ipmi: proper spinlock initialization
[linux-2.6.git] / drivers / char / ipmi / ipmi_si_intf.c
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <asm/system.h>
45 #include <linux/sched.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi_smi.h>
61 #include <asm/io.h>
62 #include "ipmi_si_sm.h"
63 #include <linux/init.h>
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67 #include <linux/pnp.h>
68
69 #ifdef CONFIG_PPC_OF
70 #include <linux/of_device.h>
71 #include <linux/of_platform.h>
72 #endif
73
74 #define PFX "ipmi_si: "
75
76 /* Measure times between events in the driver. */
77 #undef DEBUG_TIMING
78
79 /* Call every 10 ms. */
80 #define SI_TIMEOUT_TIME_USEC    10000
81 #define SI_USEC_PER_JIFFY       (1000000/HZ)
82 #define SI_TIMEOUT_JIFFIES      (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
83 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
84                                       short timeout */
85
86 enum si_intf_state {
87         SI_NORMAL,
88         SI_GETTING_FLAGS,
89         SI_GETTING_EVENTS,
90         SI_CLEARING_FLAGS,
91         SI_CLEARING_FLAGS_THEN_SET_IRQ,
92         SI_GETTING_MESSAGES,
93         SI_ENABLE_INTERRUPTS1,
94         SI_ENABLE_INTERRUPTS2,
95         SI_DISABLE_INTERRUPTS1,
96         SI_DISABLE_INTERRUPTS2
97         /* FIXME - add watchdog stuff. */
98 };
99
100 /* Some BT-specific defines we need here. */
101 #define IPMI_BT_INTMASK_REG             2
102 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT   2
103 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT  1
104
105 enum si_type {
106     SI_KCS, SI_SMIC, SI_BT
107 };
108 static char *si_to_str[] = { "kcs", "smic", "bt" };
109
110 enum ipmi_addr_src {
111         SI_INVALID = 0, SI_HOTMOD, SI_HARDCODED, SI_SPMI, SI_ACPI, SI_SMBIOS,
112         SI_PCI, SI_DEVICETREE, SI_DEFAULT
113 };
114 static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
115                                         "ACPI", "SMBIOS", "PCI",
116                                         "device-tree", "default" };
117
118 #define DEVICE_NAME "ipmi_si"
119
120 static struct platform_driver ipmi_driver = {
121         .driver = {
122                 .name = DEVICE_NAME,
123                 .bus = &platform_bus_type
124         }
125 };
126
127
128 /*
129  * Indexes into stats[] in smi_info below.
130  */
131 enum si_stat_indexes {
132         /*
133          * Number of times the driver requested a timer while an operation
134          * was in progress.
135          */
136         SI_STAT_short_timeouts = 0,
137
138         /*
139          * Number of times the driver requested a timer while nothing was in
140          * progress.
141          */
142         SI_STAT_long_timeouts,
143
144         /* Number of times the interface was idle while being polled. */
145         SI_STAT_idles,
146
147         /* Number of interrupts the driver handled. */
148         SI_STAT_interrupts,
149
150         /* Number of time the driver got an ATTN from the hardware. */
151         SI_STAT_attentions,
152
153         /* Number of times the driver requested flags from the hardware. */
154         SI_STAT_flag_fetches,
155
156         /* Number of times the hardware didn't follow the state machine. */
157         SI_STAT_hosed_count,
158
159         /* Number of completed messages. */
160         SI_STAT_complete_transactions,
161
162         /* Number of IPMI events received from the hardware. */
163         SI_STAT_events,
164
165         /* Number of watchdog pretimeouts. */
166         SI_STAT_watchdog_pretimeouts,
167
168         /* Number of asyncronous messages received. */
169         SI_STAT_incoming_messages,
170
171
172         /* This *must* remain last, add new values above this. */
173         SI_NUM_STATS
174 };
175
176 struct smi_info {
177         int                    intf_num;
178         ipmi_smi_t             intf;
179         struct si_sm_data      *si_sm;
180         struct si_sm_handlers  *handlers;
181         enum si_type           si_type;
182         spinlock_t             si_lock;
183         spinlock_t             msg_lock;
184         struct list_head       xmit_msgs;
185         struct list_head       hp_xmit_msgs;
186         struct ipmi_smi_msg    *curr_msg;
187         enum si_intf_state     si_state;
188
189         /*
190          * Used to handle the various types of I/O that can occur with
191          * IPMI
192          */
193         struct si_sm_io io;
194         int (*io_setup)(struct smi_info *info);
195         void (*io_cleanup)(struct smi_info *info);
196         int (*irq_setup)(struct smi_info *info);
197         void (*irq_cleanup)(struct smi_info *info);
198         unsigned int io_size;
199         enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
200         void (*addr_source_cleanup)(struct smi_info *info);
201         void *addr_source_data;
202
203         /*
204          * Per-OEM handler, called from handle_flags().  Returns 1
205          * when handle_flags() needs to be re-run or 0 indicating it
206          * set si_state itself.
207          */
208         int (*oem_data_avail_handler)(struct smi_info *smi_info);
209
210         /*
211          * Flags from the last GET_MSG_FLAGS command, used when an ATTN
212          * is set to hold the flags until we are done handling everything
213          * from the flags.
214          */
215 #define RECEIVE_MSG_AVAIL       0x01
216 #define EVENT_MSG_BUFFER_FULL   0x02
217 #define WDT_PRE_TIMEOUT_INT     0x08
218 #define OEM0_DATA_AVAIL     0x20
219 #define OEM1_DATA_AVAIL     0x40
220 #define OEM2_DATA_AVAIL     0x80
221 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
222                              OEM1_DATA_AVAIL | \
223                              OEM2_DATA_AVAIL)
224         unsigned char       msg_flags;
225
226         /* Does the BMC have an event buffer? */
227         char                has_event_buffer;
228
229         /*
230          * If set to true, this will request events the next time the
231          * state machine is idle.
232          */
233         atomic_t            req_events;
234
235         /*
236          * If true, run the state machine to completion on every send
237          * call.  Generally used after a panic to make sure stuff goes
238          * out.
239          */
240         int                 run_to_completion;
241
242         /* The I/O port of an SI interface. */
243         int                 port;
244
245         /*
246          * The space between start addresses of the two ports.  For
247          * instance, if the first port is 0xca2 and the spacing is 4, then
248          * the second port is 0xca6.
249          */
250         unsigned int        spacing;
251
252         /* zero if no irq; */
253         int                 irq;
254
255         /* The timer for this si. */
256         struct timer_list   si_timer;
257
258         /* The time (in jiffies) the last timeout occurred at. */
259         unsigned long       last_timeout_jiffies;
260
261         /* Used to gracefully stop the timer without race conditions. */
262         atomic_t            stop_operation;
263
264         /*
265          * The driver will disable interrupts when it gets into a
266          * situation where it cannot handle messages due to lack of
267          * memory.  Once that situation clears up, it will re-enable
268          * interrupts.
269          */
270         int interrupt_disabled;
271
272         /* From the get device id response... */
273         struct ipmi_device_id device_id;
274
275         /* Driver model stuff. */
276         struct device *dev;
277         struct platform_device *pdev;
278
279         /*
280          * True if we allocated the device, false if it came from
281          * someplace else (like PCI).
282          */
283         int dev_registered;
284
285         /* Slave address, could be reported from DMI. */
286         unsigned char slave_addr;
287
288         /* Counters and things for the proc filesystem. */
289         atomic_t stats[SI_NUM_STATS];
290
291         struct task_struct *thread;
292
293         struct list_head link;
294 };
295
296 #define smi_inc_stat(smi, stat) \
297         atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
298 #define smi_get_stat(smi, stat) \
299         ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
300
301 #define SI_MAX_PARMS 4
302
303 static int force_kipmid[SI_MAX_PARMS];
304 static int num_force_kipmid;
305 #ifdef CONFIG_PCI
306 static int pci_registered;
307 #endif
308 #ifdef CONFIG_ACPI
309 static int pnp_registered;
310 #endif
311 #ifdef CONFIG_PPC_OF
312 static int of_registered;
313 #endif
314
315 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
316 static int num_max_busy_us;
317
318 static int unload_when_empty = 1;
319
320 static int add_smi(struct smi_info *smi);
321 static int try_smi_init(struct smi_info *smi);
322 static void cleanup_one_si(struct smi_info *to_clean);
323
324 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
325 static int register_xaction_notifier(struct notifier_block *nb)
326 {
327         return atomic_notifier_chain_register(&xaction_notifier_list, nb);
328 }
329
330 static void deliver_recv_msg(struct smi_info *smi_info,
331                              struct ipmi_smi_msg *msg)
332 {
333         /* Deliver the message to the upper layer with the lock
334            released. */
335
336         if (smi_info->run_to_completion) {
337                 ipmi_smi_msg_received(smi_info->intf, msg);
338         } else {
339                 spin_unlock(&(smi_info->si_lock));
340                 ipmi_smi_msg_received(smi_info->intf, msg);
341                 spin_lock(&(smi_info->si_lock));
342         }
343 }
344
345 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
346 {
347         struct ipmi_smi_msg *msg = smi_info->curr_msg;
348
349         if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
350                 cCode = IPMI_ERR_UNSPECIFIED;
351         /* else use it as is */
352
353         /* Make it a reponse */
354         msg->rsp[0] = msg->data[0] | 4;
355         msg->rsp[1] = msg->data[1];
356         msg->rsp[2] = cCode;
357         msg->rsp_size = 3;
358
359         smi_info->curr_msg = NULL;
360         deliver_recv_msg(smi_info, msg);
361 }
362
363 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
364 {
365         int              rv;
366         struct list_head *entry = NULL;
367 #ifdef DEBUG_TIMING
368         struct timeval t;
369 #endif
370
371         /*
372          * No need to save flags, we aleady have interrupts off and we
373          * already hold the SMI lock.
374          */
375         if (!smi_info->run_to_completion)
376                 spin_lock(&(smi_info->msg_lock));
377
378         /* Pick the high priority queue first. */
379         if (!list_empty(&(smi_info->hp_xmit_msgs))) {
380                 entry = smi_info->hp_xmit_msgs.next;
381         } else if (!list_empty(&(smi_info->xmit_msgs))) {
382                 entry = smi_info->xmit_msgs.next;
383         }
384
385         if (!entry) {
386                 smi_info->curr_msg = NULL;
387                 rv = SI_SM_IDLE;
388         } else {
389                 int err;
390
391                 list_del(entry);
392                 smi_info->curr_msg = list_entry(entry,
393                                                 struct ipmi_smi_msg,
394                                                 link);
395 #ifdef DEBUG_TIMING
396                 do_gettimeofday(&t);
397                 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
398 #endif
399                 err = atomic_notifier_call_chain(&xaction_notifier_list,
400                                 0, smi_info);
401                 if (err & NOTIFY_STOP_MASK) {
402                         rv = SI_SM_CALL_WITHOUT_DELAY;
403                         goto out;
404                 }
405                 err = smi_info->handlers->start_transaction(
406                         smi_info->si_sm,
407                         smi_info->curr_msg->data,
408                         smi_info->curr_msg->data_size);
409                 if (err)
410                         return_hosed_msg(smi_info, err);
411
412                 rv = SI_SM_CALL_WITHOUT_DELAY;
413         }
414  out:
415         if (!smi_info->run_to_completion)
416                 spin_unlock(&(smi_info->msg_lock));
417
418         return rv;
419 }
420
421 static void start_enable_irq(struct smi_info *smi_info)
422 {
423         unsigned char msg[2];
424
425         /*
426          * If we are enabling interrupts, we have to tell the
427          * BMC to use them.
428          */
429         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
430         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
431
432         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
433         smi_info->si_state = SI_ENABLE_INTERRUPTS1;
434 }
435
436 static void start_disable_irq(struct smi_info *smi_info)
437 {
438         unsigned char msg[2];
439
440         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
441         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
442
443         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
444         smi_info->si_state = SI_DISABLE_INTERRUPTS1;
445 }
446
447 static void start_clear_flags(struct smi_info *smi_info)
448 {
449         unsigned char msg[3];
450
451         /* Make sure the watchdog pre-timeout flag is not set at startup. */
452         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
453         msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
454         msg[2] = WDT_PRE_TIMEOUT_INT;
455
456         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
457         smi_info->si_state = SI_CLEARING_FLAGS;
458 }
459
460 /*
461  * When we have a situtaion where we run out of memory and cannot
462  * allocate messages, we just leave them in the BMC and run the system
463  * polled until we can allocate some memory.  Once we have some
464  * memory, we will re-enable the interrupt.
465  */
466 static inline void disable_si_irq(struct smi_info *smi_info)
467 {
468         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
469                 start_disable_irq(smi_info);
470                 smi_info->interrupt_disabled = 1;
471                 if (!atomic_read(&smi_info->stop_operation))
472                         mod_timer(&smi_info->si_timer,
473                                   jiffies + SI_TIMEOUT_JIFFIES);
474         }
475 }
476
477 static inline void enable_si_irq(struct smi_info *smi_info)
478 {
479         if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
480                 start_enable_irq(smi_info);
481                 smi_info->interrupt_disabled = 0;
482         }
483 }
484
485 static void handle_flags(struct smi_info *smi_info)
486 {
487  retry:
488         if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
489                 /* Watchdog pre-timeout */
490                 smi_inc_stat(smi_info, watchdog_pretimeouts);
491
492                 start_clear_flags(smi_info);
493                 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
494                 spin_unlock(&(smi_info->si_lock));
495                 ipmi_smi_watchdog_pretimeout(smi_info->intf);
496                 spin_lock(&(smi_info->si_lock));
497         } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
498                 /* Messages available. */
499                 smi_info->curr_msg = ipmi_alloc_smi_msg();
500                 if (!smi_info->curr_msg) {
501                         disable_si_irq(smi_info);
502                         smi_info->si_state = SI_NORMAL;
503                         return;
504                 }
505                 enable_si_irq(smi_info);
506
507                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
508                 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
509                 smi_info->curr_msg->data_size = 2;
510
511                 smi_info->handlers->start_transaction(
512                         smi_info->si_sm,
513                         smi_info->curr_msg->data,
514                         smi_info->curr_msg->data_size);
515                 smi_info->si_state = SI_GETTING_MESSAGES;
516         } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
517                 /* Events available. */
518                 smi_info->curr_msg = ipmi_alloc_smi_msg();
519                 if (!smi_info->curr_msg) {
520                         disable_si_irq(smi_info);
521                         smi_info->si_state = SI_NORMAL;
522                         return;
523                 }
524                 enable_si_irq(smi_info);
525
526                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
527                 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
528                 smi_info->curr_msg->data_size = 2;
529
530                 smi_info->handlers->start_transaction(
531                         smi_info->si_sm,
532                         smi_info->curr_msg->data,
533                         smi_info->curr_msg->data_size);
534                 smi_info->si_state = SI_GETTING_EVENTS;
535         } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
536                    smi_info->oem_data_avail_handler) {
537                 if (smi_info->oem_data_avail_handler(smi_info))
538                         goto retry;
539         } else
540                 smi_info->si_state = SI_NORMAL;
541 }
542
543 static void handle_transaction_done(struct smi_info *smi_info)
544 {
545         struct ipmi_smi_msg *msg;
546 #ifdef DEBUG_TIMING
547         struct timeval t;
548
549         do_gettimeofday(&t);
550         printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
551 #endif
552         switch (smi_info->si_state) {
553         case SI_NORMAL:
554                 if (!smi_info->curr_msg)
555                         break;
556
557                 smi_info->curr_msg->rsp_size
558                         = smi_info->handlers->get_result(
559                                 smi_info->si_sm,
560                                 smi_info->curr_msg->rsp,
561                                 IPMI_MAX_MSG_LENGTH);
562
563                 /*
564                  * Do this here becase deliver_recv_msg() releases the
565                  * lock, and a new message can be put in during the
566                  * time the lock is released.
567                  */
568                 msg = smi_info->curr_msg;
569                 smi_info->curr_msg = NULL;
570                 deliver_recv_msg(smi_info, msg);
571                 break;
572
573         case SI_GETTING_FLAGS:
574         {
575                 unsigned char msg[4];
576                 unsigned int  len;
577
578                 /* We got the flags from the SMI, now handle them. */
579                 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
580                 if (msg[2] != 0) {
581                         /* Error fetching flags, just give up for now. */
582                         smi_info->si_state = SI_NORMAL;
583                 } else if (len < 4) {
584                         /*
585                          * Hmm, no flags.  That's technically illegal, but
586                          * don't use uninitialized data.
587                          */
588                         smi_info->si_state = SI_NORMAL;
589                 } else {
590                         smi_info->msg_flags = msg[3];
591                         handle_flags(smi_info);
592                 }
593                 break;
594         }
595
596         case SI_CLEARING_FLAGS:
597         case SI_CLEARING_FLAGS_THEN_SET_IRQ:
598         {
599                 unsigned char msg[3];
600
601                 /* We cleared the flags. */
602                 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
603                 if (msg[2] != 0) {
604                         /* Error clearing flags */
605                         dev_warn(smi_info->dev,
606                                  "Error clearing flags: %2.2x\n", msg[2]);
607                 }
608                 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
609                         start_enable_irq(smi_info);
610                 else
611                         smi_info->si_state = SI_NORMAL;
612                 break;
613         }
614
615         case SI_GETTING_EVENTS:
616         {
617                 smi_info->curr_msg->rsp_size
618                         = smi_info->handlers->get_result(
619                                 smi_info->si_sm,
620                                 smi_info->curr_msg->rsp,
621                                 IPMI_MAX_MSG_LENGTH);
622
623                 /*
624                  * Do this here becase deliver_recv_msg() releases the
625                  * lock, and a new message can be put in during the
626                  * time the lock is released.
627                  */
628                 msg = smi_info->curr_msg;
629                 smi_info->curr_msg = NULL;
630                 if (msg->rsp[2] != 0) {
631                         /* Error getting event, probably done. */
632                         msg->done(msg);
633
634                         /* Take off the event flag. */
635                         smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
636                         handle_flags(smi_info);
637                 } else {
638                         smi_inc_stat(smi_info, events);
639
640                         /*
641                          * Do this before we deliver the message
642                          * because delivering the message releases the
643                          * lock and something else can mess with the
644                          * state.
645                          */
646                         handle_flags(smi_info);
647
648                         deliver_recv_msg(smi_info, msg);
649                 }
650                 break;
651         }
652
653         case SI_GETTING_MESSAGES:
654         {
655                 smi_info->curr_msg->rsp_size
656                         = smi_info->handlers->get_result(
657                                 smi_info->si_sm,
658                                 smi_info->curr_msg->rsp,
659                                 IPMI_MAX_MSG_LENGTH);
660
661                 /*
662                  * Do this here becase deliver_recv_msg() releases the
663                  * lock, and a new message can be put in during the
664                  * time the lock is released.
665                  */
666                 msg = smi_info->curr_msg;
667                 smi_info->curr_msg = NULL;
668                 if (msg->rsp[2] != 0) {
669                         /* Error getting event, probably done. */
670                         msg->done(msg);
671
672                         /* Take off the msg flag. */
673                         smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
674                         handle_flags(smi_info);
675                 } else {
676                         smi_inc_stat(smi_info, incoming_messages);
677
678                         /*
679                          * Do this before we deliver the message
680                          * because delivering the message releases the
681                          * lock and something else can mess with the
682                          * state.
683                          */
684                         handle_flags(smi_info);
685
686                         deliver_recv_msg(smi_info, msg);
687                 }
688                 break;
689         }
690
691         case SI_ENABLE_INTERRUPTS1:
692         {
693                 unsigned char msg[4];
694
695                 /* We got the flags from the SMI, now handle them. */
696                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
697                 if (msg[2] != 0) {
698                         dev_warn(smi_info->dev, "Could not enable interrupts"
699                                  ", failed get, using polled mode.\n");
700                         smi_info->si_state = SI_NORMAL;
701                 } else {
702                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
703                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
704                         msg[2] = (msg[3] |
705                                   IPMI_BMC_RCV_MSG_INTR |
706                                   IPMI_BMC_EVT_MSG_INTR);
707                         smi_info->handlers->start_transaction(
708                                 smi_info->si_sm, msg, 3);
709                         smi_info->si_state = SI_ENABLE_INTERRUPTS2;
710                 }
711                 break;
712         }
713
714         case SI_ENABLE_INTERRUPTS2:
715         {
716                 unsigned char msg[4];
717
718                 /* We got the flags from the SMI, now handle them. */
719                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
720                 if (msg[2] != 0)
721                         dev_warn(smi_info->dev, "Could not enable interrupts"
722                                  ", failed set, using polled mode.\n");
723                 else
724                         smi_info->interrupt_disabled = 0;
725                 smi_info->si_state = SI_NORMAL;
726                 break;
727         }
728
729         case SI_DISABLE_INTERRUPTS1:
730         {
731                 unsigned char msg[4];
732
733                 /* We got the flags from the SMI, now handle them. */
734                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
735                 if (msg[2] != 0) {
736                         dev_warn(smi_info->dev, "Could not disable interrupts"
737                                  ", failed get.\n");
738                         smi_info->si_state = SI_NORMAL;
739                 } else {
740                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
741                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
742                         msg[2] = (msg[3] &
743                                   ~(IPMI_BMC_RCV_MSG_INTR |
744                                     IPMI_BMC_EVT_MSG_INTR));
745                         smi_info->handlers->start_transaction(
746                                 smi_info->si_sm, msg, 3);
747                         smi_info->si_state = SI_DISABLE_INTERRUPTS2;
748                 }
749                 break;
750         }
751
752         case SI_DISABLE_INTERRUPTS2:
753         {
754                 unsigned char msg[4];
755
756                 /* We got the flags from the SMI, now handle them. */
757                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
758                 if (msg[2] != 0) {
759                         dev_warn(smi_info->dev, "Could not disable interrupts"
760                                  ", failed set.\n");
761                 }
762                 smi_info->si_state = SI_NORMAL;
763                 break;
764         }
765         }
766 }
767
768 /*
769  * Called on timeouts and events.  Timeouts should pass the elapsed
770  * time, interrupts should pass in zero.  Must be called with
771  * si_lock held and interrupts disabled.
772  */
773 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
774                                            int time)
775 {
776         enum si_sm_result si_sm_result;
777
778  restart:
779         /*
780          * There used to be a loop here that waited a little while
781          * (around 25us) before giving up.  That turned out to be
782          * pointless, the minimum delays I was seeing were in the 300us
783          * range, which is far too long to wait in an interrupt.  So
784          * we just run until the state machine tells us something
785          * happened or it needs a delay.
786          */
787         si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
788         time = 0;
789         while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
790                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
791
792         if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
793                 smi_inc_stat(smi_info, complete_transactions);
794
795                 handle_transaction_done(smi_info);
796                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
797         } else if (si_sm_result == SI_SM_HOSED) {
798                 smi_inc_stat(smi_info, hosed_count);
799
800                 /*
801                  * Do the before return_hosed_msg, because that
802                  * releases the lock.
803                  */
804                 smi_info->si_state = SI_NORMAL;
805                 if (smi_info->curr_msg != NULL) {
806                         /*
807                          * If we were handling a user message, format
808                          * a response to send to the upper layer to
809                          * tell it about the error.
810                          */
811                         return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
812                 }
813                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
814         }
815
816         /*
817          * We prefer handling attn over new messages.  But don't do
818          * this if there is not yet an upper layer to handle anything.
819          */
820         if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
821                 unsigned char msg[2];
822
823                 smi_inc_stat(smi_info, attentions);
824
825                 /*
826                  * Got a attn, send down a get message flags to see
827                  * what's causing it.  It would be better to handle
828                  * this in the upper layer, but due to the way
829                  * interrupts work with the SMI, that's not really
830                  * possible.
831                  */
832                 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
833                 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
834
835                 smi_info->handlers->start_transaction(
836                         smi_info->si_sm, msg, 2);
837                 smi_info->si_state = SI_GETTING_FLAGS;
838                 goto restart;
839         }
840
841         /* If we are currently idle, try to start the next message. */
842         if (si_sm_result == SI_SM_IDLE) {
843                 smi_inc_stat(smi_info, idles);
844
845                 si_sm_result = start_next_msg(smi_info);
846                 if (si_sm_result != SI_SM_IDLE)
847                         goto restart;
848         }
849
850         if ((si_sm_result == SI_SM_IDLE)
851             && (atomic_read(&smi_info->req_events))) {
852                 /*
853                  * We are idle and the upper layer requested that I fetch
854                  * events, so do so.
855                  */
856                 atomic_set(&smi_info->req_events, 0);
857
858                 smi_info->curr_msg = ipmi_alloc_smi_msg();
859                 if (!smi_info->curr_msg)
860                         goto out;
861
862                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
863                 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
864                 smi_info->curr_msg->data_size = 2;
865
866                 smi_info->handlers->start_transaction(
867                         smi_info->si_sm,
868                         smi_info->curr_msg->data,
869                         smi_info->curr_msg->data_size);
870                 smi_info->si_state = SI_GETTING_EVENTS;
871                 goto restart;
872         }
873  out:
874         return si_sm_result;
875 }
876
877 static void sender(void                *send_info,
878                    struct ipmi_smi_msg *msg,
879                    int                 priority)
880 {
881         struct smi_info   *smi_info = send_info;
882         enum si_sm_result result;
883         unsigned long     flags;
884 #ifdef DEBUG_TIMING
885         struct timeval    t;
886 #endif
887
888         if (atomic_read(&smi_info->stop_operation)) {
889                 msg->rsp[0] = msg->data[0] | 4;
890                 msg->rsp[1] = msg->data[1];
891                 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
892                 msg->rsp_size = 3;
893                 deliver_recv_msg(smi_info, msg);
894                 return;
895         }
896
897 #ifdef DEBUG_TIMING
898         do_gettimeofday(&t);
899         printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
900 #endif
901
902         mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
903
904         if (smi_info->thread)
905                 wake_up_process(smi_info->thread);
906
907         if (smi_info->run_to_completion) {
908                 /*
909                  * If we are running to completion, then throw it in
910                  * the list and run transactions until everything is
911                  * clear.  Priority doesn't matter here.
912                  */
913
914                 /*
915                  * Run to completion means we are single-threaded, no
916                  * need for locks.
917                  */
918                 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
919
920                 result = smi_event_handler(smi_info, 0);
921                 while (result != SI_SM_IDLE) {
922                         udelay(SI_SHORT_TIMEOUT_USEC);
923                         result = smi_event_handler(smi_info,
924                                                    SI_SHORT_TIMEOUT_USEC);
925                 }
926                 return;
927         }
928
929         spin_lock_irqsave(&smi_info->msg_lock, flags);
930         if (priority > 0)
931                 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
932         else
933                 list_add_tail(&msg->link, &smi_info->xmit_msgs);
934         spin_unlock_irqrestore(&smi_info->msg_lock, flags);
935
936         spin_lock_irqsave(&smi_info->si_lock, flags);
937         if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL)
938                 start_next_msg(smi_info);
939         spin_unlock_irqrestore(&smi_info->si_lock, flags);
940 }
941
942 static void set_run_to_completion(void *send_info, int i_run_to_completion)
943 {
944         struct smi_info   *smi_info = send_info;
945         enum si_sm_result result;
946
947         smi_info->run_to_completion = i_run_to_completion;
948         if (i_run_to_completion) {
949                 result = smi_event_handler(smi_info, 0);
950                 while (result != SI_SM_IDLE) {
951                         udelay(SI_SHORT_TIMEOUT_USEC);
952                         result = smi_event_handler(smi_info,
953                                                    SI_SHORT_TIMEOUT_USEC);
954                 }
955         }
956 }
957
958 /*
959  * Use -1 in the nsec value of the busy waiting timespec to tell that
960  * we are spinning in kipmid looking for something and not delaying
961  * between checks
962  */
963 static inline void ipmi_si_set_not_busy(struct timespec *ts)
964 {
965         ts->tv_nsec = -1;
966 }
967 static inline int ipmi_si_is_busy(struct timespec *ts)
968 {
969         return ts->tv_nsec != -1;
970 }
971
972 static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
973                                  const struct smi_info *smi_info,
974                                  struct timespec *busy_until)
975 {
976         unsigned int max_busy_us = 0;
977
978         if (smi_info->intf_num < num_max_busy_us)
979                 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
980         if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
981                 ipmi_si_set_not_busy(busy_until);
982         else if (!ipmi_si_is_busy(busy_until)) {
983                 getnstimeofday(busy_until);
984                 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
985         } else {
986                 struct timespec now;
987                 getnstimeofday(&now);
988                 if (unlikely(timespec_compare(&now, busy_until) > 0)) {
989                         ipmi_si_set_not_busy(busy_until);
990                         return 0;
991                 }
992         }
993         return 1;
994 }
995
996
997 /*
998  * A busy-waiting loop for speeding up IPMI operation.
999  *
1000  * Lousy hardware makes this hard.  This is only enabled for systems
1001  * that are not BT and do not have interrupts.  It starts spinning
1002  * when an operation is complete or until max_busy tells it to stop
1003  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
1004  * Documentation/IPMI.txt for details.
1005  */
1006 static int ipmi_thread(void *data)
1007 {
1008         struct smi_info *smi_info = data;
1009         unsigned long flags;
1010         enum si_sm_result smi_result;
1011         struct timespec busy_until;
1012
1013         ipmi_si_set_not_busy(&busy_until);
1014         set_user_nice(current, 19);
1015         while (!kthread_should_stop()) {
1016                 int busy_wait;
1017
1018                 spin_lock_irqsave(&(smi_info->si_lock), flags);
1019                 smi_result = smi_event_handler(smi_info, 0);
1020                 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1021                 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1022                                                   &busy_until);
1023                 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1024                         ; /* do nothing */
1025                 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1026                         schedule();
1027                 else if (smi_result == SI_SM_IDLE)
1028                         schedule_timeout_interruptible(100);
1029                 else
1030                         schedule_timeout_interruptible(1);
1031         }
1032         return 0;
1033 }
1034
1035
1036 static void poll(void *send_info)
1037 {
1038         struct smi_info *smi_info = send_info;
1039         unsigned long flags;
1040
1041         /*
1042          * Make sure there is some delay in the poll loop so we can
1043          * drive time forward and timeout things.
1044          */
1045         udelay(10);
1046         spin_lock_irqsave(&smi_info->si_lock, flags);
1047         smi_event_handler(smi_info, 10);
1048         spin_unlock_irqrestore(&smi_info->si_lock, flags);
1049 }
1050
1051 static void request_events(void *send_info)
1052 {
1053         struct smi_info *smi_info = send_info;
1054
1055         if (atomic_read(&smi_info->stop_operation) ||
1056                                 !smi_info->has_event_buffer)
1057                 return;
1058
1059         atomic_set(&smi_info->req_events, 1);
1060 }
1061
1062 static int initialized;
1063
1064 static void smi_timeout(unsigned long data)
1065 {
1066         struct smi_info   *smi_info = (struct smi_info *) data;
1067         enum si_sm_result smi_result;
1068         unsigned long     flags;
1069         unsigned long     jiffies_now;
1070         long              time_diff;
1071         long              timeout;
1072 #ifdef DEBUG_TIMING
1073         struct timeval    t;
1074 #endif
1075
1076         spin_lock_irqsave(&(smi_info->si_lock), flags);
1077 #ifdef DEBUG_TIMING
1078         do_gettimeofday(&t);
1079         printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1080 #endif
1081         jiffies_now = jiffies;
1082         time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1083                      * SI_USEC_PER_JIFFY);
1084         smi_result = smi_event_handler(smi_info, time_diff);
1085
1086         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1087
1088         smi_info->last_timeout_jiffies = jiffies_now;
1089
1090         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1091                 /* Running with interrupts, only do long timeouts. */
1092                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1093                 smi_inc_stat(smi_info, long_timeouts);
1094                 goto do_mod_timer;
1095         }
1096
1097         /*
1098          * If the state machine asks for a short delay, then shorten
1099          * the timer timeout.
1100          */
1101         if (smi_result == SI_SM_CALL_WITH_DELAY) {
1102                 smi_inc_stat(smi_info, short_timeouts);
1103                 timeout = jiffies + 1;
1104         } else {
1105                 smi_inc_stat(smi_info, long_timeouts);
1106                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1107         }
1108
1109  do_mod_timer:
1110         if (smi_result != SI_SM_IDLE)
1111                 mod_timer(&(smi_info->si_timer), timeout);
1112 }
1113
1114 static irqreturn_t si_irq_handler(int irq, void *data)
1115 {
1116         struct smi_info *smi_info = data;
1117         unsigned long   flags;
1118 #ifdef DEBUG_TIMING
1119         struct timeval  t;
1120 #endif
1121
1122         spin_lock_irqsave(&(smi_info->si_lock), flags);
1123
1124         smi_inc_stat(smi_info, interrupts);
1125
1126 #ifdef DEBUG_TIMING
1127         do_gettimeofday(&t);
1128         printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1129 #endif
1130         smi_event_handler(smi_info, 0);
1131         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1132         return IRQ_HANDLED;
1133 }
1134
1135 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1136 {
1137         struct smi_info *smi_info = data;
1138         /* We need to clear the IRQ flag for the BT interface. */
1139         smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1140                              IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1141                              | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1142         return si_irq_handler(irq, data);
1143 }
1144
1145 static int smi_start_processing(void       *send_info,
1146                                 ipmi_smi_t intf)
1147 {
1148         struct smi_info *new_smi = send_info;
1149         int             enable = 0;
1150
1151         new_smi->intf = intf;
1152
1153         /* Try to claim any interrupts. */
1154         if (new_smi->irq_setup)
1155                 new_smi->irq_setup(new_smi);
1156
1157         /* Set up the timer that drives the interface. */
1158         setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1159         new_smi->last_timeout_jiffies = jiffies;
1160         mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1161
1162         /*
1163          * Check if the user forcefully enabled the daemon.
1164          */
1165         if (new_smi->intf_num < num_force_kipmid)
1166                 enable = force_kipmid[new_smi->intf_num];
1167         /*
1168          * The BT interface is efficient enough to not need a thread,
1169          * and there is no need for a thread if we have interrupts.
1170          */
1171         else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1172                 enable = 1;
1173
1174         if (enable) {
1175                 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1176                                               "kipmi%d", new_smi->intf_num);
1177                 if (IS_ERR(new_smi->thread)) {
1178                         dev_notice(new_smi->dev, "Could not start"
1179                                    " kernel thread due to error %ld, only using"
1180                                    " timers to drive the interface\n",
1181                                    PTR_ERR(new_smi->thread));
1182                         new_smi->thread = NULL;
1183                 }
1184         }
1185
1186         return 0;
1187 }
1188
1189 static void set_maintenance_mode(void *send_info, int enable)
1190 {
1191         struct smi_info   *smi_info = send_info;
1192
1193         if (!enable)
1194                 atomic_set(&smi_info->req_events, 0);
1195 }
1196
1197 static struct ipmi_smi_handlers handlers = {
1198         .owner                  = THIS_MODULE,
1199         .start_processing       = smi_start_processing,
1200         .sender                 = sender,
1201         .request_events         = request_events,
1202         .set_maintenance_mode   = set_maintenance_mode,
1203         .set_run_to_completion  = set_run_to_completion,
1204         .poll                   = poll,
1205 };
1206
1207 /*
1208  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1209  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1210  */
1211
1212 static LIST_HEAD(smi_infos);
1213 static DEFINE_MUTEX(smi_infos_lock);
1214 static int smi_num; /* Used to sequence the SMIs */
1215
1216 #define DEFAULT_REGSPACING      1
1217 #define DEFAULT_REGSIZE         1
1218
1219 static int           si_trydefaults = 1;
1220 static char          *si_type[SI_MAX_PARMS];
1221 #define MAX_SI_TYPE_STR 30
1222 static char          si_type_str[MAX_SI_TYPE_STR];
1223 static unsigned long addrs[SI_MAX_PARMS];
1224 static unsigned int num_addrs;
1225 static unsigned int  ports[SI_MAX_PARMS];
1226 static unsigned int num_ports;
1227 static int           irqs[SI_MAX_PARMS];
1228 static unsigned int num_irqs;
1229 static int           regspacings[SI_MAX_PARMS];
1230 static unsigned int num_regspacings;
1231 static int           regsizes[SI_MAX_PARMS];
1232 static unsigned int num_regsizes;
1233 static int           regshifts[SI_MAX_PARMS];
1234 static unsigned int num_regshifts;
1235 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1236 static unsigned int num_slave_addrs;
1237
1238 #define IPMI_IO_ADDR_SPACE  0
1239 #define IPMI_MEM_ADDR_SPACE 1
1240 static char *addr_space_to_str[] = { "i/o", "mem" };
1241
1242 static int hotmod_handler(const char *val, struct kernel_param *kp);
1243
1244 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1245 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1246                  " Documentation/IPMI.txt in the kernel sources for the"
1247                  " gory details.");
1248
1249 module_param_named(trydefaults, si_trydefaults, bool, 0);
1250 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1251                  " default scan of the KCS and SMIC interface at the standard"
1252                  " address");
1253 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1254 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1255                  " interface separated by commas.  The types are 'kcs',"
1256                  " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1257                  " the first interface to kcs and the second to bt");
1258 module_param_array(addrs, ulong, &num_addrs, 0);
1259 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1260                  " addresses separated by commas.  Only use if an interface"
1261                  " is in memory.  Otherwise, set it to zero or leave"
1262                  " it blank.");
1263 module_param_array(ports, uint, &num_ports, 0);
1264 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1265                  " addresses separated by commas.  Only use if an interface"
1266                  " is a port.  Otherwise, set it to zero or leave"
1267                  " it blank.");
1268 module_param_array(irqs, int, &num_irqs, 0);
1269 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1270                  " addresses separated by commas.  Only use if an interface"
1271                  " has an interrupt.  Otherwise, set it to zero or leave"
1272                  " it blank.");
1273 module_param_array(regspacings, int, &num_regspacings, 0);
1274 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1275                  " and each successive register used by the interface.  For"
1276                  " instance, if the start address is 0xca2 and the spacing"
1277                  " is 2, then the second address is at 0xca4.  Defaults"
1278                  " to 1.");
1279 module_param_array(regsizes, int, &num_regsizes, 0);
1280 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1281                  " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1282                  " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1283                  " the 8-bit IPMI register has to be read from a larger"
1284                  " register.");
1285 module_param_array(regshifts, int, &num_regshifts, 0);
1286 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1287                  " IPMI register, in bits.  For instance, if the data"
1288                  " is read from a 32-bit word and the IPMI data is in"
1289                  " bit 8-15, then the shift would be 8");
1290 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1291 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1292                  " the controller.  Normally this is 0x20, but can be"
1293                  " overridden by this parm.  This is an array indexed"
1294                  " by interface number.");
1295 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1296 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1297                  " disabled(0).  Normally the IPMI driver auto-detects"
1298                  " this, but the value may be overridden by this parm.");
1299 module_param(unload_when_empty, int, 0);
1300 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1301                  " specified or found, default is 1.  Setting to 0"
1302                  " is useful for hot add of devices using hotmod.");
1303 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1304 MODULE_PARM_DESC(kipmid_max_busy_us,
1305                  "Max time (in microseconds) to busy-wait for IPMI data before"
1306                  " sleeping. 0 (default) means to wait forever. Set to 100-500"
1307                  " if kipmid is using up a lot of CPU time.");
1308
1309
1310 static void std_irq_cleanup(struct smi_info *info)
1311 {
1312         if (info->si_type == SI_BT)
1313                 /* Disable the interrupt in the BT interface. */
1314                 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1315         free_irq(info->irq, info);
1316 }
1317
1318 static int std_irq_setup(struct smi_info *info)
1319 {
1320         int rv;
1321
1322         if (!info->irq)
1323                 return 0;
1324
1325         if (info->si_type == SI_BT) {
1326                 rv = request_irq(info->irq,
1327                                  si_bt_irq_handler,
1328                                  IRQF_SHARED | IRQF_DISABLED,
1329                                  DEVICE_NAME,
1330                                  info);
1331                 if (!rv)
1332                         /* Enable the interrupt in the BT interface. */
1333                         info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1334                                          IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1335         } else
1336                 rv = request_irq(info->irq,
1337                                  si_irq_handler,
1338                                  IRQF_SHARED | IRQF_DISABLED,
1339                                  DEVICE_NAME,
1340                                  info);
1341         if (rv) {
1342                 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1343                          " running polled\n",
1344                          DEVICE_NAME, info->irq);
1345                 info->irq = 0;
1346         } else {
1347                 info->irq_cleanup = std_irq_cleanup;
1348                 dev_info(info->dev, "Using irq %d\n", info->irq);
1349         }
1350
1351         return rv;
1352 }
1353
1354 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1355 {
1356         unsigned int addr = io->addr_data;
1357
1358         return inb(addr + (offset * io->regspacing));
1359 }
1360
1361 static void port_outb(struct si_sm_io *io, unsigned int offset,
1362                       unsigned char b)
1363 {
1364         unsigned int addr = io->addr_data;
1365
1366         outb(b, addr + (offset * io->regspacing));
1367 }
1368
1369 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1370 {
1371         unsigned int addr = io->addr_data;
1372
1373         return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1374 }
1375
1376 static void port_outw(struct si_sm_io *io, unsigned int offset,
1377                       unsigned char b)
1378 {
1379         unsigned int addr = io->addr_data;
1380
1381         outw(b << io->regshift, addr + (offset * io->regspacing));
1382 }
1383
1384 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1385 {
1386         unsigned int addr = io->addr_data;
1387
1388         return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1389 }
1390
1391 static void port_outl(struct si_sm_io *io, unsigned int offset,
1392                       unsigned char b)
1393 {
1394         unsigned int addr = io->addr_data;
1395
1396         outl(b << io->regshift, addr+(offset * io->regspacing));
1397 }
1398
1399 static void port_cleanup(struct smi_info *info)
1400 {
1401         unsigned int addr = info->io.addr_data;
1402         int          idx;
1403
1404         if (addr) {
1405                 for (idx = 0; idx < info->io_size; idx++)
1406                         release_region(addr + idx * info->io.regspacing,
1407                                        info->io.regsize);
1408         }
1409 }
1410
1411 static int port_setup(struct smi_info *info)
1412 {
1413         unsigned int addr = info->io.addr_data;
1414         int          idx;
1415
1416         if (!addr)
1417                 return -ENODEV;
1418
1419         info->io_cleanup = port_cleanup;
1420
1421         /*
1422          * Figure out the actual inb/inw/inl/etc routine to use based
1423          * upon the register size.
1424          */
1425         switch (info->io.regsize) {
1426         case 1:
1427                 info->io.inputb = port_inb;
1428                 info->io.outputb = port_outb;
1429                 break;
1430         case 2:
1431                 info->io.inputb = port_inw;
1432                 info->io.outputb = port_outw;
1433                 break;
1434         case 4:
1435                 info->io.inputb = port_inl;
1436                 info->io.outputb = port_outl;
1437                 break;
1438         default:
1439                 dev_warn(info->dev, "Invalid register size: %d\n",
1440                          info->io.regsize);
1441                 return -EINVAL;
1442         }
1443
1444         /*
1445          * Some BIOSes reserve disjoint I/O regions in their ACPI
1446          * tables.  This causes problems when trying to register the
1447          * entire I/O region.  Therefore we must register each I/O
1448          * port separately.
1449          */
1450         for (idx = 0; idx < info->io_size; idx++) {
1451                 if (request_region(addr + idx * info->io.regspacing,
1452                                    info->io.regsize, DEVICE_NAME) == NULL) {
1453                         /* Undo allocations */
1454                         while (idx--) {
1455                                 release_region(addr + idx * info->io.regspacing,
1456                                                info->io.regsize);
1457                         }
1458                         return -EIO;
1459                 }
1460         }
1461         return 0;
1462 }
1463
1464 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1465 {
1466         return readb((io->addr)+(offset * io->regspacing));
1467 }
1468
1469 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1470                      unsigned char b)
1471 {
1472         writeb(b, (io->addr)+(offset * io->regspacing));
1473 }
1474
1475 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1476 {
1477         return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1478                 & 0xff;
1479 }
1480
1481 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1482                      unsigned char b)
1483 {
1484         writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1485 }
1486
1487 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1488 {
1489         return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1490                 & 0xff;
1491 }
1492
1493 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1494                      unsigned char b)
1495 {
1496         writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1497 }
1498
1499 #ifdef readq
1500 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1501 {
1502         return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1503                 & 0xff;
1504 }
1505
1506 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1507                      unsigned char b)
1508 {
1509         writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1510 }
1511 #endif
1512
1513 static void mem_cleanup(struct smi_info *info)
1514 {
1515         unsigned long addr = info->io.addr_data;
1516         int           mapsize;
1517
1518         if (info->io.addr) {
1519                 iounmap(info->io.addr);
1520
1521                 mapsize = ((info->io_size * info->io.regspacing)
1522                            - (info->io.regspacing - info->io.regsize));
1523
1524                 release_mem_region(addr, mapsize);
1525         }
1526 }
1527
1528 static int mem_setup(struct smi_info *info)
1529 {
1530         unsigned long addr = info->io.addr_data;
1531         int           mapsize;
1532
1533         if (!addr)
1534                 return -ENODEV;
1535
1536         info->io_cleanup = mem_cleanup;
1537
1538         /*
1539          * Figure out the actual readb/readw/readl/etc routine to use based
1540          * upon the register size.
1541          */
1542         switch (info->io.regsize) {
1543         case 1:
1544                 info->io.inputb = intf_mem_inb;
1545                 info->io.outputb = intf_mem_outb;
1546                 break;
1547         case 2:
1548                 info->io.inputb = intf_mem_inw;
1549                 info->io.outputb = intf_mem_outw;
1550                 break;
1551         case 4:
1552                 info->io.inputb = intf_mem_inl;
1553                 info->io.outputb = intf_mem_outl;
1554                 break;
1555 #ifdef readq
1556         case 8:
1557                 info->io.inputb = mem_inq;
1558                 info->io.outputb = mem_outq;
1559                 break;
1560 #endif
1561         default:
1562                 dev_warn(info->dev, "Invalid register size: %d\n",
1563                          info->io.regsize);
1564                 return -EINVAL;
1565         }
1566
1567         /*
1568          * Calculate the total amount of memory to claim.  This is an
1569          * unusual looking calculation, but it avoids claiming any
1570          * more memory than it has to.  It will claim everything
1571          * between the first address to the end of the last full
1572          * register.
1573          */
1574         mapsize = ((info->io_size * info->io.regspacing)
1575                    - (info->io.regspacing - info->io.regsize));
1576
1577         if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1578                 return -EIO;
1579
1580         info->io.addr = ioremap(addr, mapsize);
1581         if (info->io.addr == NULL) {
1582                 release_mem_region(addr, mapsize);
1583                 return -EIO;
1584         }
1585         return 0;
1586 }
1587
1588 /*
1589  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1590  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1591  * Options are:
1592  *   rsp=<regspacing>
1593  *   rsi=<regsize>
1594  *   rsh=<regshift>
1595  *   irq=<irq>
1596  *   ipmb=<ipmb addr>
1597  */
1598 enum hotmod_op { HM_ADD, HM_REMOVE };
1599 struct hotmod_vals {
1600         char *name;
1601         int  val;
1602 };
1603 static struct hotmod_vals hotmod_ops[] = {
1604         { "add",        HM_ADD },
1605         { "remove",     HM_REMOVE },
1606         { NULL }
1607 };
1608 static struct hotmod_vals hotmod_si[] = {
1609         { "kcs",        SI_KCS },
1610         { "smic",       SI_SMIC },
1611         { "bt",         SI_BT },
1612         { NULL }
1613 };
1614 static struct hotmod_vals hotmod_as[] = {
1615         { "mem",        IPMI_MEM_ADDR_SPACE },
1616         { "i/o",        IPMI_IO_ADDR_SPACE },
1617         { NULL }
1618 };
1619
1620 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1621 {
1622         char *s;
1623         int  i;
1624
1625         s = strchr(*curr, ',');
1626         if (!s) {
1627                 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1628                 return -EINVAL;
1629         }
1630         *s = '\0';
1631         s++;
1632         for (i = 0; hotmod_ops[i].name; i++) {
1633                 if (strcmp(*curr, v[i].name) == 0) {
1634                         *val = v[i].val;
1635                         *curr = s;
1636                         return 0;
1637                 }
1638         }
1639
1640         printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1641         return -EINVAL;
1642 }
1643
1644 static int check_hotmod_int_op(const char *curr, const char *option,
1645                                const char *name, int *val)
1646 {
1647         char *n;
1648
1649         if (strcmp(curr, name) == 0) {
1650                 if (!option) {
1651                         printk(KERN_WARNING PFX
1652                                "No option given for '%s'\n",
1653                                curr);
1654                         return -EINVAL;
1655                 }
1656                 *val = simple_strtoul(option, &n, 0);
1657                 if ((*n != '\0') || (*option == '\0')) {
1658                         printk(KERN_WARNING PFX
1659                                "Bad option given for '%s'\n",
1660                                curr);
1661                         return -EINVAL;
1662                 }
1663                 return 1;
1664         }
1665         return 0;
1666 }
1667
1668 static struct smi_info *smi_info_alloc(void)
1669 {
1670         struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1671
1672         if (info) {
1673                 spin_lock_init(&info->si_lock);
1674                 spin_lock_init(&info->msg_lock);
1675         }
1676         return info;
1677 }
1678
1679 static int hotmod_handler(const char *val, struct kernel_param *kp)
1680 {
1681         char *str = kstrdup(val, GFP_KERNEL);
1682         int  rv;
1683         char *next, *curr, *s, *n, *o;
1684         enum hotmod_op op;
1685         enum si_type si_type;
1686         int  addr_space;
1687         unsigned long addr;
1688         int regspacing;
1689         int regsize;
1690         int regshift;
1691         int irq;
1692         int ipmb;
1693         int ival;
1694         int len;
1695         struct smi_info *info;
1696
1697         if (!str)
1698                 return -ENOMEM;
1699
1700         /* Kill any trailing spaces, as we can get a "\n" from echo. */
1701         len = strlen(str);
1702         ival = len - 1;
1703         while ((ival >= 0) && isspace(str[ival])) {
1704                 str[ival] = '\0';
1705                 ival--;
1706         }
1707
1708         for (curr = str; curr; curr = next) {
1709                 regspacing = 1;
1710                 regsize = 1;
1711                 regshift = 0;
1712                 irq = 0;
1713                 ipmb = 0; /* Choose the default if not specified */
1714
1715                 next = strchr(curr, ':');
1716                 if (next) {
1717                         *next = '\0';
1718                         next++;
1719                 }
1720
1721                 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1722                 if (rv)
1723                         break;
1724                 op = ival;
1725
1726                 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1727                 if (rv)
1728                         break;
1729                 si_type = ival;
1730
1731                 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1732                 if (rv)
1733                         break;
1734
1735                 s = strchr(curr, ',');
1736                 if (s) {
1737                         *s = '\0';
1738                         s++;
1739                 }
1740                 addr = simple_strtoul(curr, &n, 0);
1741                 if ((*n != '\0') || (*curr == '\0')) {
1742                         printk(KERN_WARNING PFX "Invalid hotmod address"
1743                                " '%s'\n", curr);
1744                         break;
1745                 }
1746
1747                 while (s) {
1748                         curr = s;
1749                         s = strchr(curr, ',');
1750                         if (s) {
1751                                 *s = '\0';
1752                                 s++;
1753                         }
1754                         o = strchr(curr, '=');
1755                         if (o) {
1756                                 *o = '\0';
1757                                 o++;
1758                         }
1759                         rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1760                         if (rv < 0)
1761                                 goto out;
1762                         else if (rv)
1763                                 continue;
1764                         rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1765                         if (rv < 0)
1766                                 goto out;
1767                         else if (rv)
1768                                 continue;
1769                         rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1770                         if (rv < 0)
1771                                 goto out;
1772                         else if (rv)
1773                                 continue;
1774                         rv = check_hotmod_int_op(curr, o, "irq", &irq);
1775                         if (rv < 0)
1776                                 goto out;
1777                         else if (rv)
1778                                 continue;
1779                         rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1780                         if (rv < 0)
1781                                 goto out;
1782                         else if (rv)
1783                                 continue;
1784
1785                         rv = -EINVAL;
1786                         printk(KERN_WARNING PFX
1787                                "Invalid hotmod option '%s'\n",
1788                                curr);
1789                         goto out;
1790                 }
1791
1792                 if (op == HM_ADD) {
1793                         info = smi_info_alloc();
1794                         if (!info) {
1795                                 rv = -ENOMEM;
1796                                 goto out;
1797                         }
1798
1799                         info->addr_source = SI_HOTMOD;
1800                         info->si_type = si_type;
1801                         info->io.addr_data = addr;
1802                         info->io.addr_type = addr_space;
1803                         if (addr_space == IPMI_MEM_ADDR_SPACE)
1804                                 info->io_setup = mem_setup;
1805                         else
1806                                 info->io_setup = port_setup;
1807
1808                         info->io.addr = NULL;
1809                         info->io.regspacing = regspacing;
1810                         if (!info->io.regspacing)
1811                                 info->io.regspacing = DEFAULT_REGSPACING;
1812                         info->io.regsize = regsize;
1813                         if (!info->io.regsize)
1814                                 info->io.regsize = DEFAULT_REGSPACING;
1815                         info->io.regshift = regshift;
1816                         info->irq = irq;
1817                         if (info->irq)
1818                                 info->irq_setup = std_irq_setup;
1819                         info->slave_addr = ipmb;
1820
1821                         if (!add_smi(info)) {
1822                                 if (try_smi_init(info))
1823                                         cleanup_one_si(info);
1824                         } else {
1825                                 kfree(info);
1826                         }
1827                 } else {
1828                         /* remove */
1829                         struct smi_info *e, *tmp_e;
1830
1831                         mutex_lock(&smi_infos_lock);
1832                         list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1833                                 if (e->io.addr_type != addr_space)
1834                                         continue;
1835                                 if (e->si_type != si_type)
1836                                         continue;
1837                                 if (e->io.addr_data == addr)
1838                                         cleanup_one_si(e);
1839                         }
1840                         mutex_unlock(&smi_infos_lock);
1841                 }
1842         }
1843         rv = len;
1844  out:
1845         kfree(str);
1846         return rv;
1847 }
1848
1849 static __devinit void hardcode_find_bmc(void)
1850 {
1851         int             i;
1852         struct smi_info *info;
1853
1854         for (i = 0; i < SI_MAX_PARMS; i++) {
1855                 if (!ports[i] && !addrs[i])
1856                         continue;
1857
1858                 info = smi_info_alloc();
1859                 if (!info)
1860                         return;
1861
1862                 info->addr_source = SI_HARDCODED;
1863                 printk(KERN_INFO PFX "probing via hardcoded address\n");
1864
1865                 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1866                         info->si_type = SI_KCS;
1867                 } else if (strcmp(si_type[i], "smic") == 0) {
1868                         info->si_type = SI_SMIC;
1869                 } else if (strcmp(si_type[i], "bt") == 0) {
1870                         info->si_type = SI_BT;
1871                 } else {
1872                         printk(KERN_WARNING PFX "Interface type specified "
1873                                "for interface %d, was invalid: %s\n",
1874                                i, si_type[i]);
1875                         kfree(info);
1876                         continue;
1877                 }
1878
1879                 if (ports[i]) {
1880                         /* An I/O port */
1881                         info->io_setup = port_setup;
1882                         info->io.addr_data = ports[i];
1883                         info->io.addr_type = IPMI_IO_ADDR_SPACE;
1884                 } else if (addrs[i]) {
1885                         /* A memory port */
1886                         info->io_setup = mem_setup;
1887                         info->io.addr_data = addrs[i];
1888                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1889                 } else {
1890                         printk(KERN_WARNING PFX "Interface type specified "
1891                                "for interface %d, but port and address were "
1892                                "not set or set to zero.\n", i);
1893                         kfree(info);
1894                         continue;
1895                 }
1896
1897                 info->io.addr = NULL;
1898                 info->io.regspacing = regspacings[i];
1899                 if (!info->io.regspacing)
1900                         info->io.regspacing = DEFAULT_REGSPACING;
1901                 info->io.regsize = regsizes[i];
1902                 if (!info->io.regsize)
1903                         info->io.regsize = DEFAULT_REGSPACING;
1904                 info->io.regshift = regshifts[i];
1905                 info->irq = irqs[i];
1906                 if (info->irq)
1907                         info->irq_setup = std_irq_setup;
1908                 info->slave_addr = slave_addrs[i];
1909
1910                 if (!add_smi(info)) {
1911                         if (try_smi_init(info))
1912                                 cleanup_one_si(info);
1913                 } else {
1914                         kfree(info);
1915                 }
1916         }
1917 }
1918
1919 #ifdef CONFIG_ACPI
1920
1921 #include <linux/acpi.h>
1922
1923 /*
1924  * Once we get an ACPI failure, we don't try any more, because we go
1925  * through the tables sequentially.  Once we don't find a table, there
1926  * are no more.
1927  */
1928 static int acpi_failure;
1929
1930 /* For GPE-type interrupts. */
1931 static u32 ipmi_acpi_gpe(void *context)
1932 {
1933         struct smi_info *smi_info = context;
1934         unsigned long   flags;
1935 #ifdef DEBUG_TIMING
1936         struct timeval t;
1937 #endif
1938
1939         spin_lock_irqsave(&(smi_info->si_lock), flags);
1940
1941         smi_inc_stat(smi_info, interrupts);
1942
1943 #ifdef DEBUG_TIMING
1944         do_gettimeofday(&t);
1945         printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1946 #endif
1947         smi_event_handler(smi_info, 0);
1948         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1949
1950         return ACPI_INTERRUPT_HANDLED;
1951 }
1952
1953 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1954 {
1955         if (!info->irq)
1956                 return;
1957
1958         acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1959 }
1960
1961 static int acpi_gpe_irq_setup(struct smi_info *info)
1962 {
1963         acpi_status status;
1964
1965         if (!info->irq)
1966                 return 0;
1967
1968         /* FIXME - is level triggered right? */
1969         status = acpi_install_gpe_handler(NULL,
1970                                           info->irq,
1971                                           ACPI_GPE_LEVEL_TRIGGERED,
1972                                           &ipmi_acpi_gpe,
1973                                           info);
1974         if (status != AE_OK) {
1975                 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
1976                          " running polled\n", DEVICE_NAME, info->irq);
1977                 info->irq = 0;
1978                 return -EINVAL;
1979         } else {
1980                 info->irq_cleanup = acpi_gpe_irq_cleanup;
1981                 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
1982                 return 0;
1983         }
1984 }
1985
1986 /*
1987  * Defined at
1988  * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
1989  */
1990 struct SPMITable {
1991         s8      Signature[4];
1992         u32     Length;
1993         u8      Revision;
1994         u8      Checksum;
1995         s8      OEMID[6];
1996         s8      OEMTableID[8];
1997         s8      OEMRevision[4];
1998         s8      CreatorID[4];
1999         s8      CreatorRevision[4];
2000         u8      InterfaceType;
2001         u8      IPMIlegacy;
2002         s16     SpecificationRevision;
2003
2004         /*
2005          * Bit 0 - SCI interrupt supported
2006          * Bit 1 - I/O APIC/SAPIC
2007          */
2008         u8      InterruptType;
2009
2010         /*
2011          * If bit 0 of InterruptType is set, then this is the SCI
2012          * interrupt in the GPEx_STS register.
2013          */
2014         u8      GPE;
2015
2016         s16     Reserved;
2017
2018         /*
2019          * If bit 1 of InterruptType is set, then this is the I/O
2020          * APIC/SAPIC interrupt.
2021          */
2022         u32     GlobalSystemInterrupt;
2023
2024         /* The actual register address. */
2025         struct acpi_generic_address addr;
2026
2027         u8      UID[4];
2028
2029         s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2030 };
2031
2032 static __devinit int try_init_spmi(struct SPMITable *spmi)
2033 {
2034         struct smi_info  *info;
2035
2036         if (spmi->IPMIlegacy != 1) {
2037                 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2038                 return -ENODEV;
2039         }
2040
2041         info = smi_info_alloc();
2042         if (!info) {
2043                 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2044                 return -ENOMEM;
2045         }
2046
2047         info->addr_source = SI_SPMI;
2048         printk(KERN_INFO PFX "probing via SPMI\n");
2049
2050         /* Figure out the interface type. */
2051         switch (spmi->InterfaceType) {
2052         case 1: /* KCS */
2053                 info->si_type = SI_KCS;
2054                 break;
2055         case 2: /* SMIC */
2056                 info->si_type = SI_SMIC;
2057                 break;
2058         case 3: /* BT */
2059                 info->si_type = SI_BT;
2060                 break;
2061         default:
2062                 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2063                        spmi->InterfaceType);
2064                 kfree(info);
2065                 return -EIO;
2066         }
2067
2068         if (spmi->InterruptType & 1) {
2069                 /* We've got a GPE interrupt. */
2070                 info->irq = spmi->GPE;
2071                 info->irq_setup = acpi_gpe_irq_setup;
2072         } else if (spmi->InterruptType & 2) {
2073                 /* We've got an APIC/SAPIC interrupt. */
2074                 info->irq = spmi->GlobalSystemInterrupt;
2075                 info->irq_setup = std_irq_setup;
2076         } else {
2077                 /* Use the default interrupt setting. */
2078                 info->irq = 0;
2079                 info->irq_setup = NULL;
2080         }
2081
2082         if (spmi->addr.bit_width) {
2083                 /* A (hopefully) properly formed register bit width. */
2084                 info->io.regspacing = spmi->addr.bit_width / 8;
2085         } else {
2086                 info->io.regspacing = DEFAULT_REGSPACING;
2087         }
2088         info->io.regsize = info->io.regspacing;
2089         info->io.regshift = spmi->addr.bit_offset;
2090
2091         if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2092                 info->io_setup = mem_setup;
2093                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2094         } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2095                 info->io_setup = port_setup;
2096                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2097         } else {
2098                 kfree(info);
2099                 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2100                 return -EIO;
2101         }
2102         info->io.addr_data = spmi->addr.address;
2103
2104         pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2105                  (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2106                  info->io.addr_data, info->io.regsize, info->io.regspacing,
2107                  info->irq);
2108
2109         if (add_smi(info))
2110                 kfree(info);
2111
2112         return 0;
2113 }
2114
2115 static __devinit void spmi_find_bmc(void)
2116 {
2117         acpi_status      status;
2118         struct SPMITable *spmi;
2119         int              i;
2120
2121         if (acpi_disabled)
2122                 return;
2123
2124         if (acpi_failure)
2125                 return;
2126
2127         for (i = 0; ; i++) {
2128                 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2129                                         (struct acpi_table_header **)&spmi);
2130                 if (status != AE_OK)
2131                         return;
2132
2133                 try_init_spmi(spmi);
2134         }
2135 }
2136
2137 static int __devinit ipmi_pnp_probe(struct pnp_dev *dev,
2138                                     const struct pnp_device_id *dev_id)
2139 {
2140         struct acpi_device *acpi_dev;
2141         struct smi_info *info;
2142         struct resource *res, *res_second;
2143         acpi_handle handle;
2144         acpi_status status;
2145         unsigned long long tmp;
2146
2147         acpi_dev = pnp_acpi_device(dev);
2148         if (!acpi_dev)
2149                 return -ENODEV;
2150
2151         info = smi_info_alloc();
2152         if (!info)
2153                 return -ENOMEM;
2154
2155         info->addr_source = SI_ACPI;
2156         printk(KERN_INFO PFX "probing via ACPI\n");
2157
2158         handle = acpi_dev->handle;
2159
2160         /* _IFT tells us the interface type: KCS, BT, etc */
2161         status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2162         if (ACPI_FAILURE(status))
2163                 goto err_free;
2164
2165         switch (tmp) {
2166         case 1:
2167                 info->si_type = SI_KCS;
2168                 break;
2169         case 2:
2170                 info->si_type = SI_SMIC;
2171                 break;
2172         case 3:
2173                 info->si_type = SI_BT;
2174                 break;
2175         default:
2176                 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2177                 goto err_free;
2178         }
2179
2180         res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2181         if (res) {
2182                 info->io_setup = port_setup;
2183                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2184         } else {
2185                 res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2186                 if (res) {
2187                         info->io_setup = mem_setup;
2188                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2189                 }
2190         }
2191         if (!res) {
2192                 dev_err(&dev->dev, "no I/O or memory address\n");
2193                 goto err_free;
2194         }
2195         info->io.addr_data = res->start;
2196
2197         info->io.regspacing = DEFAULT_REGSPACING;
2198         res_second = pnp_get_resource(dev,
2199                                (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2200                                         IORESOURCE_IO : IORESOURCE_MEM,
2201                                1);
2202         if (res_second) {
2203                 if (res_second->start > info->io.addr_data)
2204                         info->io.regspacing = res_second->start - info->io.addr_data;
2205         }
2206         info->io.regsize = DEFAULT_REGSPACING;
2207         info->io.regshift = 0;
2208
2209         /* If _GPE exists, use it; otherwise use standard interrupts */
2210         status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2211         if (ACPI_SUCCESS(status)) {
2212                 info->irq = tmp;
2213                 info->irq_setup = acpi_gpe_irq_setup;
2214         } else if (pnp_irq_valid(dev, 0)) {
2215                 info->irq = pnp_irq(dev, 0);
2216                 info->irq_setup = std_irq_setup;
2217         }
2218
2219         info->dev = &dev->dev;
2220         pnp_set_drvdata(dev, info);
2221
2222         dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2223                  res, info->io.regsize, info->io.regspacing,
2224                  info->irq);
2225
2226         if (add_smi(info))
2227                 goto err_free;
2228
2229         return 0;
2230
2231 err_free:
2232         kfree(info);
2233         return -EINVAL;
2234 }
2235
2236 static void __devexit ipmi_pnp_remove(struct pnp_dev *dev)
2237 {
2238         struct smi_info *info = pnp_get_drvdata(dev);
2239
2240         cleanup_one_si(info);
2241 }
2242
2243 static const struct pnp_device_id pnp_dev_table[] = {
2244         {"IPI0001", 0},
2245         {"", 0},
2246 };
2247
2248 static struct pnp_driver ipmi_pnp_driver = {
2249         .name           = DEVICE_NAME,
2250         .probe          = ipmi_pnp_probe,
2251         .remove         = __devexit_p(ipmi_pnp_remove),
2252         .id_table       = pnp_dev_table,
2253 };
2254 #endif
2255
2256 #ifdef CONFIG_DMI
2257 struct dmi_ipmi_data {
2258         u8              type;
2259         u8              addr_space;
2260         unsigned long   base_addr;
2261         u8              irq;
2262         u8              offset;
2263         u8              slave_addr;
2264 };
2265
2266 static int __devinit decode_dmi(const struct dmi_header *dm,
2267                                 struct dmi_ipmi_data *dmi)
2268 {
2269         const u8        *data = (const u8 *)dm;
2270         unsigned long   base_addr;
2271         u8              reg_spacing;
2272         u8              len = dm->length;
2273
2274         dmi->type = data[4];
2275
2276         memcpy(&base_addr, data+8, sizeof(unsigned long));
2277         if (len >= 0x11) {
2278                 if (base_addr & 1) {
2279                         /* I/O */
2280                         base_addr &= 0xFFFE;
2281                         dmi->addr_space = IPMI_IO_ADDR_SPACE;
2282                 } else
2283                         /* Memory */
2284                         dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2285
2286                 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2287                    is odd. */
2288                 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2289
2290                 dmi->irq = data[0x11];
2291
2292                 /* The top two bits of byte 0x10 hold the register spacing. */
2293                 reg_spacing = (data[0x10] & 0xC0) >> 6;
2294                 switch (reg_spacing) {
2295                 case 0x00: /* Byte boundaries */
2296                     dmi->offset = 1;
2297                     break;
2298                 case 0x01: /* 32-bit boundaries */
2299                     dmi->offset = 4;
2300                     break;
2301                 case 0x02: /* 16-byte boundaries */
2302                     dmi->offset = 16;
2303                     break;
2304                 default:
2305                     /* Some other interface, just ignore it. */
2306                     return -EIO;
2307                 }
2308         } else {
2309                 /* Old DMI spec. */
2310                 /*
2311                  * Note that technically, the lower bit of the base
2312                  * address should be 1 if the address is I/O and 0 if
2313                  * the address is in memory.  So many systems get that
2314                  * wrong (and all that I have seen are I/O) so we just
2315                  * ignore that bit and assume I/O.  Systems that use
2316                  * memory should use the newer spec, anyway.
2317                  */
2318                 dmi->base_addr = base_addr & 0xfffe;
2319                 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2320                 dmi->offset = 1;
2321         }
2322
2323         dmi->slave_addr = data[6];
2324
2325         return 0;
2326 }
2327
2328 static __devinit void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2329 {
2330         struct smi_info *info;
2331
2332         info = smi_info_alloc();
2333         if (!info) {
2334                 printk(KERN_ERR PFX "Could not allocate SI data\n");
2335                 return;
2336         }
2337
2338         info->addr_source = SI_SMBIOS;
2339         printk(KERN_INFO PFX "probing via SMBIOS\n");
2340
2341         switch (ipmi_data->type) {
2342         case 0x01: /* KCS */
2343                 info->si_type = SI_KCS;
2344                 break;
2345         case 0x02: /* SMIC */
2346                 info->si_type = SI_SMIC;
2347                 break;
2348         case 0x03: /* BT */
2349                 info->si_type = SI_BT;
2350                 break;
2351         default:
2352                 kfree(info);
2353                 return;
2354         }
2355
2356         switch (ipmi_data->addr_space) {
2357         case IPMI_MEM_ADDR_SPACE:
2358                 info->io_setup = mem_setup;
2359                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2360                 break;
2361
2362         case IPMI_IO_ADDR_SPACE:
2363                 info->io_setup = port_setup;
2364                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2365                 break;
2366
2367         default:
2368                 kfree(info);
2369                 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2370                        ipmi_data->addr_space);
2371                 return;
2372         }
2373         info->io.addr_data = ipmi_data->base_addr;
2374
2375         info->io.regspacing = ipmi_data->offset;
2376         if (!info->io.regspacing)
2377                 info->io.regspacing = DEFAULT_REGSPACING;
2378         info->io.regsize = DEFAULT_REGSPACING;
2379         info->io.regshift = 0;
2380
2381         info->slave_addr = ipmi_data->slave_addr;
2382
2383         info->irq = ipmi_data->irq;
2384         if (info->irq)
2385                 info->irq_setup = std_irq_setup;
2386
2387         pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2388                  (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2389                  info->io.addr_data, info->io.regsize, info->io.regspacing,
2390                  info->irq);
2391
2392         if (add_smi(info))
2393                 kfree(info);
2394 }
2395
2396 static void __devinit dmi_find_bmc(void)
2397 {
2398         const struct dmi_device *dev = NULL;
2399         struct dmi_ipmi_data data;
2400         int                  rv;
2401
2402         while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2403                 memset(&data, 0, sizeof(data));
2404                 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2405                                 &data);
2406                 if (!rv)
2407                         try_init_dmi(&data);
2408         }
2409 }
2410 #endif /* CONFIG_DMI */
2411
2412 #ifdef CONFIG_PCI
2413
2414 #define PCI_ERMC_CLASSCODE              0x0C0700
2415 #define PCI_ERMC_CLASSCODE_MASK         0xffffff00
2416 #define PCI_ERMC_CLASSCODE_TYPE_MASK    0xff
2417 #define PCI_ERMC_CLASSCODE_TYPE_SMIC    0x00
2418 #define PCI_ERMC_CLASSCODE_TYPE_KCS     0x01
2419 #define PCI_ERMC_CLASSCODE_TYPE_BT      0x02
2420
2421 #define PCI_HP_VENDOR_ID    0x103C
2422 #define PCI_MMC_DEVICE_ID   0x121A
2423 #define PCI_MMC_ADDR_CW     0x10
2424
2425 static void ipmi_pci_cleanup(struct smi_info *info)
2426 {
2427         struct pci_dev *pdev = info->addr_source_data;
2428
2429         pci_disable_device(pdev);
2430 }
2431
2432 static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
2433                                     const struct pci_device_id *ent)
2434 {
2435         int rv;
2436         int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2437         struct smi_info *info;
2438
2439         info = smi_info_alloc();
2440         if (!info)
2441                 return -ENOMEM;
2442
2443         info->addr_source = SI_PCI;
2444         dev_info(&pdev->dev, "probing via PCI");
2445
2446         switch (class_type) {
2447         case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2448                 info->si_type = SI_SMIC;
2449                 break;
2450
2451         case PCI_ERMC_CLASSCODE_TYPE_KCS:
2452                 info->si_type = SI_KCS;
2453                 break;
2454
2455         case PCI_ERMC_CLASSCODE_TYPE_BT:
2456                 info->si_type = SI_BT;
2457                 break;
2458
2459         default:
2460                 kfree(info);
2461                 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2462                 return -ENOMEM;
2463         }
2464
2465         rv = pci_enable_device(pdev);
2466         if (rv) {
2467                 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2468                 kfree(info);
2469                 return rv;
2470         }
2471
2472         info->addr_source_cleanup = ipmi_pci_cleanup;
2473         info->addr_source_data = pdev;
2474
2475         if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2476                 info->io_setup = port_setup;
2477                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2478         } else {
2479                 info->io_setup = mem_setup;
2480                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2481         }
2482         info->io.addr_data = pci_resource_start(pdev, 0);
2483
2484         info->io.regspacing = DEFAULT_REGSPACING;
2485         info->io.regsize = DEFAULT_REGSPACING;
2486         info->io.regshift = 0;
2487
2488         info->irq = pdev->irq;
2489         if (info->irq)
2490                 info->irq_setup = std_irq_setup;
2491
2492         info->dev = &pdev->dev;
2493         pci_set_drvdata(pdev, info);
2494
2495         dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2496                 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2497                 info->irq);
2498
2499         if (add_smi(info))
2500                 kfree(info);
2501
2502         return 0;
2503 }
2504
2505 static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
2506 {
2507         struct smi_info *info = pci_get_drvdata(pdev);
2508         cleanup_one_si(info);
2509 }
2510
2511 #ifdef CONFIG_PM
2512 static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2513 {
2514         return 0;
2515 }
2516
2517 static int ipmi_pci_resume(struct pci_dev *pdev)
2518 {
2519         return 0;
2520 }
2521 #endif
2522
2523 static struct pci_device_id ipmi_pci_devices[] = {
2524         { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2525         { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2526         { 0, }
2527 };
2528 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2529
2530 static struct pci_driver ipmi_pci_driver = {
2531         .name =         DEVICE_NAME,
2532         .id_table =     ipmi_pci_devices,
2533         .probe =        ipmi_pci_probe,
2534         .remove =       __devexit_p(ipmi_pci_remove),
2535 #ifdef CONFIG_PM
2536         .suspend =      ipmi_pci_suspend,
2537         .resume =       ipmi_pci_resume,
2538 #endif
2539 };
2540 #endif /* CONFIG_PCI */
2541
2542
2543 #ifdef CONFIG_PPC_OF
2544 static int __devinit ipmi_of_probe(struct platform_device *dev,
2545                          const struct of_device_id *match)
2546 {
2547         struct smi_info *info;
2548         struct resource resource;
2549         const int *regsize, *regspacing, *regshift;
2550         struct device_node *np = dev->dev.of_node;
2551         int ret;
2552         int proplen;
2553
2554         dev_info(&dev->dev, "probing via device tree\n");
2555
2556         ret = of_address_to_resource(np, 0, &resource);
2557         if (ret) {
2558                 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2559                 return ret;
2560         }
2561
2562         regsize = of_get_property(np, "reg-size", &proplen);
2563         if (regsize && proplen != 4) {
2564                 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2565                 return -EINVAL;
2566         }
2567
2568         regspacing = of_get_property(np, "reg-spacing", &proplen);
2569         if (regspacing && proplen != 4) {
2570                 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2571                 return -EINVAL;
2572         }
2573
2574         regshift = of_get_property(np, "reg-shift", &proplen);
2575         if (regshift && proplen != 4) {
2576                 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2577                 return -EINVAL;
2578         }
2579
2580         info = smi_info_alloc();
2581
2582         if (!info) {
2583                 dev_err(&dev->dev,
2584                         "could not allocate memory for OF probe\n");
2585                 return -ENOMEM;
2586         }
2587
2588         info->si_type           = (enum si_type) match->data;
2589         info->addr_source       = SI_DEVICETREE;
2590         info->irq_setup         = std_irq_setup;
2591
2592         if (resource.flags & IORESOURCE_IO) {
2593                 info->io_setup          = port_setup;
2594                 info->io.addr_type      = IPMI_IO_ADDR_SPACE;
2595         } else {
2596                 info->io_setup          = mem_setup;
2597                 info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2598         }
2599
2600         info->io.addr_data      = resource.start;
2601
2602         info->io.regsize        = regsize ? *regsize : DEFAULT_REGSIZE;
2603         info->io.regspacing     = regspacing ? *regspacing : DEFAULT_REGSPACING;
2604         info->io.regshift       = regshift ? *regshift : 0;
2605
2606         info->irq               = irq_of_parse_and_map(dev->dev.of_node, 0);
2607         info->dev               = &dev->dev;
2608
2609         dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2610                 info->io.addr_data, info->io.regsize, info->io.regspacing,
2611                 info->irq);
2612
2613         dev_set_drvdata(&dev->dev, info);
2614
2615         if (add_smi(info)) {
2616                 kfree(info);
2617                 return -EBUSY;
2618         }
2619
2620         return 0;
2621 }
2622
2623 static int __devexit ipmi_of_remove(struct platform_device *dev)
2624 {
2625         cleanup_one_si(dev_get_drvdata(&dev->dev));
2626         return 0;
2627 }
2628
2629 static struct of_device_id ipmi_match[] =
2630 {
2631         { .type = "ipmi", .compatible = "ipmi-kcs",
2632           .data = (void *)(unsigned long) SI_KCS },
2633         { .type = "ipmi", .compatible = "ipmi-smic",
2634           .data = (void *)(unsigned long) SI_SMIC },
2635         { .type = "ipmi", .compatible = "ipmi-bt",
2636           .data = (void *)(unsigned long) SI_BT },
2637         {},
2638 };
2639
2640 static struct of_platform_driver ipmi_of_platform_driver = {
2641         .driver = {
2642                 .name = "ipmi",
2643                 .owner = THIS_MODULE,
2644                 .of_match_table = ipmi_match,
2645         },
2646         .probe          = ipmi_of_probe,
2647         .remove         = __devexit_p(ipmi_of_remove),
2648 };
2649 #endif /* CONFIG_PPC_OF */
2650
2651 static int wait_for_msg_done(struct smi_info *smi_info)
2652 {
2653         enum si_sm_result     smi_result;
2654
2655         smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2656         for (;;) {
2657                 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2658                     smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2659                         schedule_timeout_uninterruptible(1);
2660                         smi_result = smi_info->handlers->event(
2661                                 smi_info->si_sm, 100);
2662                 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2663                         smi_result = smi_info->handlers->event(
2664                                 smi_info->si_sm, 0);
2665                 } else
2666                         break;
2667         }
2668         if (smi_result == SI_SM_HOSED)
2669                 /*
2670                  * We couldn't get the state machine to run, so whatever's at
2671                  * the port is probably not an IPMI SMI interface.
2672                  */
2673                 return -ENODEV;
2674
2675         return 0;
2676 }
2677
2678 static int try_get_dev_id(struct smi_info *smi_info)
2679 {
2680         unsigned char         msg[2];
2681         unsigned char         *resp;
2682         unsigned long         resp_len;
2683         int                   rv = 0;
2684
2685         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2686         if (!resp)
2687                 return -ENOMEM;
2688
2689         /*
2690          * Do a Get Device ID command, since it comes back with some
2691          * useful info.
2692          */
2693         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2694         msg[1] = IPMI_GET_DEVICE_ID_CMD;
2695         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2696
2697         rv = wait_for_msg_done(smi_info);
2698         if (rv)
2699                 goto out;
2700
2701         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2702                                                   resp, IPMI_MAX_MSG_LENGTH);
2703
2704         /* Check and record info from the get device id, in case we need it. */
2705         rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2706
2707  out:
2708         kfree(resp);
2709         return rv;
2710 }
2711
2712 static int try_enable_event_buffer(struct smi_info *smi_info)
2713 {
2714         unsigned char         msg[3];
2715         unsigned char         *resp;
2716         unsigned long         resp_len;
2717         int                   rv = 0;
2718
2719         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2720         if (!resp)
2721                 return -ENOMEM;
2722
2723         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2724         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2725         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2726
2727         rv = wait_for_msg_done(smi_info);
2728         if (rv) {
2729                 printk(KERN_WARNING PFX "Error getting response from get"
2730                        " global enables command, the event buffer is not"
2731                        " enabled.\n");
2732                 goto out;
2733         }
2734
2735         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2736                                                   resp, IPMI_MAX_MSG_LENGTH);
2737
2738         if (resp_len < 4 ||
2739                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2740                         resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2741                         resp[2] != 0) {
2742                 printk(KERN_WARNING PFX "Invalid return from get global"
2743                        " enables command, cannot enable the event buffer.\n");
2744                 rv = -EINVAL;
2745                 goto out;
2746         }
2747
2748         if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2749                 /* buffer is already enabled, nothing to do. */
2750                 goto out;
2751
2752         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2753         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2754         msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2755         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2756
2757         rv = wait_for_msg_done(smi_info);
2758         if (rv) {
2759                 printk(KERN_WARNING PFX "Error getting response from set"
2760                        " global, enables command, the event buffer is not"
2761                        " enabled.\n");
2762                 goto out;
2763         }
2764
2765         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2766                                                   resp, IPMI_MAX_MSG_LENGTH);
2767
2768         if (resp_len < 3 ||
2769                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2770                         resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2771                 printk(KERN_WARNING PFX "Invalid return from get global,"
2772                        "enables command, not enable the event buffer.\n");
2773                 rv = -EINVAL;
2774                 goto out;
2775         }
2776
2777         if (resp[2] != 0)
2778                 /*
2779                  * An error when setting the event buffer bit means
2780                  * that the event buffer is not supported.
2781                  */
2782                 rv = -ENOENT;
2783  out:
2784         kfree(resp);
2785         return rv;
2786 }
2787
2788 static int type_file_read_proc(char *page, char **start, off_t off,
2789                                int count, int *eof, void *data)
2790 {
2791         struct smi_info *smi = data;
2792
2793         return sprintf(page, "%s\n", si_to_str[smi->si_type]);
2794 }
2795
2796 static int stat_file_read_proc(char *page, char **start, off_t off,
2797                                int count, int *eof, void *data)
2798 {
2799         char            *out = (char *) page;
2800         struct smi_info *smi = data;
2801
2802         out += sprintf(out, "interrupts_enabled:    %d\n",
2803                        smi->irq && !smi->interrupt_disabled);
2804         out += sprintf(out, "short_timeouts:        %u\n",
2805                        smi_get_stat(smi, short_timeouts));
2806         out += sprintf(out, "long_timeouts:         %u\n",
2807                        smi_get_stat(smi, long_timeouts));
2808         out += sprintf(out, "idles:                 %u\n",
2809                        smi_get_stat(smi, idles));
2810         out += sprintf(out, "interrupts:            %u\n",
2811                        smi_get_stat(smi, interrupts));
2812         out += sprintf(out, "attentions:            %u\n",
2813                        smi_get_stat(smi, attentions));
2814         out += sprintf(out, "flag_fetches:          %u\n",
2815                        smi_get_stat(smi, flag_fetches));
2816         out += sprintf(out, "hosed_count:           %u\n",
2817                        smi_get_stat(smi, hosed_count));
2818         out += sprintf(out, "complete_transactions: %u\n",
2819                        smi_get_stat(smi, complete_transactions));
2820         out += sprintf(out, "events:                %u\n",
2821                        smi_get_stat(smi, events));
2822         out += sprintf(out, "watchdog_pretimeouts:  %u\n",
2823                        smi_get_stat(smi, watchdog_pretimeouts));
2824         out += sprintf(out, "incoming_messages:     %u\n",
2825                        smi_get_stat(smi, incoming_messages));
2826
2827         return out - page;
2828 }
2829
2830 static int param_read_proc(char *page, char **start, off_t off,
2831                            int count, int *eof, void *data)
2832 {
2833         struct smi_info *smi = data;
2834
2835         return sprintf(page,
2836                        "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2837                        si_to_str[smi->si_type],
2838                        addr_space_to_str[smi->io.addr_type],
2839                        smi->io.addr_data,
2840                        smi->io.regspacing,
2841                        smi->io.regsize,
2842                        smi->io.regshift,
2843                        smi->irq,
2844                        smi->slave_addr);
2845 }
2846
2847 /*
2848  * oem_data_avail_to_receive_msg_avail
2849  * @info - smi_info structure with msg_flags set
2850  *
2851  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2852  * Returns 1 indicating need to re-run handle_flags().
2853  */
2854 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2855 {
2856         smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2857                                RECEIVE_MSG_AVAIL);
2858         return 1;
2859 }
2860
2861 /*
2862  * setup_dell_poweredge_oem_data_handler
2863  * @info - smi_info.device_id must be populated
2864  *
2865  * Systems that match, but have firmware version < 1.40 may assert
2866  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2867  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
2868  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2869  * as RECEIVE_MSG_AVAIL instead.
2870  *
2871  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2872  * assert the OEM[012] bits, and if it did, the driver would have to
2873  * change to handle that properly, we don't actually check for the
2874  * firmware version.
2875  * Device ID = 0x20                BMC on PowerEdge 8G servers
2876  * Device Revision = 0x80
2877  * Firmware Revision1 = 0x01       BMC version 1.40
2878  * Firmware Revision2 = 0x40       BCD encoded
2879  * IPMI Version = 0x51             IPMI 1.5
2880  * Manufacturer ID = A2 02 00      Dell IANA
2881  *
2882  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2883  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2884  *
2885  */
2886 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
2887 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2888 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2889 #define DELL_IANA_MFR_ID 0x0002a2
2890 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2891 {
2892         struct ipmi_device_id *id = &smi_info->device_id;
2893         if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2894                 if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
2895                     id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2896                     id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2897                         smi_info->oem_data_avail_handler =
2898                                 oem_data_avail_to_receive_msg_avail;
2899                 } else if (ipmi_version_major(id) < 1 ||
2900                            (ipmi_version_major(id) == 1 &&
2901                             ipmi_version_minor(id) < 5)) {
2902                         smi_info->oem_data_avail_handler =
2903                                 oem_data_avail_to_receive_msg_avail;
2904                 }
2905         }
2906 }
2907
2908 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2909 static void return_hosed_msg_badsize(struct smi_info *smi_info)
2910 {
2911         struct ipmi_smi_msg *msg = smi_info->curr_msg;
2912
2913         /* Make it a reponse */
2914         msg->rsp[0] = msg->data[0] | 4;
2915         msg->rsp[1] = msg->data[1];
2916         msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2917         msg->rsp_size = 3;
2918         smi_info->curr_msg = NULL;
2919         deliver_recv_msg(smi_info, msg);
2920 }
2921
2922 /*
2923  * dell_poweredge_bt_xaction_handler
2924  * @info - smi_info.device_id must be populated
2925  *
2926  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2927  * not respond to a Get SDR command if the length of the data
2928  * requested is exactly 0x3A, which leads to command timeouts and no
2929  * data returned.  This intercepts such commands, and causes userspace
2930  * callers to try again with a different-sized buffer, which succeeds.
2931  */
2932
2933 #define STORAGE_NETFN 0x0A
2934 #define STORAGE_CMD_GET_SDR 0x23
2935 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2936                                              unsigned long unused,
2937                                              void *in)
2938 {
2939         struct smi_info *smi_info = in;
2940         unsigned char *data = smi_info->curr_msg->data;
2941         unsigned int size   = smi_info->curr_msg->data_size;
2942         if (size >= 8 &&
2943             (data[0]>>2) == STORAGE_NETFN &&
2944             data[1] == STORAGE_CMD_GET_SDR &&
2945             data[7] == 0x3A) {
2946                 return_hosed_msg_badsize(smi_info);
2947                 return NOTIFY_STOP;
2948         }
2949         return NOTIFY_DONE;
2950 }
2951
2952 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2953         .notifier_call  = dell_poweredge_bt_xaction_handler,
2954 };
2955
2956 /*
2957  * setup_dell_poweredge_bt_xaction_handler
2958  * @info - smi_info.device_id must be filled in already
2959  *
2960  * Fills in smi_info.device_id.start_transaction_pre_hook
2961  * when we know what function to use there.
2962  */
2963 static void
2964 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2965 {
2966         struct ipmi_device_id *id = &smi_info->device_id;
2967         if (id->manufacturer_id == DELL_IANA_MFR_ID &&
2968             smi_info->si_type == SI_BT)
2969                 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2970 }
2971
2972 /*
2973  * setup_oem_data_handler
2974  * @info - smi_info.device_id must be filled in already
2975  *
2976  * Fills in smi_info.device_id.oem_data_available_handler
2977  * when we know what function to use there.
2978  */
2979
2980 static void setup_oem_data_handler(struct smi_info *smi_info)
2981 {
2982         setup_dell_poweredge_oem_data_handler(smi_info);
2983 }
2984
2985 static void setup_xaction_handlers(struct smi_info *smi_info)
2986 {
2987         setup_dell_poweredge_bt_xaction_handler(smi_info);
2988 }
2989
2990 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
2991 {
2992         if (smi_info->intf) {
2993                 /*
2994                  * The timer and thread are only running if the
2995                  * interface has been started up and registered.
2996                  */
2997                 if (smi_info->thread != NULL)
2998                         kthread_stop(smi_info->thread);
2999                 del_timer_sync(&smi_info->si_timer);
3000         }
3001 }
3002
3003 static __devinitdata struct ipmi_default_vals
3004 {
3005         int type;
3006         int port;
3007 } ipmi_defaults[] =
3008 {
3009         { .type = SI_KCS, .port = 0xca2 },
3010         { .type = SI_SMIC, .port = 0xca9 },
3011         { .type = SI_BT, .port = 0xe4 },
3012         { .port = 0 }
3013 };
3014
3015 static __devinit void default_find_bmc(void)
3016 {
3017         struct smi_info *info;
3018         int             i;
3019
3020         for (i = 0; ; i++) {
3021                 if (!ipmi_defaults[i].port)
3022                         break;
3023 #ifdef CONFIG_PPC
3024                 if (check_legacy_ioport(ipmi_defaults[i].port))
3025                         continue;
3026 #endif
3027                 info = smi_info_alloc();
3028                 if (!info)
3029                         return;
3030
3031                 info->addr_source = SI_DEFAULT;
3032
3033                 info->si_type = ipmi_defaults[i].type;
3034                 info->io_setup = port_setup;
3035                 info->io.addr_data = ipmi_defaults[i].port;
3036                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
3037
3038                 info->io.addr = NULL;
3039                 info->io.regspacing = DEFAULT_REGSPACING;
3040                 info->io.regsize = DEFAULT_REGSPACING;
3041                 info->io.regshift = 0;
3042
3043                 if (add_smi(info) == 0) {
3044                         if ((try_smi_init(info)) == 0) {
3045                                 /* Found one... */
3046                                 printk(KERN_INFO PFX "Found default %s"
3047                                 " state machine at %s address 0x%lx\n",
3048                                 si_to_str[info->si_type],
3049                                 addr_space_to_str[info->io.addr_type],
3050                                 info->io.addr_data);
3051                         } else
3052                                 cleanup_one_si(info);
3053                 } else {
3054                         kfree(info);
3055                 }
3056         }
3057 }
3058
3059 static int is_new_interface(struct smi_info *info)
3060 {
3061         struct smi_info *e;
3062
3063         list_for_each_entry(e, &smi_infos, link) {
3064                 if (e->io.addr_type != info->io.addr_type)
3065                         continue;
3066                 if (e->io.addr_data == info->io.addr_data)
3067                         return 0;
3068         }
3069
3070         return 1;
3071 }
3072
3073 static int add_smi(struct smi_info *new_smi)
3074 {
3075         int rv = 0;
3076
3077         printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3078                         ipmi_addr_src_to_str[new_smi->addr_source],
3079                         si_to_str[new_smi->si_type]);
3080         mutex_lock(&smi_infos_lock);
3081         if (!is_new_interface(new_smi)) {
3082                 printk(KERN_CONT " duplicate interface\n");
3083                 rv = -EBUSY;
3084                 goto out_err;
3085         }
3086
3087         printk(KERN_CONT "\n");
3088
3089         /* So we know not to free it unless we have allocated one. */
3090         new_smi->intf = NULL;
3091         new_smi->si_sm = NULL;
3092         new_smi->handlers = NULL;
3093
3094         list_add_tail(&new_smi->link, &smi_infos);
3095
3096 out_err:
3097         mutex_unlock(&smi_infos_lock);
3098         return rv;
3099 }
3100
3101 static int try_smi_init(struct smi_info *new_smi)
3102 {
3103         int rv = 0;
3104         int i;
3105
3106         printk(KERN_INFO PFX "Trying %s-specified %s state"
3107                " machine at %s address 0x%lx, slave address 0x%x,"
3108                " irq %d\n",
3109                ipmi_addr_src_to_str[new_smi->addr_source],
3110                si_to_str[new_smi->si_type],
3111                addr_space_to_str[new_smi->io.addr_type],
3112                new_smi->io.addr_data,
3113                new_smi->slave_addr, new_smi->irq);
3114
3115         switch (new_smi->si_type) {
3116         case SI_KCS:
3117                 new_smi->handlers = &kcs_smi_handlers;
3118                 break;
3119
3120         case SI_SMIC:
3121                 new_smi->handlers = &smic_smi_handlers;
3122                 break;
3123
3124         case SI_BT:
3125                 new_smi->handlers = &bt_smi_handlers;
3126                 break;
3127
3128         default:
3129                 /* No support for anything else yet. */
3130                 rv = -EIO;
3131                 goto out_err;
3132         }
3133
3134         /* Allocate the state machine's data and initialize it. */
3135         new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3136         if (!new_smi->si_sm) {
3137                 printk(KERN_ERR PFX
3138                        "Could not allocate state machine memory\n");
3139                 rv = -ENOMEM;
3140                 goto out_err;
3141         }
3142         new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3143                                                         &new_smi->io);
3144
3145         /* Now that we know the I/O size, we can set up the I/O. */
3146         rv = new_smi->io_setup(new_smi);
3147         if (rv) {
3148                 printk(KERN_ERR PFX "Could not set up I/O space\n");
3149                 goto out_err;
3150         }
3151
3152         /* Do low-level detection first. */
3153         if (new_smi->handlers->detect(new_smi->si_sm)) {
3154                 if (new_smi->addr_source)
3155                         printk(KERN_INFO PFX "Interface detection failed\n");
3156                 rv = -ENODEV;
3157                 goto out_err;
3158         }
3159
3160         /*
3161          * Attempt a get device id command.  If it fails, we probably
3162          * don't have a BMC here.
3163          */
3164         rv = try_get_dev_id(new_smi);
3165         if (rv) {
3166                 if (new_smi->addr_source)
3167                         printk(KERN_INFO PFX "There appears to be no BMC"
3168                                " at this location\n");
3169                 goto out_err;
3170         }
3171
3172         setup_oem_data_handler(new_smi);
3173         setup_xaction_handlers(new_smi);
3174
3175         INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3176         INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3177         new_smi->curr_msg = NULL;
3178         atomic_set(&new_smi->req_events, 0);
3179         new_smi->run_to_completion = 0;
3180         for (i = 0; i < SI_NUM_STATS; i++)
3181                 atomic_set(&new_smi->stats[i], 0);
3182
3183         new_smi->interrupt_disabled = 1;
3184         atomic_set(&new_smi->stop_operation, 0);
3185         new_smi->intf_num = smi_num;
3186         smi_num++;
3187
3188         rv = try_enable_event_buffer(new_smi);
3189         if (rv == 0)
3190                 new_smi->has_event_buffer = 1;
3191
3192         /*
3193          * Start clearing the flags before we enable interrupts or the
3194          * timer to avoid racing with the timer.
3195          */
3196         start_clear_flags(new_smi);
3197         /* IRQ is defined to be set when non-zero. */
3198         if (new_smi->irq)
3199                 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3200
3201         if (!new_smi->dev) {
3202                 /*
3203                  * If we don't already have a device from something
3204                  * else (like PCI), then register a new one.
3205                  */
3206                 new_smi->pdev = platform_device_alloc("ipmi_si",
3207                                                       new_smi->intf_num);
3208                 if (!new_smi->pdev) {
3209                         printk(KERN_ERR PFX
3210                                "Unable to allocate platform device\n");
3211                         goto out_err;
3212                 }
3213                 new_smi->dev = &new_smi->pdev->dev;
3214                 new_smi->dev->driver = &ipmi_driver.driver;
3215
3216                 rv = platform_device_add(new_smi->pdev);
3217                 if (rv) {
3218                         printk(KERN_ERR PFX
3219                                "Unable to register system interface device:"
3220                                " %d\n",
3221                                rv);
3222                         goto out_err;
3223                 }
3224                 new_smi->dev_registered = 1;
3225         }
3226
3227         rv = ipmi_register_smi(&handlers,
3228                                new_smi,
3229                                &new_smi->device_id,
3230                                new_smi->dev,
3231                                "bmc",
3232                                new_smi->slave_addr);
3233         if (rv) {
3234                 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3235                         rv);
3236                 goto out_err_stop_timer;
3237         }
3238
3239         rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3240                                      type_file_read_proc,
3241                                      new_smi);
3242         if (rv) {
3243                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3244                 goto out_err_stop_timer;
3245         }
3246
3247         rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3248                                      stat_file_read_proc,
3249                                      new_smi);
3250         if (rv) {
3251                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3252                 goto out_err_stop_timer;
3253         }
3254
3255         rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3256                                      param_read_proc,
3257                                      new_smi);
3258         if (rv) {
3259                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3260                 goto out_err_stop_timer;
3261         }
3262
3263         dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3264                  si_to_str[new_smi->si_type]);
3265
3266         return 0;
3267
3268  out_err_stop_timer:
3269         atomic_inc(&new_smi->stop_operation);
3270         wait_for_timer_and_thread(new_smi);
3271
3272  out_err:
3273         new_smi->interrupt_disabled = 1;
3274
3275         if (new_smi->intf) {
3276                 ipmi_unregister_smi(new_smi->intf);
3277                 new_smi->intf = NULL;
3278         }
3279
3280         if (new_smi->irq_cleanup) {
3281                 new_smi->irq_cleanup(new_smi);
3282                 new_smi->irq_cleanup = NULL;
3283         }
3284
3285         /*
3286          * Wait until we know that we are out of any interrupt
3287          * handlers might have been running before we freed the
3288          * interrupt.
3289          */
3290         synchronize_sched();
3291
3292         if (new_smi->si_sm) {
3293                 if (new_smi->handlers)
3294                         new_smi->handlers->cleanup(new_smi->si_sm);
3295                 kfree(new_smi->si_sm);
3296                 new_smi->si_sm = NULL;
3297         }
3298         if (new_smi->addr_source_cleanup) {
3299                 new_smi->addr_source_cleanup(new_smi);
3300                 new_smi->addr_source_cleanup = NULL;
3301         }
3302         if (new_smi->io_cleanup) {
3303                 new_smi->io_cleanup(new_smi);
3304                 new_smi->io_cleanup = NULL;
3305         }
3306
3307         if (new_smi->dev_registered) {
3308                 platform_device_unregister(new_smi->pdev);
3309                 new_smi->dev_registered = 0;
3310         }
3311
3312         return rv;
3313 }
3314
3315 static __devinit int init_ipmi_si(void)
3316 {
3317         int  i;
3318         char *str;
3319         int  rv;
3320         struct smi_info *e;
3321         enum ipmi_addr_src type = SI_INVALID;
3322
3323         if (initialized)
3324                 return 0;
3325         initialized = 1;
3326
3327         /* Register the device drivers. */
3328         rv = driver_register(&ipmi_driver.driver);
3329         if (rv) {
3330                 printk(KERN_ERR PFX "Unable to register driver: %d\n", rv);
3331                 return rv;
3332         }
3333
3334
3335         /* Parse out the si_type string into its components. */
3336         str = si_type_str;
3337         if (*str != '\0') {
3338                 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3339                         si_type[i] = str;
3340                         str = strchr(str, ',');
3341                         if (str) {
3342                                 *str = '\0';
3343                                 str++;
3344                         } else {
3345                                 break;
3346                         }
3347                 }
3348         }
3349
3350         printk(KERN_INFO "IPMI System Interface driver.\n");
3351
3352         hardcode_find_bmc();
3353
3354         /* If the user gave us a device, they presumably want us to use it */
3355         mutex_lock(&smi_infos_lock);
3356         if (!list_empty(&smi_infos)) {
3357                 mutex_unlock(&smi_infos_lock);
3358                 return 0;
3359         }
3360         mutex_unlock(&smi_infos_lock);
3361
3362 #ifdef CONFIG_PCI
3363         rv = pci_register_driver(&ipmi_pci_driver);
3364         if (rv)
3365                 printk(KERN_ERR PFX "Unable to register PCI driver: %d\n", rv);
3366         else
3367                 pci_registered = 1;
3368 #endif
3369
3370 #ifdef CONFIG_ACPI
3371         pnp_register_driver(&ipmi_pnp_driver);
3372         pnp_registered = 1;
3373 #endif
3374
3375 #ifdef CONFIG_DMI
3376         dmi_find_bmc();
3377 #endif
3378
3379 #ifdef CONFIG_ACPI
3380         spmi_find_bmc();
3381 #endif
3382
3383 #ifdef CONFIG_PPC_OF
3384         of_register_platform_driver(&ipmi_of_platform_driver);
3385         of_registered = 1;
3386 #endif
3387
3388         /* We prefer devices with interrupts, but in the case of a machine
3389            with multiple BMCs we assume that there will be several instances
3390            of a given type so if we succeed in registering a type then also
3391            try to register everything else of the same type */
3392
3393         mutex_lock(&smi_infos_lock);
3394         list_for_each_entry(e, &smi_infos, link) {
3395                 /* Try to register a device if it has an IRQ and we either
3396                    haven't successfully registered a device yet or this
3397                    device has the same type as one we successfully registered */
3398                 if (e->irq && (!type || e->addr_source == type)) {
3399                         if (!try_smi_init(e)) {
3400                                 type = e->addr_source;
3401                         }
3402                 }
3403         }
3404
3405         /* type will only have been set if we successfully registered an si */
3406         if (type) {
3407                 mutex_unlock(&smi_infos_lock);
3408                 return 0;
3409         }
3410
3411         /* Fall back to the preferred device */
3412
3413         list_for_each_entry(e, &smi_infos, link) {
3414                 if (!e->irq && (!type || e->addr_source == type)) {
3415                         if (!try_smi_init(e)) {
3416                                 type = e->addr_source;
3417                         }
3418                 }
3419         }
3420         mutex_unlock(&smi_infos_lock);
3421
3422         if (type)
3423                 return 0;
3424
3425         if (si_trydefaults) {
3426                 mutex_lock(&smi_infos_lock);
3427                 if (list_empty(&smi_infos)) {
3428                         /* No BMC was found, try defaults. */
3429                         mutex_unlock(&smi_infos_lock);
3430                         default_find_bmc();
3431                 } else
3432                         mutex_unlock(&smi_infos_lock);
3433         }
3434
3435         mutex_lock(&smi_infos_lock);
3436         if (unload_when_empty && list_empty(&smi_infos)) {
3437                 mutex_unlock(&smi_infos_lock);
3438 #ifdef CONFIG_PCI
3439                 if (pci_registered)
3440                         pci_unregister_driver(&ipmi_pci_driver);
3441 #endif
3442
3443 #ifdef CONFIG_PPC_OF
3444                 if (of_registered)
3445                         of_unregister_platform_driver(&ipmi_of_platform_driver);
3446 #endif
3447                 driver_unregister(&ipmi_driver.driver);
3448                 printk(KERN_WARNING PFX
3449                        "Unable to find any System Interface(s)\n");
3450                 return -ENODEV;
3451         } else {
3452                 mutex_unlock(&smi_infos_lock);
3453                 return 0;
3454         }
3455 }
3456 module_init(init_ipmi_si);
3457
3458 static void cleanup_one_si(struct smi_info *to_clean)
3459 {
3460         int           rv = 0;
3461         unsigned long flags;
3462
3463         if (!to_clean)
3464                 return;
3465
3466         list_del(&to_clean->link);
3467
3468         /* Tell the driver that we are shutting down. */
3469         atomic_inc(&to_clean->stop_operation);
3470
3471         /*
3472          * Make sure the timer and thread are stopped and will not run
3473          * again.
3474          */
3475         wait_for_timer_and_thread(to_clean);
3476
3477         /*
3478          * Timeouts are stopped, now make sure the interrupts are off
3479          * for the device.  A little tricky with locks to make sure
3480          * there are no races.
3481          */
3482         spin_lock_irqsave(&to_clean->si_lock, flags);
3483         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3484                 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3485                 poll(to_clean);
3486                 schedule_timeout_uninterruptible(1);
3487                 spin_lock_irqsave(&to_clean->si_lock, flags);
3488         }
3489         disable_si_irq(to_clean);
3490         spin_unlock_irqrestore(&to_clean->si_lock, flags);
3491         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3492                 poll(to_clean);
3493                 schedule_timeout_uninterruptible(1);
3494         }
3495
3496         /* Clean up interrupts and make sure that everything is done. */
3497         if (to_clean->irq_cleanup)
3498                 to_clean->irq_cleanup(to_clean);
3499         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3500                 poll(to_clean);
3501                 schedule_timeout_uninterruptible(1);
3502         }
3503
3504         if (to_clean->intf)
3505                 rv = ipmi_unregister_smi(to_clean->intf);
3506
3507         if (rv) {
3508                 printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n",
3509                        rv);
3510         }
3511
3512         if (to_clean->handlers)
3513                 to_clean->handlers->cleanup(to_clean->si_sm);
3514
3515         kfree(to_clean->si_sm);
3516
3517         if (to_clean->addr_source_cleanup)
3518                 to_clean->addr_source_cleanup(to_clean);
3519         if (to_clean->io_cleanup)
3520                 to_clean->io_cleanup(to_clean);
3521
3522         if (to_clean->dev_registered)
3523                 platform_device_unregister(to_clean->pdev);
3524
3525         kfree(to_clean);
3526 }
3527
3528 static __exit void cleanup_ipmi_si(void)
3529 {
3530         struct smi_info *e, *tmp_e;
3531
3532         if (!initialized)
3533                 return;
3534
3535 #ifdef CONFIG_PCI
3536         if (pci_registered)
3537                 pci_unregister_driver(&ipmi_pci_driver);
3538 #endif
3539 #ifdef CONFIG_ACPI
3540         if (pnp_registered)
3541                 pnp_unregister_driver(&ipmi_pnp_driver);
3542 #endif
3543
3544 #ifdef CONFIG_PPC_OF
3545         if (of_registered)
3546                 of_unregister_platform_driver(&ipmi_of_platform_driver);
3547 #endif
3548
3549         mutex_lock(&smi_infos_lock);
3550         list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3551                 cleanup_one_si(e);
3552         mutex_unlock(&smi_infos_lock);
3553
3554         driver_unregister(&ipmi_driver.driver);
3555 }
3556 module_exit(cleanup_ipmi_si);
3557
3558 MODULE_LICENSE("GPL");
3559 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3560 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3561                    " system interfaces.");