ACPI: un-export ACPI_ERROR() -- use printk(KERN_ERR...)
[linux-2.6.git] / drivers / acpi / osl.c
1 /*
2  *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3  *
4  *  Copyright (C) 2000       Andrew Henroid
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *
8  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License as published by
12  *  the Free Software Foundation; either version 2 of the License, or
13  *  (at your option) any later version.
14  *
15  *  This program is distributed in the hope that it will be useful,
16  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
17  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  *  GNU General Public License for more details.
19  *
20  *  You should have received a copy of the GNU General Public License
21  *  along with this program; if not, write to the Free Software
22  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
23  *
24  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
25  *
26  */
27
28 #include <linux/config.h>
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/mm.h>
33 #include <linux/pci.h>
34 #include <linux/smp_lock.h>
35 #include <linux/interrupt.h>
36 #include <linux/kmod.h>
37 #include <linux/delay.h>
38 #include <linux/workqueue.h>
39 #include <linux/nmi.h>
40 #include <linux/kthread.h>
41 #include <acpi/acpi.h>
42 #include <asm/io.h>
43 #include <acpi/acpi_bus.h>
44 #include <acpi/processor.h>
45 #include <asm/uaccess.h>
46
47 #include <linux/efi.h>
48
49 #define _COMPONENT              ACPI_OS_SERVICES
50 ACPI_MODULE_NAME("osl")
51 #define PREFIX          "ACPI: "
52 struct acpi_os_dpc {
53         acpi_osd_exec_callback function;
54         void *context;
55 };
56
57 #ifdef CONFIG_ACPI_CUSTOM_DSDT
58 #include CONFIG_ACPI_CUSTOM_DSDT_FILE
59 #endif
60
61 #ifdef ENABLE_DEBUGGER
62 #include <linux/kdb.h>
63
64 /* stuff for debugger support */
65 int acpi_in_debugger;
66 EXPORT_SYMBOL(acpi_in_debugger);
67
68 extern char line_buf[80];
69 #endif                          /*ENABLE_DEBUGGER */
70
71 int acpi_specific_hotkey_enabled = TRUE;
72 EXPORT_SYMBOL(acpi_specific_hotkey_enabled);
73
74 static unsigned int acpi_irq_irq;
75 static acpi_osd_handler acpi_irq_handler;
76 static void *acpi_irq_context;
77 static struct workqueue_struct *kacpid_wq;
78
79 acpi_status acpi_os_initialize(void)
80 {
81         return AE_OK;
82 }
83
84 acpi_status acpi_os_initialize1(void)
85 {
86         /*
87          * Initialize PCI configuration space access, as we'll need to access
88          * it while walking the namespace (bus 0 and root bridges w/ _BBNs).
89          */
90         if (!raw_pci_ops) {
91                 printk(KERN_ERR PREFIX
92                        "Access to PCI configuration space unavailable\n");
93                 return AE_NULL_ENTRY;
94         }
95         kacpid_wq = create_singlethread_workqueue("kacpid");
96         BUG_ON(!kacpid_wq);
97
98         return AE_OK;
99 }
100
101 acpi_status acpi_os_terminate(void)
102 {
103         if (acpi_irq_handler) {
104                 acpi_os_remove_interrupt_handler(acpi_irq_irq,
105                                                  acpi_irq_handler);
106         }
107
108         destroy_workqueue(kacpid_wq);
109
110         return AE_OK;
111 }
112
113 void acpi_os_printf(const char *fmt, ...)
114 {
115         va_list args;
116         va_start(args, fmt);
117         acpi_os_vprintf(fmt, args);
118         va_end(args);
119 }
120
121 EXPORT_SYMBOL(acpi_os_printf);
122
123 void acpi_os_vprintf(const char *fmt, va_list args)
124 {
125         static char buffer[512];
126
127         vsprintf(buffer, fmt, args);
128
129 #ifdef ENABLE_DEBUGGER
130         if (acpi_in_debugger) {
131                 kdb_printf("%s", buffer);
132         } else {
133                 printk("%s", buffer);
134         }
135 #else
136         printk("%s", buffer);
137 #endif
138 }
139
140
141 extern int acpi_in_resume;
142 void *acpi_os_allocate(acpi_size size)
143 {
144         if (acpi_in_resume)
145                 return kmalloc(size, GFP_ATOMIC);
146         else
147                 return kmalloc(size, GFP_KERNEL);
148 }
149
150 void acpi_os_free(void *ptr)
151 {
152         kfree(ptr);
153 }
154
155 EXPORT_SYMBOL(acpi_os_free);
156
157 acpi_status acpi_os_get_root_pointer(u32 flags, struct acpi_pointer *addr)
158 {
159         if (efi_enabled) {
160                 addr->pointer_type = ACPI_PHYSICAL_POINTER;
161                 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
162                         addr->pointer.physical = efi.acpi20;
163                 else if (efi.acpi != EFI_INVALID_TABLE_ADDR)
164                         addr->pointer.physical = efi.acpi;
165                 else {
166                         printk(KERN_ERR PREFIX
167                                "System description tables not found\n");
168                         return AE_NOT_FOUND;
169                 }
170         } else {
171                 if (ACPI_FAILURE(acpi_find_root_pointer(flags, addr))) {
172                         printk(KERN_ERR PREFIX
173                                "System description tables not found\n");
174                         return AE_NOT_FOUND;
175                 }
176         }
177
178         return AE_OK;
179 }
180
181 acpi_status
182 acpi_os_map_memory(acpi_physical_address phys, acpi_size size,
183                    void __iomem ** virt)
184 {
185         if (phys > ULONG_MAX) {
186                 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
187                 return AE_BAD_PARAMETER;
188         }
189         /*
190          * ioremap checks to ensure this is in reserved space
191          */
192         *virt = ioremap((unsigned long)phys, size);
193
194         if (!*virt)
195                 return AE_NO_MEMORY;
196
197         return AE_OK;
198 }
199 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
200
201 void acpi_os_unmap_memory(void __iomem * virt, acpi_size size)
202 {
203         iounmap(virt);
204 }
205 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
206
207 #ifdef ACPI_FUTURE_USAGE
208 acpi_status
209 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
210 {
211         if (!phys || !virt)
212                 return AE_BAD_PARAMETER;
213
214         *phys = virt_to_phys(virt);
215
216         return AE_OK;
217 }
218 #endif
219
220 #define ACPI_MAX_OVERRIDE_LEN 100
221
222 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
223
224 acpi_status
225 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
226                             acpi_string * new_val)
227 {
228         if (!init_val || !new_val)
229                 return AE_BAD_PARAMETER;
230
231         *new_val = NULL;
232         if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
233                 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
234                        acpi_os_name);
235                 *new_val = acpi_os_name;
236         }
237
238         return AE_OK;
239 }
240
241 acpi_status
242 acpi_os_table_override(struct acpi_table_header * existing_table,
243                        struct acpi_table_header ** new_table)
244 {
245         if (!existing_table || !new_table)
246                 return AE_BAD_PARAMETER;
247
248 #ifdef CONFIG_ACPI_CUSTOM_DSDT
249         if (strncmp(existing_table->signature, "DSDT", 4) == 0)
250                 *new_table = (struct acpi_table_header *)AmlCode;
251         else
252                 *new_table = NULL;
253 #else
254         *new_table = NULL;
255 #endif
256         return AE_OK;
257 }
258
259 static irqreturn_t acpi_irq(int irq, void *dev_id, struct pt_regs *regs)
260 {
261         return (*acpi_irq_handler) (acpi_irq_context) ? IRQ_HANDLED : IRQ_NONE;
262 }
263
264 acpi_status
265 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
266                                   void *context)
267 {
268         unsigned int irq;
269
270         /*
271          * Ignore the GSI from the core, and use the value in our copy of the
272          * FADT. It may not be the same if an interrupt source override exists
273          * for the SCI.
274          */
275         gsi = acpi_fadt.sci_int;
276         if (acpi_gsi_to_irq(gsi, &irq) < 0) {
277                 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
278                        gsi);
279                 return AE_OK;
280         }
281
282         acpi_irq_handler = handler;
283         acpi_irq_context = context;
284         if (request_irq(irq, acpi_irq, SA_SHIRQ, "acpi", acpi_irq)) {
285                 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
286                 return AE_NOT_ACQUIRED;
287         }
288         acpi_irq_irq = irq;
289
290         return AE_OK;
291 }
292
293 acpi_status acpi_os_remove_interrupt_handler(u32 irq, acpi_osd_handler handler)
294 {
295         if (irq) {
296                 free_irq(irq, acpi_irq);
297                 acpi_irq_handler = NULL;
298                 acpi_irq_irq = 0;
299         }
300
301         return AE_OK;
302 }
303
304 /*
305  * Running in interpreter thread context, safe to sleep
306  */
307
308 void acpi_os_sleep(acpi_integer ms)
309 {
310         schedule_timeout_interruptible(msecs_to_jiffies(ms));
311 }
312
313 EXPORT_SYMBOL(acpi_os_sleep);
314
315 void acpi_os_stall(u32 us)
316 {
317         while (us) {
318                 u32 delay = 1000;
319
320                 if (delay > us)
321                         delay = us;
322                 udelay(delay);
323                 touch_nmi_watchdog();
324                 us -= delay;
325         }
326 }
327
328 EXPORT_SYMBOL(acpi_os_stall);
329
330 /*
331  * Support ACPI 3.0 AML Timer operand
332  * Returns 64-bit free-running, monotonically increasing timer
333  * with 100ns granularity
334  */
335 u64 acpi_os_get_timer(void)
336 {
337         static u64 t;
338
339 #ifdef  CONFIG_HPET
340         /* TBD: use HPET if available */
341 #endif
342
343 #ifdef  CONFIG_X86_PM_TIMER
344         /* TBD: default to PM timer if HPET was not available */
345 #endif
346         if (!t)
347                 printk(KERN_ERR PREFIX "acpi_os_get_timer() TBD\n");
348
349         return ++t;
350 }
351
352 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
353 {
354         u32 dummy;
355
356         if (!value)
357                 value = &dummy;
358
359         switch (width) {
360         case 8:
361                 *(u8 *) value = inb(port);
362                 break;
363         case 16:
364                 *(u16 *) value = inw(port);
365                 break;
366         case 32:
367                 *(u32 *) value = inl(port);
368                 break;
369         default:
370                 BUG();
371         }
372
373         return AE_OK;
374 }
375
376 EXPORT_SYMBOL(acpi_os_read_port);
377
378 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
379 {
380         switch (width) {
381         case 8:
382                 outb(value, port);
383                 break;
384         case 16:
385                 outw(value, port);
386                 break;
387         case 32:
388                 outl(value, port);
389                 break;
390         default:
391                 BUG();
392         }
393
394         return AE_OK;
395 }
396
397 EXPORT_SYMBOL(acpi_os_write_port);
398
399 acpi_status
400 acpi_os_read_memory(acpi_physical_address phys_addr, u32 * value, u32 width)
401 {
402         u32 dummy;
403         void __iomem *virt_addr;
404
405         virt_addr = ioremap(phys_addr, width);
406         if (!value)
407                 value = &dummy;
408
409         switch (width) {
410         case 8:
411                 *(u8 *) value = readb(virt_addr);
412                 break;
413         case 16:
414                 *(u16 *) value = readw(virt_addr);
415                 break;
416         case 32:
417                 *(u32 *) value = readl(virt_addr);
418                 break;
419         default:
420                 BUG();
421         }
422
423         iounmap(virt_addr);
424
425         return AE_OK;
426 }
427
428 acpi_status
429 acpi_os_write_memory(acpi_physical_address phys_addr, u32 value, u32 width)
430 {
431         void __iomem *virt_addr;
432
433         virt_addr = ioremap(phys_addr, width);
434
435         switch (width) {
436         case 8:
437                 writeb(value, virt_addr);
438                 break;
439         case 16:
440                 writew(value, virt_addr);
441                 break;
442         case 32:
443                 writel(value, virt_addr);
444                 break;
445         default:
446                 BUG();
447         }
448
449         iounmap(virt_addr);
450
451         return AE_OK;
452 }
453
454 acpi_status
455 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
456                                void *value, u32 width)
457 {
458         int result, size;
459
460         if (!value)
461                 return AE_BAD_PARAMETER;
462
463         switch (width) {
464         case 8:
465                 size = 1;
466                 break;
467         case 16:
468                 size = 2;
469                 break;
470         case 32:
471                 size = 4;
472                 break;
473         default:
474                 return AE_ERROR;
475         }
476
477         BUG_ON(!raw_pci_ops);
478
479         result = raw_pci_ops->read(pci_id->segment, pci_id->bus,
480                                    PCI_DEVFN(pci_id->device, pci_id->function),
481                                    reg, size, value);
482
483         return (result ? AE_ERROR : AE_OK);
484 }
485
486 EXPORT_SYMBOL(acpi_os_read_pci_configuration);
487
488 acpi_status
489 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
490                                 acpi_integer value, u32 width)
491 {
492         int result, size;
493
494         switch (width) {
495         case 8:
496                 size = 1;
497                 break;
498         case 16:
499                 size = 2;
500                 break;
501         case 32:
502                 size = 4;
503                 break;
504         default:
505                 return AE_ERROR;
506         }
507
508         BUG_ON(!raw_pci_ops);
509
510         result = raw_pci_ops->write(pci_id->segment, pci_id->bus,
511                                     PCI_DEVFN(pci_id->device, pci_id->function),
512                                     reg, size, value);
513
514         return (result ? AE_ERROR : AE_OK);
515 }
516
517 /* TODO: Change code to take advantage of driver model more */
518 static void acpi_os_derive_pci_id_2(acpi_handle rhandle,        /* upper bound  */
519                                     acpi_handle chandle,        /* current node */
520                                     struct acpi_pci_id **id,
521                                     int *is_bridge, u8 * bus_number)
522 {
523         acpi_handle handle;
524         struct acpi_pci_id *pci_id = *id;
525         acpi_status status;
526         unsigned long temp;
527         acpi_object_type type;
528         u8 tu8;
529
530         acpi_get_parent(chandle, &handle);
531         if (handle != rhandle) {
532                 acpi_os_derive_pci_id_2(rhandle, handle, &pci_id, is_bridge,
533                                         bus_number);
534
535                 status = acpi_get_type(handle, &type);
536                 if ((ACPI_FAILURE(status)) || (type != ACPI_TYPE_DEVICE))
537                         return;
538
539                 status =
540                     acpi_evaluate_integer(handle, METHOD_NAME__ADR, NULL,
541                                           &temp);
542                 if (ACPI_SUCCESS(status)) {
543                         pci_id->device = ACPI_HIWORD(ACPI_LODWORD(temp));
544                         pci_id->function = ACPI_LOWORD(ACPI_LODWORD(temp));
545
546                         if (*is_bridge)
547                                 pci_id->bus = *bus_number;
548
549                         /* any nicer way to get bus number of bridge ? */
550                         status =
551                             acpi_os_read_pci_configuration(pci_id, 0x0e, &tu8,
552                                                            8);
553                         if (ACPI_SUCCESS(status)
554                             && ((tu8 & 0x7f) == 1 || (tu8 & 0x7f) == 2)) {
555                                 status =
556                                     acpi_os_read_pci_configuration(pci_id, 0x18,
557                                                                    &tu8, 8);
558                                 if (!ACPI_SUCCESS(status)) {
559                                         /* Certainly broken...  FIX ME */
560                                         return;
561                                 }
562                                 *is_bridge = 1;
563                                 pci_id->bus = tu8;
564                                 status =
565                                     acpi_os_read_pci_configuration(pci_id, 0x19,
566                                                                    &tu8, 8);
567                                 if (ACPI_SUCCESS(status)) {
568                                         *bus_number = tu8;
569                                 }
570                         } else
571                                 *is_bridge = 0;
572                 }
573         }
574 }
575
576 void acpi_os_derive_pci_id(acpi_handle rhandle, /* upper bound  */
577                            acpi_handle chandle, /* current node */
578                            struct acpi_pci_id **id)
579 {
580         int is_bridge = 1;
581         u8 bus_number = (*id)->bus;
582
583         acpi_os_derive_pci_id_2(rhandle, chandle, id, &is_bridge, &bus_number);
584 }
585
586 static void acpi_os_execute_deferred(void *context)
587 {
588         struct acpi_os_dpc *dpc = NULL;
589
590         ACPI_FUNCTION_TRACE("os_execute_deferred");
591
592         dpc = (struct acpi_os_dpc *)context;
593         if (!dpc) {
594                 printk(KERN_ERR PREFIX "Invalid (NULL) context\n");
595                 return_VOID;
596         }
597
598         dpc->function(dpc->context);
599
600         kfree(dpc);
601
602         return_VOID;
603 }
604
605 static int acpi_os_execute_thread(void *context)
606 {
607         struct acpi_os_dpc *dpc = (struct acpi_os_dpc *)context;
608         if (dpc) {
609                 dpc->function(dpc->context);
610                 kfree(dpc);
611         }
612         do_exit(0);
613 }
614
615 /*******************************************************************************
616  *
617  * FUNCTION:    acpi_os_execute
618  *
619  * PARAMETERS:  Type               - Type of the callback
620  *              Function           - Function to be executed
621  *              Context            - Function parameters
622  *
623  * RETURN:      Status
624  *
625  * DESCRIPTION: Depending on type, either queues function for deferred execution or
626  *              immediately executes function on a separate thread.
627  *
628  ******************************************************************************/
629
630 acpi_status acpi_os_execute(acpi_execute_type type,
631                             acpi_osd_exec_callback function, void *context)
632 {
633         acpi_status status = AE_OK;
634         struct acpi_os_dpc *dpc;
635         struct work_struct *task;
636         struct task_struct *p;
637
638         if (!function)
639                 return AE_BAD_PARAMETER;
640         /*
641          * Allocate/initialize DPC structure.  Note that this memory will be
642          * freed by the callee.  The kernel handles the tq_struct list  in a
643          * way that allows us to also free its memory inside the callee.
644          * Because we may want to schedule several tasks with different
645          * parameters we can't use the approach some kernel code uses of
646          * having a static tq_struct.
647          * We can save time and code by allocating the DPC and tq_structs
648          * from the same memory.
649          */
650         if (type == OSL_NOTIFY_HANDLER) {
651                 dpc = kmalloc(sizeof(struct acpi_os_dpc), GFP_KERNEL);
652         } else {
653                 dpc = kmalloc(sizeof(struct acpi_os_dpc) +
654                                 sizeof(struct work_struct), GFP_ATOMIC);
655         }
656         if (!dpc)
657                 return AE_NO_MEMORY;
658         dpc->function = function;
659         dpc->context = context;
660
661         if (type == OSL_NOTIFY_HANDLER) {
662                 p = kthread_create(acpi_os_execute_thread, dpc, "kacpid_notify");
663                 if (!IS_ERR(p)) {
664                         wake_up_process(p);
665                 } else {
666                         status = AE_NO_MEMORY;
667                         kfree(dpc);
668                 }
669         } else {
670                 task = (void *)(dpc + 1);
671                 INIT_WORK(task, acpi_os_execute_deferred, (void *)dpc);
672                 if (!queue_work(kacpid_wq, task)) {
673                         status = AE_ERROR;
674                         kfree(dpc);
675                 }
676         }
677         return status;
678 }
679
680 EXPORT_SYMBOL(acpi_os_execute);
681
682 void acpi_os_wait_events_complete(void *context)
683 {
684         flush_workqueue(kacpid_wq);
685 }
686
687 EXPORT_SYMBOL(acpi_os_wait_events_complete);
688
689 /*
690  * Allocate the memory for a spinlock and initialize it.
691  */
692 acpi_status acpi_os_create_lock(acpi_handle * out_handle)
693 {
694         spinlock_t *lock_ptr;
695
696         ACPI_FUNCTION_TRACE("os_create_lock");
697
698         lock_ptr = acpi_os_allocate(sizeof(spinlock_t));
699
700         spin_lock_init(lock_ptr);
701
702         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating spinlock[%p].\n", lock_ptr));
703
704         *out_handle = lock_ptr;
705
706         return_ACPI_STATUS(AE_OK);
707 }
708
709 /*
710  * Deallocate the memory for a spinlock.
711  */
712 void acpi_os_delete_lock(acpi_handle handle)
713 {
714         ACPI_FUNCTION_TRACE("os_create_lock");
715
716         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting spinlock[%p].\n", handle));
717
718         acpi_os_free(handle);
719
720         return_VOID;
721 }
722
723 acpi_status
724 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
725 {
726         struct semaphore *sem = NULL;
727
728         ACPI_FUNCTION_TRACE("os_create_semaphore");
729
730         sem = acpi_os_allocate(sizeof(struct semaphore));
731         if (!sem)
732                 return_ACPI_STATUS(AE_NO_MEMORY);
733         memset(sem, 0, sizeof(struct semaphore));
734
735         sema_init(sem, initial_units);
736
737         *handle = (acpi_handle *) sem;
738
739         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
740                           *handle, initial_units));
741
742         return_ACPI_STATUS(AE_OK);
743 }
744
745 EXPORT_SYMBOL(acpi_os_create_semaphore);
746
747 /*
748  * TODO: A better way to delete semaphores?  Linux doesn't have a
749  * 'delete_semaphore()' function -- may result in an invalid
750  * pointer dereference for non-synchronized consumers.  Should
751  * we at least check for blocked threads and signal/cancel them?
752  */
753
754 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
755 {
756         struct semaphore *sem = (struct semaphore *)handle;
757
758         ACPI_FUNCTION_TRACE("os_delete_semaphore");
759
760         if (!sem)
761                 return_ACPI_STATUS(AE_BAD_PARAMETER);
762
763         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
764
765         acpi_os_free(sem);
766         sem = NULL;
767
768         return_ACPI_STATUS(AE_OK);
769 }
770
771 EXPORT_SYMBOL(acpi_os_delete_semaphore);
772
773 /*
774  * TODO: The kernel doesn't have a 'down_timeout' function -- had to
775  * improvise.  The process is to sleep for one scheduler quantum
776  * until the semaphore becomes available.  Downside is that this
777  * may result in starvation for timeout-based waits when there's
778  * lots of semaphore activity.
779  *
780  * TODO: Support for units > 1?
781  */
782 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
783 {
784         acpi_status status = AE_OK;
785         struct semaphore *sem = (struct semaphore *)handle;
786         int ret = 0;
787
788         ACPI_FUNCTION_TRACE("os_wait_semaphore");
789
790         if (!sem || (units < 1))
791                 return_ACPI_STATUS(AE_BAD_PARAMETER);
792
793         if (units > 1)
794                 return_ACPI_STATUS(AE_SUPPORT);
795
796         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
797                           handle, units, timeout));
798
799         switch (timeout) {
800                 /*
801                  * No Wait:
802                  * --------
803                  * A zero timeout value indicates that we shouldn't wait - just
804                  * acquire the semaphore if available otherwise return AE_TIME
805                  * (a.k.a. 'would block').
806                  */
807         case 0:
808                 if (down_trylock(sem))
809                         status = AE_TIME;
810                 break;
811
812                 /*
813                  * Wait Indefinitely:
814                  * ------------------
815                  */
816         case ACPI_WAIT_FOREVER:
817                 down(sem);
818                 break;
819
820                 /*
821                  * Wait w/ Timeout:
822                  * ----------------
823                  */
824         default:
825                 // TODO: A better timeout algorithm?
826                 {
827                         int i = 0;
828                         static const int quantum_ms = 1000 / HZ;
829
830                         ret = down_trylock(sem);
831                         for (i = timeout; (i > 0 && ret != 0); i -= quantum_ms) {
832                                 schedule_timeout_interruptible(1);
833                                 ret = down_trylock(sem);
834                         }
835
836                         if (ret != 0)
837                                 status = AE_TIME;
838                 }
839                 break;
840         }
841
842         if (ACPI_FAILURE(status)) {
843                 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
844                                   "Failed to acquire semaphore[%p|%d|%d], %s",
845                                   handle, units, timeout,
846                                   acpi_format_exception(status)));
847         } else {
848                 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
849                                   "Acquired semaphore[%p|%d|%d]", handle,
850                                   units, timeout));
851         }
852
853         return_ACPI_STATUS(status);
854 }
855
856 EXPORT_SYMBOL(acpi_os_wait_semaphore);
857
858 /*
859  * TODO: Support for units > 1?
860  */
861 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
862 {
863         struct semaphore *sem = (struct semaphore *)handle;
864
865         ACPI_FUNCTION_TRACE("os_signal_semaphore");
866
867         if (!sem || (units < 1))
868                 return_ACPI_STATUS(AE_BAD_PARAMETER);
869
870         if (units > 1)
871                 return_ACPI_STATUS(AE_SUPPORT);
872
873         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
874                           units));
875
876         up(sem);
877
878         return_ACPI_STATUS(AE_OK);
879 }
880
881 EXPORT_SYMBOL(acpi_os_signal_semaphore);
882
883 #ifdef ACPI_FUTURE_USAGE
884 u32 acpi_os_get_line(char *buffer)
885 {
886
887 #ifdef ENABLE_DEBUGGER
888         if (acpi_in_debugger) {
889                 u32 chars;
890
891                 kdb_read(buffer, sizeof(line_buf));
892
893                 /* remove the CR kdb includes */
894                 chars = strlen(buffer) - 1;
895                 buffer[chars] = '\0';
896         }
897 #endif
898
899         return 0;
900 }
901 #endif                          /*  ACPI_FUTURE_USAGE  */
902
903 /* Assumes no unreadable holes inbetween */
904 u8 acpi_os_readable(void *ptr, acpi_size len)
905 {
906 #if defined(__i386__) || defined(__x86_64__)
907         char tmp;
908         return !__get_user(tmp, (char __user *)ptr)
909             && !__get_user(tmp, (char __user *)ptr + len - 1);
910 #endif
911         return 1;
912 }
913
914 #ifdef ACPI_FUTURE_USAGE
915 u8 acpi_os_writable(void *ptr, acpi_size len)
916 {
917         /* could do dummy write (racy) or a kernel page table lookup.
918            The later may be difficult at early boot when kmap doesn't work yet. */
919         return 1;
920 }
921 #endif
922
923 acpi_status acpi_os_signal(u32 function, void *info)
924 {
925         switch (function) {
926         case ACPI_SIGNAL_FATAL:
927                 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
928                 break;
929         case ACPI_SIGNAL_BREAKPOINT:
930                 /*
931                  * AML Breakpoint
932                  * ACPI spec. says to treat it as a NOP unless
933                  * you are debugging.  So if/when we integrate
934                  * AML debugger into the kernel debugger its
935                  * hook will go here.  But until then it is
936                  * not useful to print anything on breakpoints.
937                  */
938                 break;
939         default:
940                 break;
941         }
942
943         return AE_OK;
944 }
945
946 EXPORT_SYMBOL(acpi_os_signal);
947
948 static int __init acpi_os_name_setup(char *str)
949 {
950         char *p = acpi_os_name;
951         int count = ACPI_MAX_OVERRIDE_LEN - 1;
952
953         if (!str || !*str)
954                 return 0;
955
956         for (; count-- && str && *str; str++) {
957                 if (isalnum(*str) || *str == ' ' || *str == ':')
958                         *p++ = *str;
959                 else if (*str == '\'' || *str == '"')
960                         continue;
961                 else
962                         break;
963         }
964         *p = 0;
965
966         return 1;
967
968 }
969
970 __setup("acpi_os_name=", acpi_os_name_setup);
971
972 /*
973  * _OSI control
974  * empty string disables _OSI
975  * TBD additional string adds to _OSI
976  */
977 static int __init acpi_osi_setup(char *str)
978 {
979         if (str == NULL || *str == '\0') {
980                 printk(KERN_INFO PREFIX "_OSI method disabled\n");
981                 acpi_gbl_create_osi_method = FALSE;
982         } else {
983                 /* TBD */
984                 printk(KERN_ERR PREFIX "_OSI additional string ignored -- %s\n",
985                        str);
986         }
987
988         return 1;
989 }
990
991 __setup("acpi_osi=", acpi_osi_setup);
992
993 /* enable serialization to combat AE_ALREADY_EXISTS errors */
994 static int __init acpi_serialize_setup(char *str)
995 {
996         printk(KERN_INFO PREFIX "serialize enabled\n");
997
998         acpi_gbl_all_methods_serialized = TRUE;
999
1000         return 1;
1001 }
1002
1003 __setup("acpi_serialize", acpi_serialize_setup);
1004
1005 /*
1006  * Wake and Run-Time GPES are expected to be separate.
1007  * We disable wake-GPEs at run-time to prevent spurious
1008  * interrupts.
1009  *
1010  * However, if a system exists that shares Wake and
1011  * Run-time events on the same GPE this flag is available
1012  * to tell Linux to keep the wake-time GPEs enabled at run-time.
1013  */
1014 static int __init acpi_wake_gpes_always_on_setup(char *str)
1015 {
1016         printk(KERN_INFO PREFIX "wake GPEs not disabled\n");
1017
1018         acpi_gbl_leave_wake_gpes_disabled = FALSE;
1019
1020         return 1;
1021 }
1022
1023 __setup("acpi_wake_gpes_always_on", acpi_wake_gpes_always_on_setup);
1024
1025 static int __init acpi_hotkey_setup(char *str)
1026 {
1027         acpi_specific_hotkey_enabled = FALSE;
1028         return 1;
1029 }
1030
1031 __setup("acpi_generic_hotkey", acpi_hotkey_setup);
1032
1033 /*
1034  * max_cstate is defined in the base kernel so modules can
1035  * change it w/o depending on the state of the processor module.
1036  */
1037 unsigned int max_cstate = ACPI_PROCESSOR_MAX_POWER;
1038
1039 EXPORT_SYMBOL(max_cstate);
1040
1041 /*
1042  * Acquire a spinlock.
1043  *
1044  * handle is a pointer to the spinlock_t.
1045  */
1046
1047 acpi_cpu_flags acpi_os_acquire_lock(acpi_handle handle)
1048 {
1049         acpi_cpu_flags flags;
1050         spin_lock_irqsave((spinlock_t *) handle, flags);
1051         return flags;
1052 }
1053
1054 /*
1055  * Release a spinlock. See above.
1056  */
1057
1058 void acpi_os_release_lock(acpi_handle handle, acpi_cpu_flags flags)
1059 {
1060         spin_unlock_irqrestore((spinlock_t *) handle, flags);
1061 }
1062
1063 #ifndef ACPI_USE_LOCAL_CACHE
1064
1065 /*******************************************************************************
1066  *
1067  * FUNCTION:    acpi_os_create_cache
1068  *
1069  * PARAMETERS:  name      - Ascii name for the cache
1070  *              size      - Size of each cached object
1071  *              depth     - Maximum depth of the cache (in objects) <ignored>
1072  *              cache     - Where the new cache object is returned
1073  *
1074  * RETURN:      status
1075  *
1076  * DESCRIPTION: Create a cache object
1077  *
1078  ******************************************************************************/
1079
1080 acpi_status
1081 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1082 {
1083         *cache = kmem_cache_create(name, size, 0, 0, NULL, NULL);
1084         if (cache == NULL)
1085                 return AE_ERROR;
1086         else
1087                 return AE_OK;
1088 }
1089
1090 /*******************************************************************************
1091  *
1092  * FUNCTION:    acpi_os_purge_cache
1093  *
1094  * PARAMETERS:  Cache           - Handle to cache object
1095  *
1096  * RETURN:      Status
1097  *
1098  * DESCRIPTION: Free all objects within the requested cache.
1099  *
1100  ******************************************************************************/
1101
1102 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1103 {
1104         (void)kmem_cache_shrink(cache);
1105         return (AE_OK);
1106 }
1107
1108 /*******************************************************************************
1109  *
1110  * FUNCTION:    acpi_os_delete_cache
1111  *
1112  * PARAMETERS:  Cache           - Handle to cache object
1113  *
1114  * RETURN:      Status
1115  *
1116  * DESCRIPTION: Free all objects within the requested cache and delete the
1117  *              cache object.
1118  *
1119  ******************************************************************************/
1120
1121 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1122 {
1123         (void)kmem_cache_destroy(cache);
1124         return (AE_OK);
1125 }
1126
1127 /*******************************************************************************
1128  *
1129  * FUNCTION:    acpi_os_release_object
1130  *
1131  * PARAMETERS:  Cache       - Handle to cache object
1132  *              Object      - The object to be released
1133  *
1134  * RETURN:      None
1135  *
1136  * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1137  *              the object is deleted.
1138  *
1139  ******************************************************************************/
1140
1141 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1142 {
1143         kmem_cache_free(cache, object);
1144         return (AE_OK);
1145 }
1146
1147 /*******************************************************************************
1148  *
1149  * FUNCTION:    acpi_os_acquire_object
1150  *
1151  * PARAMETERS:  Cache           - Handle to cache object
1152  *              ReturnObject    - Where the object is returned
1153  *
1154  * RETURN:      Status
1155  *
1156  * DESCRIPTION: Return a zero-filled object.
1157  *
1158  ******************************************************************************/
1159
1160 void *acpi_os_acquire_object(acpi_cache_t * cache)
1161 {
1162         void *object = kmem_cache_zalloc(cache, GFP_KERNEL);
1163         WARN_ON(!object);
1164         return object;
1165 }
1166
1167 /******************************************************************************
1168  *
1169  * FUNCTION:    acpi_os_validate_interface
1170  *
1171  * PARAMETERS:  interface           - Requested interface to be validated
1172  *
1173  * RETURN:      AE_OK if interface is supported, AE_SUPPORT otherwise
1174  *
1175  * DESCRIPTION: Match an interface string to the interfaces supported by the
1176  *              host. Strings originate from an AML call to the _OSI method.
1177  *
1178  *****************************************************************************/
1179
1180 acpi_status
1181 acpi_os_validate_interface (char *interface)
1182 {
1183
1184     return AE_SUPPORT;
1185 }
1186
1187
1188 /******************************************************************************
1189  *
1190  * FUNCTION:    acpi_os_validate_address
1191  *
1192  * PARAMETERS:  space_id             - ACPI space ID
1193  *              address             - Physical address
1194  *              length              - Address length
1195  *
1196  * RETURN:      AE_OK if address/length is valid for the space_id. Otherwise,
1197  *              should return AE_AML_ILLEGAL_ADDRESS.
1198  *
1199  * DESCRIPTION: Validate a system address via the host OS. Used to validate
1200  *              the addresses accessed by AML operation regions.
1201  *
1202  *****************************************************************************/
1203
1204 acpi_status
1205 acpi_os_validate_address (
1206     u8                   space_id,
1207     acpi_physical_address   address,
1208     acpi_size               length)
1209 {
1210
1211     return AE_OK;
1212 }
1213
1214
1215 #endif