Revert "ARM: tegra: tegratab: dummy change"
[linux-2.6.git] / drivers / acpi / osl.c
1 /*
2  *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3  *
4  *  Copyright (C) 2000       Andrew Henroid
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (c) 2008 Intel Corporation
8  *   Author: Matthew Wilcox <willy@linux.intel.com>
9  *
10  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2 of the License, or
15  *  (at your option) any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; if not, write to the Free Software
24  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
25  *
26  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
27  *
28  */
29
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/mm.h>
34 #include <linux/highmem.h>
35 #include <linux/pci.h>
36 #include <linux/interrupt.h>
37 #include <linux/kmod.h>
38 #include <linux/delay.h>
39 #include <linux/workqueue.h>
40 #include <linux/nmi.h>
41 #include <linux/acpi.h>
42 #include <linux/acpi_io.h>
43 #include <linux/efi.h>
44 #include <linux/ioport.h>
45 #include <linux/list.h>
46 #include <linux/jiffies.h>
47 #include <linux/semaphore.h>
48
49 #include <asm/io.h>
50 #include <asm/uaccess.h>
51
52 #include <acpi/acpi.h>
53 #include <acpi/acpi_bus.h>
54 #include <acpi/processor.h>
55
56 #define _COMPONENT              ACPI_OS_SERVICES
57 ACPI_MODULE_NAME("osl");
58 #define PREFIX          "ACPI: "
59 struct acpi_os_dpc {
60         acpi_osd_exec_callback function;
61         void *context;
62         struct work_struct work;
63         int wait;
64 };
65
66 #ifdef CONFIG_ACPI_CUSTOM_DSDT
67 #include CONFIG_ACPI_CUSTOM_DSDT_FILE
68 #endif
69
70 #ifdef ENABLE_DEBUGGER
71 #include <linux/kdb.h>
72
73 /* stuff for debugger support */
74 int acpi_in_debugger;
75 EXPORT_SYMBOL(acpi_in_debugger);
76
77 extern char line_buf[80];
78 #endif                          /*ENABLE_DEBUGGER */
79
80 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
81                                       u32 pm1b_ctrl);
82
83 static acpi_osd_handler acpi_irq_handler;
84 static void *acpi_irq_context;
85 static struct workqueue_struct *kacpid_wq;
86 static struct workqueue_struct *kacpi_notify_wq;
87 struct workqueue_struct *kacpi_hotplug_wq;
88 EXPORT_SYMBOL(kacpi_hotplug_wq);
89
90 /*
91  * This list of permanent mappings is for memory that may be accessed from
92  * interrupt context, where we can't do the ioremap().
93  */
94 struct acpi_ioremap {
95         struct list_head list;
96         void __iomem *virt;
97         acpi_physical_address phys;
98         acpi_size size;
99         unsigned long refcount;
100 };
101
102 static LIST_HEAD(acpi_ioremaps);
103 static DEFINE_MUTEX(acpi_ioremap_lock);
104
105 static void __init acpi_osi_setup_late(void);
106
107 /*
108  * The story of _OSI(Linux)
109  *
110  * From pre-history through Linux-2.6.22,
111  * Linux responded TRUE upon a BIOS OSI(Linux) query.
112  *
113  * Unfortunately, reference BIOS writers got wind of this
114  * and put OSI(Linux) in their example code, quickly exposing
115  * this string as ill-conceived and opening the door to
116  * an un-bounded number of BIOS incompatibilities.
117  *
118  * For example, OSI(Linux) was used on resume to re-POST a
119  * video card on one system, because Linux at that time
120  * could not do a speedy restore in its native driver.
121  * But then upon gaining quick native restore capability,
122  * Linux has no way to tell the BIOS to skip the time-consuming
123  * POST -- putting Linux at a permanent performance disadvantage.
124  * On another system, the BIOS writer used OSI(Linux)
125  * to infer native OS support for IPMI!  On other systems,
126  * OSI(Linux) simply got in the way of Linux claiming to
127  * be compatible with other operating systems, exposing
128  * BIOS issues such as skipped device initialization.
129  *
130  * So "Linux" turned out to be a really poor chose of
131  * OSI string, and from Linux-2.6.23 onward we respond FALSE.
132  *
133  * BIOS writers should NOT query _OSI(Linux) on future systems.
134  * Linux will complain on the console when it sees it, and return FALSE.
135  * To get Linux to return TRUE for your system  will require
136  * a kernel source update to add a DMI entry,
137  * or boot with "acpi_osi=Linux"
138  */
139
140 static struct osi_linux {
141         unsigned int    enable:1;
142         unsigned int    dmi:1;
143         unsigned int    cmdline:1;
144 } osi_linux = {0, 0, 0};
145
146 static u32 acpi_osi_handler(acpi_string interface, u32 supported)
147 {
148         if (!strcmp("Linux", interface)) {
149
150                 printk_once(KERN_NOTICE FW_BUG PREFIX
151                         "BIOS _OSI(Linux) query %s%s\n",
152                         osi_linux.enable ? "honored" : "ignored",
153                         osi_linux.cmdline ? " via cmdline" :
154                         osi_linux.dmi ? " via DMI" : "");
155         }
156
157         return supported;
158 }
159
160 static void __init acpi_request_region (struct acpi_generic_address *gas,
161         unsigned int length, char *desc)
162 {
163         u64 addr;
164
165         /* Handle possible alignment issues */
166         memcpy(&addr, &gas->address, sizeof(addr));
167         if (!addr || !length)
168                 return;
169
170         /* Resources are never freed */
171         if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
172                 request_region(addr, length, desc);
173         else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
174                 request_mem_region(addr, length, desc);
175 }
176
177 static int __init acpi_reserve_resources(void)
178 {
179         acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
180                 "ACPI PM1a_EVT_BLK");
181
182         acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
183                 "ACPI PM1b_EVT_BLK");
184
185         acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
186                 "ACPI PM1a_CNT_BLK");
187
188         acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
189                 "ACPI PM1b_CNT_BLK");
190
191         if (acpi_gbl_FADT.pm_timer_length == 4)
192                 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
193
194         acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
195                 "ACPI PM2_CNT_BLK");
196
197         /* Length of GPE blocks must be a non-negative multiple of 2 */
198
199         if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
200                 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
201                                acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
202
203         if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
204                 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
205                                acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
206
207         return 0;
208 }
209 device_initcall(acpi_reserve_resources);
210
211 void acpi_os_printf(const char *fmt, ...)
212 {
213         va_list args;
214         va_start(args, fmt);
215         acpi_os_vprintf(fmt, args);
216         va_end(args);
217 }
218
219 void acpi_os_vprintf(const char *fmt, va_list args)
220 {
221         static char buffer[512];
222
223         vsprintf(buffer, fmt, args);
224
225 #ifdef ENABLE_DEBUGGER
226         if (acpi_in_debugger) {
227                 kdb_printf("%s", buffer);
228         } else {
229                 printk(KERN_CONT "%s", buffer);
230         }
231 #else
232         printk(KERN_CONT "%s", buffer);
233 #endif
234 }
235
236 #ifdef CONFIG_KEXEC
237 static unsigned long acpi_rsdp;
238 static int __init setup_acpi_rsdp(char *arg)
239 {
240         acpi_rsdp = simple_strtoul(arg, NULL, 16);
241         return 0;
242 }
243 early_param("acpi_rsdp", setup_acpi_rsdp);
244 #endif
245
246 acpi_physical_address __init acpi_os_get_root_pointer(void)
247 {
248 #ifdef CONFIG_KEXEC
249         if (acpi_rsdp)
250                 return acpi_rsdp;
251 #endif
252
253         if (efi_enabled(EFI_CONFIG_TABLES)) {
254                 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
255                         return efi.acpi20;
256                 else if (efi.acpi != EFI_INVALID_TABLE_ADDR)
257                         return efi.acpi;
258                 else {
259                         printk(KERN_ERR PREFIX
260                                "System description tables not found\n");
261                         return 0;
262                 }
263         } else {
264                 acpi_physical_address pa = 0;
265
266                 acpi_find_root_pointer(&pa);
267                 return pa;
268         }
269 }
270
271 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
272 static struct acpi_ioremap *
273 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
274 {
275         struct acpi_ioremap *map;
276
277         list_for_each_entry_rcu(map, &acpi_ioremaps, list)
278                 if (map->phys <= phys &&
279                     phys + size <= map->phys + map->size)
280                         return map;
281
282         return NULL;
283 }
284
285 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
286 static void __iomem *
287 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
288 {
289         struct acpi_ioremap *map;
290
291         map = acpi_map_lookup(phys, size);
292         if (map)
293                 return map->virt + (phys - map->phys);
294
295         return NULL;
296 }
297
298 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
299 {
300         struct acpi_ioremap *map;
301         void __iomem *virt = NULL;
302
303         mutex_lock(&acpi_ioremap_lock);
304         map = acpi_map_lookup(phys, size);
305         if (map) {
306                 virt = map->virt + (phys - map->phys);
307                 map->refcount++;
308         }
309         mutex_unlock(&acpi_ioremap_lock);
310         return virt;
311 }
312 EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
313
314 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
315 static struct acpi_ioremap *
316 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
317 {
318         struct acpi_ioremap *map;
319
320         list_for_each_entry_rcu(map, &acpi_ioremaps, list)
321                 if (map->virt <= virt &&
322                     virt + size <= map->virt + map->size)
323                         return map;
324
325         return NULL;
326 }
327
328 #ifndef CONFIG_IA64
329 #define should_use_kmap(pfn)   page_is_ram(pfn)
330 #else
331 /* ioremap will take care of cache attributes */
332 #define should_use_kmap(pfn)   0
333 #endif
334
335 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
336 {
337         unsigned long pfn;
338
339         pfn = pg_off >> PAGE_SHIFT;
340         if (should_use_kmap(pfn)) {
341                 if (pg_sz > PAGE_SIZE)
342                         return NULL;
343                 return (void __iomem __force *)kmap(pfn_to_page(pfn));
344         } else
345                 return acpi_os_ioremap(pg_off, pg_sz);
346 }
347
348 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
349 {
350         unsigned long pfn;
351
352         pfn = pg_off >> PAGE_SHIFT;
353         if (should_use_kmap(pfn))
354                 kunmap(pfn_to_page(pfn));
355         else
356                 iounmap(vaddr);
357 }
358
359 void __iomem *__init_refok
360 acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
361 {
362         struct acpi_ioremap *map;
363         void __iomem *virt;
364         acpi_physical_address pg_off;
365         acpi_size pg_sz;
366
367         if (phys > ULONG_MAX) {
368                 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
369                 return NULL;
370         }
371
372         if (!acpi_gbl_permanent_mmap)
373                 return __acpi_map_table((unsigned long)phys, size);
374
375         mutex_lock(&acpi_ioremap_lock);
376         /* Check if there's a suitable mapping already. */
377         map = acpi_map_lookup(phys, size);
378         if (map) {
379                 map->refcount++;
380                 goto out;
381         }
382
383         map = kzalloc(sizeof(*map), GFP_KERNEL);
384         if (!map) {
385                 mutex_unlock(&acpi_ioremap_lock);
386                 return NULL;
387         }
388
389         pg_off = round_down(phys, PAGE_SIZE);
390         pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
391         virt = acpi_map(pg_off, pg_sz);
392         if (!virt) {
393                 mutex_unlock(&acpi_ioremap_lock);
394                 kfree(map);
395                 return NULL;
396         }
397
398         INIT_LIST_HEAD(&map->list);
399         map->virt = virt;
400         map->phys = pg_off;
401         map->size = pg_sz;
402         map->refcount = 1;
403
404         list_add_tail_rcu(&map->list, &acpi_ioremaps);
405
406  out:
407         mutex_unlock(&acpi_ioremap_lock);
408         return map->virt + (phys - map->phys);
409 }
410 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
411
412 static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
413 {
414         if (!--map->refcount)
415                 list_del_rcu(&map->list);
416 }
417
418 static void acpi_os_map_cleanup(struct acpi_ioremap *map)
419 {
420         if (!map->refcount) {
421                 synchronize_rcu();
422                 acpi_unmap(map->phys, map->virt);
423                 kfree(map);
424         }
425 }
426
427 void __ref acpi_os_unmap_memory(void __iomem *virt, acpi_size size)
428 {
429         struct acpi_ioremap *map;
430
431         if (!acpi_gbl_permanent_mmap) {
432                 __acpi_unmap_table(virt, size);
433                 return;
434         }
435
436         mutex_lock(&acpi_ioremap_lock);
437         map = acpi_map_lookup_virt(virt, size);
438         if (!map) {
439                 mutex_unlock(&acpi_ioremap_lock);
440                 WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
441                 return;
442         }
443         acpi_os_drop_map_ref(map);
444         mutex_unlock(&acpi_ioremap_lock);
445
446         acpi_os_map_cleanup(map);
447 }
448 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
449
450 void __init early_acpi_os_unmap_memory(void __iomem *virt, acpi_size size)
451 {
452         if (!acpi_gbl_permanent_mmap)
453                 __acpi_unmap_table(virt, size);
454 }
455
456 int acpi_os_map_generic_address(struct acpi_generic_address *gas)
457 {
458         u64 addr;
459         void __iomem *virt;
460
461         if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
462                 return 0;
463
464         /* Handle possible alignment issues */
465         memcpy(&addr, &gas->address, sizeof(addr));
466         if (!addr || !gas->bit_width)
467                 return -EINVAL;
468
469         virt = acpi_os_map_memory(addr, gas->bit_width / 8);
470         if (!virt)
471                 return -EIO;
472
473         return 0;
474 }
475 EXPORT_SYMBOL(acpi_os_map_generic_address);
476
477 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
478 {
479         u64 addr;
480         struct acpi_ioremap *map;
481
482         if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
483                 return;
484
485         /* Handle possible alignment issues */
486         memcpy(&addr, &gas->address, sizeof(addr));
487         if (!addr || !gas->bit_width)
488                 return;
489
490         mutex_lock(&acpi_ioremap_lock);
491         map = acpi_map_lookup(addr, gas->bit_width / 8);
492         if (!map) {
493                 mutex_unlock(&acpi_ioremap_lock);
494                 return;
495         }
496         acpi_os_drop_map_ref(map);
497         mutex_unlock(&acpi_ioremap_lock);
498
499         acpi_os_map_cleanup(map);
500 }
501 EXPORT_SYMBOL(acpi_os_unmap_generic_address);
502
503 #ifdef ACPI_FUTURE_USAGE
504 acpi_status
505 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
506 {
507         if (!phys || !virt)
508                 return AE_BAD_PARAMETER;
509
510         *phys = virt_to_phys(virt);
511
512         return AE_OK;
513 }
514 #endif
515
516 #define ACPI_MAX_OVERRIDE_LEN 100
517
518 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
519
520 acpi_status
521 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
522                             acpi_string * new_val)
523 {
524         if (!init_val || !new_val)
525                 return AE_BAD_PARAMETER;
526
527         *new_val = NULL;
528         if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
529                 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
530                        acpi_os_name);
531                 *new_val = acpi_os_name;
532         }
533
534         return AE_OK;
535 }
536
537 acpi_status
538 acpi_os_table_override(struct acpi_table_header * existing_table,
539                        struct acpi_table_header ** new_table)
540 {
541         if (!existing_table || !new_table)
542                 return AE_BAD_PARAMETER;
543
544         *new_table = NULL;
545
546 #ifdef CONFIG_ACPI_CUSTOM_DSDT
547         if (strncmp(existing_table->signature, "DSDT", 4) == 0)
548                 *new_table = (struct acpi_table_header *)AmlCode;
549 #endif
550         if (*new_table != NULL) {
551                 printk(KERN_WARNING PREFIX "Override [%4.4s-%8.8s], "
552                            "this is unsafe: tainting kernel\n",
553                        existing_table->signature,
554                        existing_table->oem_table_id);
555                 add_taint(TAINT_OVERRIDDEN_ACPI_TABLE);
556         }
557         return AE_OK;
558 }
559
560 acpi_status
561 acpi_os_physical_table_override(struct acpi_table_header *existing_table,
562                                 acpi_physical_address * new_address,
563                                 u32 *new_table_length)
564 {
565         return AE_SUPPORT;
566 }
567
568
569 static irqreturn_t acpi_irq(int irq, void *dev_id)
570 {
571         u32 handled;
572
573         handled = (*acpi_irq_handler) (acpi_irq_context);
574
575         if (handled) {
576                 acpi_irq_handled++;
577                 return IRQ_HANDLED;
578         } else {
579                 acpi_irq_not_handled++;
580                 return IRQ_NONE;
581         }
582 }
583
584 acpi_status
585 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
586                                   void *context)
587 {
588         unsigned int irq;
589
590         acpi_irq_stats_init();
591
592         /*
593          * ACPI interrupts different from the SCI in our copy of the FADT are
594          * not supported.
595          */
596         if (gsi != acpi_gbl_FADT.sci_interrupt)
597                 return AE_BAD_PARAMETER;
598
599         if (acpi_irq_handler)
600                 return AE_ALREADY_ACQUIRED;
601
602         if (acpi_gsi_to_irq(gsi, &irq) < 0) {
603                 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
604                        gsi);
605                 return AE_OK;
606         }
607
608         acpi_irq_handler = handler;
609         acpi_irq_context = context;
610         if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
611                 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
612                 acpi_irq_handler = NULL;
613                 return AE_NOT_ACQUIRED;
614         }
615
616         return AE_OK;
617 }
618
619 acpi_status acpi_os_remove_interrupt_handler(u32 irq, acpi_osd_handler handler)
620 {
621         if (irq != acpi_gbl_FADT.sci_interrupt)
622                 return AE_BAD_PARAMETER;
623
624         free_irq(irq, acpi_irq);
625         acpi_irq_handler = NULL;
626
627         return AE_OK;
628 }
629
630 /*
631  * Running in interpreter thread context, safe to sleep
632  */
633
634 void acpi_os_sleep(u64 ms)
635 {
636         schedule_timeout_interruptible(msecs_to_jiffies(ms));
637 }
638
639 void acpi_os_stall(u32 us)
640 {
641         while (us) {
642                 u32 delay = 1000;
643
644                 if (delay > us)
645                         delay = us;
646                 udelay(delay);
647                 touch_nmi_watchdog();
648                 us -= delay;
649         }
650 }
651
652 /*
653  * Support ACPI 3.0 AML Timer operand
654  * Returns 64-bit free-running, monotonically increasing timer
655  * with 100ns granularity
656  */
657 u64 acpi_os_get_timer(void)
658 {
659         static u64 t;
660
661 #ifdef  CONFIG_HPET
662         /* TBD: use HPET if available */
663 #endif
664
665 #ifdef  CONFIG_X86_PM_TIMER
666         /* TBD: default to PM timer if HPET was not available */
667 #endif
668         if (!t)
669                 printk(KERN_ERR PREFIX "acpi_os_get_timer() TBD\n");
670
671         return ++t;
672 }
673
674 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
675 {
676         u32 dummy;
677
678         if (!value)
679                 value = &dummy;
680
681         *value = 0;
682         if (width <= 8) {
683                 *(u8 *) value = inb(port);
684         } else if (width <= 16) {
685                 *(u16 *) value = inw(port);
686         } else if (width <= 32) {
687                 *(u32 *) value = inl(port);
688         } else {
689                 BUG();
690         }
691
692         return AE_OK;
693 }
694
695 EXPORT_SYMBOL(acpi_os_read_port);
696
697 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
698 {
699         if (width <= 8) {
700                 outb(value, port);
701         } else if (width <= 16) {
702                 outw(value, port);
703         } else if (width <= 32) {
704                 outl(value, port);
705         } else {
706                 BUG();
707         }
708
709         return AE_OK;
710 }
711
712 EXPORT_SYMBOL(acpi_os_write_port);
713
714 #ifdef readq
715 static inline u64 read64(const volatile void __iomem *addr)
716 {
717         return readq(addr);
718 }
719 #else
720 static inline u64 read64(const volatile void __iomem *addr)
721 {
722         u64 l, h;
723         l = readl(addr);
724         h = readl(addr+4);
725         return l | (h << 32);
726 }
727 #endif
728
729 acpi_status
730 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
731 {
732         void __iomem *virt_addr;
733         unsigned int size = width / 8;
734         bool unmap = false;
735         u64 dummy;
736
737         rcu_read_lock();
738         virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
739         if (!virt_addr) {
740                 rcu_read_unlock();
741                 virt_addr = acpi_os_ioremap(phys_addr, size);
742                 if (!virt_addr)
743                         return AE_BAD_ADDRESS;
744                 unmap = true;
745         }
746
747         if (!value)
748                 value = &dummy;
749
750         switch (width) {
751         case 8:
752                 *(u8 *) value = readb(virt_addr);
753                 break;
754         case 16:
755                 *(u16 *) value = readw(virt_addr);
756                 break;
757         case 32:
758                 *(u32 *) value = readl(virt_addr);
759                 break;
760         case 64:
761                 *(u64 *) value = read64(virt_addr);
762                 break;
763         default:
764                 BUG();
765         }
766
767         if (unmap)
768                 iounmap(virt_addr);
769         else
770                 rcu_read_unlock();
771
772         return AE_OK;
773 }
774
775 #ifdef writeq
776 static inline void write64(u64 val, volatile void __iomem *addr)
777 {
778         writeq(val, addr);
779 }
780 #else
781 static inline void write64(u64 val, volatile void __iomem *addr)
782 {
783         writel(val, addr);
784         writel(val>>32, addr+4);
785 }
786 #endif
787
788 acpi_status
789 acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
790 {
791         void __iomem *virt_addr;
792         unsigned int size = width / 8;
793         bool unmap = false;
794
795         rcu_read_lock();
796         virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
797         if (!virt_addr) {
798                 rcu_read_unlock();
799                 virt_addr = acpi_os_ioremap(phys_addr, size);
800                 if (!virt_addr)
801                         return AE_BAD_ADDRESS;
802                 unmap = true;
803         }
804
805         switch (width) {
806         case 8:
807                 writeb(value, virt_addr);
808                 break;
809         case 16:
810                 writew(value, virt_addr);
811                 break;
812         case 32:
813                 writel(value, virt_addr);
814                 break;
815         case 64:
816                 write64(value, virt_addr);
817                 break;
818         default:
819                 BUG();
820         }
821
822         if (unmap)
823                 iounmap(virt_addr);
824         else
825                 rcu_read_unlock();
826
827         return AE_OK;
828 }
829
830 acpi_status
831 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
832                                u64 *value, u32 width)
833 {
834         int result, size;
835         u32 value32;
836
837         if (!value)
838                 return AE_BAD_PARAMETER;
839
840         switch (width) {
841         case 8:
842                 size = 1;
843                 break;
844         case 16:
845                 size = 2;
846                 break;
847         case 32:
848                 size = 4;
849                 break;
850         default:
851                 return AE_ERROR;
852         }
853
854         result = raw_pci_read(pci_id->segment, pci_id->bus,
855                                 PCI_DEVFN(pci_id->device, pci_id->function),
856                                 reg, size, &value32);
857         *value = value32;
858
859         return (result ? AE_ERROR : AE_OK);
860 }
861
862 acpi_status
863 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
864                                 u64 value, u32 width)
865 {
866         int result, size;
867
868         switch (width) {
869         case 8:
870                 size = 1;
871                 break;
872         case 16:
873                 size = 2;
874                 break;
875         case 32:
876                 size = 4;
877                 break;
878         default:
879                 return AE_ERROR;
880         }
881
882         result = raw_pci_write(pci_id->segment, pci_id->bus,
883                                 PCI_DEVFN(pci_id->device, pci_id->function),
884                                 reg, size, value);
885
886         return (result ? AE_ERROR : AE_OK);
887 }
888
889 static void acpi_os_execute_deferred(struct work_struct *work)
890 {
891         struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
892
893         if (dpc->wait)
894                 acpi_os_wait_events_complete(NULL);
895
896         dpc->function(dpc->context);
897         kfree(dpc);
898 }
899
900 /*******************************************************************************
901  *
902  * FUNCTION:    acpi_os_execute
903  *
904  * PARAMETERS:  Type               - Type of the callback
905  *              Function           - Function to be executed
906  *              Context            - Function parameters
907  *
908  * RETURN:      Status
909  *
910  * DESCRIPTION: Depending on type, either queues function for deferred execution or
911  *              immediately executes function on a separate thread.
912  *
913  ******************************************************************************/
914
915 static acpi_status __acpi_os_execute(acpi_execute_type type,
916         acpi_osd_exec_callback function, void *context, int hp)
917 {
918         acpi_status status = AE_OK;
919         struct acpi_os_dpc *dpc;
920         struct workqueue_struct *queue;
921         int ret;
922         ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
923                           "Scheduling function [%p(%p)] for deferred execution.\n",
924                           function, context));
925
926         /*
927          * Allocate/initialize DPC structure.  Note that this memory will be
928          * freed by the callee.  The kernel handles the work_struct list  in a
929          * way that allows us to also free its memory inside the callee.
930          * Because we may want to schedule several tasks with different
931          * parameters we can't use the approach some kernel code uses of
932          * having a static work_struct.
933          */
934
935         dpc = kmalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
936         if (!dpc)
937                 return AE_NO_MEMORY;
938
939         dpc->function = function;
940         dpc->context = context;
941
942         /*
943          * We can't run hotplug code in keventd_wq/kacpid_wq/kacpid_notify_wq
944          * because the hotplug code may call driver .remove() functions,
945          * which invoke flush_scheduled_work/acpi_os_wait_events_complete
946          * to flush these workqueues.
947          */
948         queue = hp ? kacpi_hotplug_wq :
949                 (type == OSL_NOTIFY_HANDLER ? kacpi_notify_wq : kacpid_wq);
950         dpc->wait = hp ? 1 : 0;
951
952         if (queue == kacpi_hotplug_wq)
953                 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
954         else if (queue == kacpi_notify_wq)
955                 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
956         else
957                 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
958
959         /*
960          * On some machines, a software-initiated SMI causes corruption unless
961          * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
962          * typically it's done in GPE-related methods that are run via
963          * workqueues, so we can avoid the known corruption cases by always
964          * queueing on CPU 0.
965          */
966         ret = queue_work_on(0, queue, &dpc->work);
967
968         if (!ret) {
969                 printk(KERN_ERR PREFIX
970                           "Call to queue_work() failed.\n");
971                 status = AE_ERROR;
972                 kfree(dpc);
973         }
974         return status;
975 }
976
977 acpi_status acpi_os_execute(acpi_execute_type type,
978                             acpi_osd_exec_callback function, void *context)
979 {
980         return __acpi_os_execute(type, function, context, 0);
981 }
982 EXPORT_SYMBOL(acpi_os_execute);
983
984 acpi_status acpi_os_hotplug_execute(acpi_osd_exec_callback function,
985         void *context)
986 {
987         return __acpi_os_execute(0, function, context, 1);
988 }
989
990 void acpi_os_wait_events_complete(void *context)
991 {
992         flush_workqueue(kacpid_wq);
993         flush_workqueue(kacpi_notify_wq);
994 }
995
996 EXPORT_SYMBOL(acpi_os_wait_events_complete);
997
998 acpi_status
999 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1000 {
1001         struct semaphore *sem = NULL;
1002
1003         sem = acpi_os_allocate(sizeof(struct semaphore));
1004         if (!sem)
1005                 return AE_NO_MEMORY;
1006         memset(sem, 0, sizeof(struct semaphore));
1007
1008         sema_init(sem, initial_units);
1009
1010         *handle = (acpi_handle *) sem;
1011
1012         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1013                           *handle, initial_units));
1014
1015         return AE_OK;
1016 }
1017
1018 /*
1019  * TODO: A better way to delete semaphores?  Linux doesn't have a
1020  * 'delete_semaphore()' function -- may result in an invalid
1021  * pointer dereference for non-synchronized consumers.  Should
1022  * we at least check for blocked threads and signal/cancel them?
1023  */
1024
1025 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1026 {
1027         struct semaphore *sem = (struct semaphore *)handle;
1028
1029         if (!sem)
1030                 return AE_BAD_PARAMETER;
1031
1032         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1033
1034         BUG_ON(!list_empty(&sem->wait_list));
1035         kfree(sem);
1036         sem = NULL;
1037
1038         return AE_OK;
1039 }
1040
1041 /*
1042  * TODO: Support for units > 1?
1043  */
1044 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1045 {
1046         acpi_status status = AE_OK;
1047         struct semaphore *sem = (struct semaphore *)handle;
1048         long jiffies;
1049         int ret = 0;
1050
1051         if (!sem || (units < 1))
1052                 return AE_BAD_PARAMETER;
1053
1054         if (units > 1)
1055                 return AE_SUPPORT;
1056
1057         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1058                           handle, units, timeout));
1059
1060         if (timeout == ACPI_WAIT_FOREVER)
1061                 jiffies = MAX_SCHEDULE_TIMEOUT;
1062         else
1063                 jiffies = msecs_to_jiffies(timeout);
1064         
1065         ret = down_timeout(sem, jiffies);
1066         if (ret)
1067                 status = AE_TIME;
1068
1069         if (ACPI_FAILURE(status)) {
1070                 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1071                                   "Failed to acquire semaphore[%p|%d|%d], %s",
1072                                   handle, units, timeout,
1073                                   acpi_format_exception(status)));
1074         } else {
1075                 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1076                                   "Acquired semaphore[%p|%d|%d]", handle,
1077                                   units, timeout));
1078         }
1079
1080         return status;
1081 }
1082
1083 /*
1084  * TODO: Support for units > 1?
1085  */
1086 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1087 {
1088         struct semaphore *sem = (struct semaphore *)handle;
1089
1090         if (!sem || (units < 1))
1091                 return AE_BAD_PARAMETER;
1092
1093         if (units > 1)
1094                 return AE_SUPPORT;
1095
1096         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1097                           units));
1098
1099         up(sem);
1100
1101         return AE_OK;
1102 }
1103
1104 #ifdef ACPI_FUTURE_USAGE
1105 u32 acpi_os_get_line(char *buffer)
1106 {
1107
1108 #ifdef ENABLE_DEBUGGER
1109         if (acpi_in_debugger) {
1110                 u32 chars;
1111
1112                 kdb_read(buffer, sizeof(line_buf));
1113
1114                 /* remove the CR kdb includes */
1115                 chars = strlen(buffer) - 1;
1116                 buffer[chars] = '\0';
1117         }
1118 #endif
1119
1120         return 0;
1121 }
1122 #endif                          /*  ACPI_FUTURE_USAGE  */
1123
1124 acpi_status acpi_os_signal(u32 function, void *info)
1125 {
1126         switch (function) {
1127         case ACPI_SIGNAL_FATAL:
1128                 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1129                 break;
1130         case ACPI_SIGNAL_BREAKPOINT:
1131                 /*
1132                  * AML Breakpoint
1133                  * ACPI spec. says to treat it as a NOP unless
1134                  * you are debugging.  So if/when we integrate
1135                  * AML debugger into the kernel debugger its
1136                  * hook will go here.  But until then it is
1137                  * not useful to print anything on breakpoints.
1138                  */
1139                 break;
1140         default:
1141                 break;
1142         }
1143
1144         return AE_OK;
1145 }
1146
1147 static int __init acpi_os_name_setup(char *str)
1148 {
1149         char *p = acpi_os_name;
1150         int count = ACPI_MAX_OVERRIDE_LEN - 1;
1151
1152         if (!str || !*str)
1153                 return 0;
1154
1155         for (; count-- && str && *str; str++) {
1156                 if (isalnum(*str) || *str == ' ' || *str == ':')
1157                         *p++ = *str;
1158                 else if (*str == '\'' || *str == '"')
1159                         continue;
1160                 else
1161                         break;
1162         }
1163         *p = 0;
1164
1165         return 1;
1166
1167 }
1168
1169 __setup("acpi_os_name=", acpi_os_name_setup);
1170
1171 #define OSI_STRING_LENGTH_MAX 64        /* arbitrary */
1172 #define OSI_STRING_ENTRIES_MAX 16       /* arbitrary */
1173
1174 struct osi_setup_entry {
1175         char string[OSI_STRING_LENGTH_MAX];
1176         bool enable;
1177 };
1178
1179 static struct osi_setup_entry __initdata
1180                 osi_setup_entries[OSI_STRING_ENTRIES_MAX] = {
1181         {"Module Device", true},
1182         {"Processor Device", true},
1183         {"3.0 _SCP Extensions", true},
1184         {"Processor Aggregator Device", true},
1185 };
1186
1187 void __init acpi_osi_setup(char *str)
1188 {
1189         struct osi_setup_entry *osi;
1190         bool enable = true;
1191         int i;
1192
1193         if (!acpi_gbl_create_osi_method)
1194                 return;
1195
1196         if (str == NULL || *str == '\0') {
1197                 printk(KERN_INFO PREFIX "_OSI method disabled\n");
1198                 acpi_gbl_create_osi_method = FALSE;
1199                 return;
1200         }
1201
1202         if (*str == '!') {
1203                 str++;
1204                 enable = false;
1205         }
1206
1207         for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) {
1208                 osi = &osi_setup_entries[i];
1209                 if (!strcmp(osi->string, str)) {
1210                         osi->enable = enable;
1211                         break;
1212                 } else if (osi->string[0] == '\0') {
1213                         osi->enable = enable;
1214                         strncpy(osi->string, str, OSI_STRING_LENGTH_MAX);
1215                         break;
1216                 }
1217         }
1218 }
1219
1220 static void __init set_osi_linux(unsigned int enable)
1221 {
1222         if (osi_linux.enable != enable)
1223                 osi_linux.enable = enable;
1224
1225         if (osi_linux.enable)
1226                 acpi_osi_setup("Linux");
1227         else
1228                 acpi_osi_setup("!Linux");
1229
1230         return;
1231 }
1232
1233 static void __init acpi_cmdline_osi_linux(unsigned int enable)
1234 {
1235         osi_linux.cmdline = 1;  /* cmdline set the default and override DMI */
1236         osi_linux.dmi = 0;
1237         set_osi_linux(enable);
1238
1239         return;
1240 }
1241
1242 void __init acpi_dmi_osi_linux(int enable, const struct dmi_system_id *d)
1243 {
1244         printk(KERN_NOTICE PREFIX "DMI detected: %s\n", d->ident);
1245
1246         if (enable == -1)
1247                 return;
1248
1249         osi_linux.dmi = 1;      /* DMI knows that this box asks OSI(Linux) */
1250         set_osi_linux(enable);
1251
1252         return;
1253 }
1254
1255 /*
1256  * Modify the list of "OS Interfaces" reported to BIOS via _OSI
1257  *
1258  * empty string disables _OSI
1259  * string starting with '!' disables that string
1260  * otherwise string is added to list, augmenting built-in strings
1261  */
1262 static void __init acpi_osi_setup_late(void)
1263 {
1264         struct osi_setup_entry *osi;
1265         char *str;
1266         int i;
1267         acpi_status status;
1268
1269         for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) {
1270                 osi = &osi_setup_entries[i];
1271                 str = osi->string;
1272
1273                 if (*str == '\0')
1274                         break;
1275                 if (osi->enable) {
1276                         status = acpi_install_interface(str);
1277
1278                         if (ACPI_SUCCESS(status))
1279                                 printk(KERN_INFO PREFIX "Added _OSI(%s)\n", str);
1280                 } else {
1281                         status = acpi_remove_interface(str);
1282
1283                         if (ACPI_SUCCESS(status))
1284                                 printk(KERN_INFO PREFIX "Deleted _OSI(%s)\n", str);
1285                 }
1286         }
1287 }
1288
1289 static int __init osi_setup(char *str)
1290 {
1291         if (str && !strcmp("Linux", str))
1292                 acpi_cmdline_osi_linux(1);
1293         else if (str && !strcmp("!Linux", str))
1294                 acpi_cmdline_osi_linux(0);
1295         else
1296                 acpi_osi_setup(str);
1297
1298         return 1;
1299 }
1300
1301 __setup("acpi_osi=", osi_setup);
1302
1303 /* enable serialization to combat AE_ALREADY_EXISTS errors */
1304 static int __init acpi_serialize_setup(char *str)
1305 {
1306         printk(KERN_INFO PREFIX "serialize enabled\n");
1307
1308         acpi_gbl_all_methods_serialized = TRUE;
1309
1310         return 1;
1311 }
1312
1313 __setup("acpi_serialize", acpi_serialize_setup);
1314
1315 /* Check of resource interference between native drivers and ACPI
1316  * OperationRegions (SystemIO and System Memory only).
1317  * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1318  * in arbitrary AML code and can interfere with legacy drivers.
1319  * acpi_enforce_resources= can be set to:
1320  *
1321  *   - strict (default) (2)
1322  *     -> further driver trying to access the resources will not load
1323  *   - lax              (1)
1324  *     -> further driver trying to access the resources will load, but you
1325  *     get a system message that something might go wrong...
1326  *
1327  *   - no               (0)
1328  *     -> ACPI Operation Region resources will not be registered
1329  *
1330  */
1331 #define ENFORCE_RESOURCES_STRICT 2
1332 #define ENFORCE_RESOURCES_LAX    1
1333 #define ENFORCE_RESOURCES_NO     0
1334
1335 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1336
1337 static int __init acpi_enforce_resources_setup(char *str)
1338 {
1339         if (str == NULL || *str == '\0')
1340                 return 0;
1341
1342         if (!strcmp("strict", str))
1343                 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1344         else if (!strcmp("lax", str))
1345                 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1346         else if (!strcmp("no", str))
1347                 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1348
1349         return 1;
1350 }
1351
1352 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1353
1354 /* Check for resource conflicts between ACPI OperationRegions and native
1355  * drivers */
1356 int acpi_check_resource_conflict(const struct resource *res)
1357 {
1358         acpi_adr_space_type space_id;
1359         acpi_size length;
1360         u8 warn = 0;
1361         int clash = 0;
1362
1363         if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1364                 return 0;
1365         if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1366                 return 0;
1367
1368         if (res->flags & IORESOURCE_IO)
1369                 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1370         else
1371                 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1372
1373         length = res->end - res->start + 1;
1374         if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1375                 warn = 1;
1376         clash = acpi_check_address_range(space_id, res->start, length, warn);
1377
1378         if (clash) {
1379                 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1380                         if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1381                                 printk(KERN_NOTICE "ACPI: This conflict may"
1382                                        " cause random problems and system"
1383                                        " instability\n");
1384                         printk(KERN_INFO "ACPI: If an ACPI driver is available"
1385                                " for this device, you should use it instead of"
1386                                " the native driver\n");
1387                 }
1388                 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1389                         return -EBUSY;
1390         }
1391         return 0;
1392 }
1393 EXPORT_SYMBOL(acpi_check_resource_conflict);
1394
1395 int acpi_check_region(resource_size_t start, resource_size_t n,
1396                       const char *name)
1397 {
1398         struct resource res = {
1399                 .start = start,
1400                 .end   = start + n - 1,
1401                 .name  = name,
1402                 .flags = IORESOURCE_IO,
1403         };
1404
1405         return acpi_check_resource_conflict(&res);
1406 }
1407 EXPORT_SYMBOL(acpi_check_region);
1408
1409 /*
1410  * Let drivers know whether the resource checks are effective
1411  */
1412 int acpi_resources_are_enforced(void)
1413 {
1414         return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1415 }
1416 EXPORT_SYMBOL(acpi_resources_are_enforced);
1417
1418 /*
1419  * Deallocate the memory for a spinlock.
1420  */
1421 void acpi_os_delete_lock(acpi_spinlock handle)
1422 {
1423         ACPI_FREE(handle);
1424 }
1425
1426 /*
1427  * Acquire a spinlock.
1428  *
1429  * handle is a pointer to the spinlock_t.
1430  */
1431
1432 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1433 {
1434         acpi_cpu_flags flags;
1435         spin_lock_irqsave(lockp, flags);
1436         return flags;
1437 }
1438
1439 /*
1440  * Release a spinlock. See above.
1441  */
1442
1443 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1444 {
1445         spin_unlock_irqrestore(lockp, flags);
1446 }
1447
1448 #ifndef ACPI_USE_LOCAL_CACHE
1449
1450 /*******************************************************************************
1451  *
1452  * FUNCTION:    acpi_os_create_cache
1453  *
1454  * PARAMETERS:  name      - Ascii name for the cache
1455  *              size      - Size of each cached object
1456  *              depth     - Maximum depth of the cache (in objects) <ignored>
1457  *              cache     - Where the new cache object is returned
1458  *
1459  * RETURN:      status
1460  *
1461  * DESCRIPTION: Create a cache object
1462  *
1463  ******************************************************************************/
1464
1465 acpi_status
1466 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1467 {
1468         *cache = kmem_cache_create(name, size, 0, 0, NULL);
1469         if (*cache == NULL)
1470                 return AE_ERROR;
1471         else
1472                 return AE_OK;
1473 }
1474
1475 /*******************************************************************************
1476  *
1477  * FUNCTION:    acpi_os_purge_cache
1478  *
1479  * PARAMETERS:  Cache           - Handle to cache object
1480  *
1481  * RETURN:      Status
1482  *
1483  * DESCRIPTION: Free all objects within the requested cache.
1484  *
1485  ******************************************************************************/
1486
1487 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1488 {
1489         kmem_cache_shrink(cache);
1490         return (AE_OK);
1491 }
1492
1493 /*******************************************************************************
1494  *
1495  * FUNCTION:    acpi_os_delete_cache
1496  *
1497  * PARAMETERS:  Cache           - Handle to cache object
1498  *
1499  * RETURN:      Status
1500  *
1501  * DESCRIPTION: Free all objects within the requested cache and delete the
1502  *              cache object.
1503  *
1504  ******************************************************************************/
1505
1506 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1507 {
1508         kmem_cache_destroy(cache);
1509         return (AE_OK);
1510 }
1511
1512 /*******************************************************************************
1513  *
1514  * FUNCTION:    acpi_os_release_object
1515  *
1516  * PARAMETERS:  Cache       - Handle to cache object
1517  *              Object      - The object to be released
1518  *
1519  * RETURN:      None
1520  *
1521  * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1522  *              the object is deleted.
1523  *
1524  ******************************************************************************/
1525
1526 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1527 {
1528         kmem_cache_free(cache, object);
1529         return (AE_OK);
1530 }
1531 #endif
1532
1533 acpi_status __init acpi_os_initialize(void)
1534 {
1535         acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1536         acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1537         acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1538         acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1539
1540         return AE_OK;
1541 }
1542
1543 acpi_status __init acpi_os_initialize1(void)
1544 {
1545         kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1546         kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1547         kacpi_hotplug_wq = alloc_workqueue("kacpi_hotplug", 0, 1);
1548         BUG_ON(!kacpid_wq);
1549         BUG_ON(!kacpi_notify_wq);
1550         BUG_ON(!kacpi_hotplug_wq);
1551         acpi_install_interface_handler(acpi_osi_handler);
1552         acpi_osi_setup_late();
1553         return AE_OK;
1554 }
1555
1556 acpi_status acpi_os_terminate(void)
1557 {
1558         if (acpi_irq_handler) {
1559                 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1560                                                  acpi_irq_handler);
1561         }
1562
1563         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1564         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1565         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1566         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1567
1568         destroy_workqueue(kacpid_wq);
1569         destroy_workqueue(kacpi_notify_wq);
1570         destroy_workqueue(kacpi_hotplug_wq);
1571
1572         return AE_OK;
1573 }
1574
1575 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1576                                   u32 pm1b_control)
1577 {
1578         int rc = 0;
1579         if (__acpi_os_prepare_sleep)
1580                 rc = __acpi_os_prepare_sleep(sleep_state,
1581                                              pm1a_control, pm1b_control);
1582         if (rc < 0)
1583                 return AE_ERROR;
1584         else if (rc > 0)
1585                 return AE_CTRL_SKIP;
1586
1587         return AE_OK;
1588 }
1589
1590 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1591                                u32 pm1a_ctrl, u32 pm1b_ctrl))
1592 {
1593         __acpi_os_prepare_sleep = func;
1594 }