Drop 'size' argument from bio_endio and bi_end_io
[linux-2.6.git] / drivers / block / umem.c
1 /*
2  * mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3
3  *
4  * (C) 2001 San Mehat <nettwerk@valinux.com>
5  * (C) 2001 Johannes Erdfelt <jerdfelt@valinux.com>
6  * (C) 2001 NeilBrown <neilb@cse.unsw.edu.au>
7  *
8  * This driver for the Micro Memory PCI Memory Module with Battery Backup
9  * is Copyright Micro Memory Inc 2001-2002.  All rights reserved.
10  *
11  * This driver is released to the public under the terms of the
12  *  GNU GENERAL PUBLIC LICENSE version 2
13  * See the file COPYING for details.
14  *
15  * This driver provides a standard block device interface for Micro Memory(tm)
16  * PCI based RAM boards.
17  * 10/05/01: Phap Nguyen - Rebuilt the driver
18  * 10/22/01: Phap Nguyen - v2.1 Added disk partitioning
19  * 29oct2001:NeilBrown   - Use make_request_fn instead of request_fn
20  *                       - use stand disk partitioning (so fdisk works).
21  * 08nov2001:NeilBrown   - change driver name from "mm" to "umem"
22  *                       - incorporate into main kernel
23  * 08apr2002:NeilBrown   - Move some of interrupt handle to tasklet
24  *                       - use spin_lock_bh instead of _irq
25  *                       - Never block on make_request.  queue
26  *                         bh's instead.
27  *                       - unregister umem from devfs at mod unload
28  *                       - Change version to 2.3
29  * 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal)
30  * 07Jan2002: P. Nguyen  - Used PCI Memory Write & Invalidate for DMA
31  * 15May2002:NeilBrown   - convert to bio for 2.5
32  * 17May2002:NeilBrown   - remove init_mem initialisation.  Instead detect
33  *                       - a sequence of writes that cover the card, and
34  *                       - set initialised bit then.
35  */
36
37 //#define DEBUG /* uncomment if you want debugging info (pr_debug) */
38 #include <linux/fs.h>
39 #include <linux/bio.h>
40 #include <linux/kernel.h>
41 #include <linux/mm.h>
42 #include <linux/mman.h>
43 #include <linux/ioctl.h>
44 #include <linux/module.h>
45 #include <linux/init.h>
46 #include <linux/interrupt.h>
47 #include <linux/timer.h>
48 #include <linux/pci.h>
49 #include <linux/slab.h>
50 #include <linux/dma-mapping.h>
51
52 #include <linux/fcntl.h>        /* O_ACCMODE */
53 #include <linux/hdreg.h>  /* HDIO_GETGEO */
54
55 #include <linux/umem.h>
56
57 #include <asm/uaccess.h>
58 #include <asm/io.h>
59
60 #define MM_MAXCARDS 4
61 #define MM_RAHEAD 2      /* two sectors */
62 #define MM_BLKSIZE 1024  /* 1k blocks */
63 #define MM_HARDSECT 512  /* 512-byte hardware sectors */
64 #define MM_SHIFT 6       /* max 64 partitions on 4 cards  */
65
66 /*
67  * Version Information
68  */
69
70 #define DRIVER_VERSION "v2.3"
71 #define DRIVER_AUTHOR "San Mehat, Johannes Erdfelt, NeilBrown"
72 #define DRIVER_DESC "Micro Memory(tm) PCI memory board block driver"
73
74 static int debug;
75 /* #define HW_TRACE(x)     writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */
76 #define HW_TRACE(x)
77
78 #define DEBUG_LED_ON_TRANSFER   0x01
79 #define DEBUG_BATTERY_POLLING   0x02
80
81 module_param(debug, int, 0644);
82 MODULE_PARM_DESC(debug, "Debug bitmask");
83
84 static int pci_read_cmd = 0x0C;         /* Read Multiple */
85 module_param(pci_read_cmd, int, 0);
86 MODULE_PARM_DESC(pci_read_cmd, "PCI read command");
87
88 static int pci_write_cmd = 0x0F;        /* Write and Invalidate */
89 module_param(pci_write_cmd, int, 0);
90 MODULE_PARM_DESC(pci_write_cmd, "PCI write command");
91
92 static int pci_cmds;
93
94 static int major_nr;
95
96 #include <linux/blkdev.h>
97 #include <linux/blkpg.h>
98
99 struct cardinfo {
100         int             card_number;
101         struct pci_dev  *dev;
102
103         int             irq;
104
105         unsigned long   csr_base;
106         unsigned char   __iomem *csr_remap;
107         unsigned long   csr_len;
108         unsigned int    win_size; /* PCI window size */
109         unsigned int    mm_size;  /* size in kbytes */
110
111         unsigned int    init_size; /* initial segment, in sectors,
112                                     * that we know to
113                                     * have been written
114                                     */
115         struct bio      *bio, *currentbio, **biotail;
116         int             current_idx;
117         sector_t        current_sector;
118
119         struct request_queue *queue;
120
121         struct mm_page {
122                 dma_addr_t              page_dma;
123                 struct mm_dma_desc      *desc;
124                 int                     cnt, headcnt;
125                 struct bio              *bio, **biotail;
126                 int                     idx;
127         } mm_pages[2];
128 #define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc))
129
130         int  Active, Ready;
131
132         struct tasklet_struct   tasklet;
133         unsigned int dma_status;
134
135         struct {
136                 int             good;
137                 int             warned;
138                 unsigned long   last_change;
139         } battery[2];
140
141         spinlock_t      lock;
142         int             check_batteries;
143
144         int             flags;
145 };
146
147 static struct cardinfo cards[MM_MAXCARDS];
148 static struct block_device_operations mm_fops;
149 static struct timer_list battery_timer;
150
151 static int num_cards = 0;
152
153 static struct gendisk *mm_gendisk[MM_MAXCARDS];
154
155 static void check_batteries(struct cardinfo *card);
156
157 /*
158 -----------------------------------------------------------------------------------
159 --                           get_userbit
160 -----------------------------------------------------------------------------------
161 */
162 static int get_userbit(struct cardinfo *card, int bit)
163 {
164         unsigned char led;
165
166         led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
167         return led & bit;
168 }
169 /*
170 -----------------------------------------------------------------------------------
171 --                            set_userbit
172 -----------------------------------------------------------------------------------
173 */
174 static int set_userbit(struct cardinfo *card, int bit, unsigned char state)
175 {
176         unsigned char led;
177
178         led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
179         if (state)
180                 led |= bit;
181         else
182                 led &= ~bit;
183         writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
184
185         return 0;
186 }
187 /*
188 -----------------------------------------------------------------------------------
189 --                             set_led
190 -----------------------------------------------------------------------------------
191 */
192 /*
193  * NOTE: For the power LED, use the LED_POWER_* macros since they differ
194  */
195 static void set_led(struct cardinfo *card, int shift, unsigned char state)
196 {
197         unsigned char led;
198
199         led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
200         if (state == LED_FLIP)
201                 led ^= (1<<shift);
202         else {
203                 led &= ~(0x03 << shift);
204                 led |= (state << shift);
205         }
206         writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
207
208 }
209
210 #ifdef MM_DIAG
211 /*
212 -----------------------------------------------------------------------------------
213 --                              dump_regs
214 -----------------------------------------------------------------------------------
215 */
216 static void dump_regs(struct cardinfo *card)
217 {
218         unsigned char *p;
219         int i, i1;
220
221         p = card->csr_remap;
222         for (i = 0; i < 8; i++) {
223                 printk(KERN_DEBUG "%p   ", p);
224
225                 for (i1 = 0; i1 < 16; i1++)
226                         printk("%02x ", *p++);
227
228                 printk("\n");
229         }
230 }
231 #endif
232 /*
233 -----------------------------------------------------------------------------------
234 --                            dump_dmastat
235 -----------------------------------------------------------------------------------
236 */
237 static void dump_dmastat(struct cardinfo *card, unsigned int dmastat)
238 {
239         printk(KERN_DEBUG "MM%d*: DMAstat - ", card->card_number);
240         if (dmastat & DMASCR_ANY_ERR)
241                 printk("ANY_ERR ");
242         if (dmastat & DMASCR_MBE_ERR)
243                 printk("MBE_ERR ");
244         if (dmastat & DMASCR_PARITY_ERR_REP)
245                 printk("PARITY_ERR_REP ");
246         if (dmastat & DMASCR_PARITY_ERR_DET)
247                 printk("PARITY_ERR_DET ");
248         if (dmastat & DMASCR_SYSTEM_ERR_SIG)
249                 printk("SYSTEM_ERR_SIG ");
250         if (dmastat & DMASCR_TARGET_ABT)
251                 printk("TARGET_ABT ");
252         if (dmastat & DMASCR_MASTER_ABT)
253                 printk("MASTER_ABT ");
254         if (dmastat & DMASCR_CHAIN_COMPLETE)
255                 printk("CHAIN_COMPLETE ");
256         if (dmastat & DMASCR_DMA_COMPLETE)
257                 printk("DMA_COMPLETE ");
258         printk("\n");
259 }
260
261 /*
262  * Theory of request handling
263  *
264  * Each bio is assigned to one mm_dma_desc - which may not be enough FIXME
265  * We have two pages of mm_dma_desc, holding about 64 descriptors
266  * each.  These are allocated at init time.
267  * One page is "Ready" and is either full, or can have request added.
268  * The other page might be "Active", which DMA is happening on it.
269  *
270  * Whenever IO on the active page completes, the Ready page is activated
271  * and the ex-Active page is clean out and made Ready.
272  * Otherwise the Ready page is only activated when it becomes full, or
273  * when mm_unplug_device is called via the unplug_io_fn.
274  *
275  * If a request arrives while both pages a full, it is queued, and b_rdev is
276  * overloaded to record whether it was a read or a write.
277  *
278  * The interrupt handler only polls the device to clear the interrupt.
279  * The processing of the result is done in a tasklet.
280  */
281
282 static void mm_start_io(struct cardinfo *card)
283 {
284         /* we have the lock, we know there is
285          * no IO active, and we know that card->Active
286          * is set
287          */
288         struct mm_dma_desc *desc;
289         struct mm_page *page;
290         int offset;
291
292         /* make the last descriptor end the chain */
293         page = &card->mm_pages[card->Active];
294         pr_debug("start_io: %d %d->%d\n", card->Active, page->headcnt, page->cnt-1);
295         desc = &page->desc[page->cnt-1];
296
297         desc->control_bits |= cpu_to_le32(DMASCR_CHAIN_COMP_EN);
298         desc->control_bits &= ~cpu_to_le32(DMASCR_CHAIN_EN);
299         desc->sem_control_bits = desc->control_bits;
300
301                                
302         if (debug & DEBUG_LED_ON_TRANSFER)
303                 set_led(card, LED_REMOVE, LED_ON);
304
305         desc = &page->desc[page->headcnt];
306         writel(0, card->csr_remap + DMA_PCI_ADDR);
307         writel(0, card->csr_remap + DMA_PCI_ADDR + 4);
308
309         writel(0, card->csr_remap + DMA_LOCAL_ADDR);
310         writel(0, card->csr_remap + DMA_LOCAL_ADDR + 4);
311
312         writel(0, card->csr_remap + DMA_TRANSFER_SIZE);
313         writel(0, card->csr_remap + DMA_TRANSFER_SIZE + 4);
314
315         writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR);
316         writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR + 4);
317
318         offset = ((char*)desc) - ((char*)page->desc);
319         writel(cpu_to_le32((page->page_dma+offset)&0xffffffff),
320                card->csr_remap + DMA_DESCRIPTOR_ADDR);
321         /* Force the value to u64 before shifting otherwise >> 32 is undefined C
322          * and on some ports will do nothing ! */
323         writel(cpu_to_le32(((u64)page->page_dma)>>32),
324                card->csr_remap + DMA_DESCRIPTOR_ADDR + 4);
325
326         /* Go, go, go */
327         writel(cpu_to_le32(DMASCR_GO | DMASCR_CHAIN_EN | pci_cmds),
328                card->csr_remap + DMA_STATUS_CTRL);
329 }
330
331 static int add_bio(struct cardinfo *card);
332
333 static void activate(struct cardinfo *card)
334 {
335         /* if No page is Active, and Ready is 
336          * not empty, then switch Ready page
337          * to active and start IO.
338          * Then add any bh's that are available to Ready
339          */
340
341         do {
342                 while (add_bio(card))
343                         ;
344
345                 if (card->Active == -1 &&
346                     card->mm_pages[card->Ready].cnt > 0) {
347                         card->Active = card->Ready;
348                         card->Ready = 1-card->Ready;
349                         mm_start_io(card);
350                 }
351
352         } while (card->Active == -1 && add_bio(card));
353 }
354
355 static inline void reset_page(struct mm_page *page)
356 {
357         page->cnt = 0;
358         page->headcnt = 0;
359         page->bio = NULL;
360         page->biotail = & page->bio;
361 }
362
363 static void mm_unplug_device(struct request_queue *q)
364 {
365         struct cardinfo *card = q->queuedata;
366         unsigned long flags;
367
368         spin_lock_irqsave(&card->lock, flags);
369         if (blk_remove_plug(q))
370                 activate(card);
371         spin_unlock_irqrestore(&card->lock, flags);
372 }
373
374 /* 
375  * If there is room on Ready page, take
376  * one bh off list and add it.
377  * return 1 if there was room, else 0.
378  */
379 static int add_bio(struct cardinfo *card)
380 {
381         struct mm_page *p;
382         struct mm_dma_desc *desc;
383         dma_addr_t dma_handle;
384         int offset;
385         struct bio *bio;
386         struct bio_vec *vec;
387         int idx;
388         int rw;
389         int len;
390
391         bio = card->currentbio;
392         if (!bio && card->bio) {
393                 card->currentbio = card->bio;
394                 card->current_idx = card->bio->bi_idx;
395                 card->current_sector = card->bio->bi_sector;
396                 card->bio = card->bio->bi_next;
397                 if (card->bio == NULL)
398                         card->biotail = &card->bio;
399                 card->currentbio->bi_next = NULL;
400                 return 1;
401         }
402         if (!bio)
403                 return 0;
404         idx = card->current_idx;
405
406         rw = bio_rw(bio);
407         if (card->mm_pages[card->Ready].cnt >= DESC_PER_PAGE)
408                 return 0;
409
410         vec = bio_iovec_idx(bio, idx);
411         len = vec->bv_len;
412         dma_handle = pci_map_page(card->dev,
413                                   vec->bv_page,
414                                   vec->bv_offset,
415                                   len,
416                                   (rw==READ) ?
417                                   PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE);
418
419         p = &card->mm_pages[card->Ready];
420         desc = &p->desc[p->cnt];
421         p->cnt++;
422         if (p->bio == NULL)
423                 p->idx = idx;
424         if ((p->biotail) != &bio->bi_next) {
425                 *(p->biotail) = bio;
426                 p->biotail = &(bio->bi_next);
427                 bio->bi_next = NULL;
428         }
429
430         desc->data_dma_handle = dma_handle;
431
432         desc->pci_addr = cpu_to_le64((u64)desc->data_dma_handle);
433         desc->local_addr = cpu_to_le64(card->current_sector << 9);
434         desc->transfer_size = cpu_to_le32(len);
435         offset = ( ((char*)&desc->sem_control_bits) - ((char*)p->desc));
436         desc->sem_addr = cpu_to_le64((u64)(p->page_dma+offset));
437         desc->zero1 = desc->zero2 = 0;
438         offset = ( ((char*)(desc+1)) - ((char*)p->desc));
439         desc->next_desc_addr = cpu_to_le64(p->page_dma+offset);
440         desc->control_bits = cpu_to_le32(DMASCR_GO|DMASCR_ERR_INT_EN|
441                                          DMASCR_PARITY_INT_EN|
442                                          DMASCR_CHAIN_EN |
443                                          DMASCR_SEM_EN |
444                                          pci_cmds);
445         if (rw == WRITE)
446                 desc->control_bits |= cpu_to_le32(DMASCR_TRANSFER_READ);
447         desc->sem_control_bits = desc->control_bits;
448
449         card->current_sector += (len >> 9);
450         idx++;
451         card->current_idx = idx;
452         if (idx >= bio->bi_vcnt)
453                 card->currentbio = NULL;
454
455         return 1;
456 }
457
458 static void process_page(unsigned long data)
459 {
460         /* check if any of the requests in the page are DMA_COMPLETE,
461          * and deal with them appropriately.
462          * If we find a descriptor without DMA_COMPLETE in the semaphore, then
463          * dma must have hit an error on that descriptor, so use dma_status instead
464          * and assume that all following descriptors must be re-tried.
465          */
466         struct mm_page *page;
467         struct bio *return_bio=NULL;
468         struct cardinfo *card = (struct cardinfo *)data;
469         unsigned int dma_status = card->dma_status;
470
471         spin_lock_bh(&card->lock);
472         if (card->Active < 0)
473                 goto out_unlock;
474         page = &card->mm_pages[card->Active];
475         
476         while (page->headcnt < page->cnt) {
477                 struct bio *bio = page->bio;
478                 struct mm_dma_desc *desc = &page->desc[page->headcnt];
479                 int control = le32_to_cpu(desc->sem_control_bits);
480                 int last=0;
481                 int idx;
482
483                 if (!(control & DMASCR_DMA_COMPLETE)) {
484                         control = dma_status;
485                         last=1; 
486                 }
487                 page->headcnt++;
488                 idx = page->idx;
489                 page->idx++;
490                 if (page->idx >= bio->bi_vcnt) {
491                         page->bio = bio->bi_next;
492                         page->idx = page->bio->bi_idx;
493                 }
494
495                 pci_unmap_page(card->dev, desc->data_dma_handle, 
496                                bio_iovec_idx(bio,idx)->bv_len,
497                                  (control& DMASCR_TRANSFER_READ) ?
498                                 PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE);
499                 if (control & DMASCR_HARD_ERROR) {
500                         /* error */
501                         clear_bit(BIO_UPTODATE, &bio->bi_flags);
502                         printk(KERN_WARNING "MM%d: I/O error on sector %d/%d\n",
503                                card->card_number, 
504                                le32_to_cpu(desc->local_addr)>>9,
505                                le32_to_cpu(desc->transfer_size));
506                         dump_dmastat(card, control);
507                 } else if (test_bit(BIO_RW, &bio->bi_rw) &&
508                            le32_to_cpu(desc->local_addr)>>9 == card->init_size) {
509                         card->init_size += le32_to_cpu(desc->transfer_size)>>9;
510                         if (card->init_size>>1 >= card->mm_size) {
511                                 printk(KERN_INFO "MM%d: memory now initialised\n",
512                                        card->card_number);
513                                 set_userbit(card, MEMORY_INITIALIZED, 1);
514                         }
515                 }
516                 if (bio != page->bio) {
517                         bio->bi_next = return_bio;
518                         return_bio = bio;
519                 }
520
521                 if (last) break;
522         }
523
524         if (debug & DEBUG_LED_ON_TRANSFER)
525                 set_led(card, LED_REMOVE, LED_OFF);
526
527         if (card->check_batteries) {
528                 card->check_batteries = 0;
529                 check_batteries(card);
530         }
531         if (page->headcnt >= page->cnt) {
532                 reset_page(page);
533                 card->Active = -1;
534                 activate(card);
535         } else {
536                 /* haven't finished with this one yet */
537                 pr_debug("do some more\n");
538                 mm_start_io(card);
539         }
540  out_unlock:
541         spin_unlock_bh(&card->lock);
542
543         while(return_bio) {
544                 struct bio *bio = return_bio;
545
546                 return_bio = bio->bi_next;
547                 bio->bi_next = NULL;
548                 bio_endio(bio, 0);
549         }
550 }
551
552 /*
553 -----------------------------------------------------------------------------------
554 --                              mm_make_request
555 -----------------------------------------------------------------------------------
556 */
557 static int mm_make_request(struct request_queue *q, struct bio *bio)
558 {
559         struct cardinfo *card = q->queuedata;
560         pr_debug("mm_make_request %llu %u\n",
561                  (unsigned long long)bio->bi_sector, bio->bi_size);
562
563         spin_lock_irq(&card->lock);
564         *card->biotail = bio;
565         bio->bi_next = NULL;
566         card->biotail = &bio->bi_next;
567         blk_plug_device(q);
568         spin_unlock_irq(&card->lock);
569
570         return 0;
571 }
572
573 /*
574 -----------------------------------------------------------------------------------
575 --                              mm_interrupt
576 -----------------------------------------------------------------------------------
577 */
578 static irqreturn_t mm_interrupt(int irq, void *__card)
579 {
580         struct cardinfo *card = (struct cardinfo *) __card;
581         unsigned int dma_status;
582         unsigned short cfg_status;
583
584 HW_TRACE(0x30);
585
586         dma_status = le32_to_cpu(readl(card->csr_remap + DMA_STATUS_CTRL));
587
588         if (!(dma_status & (DMASCR_ERROR_MASK | DMASCR_CHAIN_COMPLETE))) {
589                 /* interrupt wasn't for me ... */
590                 return IRQ_NONE;
591         }
592
593         /* clear COMPLETION interrupts */
594         if (card->flags & UM_FLAG_NO_BYTE_STATUS)
595                 writel(cpu_to_le32(DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE),
596                        card->csr_remap+ DMA_STATUS_CTRL);
597         else
598                 writeb((DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE) >> 16,
599                        card->csr_remap+ DMA_STATUS_CTRL + 2);
600         
601         /* log errors and clear interrupt status */
602         if (dma_status & DMASCR_ANY_ERR) {
603                 unsigned int    data_log1, data_log2;
604                 unsigned int    addr_log1, addr_log2;
605                 unsigned char   stat, count, syndrome, check;
606
607                 stat = readb(card->csr_remap + MEMCTRLCMD_ERRSTATUS);
608
609                 data_log1 = le32_to_cpu(readl(card->csr_remap + ERROR_DATA_LOG));
610                 data_log2 = le32_to_cpu(readl(card->csr_remap + ERROR_DATA_LOG + 4));
611                 addr_log1 = le32_to_cpu(readl(card->csr_remap + ERROR_ADDR_LOG));
612                 addr_log2 = readb(card->csr_remap + ERROR_ADDR_LOG + 4);
613
614                 count = readb(card->csr_remap + ERROR_COUNT);
615                 syndrome = readb(card->csr_remap + ERROR_SYNDROME);
616                 check = readb(card->csr_remap + ERROR_CHECK);
617
618                 dump_dmastat(card, dma_status);
619
620                 if (stat & 0x01)
621                         printk(KERN_ERR "MM%d*: Memory access error detected (err count %d)\n",
622                                 card->card_number, count);
623                 if (stat & 0x02)
624                         printk(KERN_ERR "MM%d*: Multi-bit EDC error\n",
625                                 card->card_number);
626
627                 printk(KERN_ERR "MM%d*: Fault Address 0x%02x%08x, Fault Data 0x%08x%08x\n",
628                         card->card_number, addr_log2, addr_log1, data_log2, data_log1);
629                 printk(KERN_ERR "MM%d*: Fault Check 0x%02x, Fault Syndrome 0x%02x\n",
630                         card->card_number, check, syndrome);
631
632                 writeb(0, card->csr_remap + ERROR_COUNT);
633         }
634
635         if (dma_status & DMASCR_PARITY_ERR_REP) {
636                 printk(KERN_ERR "MM%d*: PARITY ERROR REPORTED\n", card->card_number);
637                 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
638                 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
639         }
640
641         if (dma_status & DMASCR_PARITY_ERR_DET) {
642                 printk(KERN_ERR "MM%d*: PARITY ERROR DETECTED\n", card->card_number); 
643                 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
644                 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
645         }
646
647         if (dma_status & DMASCR_SYSTEM_ERR_SIG) {
648                 printk(KERN_ERR "MM%d*: SYSTEM ERROR\n", card->card_number); 
649                 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
650                 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
651         }
652
653         if (dma_status & DMASCR_TARGET_ABT) {
654                 printk(KERN_ERR "MM%d*: TARGET ABORT\n", card->card_number); 
655                 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
656                 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
657         }
658
659         if (dma_status & DMASCR_MASTER_ABT) {
660                 printk(KERN_ERR "MM%d*: MASTER ABORT\n", card->card_number); 
661                 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
662                 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
663         }
664
665         /* and process the DMA descriptors */
666         card->dma_status = dma_status;
667         tasklet_schedule(&card->tasklet);
668
669 HW_TRACE(0x36);
670
671         return IRQ_HANDLED; 
672 }
673 /*
674 -----------------------------------------------------------------------------------
675 --                         set_fault_to_battery_status
676 -----------------------------------------------------------------------------------
677 */
678 /*
679  * If both batteries are good, no LED
680  * If either battery has been warned, solid LED
681  * If both batteries are bad, flash the LED quickly
682  * If either battery is bad, flash the LED semi quickly
683  */
684 static void set_fault_to_battery_status(struct cardinfo *card)
685 {
686         if (card->battery[0].good && card->battery[1].good)
687                 set_led(card, LED_FAULT, LED_OFF);
688         else if (card->battery[0].warned || card->battery[1].warned)
689                 set_led(card, LED_FAULT, LED_ON);
690         else if (!card->battery[0].good && !card->battery[1].good)
691                 set_led(card, LED_FAULT, LED_FLASH_7_0);
692         else
693                 set_led(card, LED_FAULT, LED_FLASH_3_5);
694 }
695
696 static void init_battery_timer(void);
697
698
699 /*
700 -----------------------------------------------------------------------------------
701 --                            check_battery
702 -----------------------------------------------------------------------------------
703 */
704 static int check_battery(struct cardinfo *card, int battery, int status)
705 {
706         if (status != card->battery[battery].good) {
707                 card->battery[battery].good = !card->battery[battery].good;
708                 card->battery[battery].last_change = jiffies;
709
710                 if (card->battery[battery].good) {
711                         printk(KERN_ERR "MM%d: Battery %d now good\n",
712                                 card->card_number, battery + 1);
713                         card->battery[battery].warned = 0;
714                 } else
715                         printk(KERN_ERR "MM%d: Battery %d now FAILED\n",
716                                 card->card_number, battery + 1);
717
718                 return 1;
719         } else if (!card->battery[battery].good &&
720                    !card->battery[battery].warned &&
721                    time_after_eq(jiffies, card->battery[battery].last_change +
722                                  (HZ * 60 * 60 * 5))) {
723                 printk(KERN_ERR "MM%d: Battery %d still FAILED after 5 hours\n",
724                         card->card_number, battery + 1);
725                 card->battery[battery].warned = 1;
726
727                 return 1;
728         }
729
730         return 0;
731 }
732 /*
733 -----------------------------------------------------------------------------------
734 --                              check_batteries
735 -----------------------------------------------------------------------------------
736 */
737 static void check_batteries(struct cardinfo *card)
738 {
739         /* NOTE: this must *never* be called while the card
740          * is doing (bus-to-card) DMA, or you will need the
741          * reset switch
742          */
743         unsigned char status;
744         int ret1, ret2;
745
746         status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
747         if (debug & DEBUG_BATTERY_POLLING)
748                 printk(KERN_DEBUG "MM%d: checking battery status, 1 = %s, 2 = %s\n",
749                        card->card_number,
750                        (status & BATTERY_1_FAILURE) ? "FAILURE" : "OK",
751                        (status & BATTERY_2_FAILURE) ? "FAILURE" : "OK");
752
753         ret1 = check_battery(card, 0, !(status & BATTERY_1_FAILURE));
754         ret2 = check_battery(card, 1, !(status & BATTERY_2_FAILURE));
755
756         if (ret1 || ret2)
757                 set_fault_to_battery_status(card);
758 }
759
760 static void check_all_batteries(unsigned long ptr)
761 {
762         int i;
763
764         for (i = 0; i < num_cards; i++) 
765                 if (!(cards[i].flags & UM_FLAG_NO_BATT)) {
766                         struct cardinfo *card = &cards[i];
767                         spin_lock_bh(&card->lock);
768                         if (card->Active >= 0)
769                                 card->check_batteries = 1;
770                         else
771                                 check_batteries(card);
772                         spin_unlock_bh(&card->lock);
773                 }
774
775         init_battery_timer();
776 }
777 /*
778 -----------------------------------------------------------------------------------
779 --                            init_battery_timer
780 -----------------------------------------------------------------------------------
781 */
782 static void init_battery_timer(void)
783 {
784         init_timer(&battery_timer);
785         battery_timer.function = check_all_batteries;
786         battery_timer.expires = jiffies + (HZ * 60);
787         add_timer(&battery_timer);
788 }
789 /*
790 -----------------------------------------------------------------------------------
791 --                              del_battery_timer
792 -----------------------------------------------------------------------------------
793 */
794 static void del_battery_timer(void)
795 {
796         del_timer(&battery_timer);
797 }
798 /*
799 -----------------------------------------------------------------------------------
800 --                                mm_revalidate
801 -----------------------------------------------------------------------------------
802 */
803 /*
804  * Note no locks taken out here.  In a worst case scenario, we could drop
805  * a chunk of system memory.  But that should never happen, since validation
806  * happens at open or mount time, when locks are held.
807  *
808  *      That's crap, since doing that while some partitions are opened
809  * or mounted will give you really nasty results.
810  */
811 static int mm_revalidate(struct gendisk *disk)
812 {
813         struct cardinfo *card = disk->private_data;
814         set_capacity(disk, card->mm_size << 1);
815         return 0;
816 }
817
818 static int mm_getgeo(struct block_device *bdev, struct hd_geometry *geo)
819 {
820         struct cardinfo *card = bdev->bd_disk->private_data;
821         int size = card->mm_size * (1024 / MM_HARDSECT);
822
823         /*
824          * get geometry: we have to fake one...  trim the size to a
825          * multiple of 2048 (1M): tell we have 32 sectors, 64 heads,
826          * whatever cylinders.
827          */
828         geo->heads     = 64;
829         geo->sectors   = 32;
830         geo->cylinders = size / (geo->heads * geo->sectors);
831         return 0;
832 }
833
834 /*
835 -----------------------------------------------------------------------------------
836 --                                mm_check_change
837 -----------------------------------------------------------------------------------
838   Future support for removable devices
839 */
840 static int mm_check_change(struct gendisk *disk)
841 {
842 /*  struct cardinfo *dev = disk->private_data; */
843         return 0;
844 }
845 /*
846 -----------------------------------------------------------------------------------
847 --                             mm_fops
848 -----------------------------------------------------------------------------------
849 */
850 static struct block_device_operations mm_fops = {
851         .owner          = THIS_MODULE,
852         .getgeo         = mm_getgeo,
853         .revalidate_disk= mm_revalidate,
854         .media_changed  = mm_check_change,
855 };
856 /*
857 -----------------------------------------------------------------------------------
858 --                                mm_pci_probe
859 -----------------------------------------------------------------------------------
860 */
861 static int __devinit mm_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
862 {
863         int ret = -ENODEV;
864         struct cardinfo *card = &cards[num_cards];
865         unsigned char   mem_present;
866         unsigned char   batt_status;
867         unsigned int    saved_bar, data;
868         int             magic_number;
869
870         if (pci_enable_device(dev) < 0)
871                 return -ENODEV;
872
873         pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xF8);
874         pci_set_master(dev);
875
876         card->dev         = dev;
877         card->card_number = num_cards;
878
879         card->csr_base = pci_resource_start(dev, 0);
880         card->csr_len  = pci_resource_len(dev, 0);
881
882         printk(KERN_INFO "Micro Memory(tm) controller #%d found at %02x:%02x (PCI Mem Module (Battery Backup))\n",
883                card->card_number, dev->bus->number, dev->devfn);
884
885         if (pci_set_dma_mask(dev, DMA_64BIT_MASK) &&
886             pci_set_dma_mask(dev, DMA_32BIT_MASK)) {
887                 printk(KERN_WARNING "MM%d: NO suitable DMA found\n",num_cards);
888                 return  -ENOMEM;
889         }
890         if (!request_mem_region(card->csr_base, card->csr_len, "Micro Memory")) {
891                 printk(KERN_ERR "MM%d: Unable to request memory region\n", card->card_number);
892                 ret = -ENOMEM;
893
894                 goto failed_req_csr;
895         }
896
897         card->csr_remap = ioremap_nocache(card->csr_base, card->csr_len);
898         if (!card->csr_remap) {
899                 printk(KERN_ERR "MM%d: Unable to remap memory region\n", card->card_number);
900                 ret = -ENOMEM;
901
902                 goto failed_remap_csr;
903         }
904
905         printk(KERN_INFO "MM%d: CSR 0x%08lx -> 0x%p (0x%lx)\n", card->card_number,
906                card->csr_base, card->csr_remap, card->csr_len);
907
908         switch(card->dev->device) {
909         case 0x5415:
910                 card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG;
911                 magic_number = 0x59;
912                 break;
913
914         case 0x5425:
915                 card->flags |= UM_FLAG_NO_BYTE_STATUS;
916                 magic_number = 0x5C;
917                 break;
918
919         case 0x6155:
920                 card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG | UM_FLAG_NO_BATT;
921                 magic_number = 0x99;
922                 break;
923
924         default:
925                 magic_number = 0x100;
926                 break;
927         }
928
929         if (readb(card->csr_remap + MEMCTRLSTATUS_MAGIC) != magic_number) {
930                 printk(KERN_ERR "MM%d: Magic number invalid\n", card->card_number);
931                 ret = -ENOMEM;
932                 goto failed_magic;
933         }
934
935         card->mm_pages[0].desc = pci_alloc_consistent(card->dev,
936                                                       PAGE_SIZE*2,
937                                                       &card->mm_pages[0].page_dma);
938         card->mm_pages[1].desc = pci_alloc_consistent(card->dev,
939                                                       PAGE_SIZE*2,
940                                                       &card->mm_pages[1].page_dma);
941         if (card->mm_pages[0].desc == NULL ||
942             card->mm_pages[1].desc == NULL) {
943                 printk(KERN_ERR "MM%d: alloc failed\n", card->card_number);
944                 goto failed_alloc;
945         }
946         reset_page(&card->mm_pages[0]);
947         reset_page(&card->mm_pages[1]);
948         card->Ready = 0;        /* page 0 is ready */
949         card->Active = -1;      /* no page is active */
950         card->bio = NULL;
951         card->biotail = &card->bio;
952
953         card->queue = blk_alloc_queue(GFP_KERNEL);
954         if (!card->queue)
955                 goto failed_alloc;
956
957         blk_queue_make_request(card->queue, mm_make_request);
958         card->queue->queuedata = card;
959         card->queue->unplug_fn = mm_unplug_device;
960
961         tasklet_init(&card->tasklet, process_page, (unsigned long)card);
962
963         card->check_batteries = 0;
964         
965         mem_present = readb(card->csr_remap + MEMCTRLSTATUS_MEMORY);
966         switch (mem_present) {
967         case MEM_128_MB:
968                 card->mm_size = 1024 * 128;
969                 break;
970         case MEM_256_MB:
971                 card->mm_size = 1024 * 256;
972                 break;
973         case MEM_512_MB:
974                 card->mm_size = 1024 * 512;
975                 break;
976         case MEM_1_GB:
977                 card->mm_size = 1024 * 1024;
978                 break;
979         case MEM_2_GB:
980                 card->mm_size = 1024 * 2048;
981                 break;
982         default:
983                 card->mm_size = 0;
984                 break;
985         }
986
987         /* Clear the LED's we control */
988         set_led(card, LED_REMOVE, LED_OFF);
989         set_led(card, LED_FAULT, LED_OFF);
990
991         batt_status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
992
993         card->battery[0].good = !(batt_status & BATTERY_1_FAILURE);
994         card->battery[1].good = !(batt_status & BATTERY_2_FAILURE);
995         card->battery[0].last_change = card->battery[1].last_change = jiffies;
996
997         if (card->flags & UM_FLAG_NO_BATT) 
998                 printk(KERN_INFO "MM%d: Size %d KB\n",
999                        card->card_number, card->mm_size);
1000         else {
1001                 printk(KERN_INFO "MM%d: Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)\n",
1002                        card->card_number, card->mm_size,
1003                        (batt_status & BATTERY_1_DISABLED ? "Disabled" : "Enabled"),
1004                        card->battery[0].good ? "OK" : "FAILURE",
1005                        (batt_status & BATTERY_2_DISABLED ? "Disabled" : "Enabled"),
1006                        card->battery[1].good ? "OK" : "FAILURE");
1007
1008                 set_fault_to_battery_status(card);
1009         }
1010
1011         pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &saved_bar);
1012         data = 0xffffffff;
1013         pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, data);
1014         pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &data);
1015         pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, saved_bar);
1016         data &= 0xfffffff0;
1017         data = ~data;
1018         data += 1;
1019
1020         card->win_size = data;
1021
1022
1023         if (request_irq(dev->irq, mm_interrupt, IRQF_SHARED, "pci-umem", card)) {
1024                 printk(KERN_ERR "MM%d: Unable to allocate IRQ\n", card->card_number);
1025                 ret = -ENODEV;
1026
1027                 goto failed_req_irq;
1028         }
1029
1030         card->irq = dev->irq;
1031         printk(KERN_INFO "MM%d: Window size %d bytes, IRQ %d\n", card->card_number,
1032                card->win_size, card->irq);
1033
1034         spin_lock_init(&card->lock);
1035
1036         pci_set_drvdata(dev, card);
1037
1038         if (pci_write_cmd != 0x0F)      /* If not Memory Write & Invalidate */
1039                 pci_write_cmd = 0x07;   /* then Memory Write command */
1040
1041         if (pci_write_cmd & 0x08) { /* use Memory Write and Invalidate */
1042                 unsigned short cfg_command;
1043                 pci_read_config_word(dev, PCI_COMMAND, &cfg_command);
1044                 cfg_command |= 0x10; /* Memory Write & Invalidate Enable */
1045                 pci_write_config_word(dev, PCI_COMMAND, cfg_command);
1046         }
1047         pci_cmds = (pci_read_cmd << 28) | (pci_write_cmd << 24);
1048
1049         num_cards++;
1050
1051         if (!get_userbit(card, MEMORY_INITIALIZED)) {
1052                 printk(KERN_INFO "MM%d: memory NOT initialized. Consider over-writing whole device.\n", card->card_number);
1053                 card->init_size = 0;
1054         } else {
1055                 printk(KERN_INFO "MM%d: memory already initialized\n", card->card_number);
1056                 card->init_size = card->mm_size;
1057         }
1058
1059         /* Enable ECC */
1060         writeb(EDC_STORE_CORRECT, card->csr_remap + MEMCTRLCMD_ERRCTRL);
1061
1062         return 0;
1063
1064  failed_req_irq:
1065  failed_alloc:
1066         if (card->mm_pages[0].desc)
1067                 pci_free_consistent(card->dev, PAGE_SIZE*2,
1068                                     card->mm_pages[0].desc,
1069                                     card->mm_pages[0].page_dma);
1070         if (card->mm_pages[1].desc)
1071                 pci_free_consistent(card->dev, PAGE_SIZE*2,
1072                                     card->mm_pages[1].desc,
1073                                     card->mm_pages[1].page_dma);
1074  failed_magic:
1075         iounmap(card->csr_remap);
1076  failed_remap_csr:
1077         release_mem_region(card->csr_base, card->csr_len);
1078  failed_req_csr:
1079
1080         return ret;
1081 }
1082 /*
1083 -----------------------------------------------------------------------------------
1084 --                              mm_pci_remove
1085 -----------------------------------------------------------------------------------
1086 */
1087 static void mm_pci_remove(struct pci_dev *dev)
1088 {
1089         struct cardinfo *card = pci_get_drvdata(dev);
1090
1091         tasklet_kill(&card->tasklet);
1092         iounmap(card->csr_remap);
1093         release_mem_region(card->csr_base, card->csr_len);
1094         free_irq(card->irq, card);
1095
1096         if (card->mm_pages[0].desc)
1097                 pci_free_consistent(card->dev, PAGE_SIZE*2,
1098                                     card->mm_pages[0].desc,
1099                                     card->mm_pages[0].page_dma);
1100         if (card->mm_pages[1].desc)
1101                 pci_free_consistent(card->dev, PAGE_SIZE*2,
1102                                     card->mm_pages[1].desc,
1103                                     card->mm_pages[1].page_dma);
1104         blk_cleanup_queue(card->queue);
1105 }
1106
1107 static const struct pci_device_id mm_pci_ids[] = {
1108     {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY,PCI_DEVICE_ID_MICRO_MEMORY_5415CN)},
1109     {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY,PCI_DEVICE_ID_MICRO_MEMORY_5425CN)},
1110     {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY,PCI_DEVICE_ID_MICRO_MEMORY_6155)},
1111     {
1112         .vendor =       0x8086,
1113         .device =       0xB555,
1114         .subvendor=     0x1332,
1115         .subdevice=     0x5460,
1116         .class  =       0x050000,
1117         .class_mask=    0,
1118     }, { /* end: all zeroes */ }
1119 };
1120
1121 MODULE_DEVICE_TABLE(pci, mm_pci_ids);
1122
1123 static struct pci_driver mm_pci_driver = {
1124         .name =         "umem",
1125         .id_table =     mm_pci_ids,
1126         .probe =        mm_pci_probe,
1127         .remove =       mm_pci_remove,
1128 };
1129 /*
1130 -----------------------------------------------------------------------------------
1131 --                               mm_init
1132 -----------------------------------------------------------------------------------
1133 */
1134
1135 static int __init mm_init(void)
1136 {
1137         int retval, i;
1138         int err;
1139
1140         printk(KERN_INFO DRIVER_VERSION " : " DRIVER_DESC "\n");
1141
1142         retval = pci_register_driver(&mm_pci_driver);
1143         if (retval)
1144                 return -ENOMEM;
1145
1146         err = major_nr = register_blkdev(0, "umem");
1147         if (err < 0) {
1148                 pci_unregister_driver(&mm_pci_driver);
1149                 return -EIO;
1150         }
1151
1152         for (i = 0; i < num_cards; i++) {
1153                 mm_gendisk[i] = alloc_disk(1 << MM_SHIFT);
1154                 if (!mm_gendisk[i])
1155                         goto out;
1156         }
1157
1158         for (i = 0; i < num_cards; i++) {
1159                 struct gendisk *disk = mm_gendisk[i];
1160                 sprintf(disk->disk_name, "umem%c", 'a'+i);
1161                 spin_lock_init(&cards[i].lock);
1162                 disk->major = major_nr;
1163                 disk->first_minor  = i << MM_SHIFT;
1164                 disk->fops = &mm_fops;
1165                 disk->private_data = &cards[i];
1166                 disk->queue = cards[i].queue;
1167                 set_capacity(disk, cards[i].mm_size << 1);
1168                 add_disk(disk);
1169         }
1170
1171         init_battery_timer();
1172         printk("MM: desc_per_page = %ld\n", DESC_PER_PAGE);
1173 /* printk("mm_init: Done. 10-19-01 9:00\n"); */
1174         return 0;
1175
1176 out:
1177         pci_unregister_driver(&mm_pci_driver);
1178         unregister_blkdev(major_nr, "umem");
1179         while (i--)
1180                 put_disk(mm_gendisk[i]);
1181         return -ENOMEM;
1182 }
1183 /*
1184 -----------------------------------------------------------------------------------
1185 --                             mm_cleanup
1186 -----------------------------------------------------------------------------------
1187 */
1188 static void __exit mm_cleanup(void)
1189 {
1190         int i;
1191
1192         del_battery_timer();
1193
1194         for (i=0; i < num_cards ; i++) {
1195                 del_gendisk(mm_gendisk[i]);
1196                 put_disk(mm_gendisk[i]);
1197         }
1198
1199         pci_unregister_driver(&mm_pci_driver);
1200
1201         unregister_blkdev(major_nr, "umem");
1202 }
1203
1204 module_init(mm_init);
1205 module_exit(mm_cleanup);
1206
1207 MODULE_AUTHOR(DRIVER_AUTHOR);
1208 MODULE_DESCRIPTION(DRIVER_DESC);
1209 MODULE_LICENSE("GPL");