block: Consolidate phys_segment and hw_segment limits
[linux-2.6.git] / drivers / block / cciss.c
1 /*
2  *    Disk Array driver for HP Smart Array controllers.
3  *    (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12  *    General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
17  *    02111-1307, USA.
18  *
19  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
20  *
21  */
22
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/smp_lock.h>
30 #include <linux/delay.h>
31 #include <linux/major.h>
32 #include <linux/fs.h>
33 #include <linux/bio.h>
34 #include <linux/blkpg.h>
35 #include <linux/timer.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/init.h>
39 #include <linux/jiffies.h>
40 #include <linux/hdreg.h>
41 #include <linux/spinlock.h>
42 #include <linux/compat.h>
43 #include <linux/mutex.h>
44 #include <asm/uaccess.h>
45 #include <asm/io.h>
46
47 #include <linux/dma-mapping.h>
48 #include <linux/blkdev.h>
49 #include <linux/genhd.h>
50 #include <linux/completion.h>
51 #include <scsi/scsi.h>
52 #include <scsi/sg.h>
53 #include <scsi/scsi_ioctl.h>
54 #include <linux/cdrom.h>
55 #include <linux/scatterlist.h>
56 #include <linux/kthread.h>
57
58 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
59 #define DRIVER_NAME "HP CISS Driver (v 3.6.20)"
60 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 20)
61
62 /* Embedded module documentation macros - see modules.h */
63 MODULE_AUTHOR("Hewlett-Packard Company");
64 MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
65 MODULE_SUPPORTED_DEVICE("HP SA5i SA5i+ SA532 SA5300 SA5312 SA641 SA642 SA6400"
66                         " SA6i P600 P800 P400 P400i E200 E200i E500 P700m"
67                         " Smart Array G2 Series SAS/SATA Controllers");
68 MODULE_VERSION("3.6.20");
69 MODULE_LICENSE("GPL");
70
71 static int cciss_allow_hpsa;
72 module_param(cciss_allow_hpsa, int, S_IRUGO|S_IWUSR);
73 MODULE_PARM_DESC(cciss_allow_hpsa,
74         "Prevent cciss driver from accessing hardware known to be "
75         " supported by the hpsa driver");
76
77 #include "cciss_cmd.h"
78 #include "cciss.h"
79 #include <linux/cciss_ioctl.h>
80
81 /* define the PCI info for the cards we can control */
82 static const struct pci_device_id cciss_pci_device_id[] = {
83         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS,  0x0E11, 0x4070},
84         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
85         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
86         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
87         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
88         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
89         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
90         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
91         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
92         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSA,     0x103C, 0x3225},
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3223},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3234},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3235},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3211},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3212},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3213},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3214},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3215},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3237},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x323D},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
110         {0,}
111 };
112
113 MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
114
115 /*  board_id = Subsystem Device ID & Vendor ID
116  *  product = Marketing Name for the board
117  *  access = Address of the struct of function pointers
118  */
119 static struct board_type products[] = {
120         {0x40700E11, "Smart Array 5300", &SA5_access},
121         {0x40800E11, "Smart Array 5i", &SA5B_access},
122         {0x40820E11, "Smart Array 532", &SA5B_access},
123         {0x40830E11, "Smart Array 5312", &SA5B_access},
124         {0x409A0E11, "Smart Array 641", &SA5_access},
125         {0x409B0E11, "Smart Array 642", &SA5_access},
126         {0x409C0E11, "Smart Array 6400", &SA5_access},
127         {0x409D0E11, "Smart Array 6400 EM", &SA5_access},
128         {0x40910E11, "Smart Array 6i", &SA5_access},
129         {0x3225103C, "Smart Array P600", &SA5_access},
130         {0x3235103C, "Smart Array P400i", &SA5_access},
131         {0x3211103C, "Smart Array E200i", &SA5_access},
132         {0x3212103C, "Smart Array E200", &SA5_access},
133         {0x3213103C, "Smart Array E200i", &SA5_access},
134         {0x3214103C, "Smart Array E200i", &SA5_access},
135         {0x3215103C, "Smart Array E200i", &SA5_access},
136         {0x3237103C, "Smart Array E500", &SA5_access},
137 /* controllers below this line are also supported by the hpsa driver. */
138 #define HPSA_BOUNDARY 0x3223103C
139         {0x3223103C, "Smart Array P800", &SA5_access},
140         {0x3234103C, "Smart Array P400", &SA5_access},
141         {0x323D103C, "Smart Array P700m", &SA5_access},
142         {0x3241103C, "Smart Array P212", &SA5_access},
143         {0x3243103C, "Smart Array P410", &SA5_access},
144         {0x3245103C, "Smart Array P410i", &SA5_access},
145         {0x3247103C, "Smart Array P411", &SA5_access},
146         {0x3249103C, "Smart Array P812", &SA5_access},
147         {0x324A103C, "Smart Array P712m", &SA5_access},
148         {0x324B103C, "Smart Array P711m", &SA5_access},
149 };
150
151 /* How long to wait (in milliseconds) for board to go into simple mode */
152 #define MAX_CONFIG_WAIT 30000
153 #define MAX_IOCTL_CONFIG_WAIT 1000
154
155 /*define how many times we will try a command because of bus resets */
156 #define MAX_CMD_RETRIES 3
157
158 #define MAX_CTLR        32
159
160 /* Originally cciss driver only supports 8 major numbers */
161 #define MAX_CTLR_ORIG   8
162
163 static ctlr_info_t *hba[MAX_CTLR];
164
165 static struct task_struct *cciss_scan_thread;
166 static DEFINE_MUTEX(scan_mutex);
167 static LIST_HEAD(scan_q);
168
169 static void do_cciss_request(struct request_queue *q);
170 static irqreturn_t do_cciss_intr(int irq, void *dev_id);
171 static int cciss_open(struct block_device *bdev, fmode_t mode);
172 static int cciss_release(struct gendisk *disk, fmode_t mode);
173 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
174                        unsigned int cmd, unsigned long arg);
175 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
176
177 static int cciss_revalidate(struct gendisk *disk);
178 static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl);
179 static int deregister_disk(ctlr_info_t *h, int drv_index,
180                            int clear_all, int via_ioctl);
181
182 static void cciss_read_capacity(int ctlr, int logvol,
183                         sector_t *total_size, unsigned int *block_size);
184 static void cciss_read_capacity_16(int ctlr, int logvol,
185                         sector_t *total_size, unsigned int *block_size);
186 static void cciss_geometry_inquiry(int ctlr, int logvol,
187                         sector_t total_size,
188                         unsigned int block_size, InquiryData_struct *inq_buff,
189                                    drive_info_struct *drv);
190 static void __devinit cciss_interrupt_mode(ctlr_info_t *, struct pci_dev *,
191                                            __u32);
192 static void start_io(ctlr_info_t *h);
193 static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
194                         __u8 page_code, unsigned char scsi3addr[],
195                         int cmd_type);
196 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
197         int attempt_retry);
198 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
199
200 static void fail_all_cmds(unsigned long ctlr);
201 static int add_to_scan_list(struct ctlr_info *h);
202 static int scan_thread(void *data);
203 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
204 static void cciss_hba_release(struct device *dev);
205 static void cciss_device_release(struct device *dev);
206 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index);
207 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index);
208
209 #ifdef CONFIG_PROC_FS
210 static void cciss_procinit(int i);
211 #else
212 static void cciss_procinit(int i)
213 {
214 }
215 #endif                          /* CONFIG_PROC_FS */
216
217 #ifdef CONFIG_COMPAT
218 static int cciss_compat_ioctl(struct block_device *, fmode_t,
219                               unsigned, unsigned long);
220 #endif
221
222 static const struct block_device_operations cciss_fops = {
223         .owner = THIS_MODULE,
224         .open = cciss_open,
225         .release = cciss_release,
226         .locked_ioctl = cciss_ioctl,
227         .getgeo = cciss_getgeo,
228 #ifdef CONFIG_COMPAT
229         .compat_ioctl = cciss_compat_ioctl,
230 #endif
231         .revalidate_disk = cciss_revalidate,
232 };
233
234 /*
235  * Enqueuing and dequeuing functions for cmdlists.
236  */
237 static inline void addQ(struct hlist_head *list, CommandList_struct *c)
238 {
239         hlist_add_head(&c->list, list);
240 }
241
242 static inline void removeQ(CommandList_struct *c)
243 {
244         /*
245          * After kexec/dump some commands might still
246          * be in flight, which the firmware will try
247          * to complete. Resetting the firmware doesn't work
248          * with old fw revisions, so we have to mark
249          * them off as 'stale' to prevent the driver from
250          * falling over.
251          */
252         if (WARN_ON(hlist_unhashed(&c->list))) {
253                 c->cmd_type = CMD_MSG_STALE;
254                 return;
255         }
256
257         hlist_del_init(&c->list);
258 }
259
260 #include "cciss_scsi.c"         /* For SCSI tape support */
261
262 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
263         "UNKNOWN"
264 };
265 #define RAID_UNKNOWN (sizeof(raid_label) / sizeof(raid_label[0])-1)
266
267 #ifdef CONFIG_PROC_FS
268
269 /*
270  * Report information about this controller.
271  */
272 #define ENG_GIG 1000000000
273 #define ENG_GIG_FACTOR (ENG_GIG/512)
274 #define ENGAGE_SCSI     "engage scsi"
275
276 static struct proc_dir_entry *proc_cciss;
277
278 static void cciss_seq_show_header(struct seq_file *seq)
279 {
280         ctlr_info_t *h = seq->private;
281
282         seq_printf(seq, "%s: HP %s Controller\n"
283                 "Board ID: 0x%08lx\n"
284                 "Firmware Version: %c%c%c%c\n"
285                 "IRQ: %d\n"
286                 "Logical drives: %d\n"
287                 "Current Q depth: %d\n"
288                 "Current # commands on controller: %d\n"
289                 "Max Q depth since init: %d\n"
290                 "Max # commands on controller since init: %d\n"
291                 "Max SG entries since init: %d\n",
292                 h->devname,
293                 h->product_name,
294                 (unsigned long)h->board_id,
295                 h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
296                 h->firm_ver[3], (unsigned int)h->intr[SIMPLE_MODE_INT],
297                 h->num_luns,
298                 h->Qdepth, h->commands_outstanding,
299                 h->maxQsinceinit, h->max_outstanding, h->maxSG);
300
301 #ifdef CONFIG_CISS_SCSI_TAPE
302         cciss_seq_tape_report(seq, h->ctlr);
303 #endif /* CONFIG_CISS_SCSI_TAPE */
304 }
305
306 static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
307 {
308         ctlr_info_t *h = seq->private;
309         unsigned ctlr = h->ctlr;
310         unsigned long flags;
311
312         /* prevent displaying bogus info during configuration
313          * or deconfiguration of a logical volume
314          */
315         spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
316         if (h->busy_configuring) {
317                 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
318                 return ERR_PTR(-EBUSY);
319         }
320         h->busy_configuring = 1;
321         spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
322
323         if (*pos == 0)
324                 cciss_seq_show_header(seq);
325
326         return pos;
327 }
328
329 static int cciss_seq_show(struct seq_file *seq, void *v)
330 {
331         sector_t vol_sz, vol_sz_frac;
332         ctlr_info_t *h = seq->private;
333         unsigned ctlr = h->ctlr;
334         loff_t *pos = v;
335         drive_info_struct *drv = h->drv[*pos];
336
337         if (*pos > h->highest_lun)
338                 return 0;
339
340         if (drv == NULL) /* it's possible for h->drv[] to have holes. */
341                 return 0;
342
343         if (drv->heads == 0)
344                 return 0;
345
346         vol_sz = drv->nr_blocks;
347         vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
348         vol_sz_frac *= 100;
349         sector_div(vol_sz_frac, ENG_GIG_FACTOR);
350
351         if (drv->raid_level < 0 || drv->raid_level > RAID_UNKNOWN)
352                 drv->raid_level = RAID_UNKNOWN;
353         seq_printf(seq, "cciss/c%dd%d:"
354                         "\t%4u.%02uGB\tRAID %s\n",
355                         ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
356                         raid_label[drv->raid_level]);
357         return 0;
358 }
359
360 static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
361 {
362         ctlr_info_t *h = seq->private;
363
364         if (*pos > h->highest_lun)
365                 return NULL;
366         *pos += 1;
367
368         return pos;
369 }
370
371 static void cciss_seq_stop(struct seq_file *seq, void *v)
372 {
373         ctlr_info_t *h = seq->private;
374
375         /* Only reset h->busy_configuring if we succeeded in setting
376          * it during cciss_seq_start. */
377         if (v == ERR_PTR(-EBUSY))
378                 return;
379
380         h->busy_configuring = 0;
381 }
382
383 static const struct seq_operations cciss_seq_ops = {
384         .start = cciss_seq_start,
385         .show  = cciss_seq_show,
386         .next  = cciss_seq_next,
387         .stop  = cciss_seq_stop,
388 };
389
390 static int cciss_seq_open(struct inode *inode, struct file *file)
391 {
392         int ret = seq_open(file, &cciss_seq_ops);
393         struct seq_file *seq = file->private_data;
394
395         if (!ret)
396                 seq->private = PDE(inode)->data;
397
398         return ret;
399 }
400
401 static ssize_t
402 cciss_proc_write(struct file *file, const char __user *buf,
403                  size_t length, loff_t *ppos)
404 {
405         int err;
406         char *buffer;
407
408 #ifndef CONFIG_CISS_SCSI_TAPE
409         return -EINVAL;
410 #endif
411
412         if (!buf || length > PAGE_SIZE - 1)
413                 return -EINVAL;
414
415         buffer = (char *)__get_free_page(GFP_KERNEL);
416         if (!buffer)
417                 return -ENOMEM;
418
419         err = -EFAULT;
420         if (copy_from_user(buffer, buf, length))
421                 goto out;
422         buffer[length] = '\0';
423
424 #ifdef CONFIG_CISS_SCSI_TAPE
425         if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
426                 struct seq_file *seq = file->private_data;
427                 ctlr_info_t *h = seq->private;
428
429                 err = cciss_engage_scsi(h->ctlr);
430                 if (err == 0)
431                         err = length;
432         } else
433 #endif /* CONFIG_CISS_SCSI_TAPE */
434                 err = -EINVAL;
435         /* might be nice to have "disengage" too, but it's not
436            safely possible. (only 1 module use count, lock issues.) */
437
438 out:
439         free_page((unsigned long)buffer);
440         return err;
441 }
442
443 static const struct file_operations cciss_proc_fops = {
444         .owner   = THIS_MODULE,
445         .open    = cciss_seq_open,
446         .read    = seq_read,
447         .llseek  = seq_lseek,
448         .release = seq_release,
449         .write   = cciss_proc_write,
450 };
451
452 static void __devinit cciss_procinit(int i)
453 {
454         struct proc_dir_entry *pde;
455
456         if (proc_cciss == NULL)
457                 proc_cciss = proc_mkdir("driver/cciss", NULL);
458         if (!proc_cciss)
459                 return;
460         pde = proc_create_data(hba[i]->devname, S_IWUSR | S_IRUSR | S_IRGRP |
461                                         S_IROTH, proc_cciss,
462                                         &cciss_proc_fops, hba[i]);
463 }
464 #endif                          /* CONFIG_PROC_FS */
465
466 #define MAX_PRODUCT_NAME_LEN 19
467
468 #define to_hba(n) container_of(n, struct ctlr_info, dev)
469 #define to_drv(n) container_of(n, drive_info_struct, dev)
470
471 static ssize_t host_store_rescan(struct device *dev,
472                                  struct device_attribute *attr,
473                                  const char *buf, size_t count)
474 {
475         struct ctlr_info *h = to_hba(dev);
476
477         add_to_scan_list(h);
478         wake_up_process(cciss_scan_thread);
479         wait_for_completion_interruptible(&h->scan_wait);
480
481         return count;
482 }
483 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
484
485 static ssize_t dev_show_unique_id(struct device *dev,
486                                  struct device_attribute *attr,
487                                  char *buf)
488 {
489         drive_info_struct *drv = to_drv(dev);
490         struct ctlr_info *h = to_hba(drv->dev.parent);
491         __u8 sn[16];
492         unsigned long flags;
493         int ret = 0;
494
495         spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
496         if (h->busy_configuring)
497                 ret = -EBUSY;
498         else
499                 memcpy(sn, drv->serial_no, sizeof(sn));
500         spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
501
502         if (ret)
503                 return ret;
504         else
505                 return snprintf(buf, 16 * 2 + 2,
506                                 "%02X%02X%02X%02X%02X%02X%02X%02X"
507                                 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
508                                 sn[0], sn[1], sn[2], sn[3],
509                                 sn[4], sn[5], sn[6], sn[7],
510                                 sn[8], sn[9], sn[10], sn[11],
511                                 sn[12], sn[13], sn[14], sn[15]);
512 }
513 static DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
514
515 static ssize_t dev_show_vendor(struct device *dev,
516                                struct device_attribute *attr,
517                                char *buf)
518 {
519         drive_info_struct *drv = to_drv(dev);
520         struct ctlr_info *h = to_hba(drv->dev.parent);
521         char vendor[VENDOR_LEN + 1];
522         unsigned long flags;
523         int ret = 0;
524
525         spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
526         if (h->busy_configuring)
527                 ret = -EBUSY;
528         else
529                 memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
530         spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
531
532         if (ret)
533                 return ret;
534         else
535                 return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
536 }
537 static DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
538
539 static ssize_t dev_show_model(struct device *dev,
540                               struct device_attribute *attr,
541                               char *buf)
542 {
543         drive_info_struct *drv = to_drv(dev);
544         struct ctlr_info *h = to_hba(drv->dev.parent);
545         char model[MODEL_LEN + 1];
546         unsigned long flags;
547         int ret = 0;
548
549         spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
550         if (h->busy_configuring)
551                 ret = -EBUSY;
552         else
553                 memcpy(model, drv->model, MODEL_LEN + 1);
554         spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
555
556         if (ret)
557                 return ret;
558         else
559                 return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
560 }
561 static DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
562
563 static ssize_t dev_show_rev(struct device *dev,
564                             struct device_attribute *attr,
565                             char *buf)
566 {
567         drive_info_struct *drv = to_drv(dev);
568         struct ctlr_info *h = to_hba(drv->dev.parent);
569         char rev[REV_LEN + 1];
570         unsigned long flags;
571         int ret = 0;
572
573         spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
574         if (h->busy_configuring)
575                 ret = -EBUSY;
576         else
577                 memcpy(rev, drv->rev, REV_LEN + 1);
578         spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
579
580         if (ret)
581                 return ret;
582         else
583                 return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
584 }
585 static DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
586
587 static ssize_t cciss_show_lunid(struct device *dev,
588                                 struct device_attribute *attr, char *buf)
589 {
590         drive_info_struct *drv = to_drv(dev);
591         struct ctlr_info *h = to_hba(drv->dev.parent);
592         unsigned long flags;
593         unsigned char lunid[8];
594
595         spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
596         if (h->busy_configuring) {
597                 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
598                 return -EBUSY;
599         }
600         if (!drv->heads) {
601                 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
602                 return -ENOTTY;
603         }
604         memcpy(lunid, drv->LunID, sizeof(lunid));
605         spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
606         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
607                 lunid[0], lunid[1], lunid[2], lunid[3],
608                 lunid[4], lunid[5], lunid[6], lunid[7]);
609 }
610 static DEVICE_ATTR(lunid, S_IRUGO, cciss_show_lunid, NULL);
611
612 static ssize_t cciss_show_raid_level(struct device *dev,
613                                      struct device_attribute *attr, char *buf)
614 {
615         drive_info_struct *drv = to_drv(dev);
616         struct ctlr_info *h = to_hba(drv->dev.parent);
617         int raid;
618         unsigned long flags;
619
620         spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
621         if (h->busy_configuring) {
622                 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
623                 return -EBUSY;
624         }
625         raid = drv->raid_level;
626         spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
627         if (raid < 0 || raid > RAID_UNKNOWN)
628                 raid = RAID_UNKNOWN;
629
630         return snprintf(buf, strlen(raid_label[raid]) + 7, "RAID %s\n",
631                         raid_label[raid]);
632 }
633 static DEVICE_ATTR(raid_level, S_IRUGO, cciss_show_raid_level, NULL);
634
635 static ssize_t cciss_show_usage_count(struct device *dev,
636                                       struct device_attribute *attr, char *buf)
637 {
638         drive_info_struct *drv = to_drv(dev);
639         struct ctlr_info *h = to_hba(drv->dev.parent);
640         unsigned long flags;
641         int count;
642
643         spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
644         if (h->busy_configuring) {
645                 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
646                 return -EBUSY;
647         }
648         count = drv->usage_count;
649         spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
650         return snprintf(buf, 20, "%d\n", count);
651 }
652 static DEVICE_ATTR(usage_count, S_IRUGO, cciss_show_usage_count, NULL);
653
654 static struct attribute *cciss_host_attrs[] = {
655         &dev_attr_rescan.attr,
656         NULL
657 };
658
659 static struct attribute_group cciss_host_attr_group = {
660         .attrs = cciss_host_attrs,
661 };
662
663 static const struct attribute_group *cciss_host_attr_groups[] = {
664         &cciss_host_attr_group,
665         NULL
666 };
667
668 static struct device_type cciss_host_type = {
669         .name           = "cciss_host",
670         .groups         = cciss_host_attr_groups,
671         .release        = cciss_hba_release,
672 };
673
674 static struct attribute *cciss_dev_attrs[] = {
675         &dev_attr_unique_id.attr,
676         &dev_attr_model.attr,
677         &dev_attr_vendor.attr,
678         &dev_attr_rev.attr,
679         &dev_attr_lunid.attr,
680         &dev_attr_raid_level.attr,
681         &dev_attr_usage_count.attr,
682         NULL
683 };
684
685 static struct attribute_group cciss_dev_attr_group = {
686         .attrs = cciss_dev_attrs,
687 };
688
689 static const struct attribute_group *cciss_dev_attr_groups[] = {
690         &cciss_dev_attr_group,
691         NULL
692 };
693
694 static struct device_type cciss_dev_type = {
695         .name           = "cciss_device",
696         .groups         = cciss_dev_attr_groups,
697         .release        = cciss_device_release,
698 };
699
700 static struct bus_type cciss_bus_type = {
701         .name           = "cciss",
702 };
703
704 /*
705  * cciss_hba_release is called when the reference count
706  * of h->dev goes to zero.
707  */
708 static void cciss_hba_release(struct device *dev)
709 {
710         /*
711          * nothing to do, but need this to avoid a warning
712          * about not having a release handler from lib/kref.c.
713          */
714 }
715
716 /*
717  * Initialize sysfs entry for each controller.  This sets up and registers
718  * the 'cciss#' directory for each individual controller under
719  * /sys/bus/pci/devices/<dev>/.
720  */
721 static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
722 {
723         device_initialize(&h->dev);
724         h->dev.type = &cciss_host_type;
725         h->dev.bus = &cciss_bus_type;
726         dev_set_name(&h->dev, "%s", h->devname);
727         h->dev.parent = &h->pdev->dev;
728
729         return device_add(&h->dev);
730 }
731
732 /*
733  * Remove sysfs entries for an hba.
734  */
735 static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
736 {
737         device_del(&h->dev);
738         put_device(&h->dev); /* final put. */
739 }
740
741 /* cciss_device_release is called when the reference count
742  * of h->drv[x]dev goes to zero.
743  */
744 static void cciss_device_release(struct device *dev)
745 {
746         drive_info_struct *drv = to_drv(dev);
747         kfree(drv);
748 }
749
750 /*
751  * Initialize sysfs for each logical drive.  This sets up and registers
752  * the 'c#d#' directory for each individual logical drive under
753  * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
754  * /sys/block/cciss!c#d# to this entry.
755  */
756 static long cciss_create_ld_sysfs_entry(struct ctlr_info *h,
757                                        int drv_index)
758 {
759         struct device *dev;
760
761         if (h->drv[drv_index]->device_initialized)
762                 return 0;
763
764         dev = &h->drv[drv_index]->dev;
765         device_initialize(dev);
766         dev->type = &cciss_dev_type;
767         dev->bus = &cciss_bus_type;
768         dev_set_name(dev, "c%dd%d", h->ctlr, drv_index);
769         dev->parent = &h->dev;
770         h->drv[drv_index]->device_initialized = 1;
771         return device_add(dev);
772 }
773
774 /*
775  * Remove sysfs entries for a logical drive.
776  */
777 static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index,
778         int ctlr_exiting)
779 {
780         struct device *dev = &h->drv[drv_index]->dev;
781
782         /* special case for c*d0, we only destroy it on controller exit */
783         if (drv_index == 0 && !ctlr_exiting)
784                 return;
785
786         device_del(dev);
787         put_device(dev); /* the "final" put. */
788         h->drv[drv_index] = NULL;
789 }
790
791 /*
792  * For operations that cannot sleep, a command block is allocated at init,
793  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
794  * which ones are free or in use.  For operations that can wait for kmalloc
795  * to possible sleep, this routine can be called with get_from_pool set to 0.
796  * cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was.
797  */
798 static CommandList_struct *cmd_alloc(ctlr_info_t *h, int get_from_pool)
799 {
800         CommandList_struct *c;
801         int i;
802         u64bit temp64;
803         dma_addr_t cmd_dma_handle, err_dma_handle;
804
805         if (!get_from_pool) {
806                 c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
807                         sizeof(CommandList_struct), &cmd_dma_handle);
808                 if (c == NULL)
809                         return NULL;
810                 memset(c, 0, sizeof(CommandList_struct));
811
812                 c->cmdindex = -1;
813
814                 c->err_info = (ErrorInfo_struct *)
815                     pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
816                             &err_dma_handle);
817
818                 if (c->err_info == NULL) {
819                         pci_free_consistent(h->pdev,
820                                 sizeof(CommandList_struct), c, cmd_dma_handle);
821                         return NULL;
822                 }
823                 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
824         } else {                /* get it out of the controllers pool */
825
826                 do {
827                         i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
828                         if (i == h->nr_cmds)
829                                 return NULL;
830                 } while (test_and_set_bit
831                          (i & (BITS_PER_LONG - 1),
832                           h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
833 #ifdef CCISS_DEBUG
834                 printk(KERN_DEBUG "cciss: using command buffer %d\n", i);
835 #endif
836                 c = h->cmd_pool + i;
837                 memset(c, 0, sizeof(CommandList_struct));
838                 cmd_dma_handle = h->cmd_pool_dhandle
839                     + i * sizeof(CommandList_struct);
840                 c->err_info = h->errinfo_pool + i;
841                 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
842                 err_dma_handle = h->errinfo_pool_dhandle
843                     + i * sizeof(ErrorInfo_struct);
844                 h->nr_allocs++;
845
846                 c->cmdindex = i;
847         }
848
849         INIT_HLIST_NODE(&c->list);
850         c->busaddr = (__u32) cmd_dma_handle;
851         temp64.val = (__u64) err_dma_handle;
852         c->ErrDesc.Addr.lower = temp64.val32.lower;
853         c->ErrDesc.Addr.upper = temp64.val32.upper;
854         c->ErrDesc.Len = sizeof(ErrorInfo_struct);
855
856         c->ctlr = h->ctlr;
857         return c;
858 }
859
860 /*
861  * Frees a command block that was previously allocated with cmd_alloc().
862  */
863 static void cmd_free(ctlr_info_t *h, CommandList_struct *c, int got_from_pool)
864 {
865         int i;
866         u64bit temp64;
867
868         if (!got_from_pool) {
869                 temp64.val32.lower = c->ErrDesc.Addr.lower;
870                 temp64.val32.upper = c->ErrDesc.Addr.upper;
871                 pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
872                                     c->err_info, (dma_addr_t) temp64.val);
873                 pci_free_consistent(h->pdev, sizeof(CommandList_struct),
874                                     c, (dma_addr_t) c->busaddr);
875         } else {
876                 i = c - h->cmd_pool;
877                 clear_bit(i & (BITS_PER_LONG - 1),
878                           h->cmd_pool_bits + (i / BITS_PER_LONG));
879                 h->nr_frees++;
880         }
881 }
882
883 static inline ctlr_info_t *get_host(struct gendisk *disk)
884 {
885         return disk->queue->queuedata;
886 }
887
888 static inline drive_info_struct *get_drv(struct gendisk *disk)
889 {
890         return disk->private_data;
891 }
892
893 /*
894  * Open.  Make sure the device is really there.
895  */
896 static int cciss_open(struct block_device *bdev, fmode_t mode)
897 {
898         ctlr_info_t *host = get_host(bdev->bd_disk);
899         drive_info_struct *drv = get_drv(bdev->bd_disk);
900
901 #ifdef CCISS_DEBUG
902         printk(KERN_DEBUG "cciss_open %s\n", bdev->bd_disk->disk_name);
903 #endif                          /* CCISS_DEBUG */
904
905         if (drv->busy_configuring)
906                 return -EBUSY;
907         /*
908          * Root is allowed to open raw volume zero even if it's not configured
909          * so array config can still work. Root is also allowed to open any
910          * volume that has a LUN ID, so it can issue IOCTL to reread the
911          * disk information.  I don't think I really like this
912          * but I'm already using way to many device nodes to claim another one
913          * for "raw controller".
914          */
915         if (drv->heads == 0) {
916                 if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */
917                         /* if not node 0 make sure it is a partition = 0 */
918                         if (MINOR(bdev->bd_dev) & 0x0f) {
919                                 return -ENXIO;
920                                 /* if it is, make sure we have a LUN ID */
921                         } else if (memcmp(drv->LunID, CTLR_LUNID,
922                                 sizeof(drv->LunID))) {
923                                 return -ENXIO;
924                         }
925                 }
926                 if (!capable(CAP_SYS_ADMIN))
927                         return -EPERM;
928         }
929         drv->usage_count++;
930         host->usage_count++;
931         return 0;
932 }
933
934 /*
935  * Close.  Sync first.
936  */
937 static int cciss_release(struct gendisk *disk, fmode_t mode)
938 {
939         ctlr_info_t *host = get_host(disk);
940         drive_info_struct *drv = get_drv(disk);
941
942 #ifdef CCISS_DEBUG
943         printk(KERN_DEBUG "cciss_release %s\n", disk->disk_name);
944 #endif                          /* CCISS_DEBUG */
945
946         drv->usage_count--;
947         host->usage_count--;
948         return 0;
949 }
950
951 #ifdef CONFIG_COMPAT
952
953 static int do_ioctl(struct block_device *bdev, fmode_t mode,
954                     unsigned cmd, unsigned long arg)
955 {
956         int ret;
957         lock_kernel();
958         ret = cciss_ioctl(bdev, mode, cmd, arg);
959         unlock_kernel();
960         return ret;
961 }
962
963 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
964                                   unsigned cmd, unsigned long arg);
965 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
966                                       unsigned cmd, unsigned long arg);
967
968 static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
969                               unsigned cmd, unsigned long arg)
970 {
971         switch (cmd) {
972         case CCISS_GETPCIINFO:
973         case CCISS_GETINTINFO:
974         case CCISS_SETINTINFO:
975         case CCISS_GETNODENAME:
976         case CCISS_SETNODENAME:
977         case CCISS_GETHEARTBEAT:
978         case CCISS_GETBUSTYPES:
979         case CCISS_GETFIRMVER:
980         case CCISS_GETDRIVVER:
981         case CCISS_REVALIDVOLS:
982         case CCISS_DEREGDISK:
983         case CCISS_REGNEWDISK:
984         case CCISS_REGNEWD:
985         case CCISS_RESCANDISK:
986         case CCISS_GETLUNINFO:
987                 return do_ioctl(bdev, mode, cmd, arg);
988
989         case CCISS_PASSTHRU32:
990                 return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
991         case CCISS_BIG_PASSTHRU32:
992                 return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
993
994         default:
995                 return -ENOIOCTLCMD;
996         }
997 }
998
999 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1000                                   unsigned cmd, unsigned long arg)
1001 {
1002         IOCTL32_Command_struct __user *arg32 =
1003             (IOCTL32_Command_struct __user *) arg;
1004         IOCTL_Command_struct arg64;
1005         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
1006         int err;
1007         u32 cp;
1008
1009         err = 0;
1010         err |=
1011             copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1012                            sizeof(arg64.LUN_info));
1013         err |=
1014             copy_from_user(&arg64.Request, &arg32->Request,
1015                            sizeof(arg64.Request));
1016         err |=
1017             copy_from_user(&arg64.error_info, &arg32->error_info,
1018                            sizeof(arg64.error_info));
1019         err |= get_user(arg64.buf_size, &arg32->buf_size);
1020         err |= get_user(cp, &arg32->buf);
1021         arg64.buf = compat_ptr(cp);
1022         err |= copy_to_user(p, &arg64, sizeof(arg64));
1023
1024         if (err)
1025                 return -EFAULT;
1026
1027         err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
1028         if (err)
1029                 return err;
1030         err |=
1031             copy_in_user(&arg32->error_info, &p->error_info,
1032                          sizeof(arg32->error_info));
1033         if (err)
1034                 return -EFAULT;
1035         return err;
1036 }
1037
1038 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1039                                       unsigned cmd, unsigned long arg)
1040 {
1041         BIG_IOCTL32_Command_struct __user *arg32 =
1042             (BIG_IOCTL32_Command_struct __user *) arg;
1043         BIG_IOCTL_Command_struct arg64;
1044         BIG_IOCTL_Command_struct __user *p =
1045             compat_alloc_user_space(sizeof(arg64));
1046         int err;
1047         u32 cp;
1048
1049         err = 0;
1050         err |=
1051             copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1052                            sizeof(arg64.LUN_info));
1053         err |=
1054             copy_from_user(&arg64.Request, &arg32->Request,
1055                            sizeof(arg64.Request));
1056         err |=
1057             copy_from_user(&arg64.error_info, &arg32->error_info,
1058                            sizeof(arg64.error_info));
1059         err |= get_user(arg64.buf_size, &arg32->buf_size);
1060         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
1061         err |= get_user(cp, &arg32->buf);
1062         arg64.buf = compat_ptr(cp);
1063         err |= copy_to_user(p, &arg64, sizeof(arg64));
1064
1065         if (err)
1066                 return -EFAULT;
1067
1068         err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
1069         if (err)
1070                 return err;
1071         err |=
1072             copy_in_user(&arg32->error_info, &p->error_info,
1073                          sizeof(arg32->error_info));
1074         if (err)
1075                 return -EFAULT;
1076         return err;
1077 }
1078 #endif
1079
1080 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1081 {
1082         drive_info_struct *drv = get_drv(bdev->bd_disk);
1083
1084         if (!drv->cylinders)
1085                 return -ENXIO;
1086
1087         geo->heads = drv->heads;
1088         geo->sectors = drv->sectors;
1089         geo->cylinders = drv->cylinders;
1090         return 0;
1091 }
1092
1093 static void check_ioctl_unit_attention(ctlr_info_t *host, CommandList_struct *c)
1094 {
1095         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
1096                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
1097                 (void)check_for_unit_attention(host, c);
1098 }
1099 /*
1100  * ioctl
1101  */
1102 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
1103                        unsigned int cmd, unsigned long arg)
1104 {
1105         struct gendisk *disk = bdev->bd_disk;
1106         ctlr_info_t *host = get_host(disk);
1107         drive_info_struct *drv = get_drv(disk);
1108         int ctlr = host->ctlr;
1109         void __user *argp = (void __user *)arg;
1110
1111 #ifdef CCISS_DEBUG
1112         printk(KERN_DEBUG "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg);
1113 #endif                          /* CCISS_DEBUG */
1114
1115         switch (cmd) {
1116         case CCISS_GETPCIINFO:
1117                 {
1118                         cciss_pci_info_struct pciinfo;
1119
1120                         if (!arg)
1121                                 return -EINVAL;
1122                         pciinfo.domain = pci_domain_nr(host->pdev->bus);
1123                         pciinfo.bus = host->pdev->bus->number;
1124                         pciinfo.dev_fn = host->pdev->devfn;
1125                         pciinfo.board_id = host->board_id;
1126                         if (copy_to_user
1127                             (argp, &pciinfo, sizeof(cciss_pci_info_struct)))
1128                                 return -EFAULT;
1129                         return 0;
1130                 }
1131         case CCISS_GETINTINFO:
1132                 {
1133                         cciss_coalint_struct intinfo;
1134                         if (!arg)
1135                                 return -EINVAL;
1136                         intinfo.delay =
1137                             readl(&host->cfgtable->HostWrite.CoalIntDelay);
1138                         intinfo.count =
1139                             readl(&host->cfgtable->HostWrite.CoalIntCount);
1140                         if (copy_to_user
1141                             (argp, &intinfo, sizeof(cciss_coalint_struct)))
1142                                 return -EFAULT;
1143                         return 0;
1144                 }
1145         case CCISS_SETINTINFO:
1146                 {
1147                         cciss_coalint_struct intinfo;
1148                         unsigned long flags;
1149                         int i;
1150
1151                         if (!arg)
1152                                 return -EINVAL;
1153                         if (!capable(CAP_SYS_ADMIN))
1154                                 return -EPERM;
1155                         if (copy_from_user
1156                             (&intinfo, argp, sizeof(cciss_coalint_struct)))
1157                                 return -EFAULT;
1158                         if ((intinfo.delay == 0) && (intinfo.count == 0))
1159                         {
1160 //                      printk("cciss_ioctl: delay and count cannot be 0\n");
1161                                 return -EINVAL;
1162                         }
1163                         spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1164                         /* Update the field, and then ring the doorbell */
1165                         writel(intinfo.delay,
1166                                &(host->cfgtable->HostWrite.CoalIntDelay));
1167                         writel(intinfo.count,
1168                                &(host->cfgtable->HostWrite.CoalIntCount));
1169                         writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
1170
1171                         for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1172                                 if (!(readl(host->vaddr + SA5_DOORBELL)
1173                                       & CFGTBL_ChangeReq))
1174                                         break;
1175                                 /* delay and try again */
1176                                 udelay(1000);
1177                         }
1178                         spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1179                         if (i >= MAX_IOCTL_CONFIG_WAIT)
1180                                 return -EAGAIN;
1181                         return 0;
1182                 }
1183         case CCISS_GETNODENAME:
1184                 {
1185                         NodeName_type NodeName;
1186                         int i;
1187
1188                         if (!arg)
1189                                 return -EINVAL;
1190                         for (i = 0; i < 16; i++)
1191                                 NodeName[i] =
1192                                     readb(&host->cfgtable->ServerName[i]);
1193                         if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
1194                                 return -EFAULT;
1195                         return 0;
1196                 }
1197         case CCISS_SETNODENAME:
1198                 {
1199                         NodeName_type NodeName;
1200                         unsigned long flags;
1201                         int i;
1202
1203                         if (!arg)
1204                                 return -EINVAL;
1205                         if (!capable(CAP_SYS_ADMIN))
1206                                 return -EPERM;
1207
1208                         if (copy_from_user
1209                             (NodeName, argp, sizeof(NodeName_type)))
1210                                 return -EFAULT;
1211
1212                         spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1213
1214                         /* Update the field, and then ring the doorbell */
1215                         for (i = 0; i < 16; i++)
1216                                 writeb(NodeName[i],
1217                                        &host->cfgtable->ServerName[i]);
1218
1219                         writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
1220
1221                         for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1222                                 if (!(readl(host->vaddr + SA5_DOORBELL)
1223                                       & CFGTBL_ChangeReq))
1224                                         break;
1225                                 /* delay and try again */
1226                                 udelay(1000);
1227                         }
1228                         spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1229                         if (i >= MAX_IOCTL_CONFIG_WAIT)
1230                                 return -EAGAIN;
1231                         return 0;
1232                 }
1233
1234         case CCISS_GETHEARTBEAT:
1235                 {
1236                         Heartbeat_type heartbeat;
1237
1238                         if (!arg)
1239                                 return -EINVAL;
1240                         heartbeat = readl(&host->cfgtable->HeartBeat);
1241                         if (copy_to_user
1242                             (argp, &heartbeat, sizeof(Heartbeat_type)))
1243                                 return -EFAULT;
1244                         return 0;
1245                 }
1246         case CCISS_GETBUSTYPES:
1247                 {
1248                         BusTypes_type BusTypes;
1249
1250                         if (!arg)
1251                                 return -EINVAL;
1252                         BusTypes = readl(&host->cfgtable->BusTypes);
1253                         if (copy_to_user
1254                             (argp, &BusTypes, sizeof(BusTypes_type)))
1255                                 return -EFAULT;
1256                         return 0;
1257                 }
1258         case CCISS_GETFIRMVER:
1259                 {
1260                         FirmwareVer_type firmware;
1261
1262                         if (!arg)
1263                                 return -EINVAL;
1264                         memcpy(firmware, host->firm_ver, 4);
1265
1266                         if (copy_to_user
1267                             (argp, firmware, sizeof(FirmwareVer_type)))
1268                                 return -EFAULT;
1269                         return 0;
1270                 }
1271         case CCISS_GETDRIVVER:
1272                 {
1273                         DriverVer_type DriverVer = DRIVER_VERSION;
1274
1275                         if (!arg)
1276                                 return -EINVAL;
1277
1278                         if (copy_to_user
1279                             (argp, &DriverVer, sizeof(DriverVer_type)))
1280                                 return -EFAULT;
1281                         return 0;
1282                 }
1283
1284         case CCISS_DEREGDISK:
1285         case CCISS_REGNEWD:
1286         case CCISS_REVALIDVOLS:
1287                 return rebuild_lun_table(host, 0, 1);
1288
1289         case CCISS_GETLUNINFO:{
1290                         LogvolInfo_struct luninfo;
1291
1292                         memcpy(&luninfo.LunID, drv->LunID,
1293                                 sizeof(luninfo.LunID));
1294                         luninfo.num_opens = drv->usage_count;
1295                         luninfo.num_parts = 0;
1296                         if (copy_to_user(argp, &luninfo,
1297                                          sizeof(LogvolInfo_struct)))
1298                                 return -EFAULT;
1299                         return 0;
1300                 }
1301         case CCISS_PASSTHRU:
1302                 {
1303                         IOCTL_Command_struct iocommand;
1304                         CommandList_struct *c;
1305                         char *buff = NULL;
1306                         u64bit temp64;
1307                         unsigned long flags;
1308                         DECLARE_COMPLETION_ONSTACK(wait);
1309
1310                         if (!arg)
1311                                 return -EINVAL;
1312
1313                         if (!capable(CAP_SYS_RAWIO))
1314                                 return -EPERM;
1315
1316                         if (copy_from_user
1317                             (&iocommand, argp, sizeof(IOCTL_Command_struct)))
1318                                 return -EFAULT;
1319                         if ((iocommand.buf_size < 1) &&
1320                             (iocommand.Request.Type.Direction != XFER_NONE)) {
1321                                 return -EINVAL;
1322                         }
1323 #if 0                           /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
1324                         /* Check kmalloc limits */
1325                         if (iocommand.buf_size > 128000)
1326                                 return -EINVAL;
1327 #endif
1328                         if (iocommand.buf_size > 0) {
1329                                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
1330                                 if (buff == NULL)
1331                                         return -EFAULT;
1332                         }
1333                         if (iocommand.Request.Type.Direction == XFER_WRITE) {
1334                                 /* Copy the data into the buffer we created */
1335                                 if (copy_from_user
1336                                     (buff, iocommand.buf, iocommand.buf_size)) {
1337                                         kfree(buff);
1338                                         return -EFAULT;
1339                                 }
1340                         } else {
1341                                 memset(buff, 0, iocommand.buf_size);
1342                         }
1343                         if ((c = cmd_alloc(host, 0)) == NULL) {
1344                                 kfree(buff);
1345                                 return -ENOMEM;
1346                         }
1347                         /* Fill in the command type */
1348                         c->cmd_type = CMD_IOCTL_PEND;
1349                         /* Fill in Command Header */
1350                         c->Header.ReplyQueue = 0;   /* unused in simple mode */
1351                         if (iocommand.buf_size > 0) /* buffer to fill */
1352                         {
1353                                 c->Header.SGList = 1;
1354                                 c->Header.SGTotal = 1;
1355                         } else /* no buffers to fill */
1356                         {
1357                                 c->Header.SGList = 0;
1358                                 c->Header.SGTotal = 0;
1359                         }
1360                         c->Header.LUN = iocommand.LUN_info;
1361                         /* use the kernel address the cmd block for tag */
1362                         c->Header.Tag.lower = c->busaddr;
1363
1364                         /* Fill in Request block */
1365                         c->Request = iocommand.Request;
1366
1367                         /* Fill in the scatter gather information */
1368                         if (iocommand.buf_size > 0) {
1369                                 temp64.val = pci_map_single(host->pdev, buff,
1370                                         iocommand.buf_size,
1371                                         PCI_DMA_BIDIRECTIONAL);
1372                                 c->SG[0].Addr.lower = temp64.val32.lower;
1373                                 c->SG[0].Addr.upper = temp64.val32.upper;
1374                                 c->SG[0].Len = iocommand.buf_size;
1375                                 c->SG[0].Ext = 0;  /* we are not chaining */
1376                         }
1377                         c->waiting = &wait;
1378
1379                         /* Put the request on the tail of the request queue */
1380                         spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1381                         addQ(&host->reqQ, c);
1382                         host->Qdepth++;
1383                         start_io(host);
1384                         spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1385
1386                         wait_for_completion(&wait);
1387
1388                         /* unlock the buffers from DMA */
1389                         temp64.val32.lower = c->SG[0].Addr.lower;
1390                         temp64.val32.upper = c->SG[0].Addr.upper;
1391                         pci_unmap_single(host->pdev, (dma_addr_t) temp64.val,
1392                                          iocommand.buf_size,
1393                                          PCI_DMA_BIDIRECTIONAL);
1394
1395                         check_ioctl_unit_attention(host, c);
1396
1397                         /* Copy the error information out */
1398                         iocommand.error_info = *(c->err_info);
1399                         if (copy_to_user
1400                             (argp, &iocommand, sizeof(IOCTL_Command_struct))) {
1401                                 kfree(buff);
1402                                 cmd_free(host, c, 0);
1403                                 return -EFAULT;
1404                         }
1405
1406                         if (iocommand.Request.Type.Direction == XFER_READ) {
1407                                 /* Copy the data out of the buffer we created */
1408                                 if (copy_to_user
1409                                     (iocommand.buf, buff, iocommand.buf_size)) {
1410                                         kfree(buff);
1411                                         cmd_free(host, c, 0);
1412                                         return -EFAULT;
1413                                 }
1414                         }
1415                         kfree(buff);
1416                         cmd_free(host, c, 0);
1417                         return 0;
1418                 }
1419         case CCISS_BIG_PASSTHRU:{
1420                         BIG_IOCTL_Command_struct *ioc;
1421                         CommandList_struct *c;
1422                         unsigned char **buff = NULL;
1423                         int *buff_size = NULL;
1424                         u64bit temp64;
1425                         unsigned long flags;
1426                         BYTE sg_used = 0;
1427                         int status = 0;
1428                         int i;
1429                         DECLARE_COMPLETION_ONSTACK(wait);
1430                         __u32 left;
1431                         __u32 sz;
1432                         BYTE __user *data_ptr;
1433
1434                         if (!arg)
1435                                 return -EINVAL;
1436                         if (!capable(CAP_SYS_RAWIO))
1437                                 return -EPERM;
1438                         ioc = (BIG_IOCTL_Command_struct *)
1439                             kmalloc(sizeof(*ioc), GFP_KERNEL);
1440                         if (!ioc) {
1441                                 status = -ENOMEM;
1442                                 goto cleanup1;
1443                         }
1444                         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1445                                 status = -EFAULT;
1446                                 goto cleanup1;
1447                         }
1448                         if ((ioc->buf_size < 1) &&
1449                             (ioc->Request.Type.Direction != XFER_NONE)) {
1450                                 status = -EINVAL;
1451                                 goto cleanup1;
1452                         }
1453                         /* Check kmalloc limits  using all SGs */
1454                         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1455                                 status = -EINVAL;
1456                                 goto cleanup1;
1457                         }
1458                         if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1459                                 status = -EINVAL;
1460                                 goto cleanup1;
1461                         }
1462                         buff =
1463                             kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1464                         if (!buff) {
1465                                 status = -ENOMEM;
1466                                 goto cleanup1;
1467                         }
1468                         buff_size = kmalloc(MAXSGENTRIES * sizeof(int),
1469                                                    GFP_KERNEL);
1470                         if (!buff_size) {
1471                                 status = -ENOMEM;
1472                                 goto cleanup1;
1473                         }
1474                         left = ioc->buf_size;
1475                         data_ptr = ioc->buf;
1476                         while (left) {
1477                                 sz = (left >
1478                                       ioc->malloc_size) ? ioc->
1479                                     malloc_size : left;
1480                                 buff_size[sg_used] = sz;
1481                                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1482                                 if (buff[sg_used] == NULL) {
1483                                         status = -ENOMEM;
1484                                         goto cleanup1;
1485                                 }
1486                                 if (ioc->Request.Type.Direction == XFER_WRITE) {
1487                                         if (copy_from_user
1488                                             (buff[sg_used], data_ptr, sz)) {
1489                                                 status = -EFAULT;
1490                                                 goto cleanup1;
1491                                         }
1492                                 } else {
1493                                         memset(buff[sg_used], 0, sz);
1494                                 }
1495                                 left -= sz;
1496                                 data_ptr += sz;
1497                                 sg_used++;
1498                         }
1499                         if ((c = cmd_alloc(host, 0)) == NULL) {
1500                                 status = -ENOMEM;
1501                                 goto cleanup1;
1502                         }
1503                         c->cmd_type = CMD_IOCTL_PEND;
1504                         c->Header.ReplyQueue = 0;
1505
1506                         if (ioc->buf_size > 0) {
1507                                 c->Header.SGList = sg_used;
1508                                 c->Header.SGTotal = sg_used;
1509                         } else {
1510                                 c->Header.SGList = 0;
1511                                 c->Header.SGTotal = 0;
1512                         }
1513                         c->Header.LUN = ioc->LUN_info;
1514                         c->Header.Tag.lower = c->busaddr;
1515
1516                         c->Request = ioc->Request;
1517                         if (ioc->buf_size > 0) {
1518                                 int i;
1519                                 for (i = 0; i < sg_used; i++) {
1520                                         temp64.val =
1521                                             pci_map_single(host->pdev, buff[i],
1522                                                     buff_size[i],
1523                                                     PCI_DMA_BIDIRECTIONAL);
1524                                         c->SG[i].Addr.lower =
1525                                             temp64.val32.lower;
1526                                         c->SG[i].Addr.upper =
1527                                             temp64.val32.upper;
1528                                         c->SG[i].Len = buff_size[i];
1529                                         c->SG[i].Ext = 0;       /* we are not chaining */
1530                                 }
1531                         }
1532                         c->waiting = &wait;
1533                         /* Put the request on the tail of the request queue */
1534                         spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1535                         addQ(&host->reqQ, c);
1536                         host->Qdepth++;
1537                         start_io(host);
1538                         spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1539                         wait_for_completion(&wait);
1540                         /* unlock the buffers from DMA */
1541                         for (i = 0; i < sg_used; i++) {
1542                                 temp64.val32.lower = c->SG[i].Addr.lower;
1543                                 temp64.val32.upper = c->SG[i].Addr.upper;
1544                                 pci_unmap_single(host->pdev,
1545                                         (dma_addr_t) temp64.val, buff_size[i],
1546                                         PCI_DMA_BIDIRECTIONAL);
1547                         }
1548                         check_ioctl_unit_attention(host, c);
1549                         /* Copy the error information out */
1550                         ioc->error_info = *(c->err_info);
1551                         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1552                                 cmd_free(host, c, 0);
1553                                 status = -EFAULT;
1554                                 goto cleanup1;
1555                         }
1556                         if (ioc->Request.Type.Direction == XFER_READ) {
1557                                 /* Copy the data out of the buffer we created */
1558                                 BYTE __user *ptr = ioc->buf;
1559                                 for (i = 0; i < sg_used; i++) {
1560                                         if (copy_to_user
1561                                             (ptr, buff[i], buff_size[i])) {
1562                                                 cmd_free(host, c, 0);
1563                                                 status = -EFAULT;
1564                                                 goto cleanup1;
1565                                         }
1566                                         ptr += buff_size[i];
1567                                 }
1568                         }
1569                         cmd_free(host, c, 0);
1570                         status = 0;
1571                       cleanup1:
1572                         if (buff) {
1573                                 for (i = 0; i < sg_used; i++)
1574                                         kfree(buff[i]);
1575                                 kfree(buff);
1576                         }
1577                         kfree(buff_size);
1578                         kfree(ioc);
1579                         return status;
1580                 }
1581
1582         /* scsi_cmd_ioctl handles these, below, though some are not */
1583         /* very meaningful for cciss.  SG_IO is the main one people want. */
1584
1585         case SG_GET_VERSION_NUM:
1586         case SG_SET_TIMEOUT:
1587         case SG_GET_TIMEOUT:
1588         case SG_GET_RESERVED_SIZE:
1589         case SG_SET_RESERVED_SIZE:
1590         case SG_EMULATED_HOST:
1591         case SG_IO:
1592         case SCSI_IOCTL_SEND_COMMAND:
1593                 return scsi_cmd_ioctl(disk->queue, disk, mode, cmd, argp);
1594
1595         /* scsi_cmd_ioctl would normally handle these, below, but */
1596         /* they aren't a good fit for cciss, as CD-ROMs are */
1597         /* not supported, and we don't have any bus/target/lun */
1598         /* which we present to the kernel. */
1599
1600         case CDROM_SEND_PACKET:
1601         case CDROMCLOSETRAY:
1602         case CDROMEJECT:
1603         case SCSI_IOCTL_GET_IDLUN:
1604         case SCSI_IOCTL_GET_BUS_NUMBER:
1605         default:
1606                 return -ENOTTY;
1607         }
1608 }
1609
1610 static void cciss_check_queues(ctlr_info_t *h)
1611 {
1612         int start_queue = h->next_to_run;
1613         int i;
1614
1615         /* check to see if we have maxed out the number of commands that can
1616          * be placed on the queue.  If so then exit.  We do this check here
1617          * in case the interrupt we serviced was from an ioctl and did not
1618          * free any new commands.
1619          */
1620         if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1621                 return;
1622
1623         /* We have room on the queue for more commands.  Now we need to queue
1624          * them up.  We will also keep track of the next queue to run so
1625          * that every queue gets a chance to be started first.
1626          */
1627         for (i = 0; i < h->highest_lun + 1; i++) {
1628                 int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1629                 /* make sure the disk has been added and the drive is real
1630                  * because this can be called from the middle of init_one.
1631                  */
1632                 if (!h->drv[curr_queue])
1633                         continue;
1634                 if (!(h->drv[curr_queue]->queue) ||
1635                         !(h->drv[curr_queue]->heads))
1636                         continue;
1637                 blk_start_queue(h->gendisk[curr_queue]->queue);
1638
1639                 /* check to see if we have maxed out the number of commands
1640                  * that can be placed on the queue.
1641                  */
1642                 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1643                         if (curr_queue == start_queue) {
1644                                 h->next_to_run =
1645                                     (start_queue + 1) % (h->highest_lun + 1);
1646                                 break;
1647                         } else {
1648                                 h->next_to_run = curr_queue;
1649                                 break;
1650                         }
1651                 }
1652         }
1653 }
1654
1655 static void cciss_softirq_done(struct request *rq)
1656 {
1657         CommandList_struct *cmd = rq->completion_data;
1658         ctlr_info_t *h = hba[cmd->ctlr];
1659         SGDescriptor_struct *curr_sg = cmd->SG;
1660         unsigned long flags;
1661         u64bit temp64;
1662         int i, ddir;
1663         int sg_index = 0;
1664
1665         if (cmd->Request.Type.Direction == XFER_READ)
1666                 ddir = PCI_DMA_FROMDEVICE;
1667         else
1668                 ddir = PCI_DMA_TODEVICE;
1669
1670         /* command did not need to be retried */
1671         /* unmap the DMA mapping for all the scatter gather elements */
1672         for (i = 0; i < cmd->Header.SGList; i++) {
1673                 if (curr_sg[sg_index].Ext == CCISS_SG_CHAIN) {
1674                         temp64.val32.lower = cmd->SG[i].Addr.lower;
1675                         temp64.val32.upper = cmd->SG[i].Addr.upper;
1676                         pci_dma_sync_single_for_cpu(h->pdev, temp64.val,
1677                                                 cmd->SG[i].Len, ddir);
1678                         pci_unmap_single(h->pdev, temp64.val,
1679                                                 cmd->SG[i].Len, ddir);
1680                         /* Point to the next block */
1681                         curr_sg = h->cmd_sg_list[cmd->cmdindex]->sgchain;
1682                         sg_index = 0;
1683                 }
1684                 temp64.val32.lower = curr_sg[sg_index].Addr.lower;
1685                 temp64.val32.upper = curr_sg[sg_index].Addr.upper;
1686                 pci_unmap_page(h->pdev, temp64.val, curr_sg[sg_index].Len,
1687                                 ddir);
1688                 ++sg_index;
1689         }
1690
1691 #ifdef CCISS_DEBUG
1692         printk("Done with %p\n", rq);
1693 #endif                          /* CCISS_DEBUG */
1694
1695         /* set the residual count for pc requests */
1696         if (blk_pc_request(rq))
1697                 rq->resid_len = cmd->err_info->ResidualCnt;
1698
1699         blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
1700
1701         spin_lock_irqsave(&h->lock, flags);
1702         cmd_free(h, cmd, 1);
1703         cciss_check_queues(h);
1704         spin_unlock_irqrestore(&h->lock, flags);
1705 }
1706
1707 static inline void log_unit_to_scsi3addr(ctlr_info_t *h,
1708         unsigned char scsi3addr[], uint32_t log_unit)
1709 {
1710         memcpy(scsi3addr, h->drv[log_unit]->LunID,
1711                 sizeof(h->drv[log_unit]->LunID));
1712 }
1713
1714 /* This function gets the SCSI vendor, model, and revision of a logical drive
1715  * via the inquiry page 0.  Model, vendor, and rev are set to empty strings if
1716  * they cannot be read.
1717  */
1718 static void cciss_get_device_descr(int ctlr, int logvol,
1719                                    char *vendor, char *model, char *rev)
1720 {
1721         int rc;
1722         InquiryData_struct *inq_buf;
1723         unsigned char scsi3addr[8];
1724
1725         *vendor = '\0';
1726         *model = '\0';
1727         *rev = '\0';
1728
1729         inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1730         if (!inq_buf)
1731                 return;
1732
1733         log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
1734         rc = sendcmd_withirq(CISS_INQUIRY, ctlr, inq_buf, sizeof(*inq_buf), 0,
1735                         scsi3addr, TYPE_CMD);
1736         if (rc == IO_OK) {
1737                 memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
1738                 vendor[VENDOR_LEN] = '\0';
1739                 memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
1740                 model[MODEL_LEN] = '\0';
1741                 memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
1742                 rev[REV_LEN] = '\0';
1743         }
1744
1745         kfree(inq_buf);
1746         return;
1747 }
1748
1749 /* This function gets the serial number of a logical drive via
1750  * inquiry page 0x83.  Serial no. is 16 bytes.  If the serial
1751  * number cannot be had, for whatever reason, 16 bytes of 0xff
1752  * are returned instead.
1753  */
1754 static void cciss_get_serial_no(int ctlr, int logvol,
1755                                 unsigned char *serial_no, int buflen)
1756 {
1757 #define PAGE_83_INQ_BYTES 64
1758         int rc;
1759         unsigned char *buf;
1760         unsigned char scsi3addr[8];
1761
1762         if (buflen > 16)
1763                 buflen = 16;
1764         memset(serial_no, 0xff, buflen);
1765         buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
1766         if (!buf)
1767                 return;
1768         memset(serial_no, 0, buflen);
1769         log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
1770         rc = sendcmd_withirq(CISS_INQUIRY, ctlr, buf,
1771                 PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1772         if (rc == IO_OK)
1773                 memcpy(serial_no, &buf[8], buflen);
1774         kfree(buf);
1775         return;
1776 }
1777
1778 /*
1779  * cciss_add_disk sets up the block device queue for a logical drive
1780  */
1781 static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
1782                                 int drv_index)
1783 {
1784         disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1785         if (!disk->queue)
1786                 goto init_queue_failure;
1787         sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
1788         disk->major = h->major;
1789         disk->first_minor = drv_index << NWD_SHIFT;
1790         disk->fops = &cciss_fops;
1791         if (cciss_create_ld_sysfs_entry(h, drv_index))
1792                 goto cleanup_queue;
1793         disk->private_data = h->drv[drv_index];
1794         disk->driverfs_dev = &h->drv[drv_index]->dev;
1795
1796         /* Set up queue information */
1797         blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
1798
1799         /* This is a hardware imposed limit. */
1800         blk_queue_max_segments(disk->queue, h->maxsgentries);
1801
1802         blk_queue_max_hw_sectors(disk->queue, h->cciss_max_sectors);
1803
1804         blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1805
1806         disk->queue->queuedata = h;
1807
1808         blk_queue_logical_block_size(disk->queue,
1809                                      h->drv[drv_index]->block_size);
1810
1811         /* Make sure all queue data is written out before */
1812         /* setting h->drv[drv_index]->queue, as setting this */
1813         /* allows the interrupt handler to start the queue */
1814         wmb();
1815         h->drv[drv_index]->queue = disk->queue;
1816         add_disk(disk);
1817         return 0;
1818
1819 cleanup_queue:
1820         blk_cleanup_queue(disk->queue);
1821         disk->queue = NULL;
1822 init_queue_failure:
1823         return -1;
1824 }
1825
1826 /* This function will check the usage_count of the drive to be updated/added.
1827  * If the usage_count is zero and it is a heretofore unknown drive, or,
1828  * the drive's capacity, geometry, or serial number has changed,
1829  * then the drive information will be updated and the disk will be
1830  * re-registered with the kernel.  If these conditions don't hold,
1831  * then it will be left alone for the next reboot.  The exception to this
1832  * is disk 0 which will always be left registered with the kernel since it
1833  * is also the controller node.  Any changes to disk 0 will show up on
1834  * the next reboot.
1835  */
1836 static void cciss_update_drive_info(int ctlr, int drv_index, int first_time,
1837         int via_ioctl)
1838 {
1839         ctlr_info_t *h = hba[ctlr];
1840         struct gendisk *disk;
1841         InquiryData_struct *inq_buff = NULL;
1842         unsigned int block_size;
1843         sector_t total_size;
1844         unsigned long flags = 0;
1845         int ret = 0;
1846         drive_info_struct *drvinfo;
1847
1848         /* Get information about the disk and modify the driver structure */
1849         inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1850         drvinfo = kzalloc(sizeof(*drvinfo), GFP_KERNEL);
1851         if (inq_buff == NULL || drvinfo == NULL)
1852                 goto mem_msg;
1853
1854         /* testing to see if 16-byte CDBs are already being used */
1855         if (h->cciss_read == CCISS_READ_16) {
1856                 cciss_read_capacity_16(h->ctlr, drv_index,
1857                         &total_size, &block_size);
1858
1859         } else {
1860                 cciss_read_capacity(ctlr, drv_index, &total_size, &block_size);
1861                 /* if read_capacity returns all F's this volume is >2TB */
1862                 /* in size so we switch to 16-byte CDB's for all */
1863                 /* read/write ops */
1864                 if (total_size == 0xFFFFFFFFULL) {
1865                         cciss_read_capacity_16(ctlr, drv_index,
1866                         &total_size, &block_size);
1867                         h->cciss_read = CCISS_READ_16;
1868                         h->cciss_write = CCISS_WRITE_16;
1869                 } else {
1870                         h->cciss_read = CCISS_READ_10;
1871                         h->cciss_write = CCISS_WRITE_10;
1872                 }
1873         }
1874
1875         cciss_geometry_inquiry(ctlr, drv_index, total_size, block_size,
1876                                inq_buff, drvinfo);
1877         drvinfo->block_size = block_size;
1878         drvinfo->nr_blocks = total_size + 1;
1879
1880         cciss_get_device_descr(ctlr, drv_index, drvinfo->vendor,
1881                                 drvinfo->model, drvinfo->rev);
1882         cciss_get_serial_no(ctlr, drv_index, drvinfo->serial_no,
1883                         sizeof(drvinfo->serial_no));
1884         /* Save the lunid in case we deregister the disk, below. */
1885         memcpy(drvinfo->LunID, h->drv[drv_index]->LunID,
1886                 sizeof(drvinfo->LunID));
1887
1888         /* Is it the same disk we already know, and nothing's changed? */
1889         if (h->drv[drv_index]->raid_level != -1 &&
1890                 ((memcmp(drvinfo->serial_no,
1891                                 h->drv[drv_index]->serial_no, 16) == 0) &&
1892                 drvinfo->block_size == h->drv[drv_index]->block_size &&
1893                 drvinfo->nr_blocks == h->drv[drv_index]->nr_blocks &&
1894                 drvinfo->heads == h->drv[drv_index]->heads &&
1895                 drvinfo->sectors == h->drv[drv_index]->sectors &&
1896                 drvinfo->cylinders == h->drv[drv_index]->cylinders))
1897                         /* The disk is unchanged, nothing to update */
1898                         goto freeret;
1899
1900         /* If we get here it's not the same disk, or something's changed,
1901          * so we need to * deregister it, and re-register it, if it's not
1902          * in use.
1903          * If the disk already exists then deregister it before proceeding
1904          * (unless it's the first disk (for the controller node).
1905          */
1906         if (h->drv[drv_index]->raid_level != -1 && drv_index != 0) {
1907                 printk(KERN_WARNING "disk %d has changed.\n", drv_index);
1908                 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1909                 h->drv[drv_index]->busy_configuring = 1;
1910                 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1911
1912                 /* deregister_disk sets h->drv[drv_index]->queue = NULL
1913                  * which keeps the interrupt handler from starting
1914                  * the queue.
1915                  */
1916                 ret = deregister_disk(h, drv_index, 0, via_ioctl);
1917         }
1918
1919         /* If the disk is in use return */
1920         if (ret)
1921                 goto freeret;
1922
1923         /* Save the new information from cciss_geometry_inquiry
1924          * and serial number inquiry.  If the disk was deregistered
1925          * above, then h->drv[drv_index] will be NULL.
1926          */
1927         if (h->drv[drv_index] == NULL) {
1928                 drvinfo->device_initialized = 0;
1929                 h->drv[drv_index] = drvinfo;
1930                 drvinfo = NULL; /* so it won't be freed below. */
1931         } else {
1932                 /* special case for cxd0 */
1933                 h->drv[drv_index]->block_size = drvinfo->block_size;
1934                 h->drv[drv_index]->nr_blocks = drvinfo->nr_blocks;
1935                 h->drv[drv_index]->heads = drvinfo->heads;
1936                 h->drv[drv_index]->sectors = drvinfo->sectors;
1937                 h->drv[drv_index]->cylinders = drvinfo->cylinders;
1938                 h->drv[drv_index]->raid_level = drvinfo->raid_level;
1939                 memcpy(h->drv[drv_index]->serial_no, drvinfo->serial_no, 16);
1940                 memcpy(h->drv[drv_index]->vendor, drvinfo->vendor,
1941                         VENDOR_LEN + 1);
1942                 memcpy(h->drv[drv_index]->model, drvinfo->model, MODEL_LEN + 1);
1943                 memcpy(h->drv[drv_index]->rev, drvinfo->rev, REV_LEN + 1);
1944         }
1945
1946         ++h->num_luns;
1947         disk = h->gendisk[drv_index];
1948         set_capacity(disk, h->drv[drv_index]->nr_blocks);
1949
1950         /* If it's not disk 0 (drv_index != 0)
1951          * or if it was disk 0, but there was previously
1952          * no actual corresponding configured logical drive
1953          * (raid_leve == -1) then we want to update the
1954          * logical drive's information.
1955          */
1956         if (drv_index || first_time) {
1957                 if (cciss_add_disk(h, disk, drv_index) != 0) {
1958                         cciss_free_gendisk(h, drv_index);
1959                         cciss_free_drive_info(h, drv_index);
1960                         printk(KERN_WARNING "cciss:%d could not update "
1961                                 "disk %d\n", h->ctlr, drv_index);
1962                         --h->num_luns;
1963                 }
1964         }
1965
1966 freeret:
1967         kfree(inq_buff);
1968         kfree(drvinfo);
1969         return;
1970 mem_msg:
1971         printk(KERN_ERR "cciss: out of memory\n");
1972         goto freeret;
1973 }
1974
1975 /* This function will find the first index of the controllers drive array
1976  * that has a null drv pointer and allocate the drive info struct and
1977  * will return that index   This is where new drives will be added.
1978  * If the index to be returned is greater than the highest_lun index for
1979  * the controller then highest_lun is set * to this new index.
1980  * If there are no available indexes or if tha allocation fails, then -1
1981  * is returned.  * "controller_node" is used to know if this is a real
1982  * logical drive, or just the controller node, which determines if this
1983  * counts towards highest_lun.
1984  */
1985 static int cciss_alloc_drive_info(ctlr_info_t *h, int controller_node)
1986 {
1987         int i;
1988         drive_info_struct *drv;
1989
1990         /* Search for an empty slot for our drive info */
1991         for (i = 0; i < CISS_MAX_LUN; i++) {
1992
1993                 /* if not cxd0 case, and it's occupied, skip it. */
1994                 if (h->drv[i] && i != 0)
1995                         continue;
1996                 /*
1997                  * If it's cxd0 case, and drv is alloc'ed already, and a
1998                  * disk is configured there, skip it.
1999                  */
2000                 if (i == 0 && h->drv[i] && h->drv[i]->raid_level != -1)
2001                         continue;
2002
2003                 /*
2004                  * We've found an empty slot.  Update highest_lun
2005                  * provided this isn't just the fake cxd0 controller node.
2006                  */
2007                 if (i > h->highest_lun && !controller_node)
2008                         h->highest_lun = i;
2009
2010                 /* If adding a real disk at cxd0, and it's already alloc'ed */
2011                 if (i == 0 && h->drv[i] != NULL)
2012                         return i;
2013
2014                 /*
2015                  * Found an empty slot, not already alloc'ed.  Allocate it.
2016                  * Mark it with raid_level == -1, so we know it's new later on.
2017                  */
2018                 drv = kzalloc(sizeof(*drv), GFP_KERNEL);
2019                 if (!drv)
2020                         return -1;
2021                 drv->raid_level = -1; /* so we know it's new */
2022                 h->drv[i] = drv;
2023                 return i;
2024         }
2025         return -1;
2026 }
2027
2028 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index)
2029 {
2030         kfree(h->drv[drv_index]);
2031         h->drv[drv_index] = NULL;
2032 }
2033
2034 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index)
2035 {
2036         put_disk(h->gendisk[drv_index]);
2037         h->gendisk[drv_index] = NULL;
2038 }
2039
2040 /* cciss_add_gendisk finds a free hba[]->drv structure
2041  * and allocates a gendisk if needed, and sets the lunid
2042  * in the drvinfo structure.   It returns the index into
2043  * the ->drv[] array, or -1 if none are free.
2044  * is_controller_node indicates whether highest_lun should
2045  * count this disk, or if it's only being added to provide
2046  * a means to talk to the controller in case no logical
2047  * drives have yet been configured.
2048  */
2049 static int cciss_add_gendisk(ctlr_info_t *h, unsigned char lunid[],
2050         int controller_node)
2051 {
2052         int drv_index;
2053
2054         drv_index = cciss_alloc_drive_info(h, controller_node);
2055         if (drv_index == -1)
2056                 return -1;
2057
2058         /*Check if the gendisk needs to be allocated */
2059         if (!h->gendisk[drv_index]) {
2060                 h->gendisk[drv_index] =
2061                         alloc_disk(1 << NWD_SHIFT);
2062                 if (!h->gendisk[drv_index]) {
2063                         printk(KERN_ERR "cciss%d: could not "
2064                                 "allocate a new disk %d\n",
2065                                 h->ctlr, drv_index);
2066                         goto err_free_drive_info;
2067                 }
2068         }
2069         memcpy(h->drv[drv_index]->LunID, lunid,
2070                 sizeof(h->drv[drv_index]->LunID));
2071         if (cciss_create_ld_sysfs_entry(h, drv_index))
2072                 goto err_free_disk;
2073         /* Don't need to mark this busy because nobody */
2074         /* else knows about this disk yet to contend */
2075         /* for access to it. */
2076         h->drv[drv_index]->busy_configuring = 0;
2077         wmb();
2078         return drv_index;
2079
2080 err_free_disk:
2081         cciss_free_gendisk(h, drv_index);
2082 err_free_drive_info:
2083         cciss_free_drive_info(h, drv_index);
2084         return -1;
2085 }
2086
2087 /* This is for the special case of a controller which
2088  * has no logical drives.  In this case, we still need
2089  * to register a disk so the controller can be accessed
2090  * by the Array Config Utility.
2091  */
2092 static void cciss_add_controller_node(ctlr_info_t *h)
2093 {
2094         struct gendisk *disk;
2095         int drv_index;
2096
2097         if (h->gendisk[0] != NULL) /* already did this? Then bail. */
2098                 return;
2099
2100         drv_index = cciss_add_gendisk(h, CTLR_LUNID, 1);
2101         if (drv_index == -1)
2102                 goto error;
2103         h->drv[drv_index]->block_size = 512;
2104         h->drv[drv_index]->nr_blocks = 0;
2105         h->drv[drv_index]->heads = 0;
2106         h->drv[drv_index]->sectors = 0;
2107         h->drv[drv_index]->cylinders = 0;
2108         h->drv[drv_index]->raid_level = -1;
2109         memset(h->drv[drv_index]->serial_no, 0, 16);
2110         disk = h->gendisk[drv_index];
2111         if (cciss_add_disk(h, disk, drv_index) == 0)
2112                 return;
2113         cciss_free_gendisk(h, drv_index);
2114         cciss_free_drive_info(h, drv_index);
2115 error:
2116         printk(KERN_WARNING "cciss%d: could not "
2117                 "add disk 0.\n", h->ctlr);
2118         return;
2119 }
2120
2121 /* This function will add and remove logical drives from the Logical
2122  * drive array of the controller and maintain persistency of ordering
2123  * so that mount points are preserved until the next reboot.  This allows
2124  * for the removal of logical drives in the middle of the drive array
2125  * without a re-ordering of those drives.
2126  * INPUT
2127  * h            = The controller to perform the operations on
2128  */
2129 static int rebuild_lun_table(ctlr_info_t *h, int first_time,
2130         int via_ioctl)
2131 {
2132         int ctlr = h->ctlr;
2133         int num_luns;
2134         ReportLunData_struct *ld_buff = NULL;
2135         int return_code;
2136         int listlength = 0;
2137         int i;
2138         int drv_found;
2139         int drv_index = 0;
2140         unsigned char lunid[8] = CTLR_LUNID;
2141         unsigned long flags;
2142
2143         if (!capable(CAP_SYS_RAWIO))
2144                 return -EPERM;
2145
2146         /* Set busy_configuring flag for this operation */
2147         spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2148         if (h->busy_configuring) {
2149                 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2150                 return -EBUSY;
2151         }
2152         h->busy_configuring = 1;
2153         spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2154
2155         ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
2156         if (ld_buff == NULL)
2157                 goto mem_msg;
2158
2159         return_code = sendcmd_withirq(CISS_REPORT_LOG, ctlr, ld_buff,
2160                                       sizeof(ReportLunData_struct),
2161                                       0, CTLR_LUNID, TYPE_CMD);
2162
2163         if (return_code == IO_OK)
2164                 listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
2165         else {  /* reading number of logical volumes failed */
2166                 printk(KERN_WARNING "cciss: report logical volume"
2167                        " command failed\n");
2168                 listlength = 0;
2169                 goto freeret;
2170         }
2171
2172         num_luns = listlength / 8;      /* 8 bytes per entry */
2173         if (num_luns > CISS_MAX_LUN) {
2174                 num_luns = CISS_MAX_LUN;
2175                 printk(KERN_WARNING "cciss: more luns configured"
2176                        " on controller than can be handled by"
2177                        " this driver.\n");
2178         }
2179
2180         if (num_luns == 0)
2181                 cciss_add_controller_node(h);
2182
2183         /* Compare controller drive array to driver's drive array
2184          * to see if any drives are missing on the controller due
2185          * to action of Array Config Utility (user deletes drive)
2186          * and deregister logical drives which have disappeared.
2187          */
2188         for (i = 0; i <= h->highest_lun; i++) {
2189                 int j;
2190                 drv_found = 0;
2191
2192                 /* skip holes in the array from already deleted drives */
2193                 if (h->drv[i] == NULL)
2194                         continue;
2195
2196                 for (j = 0; j < num_luns; j++) {
2197                         memcpy(lunid, &ld_buff->LUN[j][0], sizeof(lunid));
2198                         if (memcmp(h->drv[i]->LunID, lunid,
2199                                 sizeof(lunid)) == 0) {
2200                                 drv_found = 1;
2201                                 break;
2202                         }
2203                 }
2204                 if (!drv_found) {
2205                         /* Deregister it from the OS, it's gone. */
2206                         spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2207                         h->drv[i]->busy_configuring = 1;
2208                         spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2209                         return_code = deregister_disk(h, i, 1, via_ioctl);
2210                         if (h->drv[i] != NULL)
2211                                 h->drv[i]->busy_configuring = 0;
2212                 }
2213         }
2214
2215         /* Compare controller drive array to driver's drive array.
2216          * Check for updates in the drive information and any new drives
2217          * on the controller due to ACU adding logical drives, or changing
2218          * a logical drive's size, etc.  Reregister any new/changed drives
2219          */
2220         for (i = 0; i < num_luns; i++) {
2221                 int j;
2222
2223                 drv_found = 0;
2224
2225                 memcpy(lunid, &ld_buff->LUN[i][0], sizeof(lunid));
2226                 /* Find if the LUN is already in the drive array
2227                  * of the driver.  If so then update its info
2228                  * if not in use.  If it does not exist then find
2229                  * the first free index and add it.
2230                  */
2231                 for (j = 0; j <= h->highest_lun; j++) {
2232                         if (h->drv[j] != NULL &&
2233                                 memcmp(h->drv[j]->LunID, lunid,
2234                                         sizeof(h->drv[j]->LunID)) == 0) {
2235                                 drv_index = j;
2236                                 drv_found = 1;
2237                                 break;
2238                         }
2239                 }
2240
2241                 /* check if the drive was found already in the array */
2242                 if (!drv_found) {
2243                         drv_index = cciss_add_gendisk(h, lunid, 0);
2244                         if (drv_index == -1)
2245                                 goto freeret;
2246                 }
2247                 cciss_update_drive_info(ctlr, drv_index, first_time,
2248                         via_ioctl);
2249         }               /* end for */
2250
2251 freeret:
2252         kfree(ld_buff);
2253         h->busy_configuring = 0;
2254         /* We return -1 here to tell the ACU that we have registered/updated
2255          * all of the drives that we can and to keep it from calling us
2256          * additional times.
2257          */
2258         return -1;
2259 mem_msg:
2260         printk(KERN_ERR "cciss: out of memory\n");
2261         h->busy_configuring = 0;
2262         goto freeret;
2263 }
2264
2265 static void cciss_clear_drive_info(drive_info_struct *drive_info)
2266 {
2267         /* zero out the disk size info */
2268         drive_info->nr_blocks = 0;
2269         drive_info->block_size = 0;
2270         drive_info->heads = 0;
2271         drive_info->sectors = 0;
2272         drive_info->cylinders = 0;
2273         drive_info->raid_level = -1;
2274         memset(drive_info->serial_no, 0, sizeof(drive_info->serial_no));
2275         memset(drive_info->model, 0, sizeof(drive_info->model));
2276         memset(drive_info->rev, 0, sizeof(drive_info->rev));
2277         memset(drive_info->vendor, 0, sizeof(drive_info->vendor));
2278         /*
2279          * don't clear the LUNID though, we need to remember which
2280          * one this one is.
2281          */
2282 }
2283
2284 /* This function will deregister the disk and it's queue from the
2285  * kernel.  It must be called with the controller lock held and the
2286  * drv structures busy_configuring flag set.  It's parameters are:
2287  *
2288  * disk = This is the disk to be deregistered
2289  * drv  = This is the drive_info_struct associated with the disk to be
2290  *        deregistered.  It contains information about the disk used
2291  *        by the driver.
2292  * clear_all = This flag determines whether or not the disk information
2293  *             is going to be completely cleared out and the highest_lun
2294  *             reset.  Sometimes we want to clear out information about
2295  *             the disk in preparation for re-adding it.  In this case
2296  *             the highest_lun should be left unchanged and the LunID
2297  *             should not be cleared.
2298  * via_ioctl
2299  *    This indicates whether we've reached this path via ioctl.
2300  *    This affects the maximum usage count allowed for c0d0 to be messed with.
2301  *    If this path is reached via ioctl(), then the max_usage_count will
2302  *    be 1, as the process calling ioctl() has got to have the device open.
2303  *    If we get here via sysfs, then the max usage count will be zero.
2304 */
2305 static int deregister_disk(ctlr_info_t *h, int drv_index,
2306                            int clear_all, int via_ioctl)
2307 {
2308         int i;
2309         struct gendisk *disk;
2310         drive_info_struct *drv;
2311         int recalculate_highest_lun;
2312
2313         if (!capable(CAP_SYS_RAWIO))
2314                 return -EPERM;
2315
2316         drv = h->drv[drv_index];
2317         disk = h->gendisk[drv_index];
2318
2319         /* make sure logical volume is NOT is use */
2320         if (clear_all || (h->gendisk[0] == disk)) {
2321                 if (drv->usage_count > via_ioctl)
2322                         return -EBUSY;
2323         } else if (drv->usage_count > 0)
2324                 return -EBUSY;
2325
2326         recalculate_highest_lun = (drv == h->drv[h->highest_lun]);
2327
2328         /* invalidate the devices and deregister the disk.  If it is disk
2329          * zero do not deregister it but just zero out it's values.  This
2330          * allows us to delete disk zero but keep the controller registered.
2331          */
2332         if (h->gendisk[0] != disk) {
2333                 struct request_queue *q = disk->queue;
2334                 if (disk->flags & GENHD_FL_UP) {
2335                         cciss_destroy_ld_sysfs_entry(h, drv_index, 0);
2336                         del_gendisk(disk);
2337                 }
2338                 if (q)
2339                         blk_cleanup_queue(q);
2340                 /* If clear_all is set then we are deleting the logical
2341                  * drive, not just refreshing its info.  For drives
2342                  * other than disk 0 we will call put_disk.  We do not
2343                  * do this for disk 0 as we need it to be able to
2344                  * configure the controller.
2345                  */
2346                 if (clear_all){
2347                         /* This isn't pretty, but we need to find the
2348                          * disk in our array and NULL our the pointer.
2349                          * This is so that we will call alloc_disk if
2350                          * this index is used again later.
2351                          */
2352                         for (i=0; i < CISS_MAX_LUN; i++){
2353                                 if (h->gendisk[i] == disk) {
2354                                         h->gendisk[i] = NULL;
2355                                         break;
2356                                 }
2357                         }
2358                         put_disk(disk);
2359                 }
2360         } else {
2361                 set_capacity(disk, 0);
2362                 cciss_clear_drive_info(drv);
2363         }
2364
2365         --h->num_luns;
2366
2367         /* if it was the last disk, find the new hightest lun */
2368         if (clear_all && recalculate_highest_lun) {
2369                 int i, newhighest = -1;
2370                 for (i = 0; i <= h->highest_lun; i++) {
2371                         /* if the disk has size > 0, it is available */
2372                         if (h->drv[i] && h->drv[i]->heads)
2373                                 newhighest = i;
2374                 }
2375                 h->highest_lun = newhighest;
2376         }
2377         return 0;
2378 }
2379
2380 static int fill_cmd(CommandList_struct *c, __u8 cmd, int ctlr, void *buff,
2381                 size_t size, __u8 page_code, unsigned char *scsi3addr,
2382                 int cmd_type)
2383 {
2384         ctlr_info_t *h = hba[ctlr];
2385         u64bit buff_dma_handle;
2386         int status = IO_OK;
2387
2388         c->cmd_type = CMD_IOCTL_PEND;
2389         c->Header.ReplyQueue = 0;
2390         if (buff != NULL) {
2391                 c->Header.SGList = 1;
2392                 c->Header.SGTotal = 1;
2393         } else {
2394                 c->Header.SGList = 0;
2395                 c->Header.SGTotal = 0;
2396         }
2397         c->Header.Tag.lower = c->busaddr;
2398         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2399
2400         c->Request.Type.Type = cmd_type;
2401         if (cmd_type == TYPE_CMD) {
2402                 switch (cmd) {
2403                 case CISS_INQUIRY:
2404                         /* are we trying to read a vital product page */
2405                         if (page_code != 0) {
2406                                 c->Request.CDB[1] = 0x01;
2407                                 c->Request.CDB[2] = page_code;
2408                         }
2409                         c->Request.CDBLen = 6;
2410                         c->Request.Type.Attribute = ATTR_SIMPLE;
2411                         c->Request.Type.Direction = XFER_READ;
2412                         c->Request.Timeout = 0;
2413                         c->Request.CDB[0] = CISS_INQUIRY;
2414                         c->Request.CDB[4] = size & 0xFF;
2415                         break;
2416                 case CISS_REPORT_LOG:
2417                 case CISS_REPORT_PHYS:
2418                         /* Talking to controller so It's a physical command
2419                            mode = 00 target = 0.  Nothing to write.
2420                          */
2421                         c->Request.CDBLen = 12;
2422                         c->Request.Type.Attribute = ATTR_SIMPLE;
2423                         c->Request.Type.Direction = XFER_READ;
2424                         c->Request.Timeout = 0;
2425                         c->Request.CDB[0] = cmd;
2426                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2427                         c->Request.CDB[7] = (size >> 16) & 0xFF;
2428                         c->Request.CDB[8] = (size >> 8) & 0xFF;
2429                         c->Request.CDB[9] = size & 0xFF;
2430                         break;
2431
2432                 case CCISS_READ_CAPACITY:
2433                         c->Request.CDBLen = 10;
2434                         c->Request.Type.Attribute = ATTR_SIMPLE;
2435                         c->Request.Type.Direction = XFER_READ;
2436                         c->Request.Timeout = 0;
2437                         c->Request.CDB[0] = cmd;
2438                         break;
2439                 case CCISS_READ_CAPACITY_16:
2440                         c->Request.CDBLen = 16;
2441                         c->Request.Type.Attribute = ATTR_SIMPLE;
2442                         c->Request.Type.Direction = XFER_READ;
2443                         c->Request.Timeout = 0;
2444                         c->Request.CDB[0] = cmd;
2445                         c->Request.CDB[1] = 0x10;
2446                         c->Request.CDB[10] = (size >> 24) & 0xFF;
2447                         c->Request.CDB[11] = (size >> 16) & 0xFF;
2448                         c->Request.CDB[12] = (size >> 8) & 0xFF;
2449                         c->Request.CDB[13] = size & 0xFF;
2450                         c->Request.Timeout = 0;
2451                         c->Request.CDB[0] = cmd;
2452                         break;
2453                 case CCISS_CACHE_FLUSH:
2454                         c->Request.CDBLen = 12;
2455                         c->Request.Type.Attribute = ATTR_SIMPLE;
2456                         c->Request.Type.Direction = XFER_WRITE;
2457                         c->Request.Timeout = 0;
2458                         c->Request.CDB[0] = BMIC_WRITE;
2459                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2460                         break;
2461                 case TEST_UNIT_READY:
2462                         c->Request.CDBLen = 6;
2463                         c->Request.Type.Attribute = ATTR_SIMPLE;
2464                         c->Request.Type.Direction = XFER_NONE;
2465                         c->Request.Timeout = 0;
2466                         break;
2467                 default:
2468                         printk(KERN_WARNING
2469                                "cciss%d:  Unknown Command 0x%c\n", ctlr, cmd);
2470                         return IO_ERROR;
2471                 }
2472         } else if (cmd_type == TYPE_MSG) {
2473                 switch (cmd) {
2474                 case 0: /* ABORT message */
2475                         c->Request.CDBLen = 12;
2476                         c->Request.Type.Attribute = ATTR_SIMPLE;
2477                         c->Request.Type.Direction = XFER_WRITE;
2478                         c->Request.Timeout = 0;
2479                         c->Request.CDB[0] = cmd;        /* abort */
2480                         c->Request.CDB[1] = 0;  /* abort a command */
2481                         /* buff contains the tag of the command to abort */
2482                         memcpy(&c->Request.CDB[4], buff, 8);
2483                         break;
2484                 case 1: /* RESET message */
2485                         c->Request.CDBLen = 16;
2486                         c->Request.Type.Attribute = ATTR_SIMPLE;
2487                         c->Request.Type.Direction = XFER_NONE;
2488                         c->Request.Timeout = 0;
2489                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2490                         c->Request.CDB[0] = cmd;        /* reset */
2491                         c->Request.CDB[1] = 0x03;       /* reset a target */
2492                         break;
2493                 case 3: /* No-Op message */
2494                         c->Request.CDBLen = 1;
2495                         c->Request.Type.Attribute = ATTR_SIMPLE;
2496                         c->Request.Type.Direction = XFER_WRITE;
2497                         c->Request.Timeout = 0;
2498                         c->Request.CDB[0] = cmd;
2499                         break;
2500                 default:
2501                         printk(KERN_WARNING
2502                                "cciss%d: unknown message type %d\n", ctlr, cmd);
2503                         return IO_ERROR;
2504                 }
2505         } else {
2506                 printk(KERN_WARNING
2507                        "cciss%d: unknown command type %d\n", ctlr, cmd_type);
2508                 return IO_ERROR;
2509         }
2510         /* Fill in the scatter gather information */
2511         if (size > 0) {
2512                 buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
2513                                                              buff, size,
2514                                                              PCI_DMA_BIDIRECTIONAL);
2515                 c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
2516                 c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
2517                 c->SG[0].Len = size;
2518                 c->SG[0].Ext = 0;       /* we are not chaining */
2519         }
2520         return status;
2521 }
2522
2523 static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
2524 {
2525         switch (c->err_info->ScsiStatus) {
2526         case SAM_STAT_GOOD:
2527                 return IO_OK;
2528         case SAM_STAT_CHECK_CONDITION:
2529                 switch (0xf & c->err_info->SenseInfo[2]) {
2530                 case 0: return IO_OK; /* no sense */
2531                 case 1: return IO_OK; /* recovered error */
2532                 default:
2533                         if (check_for_unit_attention(h, c))
2534                                 return IO_NEEDS_RETRY;
2535                         printk(KERN_WARNING "cciss%d: cmd 0x%02x "
2536                                 "check condition, sense key = 0x%02x\n",
2537                                 h->ctlr, c->Request.CDB[0],
2538                                 c->err_info->SenseInfo[2]);
2539                 }
2540                 break;
2541         default:
2542                 printk(KERN_WARNING "cciss%d: cmd 0x%02x"
2543                         "scsi status = 0x%02x\n", h->ctlr,
2544                         c->Request.CDB[0], c->err_info->ScsiStatus);
2545                 break;
2546         }
2547         return IO_ERROR;
2548 }
2549
2550 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
2551 {
2552         int return_status = IO_OK;
2553
2554         if (c->err_info->CommandStatus == CMD_SUCCESS)
2555                 return IO_OK;
2556
2557         switch (c->err_info->CommandStatus) {
2558         case CMD_TARGET_STATUS:
2559                 return_status = check_target_status(h, c);
2560                 break;
2561         case CMD_DATA_UNDERRUN:
2562         case CMD_DATA_OVERRUN:
2563                 /* expected for inquiry and report lun commands */
2564                 break;
2565         case CMD_INVALID:
2566                 printk(KERN_WARNING "cciss: cmd 0x%02x is "
2567                        "reported invalid\n", c->Request.CDB[0]);
2568                 return_status = IO_ERROR;
2569                 break;
2570         case CMD_PROTOCOL_ERR:
2571                 printk(KERN_WARNING "cciss: cmd 0x%02x has "
2572                        "protocol error \n", c->Request.CDB[0]);
2573                 return_status = IO_ERROR;
2574                 break;
2575         case CMD_HARDWARE_ERR:
2576                 printk(KERN_WARNING "cciss: cmd 0x%02x had "
2577                        " hardware error\n", c->Request.CDB[0]);
2578                 return_status = IO_ERROR;
2579                 break;
2580         case CMD_CONNECTION_LOST:
2581                 printk(KERN_WARNING "cciss: cmd 0x%02x had "
2582                        "connection lost\n", c->Request.CDB[0]);
2583                 return_status = IO_ERROR;
2584                 break;
2585         case CMD_ABORTED:
2586                 printk(KERN_WARNING "cciss: cmd 0x%02x was "
2587                        "aborted\n", c->Request.CDB[0]);
2588                 return_status = IO_ERROR;
2589                 break;
2590         case CMD_ABORT_FAILED:
2591                 printk(KERN_WARNING "cciss: cmd 0x%02x reports "
2592                        "abort failed\n", c->Request.CDB[0]);
2593                 return_status = IO_ERROR;
2594                 break;
2595         case CMD_UNSOLICITED_ABORT:
2596                 printk(KERN_WARNING
2597                        "cciss%d: unsolicited abort 0x%02x\n", h->ctlr,
2598                         c->Request.CDB[0]);
2599                 return_status = IO_NEEDS_RETRY;
2600                 break;
2601         default:
2602                 printk(KERN_WARNING "cciss: cmd 0x%02x returned "
2603                        "unknown status %x\n", c->Request.CDB[0],
2604                        c->err_info->CommandStatus);
2605                 return_status = IO_ERROR;
2606         }
2607         return return_status;
2608 }
2609
2610 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
2611         int attempt_retry)
2612 {
2613         DECLARE_COMPLETION_ONSTACK(wait);
2614         u64bit buff_dma_handle;
2615         unsigned long flags;
2616         int return_status = IO_OK;
2617
2618 resend_cmd2:
2619         c->waiting = &wait;
2620         /* Put the request on the tail of the queue and send it */
2621         spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2622         addQ(&h->reqQ, c);
2623         h->Qdepth++;
2624         start_io(h);
2625         spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2626
2627         wait_for_completion(&wait);
2628
2629         if (c->err_info->CommandStatus == 0 || !attempt_retry)
2630                 goto command_done;
2631
2632         return_status = process_sendcmd_error(h, c);
2633
2634         if (return_status == IO_NEEDS_RETRY &&
2635                 c->retry_count < MAX_CMD_RETRIES) {
2636                 printk(KERN_WARNING "cciss%d: retrying 0x%02x\n", h->ctlr,
2637                         c->Request.CDB[0]);
2638                 c->retry_count++;
2639                 /* erase the old error information */
2640                 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2641                 return_status = IO_OK;
2642                 INIT_COMPLETION(wait);
2643                 goto resend_cmd2;
2644         }
2645
2646 command_done:
2647         /* unlock the buffers from DMA */
2648         buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2649         buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2650         pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2651                          c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2652         return return_status;
2653 }
2654
2655 static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
2656                            __u8 page_code, unsigned char scsi3addr[],
2657                         int cmd_type)
2658 {
2659         ctlr_info_t *h = hba[ctlr];
2660         CommandList_struct *c;
2661         int return_status;
2662
2663         c = cmd_alloc(h, 0);
2664         if (!c)
2665                 return -ENOMEM;
2666         return_status = fill_cmd(c, cmd, ctlr, buff, size, page_code,
2667                 scsi3addr, cmd_type);
2668         if (return_status == IO_OK)
2669                 return_status = sendcmd_withirq_core(h, c, 1);
2670
2671         cmd_free(h, c, 0);
2672         return return_status;
2673 }
2674
2675 static void cciss_geometry_inquiry(int ctlr, int logvol,
2676                                    sector_t total_size,
2677                                    unsigned int block_size,
2678                                    InquiryData_struct *inq_buff,
2679                                    drive_info_struct *drv)
2680 {
2681         int return_code;
2682         unsigned long t;
2683         unsigned char scsi3addr[8];
2684
2685         memset(inq_buff, 0, sizeof(InquiryData_struct));
2686         log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2687         return_code = sendcmd_withirq(CISS_INQUIRY, ctlr, inq_buff,
2688                         sizeof(*inq_buff), 0xC1, scsi3addr, TYPE_CMD);
2689         if (return_code == IO_OK) {
2690                 if (inq_buff->data_byte[8] == 0xFF) {
2691                         printk(KERN_WARNING
2692                                "cciss: reading geometry failed, volume "
2693                                "does not support reading geometry\n");
2694                         drv->heads = 255;
2695                         drv->sectors = 32;      /* Sectors per track */
2696                         drv->cylinders = total_size + 1;
2697                         drv->raid_level = RAID_UNKNOWN;
2698                 } else {
2699                         drv->heads = inq_buff->data_byte[6];
2700                         drv->sectors = inq_buff->data_byte[7];
2701                         drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
2702                         drv->cylinders += inq_buff->data_byte[5];
2703                         drv->raid_level = inq_buff->data_byte[8];
2704                 }
2705                 drv->block_size = block_size;
2706                 drv->nr_blocks = total_size + 1;
2707                 t = drv->heads * drv->sectors;
2708                 if (t > 1) {
2709                         sector_t real_size = total_size + 1;
2710                         unsigned long rem = sector_div(real_size, t);
2711                         if (rem)
2712                                 real_size++;
2713                         drv->cylinders = real_size;
2714                 }
2715         } else {                /* Get geometry failed */
2716                 printk(KERN_WARNING "cciss: reading geometry failed\n");
2717         }
2718 }
2719
2720 static void
2721 cciss_read_capacity(int ctlr, int logvol, sector_t *total_size,
2722                     unsigned int *block_size)
2723 {
2724         ReadCapdata_struct *buf;
2725         int return_code;
2726         unsigned char scsi3addr[8];
2727
2728         buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
2729         if (!buf) {
2730                 printk(KERN_WARNING "cciss: out of memory\n");
2731                 return;
2732         }
2733
2734         log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2735         return_code = sendcmd_withirq(CCISS_READ_CAPACITY, ctlr, buf,
2736                 sizeof(ReadCapdata_struct), 0, scsi3addr, TYPE_CMD);
2737         if (return_code == IO_OK) {
2738                 *total_size = be32_to_cpu(*(__be32 *) buf->total_size);
2739                 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2740         } else {                /* read capacity command failed */
2741                 printk(KERN_WARNING "cciss: read capacity failed\n");
2742                 *total_size = 0;
2743                 *block_size = BLOCK_SIZE;
2744         }
2745         kfree(buf);
2746 }
2747
2748 static void cciss_read_capacity_16(int ctlr, int logvol,
2749         sector_t *total_size, unsigned int *block_size)
2750 {
2751         ReadCapdata_struct_16 *buf;
2752         int return_code;
2753         unsigned char scsi3addr[8];
2754
2755         buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2756         if (!buf) {
2757                 printk(KERN_WARNING "cciss: out of memory\n");
2758                 return;
2759         }
2760
2761         log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2762         return_code = sendcmd_withirq(CCISS_READ_CAPACITY_16,
2763                 ctlr, buf, sizeof(ReadCapdata_struct_16),
2764                         0, scsi3addr, TYPE_CMD);
2765         if (return_code == IO_OK) {
2766                 *total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2767                 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2768         } else {                /* read capacity command failed */
2769                 printk(KERN_WARNING "cciss: read capacity failed\n");
2770                 *total_size = 0;
2771                 *block_size = BLOCK_SIZE;
2772         }
2773         printk(KERN_INFO "      blocks= %llu block_size= %d\n",
2774                (unsigned long long)*total_size+1, *block_size);
2775         kfree(buf);
2776 }
2777
2778 static int cciss_revalidate(struct gendisk *disk)
2779 {
2780         ctlr_info_t *h = get_host(disk);
2781         drive_info_struct *drv = get_drv(disk);
2782         int logvol;
2783         int FOUND = 0;
2784         unsigned int block_size;
2785         sector_t total_size;
2786         InquiryData_struct *inq_buff = NULL;
2787
2788         for (logvol = 0; logvol < CISS_MAX_LUN; logvol++) {
2789                 if (memcmp(h->drv[logvol]->LunID, drv->LunID,
2790                         sizeof(drv->LunID)) == 0) {
2791                         FOUND = 1;
2792                         break;
2793                 }
2794         }
2795
2796         if (!FOUND)
2797                 return 1;
2798
2799         inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2800         if (inq_buff == NULL) {
2801                 printk(KERN_WARNING "cciss: out of memory\n");
2802                 return 1;
2803         }
2804         if (h->cciss_read == CCISS_READ_10) {
2805                 cciss_read_capacity(h->ctlr, logvol,
2806                                         &total_size, &block_size);
2807         } else {
2808                 cciss_read_capacity_16(h->ctlr, logvol,
2809                                         &total_size, &block_size);
2810         }
2811         cciss_geometry_inquiry(h->ctlr, logvol, total_size, block_size,
2812                                inq_buff, drv);
2813
2814         blk_queue_logical_block_size(drv->queue, drv->block_size);
2815         set_capacity(disk, drv->nr_blocks);
2816
2817         kfree(inq_buff);
2818         return 0;
2819 }
2820
2821 /*
2822  * Map (physical) PCI mem into (virtual) kernel space
2823  */
2824 static void __iomem *remap_pci_mem(ulong base, ulong size)
2825 {
2826         ulong page_base = ((ulong) base) & PAGE_MASK;
2827         ulong page_offs = ((ulong) base) - page_base;
2828         void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2829
2830         return page_remapped ? (page_remapped + page_offs) : NULL;
2831 }
2832
2833 /*
2834  * Takes jobs of the Q and sends them to the hardware, then puts it on
2835  * the Q to wait for completion.
2836  */
2837 static void start_io(ctlr_info_t *h)
2838 {
2839         CommandList_struct *c;
2840
2841         while (!hlist_empty(&h->reqQ)) {
2842                 c = hlist_entry(h->reqQ.first, CommandList_struct, list);
2843                 /* can't do anything if fifo is full */
2844                 if ((h->access.fifo_full(h))) {
2845                         printk(KERN_WARNING "cciss: fifo full\n");
2846                         break;
2847                 }
2848
2849                 /* Get the first entry from the Request Q */
2850                 removeQ(c);
2851                 h->Qdepth--;
2852
2853                 /* Tell the controller execute command */
2854                 h->access.submit_command(h, c);
2855
2856                 /* Put job onto the completed Q */
2857                 addQ(&h->cmpQ, c);
2858         }
2859 }
2860
2861 /* Assumes that CCISS_LOCK(h->ctlr) is held. */
2862 /* Zeros out the error record and then resends the command back */
2863 /* to the controller */
2864 static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
2865 {
2866         /* erase the old error information */
2867         memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2868
2869         /* add it to software queue and then send it to the controller */
2870         addQ(&h->reqQ, c);
2871         h->Qdepth++;
2872         if (h->Qdepth > h->maxQsinceinit)
2873                 h->maxQsinceinit = h->Qdepth;
2874
2875         start_io(h);
2876 }
2877
2878 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
2879         unsigned int msg_byte, unsigned int host_byte,
2880         unsigned int driver_byte)
2881 {
2882         /* inverse of macros in scsi.h */
2883         return (scsi_status_byte & 0xff) |
2884                 ((msg_byte & 0xff) << 8) |
2885                 ((host_byte & 0xff) << 16) |
2886                 ((driver_byte & 0xff) << 24);
2887 }
2888
2889 static inline int evaluate_target_status(ctlr_info_t *h,
2890                         CommandList_struct *cmd, int *retry_cmd)
2891 {
2892         unsigned char sense_key;
2893         unsigned char status_byte, msg_byte, host_byte, driver_byte;
2894         int error_value;
2895
2896         *retry_cmd = 0;
2897         /* If we get in here, it means we got "target status", that is, scsi status */
2898         status_byte = cmd->err_info->ScsiStatus;
2899         driver_byte = DRIVER_OK;
2900         msg_byte = cmd->err_info->CommandStatus; /* correct?  seems too device specific */
2901
2902         if (blk_pc_request(cmd->rq))
2903                 host_byte = DID_PASSTHROUGH;
2904         else
2905                 host_byte = DID_OK;
2906
2907         error_value = make_status_bytes(status_byte, msg_byte,
2908                 host_byte, driver_byte);
2909
2910         if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
2911                 if (!blk_pc_request(cmd->rq))
2912                         printk(KERN_WARNING "cciss: cmd %p "
2913                                "has SCSI Status 0x%x\n",
2914                                cmd, cmd->err_info->ScsiStatus);
2915                 return error_value;
2916         }
2917
2918         /* check the sense key */
2919         sense_key = 0xf & cmd->err_info->SenseInfo[2];
2920         /* no status or recovered error */
2921         if (((sense_key == 0x0) || (sense_key == 0x1)) && !blk_pc_request(cmd->rq))
2922                 error_value = 0;
2923
2924         if (check_for_unit_attention(h, cmd)) {
2925                 *retry_cmd = !blk_pc_request(cmd->rq);
2926                 return 0;
2927         }
2928
2929         if (!blk_pc_request(cmd->rq)) { /* Not SG_IO or similar? */
2930                 if (error_value != 0)
2931                         printk(KERN_WARNING "cciss: cmd %p has CHECK CONDITION"
2932                                " sense key = 0x%x\n", cmd, sense_key);
2933                 return error_value;
2934         }
2935
2936         /* SG_IO or similar, copy sense data back */
2937         if (cmd->rq->sense) {
2938                 if (cmd->rq->sense_len > cmd->err_info->SenseLen)
2939                         cmd->rq->sense_len = cmd->err_info->SenseLen;
2940                 memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
2941                         cmd->rq->sense_len);
2942         } else
2943                 cmd->rq->sense_len = 0;
2944
2945         return error_value;
2946 }
2947
2948 /* checks the status of the job and calls complete buffers to mark all
2949  * buffers for the completed job. Note that this function does not need
2950  * to hold the hba/queue lock.
2951  */
2952 static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
2953                                     int timeout)
2954 {
2955         int retry_cmd = 0;
2956         struct request *rq = cmd->rq;
2957
2958         rq->errors = 0;
2959
2960         if (timeout)
2961                 rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
2962
2963         if (cmd->err_info->CommandStatus == 0)  /* no error has occurred */
2964                 goto after_error_processing;
2965
2966         switch (cmd->err_info->CommandStatus) {
2967         case CMD_TARGET_STATUS:
2968                 rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
2969                 break;
2970         case CMD_DATA_UNDERRUN:
2971                 if (blk_fs_request(cmd->rq)) {
2972                         printk(KERN_WARNING "cciss: cmd %p has"
2973                                " completed with data underrun "
2974                                "reported\n", cmd);
2975                         cmd->rq->resid_len = cmd->err_info->ResidualCnt;
2976                 }
2977                 break;
2978         case CMD_DATA_OVERRUN:
2979                 if (blk_fs_request(cmd->rq))
2980                         printk(KERN_WARNING "cciss: cmd %p has"
2981                                " completed with data overrun "
2982                                "reported\n", cmd);
2983                 break;
2984         case CMD_INVALID:
2985                 printk(KERN_WARNING "cciss: cmd %p is "
2986                        "reported invalid\n", cmd);
2987                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2988                         cmd->err_info->CommandStatus, DRIVER_OK,
2989                         blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2990                 break;
2991         case CMD_PROTOCOL_ERR:
2992                 printk(KERN_WARNING "cciss: cmd %p has "
2993                        "protocol error \n", cmd);
2994                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2995                         cmd->err_info->CommandStatus, DRIVER_OK,
2996                         blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2997                 break;
2998         case CMD_HARDWARE_ERR:
2999                 printk(KERN_WARNING "cciss: cmd %p had "
3000                        " hardware error\n", cmd);
3001                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3002                         cmd->err_info->CommandStatus, DRIVER_OK,
3003                         blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3004                 break;
3005         case CMD_CONNECTION_LOST:
3006                 printk(KERN_WARNING "cciss: cmd %p had "
3007                        "connection lost\n", cmd);
3008                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3009                         cmd->err_info->CommandStatus, DRIVER_OK,
3010                         blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3011                 break;
3012         case CMD_ABORTED:
3013                 printk(KERN_WARNING "cciss: cmd %p was "
3014                        "aborted\n", cmd);
3015                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3016                         cmd->err_info->CommandStatus, DRIVER_OK,
3017                         blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
3018                 break;
3019         case CMD_ABORT_FAILED:
3020                 printk(KERN_WARNING "cciss: cmd %p reports "
3021                        "abort failed\n", cmd);
3022                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3023                         cmd->err_info->CommandStatus, DRIVER_OK,
3024                         blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3025                 break;
3026         case CMD_UNSOLICITED_ABORT:
3027                 printk(KERN_WARNING "cciss%d: unsolicited "
3028                        "abort %p\n", h->ctlr, cmd);
3029                 if (cmd->retry_count < MAX_CMD_RETRIES) {
3030                         retry_cmd = 1;
3031                         printk(KERN_WARNING
3032                                "cciss%d: retrying %p\n", h->ctlr, cmd);
3033                         cmd->retry_count++;
3034                 } else
3035                         printk(KERN_WARNING
3036                                "cciss%d: %p retried too "
3037                                "many times\n", h->ctlr, cmd);
3038                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3039                         cmd->err_info->CommandStatus, DRIVER_OK,
3040                         blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
3041                 break;
3042         case CMD_TIMEOUT:
3043                 printk(KERN_WARNING "cciss: cmd %p timedout\n", cmd);
3044                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3045                         cmd->err_info->CommandStatus, DRIVER_OK,
3046                         blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3047                 break;
3048         default:
3049                 printk(KERN_WARNING "cciss: cmd %p returned "
3050                        "unknown status %x\n", cmd,
3051                        cmd->err_info->CommandStatus);
3052                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3053                         cmd->err_info->CommandStatus, DRIVER_OK,
3054                         blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3055         }
3056
3057 after_error_processing:
3058
3059         /* We need to return this command */
3060         if (retry_cmd) {
3061                 resend_cciss_cmd(h, cmd);
3062                 return;
3063         }
3064         cmd->rq->completion_data = cmd;
3065         blk_complete_request(cmd->rq);
3066 }
3067
3068 /*
3069  * Get a request and submit it to the controller.
3070  */
3071 static void do_cciss_request(struct request_queue *q)
3072 {
3073         ctlr_info_t *h = q->queuedata;
3074         CommandList_struct *c;
3075         sector_t start_blk;
3076         int seg;
3077         struct request *creq;
3078         u64bit temp64;
3079         struct scatterlist *tmp_sg;
3080         SGDescriptor_struct *curr_sg;
3081         drive_info_struct *drv;
3082         int i, dir;
3083         int nseg = 0;
3084         int sg_index = 0;
3085         int chained = 0;
3086
3087         /* We call start_io here in case there is a command waiting on the
3088          * queue that has not been sent.
3089          */
3090         if (blk_queue_plugged(q))
3091                 goto startio;
3092
3093       queue:
3094         creq = blk_peek_request(q);
3095         if (!creq)
3096                 goto startio;
3097
3098         BUG_ON(creq->nr_phys_segments > h->maxsgentries);
3099
3100         if ((c = cmd_alloc(h, 1)) == NULL)
3101                 goto full;
3102
3103         blk_start_request(creq);
3104
3105         tmp_sg = h->scatter_list[c->cmdindex];
3106         spin_unlock_irq(q->queue_lock);
3107
3108         c->cmd_type = CMD_RWREQ;
3109         c->rq = creq;
3110
3111         /* fill in the request */
3112         drv = creq->rq_disk->private_data;
3113         c->Header.ReplyQueue = 0;       /* unused in simple mode */
3114         /* got command from pool, so use the command block index instead */
3115         /* for direct lookups. */
3116         /* The first 2 bits are reserved for controller error reporting. */
3117         c->Header.Tag.lower = (c->cmdindex << 3);
3118         c->Header.Tag.lower |= 0x04;    /* flag for direct lookup. */
3119         memcpy(&c->Header.LUN, drv->LunID, sizeof(drv->LunID));
3120         c->Request.CDBLen = 10; /* 12 byte commands not in FW yet; */
3121         c->Request.Type.Type = TYPE_CMD;        /* It is a command. */
3122         c->Request.Type.Attribute = ATTR_SIMPLE;
3123         c->Request.Type.Direction =
3124             (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
3125         c->Request.Timeout = 0; /* Don't time out */
3126         c->Request.CDB[0] =
3127             (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
3128         start_blk = blk_rq_pos(creq);
3129 #ifdef CCISS_DEBUG
3130         printk(KERN_DEBUG "ciss: sector =%d nr_sectors=%d\n",
3131                (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq));
3132 #endif                          /* CCISS_DEBUG */
3133
3134         sg_init_table(tmp_sg, h->maxsgentries);
3135         seg = blk_rq_map_sg(q, creq, tmp_sg);
3136
3137         /* get the DMA records for the setup */
3138         if (c->Request.Type.Direction == XFER_READ)
3139                 dir = PCI_DMA_FROMDEVICE;
3140         else
3141                 dir = PCI_DMA_TODEVICE;
3142
3143         curr_sg = c->SG;
3144         sg_index = 0;
3145         chained = 0;
3146
3147         for (i = 0; i < seg; i++) {
3148                 if (((sg_index+1) == (h->max_cmd_sgentries)) &&
3149                         !chained && ((seg - i) > 1)) {
3150                         nseg = seg - i;
3151                         curr_sg[sg_index].Len = (nseg) *
3152                                         sizeof(SGDescriptor_struct);
3153                         curr_sg[sg_index].Ext = CCISS_SG_CHAIN;
3154
3155                         /* Point to next chain block. */
3156                         curr_sg = h->cmd_sg_list[c->cmdindex]->sgchain;
3157                         sg_index = 0;
3158                         chained = 1;
3159                 }
3160                 curr_sg[sg_index].Len = tmp_sg[i].length;
3161                 temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
3162                                                 tmp_sg[i].offset,
3163                                                 tmp_sg[i].length, dir);
3164                 curr_sg[sg_index].Addr.lower = temp64.val32.lower;
3165                 curr_sg[sg_index].Addr.upper = temp64.val32.upper;
3166                 curr_sg[sg_index].Ext = 0;  /* we are not chaining */
3167
3168                 ++sg_index;
3169         }
3170
3171         if (chained) {
3172                 int len;
3173                 curr_sg = c->SG;
3174                 sg_index = h->max_cmd_sgentries - 1;
3175                 len = curr_sg[sg_index].Len;
3176                 /* Setup pointer to next chain block.
3177                  * Fill out last element in current chain
3178                  * block with address of next chain block.
3179                  */
3180                 temp64.val = pci_map_single(h->pdev,
3181                                         h->cmd_sg_list[c->cmdindex]->sgchain,
3182                                         len, dir);
3183
3184                 h->cmd_sg_list[c->cmdindex]->sg_chain_dma = temp64.val;
3185                 curr_sg[sg_index].Addr.lower = temp64.val32.lower;
3186                 curr_sg[sg_index].Addr.upper = temp64.val32.upper;
3187
3188                 pci_dma_sync_single_for_device(h->pdev,
3189                                 h->cmd_sg_list[c->cmdindex]->sg_chain_dma,
3190                                 len, dir);
3191         }
3192
3193         /* track how many SG entries we are using */
3194         if (seg > h->maxSG)
3195                 h->maxSG = seg;
3196
3197 #ifdef CCISS_DEBUG
3198         printk(KERN_DEBUG "cciss: Submitting %ld sectors in %d segments "
3199                         "chained[%d]\n",
3200                         blk_rq_sectors(creq), seg, chained);
3201 #endif                          /* CCISS_DEBUG */
3202
3203         c->Header.SGList = c->Header.SGTotal = seg + chained;
3204         if (seg > h->max_cmd_sgentries)
3205                 c->Header.SGList = h->max_cmd_sgentries;
3206
3207         if (likely(blk_fs_request(creq))) {
3208                 if(h->cciss_read == CCISS_READ_10) {
3209                         c->Request.CDB[1] = 0;
3210                         c->Request.CDB[2] = (start_blk >> 24) & 0xff; /* MSB */
3211                         c->Request.CDB[3] = (start_blk >> 16) & 0xff;
3212                         c->Request.CDB[4] = (start_blk >> 8) & 0xff;
3213                         c->Request.CDB[5] = start_blk & 0xff;
3214                         c->Request.CDB[6] = 0; /* (sect >> 24) & 0xff; MSB */
3215                         c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff;
3216                         c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff;
3217                         c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
3218                 } else {
3219                         u32 upper32 = upper_32_bits(start_blk);
3220
3221                         c->Request.CDBLen = 16;
3222                         c->Request.CDB[1]= 0;
3223                         c->Request.CDB[2]= (upper32 >> 24) & 0xff; /* MSB */
3224                         c->Request.CDB[3]= (upper32 >> 16) & 0xff;
3225                         c->Request.CDB[4]= (upper32 >>  8) & 0xff;
3226                         c->Request.CDB[5]= upper32 & 0xff;
3227                         c->Request.CDB[6]= (start_blk >> 24) & 0xff;
3228                         c->Request.CDB[7]= (start_blk >> 16) & 0xff;
3229                         c->Request.CDB[8]= (start_blk >>  8) & 0xff;
3230                         c->Request.CDB[9]= start_blk & 0xff;
3231                         c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff;
3232                         c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff;
3233                         c->Request.CDB[12]= (blk_rq_sectors(creq) >>  8) & 0xff;
3234                         c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff;
3235                         c->Request.CDB[14] = c->Request.CDB[15] = 0;
3236                 }
3237         } else if (blk_pc_request(creq)) {
3238                 c->Request.CDBLen = creq->cmd_len;
3239                 memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
3240         } else {
3241                 printk(KERN_WARNING "cciss%d: bad request type %d\n", h->ctlr, creq->cmd_type);
3242                 BUG();
3243         }
3244
3245         spin_lock_irq(q->queue_lock);
3246
3247         addQ(&h->reqQ, c);
3248         h->Qdepth++;
3249         if (h->Qdepth > h->maxQsinceinit)
3250                 h->maxQsinceinit = h->Qdepth;
3251
3252         goto queue;
3253 full:
3254         blk_stop_queue(q);
3255 startio:
3256         /* We will already have the driver lock here so not need
3257          * to lock it.
3258          */
3259         start_io(h);
3260 }
3261
3262 static inline unsigned long get_next_completion(ctlr_info_t *h)
3263 {
3264         return h->access.command_completed(h);
3265 }
3266
3267 static inline int interrupt_pending(ctlr_info_t *h)
3268 {
3269         return h->access.intr_pending(h);
3270 }
3271
3272 static inline long interrupt_not_for_us(ctlr_info_t *h)
3273 {
3274         return (((h->access.intr_pending(h) == 0) ||
3275                  (h->interrupts_enabled == 0)));
3276 }
3277
3278 static irqreturn_t do_cciss_intr(int irq, void *dev_id)
3279 {
3280         ctlr_info_t *h = dev_id;
3281         CommandList_struct *c;
3282         unsigned long flags;
3283         __u32 a, a1, a2;
3284
3285         if (interrupt_not_for_us(h))
3286                 return IRQ_NONE;
3287         /*
3288          * If there are completed commands in the completion queue,
3289          * we had better do something about it.
3290          */
3291         spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
3292         while (interrupt_pending(h)) {
3293                 while ((a = get_next_completion(h)) != FIFO_EMPTY) {
3294                         a1 = a;
3295                         if ((a & 0x04)) {
3296                                 a2 = (a >> 3);
3297                                 if (a2 >= h->nr_cmds) {
3298                                         printk(KERN_WARNING
3299                                                "cciss: controller cciss%d failed, stopping.\n",
3300                                                h->ctlr);
3301                                         fail_all_cmds(h->ctlr);
3302                                         return IRQ_HANDLED;
3303                                 }
3304
3305                                 c = h->cmd_pool + a2;
3306                                 a = c->busaddr;
3307
3308                         } else {
3309                                 struct hlist_node *tmp;
3310
3311                                 a &= ~3;
3312                                 c = NULL;
3313                                 hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
3314                                         if (c->busaddr == a)
3315                                                 break;
3316                                 }
3317                         }
3318                         /*
3319                          * If we've found the command, take it off the
3320                          * completion Q and free it
3321                          */
3322                         if (c && c->busaddr == a) {
3323                                 removeQ(c);
3324                                 if (c->cmd_type == CMD_RWREQ) {
3325                                         complete_command(h, c, 0);
3326                                 } else if (c->cmd_type == CMD_IOCTL_PEND) {
3327                                         complete(c->waiting);
3328                                 }
3329 #                               ifdef CONFIG_CISS_SCSI_TAPE
3330                                 else if (c->cmd_type == CMD_SCSI)
3331                                         complete_scsi_command(c, 0, a1);
3332 #                               endif
3333                                 continue;
3334                         }
3335                 }
3336         }
3337
3338         spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
3339         return IRQ_HANDLED;
3340 }
3341
3342 /**
3343  * add_to_scan_list() - add controller to rescan queue
3344  * @h:                Pointer to the controller.
3345  *
3346  * Adds the controller to the rescan queue if not already on the queue.
3347  *
3348  * returns 1 if added to the queue, 0 if skipped (could be on the
3349  * queue already, or the controller could be initializing or shutting
3350  * down).
3351  **/
3352 static int add_to_scan_list(struct ctlr_info *h)
3353 {
3354         struct ctlr_info *test_h;
3355         int found = 0;
3356         int ret = 0;
3357
3358         if (h->busy_initializing)
3359                 return 0;
3360
3361         if (!mutex_trylock(&h->busy_shutting_down))
3362                 return 0;
3363
3364         mutex_lock(&scan_mutex);
3365         list_for_each_entry(test_h, &scan_q, scan_list) {
3366                 if (test_h == h) {
3367                         found = 1;
3368                         break;
3369                 }
3370         }
3371         if (!found && !h->busy_scanning) {
3372                 INIT_COMPLETION(h->scan_wait);
3373                 list_add_tail(&h->scan_list, &scan_q);
3374                 ret = 1;
3375         }
3376         mutex_unlock(&scan_mutex);
3377         mutex_unlock(&h->busy_shutting_down);
3378
3379         return ret;
3380 }
3381
3382 /**
3383  * remove_from_scan_list() - remove controller from rescan queue
3384  * @h:                     Pointer to the controller.
3385  *
3386  * Removes the controller from the rescan queue if present. Blocks if
3387  * the controller is currently conducting a rescan.  The controller
3388  * can be in one of three states:
3389  * 1. Doesn't need a scan
3390  * 2. On the scan list, but not scanning yet (we remove it)
3391  * 3. Busy scanning (and not on the list). In this case we want to wait for
3392  *    the scan to complete to make sure the scanning thread for this
3393  *    controller is completely idle.
3394  **/
3395 static void remove_from_scan_list(struct ctlr_info *h)
3396 {
3397         struct ctlr_info *test_h, *tmp_h;
3398
3399         mutex_lock(&scan_mutex);
3400         list_for_each_entry_safe(test_h, tmp_h, &scan_q, scan_list) {
3401                 if (test_h == h) { /* state 2. */
3402                         list_del(&h->scan_list);
3403                         complete_all(&h->scan_wait);
3404                         mutex_unlock(&scan_mutex);
3405                         return;
3406                 }
3407         }
3408         if (h->busy_scanning) { /* state 3. */
3409                 mutex_unlock(&scan_mutex);
3410                 wait_for_completion(&h->scan_wait);
3411         } else { /* state 1, nothing to do. */
3412                 mutex_unlock(&scan_mutex);
3413         }
3414 }
3415
3416 /**
3417  * scan_thread() - kernel thread used to rescan controllers
3418  * @data:        Ignored.
3419  *
3420  * A kernel thread used scan for drive topology changes on
3421  * controllers. The thread processes only one controller at a time
3422  * using a queue.  Controllers are added to the queue using
3423  * add_to_scan_list() and removed from the queue either after done
3424  * processing or using remove_from_scan_list().
3425  *
3426  * returns 0.
3427  **/
3428 static int scan_thread(void *data)
3429 {
3430         struct ctlr_info *h;
3431
3432         while (1) {
3433                 set_current_state(TASK_INTERRUPTIBLE);
3434                 schedule();
3435                 if (kthread_should_stop())
3436                         break;
3437
3438                 while (1) {
3439                         mutex_lock(&scan_mutex);
3440                         if (list_empty(&scan_q)) {
3441                                 mutex_unlock(&scan_mutex);
3442                                 break;
3443                         }
3444
3445                         h = list_entry(scan_q.next,
3446                                        struct ctlr_info,
3447                                        scan_list);
3448                         list_del(&h->scan_list);
3449                         h->busy_scanning = 1;
3450                         mutex_unlock(&scan_mutex);
3451
3452                         rebuild_lun_table(h, 0, 0);
3453                         complete_all(&h->scan_wait);
3454                         mutex_lock(&scan_mutex);
3455                         h->busy_scanning = 0;
3456                         mutex_unlock(&scan_mutex);
3457                 }
3458         }
3459
3460         return 0;
3461 }
3462
3463 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c)
3464 {
3465         if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
3466                 return 0;
3467
3468         switch (c->err_info->SenseInfo[12]) {
3469         case STATE_CHANGED:
3470                 printk(KERN_WARNING "cciss%d: a state change "
3471                         "detected, command retried\n", h->ctlr);
3472                 return 1;
3473         break;
3474         case LUN_FAILED:
3475                 printk(KERN_WARNING "cciss%d: LUN failure "
3476                         "detected, action required\n", h->ctlr);
3477                 return 1;
3478         break;
3479         case REPORT_LUNS_CHANGED:
3480                 printk(KERN_WARNING "cciss%d: report LUN data "
3481                         "changed\n", h->ctlr);
3482         /*
3483          * Here, we could call add_to_scan_list and wake up the scan thread,
3484          * except that it's quite likely that we will get more than one
3485          * REPORT_LUNS_CHANGED condition in quick succession, which means
3486          * that those which occur after the first one will likely happen
3487          * *during* the scan_thread's rescan.  And the rescan code is not
3488          * robust enough to restart in the middle, undoing what it has already
3489          * done, and it's not clear that it's even possible to do this, since
3490          * part of what it does is notify the block layer, which starts
3491          * doing it's own i/o to read partition tables and so on, and the
3492          * driver doesn't have visibility to know what might need undoing.
3493          * In any event, if possible, it is horribly complicated to get right
3494          * so we just don't do it for now.
3495          *
3496          * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
3497          */
3498                 return 1;
3499         break;
3500         case POWER_OR_RESET:
3501                 printk(KERN_WARNING "cciss%d: a power on "
3502                         "or device reset detected\n", h->ctlr);
3503                 return 1;
3504         break;
3505         case UNIT_ATTENTION_CLEARED:
3506                 printk(KERN_WARNING "cciss%d: unit attention "
3507                     "cleared by another initiator\n", h->ctlr);
3508                 return 1;
3509         break;
3510         default:
3511                 printk(KERN_WARNING "cciss%d: unknown "
3512                         "unit attention detected\n", h->ctlr);
3513                                 return 1;
3514         }
3515 }
3516
3517 /*
3518  *  We cannot read the structure directly, for portability we must use
3519  *   the io functions.
3520  *   This is for debug only.
3521  */
3522 #ifdef CCISS_DEBUG
3523 static void print_cfg_table(CfgTable_struct *tb)
3524 {
3525         int i;
3526         char temp_name[17];
3527
3528         printk("Controller Configuration information\n");
3529         printk("------------------------------------\n");
3530         for (i = 0; i < 4; i++)
3531                 temp_name[i] = readb(&(tb->Signature[i]));
3532         temp_name[4] = '\0';
3533         printk("   Signature = %s\n", temp_name);
3534         printk("   Spec Number = %d\n", readl(&(tb->SpecValence)));
3535         printk("   Transport methods supported = 0x%x\n",
3536                readl(&(tb->TransportSupport)));
3537         printk("   Transport methods active = 0x%x\n",
3538                readl(&(tb->TransportActive)));
3539         printk("   Requested transport Method = 0x%x\n",
3540                readl(&(tb->HostWrite.TransportRequest)));
3541         printk("   Coalesce Interrupt Delay = 0x%x\n",
3542                readl(&(tb->HostWrite.CoalIntDelay)));
3543         printk("   Coalesce Interrupt Count = 0x%x\n",
3544                readl(&(tb->HostWrite.CoalIntCount)));
3545         printk("   Max outstanding commands = 0x%d\n",
3546                readl(&(tb->CmdsOutMax)));
3547         printk("   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3548         for (i = 0; i < 16; i++)
3549                 temp_name[i] = readb(&(tb->ServerName[i]));
3550         temp_name[16] = '\0';
3551         printk("   Server Name = %s\n", temp_name);
3552         printk("   Heartbeat Counter = 0x%x\n\n\n", readl(&(tb->HeartBeat)));
3553 }
3554 #endif                          /* CCISS_DEBUG */
3555
3556 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3557 {
3558         int i, offset, mem_type, bar_type;
3559         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3560                 return 0;
3561         offset = 0;
3562         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3563                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3564                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3565                         offset += 4;
3566                 else {
3567                         mem_type = pci_resource_flags(pdev, i) &
3568                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3569                         switch (mem_type) {
3570                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
3571                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3572                                 offset += 4;    /* 32 bit */
3573                                 break;
3574                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
3575                                 offset += 8;
3576                                 break;
3577                         default:        /* reserved in PCI 2.2 */
3578                                 printk(KERN_WARNING
3579                                        "Base address is invalid\n");
3580                                 return -1;
3581                                 break;
3582                         }
3583                 }
3584                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3585                         return i + 1;
3586         }
3587         return -1;
3588 }
3589
3590 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3591  * controllers that are capable. If not, we use IO-APIC mode.
3592  */
3593
3594 static void __devinit cciss_interrupt_mode(ctlr_info_t *c,
3595                                            struct pci_dev *pdev, __u32 board_id)
3596 {
3597 #ifdef CONFIG_PCI_MSI
3598         int err;
3599         struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
3600         {0, 2}, {0, 3}
3601         };
3602
3603         /* Some boards advertise MSI but don't really support it */
3604         if ((board_id == 0x40700E11) ||
3605             (board_id == 0x40800E11) ||
3606             (board_id == 0x40820E11) || (board_id == 0x40830E11))
3607                 goto default_int_mode;
3608
3609         if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) {
3610                 err = pci_enable_msix(pdev, cciss_msix_entries, 4);
3611                 if (!err) {
3612                         c->intr[0] = cciss_msix_entries[0].vector;
3613                         c->intr[1] = cciss_msix_entries[1].vector;
3614                         c->intr[2] = cciss_msix_entries[2].vector;
3615                         c->intr[3] = cciss_msix_entries[3].vector;
3616                         c->msix_vector = 1;
3617                         return;
3618                 }
3619                 if (err > 0) {
3620                         printk(KERN_WARNING "cciss: only %d MSI-X vectors "
3621                                "available\n", err);
3622                         goto default_int_mode;
3623                 } else {
3624                         printk(KERN_WARNING "cciss: MSI-X init failed %d\n",
3625                                err);
3626                         goto default_int_mode;
3627                 }
3628         }
3629         if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) {
3630                 if (!pci_enable_msi(pdev)) {
3631                         c->msi_vector = 1;
3632                 } else {
3633                         printk(KERN_WARNING "cciss: MSI init failed\n");
3634                 }
3635         }
3636 default_int_mode:
3637 #endif                          /* CONFIG_PCI_MSI */
3638         /* if we get here we're going to use the default interrupt mode */
3639         c->intr[SIMPLE_MODE_INT] = pdev->irq;
3640         return;
3641 }
3642
3643 static int __devinit cciss_pci_init(ctlr_info_t *c, struct pci_dev *pdev)
3644 {
3645         ushort subsystem_vendor_id, subsystem_device_id, command;
3646         __u32 board_id, scratchpad = 0;
3647         __u64 cfg_offset;
3648         __u32 cfg_base_addr;
3649         __u64 cfg_base_addr_index;
3650         int i, prod_index, err;
3651
3652         subsystem_vendor_id = pdev->subsystem_vendor;
3653         subsystem_device_id = pdev->subsystem_device;
3654         board_id = (((__u32) (subsystem_device_id << 16) & 0xffff0000) |
3655                     subsystem_vendor_id);
3656
3657         for (i = 0; i < ARRAY_SIZE(products); i++) {
3658                 /* Stand aside for hpsa driver on request */
3659                 if (cciss_allow_hpsa && products[i].board_id == HPSA_BOUNDARY)
3660                         return -ENODEV;
3661                 if (board_id == products[i].board_id)
3662                         break;
3663         }
3664         prod_index = i;
3665         if (prod_index == ARRAY_SIZE(products)) {
3666                 dev_warn(&pdev->dev,
3667                         "unrecognized board ID: 0x%08lx, ignoring.\n",
3668                         (unsigned long) board_id);
3669                 return -ENODEV;
3670         }
3671
3672         /* check to see if controller has been disabled */
3673         /* BEFORE trying to enable it */
3674         (void)pci_read_config_word(pdev, PCI_COMMAND, &command);
3675         if (!(command & 0x02)) {
3676                 printk(KERN_WARNING
3677                        "cciss: controller appears to be disabled\n");
3678                 return -ENODEV;
3679         }
3680
3681         err = pci_enable_device(pdev);
3682         if (err) {
3683                 printk(KERN_ERR "cciss: Unable to Enable PCI device\n");
3684                 return err;
3685         }
3686
3687         err = pci_request_regions(pdev, "cciss");
3688         if (err) {
3689                 printk(KERN_ERR "cciss: Cannot obtain PCI resources, "
3690                        "aborting\n");
3691                 return err;
3692         }
3693
3694 #ifdef CCISS_DEBUG
3695         printk("command = %x\n", command);
3696         printk("irq = %x\n", pdev->irq);
3697         printk("board_id = %x\n", board_id);
3698 #endif                          /* CCISS_DEBUG */
3699
3700 /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
3701  * else we use the IO-APIC interrupt assigned to us by system ROM.
3702  */
3703         cciss_interrupt_mode(c, pdev, board_id);
3704
3705         /* find the memory BAR */
3706         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3707                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM)
3708                         break;
3709         }
3710         if (i == DEVICE_COUNT_RESOURCE) {
3711                 printk(KERN_WARNING "cciss: No memory BAR found\n");
3712                 err = -ENODEV;
3713                 goto err_out_free_res;
3714         }
3715
3716         c->paddr = pci_resource_start(pdev, i); /* addressing mode bits
3717                                                  * already removed
3718                                                  */
3719
3720 #ifdef CCISS_DEBUG
3721         printk("address 0 = %lx\n", c->paddr);
3722 #endif                          /* CCISS_DEBUG */
3723         c->vaddr = remap_pci_mem(c->paddr, 0x250);
3724
3725         /* Wait for the board to become ready.  (PCI hotplug needs this.)
3726          * We poll for up to 120 secs, once per 100ms. */
3727         for (i = 0; i < 1200; i++) {
3728                 scratchpad = readl(c->vaddr + SA5_SCRATCHPAD_OFFSET);
3729                 if (scratchpad == CCISS_FIRMWARE_READY)
3730                         break;
3731                 set_current_state(TASK_INTERRUPTIBLE);
3732                 schedule_timeout(msecs_to_jiffies(100));        /* wait 100ms */
3733         }
3734         if (scratchpad != CCISS_FIRMWARE_READY) {
3735                 printk(KERN_WARNING "cciss: Board not ready.  Timed out.\n");
3736                 err = -ENODEV;
3737                 goto err_out_free_res;
3738         }
3739
3740         /* get the address index number */
3741         cfg_base_addr = readl(c->vaddr + SA5_CTCFG_OFFSET);
3742         cfg_base_addr &= (__u32) 0x0000ffff;
3743 #ifdef CCISS_DEBUG
3744         printk("cfg base address = %x\n", cfg_base_addr);
3745 #endif                          /* CCISS_DEBUG */
3746         cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr);
3747 #ifdef CCISS_DEBUG
3748         printk("cfg base address index = %llx\n",
3749                 (unsigned long long)cfg_base_addr_index);
3750 #endif                          /* CCISS_DEBUG */
3751         if (cfg_base_addr_index == -1) {
3752                 printk(KERN_WARNING "cciss: Cannot find cfg_base_addr_index\n");
3753                 err = -ENODEV;
3754                 goto err_out_free_res;
3755         }
3756
3757         cfg_offset = readl(c->vaddr + SA5_CTMEM_OFFSET);
3758 #ifdef CCISS_DEBUG
3759         printk("cfg offset = %llx\n", (unsigned long long)cfg_offset);
3760 #endif                          /* CCISS_DEBUG */
3761         c->cfgtable = remap_pci_mem(pci_resource_start(pdev,
3762                                                        cfg_base_addr_index) +
3763                                     cfg_offset, sizeof(CfgTable_struct));
3764         c->board_id = board_id;
3765
3766 #ifdef CCISS_DEBUG
3767         print_cfg_table(c->cfgtable);
3768 #endif                          /* CCISS_DEBUG */
3769
3770         /* Some controllers support Zero Memory Raid (ZMR).
3771          * When configured in ZMR mode the number of supported
3772          * commands drops to 64. So instead of just setting an
3773          * arbitrary value we make the driver a little smarter.
3774          * We read the config table to tell us how many commands
3775          * are supported on the controller then subtract 4 to
3776          * leave a little room for ioctl calls.
3777          */
3778         c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
3779         c->maxsgentries = readl(&(c->cfgtable->MaxSGElements));
3780
3781         /*
3782          * Limit native command to 32 s/g elements to save dma'able memory.
3783          * Howvever spec says if 0, use 31
3784          */
3785
3786         c->max_cmd_sgentries = 31;
3787         if (c->maxsgentries > 512) {
3788                 c->max_cmd_sgentries = 32;
3789                 c->chainsize = c->maxsgentries - c->max_cmd_sgentries + 1;
3790                 c->maxsgentries -= 1;   /* account for chain pointer */
3791         } else {
3792                 c->maxsgentries = 31;   /* Default to traditional value */
3793                 c->chainsize = 0;       /* traditional */
3794         }
3795
3796         c->product_name = products[prod_index].product_name;
3797         c->access = *(products[prod_index].access);
3798         c->nr_cmds = c->max_commands - 4;
3799         if ((readb(&c->cfgtable->Signature[0]) != 'C') ||
3800             (readb(&c->cfgtable->Signature[1]) != 'I') ||
3801             (readb(&c->cfgtable->Signature[2]) != 'S') ||
3802             (readb(&c->cfgtable->Signature[3]) != 'S')) {
3803                 printk("Does not appear to be a valid CISS config table\n");
3804                 err = -ENODEV;
3805                 goto err_out_free_res;
3806         }
3807 #ifdef CONFIG_X86
3808         {
3809                 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3810                 __u32 prefetch;
3811                 prefetch = readl(&(c->cfgtable->SCSI_Prefetch));
3812                 prefetch |= 0x100;
3813                 writel(prefetch, &(c->cfgtable->SCSI_Prefetch));
3814         }
3815 #endif
3816
3817         /* Disabling DMA prefetch and refetch for the P600.
3818          * An ASIC bug may result in accesses to invalid memory addresses.
3819          * We've disabled prefetch for some time now. Testing with XEN
3820          * kernels revealed a bug in the refetch if dom0 resides on a P600.
3821          */
3822         if(board_id == 0x3225103C) {
3823                 __u32 dma_prefetch;
3824                 __u32 dma_refetch;
3825                 dma_prefetch = readl(c->vaddr + I2O_DMA1_CFG);
3826                 dma_prefetch |= 0x8000;
3827                 writel(dma_prefetch, c->vaddr + I2O_DMA1_CFG);
3828                 pci_read_config_dword(pdev, PCI_COMMAND_PARITY, &dma_refetch);
3829                 dma_refetch |= 0x1;
3830                 pci_write_config_dword(pdev, PCI_COMMAND_PARITY, dma_refetch);
3831         }
3832
3833 #ifdef CCISS_DEBUG
3834         printk("Trying to put board into Simple mode\n");
3835 #endif                          /* CCISS_DEBUG */
3836         c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
3837         /* Update the field, and then ring the doorbell */
3838         writel(CFGTBL_Trans_Simple, &(c->cfgtable->HostWrite.TransportRequest));
3839         writel(CFGTBL_ChangeReq, c->vaddr + SA5_DOORBELL);
3840
3841         /* under certain very rare conditions, this can take awhile.
3842          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3843          * as we enter this code.) */
3844         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3845                 if (!(readl(c->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3846                         break;
3847                 /* delay and try again */
3848                 set_current_state(TASK_INTERRUPTIBLE);
3849                 schedule_timeout(msecs_to_jiffies(1));
3850         }
3851
3852 #ifdef CCISS_DEBUG
3853         printk(KERN_DEBUG "I counter got to %d %x\n", i,
3854                readl(c->vaddr + SA5_DOORBELL));
3855 #endif                          /* CCISS_DEBUG */
3856 #ifdef CCISS_DEBUG
3857         print_cfg_table(c->cfgtable);
3858 #endif                          /* CCISS_DEBUG */
3859
3860         if (!(readl(&(c->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3861                 printk(KERN_WARNING "cciss: unable to get board into"
3862                        " simple mode\n");
3863                 err = -ENODEV;
3864                 goto err_out_free_res;
3865         }
3866         return 0;
3867
3868 err_out_free_res:
3869         /*
3870          * Deliberately omit pci_disable_device(): it does something nasty to
3871          * Smart Array controllers that pci_enable_device does not undo
3872          */
3873         pci_release_regions(pdev);
3874         return err;
3875 }
3876
3877 /* Function to find the first free pointer into our hba[] array
3878  * Returns -1 if no free entries are left.
3879  */
3880 static int alloc_cciss_hba(void)
3881 {
3882         int i;
3883
3884         for (i = 0; i < MAX_CTLR; i++) {
3885                 if (!hba[i]) {
3886                         ctlr_info_t *p;
3887
3888                         p = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
3889                         if (!p)
3890                                 goto Enomem;
3891                         hba[i] = p;
3892                         return i;
3893                 }
3894         }
3895         printk(KERN_WARNING "cciss: This driver supports a maximum"
3896                " of %d controllers.\n", MAX_CTLR);
3897         return -1;
3898 Enomem:
3899         printk(KERN_ERR "cciss: out of memory.\n");
3900         return -1;
3901 }
3902
3903 static void free_hba(int n)
3904 {
3905         ctlr_info_t *h = hba[n];
3906         int i;
3907
3908         hba[n] = NULL;
3909         for (i = 0; i < h->highest_lun + 1; i++)
3910                 if (h->gendisk[i] != NULL)
3911                         put_disk(h->gendisk[i]);
3912         kfree(h);
3913 }
3914
3915 /* Send a message CDB to the firmware. */
3916 static __devinit int cciss_message(struct pci_dev *pdev, unsigned char opcode, unsigned char type)
3917 {
3918         typedef struct {
3919                 CommandListHeader_struct CommandHeader;
3920                 RequestBlock_struct Request;
3921                 ErrDescriptor_struct ErrorDescriptor;
3922         } Command;
3923         static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct);
3924         Command *cmd;
3925         dma_addr_t paddr64;
3926         uint32_t paddr32, tag;
3927         void __iomem *vaddr;
3928         int i, err;
3929
3930         vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
3931         if (vaddr == NULL)
3932                 return -ENOMEM;
3933
3934         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3935            CCISS commands, so they must be allocated from the lower 4GiB of
3936            memory. */
3937         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3938         if (err) {
3939                 iounmap(vaddr);
3940                 return -ENOMEM;
3941         }
3942
3943         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3944         if (cmd == NULL) {
3945                 iounmap(vaddr);
3946                 return -ENOMEM;
3947         }
3948
3949         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
3950            although there's no guarantee, we assume that the address is at
3951            least 4-byte aligned (most likely, it's page-aligned). */
3952         paddr32 = paddr64;
3953
3954         cmd->CommandHeader.ReplyQueue = 0;
3955         cmd->CommandHeader.SGList = 0;
3956         cmd->CommandHeader.SGTotal = 0;
3957         cmd->CommandHeader.Tag.lower = paddr32;
3958         cmd->CommandHeader.Tag.upper = 0;
3959         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3960
3961         cmd->Request.CDBLen = 16;
3962         cmd->Request.Type.Type = TYPE_MSG;
3963         cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3964         cmd->Request.Type.Direction = XFER_NONE;
3965         cmd->Request.Timeout = 0; /* Don't time out */
3966         cmd->Request.CDB[0] = opcode;
3967         cmd->Request.CDB[1] = type;
3968         memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */
3969
3970         cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command);
3971         cmd->ErrorDescriptor.Addr.upper = 0;
3972         cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct);
3973
3974         writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3975
3976         for (i = 0; i < 10; i++) {
3977                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3978                 if ((tag & ~3) == paddr32)
3979                         break;
3980                 schedule_timeout_uninterruptible(HZ);
3981         }
3982
3983         iounmap(vaddr);
3984
3985         /* we leak the DMA buffer here ... no choice since the controller could
3986            still complete the command. */
3987         if (i == 10) {
3988                 printk(KERN_ERR "cciss: controller message %02x:%02x timed out\n",
3989                         opcode, type);
3990                 return -ETIMEDOUT;
3991         }
3992
3993         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3994
3995         if (tag & 2) {
3996                 printk(KERN_ERR "cciss: controller message %02x:%02x failed\n",
3997                         opcode, type);
3998                 return -EIO;
3999         }
4000
4001         printk(KERN_INFO "cciss: controller message %02x:%02x succeeded\n",
4002                 opcode, type);
4003         return 0;
4004 }
4005
4006 #define cciss_soft_reset_controller(p) cciss_message(p, 1, 0)
4007 #define cciss_noop(p) cciss_message(p, 3, 0)
4008
4009 static __devinit int cciss_reset_msi(struct pci_dev *pdev)
4010 {
4011 /* the #defines are stolen from drivers/pci/msi.h. */
4012 #define msi_control_reg(base)           (base + PCI_MSI_FLAGS)
4013 #define PCI_MSIX_FLAGS_ENABLE           (1 << 15)
4014
4015         int pos;
4016         u16 control = 0;
4017
4018         pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
4019         if (pos) {
4020                 pci_read_config_word(pdev, msi_control_reg(pos), &control);
4021                 if (control & PCI_MSI_FLAGS_ENABLE) {
4022                         printk(KERN_INFO "cciss: resetting MSI\n");
4023                         pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSI_FLAGS_ENABLE);
4024                 }
4025         }
4026
4027         pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
4028         if (pos) {
4029                 pci_read_config_word(pdev, msi_control_reg(pos), &control);
4030                 if (control & PCI_MSIX_FLAGS_ENABLE) {
4031                         printk(KERN_INFO "cciss: resetting MSI-X\n");
4032                         pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSIX_FLAGS_ENABLE);
4033                 }
4034         }
4035
4036         return 0;
4037 }
4038
4039 /* This does a hard reset of the controller using PCI power management
4040  * states. */
4041 static __devinit int cciss_hard_reset_controller(struct pci_dev *pdev)
4042 {
4043         u16 pmcsr, saved_config_space[32];
4044         int i, pos;
4045
4046         printk(KERN_INFO "cciss: using PCI PM to reset controller\n");
4047
4048         /* This is very nearly the same thing as
4049
4050            pci_save_state(pci_dev);
4051            pci_set_power_state(pci_dev, PCI_D3hot);
4052            pci_set_power_state(pci_dev, PCI_D0);
4053            pci_restore_state(pci_dev);
4054
4055            but we can't use these nice canned kernel routines on
4056            kexec, because they also check the MSI/MSI-X state in PCI
4057            configuration space and do the wrong thing when it is
4058            set/cleared.  Also, the pci_save/restore_state functions
4059            violate the ordering requirements for restoring the
4060            configuration space from the CCISS document (see the
4061            comment below).  So we roll our own .... */
4062
4063         for (i = 0; i < 32; i++)
4064                 pci_read_config_word(pdev, 2*i, &saved_config_space[i]);
4065
4066         pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
4067         if (pos == 0) {
4068                 printk(KERN_ERR "cciss_reset_controller: PCI PM not supported\n");
4069                 return -ENODEV;
4070         }
4071
4072         /* Quoting from the Open CISS Specification: "The Power
4073          * Management Control/Status Register (CSR) controls the power
4074          * state of the device.  The normal operating state is D0,
4075          * CSR=00h.  The software off state is D3, CSR=03h.  To reset
4076          * the controller, place the interface device in D3 then to
4077          * D0, this causes a secondary PCI reset which will reset the
4078          * controller." */
4079
4080         /* enter the D3hot power management state */
4081         pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
4082         pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4083         pmcsr |= PCI_D3hot;
4084         pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4085
4086         schedule_timeout_uninterruptible(HZ >> 1);
4087
4088         /* enter the D0 power management state */
4089         pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4090         pmcsr |= PCI_D0;
4091         pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4092
4093         schedule_timeout_uninterruptible(HZ >> 1);
4094
4095         /* Restore the PCI configuration space.  The Open CISS
4096          * Specification says, "Restore the PCI Configuration
4097          * Registers, offsets 00h through 60h. It is important to
4098          * restore the command register, 16-bits at offset 04h,
4099          * last. Do not restore the configuration status register,
4100          * 16-bits at offset 06h."  Note that the offset is 2*i. */
4101         for (i = 0; i < 32; i++) {
4102                 if (i == 2 || i == 3)
4103                         continue;
4104                 pci_write_config_word(pdev, 2*i, saved_config_space[i]);
4105         }
4106         wmb();
4107         pci_write_config_word(pdev, 4, saved_config_space[2]);
4108
4109         return 0;
4110 }
4111
4112 /*
4113  *  This is it.  Find all the controllers and register them.  I really hate
4114  *  stealing all these major device numbers.
4115  *  returns the number of block devices registered.
4116  */
4117 static int __devinit cciss_init_one(struct pci_dev *pdev,
4118                                     const struct pci_device_id *ent)
4119 {
4120         int i;
4121         int j = 0;
4122         int k = 0;
4123         int rc;
4124         int dac, return_code;
4125         InquiryData_struct *inq_buff;
4126
4127         if (reset_devices) {
4128                 /* Reset the controller with a PCI power-cycle */
4129                 if (cciss_hard_reset_controller(pdev) || cciss_reset_msi(pdev))
4130                         return -ENODEV;
4131
4132                 /* Now try to get the controller to respond to a no-op. Some
4133                    devices (notably the HP Smart Array 5i Controller) need
4134                    up to 30 seconds to respond. */
4135                 for (i=0; i<30; i++) {
4136                         if (cciss_noop(pdev) == 0)
4137                                 break;
4138
4139                         schedule_timeout_uninterruptible(HZ);
4140                 }
4141                 if (i == 30) {
4142                         printk(KERN_ERR "cciss: controller seems dead\n");
4143                         return -EBUSY;
4144                 }
4145         }
4146
4147         i = alloc_cciss_hba();
4148         if (i < 0)
4149                 return -1;
4150
4151         hba[i]->busy_initializing = 1;
4152         INIT_HLIST_HEAD(&hba[i]->cmpQ);
4153         INIT_HLIST_HEAD(&hba[i]->reqQ);
4154         mutex_init(&hba[i]->busy_shutting_down);
4155
4156         if (cciss_pci_init(hba[i], pdev) != 0)
4157                 goto clean_no_release_regions;
4158
4159         sprintf(hba[i]->devname, "cciss%d", i);
4160         hba[i]->ctlr = i;
4161         hba[i]->pdev = pdev;
4162
4163         init_completion(&hba[i]->scan_wait);
4164
4165         if (cciss_create_hba_sysfs_entry(hba[i]))
4166                 goto clean0;
4167
4168         /* configure PCI DMA stuff */
4169         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
4170                 dac = 1;
4171         else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
4172                 dac = 0;
4173         else {
4174                 printk(KERN_ERR "cciss: no suitable DMA available\n");
4175                 goto clean1;
4176         }
4177
4178         /*
4179          * register with the major number, or get a dynamic major number
4180          * by passing 0 as argument.  This is done for greater than
4181          * 8 controller support.
4182          */
4183         if (i < MAX_CTLR_ORIG)
4184                 hba[i]->major = COMPAQ_CISS_MAJOR + i;
4185         rc = register_blkdev(hba[i]->major, hba[i]->devname);
4186         if (rc == -EBUSY || rc == -EINVAL) {
4187                 printk(KERN_ERR
4188                        "cciss:  Unable to get major number %d for %s "
4189                        "on hba %d\n", hba[i]->major, hba[i]->devname, i);
4190                 goto clean1;
4191         } else {
4192                 if (i >= MAX_CTLR_ORIG)
4193                         hba[i]->major = rc;
4194         }
4195
4196         /* make sure the board interrupts are off */
4197         hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_OFF);
4198         if (request_irq(hba[i]->intr[SIMPLE_MODE_INT], do_cciss_intr,
4199                         IRQF_DISABLED | IRQF_SHARED, hba[i]->devname, hba[i])) {
4200                 printk(KERN_ERR "cciss: Unable to get irq %d for %s\n",
4201                        hba[i]->intr[SIMPLE_MODE_INT], hba[i]->devname);
4202                 goto clean2;
4203         }
4204
4205         printk(KERN_INFO "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
4206                hba[i]->devname, pdev->device, pci_name(pdev),
4207                hba[i]->intr[SIMPLE_MODE_INT], dac ? "" : " not");
4208
4209         hba[i]->cmd_pool_bits =
4210             kmalloc(DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
4211                         * sizeof(unsigned long), GFP_KERNEL);
4212         hba[i]->cmd_pool = (CommandList_struct *)
4213             pci_alloc_consistent(hba[i]->pdev,
4214                     hba[i]->nr_cmds * sizeof(CommandList_struct),
4215                     &(hba[i]->cmd_pool_dhandle));
4216         hba[i]->errinfo_pool = (ErrorInfo_struct *)
4217             pci_alloc_consistent(hba[i]->pdev,
4218                     hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4219                     &(hba[i]->errinfo_pool_dhandle));
4220         if ((hba[i]->cmd_pool_bits == NULL)
4221             || (hba[i]->cmd_pool == NULL)
4222             || (hba[i]->errinfo_pool == NULL)) {
4223                 printk(KERN_ERR "cciss: out of memory");
4224                 goto clean4;
4225         }
4226
4227         /* Need space for temp scatter list */
4228         hba[i]->scatter_list = kmalloc(hba[i]->max_commands *
4229                                                 sizeof(struct scatterlist *),
4230                                                 GFP_KERNEL);
4231         for (k = 0; k < hba[i]->nr_cmds; k++) {
4232                 hba[i]->scatter_list[k] = kmalloc(sizeof(struct scatterlist) *
4233                                                         hba[i]->maxsgentries,
4234                                                         GFP_KERNEL);
4235                 if (hba[i]->scatter_list[k] == NULL) {
4236                         printk(KERN_ERR "cciss%d: could not allocate "
4237                                 "s/g lists\n", i);
4238                         goto clean4;
4239                 }
4240         }
4241         hba[i]->cmd_sg_list = kmalloc(sizeof(struct Cmd_sg_list *) *
4242                                                 hba[i]->nr_cmds,
4243                                                 GFP_KERNEL);
4244         if (!hba[i]->cmd_sg_list) {
4245                 printk(KERN_ERR "cciss%d: Cannot get memory for "
4246                         "s/g chaining.\n", i);
4247                 goto clean4;
4248         }
4249         /* Build up chain blocks for each command */
4250         if (hba[i]->chainsize > 0) {
4251                 for (j = 0; j < hba[i]->nr_cmds; j++) {
4252                         hba[i]->cmd_sg_list[j] =
4253                                         kmalloc(sizeof(struct Cmd_sg_list),
4254                                                         GFP_KERNEL);
4255                         if (!hba[i]->cmd_sg_list[j]) {
4256                                 printk(KERN_ERR "cciss%d: Cannot get memory "
4257                                         "for chain block.\n", i);
4258                                 goto clean4;
4259                         }
4260                         /* Need a block of chainsized s/g elements. */
4261                         hba[i]->cmd_sg_list[j]->sgchain =
4262                                         kmalloc((hba[i]->chainsize *
4263                                                 sizeof(SGDescriptor_struct)),
4264                                                 GFP_KERNEL);
4265                         if (!hba[i]->cmd_sg_list[j]->sgchain) {
4266                                 printk(KERN_ERR "cciss%d: Cannot get memory "
4267                                         "for s/g chains\n", i);
4268                                 goto clean4;
4269                         }
4270                 }
4271         }
4272
4273         spin_lock_init(&hba[i]->lock);
4274
4275         /* Initialize the pdev driver private data.
4276            have it point to hba[i].  */
4277         pci_set_drvdata(pdev, hba[i]);
4278         /* command and error info recs zeroed out before
4279            they are used */
4280         memset(hba[i]->cmd_pool_bits, 0,
4281                DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
4282                         * sizeof(unsigned long));
4283
4284         hba[i]->num_luns = 0;
4285         hba[i]->highest_lun = -1;
4286         for (j = 0; j < CISS_MAX_LUN; j++) {
4287                 hba[i]->drv[j] = NULL;
4288                 hba[i]->gendisk[j] = NULL;
4289         }
4290
4291         cciss_scsi_setup(i);
4292
4293         /* Turn the interrupts on so we can service requests */
4294         hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_ON);
4295
4296         /* Get the firmware version */
4297         inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
4298         if (inq_buff == NULL) {
4299                 printk(KERN_ERR "cciss: out of memory\n");
4300                 goto clean4;
4301         }
4302
4303         return_code = sendcmd_withirq(CISS_INQUIRY, i, inq_buff,
4304                 sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD);
4305         if (return_code == IO_OK) {
4306                 hba[i]->firm_ver[0] = inq_buff->data_byte[32];
4307                 hba[i]->firm_ver[1] = inq_buff->data_byte[33];
4308                 hba[i]->firm_ver[2] = inq_buff->data_byte[34];
4309                 hba[i]->firm_ver[3] = inq_buff->data_byte[35];
4310         } else {         /* send command failed */
4311                 printk(KERN_WARNING "cciss: unable to determine firmware"
4312                         " version of controller\n");
4313         }
4314         kfree(inq_buff);
4315
4316         cciss_procinit(i);
4317
4318         hba[i]->cciss_max_sectors = 8192;
4319
4320         rebuild_lun_table(hba[i], 1, 0);
4321         hba[i]->busy_initializing = 0;
4322         return 1;
4323
4324 clean4:
4325         kfree(hba[i]->cmd_pool_bits);
4326         /* Free up sg elements */
4327         for (k = 0; k < hba[i]->nr_cmds; k++)
4328                 kfree(hba[i]->scatter_list[k]);
4329         kfree(hba[i]->scatter_list);
4330         /* Only free up extra s/g lists if controller supports them */
4331         if (hba[i]->chainsize > 0) {
4332                 for (j = 0; j < hba[i]->nr_cmds; j++) {
4333                         if (hba[i]->cmd_sg_list[j]) {
4334                                 kfree(hba[i]->cmd_sg_list[j]->sgchain);
4335                                 kfree(hba[i]->cmd_sg_list[j]);
4336                         }
4337                 }
4338                 kfree(hba[i]->cmd_sg_list);
4339         }
4340         if (hba[i]->cmd_pool)
4341                 pci_free_consistent(hba[i]->pdev,
4342                                     hba[i]->nr_cmds * sizeof(CommandList_struct),
4343                                     hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
4344         if (hba[i]->errinfo_pool)
4345                 pci_free_consistent(hba[i]->pdev,
4346                                     hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4347                                     hba[i]->errinfo_pool,
4348                                     hba[i]->errinfo_pool_dhandle);
4349         free_irq(hba[i]->intr[SIMPLE_MODE_INT], hba[i]);
4350 clean2:
4351         unregister_blkdev(hba[i]->major, hba[i]->devname);
4352 clean1:
4353         cciss_destroy_hba_sysfs_entry(hba[i]);
4354 clean0:
4355         pci_release_regions(pdev);
4356 clean_no_release_regions:
4357         hba[i]->busy_initializing = 0;
4358
4359         /*
4360          * Deliberately omit pci_disable_device(): it does something nasty to
4361          * Smart Array controllers that pci_enable_device does not undo
4362          */
4363         pci_set_drvdata(pdev, NULL);
4364         free_hba(i);
4365         return -1;
4366 }
4367
4368 static void cciss_shutdown(struct pci_dev *pdev)
4369 {
4370         ctlr_info_t *h;
4371         char *flush_buf;
4372         int return_code;
4373
4374         h = pci_get_drvdata(pdev);
4375         flush_buf = kzalloc(4, GFP_KERNEL);
4376         if (!flush_buf) {
4377                 printk(KERN_WARNING
4378                         "cciss:%d cache not flushed, out of memory.\n",
4379                         h->ctlr);
4380                 return;
4381         }
4382         /* write all data in the battery backed cache to disk */
4383         memset(flush_buf, 0, 4);
4384         return_code = sendcmd_withirq(CCISS_CACHE_FLUSH, h->ctlr, flush_buf,
4385                 4, 0, CTLR_LUNID, TYPE_CMD);
4386         kfree(flush_buf);
4387         if (return_code != IO_OK)
4388                 printk(KERN_WARNING "cciss%d: Error flushing cache\n",
4389                         h->ctlr);
4390         h->access.set_intr_mask(h, CCISS_INTR_OFF);
4391         free_irq(h->intr[2], h);
4392 }
4393
4394 static void __devexit cciss_remove_one(struct pci_dev *pdev)
4395 {
4396         ctlr_info_t *tmp_ptr;
4397         int i, j;
4398
4399         if (pci_get_drvdata(pdev) == NULL) {
4400                 printk(KERN_ERR "cciss: Unable to remove device \n");
4401                 return;
4402         }
4403
4404         tmp_ptr = pci_get_drvdata(pdev);
4405         i = tmp_ptr->ctlr;
4406         if (hba[i] == NULL) {
4407                 printk(KERN_ERR "cciss: device appears to "
4408                        "already be removed \n");
4409                 return;
4410         }
4411
4412         mutex_lock(&hba[i]->busy_shutting_down);
4413
4414         remove_from_scan_list(hba[i]);
4415         remove_proc_entry(hba[i]->devname, proc_cciss);
4416         unregister_blkdev(hba[i]->major, hba[i]->devname);
4417
4418         /* remove it from the disk list */
4419         for (j = 0; j < CISS_MAX_LUN; j++) {
4420                 struct gendisk *disk = hba[i]->gendisk[j];
4421                 if (disk) {
4422                         struct request_queue *q = disk->queue;
4423
4424                         if (disk->flags & GENHD_FL_UP) {
4425                                 cciss_destroy_ld_sysfs_entry(hba[i], j, 1);
4426                                 del_gendisk(disk);
4427                         }
4428                         if (q)
4429                                 blk_cleanup_queue(q);
4430                 }
4431         }
4432
4433 #ifdef CONFIG_CISS_SCSI_TAPE
4434         cciss_unregister_scsi(i);       /* unhook from SCSI subsystem */
4435 #endif
4436
4437         cciss_shutdown(pdev);
4438
4439 #ifdef CONFIG_PCI_MSI
4440         if (hba[i]->msix_vector)
4441                 pci_disable_msix(hba[i]->pdev);
4442         else if (hba[i]->msi_vector)
4443                 pci_disable_msi(hba[i]->pdev);
4444 #endif                          /* CONFIG_PCI_MSI */
4445
4446         iounmap(hba[i]->vaddr);
4447
4448         pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(CommandList_struct),
4449                             hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
4450         pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4451                             hba[i]->errinfo_pool, hba[i]->errinfo_pool_dhandle);
4452         kfree(hba[i]->cmd_pool_bits);
4453         /* Free up sg elements */
4454         for (j = 0; j < hba[i]->nr_cmds; j++)
4455                 kfree(hba[i]->scatter_list[j]);
4456         kfree(hba[i]->scatter_list);
4457         /* Only free up extra s/g lists if controller supports them */
4458         if (hba[i]->chainsize > 0) {
4459                 for (j = 0; j < hba[i]->nr_cmds; j++) {
4460                         if (hba[i]->cmd_sg_list[j]) {
4461                                 kfree(hba[i]->cmd_sg_list[j]->sgchain);
4462                                 kfree(hba[i]->cmd_sg_list[j]);
4463                         }
4464                 }
4465                 kfree(hba[i]->cmd_sg_list);
4466         }
4467         /*
4468          * Deliberately omit pci_disable_device(): it does something nasty to
4469          * Smart Array controllers that pci_enable_device does not undo
4470          */
4471         pci_release_regions(pdev);
4472         pci_set_drvdata(pdev, NULL);
4473         cciss_destroy_hba_sysfs_entry(hba[i]);
4474         mutex_unlock(&hba[i]->busy_shutting_down);
4475         free_hba(i);
4476 }
4477
4478 static struct pci_driver cciss_pci_driver = {
4479         .name = "cciss",
4480         .probe = cciss_init_one,
4481         .remove = __devexit_p(cciss_remove_one),
4482         .id_table = cciss_pci_device_id,        /* id_table */
4483         .shutdown = cciss_shutdown,
4484 };
4485
4486 /*
4487  *  This is it.  Register the PCI driver information for the cards we control
4488  *  the OS will call our registered routines when it finds one of our cards.
4489  */
4490 static int __init cciss_init(void)
4491 {
4492         int err;
4493
4494         /*
4495          * The hardware requires that commands are aligned on a 64-bit
4496          * boundary. Given that we use pci_alloc_consistent() to allocate an
4497          * array of them, the size must be a multiple of 8 bytes.
4498          */
4499         BUILD_BUG_ON(sizeof(CommandList_struct) % 8);
4500
4501         printk(KERN_INFO DRIVER_NAME "\n");
4502
4503         err = bus_register(&cciss_bus_type);
4504         if (err)
4505                 return err;
4506
4507         /* Start the scan thread */
4508         cciss_scan_thread = kthread_run(scan_thread, NULL, "cciss_scan");
4509         if (IS_ERR(cciss_scan_thread)) {
4510                 err = PTR_ERR(cciss_scan_thread);
4511                 goto err_bus_unregister;
4512         }
4513
4514         /* Register for our PCI devices */
4515         err = pci_register_driver(&cciss_pci_driver);
4516         if (err)
4517                 goto err_thread_stop;
4518
4519         return err;
4520
4521 err_thread_stop:
4522         kthread_stop(cciss_scan_thread);
4523 err_bus_unregister:
4524         bus_unregister(&cciss_bus_type);
4525
4526         return err;
4527 }
4528
4529 static void __exit cciss_cleanup(void)
4530 {
4531         int i;
4532
4533         pci_unregister_driver(&cciss_pci_driver);
4534         /* double check that all controller entrys have been removed */
4535         for (i = 0; i < MAX_CTLR; i++) {
4536                 if (hba[i] != NULL) {
4537                         printk(KERN_WARNING "cciss: had to remove"
4538                                " controller %d\n", i);
4539                         cciss_remove_one(hba[i]->pdev);
4540                 }
4541         }
4542         kthread_stop(cciss_scan_thread);
4543         remove_proc_entry("driver/cciss", NULL);
4544         bus_unregister(&cciss_bus_type);
4545 }
4546
4547 static void fail_all_cmds(unsigned long ctlr)
4548 {
4549         /* If we get here, the board is apparently dead. */
4550         ctlr_info_t *h = hba[ctlr];
4551         CommandList_struct *c;
4552         unsigned long flags;
4553
4554         printk(KERN_WARNING "cciss%d: controller not responding.\n", h->ctlr);
4555         h->alive = 0;           /* the controller apparently died... */
4556
4557         spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
4558
4559         pci_disable_device(h->pdev);    /* Make sure it is really dead. */
4560
4561         /* move everything off the request queue onto the completed queue */
4562         while (!hlist_empty(&h->reqQ)) {
4563                 c = hlist_entry(h->reqQ.first, CommandList_struct, list);
4564                 removeQ(c);
4565                 h->Qdepth--;
4566                 addQ(&h->cmpQ, c);
4567         }
4568
4569         /* Now, fail everything on the completed queue with a HW error */
4570         while (!hlist_empty(&h->cmpQ)) {
4571                 c = hlist_entry(h->cmpQ.first, CommandList_struct, list);
4572                 removeQ(c);
4573                 if (c->cmd_type != CMD_MSG_STALE)
4574                         c->err_info->CommandStatus = CMD_HARDWARE_ERR;
4575                 if (c->cmd_type == CMD_RWREQ) {
4576                         complete_command(h, c, 0);
4577                 } else if (c->cmd_type == CMD_IOCTL_PEND)
4578                         complete(c->waiting);
4579 #ifdef CONFIG_CISS_SCSI_TAPE
4580                 else if (c->cmd_type == CMD_SCSI)
4581                         complete_scsi_command(c, 0, 0);
4582 #endif
4583         }
4584         spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
4585         return;
4586 }
4587
4588 module_init(cciss_init);
4589 module_exit(cciss_cleanup);