Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jbarnes...
[linux-2.6.git] / drivers / char / ipmi / ipmi_msghandler.c
1 /*
2  * ipmi_msghandler.c
3  *
4  * Incoming and outgoing message routing for an IPMI interface.
5  *
6  * Author: MontaVista Software, Inc.
7  *         Corey Minyard <minyard@mvista.com>
8  *         source@mvista.com
9  *
10  * Copyright 2002 MontaVista Software Inc.
11  *
12  *  This program is free software; you can redistribute it and/or modify it
13  *  under the terms of the GNU General Public License as published by the
14  *  Free Software Foundation; either version 2 of the License, or (at your
15  *  option) any later version.
16  *
17  *
18  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
19  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
24  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
26  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
27  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  *
29  *  You should have received a copy of the GNU General Public License along
30  *  with this program; if not, write to the Free Software Foundation, Inc.,
31  *  675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33
34 #include <linux/module.h>
35 #include <linux/errno.h>
36 #include <asm/system.h>
37 #include <linux/poll.h>
38 #include <linux/sched.h>
39 #include <linux/spinlock.h>
40 #include <linux/mutex.h>
41 #include <linux/slab.h>
42 #include <linux/ipmi.h>
43 #include <linux/ipmi_smi.h>
44 #include <linux/notifier.h>
45 #include <linux/init.h>
46 #include <linux/proc_fs.h>
47 #include <linux/rcupdate.h>
48
49 #define PFX "IPMI message handler: "
50
51 #define IPMI_DRIVER_VERSION "39.2"
52
53 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
54 static int ipmi_init_msghandler(void);
55
56 static int initialized;
57
58 #ifdef CONFIG_PROC_FS
59 static struct proc_dir_entry *proc_ipmi_root;
60 #endif /* CONFIG_PROC_FS */
61
62 /* Remain in auto-maintenance mode for this amount of time (in ms). */
63 #define IPMI_MAINTENANCE_MODE_TIMEOUT 30000
64
65 #define MAX_EVENTS_IN_QUEUE     25
66
67 /*
68  * Don't let a message sit in a queue forever, always time it with at lest
69  * the max message timer.  This is in milliseconds.
70  */
71 #define MAX_MSG_TIMEOUT         60000
72
73 /*
74  * The main "user" data structure.
75  */
76 struct ipmi_user {
77         struct list_head link;
78
79         /* Set to "0" when the user is destroyed. */
80         int valid;
81
82         struct kref refcount;
83
84         /* The upper layer that handles receive messages. */
85         struct ipmi_user_hndl *handler;
86         void             *handler_data;
87
88         /* The interface this user is bound to. */
89         ipmi_smi_t intf;
90
91         /* Does this interface receive IPMI events? */
92         int gets_events;
93 };
94
95 struct cmd_rcvr {
96         struct list_head link;
97
98         ipmi_user_t   user;
99         unsigned char netfn;
100         unsigned char cmd;
101         unsigned int  chans;
102
103         /*
104          * This is used to form a linked lised during mass deletion.
105          * Since this is in an RCU list, we cannot use the link above
106          * or change any data until the RCU period completes.  So we
107          * use this next variable during mass deletion so we can have
108          * a list and don't have to wait and restart the search on
109          * every individual deletion of a command.
110          */
111         struct cmd_rcvr *next;
112 };
113
114 struct seq_table {
115         unsigned int         inuse : 1;
116         unsigned int         broadcast : 1;
117
118         unsigned long        timeout;
119         unsigned long        orig_timeout;
120         unsigned int         retries_left;
121
122         /*
123          * To verify on an incoming send message response that this is
124          * the message that the response is for, we keep a sequence id
125          * and increment it every time we send a message.
126          */
127         long                 seqid;
128
129         /*
130          * This is held so we can properly respond to the message on a
131          * timeout, and it is used to hold the temporary data for
132          * retransmission, too.
133          */
134         struct ipmi_recv_msg *recv_msg;
135 };
136
137 /*
138  * Store the information in a msgid (long) to allow us to find a
139  * sequence table entry from the msgid.
140  */
141 #define STORE_SEQ_IN_MSGID(seq, seqid) (((seq&0xff)<<26) | (seqid&0x3ffffff))
142
143 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
144         do {                                                            \
145                 seq = ((msgid >> 26) & 0x3f);                           \
146                 seqid = (msgid & 0x3fffff);                             \
147         } while (0)
148
149 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3fffff)
150
151 struct ipmi_channel {
152         unsigned char medium;
153         unsigned char protocol;
154
155         /*
156          * My slave address.  This is initialized to IPMI_BMC_SLAVE_ADDR,
157          * but may be changed by the user.
158          */
159         unsigned char address;
160
161         /*
162          * My LUN.  This should generally stay the SMS LUN, but just in
163          * case...
164          */
165         unsigned char lun;
166 };
167
168 #ifdef CONFIG_PROC_FS
169 struct ipmi_proc_entry {
170         char                   *name;
171         struct ipmi_proc_entry *next;
172 };
173 #endif
174
175 struct bmc_device {
176         struct platform_device *dev;
177         struct ipmi_device_id  id;
178         unsigned char          guid[16];
179         int                    guid_set;
180
181         struct kref            refcount;
182
183         /* bmc device attributes */
184         struct device_attribute device_id_attr;
185         struct device_attribute provides_dev_sdrs_attr;
186         struct device_attribute revision_attr;
187         struct device_attribute firmware_rev_attr;
188         struct device_attribute version_attr;
189         struct device_attribute add_dev_support_attr;
190         struct device_attribute manufacturer_id_attr;
191         struct device_attribute product_id_attr;
192         struct device_attribute guid_attr;
193         struct device_attribute aux_firmware_rev_attr;
194 };
195
196 /*
197  * Various statistics for IPMI, these index stats[] in the ipmi_smi
198  * structure.
199  */
200 enum ipmi_stat_indexes {
201         /* Commands we got from the user that were invalid. */
202         IPMI_STAT_sent_invalid_commands = 0,
203
204         /* Commands we sent to the MC. */
205         IPMI_STAT_sent_local_commands,
206
207         /* Responses from the MC that were delivered to a user. */
208         IPMI_STAT_handled_local_responses,
209
210         /* Responses from the MC that were not delivered to a user. */
211         IPMI_STAT_unhandled_local_responses,
212
213         /* Commands we sent out to the IPMB bus. */
214         IPMI_STAT_sent_ipmb_commands,
215
216         /* Commands sent on the IPMB that had errors on the SEND CMD */
217         IPMI_STAT_sent_ipmb_command_errs,
218
219         /* Each retransmit increments this count. */
220         IPMI_STAT_retransmitted_ipmb_commands,
221
222         /*
223          * When a message times out (runs out of retransmits) this is
224          * incremented.
225          */
226         IPMI_STAT_timed_out_ipmb_commands,
227
228         /*
229          * This is like above, but for broadcasts.  Broadcasts are
230          * *not* included in the above count (they are expected to
231          * time out).
232          */
233         IPMI_STAT_timed_out_ipmb_broadcasts,
234
235         /* Responses I have sent to the IPMB bus. */
236         IPMI_STAT_sent_ipmb_responses,
237
238         /* The response was delivered to the user. */
239         IPMI_STAT_handled_ipmb_responses,
240
241         /* The response had invalid data in it. */
242         IPMI_STAT_invalid_ipmb_responses,
243
244         /* The response didn't have anyone waiting for it. */
245         IPMI_STAT_unhandled_ipmb_responses,
246
247         /* Commands we sent out to the IPMB bus. */
248         IPMI_STAT_sent_lan_commands,
249
250         /* Commands sent on the IPMB that had errors on the SEND CMD */
251         IPMI_STAT_sent_lan_command_errs,
252
253         /* Each retransmit increments this count. */
254         IPMI_STAT_retransmitted_lan_commands,
255
256         /*
257          * When a message times out (runs out of retransmits) this is
258          * incremented.
259          */
260         IPMI_STAT_timed_out_lan_commands,
261
262         /* Responses I have sent to the IPMB bus. */
263         IPMI_STAT_sent_lan_responses,
264
265         /* The response was delivered to the user. */
266         IPMI_STAT_handled_lan_responses,
267
268         /* The response had invalid data in it. */
269         IPMI_STAT_invalid_lan_responses,
270
271         /* The response didn't have anyone waiting for it. */
272         IPMI_STAT_unhandled_lan_responses,
273
274         /* The command was delivered to the user. */
275         IPMI_STAT_handled_commands,
276
277         /* The command had invalid data in it. */
278         IPMI_STAT_invalid_commands,
279
280         /* The command didn't have anyone waiting for it. */
281         IPMI_STAT_unhandled_commands,
282
283         /* Invalid data in an event. */
284         IPMI_STAT_invalid_events,
285
286         /* Events that were received with the proper format. */
287         IPMI_STAT_events,
288
289         /* Retransmissions on IPMB that failed. */
290         IPMI_STAT_dropped_rexmit_ipmb_commands,
291
292         /* Retransmissions on LAN that failed. */
293         IPMI_STAT_dropped_rexmit_lan_commands,
294
295         /* This *must* remain last, add new values above this. */
296         IPMI_NUM_STATS
297 };
298
299
300 #define IPMI_IPMB_NUM_SEQ       64
301 #define IPMI_MAX_CHANNELS       16
302 struct ipmi_smi {
303         /* What interface number are we? */
304         int intf_num;
305
306         struct kref refcount;
307
308         /* Used for a list of interfaces. */
309         struct list_head link;
310
311         /*
312          * The list of upper layers that are using me.  seq_lock
313          * protects this.
314          */
315         struct list_head users;
316
317         /* Information to supply to users. */
318         unsigned char ipmi_version_major;
319         unsigned char ipmi_version_minor;
320
321         /* Used for wake ups at startup. */
322         wait_queue_head_t waitq;
323
324         struct bmc_device *bmc;
325         char *my_dev_name;
326         char *sysfs_name;
327
328         /*
329          * This is the lower-layer's sender routine.  Note that you
330          * must either be holding the ipmi_interfaces_mutex or be in
331          * an umpreemptible region to use this.  You must fetch the
332          * value into a local variable and make sure it is not NULL.
333          */
334         struct ipmi_smi_handlers *handlers;
335         void                     *send_info;
336
337 #ifdef CONFIG_PROC_FS
338         /* A list of proc entries for this interface. */
339         struct mutex           proc_entry_lock;
340         struct ipmi_proc_entry *proc_entries;
341 #endif
342
343         /* Driver-model device for the system interface. */
344         struct device          *si_dev;
345
346         /*
347          * A table of sequence numbers for this interface.  We use the
348          * sequence numbers for IPMB messages that go out of the
349          * interface to match them up with their responses.  A routine
350          * is called periodically to time the items in this list.
351          */
352         spinlock_t       seq_lock;
353         struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
354         int curr_seq;
355
356         /*
357          * Messages that were delayed for some reason (out of memory,
358          * for instance), will go in here to be processed later in a
359          * periodic timer interrupt.
360          */
361         spinlock_t       waiting_msgs_lock;
362         struct list_head waiting_msgs;
363
364         /*
365          * The list of command receivers that are registered for commands
366          * on this interface.
367          */
368         struct mutex     cmd_rcvrs_mutex;
369         struct list_head cmd_rcvrs;
370
371         /*
372          * Events that were queues because no one was there to receive
373          * them.
374          */
375         spinlock_t       events_lock; /* For dealing with event stuff. */
376         struct list_head waiting_events;
377         unsigned int     waiting_events_count; /* How many events in queue? */
378         char             delivering_events;
379         char             event_msg_printed;
380
381         /*
382          * The event receiver for my BMC, only really used at panic
383          * shutdown as a place to store this.
384          */
385         unsigned char event_receiver;
386         unsigned char event_receiver_lun;
387         unsigned char local_sel_device;
388         unsigned char local_event_generator;
389
390         /* For handling of maintenance mode. */
391         int maintenance_mode;
392         int maintenance_mode_enable;
393         int auto_maintenance_timeout;
394         spinlock_t maintenance_mode_lock; /* Used in a timer... */
395
396         /*
397          * A cheap hack, if this is non-null and a message to an
398          * interface comes in with a NULL user, call this routine with
399          * it.  Note that the message will still be freed by the
400          * caller.  This only works on the system interface.
401          */
402         void (*null_user_handler)(ipmi_smi_t intf, struct ipmi_recv_msg *msg);
403
404         /*
405          * When we are scanning the channels for an SMI, this will
406          * tell which channel we are scanning.
407          */
408         int curr_channel;
409
410         /* Channel information */
411         struct ipmi_channel channels[IPMI_MAX_CHANNELS];
412
413         /* Proc FS stuff. */
414         struct proc_dir_entry *proc_dir;
415         char                  proc_dir_name[10];
416
417         atomic_t stats[IPMI_NUM_STATS];
418
419         /*
420          * run_to_completion duplicate of smb_info, smi_info
421          * and ipmi_serial_info structures. Used to decrease numbers of
422          * parameters passed by "low" level IPMI code.
423          */
424         int run_to_completion;
425 };
426 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
427
428 /**
429  * The driver model view of the IPMI messaging driver.
430  */
431 static struct platform_driver ipmidriver = {
432         .driver = {
433                 .name = "ipmi",
434                 .bus = &platform_bus_type
435         }
436 };
437 static DEFINE_MUTEX(ipmidriver_mutex);
438
439 static LIST_HEAD(ipmi_interfaces);
440 static DEFINE_MUTEX(ipmi_interfaces_mutex);
441
442 /*
443  * List of watchers that want to know when smi's are added and deleted.
444  */
445 static LIST_HEAD(smi_watchers);
446 static DEFINE_MUTEX(smi_watchers_mutex);
447
448
449 #define ipmi_inc_stat(intf, stat) \
450         atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
451 #define ipmi_get_stat(intf, stat) \
452         ((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
453
454 static int is_lan_addr(struct ipmi_addr *addr)
455 {
456         return addr->addr_type == IPMI_LAN_ADDR_TYPE;
457 }
458
459 static int is_ipmb_addr(struct ipmi_addr *addr)
460 {
461         return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
462 }
463
464 static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
465 {
466         return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
467 }
468
469 static void free_recv_msg_list(struct list_head *q)
470 {
471         struct ipmi_recv_msg *msg, *msg2;
472
473         list_for_each_entry_safe(msg, msg2, q, link) {
474                 list_del(&msg->link);
475                 ipmi_free_recv_msg(msg);
476         }
477 }
478
479 static void free_smi_msg_list(struct list_head *q)
480 {
481         struct ipmi_smi_msg *msg, *msg2;
482
483         list_for_each_entry_safe(msg, msg2, q, link) {
484                 list_del(&msg->link);
485                 ipmi_free_smi_msg(msg);
486         }
487 }
488
489 static void clean_up_interface_data(ipmi_smi_t intf)
490 {
491         int              i;
492         struct cmd_rcvr  *rcvr, *rcvr2;
493         struct list_head list;
494
495         free_smi_msg_list(&intf->waiting_msgs);
496         free_recv_msg_list(&intf->waiting_events);
497
498         /*
499          * Wholesale remove all the entries from the list in the
500          * interface and wait for RCU to know that none are in use.
501          */
502         mutex_lock(&intf->cmd_rcvrs_mutex);
503         INIT_LIST_HEAD(&list);
504         list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
505         mutex_unlock(&intf->cmd_rcvrs_mutex);
506
507         list_for_each_entry_safe(rcvr, rcvr2, &list, link)
508                 kfree(rcvr);
509
510         for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
511                 if ((intf->seq_table[i].inuse)
512                                         && (intf->seq_table[i].recv_msg))
513                         ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
514         }
515 }
516
517 static void intf_free(struct kref *ref)
518 {
519         ipmi_smi_t intf = container_of(ref, struct ipmi_smi, refcount);
520
521         clean_up_interface_data(intf);
522         kfree(intf);
523 }
524
525 struct watcher_entry {
526         int              intf_num;
527         ipmi_smi_t       intf;
528         struct list_head link;
529 };
530
531 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
532 {
533         ipmi_smi_t intf;
534         LIST_HEAD(to_deliver);
535         struct watcher_entry *e, *e2;
536
537         mutex_lock(&smi_watchers_mutex);
538
539         mutex_lock(&ipmi_interfaces_mutex);
540
541         /* Build a list of things to deliver. */
542         list_for_each_entry(intf, &ipmi_interfaces, link) {
543                 if (intf->intf_num == -1)
544                         continue;
545                 e = kmalloc(sizeof(*e), GFP_KERNEL);
546                 if (!e)
547                         goto out_err;
548                 kref_get(&intf->refcount);
549                 e->intf = intf;
550                 e->intf_num = intf->intf_num;
551                 list_add_tail(&e->link, &to_deliver);
552         }
553
554         /* We will succeed, so add it to the list. */
555         list_add(&watcher->link, &smi_watchers);
556
557         mutex_unlock(&ipmi_interfaces_mutex);
558
559         list_for_each_entry_safe(e, e2, &to_deliver, link) {
560                 list_del(&e->link);
561                 watcher->new_smi(e->intf_num, e->intf->si_dev);
562                 kref_put(&e->intf->refcount, intf_free);
563                 kfree(e);
564         }
565
566         mutex_unlock(&smi_watchers_mutex);
567
568         return 0;
569
570  out_err:
571         mutex_unlock(&ipmi_interfaces_mutex);
572         mutex_unlock(&smi_watchers_mutex);
573         list_for_each_entry_safe(e, e2, &to_deliver, link) {
574                 list_del(&e->link);
575                 kref_put(&e->intf->refcount, intf_free);
576                 kfree(e);
577         }
578         return -ENOMEM;
579 }
580 EXPORT_SYMBOL(ipmi_smi_watcher_register);
581
582 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
583 {
584         mutex_lock(&smi_watchers_mutex);
585         list_del(&(watcher->link));
586         mutex_unlock(&smi_watchers_mutex);
587         return 0;
588 }
589 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
590
591 /*
592  * Must be called with smi_watchers_mutex held.
593  */
594 static void
595 call_smi_watchers(int i, struct device *dev)
596 {
597         struct ipmi_smi_watcher *w;
598
599         list_for_each_entry(w, &smi_watchers, link) {
600                 if (try_module_get(w->owner)) {
601                         w->new_smi(i, dev);
602                         module_put(w->owner);
603                 }
604         }
605 }
606
607 static int
608 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
609 {
610         if (addr1->addr_type != addr2->addr_type)
611                 return 0;
612
613         if (addr1->channel != addr2->channel)
614                 return 0;
615
616         if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
617                 struct ipmi_system_interface_addr *smi_addr1
618                     = (struct ipmi_system_interface_addr *) addr1;
619                 struct ipmi_system_interface_addr *smi_addr2
620                     = (struct ipmi_system_interface_addr *) addr2;
621                 return (smi_addr1->lun == smi_addr2->lun);
622         }
623
624         if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
625                 struct ipmi_ipmb_addr *ipmb_addr1
626                     = (struct ipmi_ipmb_addr *) addr1;
627                 struct ipmi_ipmb_addr *ipmb_addr2
628                     = (struct ipmi_ipmb_addr *) addr2;
629
630                 return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
631                         && (ipmb_addr1->lun == ipmb_addr2->lun));
632         }
633
634         if (is_lan_addr(addr1)) {
635                 struct ipmi_lan_addr *lan_addr1
636                         = (struct ipmi_lan_addr *) addr1;
637                 struct ipmi_lan_addr *lan_addr2
638                     = (struct ipmi_lan_addr *) addr2;
639
640                 return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
641                         && (lan_addr1->local_SWID == lan_addr2->local_SWID)
642                         && (lan_addr1->session_handle
643                             == lan_addr2->session_handle)
644                         && (lan_addr1->lun == lan_addr2->lun));
645         }
646
647         return 1;
648 }
649
650 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
651 {
652         if (len < sizeof(struct ipmi_system_interface_addr))
653                 return -EINVAL;
654
655         if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
656                 if (addr->channel != IPMI_BMC_CHANNEL)
657                         return -EINVAL;
658                 return 0;
659         }
660
661         if ((addr->channel == IPMI_BMC_CHANNEL)
662             || (addr->channel >= IPMI_MAX_CHANNELS)
663             || (addr->channel < 0))
664                 return -EINVAL;
665
666         if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
667                 if (len < sizeof(struct ipmi_ipmb_addr))
668                         return -EINVAL;
669                 return 0;
670         }
671
672         if (is_lan_addr(addr)) {
673                 if (len < sizeof(struct ipmi_lan_addr))
674                         return -EINVAL;
675                 return 0;
676         }
677
678         return -EINVAL;
679 }
680 EXPORT_SYMBOL(ipmi_validate_addr);
681
682 unsigned int ipmi_addr_length(int addr_type)
683 {
684         if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
685                 return sizeof(struct ipmi_system_interface_addr);
686
687         if ((addr_type == IPMI_IPMB_ADDR_TYPE)
688                         || (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
689                 return sizeof(struct ipmi_ipmb_addr);
690
691         if (addr_type == IPMI_LAN_ADDR_TYPE)
692                 return sizeof(struct ipmi_lan_addr);
693
694         return 0;
695 }
696 EXPORT_SYMBOL(ipmi_addr_length);
697
698 static void deliver_response(struct ipmi_recv_msg *msg)
699 {
700         if (!msg->user) {
701                 ipmi_smi_t    intf = msg->user_msg_data;
702
703                 /* Special handling for NULL users. */
704                 if (intf->null_user_handler) {
705                         intf->null_user_handler(intf, msg);
706                         ipmi_inc_stat(intf, handled_local_responses);
707                 } else {
708                         /* No handler, so give up. */
709                         ipmi_inc_stat(intf, unhandled_local_responses);
710                 }
711                 ipmi_free_recv_msg(msg);
712         } else {
713                 ipmi_user_t user = msg->user;
714                 user->handler->ipmi_recv_hndl(msg, user->handler_data);
715         }
716 }
717
718 static void
719 deliver_err_response(struct ipmi_recv_msg *msg, int err)
720 {
721         msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
722         msg->msg_data[0] = err;
723         msg->msg.netfn |= 1; /* Convert to a response. */
724         msg->msg.data_len = 1;
725         msg->msg.data = msg->msg_data;
726         deliver_response(msg);
727 }
728
729 /*
730  * Find the next sequence number not being used and add the given
731  * message with the given timeout to the sequence table.  This must be
732  * called with the interface's seq_lock held.
733  */
734 static int intf_next_seq(ipmi_smi_t           intf,
735                          struct ipmi_recv_msg *recv_msg,
736                          unsigned long        timeout,
737                          int                  retries,
738                          int                  broadcast,
739                          unsigned char        *seq,
740                          long                 *seqid)
741 {
742         int          rv = 0;
743         unsigned int i;
744
745         for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
746                                         i = (i+1)%IPMI_IPMB_NUM_SEQ) {
747                 if (!intf->seq_table[i].inuse)
748                         break;
749         }
750
751         if (!intf->seq_table[i].inuse) {
752                 intf->seq_table[i].recv_msg = recv_msg;
753
754                 /*
755                  * Start with the maximum timeout, when the send response
756                  * comes in we will start the real timer.
757                  */
758                 intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
759                 intf->seq_table[i].orig_timeout = timeout;
760                 intf->seq_table[i].retries_left = retries;
761                 intf->seq_table[i].broadcast = broadcast;
762                 intf->seq_table[i].inuse = 1;
763                 intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
764                 *seq = i;
765                 *seqid = intf->seq_table[i].seqid;
766                 intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
767         } else {
768                 rv = -EAGAIN;
769         }
770
771         return rv;
772 }
773
774 /*
775  * Return the receive message for the given sequence number and
776  * release the sequence number so it can be reused.  Some other data
777  * is passed in to be sure the message matches up correctly (to help
778  * guard against message coming in after their timeout and the
779  * sequence number being reused).
780  */
781 static int intf_find_seq(ipmi_smi_t           intf,
782                          unsigned char        seq,
783                          short                channel,
784                          unsigned char        cmd,
785                          unsigned char        netfn,
786                          struct ipmi_addr     *addr,
787                          struct ipmi_recv_msg **recv_msg)
788 {
789         int           rv = -ENODEV;
790         unsigned long flags;
791
792         if (seq >= IPMI_IPMB_NUM_SEQ)
793                 return -EINVAL;
794
795         spin_lock_irqsave(&(intf->seq_lock), flags);
796         if (intf->seq_table[seq].inuse) {
797                 struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
798
799                 if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
800                                 && (msg->msg.netfn == netfn)
801                                 && (ipmi_addr_equal(addr, &(msg->addr)))) {
802                         *recv_msg = msg;
803                         intf->seq_table[seq].inuse = 0;
804                         rv = 0;
805                 }
806         }
807         spin_unlock_irqrestore(&(intf->seq_lock), flags);
808
809         return rv;
810 }
811
812
813 /* Start the timer for a specific sequence table entry. */
814 static int intf_start_seq_timer(ipmi_smi_t intf,
815                                 long       msgid)
816 {
817         int           rv = -ENODEV;
818         unsigned long flags;
819         unsigned char seq;
820         unsigned long seqid;
821
822
823         GET_SEQ_FROM_MSGID(msgid, seq, seqid);
824
825         spin_lock_irqsave(&(intf->seq_lock), flags);
826         /*
827          * We do this verification because the user can be deleted
828          * while a message is outstanding.
829          */
830         if ((intf->seq_table[seq].inuse)
831                                 && (intf->seq_table[seq].seqid == seqid)) {
832                 struct seq_table *ent = &(intf->seq_table[seq]);
833                 ent->timeout = ent->orig_timeout;
834                 rv = 0;
835         }
836         spin_unlock_irqrestore(&(intf->seq_lock), flags);
837
838         return rv;
839 }
840
841 /* Got an error for the send message for a specific sequence number. */
842 static int intf_err_seq(ipmi_smi_t   intf,
843                         long         msgid,
844                         unsigned int err)
845 {
846         int                  rv = -ENODEV;
847         unsigned long        flags;
848         unsigned char        seq;
849         unsigned long        seqid;
850         struct ipmi_recv_msg *msg = NULL;
851
852
853         GET_SEQ_FROM_MSGID(msgid, seq, seqid);
854
855         spin_lock_irqsave(&(intf->seq_lock), flags);
856         /*
857          * We do this verification because the user can be deleted
858          * while a message is outstanding.
859          */
860         if ((intf->seq_table[seq].inuse)
861                                 && (intf->seq_table[seq].seqid == seqid)) {
862                 struct seq_table *ent = &(intf->seq_table[seq]);
863
864                 ent->inuse = 0;
865                 msg = ent->recv_msg;
866                 rv = 0;
867         }
868         spin_unlock_irqrestore(&(intf->seq_lock), flags);
869
870         if (msg)
871                 deliver_err_response(msg, err);
872
873         return rv;
874 }
875
876
877 int ipmi_create_user(unsigned int          if_num,
878                      struct ipmi_user_hndl *handler,
879                      void                  *handler_data,
880                      ipmi_user_t           *user)
881 {
882         unsigned long flags;
883         ipmi_user_t   new_user;
884         int           rv = 0;
885         ipmi_smi_t    intf;
886
887         /*
888          * There is no module usecount here, because it's not
889          * required.  Since this can only be used by and called from
890          * other modules, they will implicitly use this module, and
891          * thus this can't be removed unless the other modules are
892          * removed.
893          */
894
895         if (handler == NULL)
896                 return -EINVAL;
897
898         /*
899          * Make sure the driver is actually initialized, this handles
900          * problems with initialization order.
901          */
902         if (!initialized) {
903                 rv = ipmi_init_msghandler();
904                 if (rv)
905                         return rv;
906
907                 /*
908                  * The init code doesn't return an error if it was turned
909                  * off, but it won't initialize.  Check that.
910                  */
911                 if (!initialized)
912                         return -ENODEV;
913         }
914
915         new_user = kmalloc(sizeof(*new_user), GFP_KERNEL);
916         if (!new_user)
917                 return -ENOMEM;
918
919         mutex_lock(&ipmi_interfaces_mutex);
920         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
921                 if (intf->intf_num == if_num)
922                         goto found;
923         }
924         /* Not found, return an error */
925         rv = -EINVAL;
926         goto out_kfree;
927
928  found:
929         /* Note that each existing user holds a refcount to the interface. */
930         kref_get(&intf->refcount);
931
932         kref_init(&new_user->refcount);
933         new_user->handler = handler;
934         new_user->handler_data = handler_data;
935         new_user->intf = intf;
936         new_user->gets_events = 0;
937
938         if (!try_module_get(intf->handlers->owner)) {
939                 rv = -ENODEV;
940                 goto out_kref;
941         }
942
943         if (intf->handlers->inc_usecount) {
944                 rv = intf->handlers->inc_usecount(intf->send_info);
945                 if (rv) {
946                         module_put(intf->handlers->owner);
947                         goto out_kref;
948                 }
949         }
950
951         /*
952          * Hold the lock so intf->handlers is guaranteed to be good
953          * until now
954          */
955         mutex_unlock(&ipmi_interfaces_mutex);
956
957         new_user->valid = 1;
958         spin_lock_irqsave(&intf->seq_lock, flags);
959         list_add_rcu(&new_user->link, &intf->users);
960         spin_unlock_irqrestore(&intf->seq_lock, flags);
961         *user = new_user;
962         return 0;
963
964 out_kref:
965         kref_put(&intf->refcount, intf_free);
966 out_kfree:
967         mutex_unlock(&ipmi_interfaces_mutex);
968         kfree(new_user);
969         return rv;
970 }
971 EXPORT_SYMBOL(ipmi_create_user);
972
973 static void free_user(struct kref *ref)
974 {
975         ipmi_user_t user = container_of(ref, struct ipmi_user, refcount);
976         kfree(user);
977 }
978
979 int ipmi_destroy_user(ipmi_user_t user)
980 {
981         ipmi_smi_t       intf = user->intf;
982         int              i;
983         unsigned long    flags;
984         struct cmd_rcvr  *rcvr;
985         struct cmd_rcvr  *rcvrs = NULL;
986
987         user->valid = 0;
988
989         /* Remove the user from the interface's sequence table. */
990         spin_lock_irqsave(&intf->seq_lock, flags);
991         list_del_rcu(&user->link);
992
993         for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
994                 if (intf->seq_table[i].inuse
995                     && (intf->seq_table[i].recv_msg->user == user)) {
996                         intf->seq_table[i].inuse = 0;
997                         ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
998                 }
999         }
1000         spin_unlock_irqrestore(&intf->seq_lock, flags);
1001
1002         /*
1003          * Remove the user from the command receiver's table.  First
1004          * we build a list of everything (not using the standard link,
1005          * since other things may be using it till we do
1006          * synchronize_rcu()) then free everything in that list.
1007          */
1008         mutex_lock(&intf->cmd_rcvrs_mutex);
1009         list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1010                 if (rcvr->user == user) {
1011                         list_del_rcu(&rcvr->link);
1012                         rcvr->next = rcvrs;
1013                         rcvrs = rcvr;
1014                 }
1015         }
1016         mutex_unlock(&intf->cmd_rcvrs_mutex);
1017         synchronize_rcu();
1018         while (rcvrs) {
1019                 rcvr = rcvrs;
1020                 rcvrs = rcvr->next;
1021                 kfree(rcvr);
1022         }
1023
1024         mutex_lock(&ipmi_interfaces_mutex);
1025         if (intf->handlers) {
1026                 module_put(intf->handlers->owner);
1027                 if (intf->handlers->dec_usecount)
1028                         intf->handlers->dec_usecount(intf->send_info);
1029         }
1030         mutex_unlock(&ipmi_interfaces_mutex);
1031
1032         kref_put(&intf->refcount, intf_free);
1033
1034         kref_put(&user->refcount, free_user);
1035
1036         return 0;
1037 }
1038 EXPORT_SYMBOL(ipmi_destroy_user);
1039
1040 void ipmi_get_version(ipmi_user_t   user,
1041                       unsigned char *major,
1042                       unsigned char *minor)
1043 {
1044         *major = user->intf->ipmi_version_major;
1045         *minor = user->intf->ipmi_version_minor;
1046 }
1047 EXPORT_SYMBOL(ipmi_get_version);
1048
1049 int ipmi_set_my_address(ipmi_user_t   user,
1050                         unsigned int  channel,
1051                         unsigned char address)
1052 {
1053         if (channel >= IPMI_MAX_CHANNELS)
1054                 return -EINVAL;
1055         user->intf->channels[channel].address = address;
1056         return 0;
1057 }
1058 EXPORT_SYMBOL(ipmi_set_my_address);
1059
1060 int ipmi_get_my_address(ipmi_user_t   user,
1061                         unsigned int  channel,
1062                         unsigned char *address)
1063 {
1064         if (channel >= IPMI_MAX_CHANNELS)
1065                 return -EINVAL;
1066         *address = user->intf->channels[channel].address;
1067         return 0;
1068 }
1069 EXPORT_SYMBOL(ipmi_get_my_address);
1070
1071 int ipmi_set_my_LUN(ipmi_user_t   user,
1072                     unsigned int  channel,
1073                     unsigned char LUN)
1074 {
1075         if (channel >= IPMI_MAX_CHANNELS)
1076                 return -EINVAL;
1077         user->intf->channels[channel].lun = LUN & 0x3;
1078         return 0;
1079 }
1080 EXPORT_SYMBOL(ipmi_set_my_LUN);
1081
1082 int ipmi_get_my_LUN(ipmi_user_t   user,
1083                     unsigned int  channel,
1084                     unsigned char *address)
1085 {
1086         if (channel >= IPMI_MAX_CHANNELS)
1087                 return -EINVAL;
1088         *address = user->intf->channels[channel].lun;
1089         return 0;
1090 }
1091 EXPORT_SYMBOL(ipmi_get_my_LUN);
1092
1093 int ipmi_get_maintenance_mode(ipmi_user_t user)
1094 {
1095         int           mode;
1096         unsigned long flags;
1097
1098         spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1099         mode = user->intf->maintenance_mode;
1100         spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1101
1102         return mode;
1103 }
1104 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1105
1106 static void maintenance_mode_update(ipmi_smi_t intf)
1107 {
1108         if (intf->handlers->set_maintenance_mode)
1109                 intf->handlers->set_maintenance_mode(
1110                         intf->send_info, intf->maintenance_mode_enable);
1111 }
1112
1113 int ipmi_set_maintenance_mode(ipmi_user_t user, int mode)
1114 {
1115         int           rv = 0;
1116         unsigned long flags;
1117         ipmi_smi_t    intf = user->intf;
1118
1119         spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1120         if (intf->maintenance_mode != mode) {
1121                 switch (mode) {
1122                 case IPMI_MAINTENANCE_MODE_AUTO:
1123                         intf->maintenance_mode = mode;
1124                         intf->maintenance_mode_enable
1125                                 = (intf->auto_maintenance_timeout > 0);
1126                         break;
1127
1128                 case IPMI_MAINTENANCE_MODE_OFF:
1129                         intf->maintenance_mode = mode;
1130                         intf->maintenance_mode_enable = 0;
1131                         break;
1132
1133                 case IPMI_MAINTENANCE_MODE_ON:
1134                         intf->maintenance_mode = mode;
1135                         intf->maintenance_mode_enable = 1;
1136                         break;
1137
1138                 default:
1139                         rv = -EINVAL;
1140                         goto out_unlock;
1141                 }
1142
1143                 maintenance_mode_update(intf);
1144         }
1145  out_unlock:
1146         spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1147
1148         return rv;
1149 }
1150 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1151
1152 int ipmi_set_gets_events(ipmi_user_t user, int val)
1153 {
1154         unsigned long        flags;
1155         ipmi_smi_t           intf = user->intf;
1156         struct ipmi_recv_msg *msg, *msg2;
1157         struct list_head     msgs;
1158
1159         INIT_LIST_HEAD(&msgs);
1160
1161         spin_lock_irqsave(&intf->events_lock, flags);
1162         user->gets_events = val;
1163
1164         if (intf->delivering_events)
1165                 /*
1166                  * Another thread is delivering events for this, so
1167                  * let it handle any new events.
1168                  */
1169                 goto out;
1170
1171         /* Deliver any queued events. */
1172         while (user->gets_events && !list_empty(&intf->waiting_events)) {
1173                 list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1174                         list_move_tail(&msg->link, &msgs);
1175                 intf->waiting_events_count = 0;
1176                 if (intf->event_msg_printed) {
1177                         printk(KERN_WARNING PFX "Event queue no longer"
1178                                " full\n");
1179                         intf->event_msg_printed = 0;
1180                 }
1181
1182                 intf->delivering_events = 1;
1183                 spin_unlock_irqrestore(&intf->events_lock, flags);
1184
1185                 list_for_each_entry_safe(msg, msg2, &msgs, link) {
1186                         msg->user = user;
1187                         kref_get(&user->refcount);
1188                         deliver_response(msg);
1189                 }
1190
1191                 spin_lock_irqsave(&intf->events_lock, flags);
1192                 intf->delivering_events = 0;
1193         }
1194
1195  out:
1196         spin_unlock_irqrestore(&intf->events_lock, flags);
1197
1198         return 0;
1199 }
1200 EXPORT_SYMBOL(ipmi_set_gets_events);
1201
1202 static struct cmd_rcvr *find_cmd_rcvr(ipmi_smi_t    intf,
1203                                       unsigned char netfn,
1204                                       unsigned char cmd,
1205                                       unsigned char chan)
1206 {
1207         struct cmd_rcvr *rcvr;
1208
1209         list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1210                 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1211                                         && (rcvr->chans & (1 << chan)))
1212                         return rcvr;
1213         }
1214         return NULL;
1215 }
1216
1217 static int is_cmd_rcvr_exclusive(ipmi_smi_t    intf,
1218                                  unsigned char netfn,
1219                                  unsigned char cmd,
1220                                  unsigned int  chans)
1221 {
1222         struct cmd_rcvr *rcvr;
1223
1224         list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1225                 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1226                                         && (rcvr->chans & chans))
1227                         return 0;
1228         }
1229         return 1;
1230 }
1231
1232 int ipmi_register_for_cmd(ipmi_user_t   user,
1233                           unsigned char netfn,
1234                           unsigned char cmd,
1235                           unsigned int  chans)
1236 {
1237         ipmi_smi_t      intf = user->intf;
1238         struct cmd_rcvr *rcvr;
1239         int             rv = 0;
1240
1241
1242         rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1243         if (!rcvr)
1244                 return -ENOMEM;
1245         rcvr->cmd = cmd;
1246         rcvr->netfn = netfn;
1247         rcvr->chans = chans;
1248         rcvr->user = user;
1249
1250         mutex_lock(&intf->cmd_rcvrs_mutex);
1251         /* Make sure the command/netfn is not already registered. */
1252         if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1253                 rv = -EBUSY;
1254                 goto out_unlock;
1255         }
1256
1257         list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1258
1259  out_unlock:
1260         mutex_unlock(&intf->cmd_rcvrs_mutex);
1261         if (rv)
1262                 kfree(rcvr);
1263
1264         return rv;
1265 }
1266 EXPORT_SYMBOL(ipmi_register_for_cmd);
1267
1268 int ipmi_unregister_for_cmd(ipmi_user_t   user,
1269                             unsigned char netfn,
1270                             unsigned char cmd,
1271                             unsigned int  chans)
1272 {
1273         ipmi_smi_t      intf = user->intf;
1274         struct cmd_rcvr *rcvr;
1275         struct cmd_rcvr *rcvrs = NULL;
1276         int i, rv = -ENOENT;
1277
1278         mutex_lock(&intf->cmd_rcvrs_mutex);
1279         for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1280                 if (((1 << i) & chans) == 0)
1281                         continue;
1282                 rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1283                 if (rcvr == NULL)
1284                         continue;
1285                 if (rcvr->user == user) {
1286                         rv = 0;
1287                         rcvr->chans &= ~chans;
1288                         if (rcvr->chans == 0) {
1289                                 list_del_rcu(&rcvr->link);
1290                                 rcvr->next = rcvrs;
1291                                 rcvrs = rcvr;
1292                         }
1293                 }
1294         }
1295         mutex_unlock(&intf->cmd_rcvrs_mutex);
1296         synchronize_rcu();
1297         while (rcvrs) {
1298                 rcvr = rcvrs;
1299                 rcvrs = rcvr->next;
1300                 kfree(rcvr);
1301         }
1302         return rv;
1303 }
1304 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1305
1306 static unsigned char
1307 ipmb_checksum(unsigned char *data, int size)
1308 {
1309         unsigned char csum = 0;
1310
1311         for (; size > 0; size--, data++)
1312                 csum += *data;
1313
1314         return -csum;
1315 }
1316
1317 static inline void format_ipmb_msg(struct ipmi_smi_msg   *smi_msg,
1318                                    struct kernel_ipmi_msg *msg,
1319                                    struct ipmi_ipmb_addr *ipmb_addr,
1320                                    long                  msgid,
1321                                    unsigned char         ipmb_seq,
1322                                    int                   broadcast,
1323                                    unsigned char         source_address,
1324                                    unsigned char         source_lun)
1325 {
1326         int i = broadcast;
1327
1328         /* Format the IPMB header data. */
1329         smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1330         smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1331         smi_msg->data[2] = ipmb_addr->channel;
1332         if (broadcast)
1333                 smi_msg->data[3] = 0;
1334         smi_msg->data[i+3] = ipmb_addr->slave_addr;
1335         smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1336         smi_msg->data[i+5] = ipmb_checksum(&(smi_msg->data[i+3]), 2);
1337         smi_msg->data[i+6] = source_address;
1338         smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1339         smi_msg->data[i+8] = msg->cmd;
1340
1341         /* Now tack on the data to the message. */
1342         if (msg->data_len > 0)
1343                 memcpy(&(smi_msg->data[i+9]), msg->data,
1344                        msg->data_len);
1345         smi_msg->data_size = msg->data_len + 9;
1346
1347         /* Now calculate the checksum and tack it on. */
1348         smi_msg->data[i+smi_msg->data_size]
1349                 = ipmb_checksum(&(smi_msg->data[i+6]),
1350                                 smi_msg->data_size-6);
1351
1352         /*
1353          * Add on the checksum size and the offset from the
1354          * broadcast.
1355          */
1356         smi_msg->data_size += 1 + i;
1357
1358         smi_msg->msgid = msgid;
1359 }
1360
1361 static inline void format_lan_msg(struct ipmi_smi_msg   *smi_msg,
1362                                   struct kernel_ipmi_msg *msg,
1363                                   struct ipmi_lan_addr  *lan_addr,
1364                                   long                  msgid,
1365                                   unsigned char         ipmb_seq,
1366                                   unsigned char         source_lun)
1367 {
1368         /* Format the IPMB header data. */
1369         smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1370         smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1371         smi_msg->data[2] = lan_addr->channel;
1372         smi_msg->data[3] = lan_addr->session_handle;
1373         smi_msg->data[4] = lan_addr->remote_SWID;
1374         smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1375         smi_msg->data[6] = ipmb_checksum(&(smi_msg->data[4]), 2);
1376         smi_msg->data[7] = lan_addr->local_SWID;
1377         smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1378         smi_msg->data[9] = msg->cmd;
1379
1380         /* Now tack on the data to the message. */
1381         if (msg->data_len > 0)
1382                 memcpy(&(smi_msg->data[10]), msg->data,
1383                        msg->data_len);
1384         smi_msg->data_size = msg->data_len + 10;
1385
1386         /* Now calculate the checksum and tack it on. */
1387         smi_msg->data[smi_msg->data_size]
1388                 = ipmb_checksum(&(smi_msg->data[7]),
1389                                 smi_msg->data_size-7);
1390
1391         /*
1392          * Add on the checksum size and the offset from the
1393          * broadcast.
1394          */
1395         smi_msg->data_size += 1;
1396
1397         smi_msg->msgid = msgid;
1398 }
1399
1400 /*
1401  * Separate from ipmi_request so that the user does not have to be
1402  * supplied in certain circumstances (mainly at panic time).  If
1403  * messages are supplied, they will be freed, even if an error
1404  * occurs.
1405  */
1406 static int i_ipmi_request(ipmi_user_t          user,
1407                           ipmi_smi_t           intf,
1408                           struct ipmi_addr     *addr,
1409                           long                 msgid,
1410                           struct kernel_ipmi_msg *msg,
1411                           void                 *user_msg_data,
1412                           void                 *supplied_smi,
1413                           struct ipmi_recv_msg *supplied_recv,
1414                           int                  priority,
1415                           unsigned char        source_address,
1416                           unsigned char        source_lun,
1417                           int                  retries,
1418                           unsigned int         retry_time_ms)
1419 {
1420         int                      rv = 0;
1421         struct ipmi_smi_msg      *smi_msg;
1422         struct ipmi_recv_msg     *recv_msg;
1423         unsigned long            flags;
1424         struct ipmi_smi_handlers *handlers;
1425
1426
1427         if (supplied_recv)
1428                 recv_msg = supplied_recv;
1429         else {
1430                 recv_msg = ipmi_alloc_recv_msg();
1431                 if (recv_msg == NULL)
1432                         return -ENOMEM;
1433         }
1434         recv_msg->user_msg_data = user_msg_data;
1435
1436         if (supplied_smi)
1437                 smi_msg = (struct ipmi_smi_msg *) supplied_smi;
1438         else {
1439                 smi_msg = ipmi_alloc_smi_msg();
1440                 if (smi_msg == NULL) {
1441                         ipmi_free_recv_msg(recv_msg);
1442                         return -ENOMEM;
1443                 }
1444         }
1445
1446         rcu_read_lock();
1447         handlers = intf->handlers;
1448         if (!handlers) {
1449                 rv = -ENODEV;
1450                 goto out_err;
1451         }
1452
1453         recv_msg->user = user;
1454         if (user)
1455                 kref_get(&user->refcount);
1456         recv_msg->msgid = msgid;
1457         /*
1458          * Store the message to send in the receive message so timeout
1459          * responses can get the proper response data.
1460          */
1461         recv_msg->msg = *msg;
1462
1463         if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
1464                 struct ipmi_system_interface_addr *smi_addr;
1465
1466                 if (msg->netfn & 1) {
1467                         /* Responses are not allowed to the SMI. */
1468                         rv = -EINVAL;
1469                         goto out_err;
1470                 }
1471
1472                 smi_addr = (struct ipmi_system_interface_addr *) addr;
1473                 if (smi_addr->lun > 3) {
1474                         ipmi_inc_stat(intf, sent_invalid_commands);
1475                         rv = -EINVAL;
1476                         goto out_err;
1477                 }
1478
1479                 memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1480
1481                 if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1482                     && ((msg->cmd == IPMI_SEND_MSG_CMD)
1483                         || (msg->cmd == IPMI_GET_MSG_CMD)
1484                         || (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1485                         /*
1486                          * We don't let the user do these, since we manage
1487                          * the sequence numbers.
1488                          */
1489                         ipmi_inc_stat(intf, sent_invalid_commands);
1490                         rv = -EINVAL;
1491                         goto out_err;
1492                 }
1493
1494                 if (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1495                       && ((msg->cmd == IPMI_COLD_RESET_CMD)
1496                           || (msg->cmd == IPMI_WARM_RESET_CMD)))
1497                      || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST)) {
1498                         spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1499                         intf->auto_maintenance_timeout
1500                                 = IPMI_MAINTENANCE_MODE_TIMEOUT;
1501                         if (!intf->maintenance_mode
1502                             && !intf->maintenance_mode_enable) {
1503                                 intf->maintenance_mode_enable = 1;
1504                                 maintenance_mode_update(intf);
1505                         }
1506                         spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1507                                                flags);
1508                 }
1509
1510                 if ((msg->data_len + 2) > IPMI_MAX_MSG_LENGTH) {
1511                         ipmi_inc_stat(intf, sent_invalid_commands);
1512                         rv = -EMSGSIZE;
1513                         goto out_err;
1514                 }
1515
1516                 smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1517                 smi_msg->data[1] = msg->cmd;
1518                 smi_msg->msgid = msgid;
1519                 smi_msg->user_data = recv_msg;
1520                 if (msg->data_len > 0)
1521                         memcpy(&(smi_msg->data[2]), msg->data, msg->data_len);
1522                 smi_msg->data_size = msg->data_len + 2;
1523                 ipmi_inc_stat(intf, sent_local_commands);
1524         } else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
1525                 struct ipmi_ipmb_addr *ipmb_addr;
1526                 unsigned char         ipmb_seq;
1527                 long                  seqid;
1528                 int                   broadcast = 0;
1529
1530                 if (addr->channel >= IPMI_MAX_CHANNELS) {
1531                         ipmi_inc_stat(intf, sent_invalid_commands);
1532                         rv = -EINVAL;
1533                         goto out_err;
1534                 }
1535
1536                 if (intf->channels[addr->channel].medium
1537                                         != IPMI_CHANNEL_MEDIUM_IPMB) {
1538                         ipmi_inc_stat(intf, sent_invalid_commands);
1539                         rv = -EINVAL;
1540                         goto out_err;
1541                 }
1542
1543                 if (retries < 0) {
1544                     if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)
1545                         retries = 0; /* Don't retry broadcasts. */
1546                     else
1547                         retries = 4;
1548                 }
1549                 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
1550                     /*
1551                      * Broadcasts add a zero at the beginning of the
1552                      * message, but otherwise is the same as an IPMB
1553                      * address.
1554                      */
1555                     addr->addr_type = IPMI_IPMB_ADDR_TYPE;
1556                     broadcast = 1;
1557                 }
1558
1559
1560                 /* Default to 1 second retries. */
1561                 if (retry_time_ms == 0)
1562                     retry_time_ms = 1000;
1563
1564                 /*
1565                  * 9 for the header and 1 for the checksum, plus
1566                  * possibly one for the broadcast.
1567                  */
1568                 if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
1569                         ipmi_inc_stat(intf, sent_invalid_commands);
1570                         rv = -EMSGSIZE;
1571                         goto out_err;
1572                 }
1573
1574                 ipmb_addr = (struct ipmi_ipmb_addr *) addr;
1575                 if (ipmb_addr->lun > 3) {
1576                         ipmi_inc_stat(intf, sent_invalid_commands);
1577                         rv = -EINVAL;
1578                         goto out_err;
1579                 }
1580
1581                 memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
1582
1583                 if (recv_msg->msg.netfn & 0x1) {
1584                         /*
1585                          * It's a response, so use the user's sequence
1586                          * from msgid.
1587                          */
1588                         ipmi_inc_stat(intf, sent_ipmb_responses);
1589                         format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
1590                                         msgid, broadcast,
1591                                         source_address, source_lun);
1592
1593                         /*
1594                          * Save the receive message so we can use it
1595                          * to deliver the response.
1596                          */
1597                         smi_msg->user_data = recv_msg;
1598                 } else {
1599                         /* It's a command, so get a sequence for it. */
1600
1601                         spin_lock_irqsave(&(intf->seq_lock), flags);
1602
1603                         /*
1604                          * Create a sequence number with a 1 second
1605                          * timeout and 4 retries.
1606                          */
1607                         rv = intf_next_seq(intf,
1608                                            recv_msg,
1609                                            retry_time_ms,
1610                                            retries,
1611                                            broadcast,
1612                                            &ipmb_seq,
1613                                            &seqid);
1614                         if (rv) {
1615                                 /*
1616                                  * We have used up all the sequence numbers,
1617                                  * probably, so abort.
1618                                  */
1619                                 spin_unlock_irqrestore(&(intf->seq_lock),
1620                                                        flags);
1621                                 goto out_err;
1622                         }
1623
1624                         ipmi_inc_stat(intf, sent_ipmb_commands);
1625
1626                         /*
1627                          * Store the sequence number in the message,
1628                          * so that when the send message response
1629                          * comes back we can start the timer.
1630                          */
1631                         format_ipmb_msg(smi_msg, msg, ipmb_addr,
1632                                         STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1633                                         ipmb_seq, broadcast,
1634                                         source_address, source_lun);
1635
1636                         /*
1637                          * Copy the message into the recv message data, so we
1638                          * can retransmit it later if necessary.
1639                          */
1640                         memcpy(recv_msg->msg_data, smi_msg->data,
1641                                smi_msg->data_size);
1642                         recv_msg->msg.data = recv_msg->msg_data;
1643                         recv_msg->msg.data_len = smi_msg->data_size;
1644
1645                         /*
1646                          * We don't unlock until here, because we need
1647                          * to copy the completed message into the
1648                          * recv_msg before we release the lock.
1649                          * Otherwise, race conditions may bite us.  I
1650                          * know that's pretty paranoid, but I prefer
1651                          * to be correct.
1652                          */
1653                         spin_unlock_irqrestore(&(intf->seq_lock), flags);
1654                 }
1655         } else if (is_lan_addr(addr)) {
1656                 struct ipmi_lan_addr  *lan_addr;
1657                 unsigned char         ipmb_seq;
1658                 long                  seqid;
1659
1660                 if (addr->channel >= IPMI_MAX_CHANNELS) {
1661                         ipmi_inc_stat(intf, sent_invalid_commands);
1662                         rv = -EINVAL;
1663                         goto out_err;
1664                 }
1665
1666                 if ((intf->channels[addr->channel].medium
1667                                 != IPMI_CHANNEL_MEDIUM_8023LAN)
1668                     && (intf->channels[addr->channel].medium
1669                                 != IPMI_CHANNEL_MEDIUM_ASYNC)) {
1670                         ipmi_inc_stat(intf, sent_invalid_commands);
1671                         rv = -EINVAL;
1672                         goto out_err;
1673                 }
1674
1675                 retries = 4;
1676
1677                 /* Default to 1 second retries. */
1678                 if (retry_time_ms == 0)
1679                     retry_time_ms = 1000;
1680
1681                 /* 11 for the header and 1 for the checksum. */
1682                 if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
1683                         ipmi_inc_stat(intf, sent_invalid_commands);
1684                         rv = -EMSGSIZE;
1685                         goto out_err;
1686                 }
1687
1688                 lan_addr = (struct ipmi_lan_addr *) addr;
1689                 if (lan_addr->lun > 3) {
1690                         ipmi_inc_stat(intf, sent_invalid_commands);
1691                         rv = -EINVAL;
1692                         goto out_err;
1693                 }
1694
1695                 memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
1696
1697                 if (recv_msg->msg.netfn & 0x1) {
1698                         /*
1699                          * It's a response, so use the user's sequence
1700                          * from msgid.
1701                          */
1702                         ipmi_inc_stat(intf, sent_lan_responses);
1703                         format_lan_msg(smi_msg, msg, lan_addr, msgid,
1704                                        msgid, source_lun);
1705
1706                         /*
1707                          * Save the receive message so we can use it
1708                          * to deliver the response.
1709                          */
1710                         smi_msg->user_data = recv_msg;
1711                 } else {
1712                         /* It's a command, so get a sequence for it. */
1713
1714                         spin_lock_irqsave(&(intf->seq_lock), flags);
1715
1716                         /*
1717                          * Create a sequence number with a 1 second
1718                          * timeout and 4 retries.
1719                          */
1720                         rv = intf_next_seq(intf,
1721                                            recv_msg,
1722                                            retry_time_ms,
1723                                            retries,
1724                                            0,
1725                                            &ipmb_seq,
1726                                            &seqid);
1727                         if (rv) {
1728                                 /*
1729                                  * We have used up all the sequence numbers,
1730                                  * probably, so abort.
1731                                  */
1732                                 spin_unlock_irqrestore(&(intf->seq_lock),
1733                                                        flags);
1734                                 goto out_err;
1735                         }
1736
1737                         ipmi_inc_stat(intf, sent_lan_commands);
1738
1739                         /*
1740                          * Store the sequence number in the message,
1741                          * so that when the send message response
1742                          * comes back we can start the timer.
1743                          */
1744                         format_lan_msg(smi_msg, msg, lan_addr,
1745                                        STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1746                                        ipmb_seq, source_lun);
1747
1748                         /*
1749                          * Copy the message into the recv message data, so we
1750                          * can retransmit it later if necessary.
1751                          */
1752                         memcpy(recv_msg->msg_data, smi_msg->data,
1753                                smi_msg->data_size);
1754                         recv_msg->msg.data = recv_msg->msg_data;
1755                         recv_msg->msg.data_len = smi_msg->data_size;
1756
1757                         /*
1758                          * We don't unlock until here, because we need
1759                          * to copy the completed message into the
1760                          * recv_msg before we release the lock.
1761                          * Otherwise, race conditions may bite us.  I
1762                          * know that's pretty paranoid, but I prefer
1763                          * to be correct.
1764                          */
1765                         spin_unlock_irqrestore(&(intf->seq_lock), flags);
1766                 }
1767         } else {
1768             /* Unknown address type. */
1769                 ipmi_inc_stat(intf, sent_invalid_commands);
1770                 rv = -EINVAL;
1771                 goto out_err;
1772         }
1773
1774 #ifdef DEBUG_MSGING
1775         {
1776                 int m;
1777                 for (m = 0; m < smi_msg->data_size; m++)
1778                         printk(" %2.2x", smi_msg->data[m]);
1779                 printk("\n");
1780         }
1781 #endif
1782
1783         handlers->sender(intf->send_info, smi_msg, priority);
1784         rcu_read_unlock();
1785
1786         return 0;
1787
1788  out_err:
1789         rcu_read_unlock();
1790         ipmi_free_smi_msg(smi_msg);
1791         ipmi_free_recv_msg(recv_msg);
1792         return rv;
1793 }
1794
1795 static int check_addr(ipmi_smi_t       intf,
1796                       struct ipmi_addr *addr,
1797                       unsigned char    *saddr,
1798                       unsigned char    *lun)
1799 {
1800         if (addr->channel >= IPMI_MAX_CHANNELS)
1801                 return -EINVAL;
1802         *lun = intf->channels[addr->channel].lun;
1803         *saddr = intf->channels[addr->channel].address;
1804         return 0;
1805 }
1806
1807 int ipmi_request_settime(ipmi_user_t      user,
1808                          struct ipmi_addr *addr,
1809                          long             msgid,
1810                          struct kernel_ipmi_msg  *msg,
1811                          void             *user_msg_data,
1812                          int              priority,
1813                          int              retries,
1814                          unsigned int     retry_time_ms)
1815 {
1816         unsigned char saddr, lun;
1817         int           rv;
1818
1819         if (!user)
1820                 return -EINVAL;
1821         rv = check_addr(user->intf, addr, &saddr, &lun);
1822         if (rv)
1823                 return rv;
1824         return i_ipmi_request(user,
1825                               user->intf,
1826                               addr,
1827                               msgid,
1828                               msg,
1829                               user_msg_data,
1830                               NULL, NULL,
1831                               priority,
1832                               saddr,
1833                               lun,
1834                               retries,
1835                               retry_time_ms);
1836 }
1837 EXPORT_SYMBOL(ipmi_request_settime);
1838
1839 int ipmi_request_supply_msgs(ipmi_user_t          user,
1840                              struct ipmi_addr     *addr,
1841                              long                 msgid,
1842                              struct kernel_ipmi_msg *msg,
1843                              void                 *user_msg_data,
1844                              void                 *supplied_smi,
1845                              struct ipmi_recv_msg *supplied_recv,
1846                              int                  priority)
1847 {
1848         unsigned char saddr, lun;
1849         int           rv;
1850
1851         if (!user)
1852                 return -EINVAL;
1853         rv = check_addr(user->intf, addr, &saddr, &lun);
1854         if (rv)
1855                 return rv;
1856         return i_ipmi_request(user,
1857                               user->intf,
1858                               addr,
1859                               msgid,
1860                               msg,
1861                               user_msg_data,
1862                               supplied_smi,
1863                               supplied_recv,
1864                               priority,
1865                               saddr,
1866                               lun,
1867                               -1, 0);
1868 }
1869 EXPORT_SYMBOL(ipmi_request_supply_msgs);
1870
1871 #ifdef CONFIG_PROC_FS
1872 static int ipmb_file_read_proc(char *page, char **start, off_t off,
1873                                int count, int *eof, void *data)
1874 {
1875         char       *out = (char *) page;
1876         ipmi_smi_t intf = data;
1877         int        i;
1878         int        rv = 0;
1879
1880         for (i = 0; i < IPMI_MAX_CHANNELS; i++)
1881                 rv += sprintf(out+rv, "%x ", intf->channels[i].address);
1882         out[rv-1] = '\n'; /* Replace the final space with a newline */
1883         out[rv] = '\0';
1884         rv++;
1885         return rv;
1886 }
1887
1888 static int version_file_read_proc(char *page, char **start, off_t off,
1889                                   int count, int *eof, void *data)
1890 {
1891         char       *out = (char *) page;
1892         ipmi_smi_t intf = data;
1893
1894         return sprintf(out, "%u.%u\n",
1895                        ipmi_version_major(&intf->bmc->id),
1896                        ipmi_version_minor(&intf->bmc->id));
1897 }
1898
1899 static int stat_file_read_proc(char *page, char **start, off_t off,
1900                                int count, int *eof, void *data)
1901 {
1902         char       *out = (char *) page;
1903         ipmi_smi_t intf = data;
1904
1905         out += sprintf(out, "sent_invalid_commands:       %u\n",
1906                        ipmi_get_stat(intf, sent_invalid_commands));
1907         out += sprintf(out, "sent_local_commands:         %u\n",
1908                        ipmi_get_stat(intf, sent_local_commands));
1909         out += sprintf(out, "handled_local_responses:     %u\n",
1910                        ipmi_get_stat(intf, handled_local_responses));
1911         out += sprintf(out, "unhandled_local_responses:   %u\n",
1912                        ipmi_get_stat(intf, unhandled_local_responses));
1913         out += sprintf(out, "sent_ipmb_commands:          %u\n",
1914                        ipmi_get_stat(intf, sent_ipmb_commands));
1915         out += sprintf(out, "sent_ipmb_command_errs:      %u\n",
1916                        ipmi_get_stat(intf, sent_ipmb_command_errs));
1917         out += sprintf(out, "retransmitted_ipmb_commands: %u\n",
1918                        ipmi_get_stat(intf, retransmitted_ipmb_commands));
1919         out += sprintf(out, "timed_out_ipmb_commands:     %u\n",
1920                        ipmi_get_stat(intf, timed_out_ipmb_commands));
1921         out += sprintf(out, "timed_out_ipmb_broadcasts:   %u\n",
1922                        ipmi_get_stat(intf, timed_out_ipmb_broadcasts));
1923         out += sprintf(out, "sent_ipmb_responses:         %u\n",
1924                        ipmi_get_stat(intf, sent_ipmb_responses));
1925         out += sprintf(out, "handled_ipmb_responses:      %u\n",
1926                        ipmi_get_stat(intf, handled_ipmb_responses));
1927         out += sprintf(out, "invalid_ipmb_responses:      %u\n",
1928                        ipmi_get_stat(intf, invalid_ipmb_responses));
1929         out += sprintf(out, "unhandled_ipmb_responses:    %u\n",
1930                        ipmi_get_stat(intf, unhandled_ipmb_responses));
1931         out += sprintf(out, "sent_lan_commands:           %u\n",
1932                        ipmi_get_stat(intf, sent_lan_commands));
1933         out += sprintf(out, "sent_lan_command_errs:       %u\n",
1934                        ipmi_get_stat(intf, sent_lan_command_errs));
1935         out += sprintf(out, "retransmitted_lan_commands:  %u\n",
1936                        ipmi_get_stat(intf, retransmitted_lan_commands));
1937         out += sprintf(out, "timed_out_lan_commands:      %u\n",
1938                        ipmi_get_stat(intf, timed_out_lan_commands));
1939         out += sprintf(out, "sent_lan_responses:          %u\n",
1940                        ipmi_get_stat(intf, sent_lan_responses));
1941         out += sprintf(out, "handled_lan_responses:       %u\n",
1942                        ipmi_get_stat(intf, handled_lan_responses));
1943         out += sprintf(out, "invalid_lan_responses:       %u\n",
1944                        ipmi_get_stat(intf, invalid_lan_responses));
1945         out += sprintf(out, "unhandled_lan_responses:     %u\n",
1946                        ipmi_get_stat(intf, unhandled_lan_responses));
1947         out += sprintf(out, "handled_commands:            %u\n",
1948                        ipmi_get_stat(intf, handled_commands));
1949         out += sprintf(out, "invalid_commands:            %u\n",
1950                        ipmi_get_stat(intf, invalid_commands));
1951         out += sprintf(out, "unhandled_commands:          %u\n",
1952                        ipmi_get_stat(intf, unhandled_commands));
1953         out += sprintf(out, "invalid_events:              %u\n",
1954                        ipmi_get_stat(intf, invalid_events));
1955         out += sprintf(out, "events:                      %u\n",
1956                        ipmi_get_stat(intf, events));
1957         out += sprintf(out, "failed rexmit LAN msgs:      %u\n",
1958                        ipmi_get_stat(intf, dropped_rexmit_lan_commands));
1959         out += sprintf(out, "failed rexmit IPMB msgs:     %u\n",
1960                        ipmi_get_stat(intf, dropped_rexmit_ipmb_commands));
1961
1962         return (out - ((char *) page));
1963 }
1964 #endif /* CONFIG_PROC_FS */
1965
1966 int ipmi_smi_add_proc_entry(ipmi_smi_t smi, char *name,
1967                             read_proc_t *read_proc,
1968                             void *data)
1969 {
1970         int                    rv = 0;
1971 #ifdef CONFIG_PROC_FS
1972         struct proc_dir_entry  *file;
1973         struct ipmi_proc_entry *entry;
1974
1975         /* Create a list element. */
1976         entry = kmalloc(sizeof(*entry), GFP_KERNEL);
1977         if (!entry)
1978                 return -ENOMEM;
1979         entry->name = kmalloc(strlen(name)+1, GFP_KERNEL);
1980         if (!entry->name) {
1981                 kfree(entry);
1982                 return -ENOMEM;
1983         }
1984         strcpy(entry->name, name);
1985
1986         file = create_proc_entry(name, 0, smi->proc_dir);
1987         if (!file) {
1988                 kfree(entry->name);
1989                 kfree(entry);
1990                 rv = -ENOMEM;
1991         } else {
1992                 file->data = data;
1993                 file->read_proc = read_proc;
1994
1995                 mutex_lock(&smi->proc_entry_lock);
1996                 /* Stick it on the list. */
1997                 entry->next = smi->proc_entries;
1998                 smi->proc_entries = entry;
1999                 mutex_unlock(&smi->proc_entry_lock);
2000         }
2001 #endif /* CONFIG_PROC_FS */
2002
2003         return rv;
2004 }
2005 EXPORT_SYMBOL(ipmi_smi_add_proc_entry);
2006
2007 static int add_proc_entries(ipmi_smi_t smi, int num)
2008 {
2009         int rv = 0;
2010
2011 #ifdef CONFIG_PROC_FS
2012         sprintf(smi->proc_dir_name, "%d", num);
2013         smi->proc_dir = proc_mkdir(smi->proc_dir_name, proc_ipmi_root);
2014         if (!smi->proc_dir)
2015                 rv = -ENOMEM;
2016
2017         if (rv == 0)
2018                 rv = ipmi_smi_add_proc_entry(smi, "stats",
2019                                              stat_file_read_proc,
2020                                              smi);
2021
2022         if (rv == 0)
2023                 rv = ipmi_smi_add_proc_entry(smi, "ipmb",
2024                                              ipmb_file_read_proc,
2025                                              smi);
2026
2027         if (rv == 0)
2028                 rv = ipmi_smi_add_proc_entry(smi, "version",
2029                                              version_file_read_proc,
2030                                              smi);
2031 #endif /* CONFIG_PROC_FS */
2032
2033         return rv;
2034 }
2035
2036 static void remove_proc_entries(ipmi_smi_t smi)
2037 {
2038 #ifdef CONFIG_PROC_FS
2039         struct ipmi_proc_entry *entry;
2040
2041         mutex_lock(&smi->proc_entry_lock);
2042         while (smi->proc_entries) {
2043                 entry = smi->proc_entries;
2044                 smi->proc_entries = entry->next;
2045
2046                 remove_proc_entry(entry->name, smi->proc_dir);
2047                 kfree(entry->name);
2048                 kfree(entry);
2049         }
2050         mutex_unlock(&smi->proc_entry_lock);
2051         remove_proc_entry(smi->proc_dir_name, proc_ipmi_root);
2052 #endif /* CONFIG_PROC_FS */
2053 }
2054
2055 static int __find_bmc_guid(struct device *dev, void *data)
2056 {
2057         unsigned char *id = data;
2058         struct bmc_device *bmc = dev_get_drvdata(dev);
2059         return memcmp(bmc->guid, id, 16) == 0;
2060 }
2061
2062 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2063                                              unsigned char *guid)
2064 {
2065         struct device *dev;
2066
2067         dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2068         if (dev)
2069                 return dev_get_drvdata(dev);
2070         else
2071                 return NULL;
2072 }
2073
2074 struct prod_dev_id {
2075         unsigned int  product_id;
2076         unsigned char device_id;
2077 };
2078
2079 static int __find_bmc_prod_dev_id(struct device *dev, void *data)
2080 {
2081         struct prod_dev_id *id = data;
2082         struct bmc_device *bmc = dev_get_drvdata(dev);
2083
2084         return (bmc->id.product_id == id->product_id
2085                 && bmc->id.device_id == id->device_id);
2086 }
2087
2088 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
2089         struct device_driver *drv,
2090         unsigned int product_id, unsigned char device_id)
2091 {
2092         struct prod_dev_id id = {
2093                 .product_id = product_id,
2094                 .device_id = device_id,
2095         };
2096         struct device *dev;
2097
2098         dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
2099         if (dev)
2100                 return dev_get_drvdata(dev);
2101         else
2102                 return NULL;
2103 }
2104
2105 static ssize_t device_id_show(struct device *dev,
2106                               struct device_attribute *attr,
2107                               char *buf)
2108 {
2109         struct bmc_device *bmc = dev_get_drvdata(dev);
2110
2111         return snprintf(buf, 10, "%u\n", bmc->id.device_id);
2112 }
2113
2114 static ssize_t provides_dev_sdrs_show(struct device *dev,
2115                                       struct device_attribute *attr,
2116                                       char *buf)
2117 {
2118         struct bmc_device *bmc = dev_get_drvdata(dev);
2119
2120         return snprintf(buf, 10, "%u\n",
2121                         (bmc->id.device_revision & 0x80) >> 7);
2122 }
2123
2124 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2125                              char *buf)
2126 {
2127         struct bmc_device *bmc = dev_get_drvdata(dev);
2128
2129         return snprintf(buf, 20, "%u\n",
2130                         bmc->id.device_revision & 0x0F);
2131 }
2132
2133 static ssize_t firmware_rev_show(struct device *dev,
2134                                  struct device_attribute *attr,
2135                                  char *buf)
2136 {
2137         struct bmc_device *bmc = dev_get_drvdata(dev);
2138
2139         return snprintf(buf, 20, "%u.%x\n", bmc->id.firmware_revision_1,
2140                         bmc->id.firmware_revision_2);
2141 }
2142
2143 static ssize_t ipmi_version_show(struct device *dev,
2144                                  struct device_attribute *attr,
2145                                  char *buf)
2146 {
2147         struct bmc_device *bmc = dev_get_drvdata(dev);
2148
2149         return snprintf(buf, 20, "%u.%u\n",
2150                         ipmi_version_major(&bmc->id),
2151                         ipmi_version_minor(&bmc->id));
2152 }
2153
2154 static ssize_t add_dev_support_show(struct device *dev,
2155                                     struct device_attribute *attr,
2156                                     char *buf)
2157 {
2158         struct bmc_device *bmc = dev_get_drvdata(dev);
2159
2160         return snprintf(buf, 10, "0x%02x\n",
2161                         bmc->id.additional_device_support);
2162 }
2163
2164 static ssize_t manufacturer_id_show(struct device *dev,
2165                                     struct device_attribute *attr,
2166                                     char *buf)
2167 {
2168         struct bmc_device *bmc = dev_get_drvdata(dev);
2169
2170         return snprintf(buf, 20, "0x%6.6x\n", bmc->id.manufacturer_id);
2171 }
2172
2173 static ssize_t product_id_show(struct device *dev,
2174                                struct device_attribute *attr,
2175                                char *buf)
2176 {
2177         struct bmc_device *bmc = dev_get_drvdata(dev);
2178
2179         return snprintf(buf, 10, "0x%4.4x\n", bmc->id.product_id);
2180 }
2181
2182 static ssize_t aux_firmware_rev_show(struct device *dev,
2183                                      struct device_attribute *attr,
2184                                      char *buf)
2185 {
2186         struct bmc_device *bmc = dev_get_drvdata(dev);
2187
2188         return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2189                         bmc->id.aux_firmware_revision[3],
2190                         bmc->id.aux_firmware_revision[2],
2191                         bmc->id.aux_firmware_revision[1],
2192                         bmc->id.aux_firmware_revision[0]);
2193 }
2194
2195 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2196                          char *buf)
2197 {
2198         struct bmc_device *bmc = dev_get_drvdata(dev);
2199
2200         return snprintf(buf, 100, "%Lx%Lx\n",
2201                         (long long) bmc->guid[0],
2202                         (long long) bmc->guid[8]);
2203 }
2204
2205 static void remove_files(struct bmc_device *bmc)
2206 {
2207         if (!bmc->dev)
2208                 return;
2209
2210         device_remove_file(&bmc->dev->dev,
2211                            &bmc->device_id_attr);
2212         device_remove_file(&bmc->dev->dev,
2213                            &bmc->provides_dev_sdrs_attr);
2214         device_remove_file(&bmc->dev->dev,
2215                            &bmc->revision_attr);
2216         device_remove_file(&bmc->dev->dev,
2217                            &bmc->firmware_rev_attr);
2218         device_remove_file(&bmc->dev->dev,
2219                            &bmc->version_attr);
2220         device_remove_file(&bmc->dev->dev,
2221                            &bmc->add_dev_support_attr);
2222         device_remove_file(&bmc->dev->dev,
2223                            &bmc->manufacturer_id_attr);
2224         device_remove_file(&bmc->dev->dev,
2225                            &bmc->product_id_attr);
2226
2227         if (bmc->id.aux_firmware_revision_set)
2228                 device_remove_file(&bmc->dev->dev,
2229                                    &bmc->aux_firmware_rev_attr);
2230         if (bmc->guid_set)
2231                 device_remove_file(&bmc->dev->dev,
2232                                    &bmc->guid_attr);
2233 }
2234
2235 static void
2236 cleanup_bmc_device(struct kref *ref)
2237 {
2238         struct bmc_device *bmc;
2239
2240         bmc = container_of(ref, struct bmc_device, refcount);
2241
2242         remove_files(bmc);
2243         platform_device_unregister(bmc->dev);
2244         kfree(bmc);
2245 }
2246
2247 static void ipmi_bmc_unregister(ipmi_smi_t intf)
2248 {
2249         struct bmc_device *bmc = intf->bmc;
2250
2251         if (intf->sysfs_name) {
2252                 sysfs_remove_link(&intf->si_dev->kobj, intf->sysfs_name);
2253                 kfree(intf->sysfs_name);
2254                 intf->sysfs_name = NULL;
2255         }
2256         if (intf->my_dev_name) {
2257                 sysfs_remove_link(&bmc->dev->dev.kobj, intf->my_dev_name);
2258                 kfree(intf->my_dev_name);
2259                 intf->my_dev_name = NULL;
2260         }
2261
2262         mutex_lock(&ipmidriver_mutex);
2263         kref_put(&bmc->refcount, cleanup_bmc_device);
2264         intf->bmc = NULL;
2265         mutex_unlock(&ipmidriver_mutex);
2266 }
2267
2268 static int create_files(struct bmc_device *bmc)
2269 {
2270         int err;
2271
2272         bmc->device_id_attr.attr.name = "device_id";
2273         bmc->device_id_attr.attr.mode = S_IRUGO;
2274         bmc->device_id_attr.show = device_id_show;
2275         sysfs_attr_init(&bmc->device_id_attr.attr);
2276
2277         bmc->provides_dev_sdrs_attr.attr.name = "provides_device_sdrs";
2278         bmc->provides_dev_sdrs_attr.attr.mode = S_IRUGO;
2279         bmc->provides_dev_sdrs_attr.show = provides_dev_sdrs_show;
2280         sysfs_attr_init(&bmc->provides_dev_sdrs_attr.attr);
2281
2282         bmc->revision_attr.attr.name = "revision";
2283         bmc->revision_attr.attr.mode = S_IRUGO;
2284         bmc->revision_attr.show = revision_show;
2285         sysfs_attr_init(&bmc->revision_attr.attr);
2286
2287         bmc->firmware_rev_attr.attr.name = "firmware_revision";
2288         bmc->firmware_rev_attr.attr.mode = S_IRUGO;
2289         bmc->firmware_rev_attr.show = firmware_rev_show;
2290         sysfs_attr_init(&bmc->firmware_rev_attr.attr);
2291
2292         bmc->version_attr.attr.name = "ipmi_version";
2293         bmc->version_attr.attr.mode = S_IRUGO;
2294         bmc->version_attr.show = ipmi_version_show;
2295         sysfs_attr_init(&bmc->version_attr.attr);
2296
2297         bmc->add_dev_support_attr.attr.name = "additional_device_support";
2298         bmc->add_dev_support_attr.attr.mode = S_IRUGO;
2299         bmc->add_dev_support_attr.show = add_dev_support_show;
2300         sysfs_attr_init(&bmc->add_dev_support_attr.attr);
2301
2302         bmc->manufacturer_id_attr.attr.name = "manufacturer_id";
2303         bmc->manufacturer_id_attr.attr.mode = S_IRUGO;
2304         bmc->manufacturer_id_attr.show = manufacturer_id_show;
2305         sysfs_attr_init(&bmc->manufacturer_id_attr.attr);
2306
2307         bmc->product_id_attr.attr.name = "product_id";
2308         bmc->product_id_attr.attr.mode = S_IRUGO;
2309         bmc->product_id_attr.show = product_id_show;
2310         sysfs_attr_init(&bmc->product_id_attr.attr);
2311
2312         bmc->guid_attr.attr.name = "guid";
2313         bmc->guid_attr.attr.mode = S_IRUGO;
2314         bmc->guid_attr.show = guid_show;
2315         sysfs_attr_init(&bmc->guid_attr.attr);
2316
2317         bmc->aux_firmware_rev_attr.attr.name = "aux_firmware_revision";
2318         bmc->aux_firmware_rev_attr.attr.mode = S_IRUGO;
2319         bmc->aux_firmware_rev_attr.show = aux_firmware_rev_show;
2320         sysfs_attr_init(&bmc->aux_firmware_rev_attr.attr);
2321
2322         err = device_create_file(&bmc->dev->dev,
2323                            &bmc->device_id_attr);
2324         if (err)
2325                 goto out;
2326         err = device_create_file(&bmc->dev->dev,
2327                            &bmc->provides_dev_sdrs_attr);
2328         if (err)
2329                 goto out_devid;
2330         err = device_create_file(&bmc->dev->dev,
2331                            &bmc->revision_attr);
2332         if (err)
2333                 goto out_sdrs;
2334         err = device_create_file(&bmc->dev->dev,
2335                            &bmc->firmware_rev_attr);
2336         if (err)
2337                 goto out_rev;
2338         err = device_create_file(&bmc->dev->dev,
2339                            &bmc->version_attr);
2340         if (err)
2341                 goto out_firm;
2342         err = device_create_file(&bmc->dev->dev,
2343                            &bmc->add_dev_support_attr);
2344         if (err)
2345                 goto out_version;
2346         err = device_create_file(&bmc->dev->dev,
2347                            &bmc->manufacturer_id_attr);
2348         if (err)
2349                 goto out_add_dev;
2350         err = device_create_file(&bmc->dev->dev,
2351                            &bmc->product_id_attr);
2352         if (err)
2353                 goto out_manu;
2354         if (bmc->id.aux_firmware_revision_set) {
2355                 err = device_create_file(&bmc->dev->dev,
2356                                    &bmc->aux_firmware_rev_attr);
2357                 if (err)
2358                         goto out_prod_id;
2359         }
2360         if (bmc->guid_set) {
2361                 err = device_create_file(&bmc->dev->dev,
2362                                    &bmc->guid_attr);
2363                 if (err)
2364                         goto out_aux_firm;
2365         }
2366
2367         return 0;
2368
2369 out_aux_firm:
2370         if (bmc->id.aux_firmware_revision_set)
2371                 device_remove_file(&bmc->dev->dev,
2372                                    &bmc->aux_firmware_rev_attr);
2373 out_prod_id:
2374         device_remove_file(&bmc->dev->dev,
2375                            &bmc->product_id_attr);
2376 out_manu:
2377         device_remove_file(&bmc->dev->dev,
2378                            &bmc->manufacturer_id_attr);
2379 out_add_dev:
2380         device_remove_file(&bmc->dev->dev,
2381                            &bmc->add_dev_support_attr);
2382 out_version:
2383         device_remove_file(&bmc->dev->dev,
2384                            &bmc->version_attr);
2385 out_firm:
2386         device_remove_file(&bmc->dev->dev,
2387                            &bmc->firmware_rev_attr);
2388 out_rev:
2389         device_remove_file(&bmc->dev->dev,
2390                            &bmc->revision_attr);
2391 out_sdrs:
2392         device_remove_file(&bmc->dev->dev,
2393                            &bmc->provides_dev_sdrs_attr);
2394 out_devid:
2395         device_remove_file(&bmc->dev->dev,
2396                            &bmc->device_id_attr);
2397 out:
2398         return err;
2399 }
2400
2401 static int ipmi_bmc_register(ipmi_smi_t intf, int ifnum,
2402                              const char *sysfs_name)
2403 {
2404         int               rv;
2405         struct bmc_device *bmc = intf->bmc;
2406         struct bmc_device *old_bmc;
2407         int               size;
2408         char              dummy[1];
2409
2410         mutex_lock(&ipmidriver_mutex);
2411
2412         /*
2413          * Try to find if there is an bmc_device struct
2414          * representing the interfaced BMC already
2415          */
2416         if (bmc->guid_set)
2417                 old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, bmc->guid);
2418         else
2419                 old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2420                                                     bmc->id.product_id,
2421                                                     bmc->id.device_id);
2422
2423         /*
2424          * If there is already an bmc_device, free the new one,
2425          * otherwise register the new BMC device
2426          */
2427         if (old_bmc) {
2428                 kfree(bmc);
2429                 intf->bmc = old_bmc;
2430                 bmc = old_bmc;
2431
2432                 kref_get(&bmc->refcount);
2433                 mutex_unlock(&ipmidriver_mutex);
2434
2435                 printk(KERN_INFO
2436                        "ipmi: interfacing existing BMC (man_id: 0x%6.6x,"
2437                        " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2438                        bmc->id.manufacturer_id,
2439                        bmc->id.product_id,
2440                        bmc->id.device_id);
2441         } else {
2442                 char name[14];
2443                 unsigned char orig_dev_id = bmc->id.device_id;
2444                 int warn_printed = 0;
2445
2446                 snprintf(name, sizeof(name),
2447                          "ipmi_bmc.%4.4x", bmc->id.product_id);
2448
2449                 while (ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2450                                                  bmc->id.product_id,
2451                                                  bmc->id.device_id)) {
2452                         if (!warn_printed) {
2453                                 printk(KERN_WARNING PFX
2454                                        "This machine has two different BMCs"
2455                                        " with the same product id and device"
2456                                        " id.  This is an error in the"
2457                                        " firmware, but incrementing the"
2458                                        " device id to work around the problem."
2459                                        " Prod ID = 0x%x, Dev ID = 0x%x\n",
2460                                        bmc->id.product_id, bmc->id.device_id);
2461                                 warn_printed = 1;
2462                         }
2463                         bmc->id.device_id++; /* Wraps at 255 */
2464                         if (bmc->id.device_id == orig_dev_id) {
2465                                 printk(KERN_ERR PFX
2466                                        "Out of device ids!\n");
2467                                 break;
2468                         }
2469                 }
2470
2471                 bmc->dev = platform_device_alloc(name, bmc->id.device_id);
2472                 if (!bmc->dev) {
2473                         mutex_unlock(&ipmidriver_mutex);
2474                         printk(KERN_ERR
2475                                "ipmi_msghandler:"
2476                                " Unable to allocate platform device\n");
2477                         return -ENOMEM;
2478                 }
2479                 bmc->dev->dev.driver = &ipmidriver.driver;
2480                 dev_set_drvdata(&bmc->dev->dev, bmc);
2481                 kref_init(&bmc->refcount);
2482
2483                 rv = platform_device_add(bmc->dev);
2484                 mutex_unlock(&ipmidriver_mutex);
2485                 if (rv) {
2486                         platform_device_put(bmc->dev);
2487                         bmc->dev = NULL;
2488                         printk(KERN_ERR
2489                                "ipmi_msghandler:"
2490                                " Unable to register bmc device: %d\n",
2491                                rv);
2492                         /*
2493                          * Don't go to out_err, you can only do that if
2494                          * the device is registered already.
2495                          */
2496                         return rv;
2497                 }
2498
2499                 rv = create_files(bmc);
2500                 if (rv) {
2501                         mutex_lock(&ipmidriver_mutex);
2502                         platform_device_unregister(bmc->dev);
2503                         mutex_unlock(&ipmidriver_mutex);
2504
2505                         return rv;
2506                 }
2507
2508                 printk(KERN_INFO
2509                        "ipmi: Found new BMC (man_id: 0x%6.6x, "
2510                        " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2511                        bmc->id.manufacturer_id,
2512                        bmc->id.product_id,
2513                        bmc->id.device_id);
2514         }
2515
2516         /*
2517          * create symlink from system interface device to bmc device
2518          * and back.
2519          */
2520         intf->sysfs_name = kstrdup(sysfs_name, GFP_KERNEL);
2521         if (!intf->sysfs_name) {
2522                 rv = -ENOMEM;
2523                 printk(KERN_ERR
2524                        "ipmi_msghandler: allocate link to BMC: %d\n",
2525                        rv);
2526                 goto out_err;
2527         }
2528
2529         rv = sysfs_create_link(&intf->si_dev->kobj,
2530                                &bmc->dev->dev.kobj, intf->sysfs_name);
2531         if (rv) {
2532                 kfree(intf->sysfs_name);
2533                 intf->sysfs_name = NULL;
2534                 printk(KERN_ERR
2535                        "ipmi_msghandler: Unable to create bmc symlink: %d\n",
2536                        rv);
2537                 goto out_err;
2538         }
2539
2540         size = snprintf(dummy, 0, "ipmi%d", ifnum);
2541         intf->my_dev_name = kmalloc(size+1, GFP_KERNEL);
2542         if (!intf->my_dev_name) {
2543                 kfree(intf->sysfs_name);
2544                 intf->sysfs_name = NULL;
2545                 rv = -ENOMEM;
2546                 printk(KERN_ERR
2547                        "ipmi_msghandler: allocate link from BMC: %d\n",
2548                        rv);
2549                 goto out_err;
2550         }
2551         snprintf(intf->my_dev_name, size+1, "ipmi%d", ifnum);
2552
2553         rv = sysfs_create_link(&bmc->dev->dev.kobj, &intf->si_dev->kobj,
2554                                intf->my_dev_name);
2555         if (rv) {
2556                 kfree(intf->sysfs_name);
2557                 intf->sysfs_name = NULL;
2558                 kfree(intf->my_dev_name);
2559                 intf->my_dev_name = NULL;
2560                 printk(KERN_ERR
2561                        "ipmi_msghandler:"
2562                        " Unable to create symlink to bmc: %d\n",
2563                        rv);
2564                 goto out_err;
2565         }
2566
2567         return 0;
2568
2569 out_err:
2570         ipmi_bmc_unregister(intf);
2571         return rv;
2572 }
2573
2574 static int
2575 send_guid_cmd(ipmi_smi_t intf, int chan)
2576 {
2577         struct kernel_ipmi_msg            msg;
2578         struct ipmi_system_interface_addr si;
2579
2580         si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2581         si.channel = IPMI_BMC_CHANNEL;
2582         si.lun = 0;
2583
2584         msg.netfn = IPMI_NETFN_APP_REQUEST;
2585         msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
2586         msg.data = NULL;
2587         msg.data_len = 0;
2588         return i_ipmi_request(NULL,
2589                               intf,
2590                               (struct ipmi_addr *) &si,
2591                               0,
2592                               &msg,
2593                               intf,
2594                               NULL,
2595                               NULL,
2596                               0,
2597                               intf->channels[0].address,
2598                               intf->channels[0].lun,
2599                               -1, 0);
2600 }
2601
2602 static void
2603 guid_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2604 {
2605         if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2606             || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2607             || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
2608                 /* Not for me */
2609                 return;
2610
2611         if (msg->msg.data[0] != 0) {
2612                 /* Error from getting the GUID, the BMC doesn't have one. */
2613                 intf->bmc->guid_set = 0;
2614                 goto out;
2615         }
2616
2617         if (msg->msg.data_len < 17) {
2618                 intf->bmc->guid_set = 0;
2619                 printk(KERN_WARNING PFX
2620                        "guid_handler: The GUID response from the BMC was too"
2621                        " short, it was %d but should have been 17.  Assuming"
2622                        " GUID is not available.\n",
2623                        msg->msg.data_len);
2624                 goto out;
2625         }
2626
2627         memcpy(intf->bmc->guid, msg->msg.data, 16);
2628         intf->bmc->guid_set = 1;
2629  out:
2630         wake_up(&intf->waitq);
2631 }
2632
2633 static void
2634 get_guid(ipmi_smi_t intf)
2635 {
2636         int rv;
2637
2638         intf->bmc->guid_set = 0x2;
2639         intf->null_user_handler = guid_handler;
2640         rv = send_guid_cmd(intf, 0);
2641         if (rv)
2642                 /* Send failed, no GUID available. */
2643                 intf->bmc->guid_set = 0;
2644         wait_event(intf->waitq, intf->bmc->guid_set != 2);
2645         intf->null_user_handler = NULL;
2646 }
2647
2648 static int
2649 send_channel_info_cmd(ipmi_smi_t intf, int chan)
2650 {
2651         struct kernel_ipmi_msg            msg;
2652         unsigned char                     data[1];
2653         struct ipmi_system_interface_addr si;
2654
2655         si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2656         si.channel = IPMI_BMC_CHANNEL;
2657         si.lun = 0;
2658
2659         msg.netfn = IPMI_NETFN_APP_REQUEST;
2660         msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
2661         msg.data = data;
2662         msg.data_len = 1;
2663         data[0] = chan;
2664         return i_ipmi_request(NULL,
2665                               intf,
2666                               (struct ipmi_addr *) &si,
2667                               0,
2668                               &msg,
2669                               intf,
2670                               NULL,
2671                               NULL,
2672                               0,
2673                               intf->channels[0].address,
2674                               intf->channels[0].lun,
2675                               -1, 0);
2676 }
2677
2678 static void
2679 channel_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2680 {
2681         int rv = 0;
2682         int chan;
2683
2684         if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2685             && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
2686             && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
2687                 /* It's the one we want */
2688                 if (msg->msg.data[0] != 0) {
2689                         /* Got an error from the channel, just go on. */
2690
2691                         if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
2692                                 /*
2693                                  * If the MC does not support this
2694                                  * command, that is legal.  We just
2695                                  * assume it has one IPMB at channel
2696                                  * zero.
2697                                  */
2698                                 intf->channels[0].medium
2699                                         = IPMI_CHANNEL_MEDIUM_IPMB;
2700                                 intf->channels[0].protocol
2701                                         = IPMI_CHANNEL_PROTOCOL_IPMB;
2702                                 rv = -ENOSYS;
2703
2704                                 intf->curr_channel = IPMI_MAX_CHANNELS;
2705                                 wake_up(&intf->waitq);
2706                                 goto out;
2707                         }
2708                         goto next_channel;
2709                 }
2710                 if (msg->msg.data_len < 4) {
2711                         /* Message not big enough, just go on. */
2712                         goto next_channel;
2713                 }
2714                 chan = intf->curr_channel;
2715                 intf->channels[chan].medium = msg->msg.data[2] & 0x7f;
2716                 intf->channels[chan].protocol = msg->msg.data[3] & 0x1f;
2717
2718  next_channel:
2719                 intf->curr_channel++;
2720                 if (intf->curr_channel >= IPMI_MAX_CHANNELS)
2721                         wake_up(&intf->waitq);
2722                 else
2723                         rv = send_channel_info_cmd(intf, intf->curr_channel);
2724
2725                 if (rv) {
2726                         /* Got an error somehow, just give up. */
2727                         intf->curr_channel = IPMI_MAX_CHANNELS;
2728                         wake_up(&intf->waitq);
2729
2730                         printk(KERN_WARNING PFX
2731                                "Error sending channel information: %d\n",
2732                                rv);
2733                 }
2734         }
2735  out:
2736         return;
2737 }
2738
2739 void ipmi_poll_interface(ipmi_user_t user)
2740 {
2741         ipmi_smi_t intf = user->intf;
2742
2743         if (intf->handlers->poll)
2744                 intf->handlers->poll(intf->send_info);
2745 }
2746 EXPORT_SYMBOL(ipmi_poll_interface);
2747
2748 int ipmi_register_smi(struct ipmi_smi_handlers *handlers,
2749                       void                     *send_info,
2750                       struct ipmi_device_id    *device_id,
2751                       struct device            *si_dev,
2752                       const char               *sysfs_name,
2753                       unsigned char            slave_addr)
2754 {
2755         int              i, j;
2756         int              rv;
2757         ipmi_smi_t       intf;
2758         ipmi_smi_t       tintf;
2759         struct list_head *link;
2760
2761         /*
2762          * Make sure the driver is actually initialized, this handles
2763          * problems with initialization order.
2764          */
2765         if (!initialized) {
2766                 rv = ipmi_init_msghandler();
2767                 if (rv)
2768                         return rv;
2769                 /*
2770                  * The init code doesn't return an error if it was turned
2771                  * off, but it won't initialize.  Check that.
2772                  */
2773                 if (!initialized)
2774                         return -ENODEV;
2775         }
2776
2777         intf = kzalloc(sizeof(*intf), GFP_KERNEL);
2778         if (!intf)
2779                 return -ENOMEM;
2780
2781         intf->ipmi_version_major = ipmi_version_major(device_id);
2782         intf->ipmi_version_minor = ipmi_version_minor(device_id);
2783
2784         intf->bmc = kzalloc(sizeof(*intf->bmc), GFP_KERNEL);
2785         if (!intf->bmc) {
2786                 kfree(intf);
2787                 return -ENOMEM;
2788         }
2789         intf->intf_num = -1; /* Mark it invalid for now. */
2790         kref_init(&intf->refcount);
2791         intf->bmc->id = *device_id;
2792         intf->si_dev = si_dev;
2793         for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
2794                 intf->channels[j].address = IPMI_BMC_SLAVE_ADDR;
2795                 intf->channels[j].lun = 2;
2796         }
2797         if (slave_addr != 0)
2798                 intf->channels[0].address = slave_addr;
2799         INIT_LIST_HEAD(&intf->users);
2800         intf->handlers = handlers;
2801         intf->send_info = send_info;
2802         spin_lock_init(&intf->seq_lock);
2803         for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
2804                 intf->seq_table[j].inuse = 0;
2805                 intf->seq_table[j].seqid = 0;
2806         }
2807         intf->curr_seq = 0;
2808 #ifdef CONFIG_PROC_FS
2809         mutex_init(&intf->proc_entry_lock);
2810 #endif
2811         spin_lock_init(&intf->waiting_msgs_lock);
2812         INIT_LIST_HEAD(&intf->waiting_msgs);
2813         spin_lock_init(&intf->events_lock);
2814         INIT_LIST_HEAD(&intf->waiting_events);
2815         intf->waiting_events_count = 0;
2816         mutex_init(&intf->cmd_rcvrs_mutex);
2817         spin_lock_init(&intf->maintenance_mode_lock);
2818         INIT_LIST_HEAD(&intf->cmd_rcvrs);
2819         init_waitqueue_head(&intf->waitq);
2820         for (i = 0; i < IPMI_NUM_STATS; i++)
2821                 atomic_set(&intf->stats[i], 0);
2822
2823         intf->proc_dir = NULL;
2824
2825         mutex_lock(&smi_watchers_mutex);
2826         mutex_lock(&ipmi_interfaces_mutex);
2827         /* Look for a hole in the numbers. */
2828         i = 0;
2829         link = &ipmi_interfaces;
2830         list_for_each_entry_rcu(tintf, &ipmi_interfaces, link) {
2831                 if (tintf->intf_num != i) {
2832                         link = &tintf->link;
2833                         break;
2834                 }
2835                 i++;
2836         }
2837         /* Add the new interface in numeric order. */
2838         if (i == 0)
2839                 list_add_rcu(&intf->link, &ipmi_interfaces);
2840         else
2841                 list_add_tail_rcu(&intf->link, link);
2842
2843         rv = handlers->start_processing(send_info, intf);
2844         if (rv)
2845                 goto out;
2846
2847         get_guid(intf);
2848
2849         if ((intf->ipmi_version_major > 1)
2850                         || ((intf->ipmi_version_major == 1)
2851                             && (intf->ipmi_version_minor >= 5))) {
2852                 /*
2853                  * Start scanning the channels to see what is
2854                  * available.
2855                  */
2856                 intf->null_user_handler = channel_handler;
2857                 intf->curr_channel = 0;
2858                 rv = send_channel_info_cmd(intf, 0);
2859                 if (rv)
2860                         goto out;
2861
2862                 /* Wait for the channel info to be read. */
2863                 wait_event(intf->waitq,
2864                            intf->curr_channel >= IPMI_MAX_CHANNELS);
2865                 intf->null_user_handler = NULL;
2866         } else {
2867                 /* Assume a single IPMB channel at zero. */
2868                 intf->channels[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
2869                 intf->channels[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
2870                 intf->curr_channel = IPMI_MAX_CHANNELS;
2871         }
2872
2873         if (rv == 0)
2874                 rv = add_proc_entries(intf, i);
2875
2876         rv = ipmi_bmc_register(intf, i, sysfs_name);
2877
2878  out:
2879         if (rv) {
2880                 if (intf->proc_dir)
2881                         remove_proc_entries(intf);
2882                 intf->handlers = NULL;
2883                 list_del_rcu(&intf->link);
2884                 mutex_unlock(&ipmi_interfaces_mutex);
2885                 mutex_unlock(&smi_watchers_mutex);
2886                 synchronize_rcu();
2887                 kref_put(&intf->refcount, intf_free);
2888         } else {
2889                 /*
2890                  * Keep memory order straight for RCU readers.  Make
2891                  * sure everything else is committed to memory before
2892                  * setting intf_num to mark the interface valid.
2893                  */
2894                 smp_wmb();
2895                 intf->intf_num = i;
2896                 mutex_unlock(&ipmi_interfaces_mutex);
2897                 /* After this point the interface is legal to use. */
2898                 call_smi_watchers(i, intf->si_dev);
2899                 mutex_unlock(&smi_watchers_mutex);
2900         }
2901
2902         return rv;
2903 }
2904 EXPORT_SYMBOL(ipmi_register_smi);
2905
2906 static void cleanup_smi_msgs(ipmi_smi_t intf)
2907 {
2908         int              i;
2909         struct seq_table *ent;
2910
2911         /* No need for locks, the interface is down. */
2912         for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
2913                 ent = &(intf->seq_table[i]);
2914                 if (!ent->inuse)
2915                         continue;
2916                 deliver_err_response(ent->recv_msg, IPMI_ERR_UNSPECIFIED);
2917         }
2918 }
2919
2920 int ipmi_unregister_smi(ipmi_smi_t intf)
2921 {
2922         struct ipmi_smi_watcher *w;
2923         int    intf_num = intf->intf_num;
2924
2925         ipmi_bmc_unregister(intf);
2926
2927         mutex_lock(&smi_watchers_mutex);
2928         mutex_lock(&ipmi_interfaces_mutex);
2929         intf->intf_num = -1;
2930         intf->handlers = NULL;
2931         list_del_rcu(&intf->link);
2932         mutex_unlock(&ipmi_interfaces_mutex);
2933         synchronize_rcu();
2934
2935         cleanup_smi_msgs(intf);
2936
2937         remove_proc_entries(intf);
2938
2939         /*
2940          * Call all the watcher interfaces to tell them that
2941          * an interface is gone.
2942          */
2943         list_for_each_entry(w, &smi_watchers, link)
2944                 w->smi_gone(intf_num);
2945         mutex_unlock(&smi_watchers_mutex);
2946
2947         kref_put(&intf->refcount, intf_free);
2948         return 0;
2949 }
2950 EXPORT_SYMBOL(ipmi_unregister_smi);
2951
2952 static int handle_ipmb_get_msg_rsp(ipmi_smi_t          intf,
2953                                    struct ipmi_smi_msg *msg)
2954 {
2955         struct ipmi_ipmb_addr ipmb_addr;
2956         struct ipmi_recv_msg  *recv_msg;
2957
2958         /*
2959          * This is 11, not 10, because the response must contain a
2960          * completion code.
2961          */
2962         if (msg->rsp_size < 11) {
2963                 /* Message not big enough, just ignore it. */
2964                 ipmi_inc_stat(intf, invalid_ipmb_responses);
2965                 return 0;
2966         }
2967
2968         if (msg->rsp[2] != 0) {
2969                 /* An error getting the response, just ignore it. */
2970                 return 0;
2971         }
2972
2973         ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
2974         ipmb_addr.slave_addr = msg->rsp[6];
2975         ipmb_addr.channel = msg->rsp[3] & 0x0f;
2976         ipmb_addr.lun = msg->rsp[7] & 3;
2977
2978         /*
2979          * It's a response from a remote entity.  Look up the sequence
2980          * number and handle the response.
2981          */
2982         if (intf_find_seq(intf,
2983                           msg->rsp[7] >> 2,
2984                           msg->rsp[3] & 0x0f,
2985                           msg->rsp[8],
2986                           (msg->rsp[4] >> 2) & (~1),
2987                           (struct ipmi_addr *) &(ipmb_addr),
2988                           &recv_msg)) {
2989                 /*
2990                  * We were unable to find the sequence number,
2991                  * so just nuke the message.
2992                  */
2993                 ipmi_inc_stat(intf, unhandled_ipmb_responses);
2994                 return 0;
2995         }
2996
2997         memcpy(recv_msg->msg_data,
2998                &(msg->rsp[9]),
2999                msg->rsp_size - 9);
3000         /*
3001          * The other fields matched, so no need to set them, except
3002          * for netfn, which needs to be the response that was
3003          * returned, not the request value.
3004          */
3005         recv_msg->msg.netfn = msg->rsp[4] >> 2;
3006         recv_msg->msg.data = recv_msg->msg_data;
3007         recv_msg->msg.data_len = msg->rsp_size - 10;
3008         recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3009         ipmi_inc_stat(intf, handled_ipmb_responses);
3010         deliver_response(recv_msg);
3011
3012         return 0;
3013 }
3014
3015 static int handle_ipmb_get_msg_cmd(ipmi_smi_t          intf,
3016                                    struct ipmi_smi_msg *msg)
3017 {
3018         struct cmd_rcvr          *rcvr;
3019         int                      rv = 0;
3020         unsigned char            netfn;
3021         unsigned char            cmd;
3022         unsigned char            chan;
3023         ipmi_user_t              user = NULL;
3024         struct ipmi_ipmb_addr    *ipmb_addr;
3025         struct ipmi_recv_msg     *recv_msg;
3026         struct ipmi_smi_handlers *handlers;
3027
3028         if (msg->rsp_size < 10) {
3029                 /* Message not big enough, just ignore it. */
3030                 ipmi_inc_stat(intf, invalid_commands);
3031                 return 0;
3032         }
3033
3034         if (msg->rsp[2] != 0) {
3035                 /* An error getting the response, just ignore it. */
3036                 return 0;
3037         }
3038
3039         netfn = msg->rsp[4] >> 2;
3040         cmd = msg->rsp[8];
3041         chan = msg->rsp[3] & 0xf;
3042
3043         rcu_read_lock();
3044         rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3045         if (rcvr) {
3046                 user = rcvr->user;
3047                 kref_get(&user->refcount);
3048         } else
3049                 user = NULL;
3050         rcu_read_unlock();
3051
3052         if (user == NULL) {
3053                 /* We didn't find a user, deliver an error response. */
3054                 ipmi_inc_stat(intf, unhandled_commands);
3055
3056                 msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3057                 msg->data[1] = IPMI_SEND_MSG_CMD;
3058                 msg->data[2] = msg->rsp[3];
3059                 msg->data[3] = msg->rsp[6];
3060                 msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3061                 msg->data[5] = ipmb_checksum(&(msg->data[3]), 2);
3062                 msg->data[6] = intf->channels[msg->rsp[3] & 0xf].address;
3063                 /* rqseq/lun */
3064                 msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3065                 msg->data[8] = msg->rsp[8]; /* cmd */
3066                 msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3067                 msg->data[10] = ipmb_checksum(&(msg->data[6]), 4);
3068                 msg->data_size = 11;
3069
3070 #ifdef DEBUG_MSGING
3071         {
3072                 int m;
3073                 printk("Invalid command:");
3074                 for (m = 0; m < msg->data_size; m++)
3075                         printk(" %2.2x", msg->data[m]);
3076                 printk("\n");
3077         }
3078 #endif
3079                 rcu_read_lock();
3080                 handlers = intf->handlers;
3081                 if (handlers) {
3082                         handlers->sender(intf->send_info, msg, 0);
3083                         /*
3084                          * We used the message, so return the value
3085                          * that causes it to not be freed or
3086                          * queued.
3087                          */
3088                         rv = -1;
3089                 }
3090                 rcu_read_unlock();
3091         } else {
3092                 /* Deliver the message to the user. */
3093                 ipmi_inc_stat(intf, handled_commands);
3094
3095                 recv_msg = ipmi_alloc_recv_msg();
3096                 if (!recv_msg) {
3097                         /*
3098                          * We couldn't allocate memory for the
3099                          * message, so requeue it for handling
3100                          * later.
3101                          */
3102                         rv = 1;
3103                         kref_put(&user->refcount, free_user);
3104                 } else {
3105                         /* Extract the source address from the data. */
3106                         ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3107                         ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3108                         ipmb_addr->slave_addr = msg->rsp[6];
3109                         ipmb_addr->lun = msg->rsp[7] & 3;
3110                         ipmb_addr->channel = msg->rsp[3] & 0xf;
3111
3112                         /*
3113                          * Extract the rest of the message information
3114                          * from the IPMB header.
3115                          */
3116                         recv_msg->user = user;
3117                         recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3118                         recv_msg->msgid = msg->rsp[7] >> 2;
3119                         recv_msg->msg.netfn = msg->rsp[4] >> 2;
3120                         recv_msg->msg.cmd = msg->rsp[8];
3121                         recv_msg->msg.data = recv_msg->msg_data;
3122
3123                         /*
3124                          * We chop off 10, not 9 bytes because the checksum
3125                          * at the end also needs to be removed.
3126                          */
3127                         recv_msg->msg.data_len = msg->rsp_size - 10;
3128                         memcpy(recv_msg->msg_data,
3129                                &(msg->rsp[9]),
3130                                msg->rsp_size - 10);
3131                         deliver_response(recv_msg);
3132                 }
3133         }
3134
3135         return rv;
3136 }
3137
3138 static int handle_lan_get_msg_rsp(ipmi_smi_t          intf,
3139                                   struct ipmi_smi_msg *msg)
3140 {
3141         struct ipmi_lan_addr  lan_addr;
3142         struct ipmi_recv_msg  *recv_msg;
3143
3144
3145         /*
3146          * This is 13, not 12, because the response must contain a
3147          * completion code.
3148          */
3149         if (msg->rsp_size < 13) {
3150                 /* Message not big enough, just ignore it. */
3151                 ipmi_inc_stat(intf, invalid_lan_responses);
3152                 return 0;
3153         }
3154
3155         if (msg->rsp[2] != 0) {
3156                 /* An error getting the response, just ignore it. */
3157                 return 0;
3158         }
3159
3160         lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
3161         lan_addr.session_handle = msg->rsp[4];
3162         lan_addr.remote_SWID = msg->rsp[8];
3163         lan_addr.local_SWID = msg->rsp[5];
3164         lan_addr.channel = msg->rsp[3] & 0x0f;
3165         lan_addr.privilege = msg->rsp[3] >> 4;
3166         lan_addr.lun = msg->rsp[9] & 3;
3167
3168         /*
3169          * It's a response from a remote entity.  Look up the sequence
3170          * number and handle the response.
3171          */
3172         if (intf_find_seq(intf,
3173                           msg->rsp[9] >> 2,
3174                           msg->rsp[3] & 0x0f,
3175                           msg->rsp[10],
3176                           (msg->rsp[6] >> 2) & (~1),
3177                           (struct ipmi_addr *) &(lan_addr),
3178                           &recv_msg)) {
3179                 /*
3180                  * We were unable to find the sequence number,
3181                  * so just nuke the message.
3182                  */
3183                 ipmi_inc_stat(intf, unhandled_lan_responses);
3184                 return 0;
3185         }
3186
3187         memcpy(recv_msg->msg_data,
3188                &(msg->rsp[11]),
3189                msg->rsp_size - 11);
3190         /*
3191          * The other fields matched, so no need to set them, except
3192          * for netfn, which needs to be the response that was
3193          * returned, not the request value.
3194          */
3195         recv_msg->msg.netfn = msg->rsp[6] >> 2;
3196         recv_msg->msg.data = recv_msg->msg_data;
3197         recv_msg->msg.data_len = msg->rsp_size - 12;
3198         recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3199         ipmi_inc_stat(intf, handled_lan_responses);
3200         deliver_response(recv_msg);
3201
3202         return 0;
3203 }
3204
3205 static int handle_lan_get_msg_cmd(ipmi_smi_t          intf,
3206                                   struct ipmi_smi_msg *msg)
3207 {
3208         struct cmd_rcvr          *rcvr;
3209         int                      rv = 0;
3210         unsigned char            netfn;
3211         unsigned char            cmd;
3212         unsigned char            chan;
3213         ipmi_user_t              user = NULL;
3214         struct ipmi_lan_addr     *lan_addr;
3215         struct ipmi_recv_msg     *recv_msg;
3216
3217         if (msg->rsp_size < 12) {
3218                 /* Message not big enough, just ignore it. */
3219                 ipmi_inc_stat(intf, invalid_commands);
3220                 return 0;
3221         }
3222
3223         if (msg->rsp[2] != 0) {
3224                 /* An error getting the response, just ignore it. */
3225                 return 0;
3226         }
3227
3228         netfn = msg->rsp[6] >> 2;
3229         cmd = msg->rsp[10];
3230         chan = msg->rsp[3] & 0xf;
3231
3232         rcu_read_lock();
3233         rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3234         if (rcvr) {
3235                 user = rcvr->user;
3236                 kref_get(&user->refcount);
3237         } else
3238                 user = NULL;
3239         rcu_read_unlock();
3240
3241         if (user == NULL) {
3242                 /* We didn't find a user, just give up. */
3243                 ipmi_inc_stat(intf, unhandled_commands);
3244
3245                 /*
3246                  * Don't do anything with these messages, just allow
3247                  * them to be freed.
3248                  */
3249                 rv = 0;
3250         } else {
3251                 /* Deliver the message to the user. */
3252                 ipmi_inc_stat(intf, handled_commands);
3253
3254                 recv_msg = ipmi_alloc_recv_msg();
3255                 if (!recv_msg) {
3256                         /*
3257                          * We couldn't allocate memory for the
3258                          * message, so requeue it for handling later.
3259                          */
3260                         rv = 1;
3261                         kref_put(&user->refcount, free_user);
3262                 } else {
3263                         /* Extract the source address from the data. */
3264                         lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
3265                         lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
3266                         lan_addr->session_handle = msg->rsp[4];
3267                         lan_addr->remote_SWID = msg->rsp[8];
3268                         lan_addr->local_SWID = msg->rsp[5];
3269                         lan_addr->lun = msg->rsp[9] & 3;
3270                         lan_addr->channel = msg->rsp[3] & 0xf;
3271                         lan_addr->privilege = msg->rsp[3] >> 4;
3272
3273                         /*
3274                          * Extract the rest of the message information
3275                          * from the IPMB header.
3276                          */
3277                         recv_msg->user = user;
3278                         recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3279                         recv_msg->msgid = msg->rsp[9] >> 2;
3280                         recv_msg->msg.netfn = msg->rsp[6] >> 2;
3281                         recv_msg->msg.cmd = msg->rsp[10];
3282                         recv_msg->msg.data = recv_msg->msg_data;
3283
3284                         /*
3285                          * We chop off 12, not 11 bytes because the checksum
3286                          * at the end also needs to be removed.
3287                          */
3288                         recv_msg->msg.data_len = msg->rsp_size - 12;
3289                         memcpy(recv_msg->msg_data,
3290                                &(msg->rsp[11]),
3291                                msg->rsp_size - 12);
3292                         deliver_response(recv_msg);
3293                 }
3294         }
3295
3296         return rv;
3297 }
3298
3299 /*
3300  * This routine will handle "Get Message" command responses with
3301  * channels that use an OEM Medium. The message format belongs to
3302  * the OEM.  See IPMI 2.0 specification, Chapter 6 and
3303  * Chapter 22, sections 22.6 and 22.24 for more details.
3304  */
3305 static int handle_oem_get_msg_cmd(ipmi_smi_t          intf,
3306                                   struct ipmi_smi_msg *msg)
3307 {
3308         struct cmd_rcvr       *rcvr;
3309         int                   rv = 0;
3310         unsigned char         netfn;
3311         unsigned char         cmd;
3312         unsigned char         chan;
3313         ipmi_user_t           user = NULL;
3314         struct ipmi_system_interface_addr *smi_addr;
3315         struct ipmi_recv_msg  *recv_msg;
3316
3317         /*
3318          * We expect the OEM SW to perform error checking
3319          * so we just do some basic sanity checks
3320          */
3321         if (msg->rsp_size < 4) {
3322                 /* Message not big enough, just ignore it. */
3323                 ipmi_inc_stat(intf, invalid_commands);
3324                 return 0;
3325         }
3326
3327         if (msg->rsp[2] != 0) {
3328                 /* An error getting the response, just ignore it. */
3329                 return 0;
3330         }
3331
3332         /*
3333          * This is an OEM Message so the OEM needs to know how
3334          * handle the message. We do no interpretation.
3335          */
3336         netfn = msg->rsp[0] >> 2;
3337         cmd = msg->rsp[1];
3338         chan = msg->rsp[3] & 0xf;
3339
3340         rcu_read_lock();
3341         rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3342         if (rcvr) {
3343                 user = rcvr->user;
3344                 kref_get(&user->refcount);
3345         } else
3346                 user = NULL;
3347         rcu_read_unlock();
3348
3349         if (user == NULL) {
3350                 /* We didn't find a user, just give up. */
3351                 ipmi_inc_stat(intf, unhandled_commands);
3352
3353                 /*
3354                  * Don't do anything with these messages, just allow
3355                  * them to be freed.
3356                  */
3357
3358                 rv = 0;
3359         } else {
3360                 /* Deliver the message to the user. */
3361                 ipmi_inc_stat(intf, handled_commands);
3362
3363                 recv_msg = ipmi_alloc_recv_msg();
3364                 if (!recv_msg) {
3365                         /*
3366                          * We couldn't allocate memory for the
3367                          * message, so requeue it for handling
3368                          * later.
3369                          */
3370                         rv = 1;
3371                         kref_put(&user->refcount, free_user);
3372                 } else {
3373                         /*
3374                          * OEM Messages are expected to be delivered via
3375                          * the system interface to SMS software.  We might
3376                          * need to visit this again depending on OEM
3377                          * requirements
3378                          */
3379                         smi_addr = ((struct ipmi_system_interface_addr *)
3380                                     &(recv_msg->addr));
3381                         smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3382                         smi_addr->channel = IPMI_BMC_CHANNEL;
3383                         smi_addr->lun = msg->rsp[0] & 3;
3384
3385                         recv_msg->user = user;
3386                         recv_msg->user_msg_data = NULL;
3387                         recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
3388                         recv_msg->msg.netfn = msg->rsp[0] >> 2;
3389                         recv_msg->msg.cmd = msg->rsp[1];
3390                         recv_msg->msg.data = recv_msg->msg_data;
3391
3392                         /*
3393                          * The message starts at byte 4 which follows the
3394                          * the Channel Byte in the "GET MESSAGE" command
3395                          */
3396                         recv_msg->msg.data_len = msg->rsp_size - 4;
3397                         memcpy(recv_msg->msg_data,
3398                                &(msg->rsp[4]),
3399                                msg->rsp_size - 4);
3400                         deliver_response(recv_msg);
3401                 }
3402         }
3403
3404         return rv;
3405 }
3406
3407 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
3408                                      struct ipmi_smi_msg  *msg)
3409 {
3410         struct ipmi_system_interface_addr *smi_addr;
3411
3412         recv_msg->msgid = 0;
3413         smi_addr = (struct ipmi_system_interface_addr *) &(recv_msg->addr);
3414         smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3415         smi_addr->channel = IPMI_BMC_CHANNEL;
3416         smi_addr->lun = msg->rsp[0] & 3;
3417         recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
3418         recv_msg->msg.netfn = msg->rsp[0] >> 2;
3419         recv_msg->msg.cmd = msg->rsp[1];
3420         memcpy(recv_msg->msg_data, &(msg->rsp[3]), msg->rsp_size - 3);
3421         recv_msg->msg.data = recv_msg->msg_data;
3422         recv_msg->msg.data_len = msg->rsp_size - 3;
3423 }
3424
3425 static int handle_read_event_rsp(ipmi_smi_t          intf,
3426                                  struct ipmi_smi_msg *msg)
3427 {
3428         struct ipmi_recv_msg *recv_msg, *recv_msg2;
3429         struct list_head     msgs;
3430         ipmi_user_t          user;
3431         int                  rv = 0;
3432         int                  deliver_count = 0;
3433         unsigned long        flags;
3434
3435         if (msg->rsp_size < 19) {
3436                 /* Message is too small to be an IPMB event. */
3437                 ipmi_inc_stat(intf, invalid_events);
3438                 return 0;
3439         }
3440
3441         if (msg->rsp[2] != 0) {
3442                 /* An error getting the event, just ignore it. */
3443                 return 0;
3444         }
3445
3446         INIT_LIST_HEAD(&msgs);
3447
3448         spin_lock_irqsave(&intf->events_lock, flags);
3449
3450         ipmi_inc_stat(intf, events);
3451
3452         /*
3453          * Allocate and fill in one message for every user that is
3454          * getting events.
3455          */
3456         rcu_read_lock();
3457         list_for_each_entry_rcu(user, &intf->users, link) {
3458                 if (!user->gets_events)
3459                         continue;
3460
3461                 recv_msg = ipmi_alloc_recv_msg();
3462                 if (!recv_msg) {
3463                         rcu_read_unlock();
3464                         list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
3465                                                  link) {
3466                                 list_del(&recv_msg->link);
3467                                 ipmi_free_recv_msg(recv_msg);
3468                         }
3469                         /*
3470                          * We couldn't allocate memory for the
3471                          * message, so requeue it for handling
3472                          * later.
3473                          */
3474                         rv = 1;
3475                         goto out;
3476                 }
3477
3478                 deliver_count++;
3479
3480                 copy_event_into_recv_msg(recv_msg, msg);
3481                 recv_msg->user = user;
3482                 kref_get(&user->refcount);
3483                 list_add_tail(&(recv_msg->link), &msgs);
3484         }
3485         rcu_read_unlock();
3486
3487         if (deliver_count) {
3488                 /* Now deliver all the messages. */
3489                 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
3490                         list_del(&recv_msg->link);
3491                         deliver_response(recv_msg);
3492                 }
3493         } else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
3494                 /*
3495                  * No one to receive the message, put it in queue if there's
3496                  * not already too many things in the queue.
3497                  */
3498                 recv_msg = ipmi_alloc_recv_msg();
3499                 if (!recv_msg) {
3500                         /*
3501                          * We couldn't allocate memory for the
3502                          * message, so requeue it for handling
3503                          * later.
3504                          */
3505                         rv = 1;
3506                         goto out;
3507                 }
3508
3509                 copy_event_into_recv_msg(recv_msg, msg);
3510                 list_add_tail(&(recv_msg->link), &(intf->waiting_events));
3511                 intf->waiting_events_count++;
3512         } else if (!intf->event_msg_printed) {
3513                 /*
3514                  * There's too many things in the queue, discard this
3515                  * message.
3516                  */
3517                 printk(KERN_WARNING PFX "Event queue full, discarding"
3518                        " incoming events\n");
3519                 intf->event_msg_printed = 1;
3520         }
3521
3522  out:
3523         spin_unlock_irqrestore(&(intf->events_lock), flags);
3524
3525         return rv;
3526 }
3527
3528 static int handle_bmc_rsp(ipmi_smi_t          intf,
3529                           struct ipmi_smi_msg *msg)
3530 {
3531         struct ipmi_recv_msg *recv_msg;
3532         struct ipmi_user     *user;
3533
3534         recv_msg = (struct ipmi_recv_msg *) msg->user_data;
3535         if (recv_msg == NULL) {
3536                 printk(KERN_WARNING
3537                        "IPMI message received with no owner. This\n"
3538                        "could be because of a malformed message, or\n"
3539                        "because of a hardware error.  Contact your\n"
3540                        "hardware vender for assistance\n");
3541                 return 0;
3542         }
3543
3544         user = recv_msg->user;
3545         /* Make sure the user still exists. */
3546         if (user && !user->valid) {
3547                 /* The user for the message went away, so give up. */
3548                 ipmi_inc_stat(intf, unhandled_local_responses);
3549                 ipmi_free_recv_msg(recv_msg);
3550         } else {
3551                 struct ipmi_system_interface_addr *smi_addr;
3552
3553                 ipmi_inc_stat(intf, handled_local_responses);
3554                 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3555                 recv_msg->msgid = msg->msgid;
3556                 smi_addr = ((struct ipmi_system_interface_addr *)
3557                             &(recv_msg->addr));
3558                 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3559                 smi_addr->channel = IPMI_BMC_CHANNEL;
3560                 smi_addr->lun = msg->rsp[0] & 3;
3561                 recv_msg->msg.netfn = msg->rsp[0] >> 2;
3562                 recv_msg->msg.cmd = msg->rsp[1];
3563                 memcpy(recv_msg->msg_data,
3564                        &(msg->rsp[2]),
3565                        msg->rsp_size - 2);
3566                 recv_msg->msg.data = recv_msg->msg_data;
3567                 recv_msg->msg.data_len = msg->rsp_size - 2;
3568                 deliver_response(recv_msg);
3569         }
3570
3571         return 0;
3572 }
3573
3574 /*
3575  * Handle a new message.  Return 1 if the message should be requeued,
3576  * 0 if the message should be freed, or -1 if the message should not
3577  * be freed or requeued.
3578  */
3579 static int handle_new_recv_msg(ipmi_smi_t          intf,
3580                                struct ipmi_smi_msg *msg)
3581 {
3582         int requeue;
3583         int chan;
3584
3585 #ifdef DEBUG_MSGING
3586         int m;
3587         printk("Recv:");
3588         for (m = 0; m < msg->rsp_size; m++)
3589                 printk(" %2.2x", msg->rsp[m]);
3590         printk("\n");
3591 #endif
3592         if (msg->rsp_size < 2) {
3593                 /* Message is too small to be correct. */
3594                 printk(KERN_WARNING PFX "BMC returned to small a message"
3595                        " for netfn %x cmd %x, got %d bytes\n",
3596                        (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
3597
3598                 /* Generate an error response for the message. */
3599                 msg->rsp[0] = msg->data[0] | (1 << 2);
3600                 msg->rsp[1] = msg->data[1];
3601                 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3602                 msg->rsp_size = 3;
3603         } else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
3604                    || (msg->rsp[1] != msg->data[1])) {
3605                 /*
3606                  * The NetFN and Command in the response is not even
3607                  * marginally correct.
3608                  */
3609                 printk(KERN_WARNING PFX "BMC returned incorrect response,"
3610                        " expected netfn %x cmd %x, got netfn %x cmd %x\n",
3611                        (msg->data[0] >> 2) | 1, msg->data[1],
3612                        msg->rsp[0] >> 2, msg->rsp[1]);
3613
3614                 /* Generate an error response for the message. */
3615                 msg->rsp[0] = msg->data[0] | (1 << 2);
3616                 msg->rsp[1] = msg->data[1];
3617                 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3618                 msg->rsp_size = 3;
3619         }
3620
3621         if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3622             && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
3623             && (msg->user_data != NULL)) {
3624                 /*
3625                  * It's a response to a response we sent.  For this we
3626                  * deliver a send message response to the user.
3627                  */
3628                 struct ipmi_recv_msg     *recv_msg = msg->user_data;
3629
3630                 requeue = 0;
3631                 if (msg->rsp_size < 2)
3632                         /* Message is too small to be correct. */
3633                         goto out;
3634
3635                 chan = msg->data[2] & 0x0f;
3636                 if (chan >= IPMI_MAX_CHANNELS)
3637                         /* Invalid channel number */
3638                         goto out;
3639
3640                 if (!recv_msg)
3641                         goto out;
3642
3643                 /* Make sure the user still exists. */
3644                 if (!recv_msg->user || !recv_msg->user->valid)
3645                         goto out;
3646
3647                 recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
3648                 recv_msg->msg.data = recv_msg->msg_data;
3649                 recv_msg->msg.data_len = 1;
3650                 recv_msg->msg_data[0] = msg->rsp[2];
3651                 deliver_response(recv_msg);
3652         } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3653                    && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
3654                 /* It's from the receive queue. */
3655                 chan = msg->rsp[3] & 0xf;
3656                 if (chan >= IPMI_MAX_CHANNELS) {
3657                         /* Invalid channel number */
3658                         requeue = 0;
3659                         goto out;
3660                 }
3661
3662                 /*
3663                  * We need to make sure the channels have been initialized.
3664                  * The channel_handler routine will set the "curr_channel"
3665                  * equal to or greater than IPMI_MAX_CHANNELS when all the
3666                  * channels for this interface have been initialized.
3667                  */
3668                 if (intf->curr_channel < IPMI_MAX_CHANNELS) {
3669                         requeue = 0; /* Throw the message away */
3670                         goto out;
3671                 }
3672
3673                 switch (intf->channels[chan].medium) {
3674                 case IPMI_CHANNEL_MEDIUM_IPMB:
3675                         if (msg->rsp[4] & 0x04) {
3676                                 /*
3677                                  * It's a response, so find the
3678                                  * requesting message and send it up.
3679                                  */
3680                                 requeue = handle_ipmb_get_msg_rsp(intf, msg);
3681                         } else {
3682                                 /*
3683                                  * It's a command to the SMS from some other
3684                                  * entity.  Handle that.
3685                                  */
3686                                 requeue = handle_ipmb_get_msg_cmd(intf, msg);
3687                         }
3688                         break;
3689
3690                 case IPMI_CHANNEL_MEDIUM_8023LAN:
3691                 case IPMI_CHANNEL_MEDIUM_ASYNC:
3692                         if (msg->rsp[6] & 0x04) {
3693                                 /*
3694                                  * It's a response, so find the
3695                                  * requesting message and send it up.
3696                                  */
3697                                 requeue = handle_lan_get_msg_rsp(intf, msg);
3698                         } else {
3699                                 /*
3700                                  * It's a command to the SMS from some other
3701                                  * entity.  Handle that.
3702                                  */
3703                                 requeue = handle_lan_get_msg_cmd(intf, msg);
3704                         }
3705                         break;
3706
3707                 default:
3708                         /* Check for OEM Channels.  Clients had better
3709                            register for these commands. */
3710                         if ((intf->channels[chan].medium
3711                              >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
3712                             && (intf->channels[chan].medium
3713                                 <= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
3714                                 requeue = handle_oem_get_msg_cmd(intf, msg);
3715                         } else {
3716                                 /*
3717                                  * We don't handle the channel type, so just
3718                                  * free the message.
3719                                  */
3720                                 requeue = 0;
3721                         }
3722                 }
3723
3724         } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3725                    && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
3726                 /* It's an asyncronous event. */
3727                 requeue = handle_read_event_rsp(intf, msg);
3728         } else {
3729                 /* It's a response from the local BMC. */
3730                 requeue = handle_bmc_rsp(intf, msg);
3731         }
3732
3733  out:
3734         return requeue;
3735 }
3736
3737 /* Handle a new message from the lower layer. */
3738 void ipmi_smi_msg_received(ipmi_smi_t          intf,
3739                            struct ipmi_smi_msg *msg)
3740 {
3741         unsigned long flags = 0; /* keep us warning-free. */
3742         int           rv;
3743         int           run_to_completion;
3744
3745
3746         if ((msg->data_size >= 2)
3747             && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
3748             && (msg->data[1] == IPMI_SEND_MSG_CMD)
3749             && (msg->user_data == NULL)) {
3750                 /*
3751                  * This is the local response to a command send, start
3752                  * the timer for these.  The user_data will not be
3753                  * NULL if this is a response send, and we will let
3754                  * response sends just go through.
3755                  */
3756
3757                 /*
3758                  * Check for errors, if we get certain errors (ones
3759                  * that mean basically we can try again later), we
3760                  * ignore them and start the timer.  Otherwise we
3761                  * report the error immediately.
3762                  */
3763                 if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
3764                     && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
3765                     && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
3766                     && (msg->rsp[2] != IPMI_BUS_ERR)
3767                     && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
3768                         int chan = msg->rsp[3] & 0xf;
3769
3770                         /* Got an error sending the message, handle it. */
3771                         if (chan >= IPMI_MAX_CHANNELS)
3772                                 ; /* This shouldn't happen */
3773                         else if ((intf->channels[chan].medium
3774                                   == IPMI_CHANNEL_MEDIUM_8023LAN)
3775                                  || (intf->channels[chan].medium
3776                                      == IPMI_CHANNEL_MEDIUM_ASYNC))
3777                                 ipmi_inc_stat(intf, sent_lan_command_errs);
3778                         else
3779                                 ipmi_inc_stat(intf, sent_ipmb_command_errs);
3780                         intf_err_seq(intf, msg->msgid, msg->rsp[2]);
3781                 } else
3782                         /* The message was sent, start the timer. */
3783                         intf_start_seq_timer(intf, msg->msgid);
3784
3785                 ipmi_free_smi_msg(msg);
3786                 goto out;
3787         }
3788
3789         /*
3790          * To preserve message order, if the list is not empty, we
3791          * tack this message onto the end of the list.
3792          */
3793         run_to_completion = intf->run_to_completion;
3794         if (!run_to_completion)
3795                 spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3796         if (!list_empty(&intf->waiting_msgs)) {
3797                 list_add_tail(&msg->link, &intf->waiting_msgs);
3798                 if (!run_to_completion)
3799                         spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3800                 goto out;
3801         }
3802         if (!run_to_completion)
3803                 spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3804
3805         rv = handle_new_recv_msg(intf, msg);
3806         if (rv > 0) {
3807                 /*
3808                  * Could not handle the message now, just add it to a
3809                  * list to handle later.
3810                  */
3811                 run_to_completion = intf->run_to_completion;
3812                 if (!run_to_completion)
3813                         spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3814                 list_add_tail(&msg->link, &intf->waiting_msgs);
3815                 if (!run_to_completion)
3816                         spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3817         } else if (rv == 0) {
3818                 ipmi_free_smi_msg(msg);
3819         }
3820
3821  out:
3822         return;
3823 }
3824 EXPORT_SYMBOL(ipmi_smi_msg_received);
3825
3826 void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf)
3827 {
3828         ipmi_user_t user;
3829
3830         rcu_read_lock();
3831         list_for_each_entry_rcu(user, &intf->users, link) {
3832                 if (!user->handler->ipmi_watchdog_pretimeout)
3833                         continue;
3834
3835                 user->handler->ipmi_watchdog_pretimeout(user->handler_data);
3836         }
3837         rcu_read_unlock();
3838 }
3839 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
3840
3841 static struct ipmi_smi_msg *
3842 smi_from_recv_msg(ipmi_smi_t intf, struct ipmi_recv_msg *recv_msg,
3843                   unsigned char seq, long seqid)
3844 {
3845         struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
3846         if (!smi_msg)
3847                 /*
3848                  * If we can't allocate the message, then just return, we
3849                  * get 4 retries, so this should be ok.
3850                  */
3851                 return NULL;
3852
3853         memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
3854         smi_msg->data_size = recv_msg->msg.data_len;
3855         smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
3856
3857 #ifdef DEBUG_MSGING
3858         {
3859                 int m;
3860                 printk("Resend: ");
3861                 for (m = 0; m < smi_msg->data_size; m++)
3862                         printk(" %2.2x", smi_msg->data[m]);
3863                 printk("\n");
3864         }
3865 #endif
3866         return smi_msg;
3867 }
3868
3869 static void check_msg_timeout(ipmi_smi_t intf, struct seq_table *ent,
3870                               struct list_head *timeouts, long timeout_period,
3871                               int slot, unsigned long *flags)
3872 {
3873         struct ipmi_recv_msg     *msg;
3874         struct ipmi_smi_handlers *handlers;
3875
3876         if (intf->intf_num == -1)
3877                 return;
3878
3879         if (!ent->inuse)
3880                 return;
3881
3882         ent->timeout -= timeout_period;
3883         if (ent->timeout > 0)
3884                 return;
3885
3886         if (ent->retries_left == 0) {
3887                 /* The message has used all its retries. */
3888                 ent->inuse = 0;
3889                 msg = ent->recv_msg;
3890                 list_add_tail(&msg->link, timeouts);
3891                 if (ent->broadcast)
3892                         ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
3893                 else if (is_lan_addr(&ent->recv_msg->addr))
3894                         ipmi_inc_stat(intf, timed_out_lan_commands);
3895                 else
3896                         ipmi_inc_stat(intf, timed_out_ipmb_commands);
3897         } else {
3898                 struct ipmi_smi_msg *smi_msg;
3899                 /* More retries, send again. */
3900
3901                 /*
3902                  * Start with the max timer, set to normal timer after
3903                  * the message is sent.
3904                  */
3905                 ent->timeout = MAX_MSG_TIMEOUT;
3906                 ent->retries_left--;
3907                 smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
3908                                             ent->seqid);
3909                 if (!smi_msg) {
3910                         if (is_lan_addr(&ent->recv_msg->addr))
3911                                 ipmi_inc_stat(intf,
3912                                               dropped_rexmit_lan_commands);
3913                         else
3914                                 ipmi_inc_stat(intf,
3915                                               dropped_rexmit_ipmb_commands);
3916                         return;
3917                 }
3918
3919                 spin_unlock_irqrestore(&intf->seq_lock, *flags);
3920
3921                 /*
3922                  * Send the new message.  We send with a zero
3923                  * priority.  It timed out, I doubt time is that
3924                  * critical now, and high priority messages are really
3925                  * only for messages to the local MC, which don't get
3926                  * resent.
3927                  */
3928                 handlers = intf->handlers;
3929                 if (handlers) {
3930                         if (is_lan_addr(&ent->recv_msg->addr))
3931                                 ipmi_inc_stat(intf,
3932                                               retransmitted_lan_commands);
3933                         else
3934                                 ipmi_inc_stat(intf,
3935                                               retransmitted_ipmb_commands);
3936
3937                         intf->handlers->sender(intf->send_info,
3938                                                smi_msg, 0);
3939                 } else
3940                         ipmi_free_smi_msg(smi_msg);
3941
3942                 spin_lock_irqsave(&intf->seq_lock, *flags);
3943         }
3944 }
3945
3946 static void ipmi_timeout_handler(long timeout_period)
3947 {
3948         ipmi_smi_t           intf;
3949         struct list_head     timeouts;
3950         struct ipmi_recv_msg *msg, *msg2;
3951         struct ipmi_smi_msg  *smi_msg, *smi_msg2;
3952         unsigned long        flags;
3953         int                  i;
3954
3955         rcu_read_lock();
3956         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
3957                 /* See if any waiting messages need to be processed. */
3958                 spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3959                 list_for_each_entry_safe(smi_msg, smi_msg2,
3960                                          &intf->waiting_msgs, link) {
3961                         if (!handle_new_recv_msg(intf, smi_msg)) {
3962                                 list_del(&smi_msg->link);
3963                                 ipmi_free_smi_msg(smi_msg);
3964                         } else {
3965                                 /*
3966                                  * To preserve message order, quit if we
3967                                  * can't handle a message.
3968                                  */
3969                                 break;
3970                         }
3971                 }
3972                 spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3973
3974                 /*
3975                  * Go through the seq table and find any messages that
3976                  * have timed out, putting them in the timeouts
3977                  * list.
3978                  */
3979                 INIT_LIST_HEAD(&timeouts);
3980                 spin_lock_irqsave(&intf->seq_lock, flags);
3981                 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
3982                         check_msg_timeout(intf, &(intf->seq_table[i]),
3983                                           &timeouts, timeout_period, i,
3984                                           &flags);
3985                 spin_unlock_irqrestore(&intf->seq_lock, flags);
3986
3987                 list_for_each_entry_safe(msg, msg2, &timeouts, link)
3988                         deliver_err_response(msg, IPMI_TIMEOUT_COMPLETION_CODE);
3989
3990                 /*
3991                  * Maintenance mode handling.  Check the timeout
3992                  * optimistically before we claim the lock.  It may
3993                  * mean a timeout gets missed occasionally, but that
3994                  * only means the timeout gets extended by one period
3995                  * in that case.  No big deal, and it avoids the lock
3996                  * most of the time.
3997                  */
3998                 if (intf->auto_maintenance_timeout > 0) {
3999                         spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
4000                         if (intf->auto_maintenance_timeout > 0) {
4001                                 intf->auto_maintenance_timeout
4002                                         -= timeout_period;
4003                                 if (!intf->maintenance_mode
4004                                     && (intf->auto_maintenance_timeout <= 0)) {
4005                                         intf->maintenance_mode_enable = 0;
4006                                         maintenance_mode_update(intf);
4007                                 }
4008                         }
4009                         spin_unlock_irqrestore(&intf->maintenance_mode_lock,
4010                                                flags);
4011                 }
4012         }
4013         rcu_read_unlock();
4014 }
4015
4016 static void ipmi_request_event(void)
4017 {
4018         ipmi_smi_t               intf;
4019         struct ipmi_smi_handlers *handlers;
4020
4021         rcu_read_lock();
4022         /*
4023          * Called from the timer, no need to check if handlers is
4024          * valid.
4025          */
4026         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4027                 /* No event requests when in maintenance mode. */
4028                 if (intf->maintenance_mode_enable)
4029                         continue;
4030
4031                 handlers = intf->handlers;
4032                 if (handlers)
4033                         handlers->request_events(intf->send_info);
4034         }
4035         rcu_read_unlock();
4036 }
4037
4038 static struct timer_list ipmi_timer;
4039
4040 /* Call every ~100 ms. */
4041 #define IPMI_TIMEOUT_TIME       100
4042
4043 /* How many jiffies does it take to get to the timeout time. */
4044 #define IPMI_TIMEOUT_JIFFIES    ((IPMI_TIMEOUT_TIME * HZ) / 1000)
4045
4046 /*
4047  * Request events from the queue every second (this is the number of
4048  * IPMI_TIMEOUT_TIMES between event requests).  Hopefully, in the
4049  * future, IPMI will add a way to know immediately if an event is in
4050  * the queue and this silliness can go away.
4051  */
4052 #define IPMI_REQUEST_EV_TIME    (1000 / (IPMI_TIMEOUT_TIME))
4053
4054 static atomic_t stop_operation;
4055 static unsigned int ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4056
4057 static void ipmi_timeout(unsigned long data)
4058 {
4059         if (atomic_read(&stop_operation))
4060                 return;
4061
4062         ticks_to_req_ev--;
4063         if (ticks_to_req_ev == 0) {
4064                 ipmi_request_event();
4065                 ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4066         }
4067
4068         ipmi_timeout_handler(IPMI_TIMEOUT_TIME);
4069
4070         mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4071 }
4072
4073
4074 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
4075 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
4076
4077 /* FIXME - convert these to slabs. */
4078 static void free_smi_msg(struct ipmi_smi_msg *msg)
4079 {
4080         atomic_dec(&smi_msg_inuse_count);
4081         kfree(msg);
4082 }
4083
4084 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
4085 {
4086         struct ipmi_smi_msg *rv;
4087         rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
4088         if (rv) {
4089                 rv->done = free_smi_msg;
4090                 rv->user_data = NULL;
4091                 atomic_inc(&smi_msg_inuse_count);
4092         }
4093         return rv;
4094 }
4095 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
4096
4097 static void free_recv_msg(struct ipmi_recv_msg *msg)
4098 {
4099         atomic_dec(&recv_msg_inuse_count);
4100         kfree(msg);
4101 }
4102
4103 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
4104 {
4105         struct ipmi_recv_msg *rv;
4106
4107         rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
4108         if (rv) {
4109                 rv->user = NULL;
4110                 rv->done = free_recv_msg;
4111                 atomic_inc(&recv_msg_inuse_count);
4112         }
4113         return rv;
4114 }
4115
4116 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
4117 {
4118         if (msg->user)
4119                 kref_put(&msg->user->refcount, free_user);
4120         msg->done(msg);
4121 }
4122 EXPORT_SYMBOL(ipmi_free_recv_msg);
4123
4124 #ifdef CONFIG_IPMI_PANIC_EVENT
4125
4126 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
4127 {
4128 }
4129
4130 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
4131 {
4132 }
4133
4134 #ifdef CONFIG_IPMI_PANIC_STRING
4135 static void event_receiver_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4136 {
4137         if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4138             && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
4139             && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
4140             && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4141                 /* A get event receiver command, save it. */
4142                 intf->event_receiver = msg->msg.data[1];
4143                 intf->event_receiver_lun = msg->msg.data[2] & 0x3;
4144         }
4145 }
4146
4147 static void device_id_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4148 {
4149         if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4150             && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
4151             && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
4152             && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4153                 /*
4154                  * A get device id command, save if we are an event
4155                  * receiver or generator.
4156                  */
4157                 intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
4158                 intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
4159         }
4160 }
4161 #endif
4162
4163 static void send_panic_events(char *str)
4164 {
4165         struct kernel_ipmi_msg            msg;
4166         ipmi_smi_t                        intf;
4167         unsigned char                     data[16];
4168         struct ipmi_system_interface_addr *si;
4169         struct ipmi_addr                  addr;
4170         struct ipmi_smi_msg               smi_msg;
4171         struct ipmi_recv_msg              recv_msg;
4172
4173         si = (struct ipmi_system_interface_addr *) &addr;
4174         si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4175         si->channel = IPMI_BMC_CHANNEL;
4176         si->lun = 0;
4177
4178         /* Fill in an event telling that we have failed. */
4179         msg.netfn = 0x04; /* Sensor or Event. */
4180         msg.cmd = 2; /* Platform event command. */
4181         msg.data = data;
4182         msg.data_len = 8;
4183         data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4184         data[1] = 0x03; /* This is for IPMI 1.0. */
4185         data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4186         data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4187         data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4188
4189         /*
4190          * Put a few breadcrumbs in.  Hopefully later we can add more things
4191          * to make the panic events more useful.
4192          */
4193         if (str) {
4194                 data[3] = str[0];
4195                 data[6] = str[1];
4196                 data[7] = str[2];
4197         }
4198
4199         smi_msg.done = dummy_smi_done_handler;
4200         recv_msg.done = dummy_recv_done_handler;
4201
4202         /* For every registered interface, send the event. */
4203         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4204                 if (!intf->handlers)
4205                         /* Interface is not ready. */
4206                         continue;
4207
4208                 intf->run_to_completion = 1;
4209                 /* Send the event announcing the panic. */
4210                 intf->handlers->set_run_to_completion(intf->send_info, 1);
4211                 i_ipmi_request(NULL,
4212                                intf,
4213                                &addr,
4214                                0,
4215                                &msg,
4216                                intf,
4217                                &smi_msg,
4218                                &recv_msg,
4219                                0,
4220                                intf->channels[0].address,
4221                                intf->channels[0].lun,
4222                                0, 1); /* Don't retry, and don't wait. */
4223         }
4224
4225 #ifdef CONFIG_IPMI_PANIC_STRING
4226         /*
4227          * On every interface, dump a bunch of OEM event holding the
4228          * string.
4229          */
4230         if (!str)
4231                 return;
4232
4233         /* For every registered interface, send the event. */
4234         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4235                 char                  *p = str;
4236                 struct ipmi_ipmb_addr *ipmb;
4237                 int                   j;
4238
4239                 if (intf->intf_num == -1)
4240                         /* Interface was not ready yet. */
4241                         continue;
4242
4243                 /*
4244                  * intf_num is used as an marker to tell if the
4245                  * interface is valid.  Thus we need a read barrier to
4246                  * make sure data fetched before checking intf_num
4247                  * won't be used.
4248                  */
4249                 smp_rmb();
4250
4251                 /*
4252                  * First job here is to figure out where to send the
4253                  * OEM events.  There's no way in IPMI to send OEM
4254                  * events using an event send command, so we have to
4255                  * find the SEL to put them in and stick them in
4256                  * there.
4257                  */
4258
4259                 /* Get capabilities from the get device id. */
4260                 intf->local_sel_device = 0;
4261                 intf->local_event_generator = 0;
4262                 intf->event_receiver = 0;
4263
4264                 /* Request the device info from the local MC. */
4265                 msg.netfn = IPMI_NETFN_APP_REQUEST;
4266                 msg.cmd = IPMI_GET_DEVICE_ID_CMD;
4267                 msg.data = NULL;
4268                 msg.data_len = 0;
4269                 intf->null_user_handler = device_id_fetcher;
4270                 i_ipmi_request(NULL,
4271                                intf,
4272                                &addr,
4273                                0,
4274                                &msg,
4275                                intf,
4276                                &smi_msg,
4277                                &recv_msg,
4278                                0,
4279                                intf->channels[0].address,
4280                                intf->channels[0].lun,
4281                                0, 1); /* Don't retry, and don't wait. */
4282
4283                 if (intf->local_event_generator) {
4284                         /* Request the event receiver from the local MC. */
4285                         msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
4286                         msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
4287                         msg.data = NULL;
4288                         msg.data_len = 0;
4289                         intf->null_user_handler = event_receiver_fetcher;
4290                         i_ipmi_request(NULL,
4291                                        intf,
4292                                        &addr,
4293                                        0,
4294                                        &msg,
4295                                        intf,
4296                                        &smi_msg,
4297                                        &recv_msg,
4298                                        0,
4299                                        intf->channels[0].address,
4300                                        intf->channels[0].lun,
4301                                        0, 1); /* no retry, and no wait. */
4302                 }
4303                 intf->null_user_handler = NULL;
4304
4305                 /*
4306                  * Validate the event receiver.  The low bit must not
4307                  * be 1 (it must be a valid IPMB address), it cannot
4308                  * be zero, and it must not be my address.
4309                  */
4310                 if (((intf->event_receiver & 1) == 0)
4311                     && (intf->event_receiver != 0)
4312                     && (intf->event_receiver != intf->channels[0].address)) {
4313                         /*
4314                          * The event receiver is valid, send an IPMB
4315                          * message.
4316                          */
4317                         ipmb = (struct ipmi_ipmb_addr *) &addr;
4318                         ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
4319                         ipmb->channel = 0; /* FIXME - is this right? */
4320                         ipmb->lun = intf->event_receiver_lun;
4321                         ipmb->slave_addr = intf->event_receiver;
4322                 } else if (intf->local_sel_device) {
4323                         /*
4324                          * The event receiver was not valid (or was
4325                          * me), but I am an SEL device, just dump it
4326                          * in my SEL.
4327                          */
4328                         si = (struct ipmi_system_interface_addr *) &addr;
4329                         si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4330                         si->channel = IPMI_BMC_CHANNEL;
4331                         si->lun = 0;
4332                 } else
4333                         continue; /* No where to send the event. */
4334
4335                 msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
4336                 msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
4337                 msg.data = data;
4338                 msg.data_len = 16;
4339
4340                 j = 0;
4341                 while (*p) {
4342                         int size = strlen(p);
4343
4344                         if (size > 11)
4345                                 size = 11;
4346                         data[0] = 0;
4347                         data[1] = 0;
4348                         data[2] = 0xf0; /* OEM event without timestamp. */
4349                         data[3] = intf->channels[0].address;
4350                         data[4] = j++; /* sequence # */
4351                         /*
4352                          * Always give 11 bytes, so strncpy will fill
4353                          * it with zeroes for me.
4354                          */
4355                         strncpy(data+5, p, 11);
4356                         p += size;
4357
4358                         i_ipmi_request(NULL,
4359                                        intf,
4360                                        &addr,
4361                                        0,
4362                                        &msg,
4363                                        intf,
4364                                        &smi_msg,
4365                                        &recv_msg,
4366                                        0,
4367                                        intf->channels[0].address,
4368                                        intf->channels[0].lun,
4369                                        0, 1); /* no retry, and no wait. */
4370                 }
4371         }
4372 #endif /* CONFIG_IPMI_PANIC_STRING */
4373 }
4374 #endif /* CONFIG_IPMI_PANIC_EVENT */
4375
4376 static int has_panicked;
4377
4378 static int panic_event(struct notifier_block *this,
4379                        unsigned long         event,
4380                        void                  *ptr)
4381 {
4382         ipmi_smi_t intf;
4383
4384         if (has_panicked)
4385                 return NOTIFY_DONE;
4386         has_panicked = 1;
4387
4388         /* For every registered interface, set it to run to completion. */
4389         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4390                 if (!intf->handlers)
4391                         /* Interface is not ready. */
4392                         continue;
4393
4394                 intf->run_to_completion = 1;
4395                 intf->handlers->set_run_to_completion(intf->send_info, 1);
4396         }
4397
4398 #ifdef CONFIG_IPMI_PANIC_EVENT
4399         send_panic_events(ptr);
4400 #endif
4401
4402         return NOTIFY_DONE;
4403 }
4404
4405 static struct notifier_block panic_block = {
4406         .notifier_call  = panic_event,
4407         .next           = NULL,
4408         .priority       = 200   /* priority: INT_MAX >= x >= 0 */
4409 };
4410
4411 static int ipmi_init_msghandler(void)
4412 {
4413         int rv;
4414
4415         if (initialized)
4416                 return 0;
4417
4418         rv = driver_register(&ipmidriver.driver);
4419         if (rv) {
4420                 printk(KERN_ERR PFX "Could not register IPMI driver\n");
4421                 return rv;
4422         }
4423
4424         printk(KERN_INFO "ipmi message handler version "
4425                IPMI_DRIVER_VERSION "\n");
4426
4427 #ifdef CONFIG_PROC_FS
4428         proc_ipmi_root = proc_mkdir("ipmi", NULL);
4429         if (!proc_ipmi_root) {
4430             printk(KERN_ERR PFX "Unable to create IPMI proc dir");
4431             return -ENOMEM;
4432         }
4433
4434 #endif /* CONFIG_PROC_FS */
4435
4436         setup_timer(&ipmi_timer, ipmi_timeout, 0);
4437         mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4438
4439         atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
4440
4441         initialized = 1;
4442
4443         return 0;
4444 }
4445
4446 static __init int ipmi_init_msghandler_mod(void)
4447 {
4448         ipmi_init_msghandler();
4449         return 0;
4450 }
4451
4452 static __exit void cleanup_ipmi(void)
4453 {
4454         int count;
4455
4456         if (!initialized)
4457                 return;
4458
4459         atomic_notifier_chain_unregister(&panic_notifier_list, &panic_block);
4460
4461         /*
4462          * This can't be called if any interfaces exist, so no worry
4463          * about shutting down the interfaces.
4464          */
4465
4466         /*
4467          * Tell the timer to stop, then wait for it to stop.  This
4468          * avoids problems with race conditions removing the timer
4469          * here.
4470          */
4471         atomic_inc(&stop_operation);
4472         del_timer_sync(&ipmi_timer);
4473
4474 #ifdef CONFIG_PROC_FS
4475         remove_proc_entry(proc_ipmi_root->name, NULL);
4476 #endif /* CONFIG_PROC_FS */
4477
4478         driver_unregister(&ipmidriver.driver);
4479
4480         initialized = 0;
4481
4482         /* Check for buffer leaks. */
4483         count = atomic_read(&smi_msg_inuse_count);
4484         if (count != 0)
4485                 printk(KERN_WARNING PFX "SMI message count %d at exit\n",
4486                        count);
4487         count = atomic_read(&recv_msg_inuse_count);
4488         if (count != 0)
4489                 printk(KERN_WARNING PFX "recv message count %d at exit\n",
4490                        count);
4491 }
4492 module_exit(cleanup_ipmi);
4493
4494 module_init(ipmi_init_msghandler_mod);
4495 MODULE_LICENSE("GPL");
4496 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
4497 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
4498                    " interface.");
4499 MODULE_VERSION(IPMI_DRIVER_VERSION);