x\n",
1185                 data->currfid, data->currvid);
1186
1187                 if ((checkvid != data->currvid) ||
1188                     (checkfid != data->currfid)) {
1189                         printk(KERN_INFO PFX
1190                                 "error - out of sync, fix 0x%x 0x%x, "
1191                                 "vid 0x%x 0x%x\n",
1192                                 checkfid, data->currfid,
1193                                 checkvid, data->currvid);
1194                 }
1195         }
1196
1197         if (cpufreq_frequency_table_target(pol, data->powernow_table,
1198                                 targfreq, relation, &newstate))
1199                 goto err_out;
1200
1201         mutex_lock(&fidvid_mutex);
1202
1203         powernow_k8_acpi_pst_values(data, newstate);
1204
1205         if (cpu_family == CPU_HW_PSTATE)
1206                 ret = transition_frequency_pstate(data,
1207                         data->powernow_table[newstate].index);
1208         else
1209                 ret = transition_frequency_fidvid(data, newstate);
1210         if (ret) {
1211                 printk(KERN_ERR PFX "transition frequency failed\n");
1212                 ret = 1;
1213                 mutex_unlock(&fidvid_mutex);
1214                 goto err_out;
1215         }
1216         mutex_unlock(&fidvid_mutex);
1217
1218         if (cpu_family == CPU_HW_PSTATE)
1219                 pol->cur = find_khz_freq_from_pstate(data->powernow_table,
1220                                 data->powernow_table[newstate].index);
1221         else
1222                 pol->cur = find_khz_freq_from_fid(data->currfid);
1223         ret = 0;
1224
1225 err_out:
1226         set_cpus_allowed_ptr(current, oldmask);
1227         free_cpumask_var(oldmask);
1228         return ret;
1229 }
1230
1231 /* Driver entry point to verify the policy and range of frequencies */
1232 static int powernowk8_verify(struct cpufreq_policy *pol)
1233 {
1234         struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1235
1236         if (!data)
1237                 return -EINVAL;
1238
1239         return cpufreq_frequency_table_verify(pol, data->powernow_table);
1240 }
1241
1242 struct init_on_cpu {
1243         struct powernow_k8_data *data;
1244         int rc;
1245 };
1246
1247 static void __cpuinit powernowk8_cpu_init_on_cpu(void *_init_on_cpu)
1248 {
1249         struct init_on_cpu *init_on_cpu = _init_on_cpu;
1250
1251         if (pending_bit_stuck()) {
1252                 printk(KERN_ERR PFX "failing init, change pending bit set\n");
1253                 init_on_cpu->rc = -ENODEV;
1254                 return;
1255         }
1256
1257         if (query_current_values_with_pending_wait(init_on_cpu->data)) {
1258                 init_on_cpu->rc = -ENODEV;
1259                 return;
1260         }
1261
1262         if (cpu_family == CPU_OPTERON)
1263                 fidvid_msr_init();
1264
1265         init_on_cpu->rc = 0;
1266 }
1267
1268 /* per CPU init entry point to the driver */
1269 static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol)
1270 {
1271         static const char ACPI_PSS_BIOS_BUG_MSG[] =
1272                 KERN_ERR FW_BUG PFX "No compatible ACPI _PSS objects found.\n"
1273                 FW_BUG PFX "Try again with latest BIOS.\n";
1274         struct powernow_k8_data *data;
1275         struct init_on_cpu init_on_cpu;
1276         int rc;
1277         struct cpuinfo_x86 *c = &cpu_data(pol->cpu);
1278
1279         if (!cpu_online(pol->cpu))
1280                 return -ENODEV;
1281
1282         smp_call_function_single(pol->cpu, check_supported_cpu, &rc, 1);
1283         if (rc)
1284                 return -ENODEV;
1285
1286         data = kzalloc(sizeof(struct powernow_k8_data), GFP_KERNEL);
1287         if (!data) {
1288                 printk(KERN_ERR PFX "unable to alloc powernow_k8_data");
1289                 return -ENOMEM;
1290         }
1291
1292         data->cpu = pol->cpu;
1293         data->currpstate = HW_PSTATE_INVALID;
1294
1295         if (powernow_k8_cpu_init_acpi(data)) {
1296                 /*
1297                  * Use the PSB BIOS structure. This is only available on
1298                  * an UP version, and is deprecated by AMD.
1299                  */
1300                 if (num_online_cpus() != 1) {
1301                         printk_once(ACPI_PSS_BIOS_BUG_MSG);
1302                         goto err_out;
1303                 }
1304                 if (pol->cpu != 0) {
1305                         printk(KERN_ERR FW_BUG PFX "No ACPI _PSS objects for "
1306                                "CPU other than CPU0. Complain to your BIOS "
1307                                "vendor.\n");
1308                         goto err_out;
1309                 }
1310                 rc = find_psb_table(data);
1311                 if (rc)
1312                         goto err_out;
1313
1314                 /* Take a crude guess here.
1315                  * That guess was in microseconds, so multiply with 1000 */
1316                 pol->cpuinfo.transition_latency = (
1317                          ((data->rvo + 8) * data->vstable * VST_UNITS_20US) +
1318                          ((1 << data->irt) * 30)) * 1000;
1319         } else /* ACPI _PSS objects available */
1320                 pol->cpuinfo.transition_latency = get_transition_latency(data);
1321
1322         /* only run on specific CPU from here on */
1323         init_on_cpu.data = data;
1324         smp_call_function_single(data->cpu, powernowk8_cpu_init_on_cpu,
1325                                  &init_on_cpu, 1);
1326         rc = init_on_cpu.rc;
1327         if (rc != 0)
1328                 goto err_out_exit_acpi;
1329
1330         if (cpu_family == CPU_HW_PSTATE)
1331                 cpumask_copy(pol->cpus, cpumask_of(pol->cpu));
1332         else
1333                 cpumask_copy(pol->cpus, cpu_core_mask(pol->cpu));
1334         data->available_cores = pol->cpus;
1335
1336         if (cpu_family == CPU_HW_PSTATE)
1337                 pol->cur = find_khz_freq_from_pstate(data->powernow_table,
1338                                 data->currpstate);
1339         else
1340                 pol->cur = find_khz_freq_from_fid(data->currfid);
1341         pr_debug("policy current frequency %d kHz\n", pol->cur);
1342
1343         /* min/max the cpu is capable of */
1344         if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) {
1345                 printk(KERN_ERR FW_BUG PFX "invalid powernow_table\n");
1346                 powernow_k8_cpu_exit_acpi(data);
1347                 kfree(data->powernow_table);
1348                 kfree(data);
1349                 return -EINVAL;
1350         }
1351
1352         /* Check for APERF/MPERF support in hardware */
1353         if (cpu_has(c, X86_FEATURE_APERFMPERF))
1354                 cpufreq_amd64_driver.getavg = cpufreq_get_measured_perf;
1355
1356         cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu);
1357
1358         if (cpu_family == CPU_HW_PSTATE)
1359                 pr_debug("cpu_init done, current pstate 0x%x\n",
1360                                 data->currpstate);
1361         else
1362                 pr_debug("cpu_init done, current fid 0x%x, vid 0x%x\n",
1363                         data->currfid, data->currvid);
1364
1365         per_cpu(powernow_data, pol->cpu) = data;
1366
1367         return 0;
1368
1369 err_out_exit_acpi:
1370         powernow_k8_cpu_exit_acpi(data);
1371
1372 err_out:
1373         kfree(data);
1374         return -ENODEV;
1375 }
1376
1377 static int __devexit powernowk8_cpu_exit(struct cpufreq_policy *pol)
1378 {
1379         struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1380
1381         if (!data)
1382                 return -EINVAL;
1383
1384         powernow_k8_cpu_exit_acpi(data);
1385
1386         cpufreq_frequency_table_put_attr(pol->cpu);
1387
1388         kfree(data->powernow_table);
1389         kfree(data);
1390         per_cpu(powernow_data, pol->cpu) = NULL;
1391
1392         return 0;
1393 }
1394
1395 static void query_values_on_cpu(void *_err)
1396 {
1397         int *err = _err;
1398         struct powernow_k8_data *data = __this_cpu_read(powernow_data);
1399
1400         *err = query_current_values_with_pending_wait(data);
1401 }
1402
1403 static unsigned int powernowk8_get(unsigned int cpu)
1404 {
1405         struct powernow_k8_data *data = per_cpu(powernow_data, cpu);
1406         unsigned int khz = 0;
1407         int err;
1408
1409         if (!data)
1410                 return 0;
1411
1412         smp_call_function_single(cpu, query_values_on_cpu, &err, true);
1413         if (err)
1414                 goto out;
1415
1416         if (cpu_family == CPU_HW_PSTATE)
1417                 khz = find_khz_freq_from_pstate(data->powernow_table,
1418                                                 data->currpstate);
1419         else
1420                 khz = find_khz_freq_from_fid(data->currfid);
1421
1422
1423 out:
1424         return khz;
1425 }
1426
1427 static void _cpb_toggle_msrs(bool t)
1428 {
1429         int cpu;
1430
1431         get_online_cpus();
1432
1433         rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1434
1435         for_each_cpu(cpu, cpu_online_mask) {
1436                 struct msr *reg = per_cpu_ptr(msrs, cpu);
1437                 if (t)
1438                         reg->l &= ~BIT(25);
1439                 else
1440                         reg->l |= BIT(25);
1441         }
1442         wrmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1443
1444         put_online_cpus();
1445 }
1446
1447 /*
1448  * Switch on/off core performance boosting.
1449  *
1450  * 0=disable
1451  * 1=enable.
1452  */
1453 static void cpb_toggle(bool t)
1454 {
1455         if (!cpb_capable)
1456                 return;
1457
1458         if (t && !cpb_enabled) {
1459                 cpb_enabled = true;
1460                 _cpb_toggle_msrs(t);
1461                 printk(KERN_INFO PFX "Core Boosting enabled.\n");
1462         } else if (!t && cpb_enabled) {
1463                 cpb_enabled = false;
1464                 _cpb_toggle_msrs(t);
1465                 printk(KERN_INFO PFX "Core Boosting disabled.\n");
1466         }
1467 }
1468
1469 static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
1470                                  size_t count)
1471 {
1472         int ret = -EINVAL;
1473         unsigned long val = 0;
1474
1475         ret = strict_strtoul(buf, 10, &val);
1476         if (!ret && (val == 0 || val == 1) && cpb_capable)
1477                 cpb_toggle(val);
1478         else
1479                 return -EINVAL;
1480
1481         return count;
1482 }
1483
1484 static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
1485 {
1486         return sprintf(buf, "%u\n", cpb_enabled);
1487 }
1488
1489 #define define_one_rw(_name) \
1490 static struct freq_attr _name = \
1491 __ATTR(_name, 0644, show_##_name, store_##_name)
1492
1493 define_one_rw(cpb);
1494
1495 static struct freq_attr *powernow_k8_attr[] = {
1496         &cpufreq_freq_attr_scaling_available_freqs,
1497         &cpb,
1498         NULL,
1499 };
1500
1501 static struct cpufreq_driver cpufreq_amd64_driver = {
1502         .verify         = powernowk8_verify,
1503         .target         = powernowk8_target,
1504         .bios_limit     = acpi_processor_get_bios_limit,
1505         .init           = powernowk8_cpu_init,
1506         .exit           = __devexit_p(powernowk8_cpu_exit),
1507         .get            = powernowk8_get,
1508         .name           = "powernow-k8",
1509         .owner          = THIS_MODULE,
1510         .attr           = powernow_k8_attr,
1511 };
1512
1513 /*
1514  * Clear the boost-disable flag on the CPU_DOWN path so that this cpu
1515  * cannot block the remaining ones from boosting. On the CPU_UP path we
1516  * simply keep the boost-disable flag in sync with the current global
1517  * state.
1518  */
1519 static int cpb_notify(struct notifier_block *nb, unsigned long action,
1520                       void *hcpu)
1521 {
1522         unsigned cpu = (long)hcpu;
1523         u32 lo, hi;
1524
1525         switch (action) {
1526         case CPU_UP_PREPARE:
1527         case CPU_UP_PREPARE_FROZEN:
1528
1529                 if (!cpb_enabled) {
1530                         rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
1531                         lo |= BIT(25);
1532                         wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi);
1533                 }
1534                 break;
1535
1536         case CPU_DOWN_PREPARE:
1537         case CPU_DOWN_PREPARE_FROZEN:
1538                 rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
1539                 lo &= ~BIT(25);
1540                 wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi);
1541                 break;
1542
1543         default:
1544                 break;
1545         }
1546
1547         return NOTIFY_OK;
1548 }
1549
1550 static struct notifier_block cpb_nb = {
1551         .notifier_call          = cpb_notify,
1552 };
1553
1554 /* driver entry point for init */
1555 static int __cpuinit powernowk8_init(void)
1556 {
1557         unsigned int i, supported_cpus = 0, cpu;
1558         int rv;
1559
1560         if (!x86_match_cpu(powernow_k8_ids))
1561                 return -ENODEV;
1562
1563         for_each_online_cpu(i) {
1564                 int rc;
1565                 smp_call_function_single(i, check_supported_cpu, &rc, 1);
1566                 if (rc == 0)
1567                         supported_cpus++;
1568         }
1569
1570         if (supported_cpus != num_online_cpus())
1571                 return -ENODEV;
1572
1573         printk(KERN_INFO PFX "Found %d %s (%d cpu cores) (" VERSION ")\n",
1574                 num_online_nodes(), boot_cpu_data.x86_model_id, supported_cpus);
1575
1576         if (boot_cpu_has(X86_FEATURE_CPB)) {
1577
1578                 cpb_capable = true;
1579
1580                 msrs = msrs_alloc();
1581                 if (!msrs) {
1582                         printk(KERN_ERR "%s: Error allocating msrs!\n", __func__);
1583                         return -ENOMEM;
1584                 }
1585
1586                 register_cpu_notifier(&cpb_nb);
1587
1588                 rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1589
1590                 for_each_cpu(cpu, cpu_online_mask) {
1591                         struct msr *reg = per_cpu_ptr(msrs, cpu);
1592                         cpb_enabled |= !(!!(reg->l & BIT(25)));
1593                 }
1594
1595                 printk(KERN_INFO PFX "Core Performance Boosting: %s.\n",
1596                         (cpb_enabled ? "on" : "off"));
1597         }
1598
1599         rv = cpufreq_register_driver(&cpufreq_amd64_driver);
1600         if (rv < 0 && boot_cpu_has(X86_FEATURE_CPB)) {
1601                 unregister_cpu_notifier(&cpb_nb);
1602                 msrs_free(msrs);
1603                 msrs = NULL;
1604         }
1605         return rv;
1606 }
1607
1608 /* driver entry point for term */
1609 static void __exit powernowk8_exit(void)
1610 {
1611         pr_debug("exit\n");
1612
1613         if (boot_cpu_has(X86_FEATURE_CPB)) {
1614                 msrs_free(msrs);
1615                 msrs = NULL;
1616
1617                 unregister_cpu_notifier(&cpb_nb);
1618         }
1619
1620         cpufreq_unregister_driver(&cpufreq_amd64_driver);
1621 }
1622
1623 MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and "
1624                 "Mark Langsdorf <mark.langsdorf@amd.com>");
1625 MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
1626 MODULE_LICENSE("GPL");
1627
1628 late_initcall(powernowk8_init);
1629 module_exit(powernowk8_exit);